
 

 
 

SCADA Intrusion Detection System Test Framework 
 

By: Henrik Waagsnes 

Supervisor: Nils Ulltveit-Moe, Associate Professor Ph.D 

 

IKT 590 - Master’s thesis 
Spring 2017 

 

 

 

Department of Information and Communication Technology 

Faculty of Engineering and Science 

University of Agder 

Grimstad, 21 May 2017 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

2 

 

Abstract 

Supervisory control and data acquisition (SCADA) systems play an important role in our 

critical infrastructure (CI). Several of the protocols used in SCADA communication are old 

and lack of security mechanisms. This master thesis presents a SCADA Intrusion 

Detection System Test Framework that can be used to simulate SCADA traffic and detect 

malicious network activity. The framework uses a signature-based approach and utilize 

two different IDS engines, Suricata and Snort. The IDS engines include rule-sets for the 

IEC 60870-5-104, DNP3 and Modbus protocols. The IDS engines ships detected events 

to a distributed cluster and visualize them using a web interface. 

 

The experiments carried out in this project show that there generally is little difference 

between Suricata and Snort's ability to detect malicious traffic. Suricata is compatible with 

signatures written in snort lightweight rules description language. I did however, discover 

some compatibility issues. 

 

The purposed framework applies additional latency to the analysis of IDS events. The 

perceived latency was generally higher for Snort events than for Suricata events. The 

reason for this is probably the additional processing time applied by the implemented log 

conversion tool. 

 

Keywords: SCADA, IDS, SIEM 

 

 

 

  



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

3 

 

Preface 

This report is the result of the master thesis IKT 590 (30 ECTS) which is part of my fourth 

semester MSc study at the Faculty of Engineering and Science, University of Agder (UiA) 

in Grimstad, Norway. The work on this project started from 1 January 2017 and ended on 

21 May 2017. In this project, I have designed, implemented and demonstrate a "SCADA 

Intrusion Detection System Test Framework". 

 

I would like to express my gratitude to my supervisor Nils Ulltveit-Moe for making this 

Master Thesis possible and giving me guidance and feedback throughout this project. 

 

I would also like to thank NC-Spectrum AS for good support and for inviting me to a 

conference in Kviteseid themed securing SCADA systems. This conference helped me 

kick start my master thesis and gave me many new ideas. 

 
 
Grimstad 
 
May 2017 
 
Henrik Waagsnes 
 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

4 

 

List of figures 

Figure 1: Defense-in-depth security layers [3] ................................................................ 12 

Figure 2: Activity framework for Design Science Research [5] ....................................... 14 

Figure 3: Relationships between kernel theory, mid-range-theory and design theory, and 

the design process [5] .................................................................................................... 14 

Figure 4: Reasoning in the Design Research Cycle [5] .................................................. 15 

Figure 5: Hierarchy of the five levels of distribution automation (DA)[1] ......................... 16 

Figure 6: DA level interconnection [1] ............................................................................. 17 

Figure 7: First generation SCADA Architecture [6] ......................................................... 18 

Figure 8: Second generation SCADA Architecture [6] .................................................... 19 

Figure 9: Third generation SCADA Architecture [6] ........................................................ 19 

Figure 10: Fourth generation SCADA Architecture [8] .................................................... 20 

Figure 11: IEC 60870-5-104 APDU [11] ......................................................................... 21 

Figure 12: Control Field Information Type Structure [10] ................................................ 21 

Figure 13: Code Type Groups [10] ................................................................................. 21 

Figure 14: DNP3 master/slave architecture [10] ............................................................. 22 

Figure 15: DNP3 Data Link Frame  [10] ......................................................................... 22 

Figure 16: Modbus Client/Server communication model [13] ......................................... 23 

Figure 17: Modbus TCP/IP communication architecture [13] ......................................... 24 

Figure 18: General Modbus frame [13] ........................................................................... 24 

Figure 19: Modbus TCP/IP frame [13] ............................................................................ 24 

Figure 20:Interrelations between the IEC TC57 standards and the IEC 62351 security 

standards [20] ................................................................................................................. 27 

Figure 21: Stuxnet first three stages[21] ......................................................................... 28 

Figure 22: Stuxnet last three stages[21] ......................................................................... 28 

Figure 23: Multilayer SCADA cyber-security framework with IDS [31] ............................ 34 

Figure 24: SCADA-IDS security management system [31] ............................................ 34 

Figure 25: Hybrid SCADA-IDS process [31] ................................................................... 35 

Figure 26: OCSVM classification [35] ............................................................................. 38 

Figure 27: Alert-ontology [40] ......................................................................................... 40 

Figure 28: Architecture overview [41] ............................................................................. 42 

Figure 29: SCADA network topology [41] ....................................................................... 43 

Figure 30: SCADA Honeynet architecture [44] ............................................................... 44 

Figure 31: GridLab District setup [45] ............................................................................. 44 

Figure 32: Implementation overview of SoftGrid testbed [46] ......................................... 45 

Figure 33: Placement of A*CMD system [46] ................................................................. 46 

Figure 34: Framework Architecture ................................................................................ 49 

Figure 35: IEC Server panels ......................................................................................... 51 

Figure 36: qtester104.ini configuration file ...................................................................... 52 

Figure 37: QTester104 GUI connected to IEC Server .................................................... 52 

Figure 38: Wireshark analysis of IEC 60870-5-104 communication ............................... 53 

Figure 39: OSHMI KOR1 substation in simulation mode switch on ................................ 53 

Figure 40: OSHMI KOR1 substation in simulation mode switch off ................................ 54 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

5 

 

Figure 41: OSHMI KOR1 event viewer in simulation mode ............................................ 54 

Figure 42: OSHMI KOR1 substation trend viewer in simulation mode ........................... 54 

Figure 43: OpenMUC j60870 Client Console default ...................................................... 55 

Figure 44: Adding new commands and acionkeys ......................................................... 55 

Figure 45: Configuring action for actionkey .................................................................... 56 

Figure 46: Add new action for each command ............................................................... 56 

Figure 47: OpenMUC j60870 Client Console after modification ..................................... 56 

Figure 48: ELK stack architecture................................................................................... 62 

Figure 49: Logstash configuration [51] ........................................................................... 63 

Figure 50: Three-node cluster ........................................................................................ 64 

Figure 51:ELK stack successfully configured ................................................................. 65 

Figure 52: Pie chart visualization in kibana .................................................................... 65 

Figure 53: Monitoring dashboard provided by x-pack ..................................................... 66 

Figure 54: Elasticsearch monitoring using x-pack .......................................................... 66 

Figure 55: Functionality available in x-pack [53] ............................................................. 67 

Figure 56: Network traffic monitoring dashboard ............................................................ 68 

Figure 57: IDS alert monitoring dashboard ..................................................................... 69 

Figure 58: IDS comparison dashboard ........................................................................... 69 

Figure 59: Experimental dashboard ................................................................................ 70 

Figure 60: Calculating latency ........................................................................................ 70 

Figure 61: Latency Dashboard ....................................................................................... 71 

Figure 62: Snort IDS SystemD ....................................................................................... 72 

Figure 63: BASH script used to archive and clear the snort log ..................................... 73 

Figure 64: Output of BASH script ................................................................................... 73 

Figure 65: Wireshark analysis of normal IEC 60870-5-104 traffic .................................. 75 

Figure 66: Packet Sender client side .............................................................................. 76 

Figure 67: Packet Sender server side ............................................................................ 76 

Figure 68: Configured IEC Server to send single point information (M_SP_NA_1) 

messages every second ................................................................................................. 77 

Figure 69: Sending read command (C_RD_NA_1) message from OpenMUC j60870 client

 ....................................................................................................................................... 77 

Figure 70: Sending interrogation command (C_IC_NA_1) message from OpenMUC 

j60870 client ................................................................................................................... 77 

Figure 71:  Sending counter interrogation command (C_CI_NA_1) message from 

OpenMUC j60870 client ................................................................................................. 78 

Figure 72: Sending a single command (C_SC_NA_1) message from an unauthorized client

 ....................................................................................................................................... 78 

Figure 73: Sending a “set point command, normalized value” (C_SE_NA_1) message from 

an unauthorized client .................................................................................................... 78 

Figure 74: Sending reset process command (C_RP_NA_1) message from OpenMUC 

j60870 client ................................................................................................................... 79 

Figure 75: Broadcast request from an unauthorized client ............................................. 79 

Figure 76: Snort ARP Spoof Preprocessor ..................................................................... 81 

Figure 77: Using xARP to detect ARP spoofing ............................................................. 81 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

6 

 

Figure 78: Ettercap-104-mitm plugin code and output .................................................... 81 

Figure 79: Editing the tcp port in the QTester104 configuration file ................................ 82 

Figure 80: Using Packet Sender to connect a Client on a non-IEC104 port ................... 83 

Figure 81: Using plcscan to scan for modbus devices .................................................... 85 

Figure 82: Using metasploit to send read request to PLC .............................................. 86 

Figure 83: Using metasploit to send write request to PLC .............................................. 86 

Figure 84: NMAP scanning in version detection mode ................................................... 86 

Figure 85:Using SMOD to perform points list and function code scan............................ 87 

Figure 86: Using PuTTy to connect via Telnet ................................................................ 88 

Figure 87: Using dsniff to sniff username and password used in Telnet connection ...... 88 

Figure 88: Using ncrack to brute force telnet passwords ................................................ 88 

Figure 89: Traffic monitor dashboard .............................................................................. 89 

Figure 90: Using hping3 to perform SYN flood attack ..................................................... 89 

Figure 91: Network monitoring on target ........................................................................ 90 

Figure 92: Boxplot comparison of latency in Suricata and Snort under normal traffic .... 91 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

7 

 

List of tables 

Table 1: Modbus Public function types [13] .................................................................... 25 

Table 2: Performance comparison of machine learning techniques [35] ........................ 39 

Table 3: System specification ......................................................................................... 50 

Table 4: Network specifications ...................................................................................... 50 

Table 5: IEC 60870-5-104 message types supported by IEC Server [48] ...................... 51 

Table 6: Example snort rule ............................................................................................ 57 

Table 7: py-idstools u2eve configuration file ................................................................... 60 

Table 8: Filebeat configuration on the Snort IDS machine ............................................. 61 

Table 9: IEC 60870-5-104 variables set in configuration files (normal communication) . 75 

Table 10: Signature-based rules triggered by various methods ..................................... 80 

Table 11: Protocol-based rules triggered by Ettercap plugin .......................................... 82 

Table 12: Traffic-pattern-based rules triggered by various methods .............................. 83 

Table 13: Regeneration DNP3 pcap-files using Bittwist ................................................. 84 

Table 14: DNP3 rules triggered by pcap regeneration .................................................... 84 

Table 15: Regeneration modbus pcap-files using Bittwist .............................................. 85 

Table 16: Modbus rules triggered by pcap regeneration ................................................ 87 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

8 

 

List of acronyms 

AMR – Automatic meter reading  

ANN – Artificial Neural Networks 

API – Application Programming Interface 

CVE – Common Vulnerability Enumeration 

DDoS – Distributed Denial-of-Service 

DPI – Deep Packet Inspection 

DSO –  Distribution System Operator 

ELK – Elasticsearch, Logstash and Kibana 

HIDS – Host-Based Intrusion Detection System 

HMI – human-machine interface 

HMM – Hidden Markov Model 

ICS – Industrial Control Systems 

ICT – Information and Communication System 

IDMEF – The Intrusion Detection Message Exchange Format 

IDS – Intrusion Detection System 

IEC – International Electrotechnical Commission 

IED – Intelligent Electronic Device 

IoT – Internet of things 

IP – Internet Protocol 

JSON – JavaScript Object Notation 

LAN – Local Area Network 

MAC – Medium Access Control 

NCC –  Network Control Center 

NIDS – Network-Based Intrusion Detection System 

NVE – The Norwegian Water Resources and Energy Directorate 

OCC – One-Class Classification 

OCSVM – One Class Support Vector Machines 

PDF – Portable Document Format 

PLC – Programmable Logic Controller 

RTU – Remote Terminal Unit 

SCADA – Supervisory control and data acquisition 

SDN – Software-Defined Networking 

SIEM – Security Information and Event Management 

SSH – Secure Shell 

SVDD – Support Vector Data Description 

SVM – Support Vector Machines 

TDoS – Telephone Denial-of-Service 

UPS – Uninterruptible Power Supply 

USB – Universal Serial Bus 

VPN – Virtual Private Network 

WAN – Wide Area Network 

  



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

9 

 

Table of Contents 
Abstract ...................................................................................................................... 2 

Preface ....................................................................................................................... 3 

List of figures .............................................................................................................. 4 

List of tables ............................................................................................................... 7 

List of acronyms ......................................................................................................... 8 

1 Introduction ...................................................................................................... 12 

1.1 Problem statement ....................................................................................... 13 

1.2 Limitations and Assumptions ....................................................................... 13 

1.3 Research Method......................................................................................... 13 

1.4 Report outline .............................................................................................. 15 

2 Theory .............................................................................................................. 16 

2.1 Technology used in power grids .................................................................. 16 

2.2 SCADA Architecture .................................................................................... 18 

2.2.1 First generation – Monolithic SCADA Systems ................................... 18 

2.2.2 Second generation – Distributed SCADA Systems ............................. 18 

2.2.3 Third generation – Networked SCADA Systems ................................. 19 

2.2.4 Fourth generation – “Internet of things (IoT)” SCADA Systems ........... 19 

2.3 SCADA communication protocols ................................................................ 20 

2.3.1 IEC 60870-5-104 ................................................................................. 20 

2.3.2 DNP3 ................................................................................................... 22 

2.3.3 Modbus ................................................................................................ 23 

2.4 Security issues ............................................................................................. 25 

2.4.1 IEC  60870-5-104 ................................................................................ 26 

2.4.2 DNP3 ................................................................................................... 26 

2.4.3 Modbus TCP ....................................................................................... 26 

2.4.4 IEC 62351 ........................................................................................... 27 

2.5 Cyber-attacks on SCADA systems .............................................................. 27 

2.5.1 Attack on Iran’s nuclear program ......................................................... 27 

2.5.2 Attack on the Ukrainian Power Grid .................................................... 29 

2.6 Intrusion Detection ....................................................................................... 30 

2.7 Honeypots .................................................................................................... 31 

3 Prior Research ................................................................................................. 33 

3.1 Signature and preprocessor based SCADA Intrusion Detection .................. 33 

3.2 Big Data based SCADA Intrusion Detection ................................................ 35 

3.3 Machine Learning based SCADA Intrusion detection .................................. 36 

3.4 Ontology based SCADA Intrusion Detection ................................................ 39 

3.5 Intrusion detection in SDN-Based SCADA systems..................................... 41 

3.6 SCADA Honeypots ...................................................................................... 43 

3.7 Power grid testbeds ..................................................................................... 44 

4 Approach .......................................................................................................... 47 

4.1 Framework architecture ............................................................................... 47 

4.2 Implementation ............................................................................................ 50 

4.2.1 Attacker and SCADA targets ............................................................... 50 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

10 

 

4.2.1.1 IEC 60870-5-104 Server ............................................................. 50 

4.2.1.2 IEC 60870-5-104 Client ............................................................... 51 

4.2.1.3 Second IEC 60870-5-104 Client ................................................. 54 

4.2.1.4 Siemens SIAMATIC S7 -200 PLC ............................................... 57 

4.2.2 Intrusion Detection Systems (IDSs) ..................................................... 57 

4.2.2.1 Suricata IDS ................................................................................ 58 

4.2.2.2 Snort IDS .................................................................................... 59 

4.2.2.3 Filebeat ....................................................................................... 61 

4.2.3 Security information and event management (SIEM) .......................... 62 

4.2.3.1 Logstash ..................................................................................... 62 

4.2.3.2 Elasticsearch ............................................................................... 64 

4.2.3.3 Kibana ......................................................................................... 64 

4.2.3.4 X-pack ......................................................................................... 65 

4.2.4 Dashboards ......................................................................................... 67 

4.2.4.1 Network traffic monitoring ........................................................... 68 

4.2.4.2 IDS alert monitoring .................................................................... 68 

4.2.4.3 IDS comparison .......................................................................... 69 

4.2.4.4 Experimental ............................................................................... 70 

4.2.4.5 Latency ....................................................................................... 70 

4.2.5 Automation .......................................................................................... 71 

4.2.5.1 System daemons ........................................................................ 71 

4.2.5.2 Log rotation and index cleaning .................................................. 72 

4.2.5.3 Time synchronization .................................................................. 74 

5 Experiments and Results ................................................................................. 75 

5.1 IEC 60870-5-104 client/server communication ............................................ 75 

5.1.1 Normal communication ........................................................................ 75 

5.1.2 Signature-based rules ......................................................................... 76 

5.1.2.1 Non-IEC/104 communication on an IEC/104 port ....................... 76 

5.1.2.2 Spontaneous messages storm .................................................... 76 

5.1.2.3 Unauthorized read command to an IEC/104 Server ................... 77 

5.1.2.4 Unauthorized interrogation command to an IEC/104 server ....... 77 

5.1.2.5 Unauthorized counter interrogation command to an IEC/104 Server

 78 

5.1.2.6 Remote command from unauthorized 104 client ......................... 78 

5.1.2.7 Set point command from an unauthorized IEC/104 client ........... 78 

5.1.2.8 Reset process command from unauthorized client ..................... 78 

5.1.2.9 Broadcast request from unauthorized client ................................ 79 

5.1.2.10 Potential Butter Overflow ............................................................ 79 

5.1.2.11 Results ........................................................................................ 79 

5.1.3 Protocol-based rules............................................................................ 80 

5.1.3.1 Man-in-the-middle packet injection ............................................. 80 

5.1.3.2 Results ........................................................................................ 81 

5.1.4 Traffic-pattern-based rules .................................................................. 82 

5.1.4.1 Unauthorized connection attempt from an IEC/104 server.......... 82 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

11 

 

5.1.4.2 Unauthorized connection attempt to a non-IEC/104 port of a server

 82 

5.1.4.3 Unauthorized traffic between IEC/104 server and client ............. 83 

5.1.4.4 Results ........................................................................................ 83 

5.2 DNP3 communication .................................................................................. 83 

5.2.1 Captured DNP3 traffic ......................................................................... 83 

5.2.2 Results ................................................................................................ 84 

5.3 Modbus communication ............................................................................... 85 

5.3.1 Captured Modbus traffic ...................................................................... 85 

5.3.2 Reconnaissance on the Simens SIMATIC S7-200 PCL ...................... 85 

5.3.3 Unauthorized read and write requests to PLC ..................................... 85 

5.3.4 Non-Modbus communication on TCP port 502 .................................... 86 

5.3.5 Points list scan and function code scan ............................................... 86 

5.3.6 Results ................................................................................................ 87 

5.4 Other experiments ....................................................................................... 88 

5.4.1 Remote access to RTU ....................................................................... 88 

5.4.1.1 Man-in-the-middle sniffing ........................................................... 88 

5.4.1.2 Brute force .................................................................................. 88 

5.4.1.3 Results ........................................................................................ 89 

5.4.2 Denial-of-service ................................................................................. 89 

5.4.2.1 SYN flood .................................................................................... 89 

5.4.2.2 Results ........................................................................................ 90 

5.4.3 Latency ................................................................................................ 90 

5.4.3.1 Normal traffic flow ....................................................................... 91 

5.4.3.2 Flooded traffic ............................................................................. 91 

5.4.3.3 Results ........................................................................................ 91 

6 Discussion ........................................................................................................ 93 

7 Conclusion ....................................................................................................... 97 

8 Future Work ..................................................................................................... 99 

9 References ..................................................................................................... 100 

10 Appendices .................................................................................................... 104 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

12 

 

1 Introduction 

A Supervisory control and data acquisition (SCADA) system is an industrial control system 

(ICS), implemented between industrial processes and management systems. SCADA 

systems play an important role in our critical infrastructure (CI), and is used for example to 

control power plants and water supplies. The main functions of a SCADA system is event 

data management, management of network switch state, remote controlling, configuration, 

measuring and reporting [1].  

 

Cyber-attacks have not been considered as a likely threat to SCADA systems in the past. 

Several of the most commonly used protocols in SCADA system today have therefore a 

lack of security, and make the systems vulnerable to cyber-attacks. An attack against 

SCADA systems may jeopardize the system operation, safety and stability. In the worst 

case, an attack could cause huge economic and human losses. Nation-states, criminals 

and hacktivists are specifically targeting critical infrastructure as a part of their 

cyberwarfare, to achieve economic and political benefits. 

 

The defense-in-depth principle is an idea that layered security mechanisms will increase 

security of the whole system. If an attack causes one security mechanism to fail, other 

mechanisms may still provide the necessary security to protect the system [2]. This 

principle should be followed to improve the overall security level of SCADA systems. 

Several layers of security are illustrated in figure 1. 

 

 

Figure 1: Defense-in-depth security layers [3] 

 

Intrusion detections systems (IDS) and intrusion prevention systems (IPS) is a layer of 

security often implemented behind a firewall. An IDS/IPS is a software or hardware device 

that monitors the system, and looks for malicious activity. IDS allow administrators to 

detect cyber-attacks, stop the attack and design the system to be secure.  

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

13 

 

1.1 Problem statement 

This master thesis aims at implementing and demonstrating an integrated intrusion 

detection system test framework for supervisory control and data acquisition (SCADA) 

networks in the electrical energy sector. 

 

The main goal is to perform and study attacks on simulated SCADA networks, and 

demonstrate how an intrusion detection framework can detect the attacks.  

 

1.2 Limitations and Assumptions 

The lab environment implemented in this master thesis contains simulated SCADA 

systems. I assume that these are realistic simulations of SCADA protocols and hardware. 

This thesis focuses on network based intrusion detection systems (NIDS). NIDS solutions 

do not cause any performance penalty, when running in promiscuous mode. Host based 

intrusion detection systems (HIDS) could be an efficient way to detect malicious activities 

and modifications in SCADA systems. HIDS solutions however causes a significant 

performance penalty on the system, 4% to  50% depending on the workload [4]. For this 

reason, HIDS is not part of the implemented test framework. Both signature and anomaly 

based IDS solutions are discussed in this report. Signature based detection is however the 

focus in the implemented framework. The IEC 60870-5-104 protocol is the major focus in 

this master thesis.  Nevertheless, other protocols like DNP3 and Modbus will also be 

discussed. 

1.3 Research Method 

Several research methodologies such as scrum, waterfall, spiral, Design Science 

Research in Information Systems (DSRIS) and Prince2 were considered as possible 

methodologies for this project. After examining all the research methodologies, the DSRIS 

was considered as a suited method for this project. The research in this master thesis 

follow the DSRIS methodology. The idea behind this methodology is to learn through the 

act of building. The aim of using DSRIS is to create a design theory through the process 

of developing and testing an information system artifact inextricably bound to the testing 

and refinement of its kernel theory. The relationship between DSRIS and theory is a 

frequently debated topic in research communities. I build my understanding of DSRIS on 

well-known research on the anatomy of research projects [5]. Figure 2 shows the overall 

activity framework utilized in this metrology. The activities are interconnected and ensures 

continuous development. The activities in the model applies to the following tasks in this 

project; Problem diagnostics involves detecting vulnerabilities and possible attacks on 

SCADA systems. Technology evaluation involves performing and simulate attacks. Theory 

Building involves developing theories of how the attacks can be performed and detected. 

Technology Invention/design involves implementing and design new elements (e.g. IDS 

rules, new target protocols, attack modules and analysis tools) in the framework [5]. 

 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

14 

 

 

Figure 2: Activity framework for Design Science Research [5] 

 

Figure 3 describes the relationship between theory development and the design process. 

Kernel theories provide theoretical grounding for the artifact. Design theory is considered 

as practical knowledge used to support design activities. An example kernel theory could 

describe that, using Telnet might lead to unauthorized access. The design theory could be 

designing a sniffing attack to get access to the plain text password. Using this password 

to gain unauthorized access might be evidence to confirm the initial kernel-theory [5]. 

 

 

Figure 3: Relationships between kernel theory, mid-range-theory and design theory, and the design process [5] 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

15 

 

 

Figure 4 provides a more granular and directive description of the project phases, than 

figure 2. All research phases are potential opportunities for developing and refine kernel 

theories, mid-range theories and design theories [5]. 

  

 

Figure 4: Reasoning in the Design Research Cycle [5] 

 

1.4 Report outline 

 Introduction: The first chapter contains, background, problem statement, 

limitations and assumptions for this project. As well as a research methodology 

used to perform experiments and design an approach. 

 Theory: The second chapter contains, a discussion of theory relevant for project. 

Including technology, security issues and past events.   

 Prior Research: The third chapter contains, a discussion of prior research related 

to this project. 

 Approach: The fourth chapter contains, a discussion about the architecture and 

implementation of the chosen approach. 

 Experiments and Results: The fifth chapter contains, performed experiments and 

a discussion around the results. 

 Discussion: The sixth chapter contains, a discussion of the whole project, 

evaluation of results, and other thoughts about the conducted research. 

 Conclusion: The seventh chapter contains, a conclusion of the presented 

approach and achieved results. 

 Future Work: The eighth chapter contains, a discussion around possible future 

work to improve performance. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

16 

 

2 Theory 

This chapter discusses theory related to research conducted in this project. 

2.1 Technology used in power grids 

The electric distribution system main functionality is to transfer and distribute the generated 

electric power to customers. The power grid can be separated into different levels. The 

high-level network, is the national distribution network, connected to distribution networks 

in other countries. This distribution network consists of high-voltage lines connected to 

regional networks. The regional networks is again connected to local networks, operated 

by multiple Distribution System Operators (DSOs) [1]. 

 

To achieve Distribution Automation (DA) in the distribution network, multiple components 

and systems are used. With these components and systems, it is possible to plan, monitor, 

manage and operate the distribution network. According to [1], the DA can be divided to 

five different levels of automation. 

 

 

Figure 5: Hierarchy of the five levels of distribution automation (DA)[1] 

 

 Utility: This level focuses on utilization of the information provided by different 

information systems such as Network Information System (NIS), Customer 

Information System (CIS), Distribution Management System (DMS) and 

Supervisory Control and Data Acquirement (SCADA) [1]. 

 

 Network Control Center (NCC): This level allows DSOs to use DMS and SCADA 

systems, to monitor and control the state of the distribution network [1]. 

 

 Substations: This level includes the operation of protection relays along with 

control of switching components. Substations may also have a possibility to use 

SCADA locally [1]. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

17 

 

 Feeder: This level covers the operation of remote controlled disconnectors, the 

voltage and current measurements that exist in the network. Also the operation and 

data transmission of fault indicators [1]. 

 Customer: This level enables DSOs to read customer’s energy meter remotely and 

in real-time, via Automatic meter reading (AMR) [1]. 

 

The figure below shown how the different DA levels in the distribution process are 

interconnected. 

 

 

 

Figure 6: DA level interconnection [1] 

 

Small DSOs may not have automation at all these levels, and only follow the first-

generation SCADA implementation [6].  The Norwegian Water Resources and Energy 

Directorate (NVE) requires that all Norwegian DSOs need to install AMR within 1. January 

2019 [7]. This indirectly means that all DSOs must upgrade their control systems. 

 

A Supervisory Control and Data Acquisition (SCADA) system is an information system 

widely used in industrial applications. It is an information system between the distribution 

primary process and the DMS, and is usually used in the NCC [1]. It connects the most 

critical parts of the system in real-time, via Remote Terminal Units (RTUs) or 

Programmable Logic Controllers (PLCs) located within the network. The main functions of 

a SCADA system is event data management, management of network switch state, remote 

controlling, configuration, measuring and reporting [1]. 

  



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

18 

 

2.2 SCADA Architecture 

The first SCADA systems where deployd in the 1960s, they have later evolved over the 

past decades. SCADA architectures can  be divided into four generations [6]. 

 

2.2.1 First generation – Monolithic SCADA Systems 

When SCADA systems first was developed, it was designed as a standalone system. The 

system was designed to communicate with RTU, via Wide Area Networks (WANs). 

Communication protocols used in SCADA networks were developed by vendors of RTU 

equipment and were often proprietary. Connectivity to the SCADA master were done at 

the bus level via a proprietary adapter [6]. 

 

 

Figure 7: First generation SCADA Architecture [6] 

 

2.2.2 Second generation – Distributed SCADA Systems 

The second generation of SCADA system was designed to distribute the processing 

across multiple systems, connected though a Local Area Network (LAN). 

 

These distributed stations had different tasks. Some served as communication processors 

between field devices such as RTUs. Others served as an operator interface, providing 

the human-machine interface (HMI) for the system operators. There is even some stations 

performing calculations and database services. 

 

Distribution of system functionality increased the processing power, improved the 

redundancy and reliability of the system. The system communicates with RTUs, via Wide 

Area Networks (WANs) like in the first generation [6]. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

19 

 

 

Figure 8: Second generation SCADA Architecture [6] 

 

2.2.3 Third generation – Networked SCADA Systems 

The third generation of SCADA systems is closely related to the second generation, and 

is still widely utilized.  This architecture is similar to the distributed architecture. The major 

difference is that the SCADA system now is spread across more than one LAN. This is a 

more complex architecture, where several systems run in parallel, connected to a SCADA 

master [6]. 

 

 

Figure 9: Third generation SCADA Architecture [6] 

 

2.2.4 Fourth generation – “Internet of things (IoT)” SCADA Systems 

The fourth generation of SCADA architecture have adopted IoT technologies and 

commercial cloud services. This makes SCADA systems easier to maintain and integrate. 

This architecture drastically increases data accessibility, cost efficiency, flexibility, 

optimization, availability and scalability. However, it introduces new security related issues 

[8]. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

20 

 

 

Figure 10: Fourth generation SCADA Architecture [8] 

 

2.3 SCADA communication protocols 

SCADA systems used in the energy sector encompasses the collecting of the information 

via RTUs, transferring it back to the central site, carrying out necessary analysis and 

control, and then displaying that information in a HMI. A SCADA communication protocol 

is a standard for data representation and data transfer over a communication channel on 

a master/slave basis. IEC60870-5-104 and DNP3 are two of the most frequently used 

SCADA communication protocols in the energy industry [9]. IEC 60870-5 is widely used in 

Europe, while DNP3 is widely used in North America. Another widely used SCADA protocol 

is Modbus. Modbus is widely used in many industries, for example in water and sewage 

processing plants. 

 

These protocols are implemented at the application layer, layer 5 in the TCP/IP model. 

 

2.3.1 IEC 60870-5-104 

IEC 60870 is a collection of open standards created by the International Electrotechnical 

Commission (IEC) for the transmission of SCADA telemetry control and data. IEC 60870 

when discussed in context of SCADA normally referees to IEC 60870-5-101. This is a 

standard for power system monitoring, control and associated communications. When IEC 

60870-5-101 was launched in 1995, the protocol was designed for serial communication. 

IEC 60870-5-104 is an extension of IEC 60870-5-101, that was released in 2004. It allows 

the serial frames to be transmitted over TCP/IP. Figure 11 shows the protocol frame 

structure, often referred to as Application Protocol Data Unit (APDU). The APDU consists 

of two parts, the Application Protocol Control Information (APCI) and Application Service 

Data Unit (ASDU) [10]. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

21 

 

 

Figure 11: IEC 60870-5-104 APDU [11] 

The APCI is comprised of the first 6 octets in the APDU, and contains a start character, 

68H, a length field (containing the length of the APDU) and a control field. The APCI control 

field can be of the following types: Information, Supervisory or Unnumbered. The last two 

bits indicate the type; 10 for supervisory, 11 for unnumbered and 00 for information (shown 

in figure 12) [10]. 

 

 

Figure 12: Control Field Information Type Structure [10] 

 

The ASDU (shown in figure 11) contains the data unit identifier and the data payload of 

one or more information objects. The Type Identification (TI) field defines the data types 

by referring to the 8-bit code types.  Figure 13 show the TI groups that are currently defined 

by IEC. For example, refers TI number 9 to the reference code M_ME_NA_1 indicating 

“Measured value, Normalized value” [10].  

 

 

Figure 13: Code Type Groups [10] 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

22 

 

The Variable Structure Qualifier indicates whether the payload contains multiple 

information objects or not (max 127). The field Cause of Transmission (CoT) indicates the 

cause of transmission. The CoT value “1” would indicate a periodic transmission, while the 

value “3” would indicate a spontaneous transmission. The common address is associated 

with all objects in an ASDU. All stations of a specific system broadcast address to the 

common address. The information object address is used as destination address in control 

direction and as source address in monitor direction. IEC 60870-5-104 is by default 

assigned the TCP port number 2404 [10] [12]. 

 

2.3.2 DNP3 

The Distributed Network Protocol Version 3 (DNP3) is a protocol standard to define 

communications between RTUs and master stations. DNP3 was originally a proprietary 

protocol developed by Harris Controls Division, and has later been adopted by IEEE as an 

open standard. DNP3 is a master/slave control system protocol typically configured with 

one master station and multiple outstation devices [10]. 

 

 

Figure 14: DNP3 master/slave architecture [10] 

 

DNP3 is a four-layer subset of the OSI model. The layers are the application, data link, 

physical, and pseudo-transport layers. The pseudo-transport layer includes routing, flow 

control of data packets, and transport functions such as error-correction and 

assembly/disassembly of packet. Figure 15 shows the structure of the DNP3 data link 

frame. The header contains two bytes indicating where the frame begins. The Length field 

specifies number of bytes of the frame excluding the Cyclic Redundancy Check (CRC) 

section. The link control field is used for the sending and receiving link layers for 

coordination. The destination address and which source address are 2-byte addresses 

that identifies the DNP3 device receiver and sender. Every DNP3 device is required to 

have a unique address for sending and receiving messages to and from each other. The 

data payload is divided into blocks with each block containing a pair of CRC bytes for every 

16 data bytes except for the last block [10]. 

 

 

Figure 15: DNP3 Data Link Frame  [10] 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

23 

 

 

The pseudo-transport layer has the responsibility of breaking long application layer 

messages into smaller packets sized for the link layer to transmit, and, when receiving, to 

reassemble frames into longer application layer message. The application layer fragments 

a message depending on the receiver’s buffer size (2048 to 4096 bytes). A fragment of 

size 2048 must be broken into 9 frames by the transport layer before passing on to the 

data link layer. DNP3 is by default assigned the TCP port number 20000 [10]. 

 

2.3.3 Modbus 

Modbus is an open source serial communication protocol developed by Modicon (now 

Schneider Electric) in 1979. It is used to establish master-slave/client-server 

communication between a supervisory computer and a remote terminal unit (RTU) in a 

supervisory control and data acquisition (SCADA) system. There are several versions of 

the Modbus protocols. Including Modbus RTU and Modbus ASCII for serial lines and 

Modbus TCP for Ethernet communication. This thesis focuses on Modbus over TCP. 

 

The modbus protocol provides four message types used in client/server communication, 

request, confirmation, indication and response [13]. 

 

 

Figure 16: Modbus Client/Server communication model [13] 

 The request message is send by a client to initiate a transaction. 

 The initiation message is send by the server, when a request message is 

received. 

 The response message is send the server to a client.  

 The confirmation message is send by the client, when a response message is 

received. 

 

A communication system over Modbus TCP may include different type of devices. Most 

devices are devices directly connected to the Ethernet.  Interconnected devices like 

bridges, routers and gateways may be used connect serial line devices to the modbus 

network [13]. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

24 

 

 

Figure 17: Modbus TCP/IP communication architecture [13] 

 

The Modbus frame is composed of an Application Data Unit (ADU), which encloses a 

Protocol Data Unit (PDU). The ADU includes an address field, the PDU and an error check 

mechanism. The PDU includes a function code field and a data field. The function code 

indicates what kind of action to perform [13]. 

 

Figure 18: General Modbus frame [13] 

 

The Modbus frame used in Modbus TCP is different from the general frame. The main 

difference is that a new 7-byte header called MBAP header (Modbus Application Header) 

is added at the start of the message. The CRC (cyclic redundancy check) for error checking 

is removed from the message. Error checking is now performed by the TCP protocol at the 

transport layer (layer 4)  [13], [14] . 

 

 

Figure 19: Modbus TCP/IP frame [13] 

 

The Transaction Identifier field in the MBAP header is 2 bytes set by the client to uniquely 

identify each request. The protocol Identifier field is 2 bytes set by the client to identify the 

protocol, always 00 00 for Modbus. The length field is 2 bytes used to identify the number 

of bytes in the Modbus message. The SlaveID field is removed and replaced with a unit 

identifier. The unit Identifier field is 1 byte used to communicate via devices such as 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

25 

 

bridges, routers and gateways that use a single IP address to support multiple independent 

MODBUS end units [13].  

 

Modbus specifies several function codes. These function codes are numbered in a range 

from 1 to 127 in decimal. The function codes are categorized in three categories; public, 

user-defines and reserved. The public codes are guaranteed to be unique and specify 

public documented functions. The user-defined functions are non-unique codes defined by 

the network administrators. The reserved codes are used by companies for legacy 

products and return values. The basic public functions have been developed for 

exchanging data, and can be categorised in four groups [13], [15].  

 

Table 1: Modbus Public function types [13] 

 
 

Modbus communication are by default initiated on TCP port 502 [13]. 

 

2.4 Security issues 

SCADA systems are often a part of critical infrastructure (CI). The security in SCADA 

systems and the communication protocols used to exchange data is important, to prevent 

cyber-attacks. Many system lacks monitoring functionality. Without network monitoring, it 

is impossible to detect suspicious activity and identify potential threats. Another problem 

is that some systems are rarely or never updated. This means that some systems might 

contain vulnerabilities in firmware or software, that can be exploited by attackers.  Some 

vendors even allow SCADA devices to communicate remotely over unencrypted 

communication. Authentication solutions are often configured with poor passwords or even 

with default passwords. The default passwords used in many SCADA systems are 

available on the internet, and leave the system completely open for attackers [16], [17]. 

 

The next the sections discuss security issues found in SCADA protocols, IEC 60870-5-

104, DNP3 and Modbus TCP. Many SCADA protocols are designed to be open, robust 

and reliable and easy to operate, and not necessarily to provide secure communication. 

  



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

26 

 

2.4.1 IEC  60870-5-104 

The IEC 60870-5-104 protocol do not perform any checksum calculation. This was 

included in the in the IEC 60870-5-101 frame used for asynchronous communication. 

Checksum calculation is now not performed at the application layer (layer 5), and is now 

handed over to the transport layer (layer 4). 

 

 Lack of Confidentiality: All IEC 60870-5-104 messages are transmitted in clear 

text across the network. 

 Lack of Integrity: There are no integrity checks built into the IEC 60870-5-104 

protocol. 

 Lack of Authentication: There is no authentication in the IEC 60870-5-104 

protocol.  

 

2.4.2 DNP3 

The DNP protocols transmits any data in clear text across the network. A difference from 

IEC 60870-5-104 and Modbus is that DNP3 performs a Cyclic Redundancy Check (CRC) 

by divide the data into blocks, with each block containing a pair of CRC bytes for every 16 

data bytes except for the last block. 

 

 Lack of Confidentiality: All DNP3 messages are transmitted in clear text across 

the network. 

 Lack of Integrity: CRC only detects random faults. If someone intentionally 

change the contents of a DNP3 frame, the CRC field can be recalculated [18]. 

 Lack of Authentication: There is no authentication in the DNP3 protocol.  

 

2.4.3 Modbus TCP 

The Modbus TCP protocol contains multiple vulnerabilities that could allow an attacker to 

perform reconnaissance activity or issue arbitrary commands [19]. 

 

 Lack of Confidentiality: All Modbus messages are transmitted in clear text 

across the network [19].  

 Lack of Integrity: There are no integrity checks built into the Modbus protocol 

[19]. 

 Lack of Authentication: There is no authentication at any level of the Modbus 

protocol [19]. 

 Simplistic Framing: The Modbus protocol frames are sent over established TCP 

connections. While such connections are usually reliable, they have a significant 

drawback since TCP does not preserve record boundaries [19]. 

 Lack of Session Structure: The Modbus TCP protocol consists of short 

transactions where the client initiates a request to the server that results in a 

single action. When combined with the lack of authentication and poor TCP initial 

sequence number (ISN) generation in many embedded devices, it becomes 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

27 

 

possible for attackers to inject commands with no knowledge of the existing 

session [19]. 

 

2.4.4 IEC 62351 

IEC 62351 is a connection of standards created by the International Electrotechnical 

Commission (IEC) to handle security issues in SCADA communication protocols, including 

the IEC 60870-5-104 protocol and the DNP3 protocol. The different security objectives 

include authentication and encryption of data. Authentication of entities through digital 

signatures, ensures only authorized access. Prevention of eavesdropping through TLS 

encryption. Prevention man-in-the-middle attack trough authentication. Prevention of 

spoofing through security certificates and replay attacks through TLS encryption. However, 

TLS does not protect against denial of service. Figure 20 shows the relation between IEC 

communication standards and the IEC security standards [20]. 

 

 

Figure 20:Interrelations between the IEC TC57 standards and the IEC 62351 security standards [20] 

2.5 Cyber-attacks on SCADA systems 

Although cyber-security should be one of the highest priority tasks in SCADA systems, 

there is still much work to be done to increase security in this area. There are many 

examples from the past, where unauthorized users have exploited vulnerabilities in 

SCADA systems, to gain access to the system. If unauthorized users can control SCADA 

systems, it can lead to catastrophes. Some well-known attacks on SCADA systems, are 

mentioned in this chapter.      

 

2.5.1 Attack on Iran’s nuclear program 

A 500-kilobyte malicious computer worm called Stuxnet, was in 2010 targeting industrial 

control systems. Stuxnet infected at least 14 industrial sites in Iran, causing damage to 

Iran's nuclear program [21]. 

 

The Stuxnet worm operates in six stages. In the first stage; the worms targeting and 

infecting Microsoft computers, via an infected USB stick and replicate itself to the network. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

28 

 

Second stage; the worm specifically seeks Siemens Step7 software installed on the 

computers. Third stage; If the computer is the target, the worm tries to connect to the 

Internet and update the worm. Otherwise, Stuxnet does nothing and does not continue to 

stage four [21]. 

 

 

Figure 21: Stuxnet first three stages[21] 

Fourth stage; the worm compromises the Programmable Logic Controllers (PLCs), by 

exploiting vulnerabilities in the system. Fifth stage; Stuxnet gathers information about the 

running system. Then it uses this information to modify the code running in Programmable 

Logic Controllers (PLCs). The goal of the attack was to force the system to deviate from 

expected behaviour. In order to hide from intrusion detection systems, the deviation is 

small and over a long period of time [22]. Sixth stage; at the same time as the modified 

code runs, Stuxnet provides false feedback to monitoring systems. This way the operators 

would think that everything runs as normal. Stuxnet was programmed to automatically 

erase itself on the date 24.06.2012 [23]. 

 

Figure 22: Stuxnet last three stages[21] 

 

Stuxnet was discovered in 2010, by a Belarusian malware-detection company. They found 

the malware located in a client’s computer. The malware was signed by a digital certificate, 

making it appear to come from a reputable company. The company shared their findings 

with other security companies. Some of the world’s largest security firms immediately 

began reverse engineering the malware code. It soon became clear that the malware had 

been specifically designed to damage Siemens systems running centrifuges in Iran’s 

nuclear program. Although the authors of Stuxnet never have been officially identified, the 

size and sophistication of the worm indicates that it could have been created only by a 

nation-state [21]. Stuxnet was according the Washington post, the work of United States 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

29 

 

and Israeli intelligence agencies. The goal was to delay Iran’s apparent progress toward 

building an atomic bomb [23]. 

 

Large quantities of uranium are needed to build an atomic bomb. The Iranian nuclear 

program had at that time nearly 6,000 centrifuges. Centrifuges are fast-spinning machines 

that extract uranium. The Stuxnet attack destroyed nearly 1,000 of Iran’s 6,000 centrifuges 

[23]. 

 

Multiple malicious worms related to the Stuxnet worm has been detected over the past 

years. Hungarian researchers found in 2011, a malware called Duqu. This malware had 

been designed to steal information about industrial control systems. In 2012 Kaspersky 

Lab detected a malware called Flame. This malware had supposedly destroyed files from 

oil-company computers in Iran. They realized that Flame was a precursor of Stuxnet, that 

somehow had gone undetected. The same year Kaspersky Lab found a worm called 

Gauss. The Gauss worm infected computers via USB sticks. The Gauss worm would for 

unknown reasons steal files and gather passwords, targeting Lebanese bank credentials 

[21]. 

 

2.5.2 Attack on the Ukrainian Power Grid 

In 2015, three regional electricity distribution companies in Ukraine, experience power 

outages due coordinated cyber-attacks. These cyber-attacks are the first publicly 

acknowledged incidents to result in power outages [24]. 

 

The attacks began with a spear-phishing campaign, targeting IT staff and system 

administrators. The campaign sent an email to workers of the companies with a malicious 

Word document attached. When they opened the attached document, a popup window 

appears asking them to enable macros for the document. If the clicked “enable”, a malware 

called BlackEnergy3 would infect the computer and open a backdoor. Now the attackers 

have access to the corporate network. Over many months, the attackers conducted 

reconnaissance in the network. They managed to get access to the Windows Domain 

Controllers and harvested the worker’s credentials: Some of these credentials were used 

to get VPN access, and remotely log in to the SCADA network. The first thing they did, 

was to reconfigure the uninterruptible power supply (UPS) procedures. They managed to 

do this in two of the three companies systems. Each of the three companies were running 

different management systems. In each case, the attackers wrote malicious firmware for 

the specific system, replacing the legitimate firmware [25]. 

 

In December 2015 the attackers launched the attack by accessing a hijacked VPN and 

disabled the UPS. A worker from one of these companies, explains that the cursor on his 

computer suddenly moved across the screen of its own accord. The worker watched while 

the attackers took the substations offline, without being able to stop their action. The 

attackers logged him out of the control panel. When he tried to log back in, they had 

changed his password. At the same time, they launched a telephone denial-of-service 

(TDoS) attack, to prevent customers from calling in to report the outage. They also 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

30 

 

overwrote the firmware with the malicious firmware, preventing the operators from sending 

remote commands. After all this, they used a malware called KillDisk to wipe all the data 

from the operator computers. KillDisk also wipes the master boot record, meaning that the 

operator computers not would be able to reboot [25]. 

 

The attack lasted several hours and forced operators to switch to manual mode. 

Approximately 225,000 customers in different areas, lost power due to this attack. 

Ukrainian government claimed that the Russian security services were responsible for this 

attack [24]. 

2.6 Intrusion Detection 

Most DSO’s already have some sort of firewall protecting their system, by denying specific 

actions. Compared to physical security; a firewall can be compared with a protecting wall, 

while intrusion detection system (IDS) can be compared with cameras and sensors 

monitoring the system.  IDS’s usually consists of a management console and sensors. The 

management console manages and reports intrusions. The sensors are agents that 

monitor hosts or networks activity on a real-time basis [26]. 

 

The main task of IDS, is to detect system intrusions that attempt to compromise integrity, 

confidentiality or availability. Unlike in an intrusion prevention system (IPS), an IDS does 

not block network traffic. The role of a network IDS is passive, only gathering, identifying, 

logging and alerting [26]. 

 

IDS have two different techniques to categorize and detect intrusions; Misuse intrusion are 

defined attacks on known weak points within a system. The sensors can detect  intrusions 

by watching for certain actions be performed, and match them to signatures in a database 

[26]. 

 

Anomaly intrusion are based on observations of deviations from normal system usage 

patterns. They can be detected by building up a profile of the system under concern, and 

detecting significant deviations from this profile. Some IDS systems use a hybrid 

anomaly/misuse detection model. This hybrid combines the best of both worlds. The 

solution can analyse data and determine if the observations are suspicious and if it 

corresponds to a known intrusion profile, and if either the sequence of observations or the 

attack profile are statistically significant [26]. 

 

There are three types of IDS implementations; Network based IDS (NIDS) monitors the 

traffic over connections, by capturing network packets. NIDS intercept packets traveling 

along communication links and protocols. When a packet is captured, it is analysed by 

using one of the intrusion detection techniques. Host based IDS (HIDS) identifies 

unauthorized behaviour on a specific device. HIDS includes an agent installed on the 

reporting host, and a server agent on the IDS side. The agents monitors and alerts on local 

OS and application activity. Another possible approach is a hybrid of both HIDS and NIDS 

[26]. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

31 

 

 

There are some well-known issues with today’s IDS solutions. An IDS might incorrectly 

identify intrusions. A false positive occurs when the IDS classifies an event as a possible 

intrusion when it actually is legitimate. A false negative occurs when an actual intrusion 

happens but the IDS allows it to pass. A subversion error can happen when an intruder is 

able edit the intrusion detector procedures, to force false negatives to occur. False 

positives will then, be classified as legitimate events by the administrators of the system 

[26]. 

 

2.7 Honeypots 

A honeypot is a security resource whose value lies in being probed, attacked, or 

compromised. Unlike firewalls and IDS technologies, honeypots are something we want 

the attackers to interact with. Honeypots can provide additional information about attacks 

directed towards specific systems, by collecting information about the attacker. The 

honeypots can be divided into two categories, low-interaction and high-interaction 

honeypots [27]. 

 

Low-interaction honeypots have limited interaction. They normally work by emulating 

services and operating systems. Attacker activity is limited to the level of emulation by the 

honeypot. The low-interaction honeypot’s main task is to identify hostile activity, generate 

an alert and capture a minimum of data. Normally these honeypots take a minimum 

amount of work. The main disadvantages with low interaction honeypots is that they log 

only limited information and are designed to capture known activity [27]. 

 

High-interaction honeypots are totally different. They are usually complex solutions as they 

involve real operating systems and applications. Nothing is emulated and attackers are 

presented to a real environment. The main advantages with high-interaction honeypots is 

that they can capture extensive amounts of information. By giving attackers real systems 

to interact with, we are able to learn the full extent of the attacker’s behaviour [27]. 

 

A Honeynet is a special kind of high-interaction honeypot, containing entire networks of 

computers designed to be attacked. The purpose is building a highly contained network, 

where all inbound and outbound traffic is both controlled and captured. Intended victims, 

containing computers running real applications are placed within the network. Honeynets 

can be divided into three generations [27]: 

 

The first generation (Gen I) honeynet was implemented in an isolated network. A firewall 

and a router were used as access control devices. Data Control was implemented at the 

routing firewall. Gen I Honeynet has high risk of intruders exploiting its data control 

mechanism, and take advantage of initiate a stream of attacks on other systems [27]. 

 

The second generation (Gen II) honeynet consist of more advanced technologies, 

designed to ensure that compromised nodes of the Honeynet not can be used to attack 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

32 

 

machines outside the Honeynet. It is a layer two bridge that can count connections, and 

block/modify outbound attacks. The honeynet is placed in the production network and 

separated from it by means of a gateway device. Since all the traffic passes through the 

gateway, the sensor can capture data traveling in and out of the Honeynet. Advanced data 

capture techniques like key loggers can be implemented. The third generation (Gen III) 

have the same architecture as the second generation (Gen II). The only difference is 

improvements in deployment and management [27]. 

 

Honeypots can also be categorized by their purposes; production and research honeypots. 

Production honeypots are placed within an organization’s production network with the 

purpose of detection. They extend the capabilities of intrusion detection systems. 

Research honeypots are deployed by researchers in an isolated environment, with the 

purpose of studying the attacker’s tactics and discover new zero day exploits, worms, 

trojans and viruses [28]. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

33 

 

3 Prior Research 

Intrusion detection systems for SCADA networks is a relatively new concept. This chapter, 

will discuss prior research on topics related to SCADA intrusion detection. The research 

topics is divided into subchapters, although some research fits in several categories. 

 

3.1 Signature and preprocessor based SCADA Intrusion Detection 

Digital Bond has performed research on SCADA Security for the US Department of 

Homeland Security, US Department of Energy, UK, Japanese and other governments. The 

Digital Bond project Quickdraw has released SCADA IDS signature rules and 

preprocessor plugins for DNP3, EtherNet/IP and Modbus TCP protocols. These rules and 

plugins can be used to identify unauthorized requests, malformed protocol requests and 

responses, rarely used and dangerous commands, and other situations that are likely or 

possible attacks. The signature rules and preprocessor plugins are written to support Snort 

IDS. The signatures can easily be converted to other IDS formats. However, it is not easy 

to convert preprocessors to support other IDS formats [29]. 

 

Researchers at the Queen’s University Belfast has published a paper, presenting a rule-

based intrusion detection system for IEC 60870-5-104 SCADA networks [30]. They used 

a Deep Packet Inspection (DPI) method, which included signature-based and model-

based approaches. The paper presents a set of Snort IDS signatures. These signatures 

can not only detect several known malicious attacks and suspicious threats, but also 

identify the sources of the attacks and therefore potentially prevent future intrusions. A 

specific anomaly based approach, known as model-based is proposed as a complement 

to the signature-based approach. By monitoring the behaviors of devices using the 

IEC/104 protocol, unknown zeroday attacks may be detected. The researchers conclude 

that the latency introduced by the IDS not will compromise the normal operations in the 

SCADA system [30]. 

 

The same researchers published a paper, presenting a next-generation multi-attribute 

SCADA-specific IDS [31]. The paper claims that current security countermeasures in 

SCADA systems mainly focus on external threats, and ignores interior detection within a 

substation network. An engineer can for instance enter a substation and connect his laptop 

to the LAN. This laptop may be infected by malware, providing attackers unauthorized 

access to the substation. In a worst-case scenario, this could lead to an attack on the 

substation, causing power outages. In order, to address this issue, they proposed a 

SCADA cyber-security framework based on IDS [31]. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

34 

 

 

Figure 23: Multilayer SCADA cyber-security framework with IDS [31] 

 

This framework focused on perimeter defense against attacks from outside enclaves and 

inside detection of malicious behavior. The IDS sensors are deployed in the enclave 

boundaries for the perimeter defense, as well as inside the enclave for interior detection. 

The proposed solution contains a Security Information and Event Management (SIEM) 

platform that supports log management, real-time monitoring and security event 

management from a broad range of systems. It establishes an early warning system to 

detect threats based on log events and flow information from both the enterprise level and 

the SCADA level [31]. 

 

 

Figure 24: SCADA-IDS security management system [31] 

 

The proposed multi-attribute SCADA-specific IDS is an effective hybrid intrusion detection 

system that can identify both external malicious attacks and internal misuse [31]. 

The detection process consists of three attribute methods: 

1) Access control whitelists 

2) Protocol-based whitelists 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

35 

 

3) Behavior-based rules.  

 

 

Figure 25: Hybrid SCADA-IDS process [31] 

 

The access control whitelist approach contains detectors in three layers. 1) source and 

destination Medium Access Control (MAC) addresses in the data link layer. 2) source and 

destination Internet Protocol (IP) addresses in the network layer and 3) source and 

destination ports in the transport layer. If any of the addresses or ports are not in the 

corresponding whitelist, the detector will take a predefined action [31]. 

 

The protocol-based whitelist method is related to the application layer and deals with 

various SCADA protocols such as Modbus, DNP3, IEC 60870-5 series and IEC 61850. 

The IDS can be set to inspect network traffic between two control centers. In this case the 

protocol-based detector only allows communication traffic complying with specific 

protocols, otherwise it will generate an alert message [31]. 

 

The behavior-based detection approach finds and defines normal and correct behaviors 

by Deep Packet Inspection (DPI). This may include analysis of a single-packet or multiple-

packets together. The detector generates an alert if the inspected package deviates from 

the normal behavior [31]. 

3.2 Big Data based SCADA Intrusion Detection 

Big Data is an expression used to describe a massive volume of both structured and 

unstructured data, that is difficult to process using traditional databases and software. Big 

data is a hot topic related to security and intrusion detection. 

 

Packetpig is one of the first big data signature based network intrusion detection systems. 

This system is based on Snort and operates in a full capture mode, using Apache Hadoop 

as a distributed MapReduce based filesystem. The data can be stored across multiple 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

36 

 

nodes, allowing distributed parallel processing. This provides powerful analysis of 

terabytes of network packet data, running queries [32]. 

 

Researchers at the Austrian Institute of Technology has published a paper, they presents 

a big data anomaly based network intrusion detection system used in Smart Grid ICT 

networks [33]. This approach heavily relies on statistical analysis of system behavior 

reflected in system log files to detect anomalies [34]. Almost every modern ICT component 

and service produces logging data to report events, internal state changes, and committed 

actions. The data is a valuable source to establish situational awareness about the current 

state of ICT networks and is utilized by this approach. The approach uses the Graylog2 

software to collect distributed log files and maintain the temporal order of log messages. 

The solution use a self-learning approach that continuously creates hypotheses about 

correlated events and test them at run-time. It operates in a learning phase (to capture a 

stable system model) and an operational phase (to trigger alerts in case of deviations from 

the system model). Both phases are executed in parallel, which means the system 

continuously learns and can adapt to changing situations [33]. 

3.3 Machine Learning based SCADA Intrusion detection 

Researchers at the University of Surrey has published a paper, presenting how machine 

learning methods can be utilized in intrusion detection systems protecting SCADA systems 

[35]. This subchapter sums up the methods discussed in this paper. 

 

Intrusion detection is the process of observing and analyzing the events taking place in an 

information system to discover signs of security related issues. Intrusion detection systems 

(IDS) are traditionally analyzed by human security analysts.  When the amount of data 

increases, this process will be time consuming and expensive. Machine learning has the 

capability to gather new data and make predictions based on the previous data. Machine 

learning methods in intrusion detection systems could detect more attacks, reduce the 

number of false positives and analyze more efficient than humans [35]. 

  

Rule-based Approach 

This approach uses rules that describe the correlation between attribute conditions and 

class labels. When applied to intrusion detection, the rules becomes descriptive normal 

profiles of users, programs and other resources. The intrusion detection mechanism 

identifies a potential attack if users or programs act inconsistently with the established 

rules. The rules can be written in the form of if-then. If there are too many rules, the system 

can become difficult to maintain and can suffer from poor performance [35] , [36]. 

 

Artificial Neural Networks 

This approach uses an artificial neural network (ANN), which involves a network of simple 

processing neurons, which make up the layers of “hidden” units, and can predict complex 

behavior, determined by the connections between the processing elements and element 

parameters. When applied to intrusion detection systems, an ANN could provide the 

capability of analyzing the data even if it is incomplete. Due this capability an ANN can 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

37 

 

learn abnormal behaviors and identify potential attacks, even if the attacks are similar to 

prior attacks but do not match the previous malicious behaviors exactly. ANN provides fast 

speed and nonlinear data analysis. The main difficulty of an ANN is that it needs a large 

amount of training data to ensure accurate predictions [35]. 

 

Hidden Markov Model (HMM) 

This approachs use the Hidden Markov Model (HMM), where the observed examples, �� ,

� ∈  {1, … , �}, have an unobserved state �� at time t. Each node in HMM represent a 

random variable with hidden state �� and observed value �� at time t. In HMM it is assumed 

that state �� has a probability distribution over the observed samples �� and that the 

sequence of observed samples embeds information about the sequence of states. 

Statistically, HMM is based on the Markov property that the current true state �� is 

conditioned only on the value of the hidden variable �� 1 but is independent of the past 

and future states. Similarly, the observation  �� only depends on the hidden state ��. The 

famous solution to HMM is the Baum-Welch algorithm, which derives the maximum 

likelihood estimate of the parameters of the output given the data set of output sequences. 

When applied to intrusion detection systems, HMMs can effectively model variations in 

system behavior. To apply HMM for anomaly intrusion detection, we need a set of normal 

activity states � =  {��, … . , ��} and a set of normal observations � =  {��, … . , ��} [35] , 

[37]. 

 

Given an observation sequence � =  {��, … . , ��}, the HMM searches for a normal state 

sequence of � =  {��, … . , ��} which has a predicted observation sequence most similar to 

Y with a probability for examination. If this probability is less than a predefined threshold, 

we declare that this observation indicates an anomaly state [35]. 

 

 

Support Vector Machines (SVM) 

This approach use Support Vector Machines (SVM), which are one of the leading machine 

learning tools, mostly used as a classifier. SVM is a family of learning algorithms for 

classification of data into two classes. It uses a function to map data into a space where it 

is linearly separable. The space where the data is mapped may be of higher dimension 

than the initial space. The SVM allows finding a hyperplane which optimally separates the 

classes of data: the hyper-plane is such that its distance to the nearest training data points 

is maximal [35]. 

 

The SVM has shown superior performance in the classification problem and has been 

used successfully in many real-world problems. However, the weakness of SVM is that it 

needs prior labelled data and is very sensitive to noise [35] , [38]. 

 

When applied to intrusion detection systems, patterns in the data that are normal or 

abnormal may not be obvious to operators and all above techniques rely on this prior 

information. Although these techniques proved to be a powerful classification tool, it is 

difficult without labelled data for tuning the algorithm [35]. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

38 

 

 

One Case SVM (OCSVM): CockpitCI Approach 

This approach aims to overcome the issue described above. The OCSVM separates attack 

data from the normal data, and can be considered as a regular two-class SVM where all 

the data lies in the first class and the origin is the only member of the second class. The 

basic idea of the OCSVM is to map the input data into a high dimensional space and 

construct an optimal separating hyper plane, which is defined as the one with the maximum 

spreading between the two classes. This optimal hyper-plane can be solved easily using 

a dual formulation. The solution is sparse and only support vectors are used to specify the 

separating hyper-plane. The number of support vectors can be very small compared to the 

size of the training set and only support vectors are important for prediction of future points. 

A function can be used to compute the separating hyper-plane without explicitly carrying 

out the mapping operations into the feature space and all necessary computations are 

performed directly in the input space [35] , [39]. 

 

 

Figure 26: OCSVM classification [35] 

 

When applied to intrusion detection systems,OCSVM is used to train the offline data and 

generate a detection model. This model is used for intrusion detection. If the decision 

model returns a negative value, it implies an abnormal event. Unlike other classification 

methods, OCSVM does not need any labelled data (no signatures required) for training or 

any information about the kind of intrusion [35]. 

 

The researchers also provide a performance comparison of the described machine 

learning techniques, show in table 2. 

 

 

 

 

 

 

 

 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

39 

 

 

Table 2: Performance comparison of machine learning techniques [35] 

 
 

3.4 Ontology based SCADA Intrusion Detection 

Researchers at the Fraunhofer IOSB in Germany has published a paper, where they 

propose an ontology-based intrusion detection framework for SCADA-systems [40]. The 

ontology-framework focuses on modeling alerts, attacks, vulnerabilities and systems, 

combining these with reasoning. The ontologies are used to map uniformly and normalize 

the different security reports created from existing security components of a SCADA 

system [40]. 

 

The alert ontology maps alerts from Snort and OSSEC in the Intrusion Detection Message 

Exchange Format (IDMEF). The base element of an IDMEF alert is the alert element that 

describes an alert and its properties [40]. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

40 

 

 

Figure 27: Alert-ontology [40] 

 

The attack ontology describes attacks to systems inferred by the reasoning component. 

An attack has a reference to a describing it, the attacker and a trigger identified by its IP 

address or name. It may contain references to the addresses of the involved targets or 

specific alerts, concluding that it was an attack [40]. 

 

The system ontology is derived from the topology information and describes networks, its 

components and connections between these. Snort provides lists of all recognized 

systems and software running on them. OpenVAS produces a report for every scanned 

system, containing information about the software, hardware, operating systems, 

hostnames, IP addresses, port numbers, running services, version numbers and more 

[40]. 

 

The vulnerability ontology provides information about vulnerabilities and security gaps, 

found by OpenVAS and general ones from the Common Vulnerability Enumeration (CVE) 

online database. The elements of the vulnerability ontology are a description of the 

vulnerability, countermeasures, a reference to a source containing this vulnerability, origin 

and where the entry originates from CVE or OpenVAS [40]. 

 

The inferred ontology serves as an interface to the functions of the reasoning component. 

This component registers rules, starts the reasoning process and reports the results. After 

constructing the data structures, the initialized reasoning component may draw 

conclusions and produce an output. Relationships between the different ontologies may 

be elaborated and complex conclusions inferred [40]. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

41 

 

3.5 Intrusion detection in SDN-Based SCADA systems 

Researchers at the Federal University of Rio Grande do Sul and the Austrian Institute of 

Technology have published a paper, where they discuss the benefits of using Software-

Defined Networking (SDN) to assist in the deployment of next generation SCADA systems 

[41]. They also present a specific Network-Based Intrusion Detection System (NIDS) for 

SDN-based SCADA systems, which uses SDN to capture network information and is 

responsible for monitoring the communication between power grid components [41]. 

 

Electric power grids are undergoing a modernization process and evolving into the so-

called Smart Grids, improving the generation, transmission, and distribution of electrical 

energy. Smart Grids allow a more resilient, secure, and reliable power supply for end-

users. SCADA-systems are also evolving, by using more secure communication protocols 

and using field devices with higher processing capacity. SDN is a promising network 

paradigm that can support the evolution of SCADA communication networks. SCADA 

systems can benefit from the characteristics of SDN in several ways [41]: 

 

 Flexibility: SDN permits adding new field devices or upgrading existing network 

applications inside the SCADA system [41]. 

 Centralized Management: The RTU can manage field devices, monitor and control 

the network that interconnects system devices [41]. 

 Standard API: The OpenFlow protocol provides a standard API that allows a better 

integration of geographically disperse network equipment from different vendors 

[41]. 

 Programmability: SDN allows creating a range of customized services, for 

example load balancing between communication links [41]. 

 

The proposed NIDS uses One-Class Classification (OCC) machine learning algorithms 

that enable detecting abnormal traffic behavior from a homogeneous training set 

containing only the signature of traffic generated under normal network operation. The 

NIDS architecture is composed of five components that intercommunicate to monitor the 

network and to report possible anomalous behaviors in SCADA systems [41]: 

 

 The SDN Controller is a component responsible for monitoring and for applying 

routing strategies to SCADA network switches [41]. 

 The Historian Server is a component that is typically present in the Control Center 

of several traditional SCADA systems [41]. 

 The Feature Selector is a component that analyses the stored samples and offers 

an extensive set of features extracted from OpenFlow native counters [41]. 

 The One-Class Classifier is the central component in the proposed architecture 

that analyses samples to find anomalous behaviors in the SCADA network [41]. 

 The NIDS Management Interface component provides a management interface 

for SCADA operators to interact with the NIDS [41]. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

42 

 

 

Figure 28: Architecture overview [41] 

To demonstrate the benefits and accuracy of the proposed NIDS, they present an analysis 

comparing the two OCC machine learning algorithms used in their approach, One-Class 

Support Vector Machine (OCSVM) and Support Vector Data Description (SVDD). This 

comparison shows the efficiency of the approach to detect cyber-attacks targeted at a 

power grid. The experiments are performed by simulating a proof-of-concept SDN-based 

SCADA system using a large-scale topology, with one main control center, four 

intermediate control centers, eight distribution substations, and hundreds of field devices. 

The results of the experiments indicate that OCSVM presents slightly better accuracy than 

SVDD and that the OCC algorithms achieve an approximate accuracy of 98%. This shows 

that the proposed NIDS effectively can be used to detect cyber-attacks targeted against 

SCADA systems [41]. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

43 

 

 

Figure 29: SCADA network topology [41] 

3.6 SCADA Honeypots 

Conpot is a low interaction honeypot for emulating industrial control systems. It is written 

in Python and runs on Debian systems. It is developed as a part of the Honeynet Project, 

and can simulate devices like, Guardian AST, Kampstrup smart meters, IPMI and Siemens 

SIMATIC S7-200 PLCs [42]. 

 

Researchers at the University of Arizona have published a paper, where they perform an 

In-depth analysis of the Conpot SCADA Honeypot. They used Amazon Web Services to 

host multiple conpot honeypots. They ran about a month, and the logs were subsequently 

analyzed. The SCADA honeypots were booted and accessed via Secure Shell (SSH). 

They then performed nmap and SHODAN scans against the honeypots. A very interesting 

finding in the Nmap scan was that the Guardian AST, Kampstrup, and IPMI devices all 

denied ping requests, while the Siemens SIAMATIC S7-200 PLC did not. The results from 

the SHODAN scan were also very insightful in that they showed the Conpot instances as 

being SCADA devices. The SHODAN scan where also able to show that the Siemens 

device was a Siemens SIMATIC S7-200 model. The researchers conclusion was that the 

devices accurately depicted SCADA ports, but appeared to have additional ports open that 

could reveal their identity as honeypots to sophisticated attackers [43]. 

 

Digital bond has developed a high interaction SCADA Honeynet based on the third 

generation honeywall from the Honeynet Project. The solution utilizes two virtual 

machines. The first virtual machine monitors all network activity. This machine includes a 

web management interface called Walleye, a MySQL database for data storage, a Snort 

IDS in packet capture mode, and Digital Bond’s Quickdraw IDS signatures. The second 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

44 

 

virtual machine (the target) simulates a PLC that exposes several services to the attacker 

(FTP, Telnet, HTTP, SNMP and Modbus TCP) [44].  

 

 

Figure 30: SCADA Honeynet architecture [44] 

3.7 Power grid testbeds 

Researchers at HES-SO in Switzerland have implemented a physical full-scale 

experimental platform called Gridlab district. The platform is created for training and 

research purposes in the field of renewable energy and distributed storage integration into 

the electrical distribution network. GridLab District is a perfect environment to develop and 

test smart grid technologies in their application. The heart of the GridLab is a 400VAC 

three-phase power line, to which loads and energy sources are connected. Renewable 

energy production sites, storage systems and loads are emulated with programmable 

static converters. An Ethernet-based communication system enables the exchange of data 

between the converters and a central control unit. The infrastructure of GridLab District is 

completed with real electric loads, electrochemical storage units and solar panels on the 

roof [45]. 

 

Figure 31: GridLab District setup [45] 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

45 

 

It would be interesting to see the effect of a cyber-attack on a full-scale platform like this. 

This would however, introduce high running costs and lack of flexibility and scalability. 

 

Researchers at the Advanced Digital Sciences Center have published a paper, where they 

proposed an open-source software-based smart grid testbed called SoftGrid. The purpose 

of SoftGrid is to evaluate the effectiveness, performance, and interoperability of various 

security solutions implemented to protect the RTUs of substations. The implemented 

approach relies both open-source and proprietary software. It utilizes OpenMUC to support 

IEC 60870-5-104 and IEC 61850 protocols, for control centers and IEDs. PowerWorld is a 

proprietary software utilized in SoftGrid, to configure scalable power grid simulations. 

PowerWold COM API is used for real-time interaction with the simulated power grid. 

SoftGrid provides logging and monitoring of the power grid status and transient stability. 

The solution supports testbeds with power grids up to 2000-bus systems [46]. 

 

 

Figure 32: Implementation overview of SoftGrid testbed [46] 

 

They have also implemented an active command mediation (A*CMD) system, to 

demonstrate how the SoftGrid testbed can evaluate the power grid. An A*CMD system 

aims to offer an additional layer of security that can mitigate the impact of cyber-attacks 

on power grids. The A*CMD system must be able to implement non-bypassable mediation 

of remote control commands and is responsible for inspecting and processing them. A 

modern electrical substation has a system component called gateway. The gateway is 

responsible for protocol translation between substation remote control and intra-substation 

communication. The gateway needs to mediate all remote-control commands, making it 

an ideal place for deployment of the A*CMD system. An A*CMD system can host a variety 

of security mechanisms, such as rule-based/context-based command filtering, and 

command rescheduling or rewriting [46]. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

46 

 

 

Figure 33: Placement of A*CMD system [46] 

 

The A*CMD system in each substation independently adds artificial time delays before 

executing the control centre’s commands on targeted IEDs. The purpose of the artificial 

delay is to provide an attack detection system, which is often implemented at the control 

center, with a time buffer to detect attacks and then to cancel any suspicious control 

commands. If the detection and cancellation takes place before the delay expires, the 

command will never be executed on the IEDs. This approach can reduce the number of 

malicious commands executed. The proposed solution also deploys an IDS at each 

individual substation, which sniffs and parses incoming messages and, and reports them 

back to a central IDS at the control center. The central IDS shows the impact of each 

control command to determine whether the command is malicious or not [46]. 

 

Another interesting paper describes a microgrid testbed for interdisciplinary research on 

cyber-secure industrial control in power systems. Researchers at the Queen’s University 

Belfast present a physical electrical system testbed, representing a microgrid containing 

embedded generation. The testbed was originally constructed to demonstrate the 

feasibility of synchronous islanding of a single machine, then adapted for multimachine 

islanding, and then again to create a testbed on which to investigate the interdisciplinary 

domain of cyber-secure industrial control systems. The test-bed enables prototyping and 

validation of several core features necessary for future smart grid systems. A key benefit 

of the presented system is the ability to experiment with the full stack of functionality, 

spanning from the physical –electrical– layer, through standards compliant 

communications layers, right up to the application layer, where smart grid control functions 

can be implemented and tested [47]. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

47 

 

4 Approach 

This chapter describes the proposed solution of a SCADA Intrusion Detection System Test 

Framework. This Framework provides a controlled environment for penetration testing, 

real-time simulation, intrusion detection and visualization of attacks targeting SCADA 

networks. 

 

The environment can simulate real-time IEC 60870-5-104 traffic between SCADA devices 

and attacks can be performed by utilizing the attacker machine in the framework. The 

framework also includes a simulated Siemens S7 -200 PLC that makes possible to perform 

attacks against the modbus protocol. Two separate intrusion detection systems (IDSs) are 

individually looking for malicious Modbus, DNP3 and IEC 60870-5-104 traffic in the 

controlled environment. An alert is triggered each time one of the IDS implementations 

detect malicious traffic. The alert is then forwarded to a centralized security information 

and event management (SIEM) solution, responsible for collecting, analyse, indexing and 

visualizing IDS events. 

 

4.1 Framework architecture 

The framework's architecture is categorized into four elements: 

 Security information and event management (SIEM) 

 Intrusion detection systems (IDS) 

 SCADA target side 

 Attacker side 

 

The attacker side is a Kali Linux machine with over 600 penetration testing tools. The 

SCADA target side consist of three machines running the client and server side of the IEC 

60870-5-104 communication, and one machine simulating a Siemens S7-200 PLC. The 

Attacker machine and the SCADA machines are connected to the same local network. The 

network traffic traversing the lab network is mirrored and analysed by two separate 

Intrusion detection system implementations. Both Suricata and Snort are implemented in 

this framework. The SCADA rules for IEC 60870-5-104 [30] and the Digital Bond 

Quickdraw SCADA rules for Modbus and DNP3 [29] are implemented in both IDS 

solutions.  

 

Suricata is configured to log alerts in a structured eve JSON format. This output format is 

not available in Snort. For the basis of comparison between alerts triggered by Suricata 

and Snort, it is advantageous if the output log format is the same. To achieve this is Snort 

configured to log alerts in a format called Unified2. A python library called py-idstools is 

then used to convert the Unified2 format to eve JSON.  

 

The ELK stack is used as a SIEM solution in this framework. Logstash is configure to listen 

on TCP port 5044 in the management network. Filebeat is installed on both IDS 

implementations and configured to forward new entries in the log file to Logstash on port 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

48 

 

5044. Logstash then analyses the incoming data and is configured to add/remove some 

fields and tags. The refined data is then shipped to Elasticsearch and stored in a cluster. 

Kibana is used to explore the Elasticsearch data. Kibana provide the possibility to 

investigate historical and real-time events by utilizing a search engine or custom 

dashboards to visualize the data. 

 

X-pack is implemented on top of the ELK stack. This framework use a basic license which 

only includes a monitoring feature. This monitoring feature provide real-time monitoring of 

the performance of the Elasticsearch cluster and the Kibana work load. The X-pack license 

can be upgraded and multiple other features can be unlocked.  

 

The figure on the next page gives an overview of how the framework is interconnected. 

 

Appendix A contains detailed about the tools implemented in the SCADA Intrusion 

Detection System Test Framework. 

 

 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

49 

 

Security information and event management (Security information and event management (

Intrusion detection systems (IDSs)Intrusion detection systems (IDSs)

ELK Stack

Kali Linux

Lab network

Suricata IDS Snort IDS

Mirrored

ELKmonitor

Logstash

Elasticsearch
Node-1

Kibana

Beats (filebeat)
Beats (filebeat)

Suricata IDS Snort IDS

eve.jsonSuricata.yamlRules Unified2 logsnort.confRules

Py-idstools:u2eve
eve.json

Management network

 IEC Server
(IEC 60870-5-104 Server) 

OSHMI
QTester104 (IEC 60870-5-104 protocol tester)

X-Pack
With Basic License

Conpot version 0.5.1
Telnet server

 PuTTY (Telnet Client)

Elasticsearch
Node-2

Elasticsearch
Node-3

Distributed

OpenMUC j60870

 

Figure 34: Framework Architecture 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

50 

 

4.2 Implementation 

The proposed SCADA Intrusion Detection System Test Framework is hosted in a virtual 

environment running on a HP EliteBook 8560w Workstation. VirtualBox is used as a 

hypervisor platform.  

Table 3: System specification 

System specifications 
HP EliteBook 8560w Workstation 

Operating system Ubuntu 16.04 LTS 64bit 

CPU Intel Core i7-2630QM Processor 2.20 GHz x 8 

RAM 11GB 

Graphics Nvidia GF108GLM 1GB 

NIC Intel 82579LM 

Storage 500GB 

Software VirtualBox version 5.1.18 

 

Two separate virtual networks are implemented. The first network is a lab network to 

provide communication between SCADA devices and attackers. The other network is a 

management network to provide communication between the IDSs and the SIEM solution. 

Table 4: Network specifications 

 

 

Appendix B contains detailed specifications for each virtual machines implemented in the 

framework. 

 

4.2.1 Attacker and SCADA targets 

The attacker side of this approach is directly connected to the lab network. It consists of 

one virtual machine with Kali Linux installed. The attacker machine can be used to perform 

reconnaissance, man-in-the-middle attack, denial of service attacks, brute force, 

vulnerability exploitation and several other attacks. 

 

The SCADA target side consist of four virtual machines. Only two of these machines need 

to be turned on simultaneously to simulate different scenarios. The three machines 

generate real-time IEC 60870-5-104 communication in the network. Two machine 

simulates the control side of the SCADA system; two IEC clients and one HMI. The other 

machine simulates the RTU side and an IEC server. The fourth machine simulates a 

Siemens SIAMATIC S7 -200   S7 -200 PLC that can be to simulate attacks on modbus. 

 

4.2.1.1 IEC 60870-5-104 Server 

This machine simulates the RTU side and has a software called IEC Server installed. This 

is a tool used to simulate the server side of systems using the IEC 60870-5-104 protocol. 

The graphical user interface (GUI) shown in figure 35 consists of three main panels; server 

panel, item panel and status panel. The server panel provides the possibility to add new 

items, turn on/off simulation, start/stop server and save/load configuration. The item panel 

displays the IEC type of an item, description of the item, Application Service Data Unit 

Network specifications 
Lab network 10.0.0.1 / 24 

Management network 192.168.0.1 / 24 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

51 

 

(ASDU) field, Cause of transmission (COT) field, information object address (IOB) field 

and value field. In addition, the panel includes the ability to turn on automatic simulation or 

manually send item information. The status panel displays connected clients and a real-

time log of data transmission between server and client. 

 

 

Figure 35: IEC Server panels 

 

The IEC server software supports twelve IEC 60870-5-104 message types in monitoring 

direction and eight in control direction. Table 5 provides a list of all IEC types implemented 

in the software. IEC Server can be configured to automatically simulate feedback when it 

receives a control message from a client. 

 

Table 5: IEC 60870-5-104 message types supported by IEC Server [48] 

Implemented IEC 60870-5-104 message types 
Monitoring direction Control direction 

M_SP_NA  

 

Single point information C_IC_NA (General) Interrogation command 

M_SP_TB Single point long time tag C_CI_NA Counter interrogation command 
M_DP_NA Double point information C_CS_NA Clock synchronization command 
M_DP_TB Double point long time tag C_SC_NA Single command 
M_ME_NA Measured value, norm C_DC_NA Double command 
M_ME_TB Measured value, norm. long time C_SE_NA Set point command norm. value  
M_ME_NB Measured value, scaled  C_SE_NB Set point command scaled value 
M_ME_TD Measured value, scaled long 

time 

C_SE_NC Set point command float 

M_ME_NC Measured value, float          
M_ME_TF Measured value, float. long time   
M_IT_NA Integrated totals   
M_IT_TB Integrated totals long time        

 

 

4.2.1.2 IEC 60870-5-104 Client 

This machine simulates the control side and has QTester104 installed. The software can 

be used to simulate the client side of IEC 60870-5-104 communication. QTester104 can 

be used to poll and view data from RTUs and send command messages. In addition to the 

Open Substation human-machine interface (OSHMI) installed. OSHMI us used as a HMI 

to control and monitor substation. OSHMI can be connected to QTester104, and be used 

to poll data from real RTUs. This is not implemented in this framework. OSHMI is 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

52 

 

configured to operate in simulation mode, and can be used to simulate the effect of a 

cyber-attack on a power plant.  

 

Figure 36 shows how QTester104 can be configured in the file qtester104.ini. In the 

configuration file, information is configured to connect to a RTU. This includes the primary 

link address (ASDU) of the primary station and secondary link address of the RTU. IP 

address and TCP port of the RTU are also configured in this file. Finally, the value of the 

ALLOW_COMMANDS parameter decides whether it should be possible to send control 

commands or not. Some configuration can be set temporary in the graphical user interface. 

 

 

Figure 36: qtester104.ini configuration file 

 

Figure 37 shows how the GUI looks like when QTester104 is connected to IEC Server on 

the RTU side. QTester104 is connected over TCP port 2404, and polls the value “71” from 

the temperature sensor in IEC server. 

 

 

Figure 37: QTester104 GUI connected to IEC Server 

 

Wireshark can be used to validate that the IEC 60870-5-104 communication is transferred 

from 10.0.0.75 (RTU side) to 10.0.0.66 (Control side) in plain text. Figure 38 shows how 

this communication looks like when analysed by Wireshark. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

53 

 

 

Figure 38: Wireshark analysis of IEC 60870-5-104 communication 

 

OSHMI can be configured in the hmi.ini within the config folder. It can run in simulation 

mode or be connected to a real or simulated RTU. QTester104 can be connected to the 

OSHMI software using a transfer protocol called BDTR. 

 

The following four figures shows how the substation can be monitored and controlled by a 

HMI. OSHM is in this example configurated in simulation mode. Figure 39 shows the HMI 

of substation KOR1 in when everything runs as normal. Figure 40 shows the same HMI 

when one of the substation switch is turned off. Figure 41 shows the event viewer for 

substation KOR1. This information is written in Portuguese (it is possible to edit this to 

English manually in the configuration file). The event is an alarm with priority 1L, and 

description; AL15 23 kV switched OFF. Figure 42 shows a graph of the substations flow 

measurement over the past hour. 

 

 

Figure 39: OSHMI KOR1 substation in simulation mode switch on 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

54 

 

 

Figure 40: OSHMI KOR1 substation in simulation mode switch off 

 

Figure 41: OSHMI KOR1 event viewer in simulation mode 

 

Figure 42: OSHMI KOR1 substation trend viewer in simulation mode 

 

The figures above show an example of how OSHMI can be used to simulate various 

scenarios in substations. It provides an overview of all elements in the substation, event 

logging and graph visualization. By connecting the HMI to simulated or real RTUs, it is 

possible to performed attacks and visualize the effect on the substation. One example 

could be to modify a M_SP_NA_1 message, by editing the value from ON to OFF. This 

can be visualized in the HMI. 

 

4.2.1.3 Second IEC 60870-5-104 Client 

QTester104 does not support all the IEC 60870-5-104 messages. QTester104 does not 

support commands such as C_IC_NA_1, C_CI_NA_1, C_RD_NA_1, and C_RP_NC_1. 

To make it possible to trigger all signatures in the IEC 60870-5-104 rule-set I also 

implemented OpenMUC j60870. This framework utilizes OpenMUC j60870 on the client 

side, in addition to QTester104. OpenMUC j60870 supports all IEC message types. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

55 

 

The big difference between the OpenMUC j60870 and QTester104 is that the Open MUC 

j60870 must be programmed using Java. While, QTester104 can be configured by using 

a simple GUI. 

 

I stored OpenMUC in the forder “/openmuc/j60870”.  The OpenMUC client can be 

executed by the following command; “./run-scripts/j60870-console-client -h 10.0.0.75 -p 

2404”. This command includes parameters that defines the server IP and port.  Figure 43 

show the commands available by default in OpenMUC. 

 

 

Figure 43: OpenMUC j60870 Client Console default 

 

To send more, I had to make changes to the OpenMUC code. The code is located within 

the “/src/main/java/org/openmuc/j60870/app/”. This folder contains code for the client and 

server side. I opened the “ConsoleClient.java” file in a text editor and further developed 

the code. I used the developers' Javadoc page to find out how to further develop the code 

[49]. The first thing I did was to import the necessary classes. Figure 44 show how added 

some med commands to the ConsoleClient class. 

 

 

Figure 44: Adding new commands and acionkeys 

 

Figure 45 show the code added to initiate communication, for each command. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

56 

 

 

Figure 45: Configuring action for actionkey 

 

Figure 46 show the code used to performed action when a actionkey is pressed. 

 

 

Figure 46: Add new action for each command 

 

I use the gradle build automation tool included in OpenMUC, to rebuild the code. This is 

done simply by executing the command; “gradle build”.  Then I run the OpenMUC client 

again. Figure 47 shows all the commands available in the client console after further 

developing the code. 

 

 

Figure 47: OpenMUC j60870 Client Console after modification 

  



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

57 

 

4.2.1.4 Siemens SIAMATIC S7 -200 PLC 

This machine has a low interaction honeypot called Conpot installed. Conpot is used to 

simulate the server side an industrial control systems. It is in this framework configured to 

simulate a Siemens SIMATIC S7 -200 PLC acting as a modbus server. In order to 

automatically start the PLC at while the systems boots, the framework has implemented a 

system daemon that starts automaticity. The machine automatically listens on TCP port 

502 and accepts commands from modbus clients. 

 

4.2.2 Intrusion Detection Systems (IDSs) 

The network activity caused by attacker machines and SCADA targets are mirrored and 

analysed by the two different intrusion detection systems. Both Suricata and Snort is 

installed in this implementation to compare the ability to detect intrusion. These IDS 

solutions are installed on two different virtual machines and operate individually.  

 

The SCADA rules for IEC 60870-5-104 [30] and the Digital Bond Quickdraw SCADA rules 

for Modbus and DNP3 [29] are implemented in both IDS solution. These signatures are 

originally written in Snorts lightweight rule description language. Suricata IDS is however 

compatible with Snort signatures.  

 

Most Snort rules, is written within in a single line, but can be spread over multiple lines by 

adding a backslash “\” at the end of the line. A snort rule can be divided into two logical 

sections, the rule header and the rule options. The rule header contains information about, 

action to be taken, protocol, source/destination IP address and ports. The rule option part 

contains an alert message and information about which part of the packet that should be 

inspected. Table 6 show an example snort rule [26]. 

Table 6: Example snort rule 

 
 

There are by default five different actions that can be triggered in Snort. 

1. alert - generate an alert using the selected alert method, and then log the packet 

2. log - log the packet 

3. pass - ignore the packet 

4. activate - alert and then turn on another dynamic rule 

5. dynamic - remain idle until activated by an activate rule, then act as a log rule 

 

The next field in a rule defines the protocol analyzed for suspicious behavior. TCP, UDP, 

ICMP, and IP are now the only protocols supported by Snort. Then the next fields specify 

the IP addresses and port number of hosts monitored, and the IP addresses targeting the 

hosts. The example above will detect every IP addresses from external networks sending 

ICMP traffic, to any computer within the home net. The variables “$EXTERNAL_NET” and 

“$HOME_NET” can be configured in the configuration file [26]. 

 

Alert icmp $EXTERNAL_NET any -> $HOME_NET any \ 

(msg: ”ICMP traffic from external network”; ) 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

58 

 

The direction operator indicates the direction of a traffic rule. There are two direction 

options “->” and “<>”, directional and bidirectional. The msg field contains a text string, 

explaining the detected intrusion. The administrator uses the keyword content, to specify 

what information the IDS should be looking for. It is also possible use a reference field, to 

include references (like a URL) to external identification systems. An id field specifies a 

generator id (gid), used to identify what part of Snort that generates the event. Snort 

recommends gid values starting at 1,000,000 for local rules, to avoid potential conflicts 

with predefined generator id. The sid field is used to uniquely identify Snort rules. The rev 

field is used to uniquely identify revisions of snort rules. Sid are along with rev, allow 

signatures and descriptions to be refined and replaced with updated information. Sid 

numbers higher or equal to 1,000,000 is reserved for local rules. Other fields like classtype 

and priority, lets the administrator classify and priorities the rules security level [26]. 

 
4.2.2.1 Suricata IDS 

Suricata is by default installed in the “/etc/suricata” folder. The Modbus, DNP3 and IEC 

60870-5-104 rules are placed within the “/etc/suricata/rules” folder. 

 

The suricata configuration file is structured in YAML format and located within the default 

folder. YAML is a human-readable data serialization language. The YAML-file is divided 

into five configuration steps. 

 

 Step 1: Inform Suricata about your network 

 Step 2: Select the rules to enable or disable 

 Step 3: Select outputs to enable 

 Step 4: Configure common capture settings 

 Step 5: App Layer Protocol Configuration 

 

Step 1 includes configuring network parameters. The parameter HOME_NET will in this 

case be the 10.0.0.1/24 network and the parameter EXTERNAL_NET will be every IP 

address not defined in the HOME_NET parameter. Allowed IP addresses and port 

numbers for servers and clients used in Modbus, DNP3 and IEC 60870-5-104 

communication can also be configured in this step. These parameters are used in the rule 

sets implemented. It is important that these parameters are configured correctly, otherwise 

the suricata engine won’t work properly. Misconfiguration could lead to false positives and 

false negatives.  

 

Step 2 includes activation and deactivation of specific rule sets. Default rules sets can be 

deactivated by adding a hash symbol (#) in front of the specific rule-set, and activated by 

removing it. External rule sets must be added in the configuration file manually or using 

automation tools. The rule sets in the configuration file points at the files located in the 

“/etc/suricata/rules” folder. 

 

Step 3 includes Selection suricata log output. The Extensible Event Format (EVE) option 

is selected in this implementation. The EVE format logs in JSON format and provides 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

59 

 

several types of logging. The alert and flow option is enabled. The log output generated by 

the Suricata engine is by default located in the ”/var/log/suricata” folder. 

 

In this implementation the default settings in step 4 and step 5 are used. This includes 

packet analysis on eth0 (monitoring interface). It is also possible to separate these steps 

in separate files and include the in the main file. The suricata executable file is by default 

located in “/usr/bin/suricata”. Suricata starts in IDS mode by running the following 

command; ”/usr/bin/suricata -c /etc/suricata/suricata.yaml -i eth0”. Suricata is not executed 

on boot by default. For this reason, the framework has implemented a system daemon to 

automatically start it at startup. 

 

4.2.2.2 Snort IDS 

Snort is by default installed in the “/etc/snort” folder. The Modbus, DNP3 and IEC 60870-

5-104 rules are placed within the “/etc/snort/rules” folder. Snort can be configured by 

editing the snort.conf file within the default folder. The configuration file is divided into nine 

configuration steps. 

 

 Step 1: Set the network variables. 

 Step 2: Configure the decoder 

 Step 3: Configure the base detection engine 

 Step 4: Configure dynamic loaded libraries 

 Step 5: Configure preprocessors 

 Step 6: Configure output plugins 

 Step 7: Customize your rule set 

 Step 8: Customize preprocessor and decoder rule set 

 Step 9: Customize shared object rule set 

 

Step 1 include configuring network parameters. The parameter HOME_NET will in this 

case be the 10.0.0.1/24 network and the parameter EXTERNAL_NET will be every IP 

address not defined in the HOME_NET parameter. Allowed IP addresses and port 

numbers for servers and clients used in Modbus, DNP3 and IEC 60870-5-104 

communication can also be configured in this step. These parameters are used in the rule 

sets implemented. It is important that these parameters are configured correctly, otherwise 

the Snort engine will not work properly. Misconfiguration could lead to false positives and 

false negatives.  

 

Step 2 includes configuration of the Snort decoder. Decoding is one of the first processes 

a packet goes through in Snort. The decoder determines which underlying protocols are 

used in the packet and saves the data along with the location of the payload/application 

data in the packet and the size of this payload for use by the preprocessor and detection 

engines [50]. This implementation uses default settings in this section. 

 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

60 

 

Step 3 includes configuration of the base detection engine. This section can be used to 

configure detection mode, event queuing limits, packet latency, rule latency and other 

specifications. Step 4 includes configuring dynamic loaded libraries. This implementation 

use default setting in both step 3 and step 4. 

 

Step 5 includes configuration of preprocessors.  The DNP3 and modbus preprocessor are 

activated by default. The ARP spoof preprocessor is configured to detect man-in-the-

middle attacks in the lab network. 

 

Step 6 includes configuration of output plugins. This implementation has configured alerts 

to be logged in a Unified2 IDS event file format stored in the “/var/log/snort” folder. To store 

the alerts in the same format as in the Suricata implementation, a python library called py-

idstools is used to convert the Unified2 format to eve JSON. Table 7 shows the u2eve 

configuration file. u2eve is configured to continuously convert the unified2 file (snort.u2) to 

eve.json.  

Table 7: py-idstools u2eve configuration file 

 
 

To automaticity run u2eve at boot, a system daemon was created running the following 

command; /usr/bin/python /usr/local/bin/idstools-u2eve @/etc/idstools/u2eve.conf. This 

command runs u2eve using Python, pointing at the u2eve configuration file in table 7. The 

rule descriptions and category description from the Modbus, DNP3 and IEC60870-5-104 

rulesets was added in the sid-msg.map and gid-msg.map manually. It is also possible to 

use external tools to do this job automatically. 

 

Step 7 includes activation and deactivation of specific rule sets. Default rules sets can be 

deactivated by adding a hash symbol (#) in from of the specific rule-set, and activated by 

removing it. External rule sets must be added in the configuration file manually or using 

automation tools. The rule sets in the configuration file points at the files located in the 

“/etc/snort/rules” folder. 

 

Step 8 includes customising preprocessor and decoder rule set and step 9 includes 

customising shared object rule set. Both these steps are configured with default settings 

in this implementation. The snort executable file is by default located in the 

“/usr/bin/suricata” folder. Snort starts by running the following command; 

”/usr/local/bin/snort -v -c /etc/snort/snort.conf -i eth0”. Snort is not executed on boot by 

default. For this reason, this framework has implemented a system daemon to 

automatically start it at startup. 

--snort-conf=/etc/snort/snort.conf 

--directory=/var/log/snort 

--prefix=snort.u2 

--follow 

--bookmark 

--delete 

--output=/var/log/snort/eve.json 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

61 

 

4.2.2.3 Filebeat 

Filebeat is installed on both IDS implementations to ship data generated by the IDS to the 

centralized SIEM solution. Filebeat sends log data from specific log files to Logstash over 

the management network. It can be configured in the “filebeat.yml” fil, within the 

“/etc/filebeat” folder. Table 8 shows the file beat configuration in on the Snort IDS machine. 

 

Table 8: Filebeat configuration on the Snort IDS machine 

  
 

The first section specifies the filebeat prospectors responsible for finding all sources to 

read from. The “input_typ” is configured as “log”, meaning that filebeat will read log data 

and ship new entries in the log files. Old data will automatically be ignored. The field 

“paths:” points log files that will be shipped to Logstash. In this implementation, we only 

point to the snort log file “/var/log/snort/eve.json”. The field “fields_under_root” is set to 

true, meaning that the custom fields are stored as top-level fields in the output document 

instead of being grouped under a fields sub-dictionary. To distinguish which IDS that report 

data, it adds a tag called snort. 

 

The second section specifies where to send the log data. Filebeat can be configured to 

send data directly to Elasticsearch or to Logstash. In this implementation, Filebeat is 

configured to ship the data to the Logstash, on IP address 192.168.0.125 port 5044 in the 

management network. Filebeat is configured in the same way on the Suricata IDS 

machine. The only differences are that filebeat sends data from "/var/log/suricata/eve.json" 

and adds a tag called suricata. 

 

The filebeat executable file is by default located in “/usr/share/filebeat/bin/filebeat”.  

Filebeat provides a system daemon by default. This system daemon must be enabled to 

start automaticity on startup. Filebeat can be configured to transmit SSL encrypted data to 

Logstash. This requires additional configuration of both Filebeat, Logstash and exchange 

of certificates and keys.  Filebeat uses the certificate to verify the Logstash server, and 

Logstash uses the key to verify the filebeat agent. 

  

#============== Filebeat prospectors ================== 

 

filebeat.prospectors: 

- input_type: log 

  paths: 

  - /var/log/snort/eve.json 

  fields_under_root: true 

  fields: 

    tags: ['Snort'] 

 

#-------------------------- Elasticsearch output ------------------------------- 

output.logstash: 

  hosts: ['192.168.0.125:5044'] 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

62 

 

4.2.3 Security information and event management (SIEM) 

The ELK (Elasticsearch, Logstash, and Kibana) stack is used as security information and 

event management (SIEM) solution in this framework. Logstash is configured to listen on 

TCP port 5044 in the management network, and receive data from filebeat agents. 

Logstash then analyses the incoming data and is configured to add/remove some fields 

and tags. The refined data is then shipped to Elasticsearch and stored in a cluster. Kibana 

is used to explore the Elasticsearch data. Kibana provides the possibility to investigate 

historical and real-time events by utilizing a search engine or custom dashboards to 

visualize the data. As part of this master thesis, I have created several custom dashboards 

for visualization of attacks. The ELK stack architecture in figure 48 shows how the SIEM 

solution collects, refines, analyses and visualize the data. 

 

Security information and event management (Security information and event management (

ELK Stack

ELKmonitor

Logstash

Elasticsearch

Kibana

X-Pack
With Basic License

                    Listening to port 5044
                      (input from Filebeat)

 

Figure 48: ELK stack architecture 

 

4.2.3.1 Logstash 

The Logstash configuration files is in the “/etc/logstash” folder. Specific logstash 

parameters like reload interval, memory settings, processing delay and syslog levels can 

be configured in the “logstash.yml” file. This implementation follows the default settings. 

Logstash can be configured by creating a “logstash.conf” file in JSON-format, and place it 

within the “/etc/logstash/conf.d” folder. The Logstash processing pipeline shown in figure 

49 has three stages: inputs → filters → outputs. Inputs collects event data, filters modify 

the data, and outputs ship the data to Elasticsearch [51]. It is also possible to split this 

configuration file into three separate configuration files (input, filter, output). 

 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

63 

 

 

Figure 49: Logstash configuration [51] 

 
Input: 

This Beats input plugin enables Logstash to receive events from Beats, in this case 

Filebeat. Logstash is configured to listen on port 5044 for incoming Beats connection. The 

codec input plugin decodes the data before it enters the input. The default codec is “plain”. 

This implementation use the “json” codec. 

 

Filter:  

The mutate filter provides the possibility to rename, remove, replace, and modify fields in 

the event data. This implementation is configured to add a new field that specifies the IDS 

engine used to generate the event. This is done by analysing the tags added in Filebeat. 

If the value “Suricata” is added in tags, Logstash adds an engine field with the value 

“Suricata”. Else if the value “Snort” is added in tags, logstash adds the engine field value 

“Snort”. Else if the value “Bro” is added in tags, logstash adds the engine field value “Bro”. 

Else logstash adds the engine value “unknown”. In addition, logstash is configured to 

remove some unnecessary default fields. 

 

The GeoIP filter is configured to analyze source/destination IP addresses and add 

information about the geographical location, based on data from the GeoLite2-City 

Database. The GeoLite2-City database is stored locally in the logstash executable files 

folder. At the end of the filter plugin Logstash is configured to analyze the severity 

information provided by the IDSs, and categorize the alerts into four severity categories 

(High, Medium, Low and Unknown).  

 

Output: 

This output plugin is configured to transmit the data to Elasticsearch. The host and port 

addresses configured in the ”elasticsearch.yml” configuration file, is specified in the output 

filter. Logstash sends the data to 192.168.0.125 on port 9200. The output filter is also 

configured to store the data with the index filebeat- and the current date. Finally, Logstash 

is configured to use a custom template. This is just a modification of the Logstash template, 

where the name is changed to “filebeat-*”. 

 

The configuration can be validated by running the following command; 

/usr/share/logstash/bin/logstash -t -f /etc/logstash/conf.d/  

Logstash returns the following message if everything is correct; 

Config Validation Result: OK 

 

The entire configuration file implemented in this framework is included in Appendix C. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

64 

 

4.2.3.2 Elasticsearch 

The Elasticsearch configuration file “elasticsearsh.yml” is in the “/etc/elasticsearch” folder. 

This implementation runs a three-node cluster (three elasticsearch servers). However, due 

to limited resources is node-2 and node-3 disable during experiments. The 

elasticsearsh.yml file is used to set the cluster name, node name and bind Elasticsearch 

to an IP address and port. In order for Elasticsearch to discover other nodes, the IP 

address of other elasticsearch servers is specified.  
 

A node is a running instance of Elasticsearch which belongs to a cluster. A cluster consists 

of one or more nodes which share the same cluster name. Each cluster has a single master 

node which is chosen automatically by the cluster and which can be replaced if the current 

master node fails [52]. Figure 50 shows the monitoring of the three nodes implemented in 

the framework. The node with the name node-3 is selected as the master. 

 

 

Figure 50: Three-node cluster 

 

Logstash is configured to send event data as a document to Elasticsearch. A document is 

a JSON document which is stored in elasticsearch. It is like a row in a table in a relational 

database. Each document is stored in an index and has a type and an id. The type value 

is configured in the logstash configuration with value “IDS-event”. The id field a unique 

string generated for each event. An index is like a table in a relational database. It has a 

mapping which defines the fields in the index [52]. 

 

A shard is a single Lucene instance, managed automatically by Elasticsearch. An index is 

a logical namespace which points to primary and replica shards. Each document is stored 

in a single primary shard. When a document is being indexed, it is indexed first on the 

primary shard, then on all replicas of the primary shard. A replica is a copy of the primary 

shard, used to increase failover and performance [52]. 

 

4.2.3.3 Kibana 

The Kibana configuration file “kibana.yml” is in the “/etc/kibana” folder. This configuration 

file specifies the IP address and port that should host the Kibana service, by default 5601. 

The server name of the Kibana server can be manually configured. Kibana is configured 

to send all queries to the Elasticsearch server. Kibana use the index “.kibana”  by default 

to store saved searches, visualizations and dashboards in Elasticsearch. Now kibana is 

available through a web interface. The next step is to verify that it is connected to 

Elasticsearch and configure “filebeat-*” to be the default index. Figure 51 shows that the 

ELK stack is successfully configured, and that kibana can analyse the elasticsearch data. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

65 

 

 

 

Figure 51:ELK stack successfully configured 

 

The next step is to create custom data visualizations and dashboards.  Kibana includes 

ten visualization types which make it possible to visualize data. In addition is it possible to 

install or develop custom visualization types. Figure 52 shows a pie visualization of the 

protocols used in network traffic the past four hours.  

 

 

Figure 52: Pie chart visualization in kibana 

 

4.2.3.4 X-pack 

The x-pack extension of the ELK stack was installed by adding a plugin to Elasticsearch, 

Logstash and Kibana. To gain access to a "basic" x-pack license, I registered on Elastic's 

webpage and received a license file on email. Then I loaded the license into elasticsearch, 

using a -XPUT command. The licence is valid for one year. The monitoring features 

available in x-pack monitors the performance of Elasticsearch, Kibana, and Logstash. The 

solution contains a collection of dashboards used to assess the status at various levels, 

by providing information needed to keep the ELK stack optimized. The dashboard in figure 

53 gives and overview of the current health metrics and performance. The dashboard 

informs that Elasticsearch has been up and running on hour, and has three nodes 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

66 

 

connected to the cluster. The dashboard also provides information of how many request 

Kibana receives and the amount of data received and sent by logstash.  

 

  

 

Figure 53: Monitoring dashboard provided by x-pack 

 

Figure 54 shows a more advanced monitoring dashboard. This dashboard monitors the 

performance of the latest elasticsearch instance. It includes graphs that monitor the 

performance in real time and with a historical perspective. This dashboard contains 

information about indexing, search rate, documents and much more. It also gives an 

overview of what is stored on the Elasticsearch nodes. The figure below shows that all 

primary share is stored in node-1, while all replica share is stored in node-2. 

 

 

Figure 54: Elasticsearch monitoring using x-pack 

  



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

67 

 

By purchasing a license, several other functionalities can be unlocked. Currently, security, 

graphical visualization, alerting and reporting functionality is offered. Elastic plans to offer 

a machine learning functionality as well [53]. 

 

 

Figure 55: Functionality available in x-pack [53] 

 

The security functionality secures the cluster by providing authentication between nodes 

in a cluster, and requires authentication to access Elasticsearch or Kibana. This feature 

can be integrated with existing LDAP, Active Directory or Certificate services [53]. 

 

The alerting functionality can be used to warn about CPU usage, file changes and more. 

The reporting functionality can be used to generate PDF reports with Kibana visualizations 

and automatically share the reports with for example system administrators and customers 

[53]. 

 

The graph functionality provides the possibility to visualize relationships between data. The 

machine learning functionality is still under development. In theory, this functionality should 

be able to detect malicious traffic by analyzing the network traffic and comparing it with 

previous data [53]. 

 

Most of the additional features available in x-pack cost money. There are several other 

options for implementing for example, authentication and graph visualization. The big 

advantage of using x-pack is that it is developed by Elastic to work integrated with the ELK 

stack. 

 

4.2.4 Dashboards 

Several custom visualization dashboards were created during the master thesis. In total 

six dashboards was developed for different purposes. The first dashboard is a visualization 

of the traffic flow data generated by Suricata. Two separate dashboards were created to 

analyse the alert data from Suricata and Snort, respectively. A dashboard was developed 

to compare alert data generated from the two IDS implementations. An experimental 

dashboard was created to visualize relationships between data. The last dashboard was 

created to analyze the additional latency added by Logstash processing. 

 

The time frame for each dashboard can easily be changed by adjusting a parameter at the 

top right. The time frame can be anything from the past 15 minutes to the past 5 years. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

68 

 

4.2.4.1 Network traffic monitoring 

The network traffic dashboard shown in figure 56 analyses the network traffic in real-time. 

The left side uses the geographical data added by Logstash. The dashboard displays pie 

chart visualizations of the top 10 countries and cities generation traffic, and plots the 

geographical location into a map. The right side analyze the actual traffic and visualizes 

the destination IP addresses, source IP addresses, source port, destination port, 

underlying protocols and TCP states.  

 

 

Figure 56: Network traffic monitoring dashboard 

 

4.2.4.2 IDS alert monitoring 

The IDS alert dashboard in figure 57 analyses the alerts generated by the Suricata engine. 

It provides a histogram that counts the unique events at any given time. The dashboard 

also provides a metric count of alerts with various severity levels. If the count reaches a 

specified limit the metric changes color from green to yellow or red. The geographical 

location of any source address triggering an alert, is plotted in a map. Pie charts are used 

to visualize relevant data, and a table is used to count the unique signatures triggered. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

69 

 

 

Figure 57: IDS alert monitoring dashboard 

 

4.2.4.3 IDS comparison 

The IDS compassion dashboard in figure 58 is used to compare Suricata’s and Snort’s 

ability to detect attacks. Suricata is monitored on the left side and Snort is monitored on 

the right side. The dashboard contains metric visualizations to count unique signatures 

and the total number of alerts triggered by Suricata and Snort, respectively. The size of 

the IDS name text in the middle is automatically adjusted by alerts triggered. At the end of 

the dashboard is a table that list every triggered alert and counts every occurrence. 

 

 

Figure 58: IDS comparison dashboard 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

70 

 

4.2.4.4 Experimental 

The experimental dashboard implemented in this framework, is a network graph that can 

be used to visualize the relations between data. Figure 59 shows an example where the 

dashboard is used to analyze the flow data generated by Suricata, and visualize the 

relation between the top 5 countries generating traffic and the destination IP addresses. 

 

Figure 59: Experimental dashboard 

 

4.2.4.5 Latency 

The last dashboard implemented in this framework, is used to visualize the additional 

latency added by Logstash processing. The IDS add a timestamp field to the eve.json file 

when it detects malicious traffic. Logstash also adds a timestamp field when the data is 

processed and shipped to Elasticsearch. These timestamp fields can be used to find 

latency by calculating the deviation. This is done by using a Kibana functionality called 

scripted fields. Scripted fields can be used to perform calculations on the fly, by analyzing 

the incoming Elasticsearch data. 

 

Figure 60 show how the two timestamp fields can be used to calculate the latency added 

by Logstash. The format used to display latency shows the time in minutes, seconds and 

milliseconds. 

 

 

Figure 60: Calculating latency 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

71 

 

The implemented dashboard in figure 61, compares latency for Suricata and Snort alerts. 

The dashboards display the maximum and minimum latency experienced by Suricata and 

Snort. The dashboard plots the average latency in a line chart every second and calculates 

max, min, average, median and standard deviation (upper/lower) on the fly. The dashboard 

also visualize the latency in a pie chart. 

 

 

 

Figure 61: Latency Dashboard 

 

4.2.5 Automation 

To achieve automation in the framework, system daemons, bash scripts and time 

synchronization are used. Automation means that all necessary components are started 

automatically at startup and have the same time settings. 

 

4.2.5.1 System daemons 

The fundamental purpose of a system daemon is to initialize the components that must be 

started after the Linux kernel is booted. The Elastic software provides system daemons by 

default. Some of the implemented tools in the framework do not provide system daemons 

by default. Therefore, I had to create my own system daemon for the following tools; 

Suricata, Snot, py-idstools:u2eve, Conpot. The daemons is by default localized in either 

“/lib/systemd/system” or “/etc/systemd/system”. Figure 62 shows the system daemon 

created for Snort. The [Unit] fields used for defining metadata for the unit and configuring 

the relationship of the unit to other. The [Service] fields specifies the command used to run 

snort on interface eth0.  The [Install]  fields is optional and is used to define the behavior 

or a unit if it is enabled or disabled [54]. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

72 

 

 

 

Figure 62: Snort IDS SystemD 

The system deamon can be enabled  on boot. The following command shows how to 

enable the Snort system daemond on boot; systemctl enable snort.service 

 

On machines running Windows can automation be achived by running the shell:startup 

command and copy shortcuts to software in the startup folder. 

 

4.2.5.2 Log rotation and index cleaning 

In some cases, I discovered that IDS implementations became less effective when the size 

of the log file become too large. This was especially noticed in The Snort implementation 

where a conversion tool is used to convert from unified2 to eve json format. The solution 

to this is to archive the existing log file in an archive and clear the log file.  

 

To achieve this I have written a BASH script scheduled to execute once a day. Another 

option could be to use the tool Logrotate. Initially the script was programmed to clean the 

log file while the snort process still runs. This turned out to be more difficult than initially 

assumed. I used the truncate command to clear the file, but the Snort process then 

continues write entries to the log file at whichever offset it was at last. The BASH script or 

Logrotate approach truncates the file to size is zero. When the snort process writes to the 

file again, it continues at the offset it was left of. The result is a log file with the same size 

or even larger size than before [55]. 

 

The solution this this problem is either to restart the snort process or use some kind of a 

middleware pipelining tool. Figure 63 shows the BASH script implemented in this 

framework. One drawback with this approach is that the IDS will be unavailable for about 

one second. Figure 64 shows the output of the BASH script when it is executed manually. 

A similar BASH script was implemented on the Suricata implementation.  

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

73 

 

 

Figure 63: BASH script used to archive and clear the snort log 

 

  

Figure 64: Output of BASH script 

 

To make this approach automatic, the system daemon called crontab is used to execute 

the BASH script periodically at scheduled timing. Crontab can configured by running the 

command “crontab -e”. Then a line must be added referring the script that should be 

executed and the timing interval.  The BASH script above was configured to run at five 

o'clock every afternoon, by adding the line “0 17 * * * /scripts/rotatelog.sh”. To minimize 

the risk that the IDS implementation is unavailable for about a second. The Suricata and 

Snort BASH script are scheduled to run at different times. This approach ensures that at 

least one of the IDS implementation is available at any time. 

 

I also created a BASH script that removes all filebeat and monitoring indexes older than 

thirty days from the Elasticsearch cluster. This script is executed daily using crontab. 

  



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

74 

 

4.2.5.3 Time synchronization 

It is important that the time settings on IDS and SIEM solutions is correct, so that the 

detected attacks can be linked to a given point of time. This framework use the Network 

Time Protocol (NTP) to achieve time synchronization in the management network.  A NTP 

client is installed on the IDS and SIEM machines, and configured to with default settings 

(approved by Ubuntu) [56]. The NTP clients retrieve time information from publicly 

available NTP Servers over the Internet. Another option is to host a local NTP server, and 

connect the clients to this server. If the framework was connected to a production network, 

the second option would be preferable. The NTP client can be configured by editing 

“/etc/ntp.conf”. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

75 

 

5 Experiments and Results 

This chapter discusses experiments performed in the context of validation and testing of 

the implemented framework. The results of the experiments will also be presented in this 

chapter. 

5.1 IEC 60870-5-104 client/server communication 

The main goal of carrying out these experiments, is to trigger the alerts specified in the 

implemented IEC 60870-5-104 rule-set, developed by researchers at the Queen’s 

University Belfast [30]. This is done by generating realistic IEC 60870-5-104 traffic in the 

lab network and perform attacks and Illegal actions. The alerts triggered by Suricata and 

Snort are compared by log analysis and real-time visualization. The signatures included in 

the rule set can be categorized into three categories; signature-based rules, protocol 

based rules and traffic-pattern-based rules. 

 

5.1.1 Normal communication 

These experiments simulate normal traffic patterns between authorized IEC 60870-5-104 

clients and servers. The parameters in table 9 defines the authorized client IP addresses, 

server IP addresses and port numbers, set in Suricata and Snort configuration files. 

 

 

  

 

 

 

The experiment is performed by starting the IEC Server software on a virtual machine with 

IP address 10.0.0.75, listening on port number 2404. QTester104 is used as a IEC client 

on a virtual machine with IP address 10.0.0.66. Wireshark is used to validate that IEC 

60870-5-104 traffic are traversing the lab network. 

 

 

Figure 65: Wireshark analysis of normal IEC 60870-5-104 traffic 

 

Since Suricata is configured to log all data traffic, Kibana can be used to analyse normal 

traffic as well. No alerts are triggered either by Suricata or Snort during this experiment. 

  

104_CLIENT 10.0.0.66 

104_SERVER 10.0.0.75 

104_PORTS 2404 

Table 9: IEC 60870-5-104 variables set in configuration files (normal communication) 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

76 

 

5.1.2 Signature-based rules 

This experiment uses different methods to simulate illegal SCADA operations. These 

methods should trigger the signature-based rules. 

 

5.1.2.1 Non-IEC/104 communication on an IEC/104 port 

The tool packet sender was used to establish non-IEC104 communication on port 2404. 

The server side was configured to listen on TCP port 2404 And the client side was 

configured to connect the server on port 2404. 

 

  

Figure 66: Packet Sender client side 

  

Figure 67: Packet Sender server side 

 

The signature with ID 6666601 was triggered only by Snort during this experiment. 

Suricata did not trigger any alerts. By analyzing Suricata in debugging mode, I discovered 

that there was a compatibility issue with this signature in Suricata. The error message 

contains the following message; pcre with /R (relative) needs preceeding match in the 

same buffer. This issue can be resolved by removing the “R” from the regular expression. 

Both Suricata and Snort triggered alerts after this modification. 

 

5.1.2.2 Spontaneous messages storm 

This experiment simulates a spontaneous messages storm, by sending a single point 

information (M_SP_NA_1) message with COT value equal 3 (spontaneous), from the IEC 

Server to Qtester104. The IEC Server is configured to send ON/OFF (1/0) values every 

second. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

77 

 

 

Figure 68: Configured IEC Server to send single point information (M_SP_NA_1) messages every second 

 

The signature with ID 6666602 was triggered only by Snort during this experiment. 

Suricata did not trigger any alerts. By analyzing Suricata in debugging mode, I discovered 

that this signature had the same compatibility issue as the signature described above. This 

issue was solved the same way, by removing the “R” from the regular expression. Both 

Suricata and Snort triggered the same number of alerts after this modification. 

 

5.1.2.3 Unauthorized read command to an IEC/104 Server 

This experiment simulates a read command send by an unauthorized client to the IEC 

server on port 2404. This is simulated by editing the 104_CLIENT variable in the IDS 

configuration files to another IP address than the one used. Qtester104 does not support 

read command (C_RD_NA_1) messages. For this reason, The OpenMUC j60870 client is 

used for sending a read command (C_RD_NA_1) message to the IEC Server. 

 

 

Figure 69: Sending read command (C_RD_NA_1) message from OpenMUC j60870 client 

 

Both Suricata and Snort could detect this illegal operation 

 

5.1.2.4 Unauthorized interrogation command to an IEC/104 server 

This experiment simulates a interrogation command send by an unauthorized client to the 

IEC server on port 2404. This experiment used the same configuration as in chapter 

5.1.2.3. The OpenMUC j60870 client script is used for sending a interrogation command 

(C_IC_NA_1) message to the IEC Server. 

 

 

Figure 70: Sending interrogation command (C_IC_NA_1) message from OpenMUC j60870 client 

 

Both Suricata and Snort could detect this illegal operation. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

78 

 

5.1.2.5 Unauthorized counter interrogation command to an IEC/104 Server 

This experiment simulates a counter interrogation command send by an unauthorized 

client to the IEC server on port 2404. This experiment used the same configuration as in 

chapter 5.1.2.3. The OpenMUC j60870 client script is used for sending a counter 

interrogation command (C_CI_NA_1) message to the IEC Server. 

 

 

Figure 71:  Sending counter interrogation command (C_CI_NA_1) message from OpenMUC j60870 client 

 

Both Suricata and Snort could detect this illegal operation 

 

5.1.2.6 Remote command from unauthorized 104 client 

This experiment simulates a remote control or remote adjustment command sent by a 

unauthorized client to the IEC server on port 2404. This is simulated using the same 

configuration as above. Then Qtester104 is used to send a single command (C_SC_NA_1) 

message to the IEC Server. 

 

 

Figure 72: Sending a single command (C_SC_NA_1) message from an unauthorized client 

 

Both Suricata and Snort could detect this illegal operation. 

 

5.1.2.7 Set point command from an unauthorized IEC/104 client 

This experiment simulates a set point command sent by an unauthorized client to the IEC 

server on port 2404. This is simulated using the same configuration as above.  Qtester104 

are used to send a “set point command, normalized value” (C_SE_NA_1) message to the 

IEC Server. 

 

Figure 73: Sending a “set point command, normalized value” (C_SE_NA_1) message from an unauthorized client 

 

Both Suricata and Snort could detect this illegal operation. 

 

5.1.2.8 Reset process command from unauthorized client 

This experiment simulates a reset process command send by an unauthorized client to the 

IEC server on port 2404. The experiment used the same configuration as in chapter 

5.1.2.3. The OpenMUC j60870 client script is used for sending a reset process command 

(C_RP_NA_1) message to the IEC Server. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

79 

 

 

Figure 74: Sending reset process command (C_RP_NA_1) message from OpenMUC j60870 client 

 

Both Suricata and Snort could detect this illegal operation. 

 

5.1.2.9 Broadcast request from unauthorized client 

This experiment simulates a broadcast request sent by an unauthorized client to the IEC 

server on port 2404. I changed the originator address to 255 in the qtester104.ini 

configuration file. Then I used Qtester104 to connect to the IEC server. 

 

 

Figure 75: Broadcast request from an unauthorized client 

 

Both Suricata and Snort could detect this illegal operation. 

 

5.1.2.10 Potential Butter Overflow 

The signature 6666610 include a keyword to detect abnormal payload sized of TCP 

packets. The rule is originally written to alert on packet with payload larger than 2048 bytes. 

To simulate a how the IDS can detect a buffer overflow attack, I temporary changed this 

value to 1 byte. Then I started QTester104 and IEC Server to generate traffic. 

 

No alerts were initially triggered either for Snort or Suricata. I therefore looked an extra 

time on the signature and found a typo in the original rule. The filed sid referred to 

66666010, while sid field in the sid-msg.map file referred to  6666610 (a zero too much). I 

therefore corrected this typo and conducted the experiment again. This time the signature 

was triggered for both Snort and Suricata. 

 

5.1.2.11 Results 

Table 10 shows the results of the experiments conducted in chapter 5.1.2. Both Suricata 

and Snort detected all malicious traffic generated and triggered alerts based on the 

signature-based rules. The results show that both IDS implementations could detect 

approximately the same number of events. Suricata is compatible with signatures written 

in snort lightweight rules description language. I did however, discovered some 

compatibility issues. The most significant error, contains the following message; pcre with 

/R (relative) needs preceeding match in the same buffer. The /R refers to a previous match, 

but there is no buffer keeping track of previous matches. This was the case for two of the 

signatures in this rule set, sid: 6666601 and sid: 6666602. This issue could be resolved by 

removing the “R” from the regular expression. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

80 

 

Table 10: Signature-based rules triggered by various methods 

 

 

5.1.3 Protocol-based rules 

This experiment monitors the IEC 60870-5-104 communication between a client and a 

server, and injects packet into the network. The main goal of this experiment is to trigger 

the protocol-based rules. 

 

5.1.3.1 Man-in-the-middle packet injection 

The tool Ettercap is used to perform a man-in-the-middle (MITM) attack between the IEC 

104 client and server, by taking advantage of a vulnerability in the ARP protocol. The 

Address Resolution Protocol (ARP) is a protocol used for resolution between IP addresses 

and link layer addresses. Hosts and network devices keeps track of IP addresses and 

associated MAC address in a ARP table stored in memory. The man-in-the-middle (MITM) 

attack performed in this experiment is done by sending fake ARP messages and forward 

response messages to the actual destination. A MITM attack allows the attacker to monitor 

and modify traffic between hosts.  

 

IP addresses are used in the network layer (layer 3) while MAC addresses are used in the 

link layer (layer 2). The optimal method for preventing man-in-the-middle attacks based on 

ARP poisoning is to implement security features at the link layer (layer 2). It is however 

possible to detect ARP poisoning attacks by using security features implemented at the 

network layer (layer 3). Suricata does not provide any functionality to detect ARP spoofing. 

Snort provides a preprocessor that can be configured to detect ARP spoofing by specifying 

allowed IP/MAC address pairs. The Snort preprocessor did not seem to work as robustly 

as expected [57]. Snort detected the ARP spoofing, but could not resolve the correct 

source and destination address of the spoofed connection. 

 

SCADA protocol IEC 60870-5-104 

IDS Engine Suricata Snort Description 

Signature ID   
 

6666601 X (modification) X Non-IEC/104 Communication on an IEC/104 Port 

6666602 X (modification) X Spontaneous Messages Storm 

6666603 X X Unauthorized Read Command to an IEC/104 Server 

6666604 X X 
Unauthorized Interrogation Command to an IEC/104 

Server 

6666605 X X 
Unauthorized Counter Interrogation Command to an 

IEC/104 Server 

6666606 X X 
Remote Control or Remote Adjustment Command from 

Unauthorized 104 Client 

6666607 X X Set Point Command from an Unauthorized IEC/104 Client 

6666608 X X Reset Process Command from Unauthorized Client 

6666609 X X Broadcast Request from Unauthorized Client 

6666610 X X Potential Butter Overflow 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

81 

 

 

Figure 76: Snort ARP Spoof Preprocessor 

 

Another possibility is to use an application like xARP. xARP is a security application that 

use using active and passive modules to detects intruders inside the lab network [58]. 

Figure 68 show that xARP could detect the performed ARP spoofing man-in-the-middle 

attack.  

 

 

Figure 77: Using xARP to detect ARP spoofing 

 

During this man-in-the-middle attack, an Ettercap plugin was used to trigger the protocol-

based signatures in the IEC 60870-5-104 ruleset. This plugin is available on GitHub, 

developed by PMaynard and written in C [59]. The figure 78 shows how this plugin 

analyses the IEC 60870-5-104 packets, and inject data into the traffic. The left side of the 

figure shows an excerpt from the C code that analyses packets. The right side of the figure 

shows the output in Ettercap, when this plugin is activated during an MITM attack. 

 

 

Figure 78: Ettercap-104-mitm plugin code and output 

 

5.1.3.2 Results 

Table 11 shows the results of this experiment. Both Suricata and Snort detected all 

malicious traffic injected in the experiment, and triggered alerts based on the protocol-

based rules. The results show that both IDS implementations could detect approximately 

the same number of events. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

82 

 

 

Table 11: Protocol-based rules triggered by Ettercap plugin 

 

5.1.4 Traffic-pattern-based rules 

This experiment uses different methods to simulate illegal SCADA traffic patterns. These 

methods should trigger the traffic-pattern-based rules.  

 

5.1.4.1 Unauthorized connection attempt from an IEC/104 server 

An unauthorized connection attempt to a non-IEC/104 port of a server can be simulated 

by using QTester104 to connect to IEC Server on another port. The port numbers that shall 

be accepted by the IDS are configured by changing the 104_PORTS variable defined in 

the IDS’s configuration. The IDS’s implemented in this experiment is configured to allow 

connections on port number 2404 (default). QTester104 is in this experiment configured 

to connect to the IEC Server on TCP port 3333. 

 

 

Figure 79: Editing the tcp port in the QTester104 configuration file 

 

5.1.4.2 Unauthorized connection attempt to a non-IEC/104 port of a server 

An unauthorized connection attempt from an IEC/104 Server can be simulated by using a 

tool like Packet Sender to connect any IP address on a non-IEC104 port. Packet Sender 

are in this experiment configured to connect the client with IP address 10.0.0.66 on TCP 

port 3333 [60]. 

SCADA protocol IEC 60870-5-104 

IDS Engine Suricata Snort Description 

Signature ID   
 

6666611 X X 
Suspicious Value of Type Identification Field in the Control 

Direction with I Format 

6666612 X X 
Suspicious Value of Type Identification Field in the Monitor 

Direction with I Format 

6666613 X X 
Suspicious Value of Transmission Cause Field in I Format 

APDU 

6666614 X X Incorrect Length Field of the Packet with S Format 

6666615 X X Incorrect Length Field of the Packet with U Format 

6666616 X X Incorrect Length Field of the Packet with I Format 

6666617 X X Suspicious Value of Transmission Cause Field 

6666618 X X Suspicious Value of Transmission Cause Field 

6666619 X X Suspicious Value of Transmission Cause Field 

6666620 X X Suspicious Value of Transmission Cause Field 

6666621 X X Suspicious Value of Transmission Cause Field 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

83 

 

 

 

Figure 80: Using Packet Sender to connect a Client on a non-IEC104 port 

 

5.1.4.3 Unauthorized traffic between IEC/104 server and client 

Unauthorized IEC 60870-5-104 traffic between server and client can be simulated by 

connecting an unauthorized client to the IEC server. Authorized clients are in this 

experiment configured by filling in allowed IP addresses in the IEC_CLIENT variable the 

IDS configuration files. Then QTester104 is used to connect to the IEC server, using an 

unauthorized client IP address.  

 

5.1.4.4 Results 

All the methods in this experiment successfully triggered the intended traffic-pattern-based 

rules. Both Suricata and Snort trigged exactly the same number of alerts during the 

experimentation period. 

 

Table 12: Traffic-pattern-based rules triggered by various methods 

 

5.2 DNP3 communication 

The goal of carrying out these experiments, is to trigger the alerts specified in the 

implemented DNP3 rule-set, developed by Digital Bond [29]. 

 

5.2.1 Captured DNP3 traffic 

In this experiment Bittwist is used to regenerate DNP3 traffic from the pcap file provided 

by Digital Bound. Bittwist regenerate the traffic on the eth0 interface of both IDS 

implementations. This experiment consists for two parts. First Bittwist was used to 

regenerate the traffic onto interface eth0 in normal mode. The second part floods the IDS, 

by regenerating 36200 packets within 3 seconds. The commands below configures Bittwist 

to send all packet immediately and loop the pcap file 200 times.  

SCADA protocol IEC 60870-5-104 

IDS Engine Suricata Snort Description 

Signature ID   
 

6666622 X X Unauthorized Connection Attempt from an IEC/104 Server 

6666623 X X 
Unauthorized Connection Attempt to a non-IEC/104 Port 

of a Server 

6666624 X X Unauthorized Traffic Between IEC/104 Server and Client 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

84 

 

 

 

 

 

 

 

This experiment was executed two times. The first using authorized clients and then with 

unauthorized clients. 

 

5.2.2 Results 

Table 14 shows the results of the experiments conducted in chapter 5.2.1. Both Suricata 

and Snort detected the malicious traffic regenerated by bittwist, and triggered 13 of 14 

signatures. The two IDS implementations detect approximately the same number of 

events. I did experience same incompatibility error for signature 1111202 as in chapter 

5.1.2. This issue could be resolved by removing the “R” from the regular expression. The 

experiment did however fail to trigger the Points List Scan alert, because this command is 

not included in the pcap file. 

 

Table 14: DNP3 rules triggered by pcap regeneration 

 

  

SCADA protocol DNP3 

IDS Engine Suricata Snort Description 

Signature ID   
 

1111201 X X Disable Unsolicited Responses 

1111202 X (modification) X Non-DNP3 Communication on a DNP3 Port 

1111203 X X Unsolicited Response Storm 

1111204 X X Cold Restart From Authorized Client 

1111205 X X Cold Restart From Unauthorized Client 

1111206 X X Unauthorized Read Request to a PLC 

1111207 X X Unauthorized Write Request to a PLC 

1111208 X X Unauthorized Miscellaneous Request to a PLC 

1111209 X X Stop Application 

1111210 X X Warm Restart 

1111211 X X Broadcast Request from Authorized Client 

1111212 X X Broadcast Request from Unauthorized Client 

1111213   Points List Scan 

1111214 X X Function Code Scan 

bittwist -i eth0 /etc/suricata/test-files/dnp3_test_data_part1.pcap 

bittwist -i eth0 /etc/snort/test-files/dnp3_test_data_part1.pcap -m 0 -l 200 

Table 13: Regeneration DNP3 pcap-files using Bittwist 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

85 

 

5.3 Modbus communication 

The goal of carrying out these experiments, is to trigger the alerts specified in the 

implemented Modbus rule-set, developed by Digital Bond [29]. 

 

5.3.1 Captured Modbus traffic 

In this experiment Bittwist is used to regenerate Modbus traffic from the pcap file provided 

by Digital Bound. Bittwist regenerates the traffic on the eth0 interface of both IDS 

implementations. This experiment consists for two parts. First Bittwist was used to 

regenerate the traffic onto interface eth0 in normal mode. The second part floods the IDS, 

by regenerating 23600 packets within 1 second. The commands below configure bittwist 

to send all packet immediately and loop the pcap file 200 times.  

 

 

 

 

 

  

This experiment was executed two times. The first using authorized clients and then with 

unauthorized clients. This pcap experiment triggered the first twelve signatures (1111001-

1111012).  

 

5.3.2 Reconnaissance on the Simens SIMATIC S7-200 PCL 

A Python tool called plcscan is used in this experiment to scan for modbus devices [61]. 

The tool found a lot of information about the PLC. By using this tool, we can find out that 

the device is a Simens SIMATIC S7-200 PCL with serial number 88111222. 

 

 

Figure 81: Using plcscan to scan for modbus devices 

 

Both Suricata and Snort triggered the signature 1111004, alerting that somebody is 

reading device identification. 

 

5.3.3 Unauthorized read and write requests to PLC 

The metasploit module “auxiliary/scanner/scada/modbusdetect” is use in this experiment 

to send read and write requests to the PLC.  Before this experiments starts, the client and 

server variables are changed. The IP address of the attacker is now not included in the list 

of allowed client IP addresses. This experiment consists of two parts. The first part sends 

a read request to the PCL. The second sends a write request to the PLC. 

bittwist -i eth0 /etc/suricata/test-files/modbus_test_data_part1.pcap 

bittwist -i eth0 /etc/snort/test-files/modbus_test_data_part1.pcap -m 0 -l 200 

Table 15: Regeneration modbus pcap-files using Bittwist 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

86 

 

 

 

Figure 82: Using metasploit to send read request to PLC 

 

 

Figure 83: Using metasploit to send write request to PLC 

 

These to exploits triggered the two signatures 1111006 and 1111007, alerting that a 

read/write request was sent to the PLC. 

 

5.3.4 Non-Modbus communication on TCP port 502 

In this experiment, I use NMAP to performed reconnaissance in the SCADA system. By 

using NMAP in version detection (sV) mode I scan for all information about a specific 

service running on an open port, including the product names and version numbers. 

 

 

Figure 84: NMAP scanning in version detection mode 

 

This NMAP scan generates non-modbus communication on TCP port 502. Both Suricata 

and Snort triggers the signature 1111009. 

 

5.3.5 Points list scan and function code scan 

In this experiment, I use a Modbus penetration testing framework called SMOD. By using 

the “modbus/scanner/getfunc” module I can perform a points list scan and a function code 

scan. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

87 

 

 

Figure 85:Using SMOD to perform points list and function code scan 

 

Both Suricata and Snort trigger the last two signatures in the Modbus rules rule-set 

(1111013 and 1111014). 

 

5.3.6 Results  

Table 16 shows the results of the experiments conducted in chapter 5.3.1 - 5.3.2. Both 

Suricata and Snort detected all the malicious traffic regenerated by bittwist, and triggered 

the signatures 1111001 to 1111012. I was also able to trigger the two reminding 

signatures, by using the getfunction module in the SMOD framework. The two IDS 

implementations detect approximately the same number of events. 

 

Table 16: Modbus rules triggered by pcap regeneration 

 

  

SCADA protocol Modbus 

IDS Engine Suricata Snort Description 

Signature ID   
 

1111001 X X Force Listen Only Mode 

1111002 X X Restart Communications Option 

1111003 X X Clear Counters and Diagnostic Registers 

1111004 X X Read Device Identification 

1111005 X X Report Server Information 

1111006 X X Unauthorized Read Request to a PLC 

1111007 X X Unauthorized Write Request to a PLC 

1111008 X X Illegal Packet Size, Possible DOS Attack 

1111009 X X Non-Modbus Communication on TCP Port 502 

1111010 X X Slave Device Busy Exception Code Delay 

1111011 X X Acknowledge Exception Code Delay 

1111012 X X Incorrect Packet Length, Possible DOS Attack 

1111013 X X Points List Scan 

1111014 X X Function Code Scan 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

88 

 

5.4 Other experiments 

This chapter contains a collection of other experiments relevant to SCADA systems. 

 

5.4.1 Remote access to RTU 

Many RTU vendors provide remote access to the RTU via Telnet or web browser, when 

connected to an Ethernet LAN. The major weakness of Telnet is that all communications 

are sent in plain text. This is a vulnerability that hackers could abuse to get unauthorized 

access to the RTU. In this experiment, I use two different approaches to get unauthorized 

access to the RTU. The first approach I use Ettercap perform a man-in-the-middle (MITM) 

attack, and use dsniff to gather the username and password. The second approach is 

simply a brute force attack against the Telnet server.  

 

5.4.1.1 Man-in-the-middle sniffing 

In this experiment, I used the same man-in-the-middle attack as in chapter 5.1.3.1. In 

addition, I used dsniff to gather the username and password used in a Telnet connection. 

To form a Telnet connection, I used PuTTy to connect to the Telnet server. 

 

 

Figure 86: Using PuTTy to connect via Telnet 

 

Figure 87: Using dsniff to sniff username and password used in Telnet connection 

By analyzing the Telnet traffic was this method able to sniff the username (henrik) and the 

password (toor). 

 

5.4.1.2 Brute force 

In this experiment, I perform a brute force attack using ncrack. The attack was targeting 

one user (henrik), by trying every password in the password file (pwd). By define a timing 

parameter (-T 5) each attempt is performed “instantly”, with no delay. Finally, the target 

destination IP address (10.0.0.88) and port number (23) is specified. 

 

 

Figure 88: Using ncrack to brute force telnet passwords 

Ncrack was able to crack the Telnet password by checking every password in the list.  



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

89 

 

5.4.1.3 Results 

Both Suricata and Snort include signatures that can detect illegal Telnet traffic. These 

signatures are writen to detect Telnet communication from external networks, which 

means mean that the two Telnet attacks above cannot be detected by these signatures. 

The traffic monitor dashboard included in the SCADA Intrusion Detection System Test 

Framework can be used to visualize the network traffic. The dashboard shows that almost 

80% of the traffic is Telnet traffic. This could indicate that a brute force attack is going on.  

 

 

Figure 89: Traffic monitor dashboard 

 

5.4.2 Denial-of-service 

A denial-of-service (DoS) or distributed denial-of-service (DDoS) attack is when a hacker 

attempt to make a machine/server unavailable to its intended users. The main idea is to 

overload the system, until its forced to shut down. There are many different denial-of-

service attacks and tools [26]. 

 

5.4.2.1 SYN flood 

In this experiment, I use hping3 to perform a SYN flood attack. The attack generates 

multiple SYN at the target machine. All the packages generated had a random source IP 

address. The attacker will not send back ACK message, when the it receives a SYN/ACK. 

This way target will continue to retransmit the packet [26]. 

 

 

Figure 90: Using hping3 to perform SYN flood attack 

 

The figure below shows the network usage at the target before and during the attack. The 

upper graph in the figure below shows normal traffic conditions. The next graph show how 

the network traffic increases during the attack. This traffic originates from only one host 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

90 

 

(DoS). In a case where multiple hosts are attacking (DDoS), the target would be 

overloaded. This is difficult to simulate in a virtual environment with limited resources [26]. 

 

 

Figure 91: Network monitoring on target 

 

5.4.2.2 Results 

Most of today’s IDS solutions are best suited for signature-based application layer (layer 

5) intrusion detection. Since DDoS attacks are classified as abnormal activity at layers 3 

and 4, current IDS technologies are not optimized for DDoS detection [26]. 

 

This framework utilizes a rule-set that alerts and classifies network traffic that includes IP 

addresses from the Spamhaus DROP list [62]. The Spamhaus DROP is  an advisory "drop 

all traffic" list, consisting of networks that are "hijacked" or leased by professional spam or 

cyber-crime operations [62]. This rule-set is compatible with both Snort and Suricata. By 

using this rule-set, an attack launched from a network on the Spamhaus DROP list would 

be easily detected. 

 

Another way to detect a possible DDoS attack could be by looking at the map in the traffic 

monitoring dashboard. This map plots the geographical location of where each traffic flow 

is originating from. If it suddenly comes traffic from an area in the world where there usually 

not is traffic, it might indicate malicious traffic. 

 

5.4.3 Latency 

The two different IDS implementations in the SCADA Intrusion Detection System Test 

Framework detects malicious traffic, and use Filebeat to transmit the log entries to 

Logstash. Logstash analyses, modifies and ships the data to a Elasticsearch cluster. The 

time it takes from malicious traffic is detected by an IDS until the event is indexed and 

stored in the cluster can be regarded as latency. 

 

This experiment uses latency dashboards implemented in framework two to analyse the 

additional latency added by Logstash. The monitoring feature included in X-pack is also 

used to analyse performance. The experiment consists of two parts. First, normal amounts 

of data are sent through the network. Then the network is flooded with large amounts of 

data. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

91 

 

5.4.3.1 Normal traffic flow 

Normal amounts of network traffic are generated using the same methods as in chapter 

5.1.1, 5.2.1 and 5.3.1. Normal amounts of IEC 60870-5-104 traffic are sent between client 

and server, using the QTester104 and IEC Server tools. Modbus and DNP3 traffic are 

generated using the Bittwist utility. 

 

5.4.3.2 Flooded traffic 

The capacity of the framework can be tested by flooding the network with large amounts 

of traffic. Two different methods are used to perform network flooding in this experiment. 

The first method uses the same approach as chapter 5.2.1 and 5.3.1. Where the tool 

Bittwist regenerates pcap traffic in flood mode. The other method uses the hping3 utility to 

perform a denial-of-service attack as instructed in chapter 5.4.2. These experiments 

generate large amounts of data and challenge the performance of the framework. 

 

5.4.3.3 Results 

The first experiment lasted ten minutes and triggered approximately 200 alerts for both 

Suricata and Snort during normal conditions. The boxplot in figure 92 shows an ensemble 

of ten latency measurements to get a representative picture of the variance of the test 

data.  The figure show a comparison of Suricata and Snort under normal conditions. The 

thin line describes the highest and lowest latency measured for both IDS solutions. Values 

that are higher than 3/2 of the edges are not included in the figure. The box represents the 

upper and lower quartile in statistics lingo of the latency and the yellow line in the middle 

represent the median. Out of the figure it appears Snort generally has higher latency a 

Suricata. The highest value for Snort is 17.5 seconds. The highest value for Suricata was 

11 seconds. The upper and lower quartile of Snort latency is higher and takes a larger 

span than Suricata. Both solutions have a bit skewed distribution compared to a normal 

distribution. 

 

 

Figure 92: Boxplot comparison of latency in Suricata and Snort under normal traffic 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

92 

 

The difference was even greater under abnormal conditions. Suricata generally have lower 

latency than Snort. The reason why Snort generally has higher latency in all the 

experiment, is most likely the additional processing time applied by the unified2 to eve.json 

conversion. I also carried out an extreme experiment where I flooded the IDS solutions 

with huge amount of traffic. The traffic triggered up to million alerts in a matter of minutes. 

It appears that both IDS solutions are vulnerable to denial-of-service (DoS) attacks by 

causing many alerts. Although It appears to be somewhat easier to cause a DoS attack on 

the Snort IDS compared to Suricata. Snort stopped sending data to Logstash after about 

half a million events, and the u2eve process stopped when the eve.json file exceeds 

approximately 350 MB.  

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

93 

 

6 Discussion 

During this master thesis, I have implemented and demonstrated a SCADA Intrusion 

Detection System Test Framework. The framework consists of four parts; attacker side, 

SCADA target side, IDS side and SIEM side. The attacker side consists mainly of a Kali 

Linux installation. There are several alternative solutions that can be used as attack 

platform, for example BackBox Linux. My personal experience is that Kali Linux has more 

available penetration testing tools. 

 

The SCADA side of the framework consists of four machines, where three machines 

simulate real-time IEC 60870-5-104 traffic, and one machine simulates a Siemens 

SIMATIC S7 -200 PLC. The attacker side and SCADA side is connected to the same 

internal network, and used to perform experiments. The IEC Server software is used to 

simulate the server side of IEC 60870-5-104 communication. IEC Server can be configured 

to send data at specified time intervals and return configured response messages when 

receiving certain message types. The client side of IEC 60870-5-104 communication is 

stimulated by QTester104 and OpenMUC j60870. These two programs can poll 

information and send control commands to the server. The main reason that I chose these 

programs to simulate the communication is the ability of graphical interfaces and the ability 

to automatically generate traffic. One disadvantage of QTester104 is that not all IEC 

60870-5-104 message types are supported. Therefore, I have also used the OpenMUC 

j60870 library to simulate the client side in some of the experiments. 

 

Both Suricata and Snort have been implemented on the IDS side to compare the two 

solutions. The biggest difference between Suricata and Snort is that Suricata is multi- 

threaded and Snort is single-threaded. Suricata has in my eyes a more modern interface 

and configuration format. It is compatible with signatures written in Snort’s lightweight rules 

description language, and supports snort VRT and emerging threats rules-sets. To get 

both IDS solutions to use the same logging format, I applied a unified2 to eve.json 

conversion tool. Due the additional processing time applied by the unified2 to eve.json 

conversion, Snort generally has higher latency that Suricata. 

 

On the SIEM side, the ELK stack (Elasticsearch, Logstash and Kibana) is used to collect, 

store, analyse and visualize flow data and alert data. Filebeat is used to transfer event 

data from Suricata IDS and Snort IDS to a centralized Logstash server. Logstash filters 

the data and ships them to a distributed Elasticsearch cluster. Kibana is connected to the 

Elasticsearch cluster and provides a web interfaces for data analysis and visualisation. An 

advantage of using the ELK stack is that it is open source and that there is no limitation on 

the amount of data that can analysed or visualized. The company that have developed the 

software used the ELK stack, are continuously launching new updates and patches to 

improve their systems. The company also has a philosophy of launching updates for their 

different programs simultaneously, so that they operate with the same version number. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

94 

 

The framework is very scalable. The IDS side can easily be extended with multiple IDS 

solutions by adding new machines to the framework. Logstash has already been 

configured to categorize events generated by Bro IDS. This configuration can easily be 

extended to categorize all kinds IDS solutions. It is even possible to configure Logstash to 

send emails to a network administrators, when certain event occurs. Logstash is 

horizontally scalable and can form groups of nodes running the same pipeline. Adaptive 

buffering capabilities provides smooth streaming even through variable throughput loads. 

If Logstash becomes a bottleneck, then it is simple to add more nodes [51]. Newer versions 

of Filebeat also provides the possibility the ship the data from Beat directly to the 

Elasticsearch cluster. Elastic has also developed other lightweight data shippers that can 

be used to monitor networks. The framework can be extended with for example Hartbeat 

and Metricbeat, which can inform about devices status and notify at certain thresholds. 

 

Elasticsearch is horizontally scalable and can be extended with huge amounts of nodes. 

The nodes in a cluster form a full mesh topology, which means that each node maintains 

a connection to each of the other nodes. The cluster has a single master node which is 

chosen automatically by the cluster and which can be replaced if the current master node 

fails. When a document is being indexed, it is indexed first on the primary shard, then on 

all replicas of the primary shard. A replica is a copy of the primary shard, used to increase 

failover and performance. The number of primary and replica shards can be manually 

configured to optimize implementation. 

 

The framework can be extended with multiple Kibana instances, and be connected to the 

Elasticsearch cluster. All the data about dashboards and searches is stored in the cluster. 

I have created several dashboards that can be used to monitor network traffic, IDS events 

and latency. The X-pack plugin is also included in the framework, and allows monitoring 

of Elasticsearch, Logstash and Kibana. This monitoring feature provides several 

dashboards to give an overview of the system status and in-depth performance. The 

framework can be extended to encrypt all traffic between cluster nodes and other units. It 

is also possible to configure authentication to access the cluster. 

 

To achieve automation in the framework I have created system daemons, BASHs script 

and connected the machines in the management network to a NTP server. This provides 

automatic start up at reboot, scheduled log rotation and synchronous time settings. 

 

I have also tested and evaluated alternative SIEM implementations. The best option was 

Splunk. Both Splunk and ELK stack are good options for analysis and visualization. Both 

allow the administrator to create their own custom visualizations and dashboards, as well 

as applying publicly available dashboards. Like Filebeat and Logstash, Splunk Universal 

Forwarder can be used to ship IDS data to a distributed cluster. A disadvantage with 

Splunk is that it is a commercial product. Splunk offers a free trial license of 60 days. During 

this period, they set limitations of 500 MB indexed data per day, and a limited number of 

simultaneous visualization jobs. I chose to use ELK stack in this framework rather than 

Splunk because Elastic software is open source and has fewer limitations than Splunk.  



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

95 

 

I have also considered other tools such as Snorby and OSSIM. None of these tools were 

implemented in the framework, because I want the ability to create custom visualizations 

dashboards and distribute the data. Another option is to install Linux distributions 

containing all necessary tools, including IDS and SIEM. Security Onion and SELKS are 

two such distributions. None of these were either implemented in the framework, because 

they contain additional tools not necessary in this framework. 

 

In this project, I have used the implemented framework to carry out several experiments. 

The experiments demonstrate which attacks and types of communication that triggers 

different signatures in the rules for IEC 60870-5-104 [30] and the Digital Bond Quickdraw 

SCADA rules for Modbus and DNP3 [29]. The experiments are categorized in four groups; 

IEC 60870-5-104, DNP3, Modbus and other experiments. 

 

The first experiment category has been the focus of this master thesis.  The category aims 

at demonstrating IEC 60870-5-104 and trigger alerts. Normal traffic did not trigger any of 

the signatures specified in the IEC 60870-5-104 rule-set [28]. Several methods and tools 

were used to trigger the signature-based rules. The protocol-based rules and traffic-

pattern-based rules were demonstrated using a man-in-the-middle packet injection and 

demonstration unauthorized traffic. Every signature in the ruleset was triggered 

successfully in these experiments. I did however, discover some compatibility issues. The 

most significant error, contains the following message; pcre with /R (relative) needs 

preceeding match in the same buffer for Suricata. The /R refers to a previous match, but 

there is no buffer keeping track of previous matches. This issue could be resolved by 

removing the “R” from the regular expression.  I also detected a typo in the original rule-

set that prevented a rule form being triggered, in both IDS solutions. 

 

The second experiment category demonstrated DNP3 traffic by regenerating pcap traffic 

on the IDS’s network interface. All the signatures except one were triggered in the 

experiment. This is because the command needed to trigger the remaining rule is not 

included in the pcap file. The third experiment category demonstrated Modbus traffic by 

regenerating pcap traffic, and perform attacks on a simulated PLC. Every signature in the 

Modbus rule-set was triggered during this experiment. Of the SCADA protocols 

demonstrated in this master thesis, modbus is clearly the protocol with most available 

simulation and penetration testing tools. 

 

In the fourth and last experiment category, other relevant experiments are performed. 

Several SCADA vendors allow unencrypted remote access to control systems and RTUs. 

This experiment demonstrates a man-in-the-middle attack and a brute force attack to show 

how easy it is to sniff the password in a Telnet session. The experiment also demonstrates 

a SYN flood denial-of-service attack and analysis of the additional latency applied by the 

Logstash processing. During some of the experiments I experienced that Suricata 

triggered a larger amount of alerts than Snort. This is because, the default threshold 

settings are different for Suricata and Snort, respectively. These values can be manually 

changed by editing the threshold configuration file for both solutions. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

96 

 

I have acquired a lot of new and exciting knowledge while working on my master's thesis. 

I had some experience with IDS implementation and penetration testing from previous 

projects. The SCADA and SIEM part of the assignment, on the other hand, was completely 

new to me. I thought it was particularly exciting to work with the ELK stack. The software 

introduced me to unprecedented opportunities. The tool is very powerful in analysis of IDS 

events and network traffic, but can also be used to analyze other types of data. A concrete 

example is the analysis of twitter feeds. 

 

I am generally pleased with the results achieved in this master thesis. If I could start over, 

I would focus more on implementing the OpenMUC j60870 library to simulate IEC 60870-

5-104 communication. The reason for this is that the OpenMUC j60870 is a library that 

allows to simulation all IEC message types on both the client and server side. Both 

QTester104 and IEC server have their limitations because they not are complete 

implementations of the IEC 60870-5-104 protocol. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

97 

 

7 Conclusion 

Supervisory control and data acquisition (SCADA) systems is implemented between 

industrial processes and management systems. SCADA systems play an important role in 

our critical infrastructure (CI), and is used for example to control power plants and water 

supplies. Cyber-attacks on control systems can potentially cause disasters. It is therefore 

important to implement security mechanisms to detect, and if possible prevent such 

attacks. 

 

The defense-in-depth principle is the idea that layered security mechanisms will increase 

security of the whole system. This master thesis focus on the Intrusion detection systems 

(IDS) layer of this principle, which is implemented behind a firewall. Several of the most 

widely used SCADA communication protocols have major weaknesses in their security 

architecture. The protocols often lack authentication and encryption mechanisms. Prior 

research reveals the need for multiple layers of security to protect SCADA systems against 

malicious activity. 

 

This master thesis proposes a SCADA Intrusion Detection System Test Framework that 

can be used to conduct research on security in SCADA communication and validate 

existing IDS signatures before implementing them in a production network. The framework 

consists of four parts; attacker side, SCADA target side, IDS side and SIEM side. The 

framework simulates real-time IEC 60870-5-104 communication between a client and a 

server. It also provides regeneration of DNP3 and Modbus communication. Both Suricata 

IDS and Snort IDS are included in this framework to analyse the network traffic and detect 

malicious activity. The two solutions can be compared by using a comparison dashboard 

included in the framework. Both IDS solutions includes rule-sets for IEC 60870-5-104, 

DNP3 and Modbus communication, developed by Digital Bound and Queen's University 

Belfast [29], [30].  

 

The framework is highly scalable, multiple IDS solutions and simulation tools can be added 

to the framework. It also includes a SIEM solution called ELK stack (Elasticsearch, 

Logstash and Kibana), used to collect, store, analyse and visualize flow data and alert data 

generated by the IDS solutions. The ELK stack is a horizontally scalable SIEM approach, 

which easily can be expanded if needed. Elasticsearch provides a search and analytics 

engine, that indexes and stores the data in a distributed cluster, providing high 

performance and fail over. The Kibana web interface is connected to the distributed 

Elasticsearch cluster and include several custom dashboards, that can be to analyse 

network traffic, IDS events and cluster performance. 

 

The main goal of this master thesis was to perform experiments and demonstrate how the 

proposed framework can be used to detect malicious SCADA activity. The conclusion of 

all the experiments is that there generally is little difference between Suricata and Snort's 

ability to detect malicious traffic. Suricata is compatible with signatures written in Snort 

lightweight rules description language. I did however, discover some compatibility issues. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

98 

 

The most significant error, contains the following message; pcre with /R (relative) needs 

preceeding match in the same buffer. The /R refers to a previous match, but there is no 

buffer keeping track of previous matches. This issue could be resolved by removing the 

“R” from the regular expression. During the experiments, I managed to trigger all IEC 

60870-5-104 and Modbus signatures. All DNP3 signatures except one were also triggered. 

 

The SCADA Intrusion Detection System Test Framework adds additional latency to the 

analysis of IDS events. The latency is the additional time it takes from one of the IDS 

implementations detects an event, until the event is stored in the cluster and can be viewed 

in the Kibana web interface. The perceived latency is generally higher for Snort events 

than for Suricata events. The reason for this is probably the additional processing time 

applied by unified2 to eve.json conversion. 

 

 

 

 

 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

99 

 

8 Future Work 

As future work, I aim at expanding the SCADA Intrusion Detection System Test 

Framework. The natural next step would be implement other rule-sets, create custom 

signatures, utilize anomaly based intrusion detection features and experience with other 

IDS solution, like Bro IDS. The HMI software that is implemented in the framework is 

currently only used for simulation purposes. A possible extension of this implementation, 

could be to interconnect the HMI software with the IEC 60870-5-104 client. Then it would 

be possible to see the effect of an attack in the HMI. 

 

Another possible extension is to implement host based IDS solutions in the framework. 

This approach could analyze machine level activity, detect abnormal login patterns and file 

changes. New entries in the HIDS and SCADA logs could be shipped to Logstash and be 

stored in the cluster. This extension would provide the network administrators with more 

information that can be used to detect malicious activity in the SCADA system. 

 

It would very interesting to implement Apache Hadoop and connect it to the cluster using 

the ES-Hadoop connector. This would connect the massive data storage and deep 

processing power of Hadoop with the real-time search and analytics of Elasticsearch [63]. 

It would also be interesting to utilize the machine learning feature included in x-pack 

(platinum license) to predict attacks based on past events. 

 

It would also be interesting to implement the IEC 62351 security enhancement of IEC 

60870-5-104 and DNP3 protocol, and perform usability testing of the framework. 

 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

100 

 

9 References 

  [1] H.-P. Lamminmäki, ‘Information flows in the Network Control Center of Distribution 

System Operator from the aspect of outage reporting’, Master of Science Thesis, 

Tampere University of Technology. 

[2] ‘OWASP’, www.owasp.org, 14-Aug-2015. [Online]. Available: 

https://www.owasp.org/index.php/Defense_in_depth. [Accessed: 03-Aug-2017]. 

[3] Tom Olzak, ‘Brighthub’, www.brighthub.com, 07-May-2010. [Online]. Available: 

http://www.brighthub.com/computing/smb-security/articles/2064.aspx. [Accessed: 03-

Aug-2017]. 

[4] Nick L. Petroni, Jr and Michael Hicks, ‘Automated Detection of Persistent Kernel 

Control-Flow Attacks’, University of Maryland, Maryland, 2007. 

[5] Bill Kuechler and Vijay Vaishnavi, ‘Theory Development in Design Science Research: 

Anatomy of a Research Project’, University of Nevada and Georgia State University. 

[6] ‘Supervisory Control and Data Acquisition (SCADA) Systems’, NCS TIB 04-1. 

[7] ‘Smarte strømmålere (AMS)’, 21-Jan-2017. [Online]. Available: 

https://www.nve.no/elmarkedstilsynet-marked-og-

monopol/sluttbrukermarkedet/smarte-strommalere-ams/. 

[8] ANAM SAJID, HAIDER ABBAS, and KASHIF SALEEM, ‘Cloud-Assisted IoT-Based 

SCADA Systems Security: A Review of the State of the Art and Future Challenges’. 

31-Feb-2016. 

[9] ‘Comparisons of SCADA Communication Protocols for Power Systems | Udara Perera 

| Pulse | LinkedIn’. [Online]. Available: https://www.linkedin.com/pulse/comparisons-

scada-protocols-power-systems-udara-perera. [Accessed: 28-Mar-2017]. 

[10] Guillermo A. Francia III, Xavier P. Francia, and Anthony M. Pruit, ‘Towards an In-

depth Understanding of Deep Packet Inspection Using a Suite of Industrial Control 

Systems Protocol Packets’, Journal of Cybersecurity Education, Research and 

Practice, vol. Volume 2016, no. Number 2 Two, p. 20, Dec-2016. 

[11] pgmaynard, ‘Man in the middle attacks on IEC 60870-5-104’, 06:37:18 UTC. 

[12] ‘LIAN 98(en) : Protocol IEC 60870-5-104, Telegram structure’. [Online]. Available: 

http://www.mayor.de/lian98/doc.en/html/u_iec104_struct.htm. [Accessed: 29-Mar-

2017]. 

[13] ‘MODBUS Messaging Implementation Guide 1 0 b - 

Modbus_Messaging_Implementation_Guide_V1_0b.pdf’. [Online]. Available: 

http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf

. [Accessed: 07-May-2017]. 

[14] ‘Simply Modbus - About Modbus TCP’. [Online]. Available: 

http://www.simplymodbus.ca/TCP.htm. [Accessed: 07-May-2017]. 

[15] ‘Understanding the Modbus Protocol’. [Online]. Available: 

http://jamod.sourceforge.net/kbase/protocol.html#sub_functions. [Accessed: 07-May-

2017]. 

[16] ‘Common SCADA System Threats and Vulnerabilities | Patriot Technologies’. 

[Online]. Available: http://patriot-tech.com/blog/2015/10/27/common-scada-system-

threats-and-vulnerabilities/. [Accessed: 07-May-2017]. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

101 

 

[17] ‘SCADAPASS/scadapass.csv at master · scadastrangelove/SCADAPASS’. 

[Online]. Available: 

https://github.com/scadastrangelove/SCADAPASS/blob/master/scadapass.csv. 

[Accessed: 15-May-2017]. 

[18] ‘Sunshine’s Homepage - Online CRC Calculator Javascript’. [Online]. Available: 

http://www.sunshine2k.de/coding/javascript/crc/crc_js.html. [Accessed: 15-May-2017]. 

[19] ‘SCADA MODBUS Protocol Vulnerabilities | Cyberbit’. [Online]. Available: 

https://www.cyberbit.net/ot-security/scada-modbus-protocol-vulnerabilities/. 

[Accessed: 07-May-2017]. 

[20] ‘IEC TC57 Security Standards for the Power System’s Information Infrastructure – 

Beyond Simple Encryption - White Paper on Security Standards in IEC TC57’, 

Standard. 

[21] David Kushner, ‘The Real Story of Stuxnet’, IEEE Spectrum, vol. 50, no. 3, pp. 48–

53, 07-Mar-2013. 

[22] Stamatis Karnouskos, ‘Stuxnet worm impact on industrial cyber-physical system 

security’, SAP Research, Jan. 2012. 

[23] Ellen Nakashima and Joby Warrick, ‘Stuxnet was work of U.S. and Israeli experts, 

officials say’, The Washington Post, 02-Jun-2012. 

[24] Robert M. Lee, Tim Conway, and Michael J. Assante, ‘Analysis of the Cyber Attack 

on the Ukrainian Power Grid’. 

[25] Kim Zetter, ‘Inside the Cunning, Unprecedented Hack of Ukraine’s Power Grid’, 

Wired, 03-Mar-2016. [Online]. Available: https://www.wired.com/2016/03/inside-

cunning-unprecedented-hack-ukraines-power-grid/. 

[26] Henrik Waagsnes, ‘A study of NIDS & HIDS in a controlled environment’, IKT441 – 

Specialization Project, University of Agder, Grimstad, 2016. 

[27] Muhammad Adeel, Ahsan Ahmad Chaudhry, Ejaz Ahmed, Kashan Samad, and 

Noor Mustafa Shaikh, ‘HONEYNETS: AN ARCHITECTURAL OVERVIEW’, NUST 

Institute of Information Technology, Nov. 2007. 

[28] Fahim H. Abbasi and R. J. Harris, ‘Experiences with a Generation III Virtual 

Honeynet’, Massey University, May 2010. 

[29] ‘Digitalbond Quickdraw SCADA IDS’, digitalbond.com. [Online]. Available: 

http://www.digitalbond.com/tools/quickdraw/. 

[30] Y. Yang, K. McLaughlin, B. Pranggono, T. Littler, S. Sezer, and H. F. Wang, 

‘Intrusion Detection System for IEC 60870-5-104 Based SCADA Networks’, Queen’s 

University Belfast and Brunel University, Nov. 2013. 

[31] Y. Yang, K. McLaughlin, B. Pranggono, T. Littler, S. Sezer, and H. F. Wang, ‘Multi-

Attribute SCADA-Specific Intrusion Detection System for Power Networks’, Queen’s 

University Belfast and Brunel University. 

[32] Michael Baker, David Turnbull, and Gerald Kaszub, ‘Finding Needles in Haystacks 

(the Size of Countries)’. . 

[33] Florian Skopik, Ivo Friedberg, and Roman Fiedler, ‘Dealing with Advanced 

Persistent Threats in Smart Grid ICT Networks’, Austrian Institute of Technology, May 

2014. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

102 

 

[34] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez, 

‘Anomaly-based network intrusion detection: Techniques, systems and challenges’, 

Comput. Secur., vol. 28, no. 1–2, pp. 18–28, Feb. 2009. 

[35] S.L.P. Yasakethu and J. Jiang, ‘Intrusion Detection via Machine Learning for 

SCADA System Protection’, University of Surrey. 

[36] W. Lee, S. J. Stolfo, and K. W. Mok, ‘A data mining framework for building intrusion 

detection models’, in Proceedings of the 1999 IEEE Symposium on Security and 

Privacy (Cat. No.99CB36344), 1999, pp. 120–132. 

[37] Y. Qiao, X. W. Xin, Y. Bin, and S. Ge, ‘Anomaly intrusion detection method based 

on HMM’, Electron. Lett., vol. 38, no. 13, pp. 663–664, Jun. 2002. 

[38] ‘A Tutorial on Support Vector Machines for Pattern Recognition | SpringerLink’. 

[Online]. Available: http://link.springer.com/article/10.1023%2FA%3A1009715923555. 

[Accessed: 17-May-2017]. 

[39] K.-L. Li, H.-K. Huang, S.-F. Tian, and W. Xu, ‘Improving one-class SVM for anomaly 

detection’, in Proceedings of the 2003 International Conference on Machine Learning 

and Cybernetics (IEEE Cat. No.03EX693), 2003, vol. 5, p. 3077–3081 Vol.5. 

[40] Daniel Krauß and Christoph Thomalla, ‘Ontology-based detection of cyber-attacks 

to SCADA-systems in critical infrastructures’, Fraunhofer IOSB. 

[41] Eduardo Germano da Silva, Anderson Santos da Silva, Juliano Araujo Wickboldt, 

Paul Smith, Lisandro Zambenedetti Granville, and Alberto Schaeffer-Filho, ‘A One-

Class NIDS for SDN-Based SCADA Systems’, Federal University of Rio Grande do Sul 

and Austrian Institute of Technology, Aug. 2016. 

[42] Lukas Rist, ‘The Honeynet Project: Conpot’, 05-Oct-2013. [Online]. Available: 

https://www.honeynet.org/node/1047. [Accessed: 28-Feb-2017]. 

[43] Arthur Jicha, Mark Patton, and Hsinchun Chen, ‘SCADA Honeypots An In-depth 

Analysis of Conpot’, University of Arizona, Nov. 2016. 

[44] ‘Digitalbond SCADA Honeynet’, www.digitalbond.com. [Online]. Available: 

https://www.digitalbond.com/tools/scada-honeynet/. [Accessed: 28-Feb-1017]. 

[45] ‘HES-SO Valais/Wallis’, www.hevs.ch. [Online]. Available: 

https://www.hevs.ch/en/minisites/projects-products/gridlab/pages-minisites/gridlab-

district-8449. [Accessed: 03-Jan-2017]. 

[46] Prageeth Gunathilaka, Daisuke Mashima, and Binbin Chen, ‘SoftGrid: A Software-

based Smart Grid Testbed for Evaluating Substation Cybersecurity Solutions’, 

Advanced Digital Sciences Center, Oct. 2016. 

[47] David M Laverty et al., ‘A Microgrid Testbed for Interdisciplinary Research on 

Cyber-Secure Industrial Control in Power Systems’, Queen’s University Belfast, 2016. 

[48] ‘IEC Server Manual’. [Online]. Available: http://area-x1.lima-city.de/. [Accessed: 17-

Apr-2017]. 

[49] ‘org.openmuc.j60870 (j60870 1.2.0 API)’. [Online]. Available: 

https://www.openmuc.org/iec-60870-5-104/javadoc/. [Accessed: 14-May-2017]. 

[50] ‘README.decode’. [Online]. Available: https://www.snort.org/faq/readme-decode. 

[Accessed: 30-Apr-2017]. 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

103 

 

[51] ‘Deploying and Scaling Logstash | Logstash Reference [5.0] | Elastic’. [Online]. 

Available: https://www.elastic.co/guide/en/logstash/5.0/deploying-and-scaling.html. 

[Accessed: 01-May-2017]. 

[52] ‘Glossary of terms | Elasticsearch Reference [5.3] | Elastic’. [Online]. Available: 

https://www.elastic.co/guide/en/elasticsearch/reference/current/glossary.html#index. 

[Accessed: 02-May-2017]. 

[53] ‘X-Pack: Extend Elasticsearch, Kibana & Logstash | Elastic’. [Online]. Available: 

https://www.elastic.co/products/x-pack. [Accessed: 03-May-2017]. 

[54] ‘Understanding Systemd Units and Unit Files | DigitalOcean’. [Online]. Available: 

https://www.digitalocean.com/community/tutorials/understanding-systemd-units-and-

unit-files. [Accessed: 03-May-2017]. 

[55] ‘linux - Logrotate Successful, original file goes back to original size - Server Fault’. 

[Online]. Available: https://serverfault.com/questions/221337/logrotate-successful-

original-file-goes-back-to-original-size. [Accessed: 05-May-2017]. 

[56] ‘Time Synchronisation with NTP’. [Online]. Available: 

https://help.ubuntu.com/lts/serverguide/NTP.html#timedatectl. [Accessed: 09-May-

2017]. 

[57] Martin Zaefferer, Yavuz Selim Inanir, and Thomas Karanatsios, ‘Intrusion 

Detection’, Apr. 2017. 

[58] ‘XArp | Advanced ARP spoofing detection’. [Online]. Available: http://www.xarp.net/. 

[Accessed: 24-Apr-2017]. 

[59] ‘PMaynard/ettercap-104-mitm: Plugin for IEC 60870-5-104’. [Online]. Available: 

https://github.com/PMaynard/ettercap-104-mitm. [Accessed: 25-Apr-2017]. 

[60] ‘Packet Sender - Documentation’. [Online]. Available: 

https://packetsender.com/documentation. [Accessed: 25-Apr-2017]. 

[61] ‘Google Code Archive - Long-term storage for Google Code Project Hosting.’ 

[Online]. Available: https://code.google.com/archive/p/plcscan/. [Accessed: 27-Apr-

2017]. 

[62] ‘DROP - Don’t Route or Peer lists - The Spamhaus Project’. [Online]. Available: 

https://www.spamhaus.org/drop/. [Accessed: 28-Apr-2017]. 

[63] ‘Elasticsearch for Hadoop | Elastic’. [Online]. Available: 

https://www.elastic.co/products/hadoop. [Accessed: 10-May-2017]. 

 



Henrik Waagsnes                               SCADA Intrusion Detection System Test Framework 

 

104 

 

10 Appendices 

 

 Appendix A – Tools 

 Appendix B – Virtual machine specifications 

 Appendix C – Logstash configuration 



 
 
 
 
 
 
 
 
 

Appendix A – Tools 
 

This appendix describes the software used in the SCADA Intrusion Detection 

System Test Framework 



Appendix A 

2 
 

1 Operating systems and virtualization tools 

Operating systems and hypervisors implemented in the framework. 

 

1.1 Microsoft Windows 10 

Windows 10 is an operating system developed by Microsoft, and released in 2015 

under the codename “Windows Threshold”. Windows 10 is built on the Windows NT 

kernel and follows Windows 8 [1]. 

 

1.2 Ubuntu 16.04 

Ubuntu is a free open source Debian-based Linux distribution. The word “ubuntu” is 

from the African Zulu language and translates as “humanity to others”. Ubuntu 

operating systems is intentionally developed for personal computers, but they also 

develops sever and cloud solutions. Most Ubuntu desktop operating systems utilize 

GNU Network Object Model Environment (GNOME) as GUI [2]. 

 

1.3 Kali Linux 

Kali Linux is a free open source operating system, maintained and funded by Offensive 

Security. The operating system contains over 600 tools used for perpetration testing, 

reverse engineering and forensics. Kail Linux was released in 2013, and is a complete 

top-to-bottom rebuild of the prior operation system, BackTrack Linux [2]. 

 

1.4 VirtualBox 

VirtualBox is a powerful x86 and AMD64/Intel64 virtualization tool. VirtualBox are free 

and open source distributed under the GPLv2 licence. VirtualBox runs on Windows, 

Linux, Macintosh, and Solaris platforms. VirtualBox was earlier owned by Sun 

Microsystems, but is now owned by the Oracle Corporation [3]. 

 



Appendix A 

3 
 

2 Penetration testing tools 

Penetration testing and security tools implemented on the attacker machine. 

 

2.1 Ettercap 

Ettercap is a tool used to perform man in the middle attacks. It provides sniffing and 

content filtering of live connections. It supports active and passive analysis of many 

protocols hosts and network devices [4]. 

 

2.2 Nmap 

Nmap also called Network Mapper is a free open source tool for network discovery and 

security auditing. Nmap has many different port scanning techniques to determine 

what hosts are available on the network, what services the hosts are serving and what 

operating systems version they are running. Nmap are available for Linux, Windows, 

and Mac OS X operating systems. The traditional NMAP tool is a command line (CLI) 

tool. In addition, nmap also have developed GUI based tool, called Zenmap [5]. 

 

2.3 Ncrack 

Ncrack is an open source command-line tool used for cracking network authentication. 

It is originally designed to help companies secure their networks, by scanning all their 

hosts and networking devices. The goal is to find out what devices that uses poor 

passwords, so that they can be changed. Ncrack supports brute forcing on protocols 

like RDP, SSH, http, SMB, pop3, VNC, FTP, and Telnet. The tool is very flexible and 

provide the user full control of network operations [2]. 

 

2.4 Hping3 

Hping3 is a command-line tool, used to generate and analyse TCP/IP packets. It 

supports TCP, UDP, ICMP and RAW-IP protocols. It is possible to spoof random IP-

addresses, and flood the target with packages to test firewalls, IDS/IPS, network 

limitations [6]. 

 

2.5 Bittwist 

Bittwist is a libcap-based tool, used to regenerate packet captured (pcap/cap) traffic 

onto a live network. The tool is designed to complete tcpdump functionality, by 

specifying capture file and transmit the output onto an interface. The tool can be used 

by network administrators, to simulate traffic scenarios, test firewall settings, IDS/IPS 

and for troubleshooting purposes [7]. 

 



Appendix A 

4 
 

2.6 Packet Sender 

Packet Sender is a freely available open source tool capable of sending and receiving 

TCP and UDP packets. Packer Sender is available for Windows, Mac, and Linux 

platforms, and is licensed under the GNUv2 [8]. 

 

2.7 Dsniff 

Dsniff is a tool often used in combination with arpspoof or ettercap, to sniff passwords 

by capturing and analyse the network traffic. Dsniff supports password sniffing on 

multiple protocols; FTP, Telnet, SMTP, HTTP, POP, IMAP, SNMP, LDAP, Rlogin and 

many other protocols [2]. 

 

2.8 Metasploit 

The Metasploit Project is a computer security project that provide security 

vulnerabilities, penetration testing and IDS signature development. The Metasploit 

Framework (msf) is a open source sub-project, used to develop and executing exploit 

code against a remote target machines. The Metasploit Framework is distributed under 

a Berkeley Software Distribution (BSD) license [2]. 

 

2.9 plcscan 

plcscan is a Python tool for scanning PLC devices over s7comm or modbus protocols. 

Plcscan is developed by a group of researchers and is distributed under the GPLv3 

[9].  

 

2.10 SMOD 

SMOD is a modular framework that can be used to perform penetration testing on the 

modbus protocol. SMOD implements the modbus protocol by using Python and Scapy. 

SMOD is developed by Farzin Enddo and distributed under the GPLv2 [10]. 

 



Appendix A 

5 
 

3 SCADA tools 

Software implemented in the framework to simulate SCADA targets. 

 

3.1 Open Substation HMI (OSHMI) 

Open Substation HMI (OSHMI) is a tool developed by Ricardo Olsen at the Federal 

University of Rio Grande do Sul and distributed under the LGPLv3 licence. OSHMI is 

open source and can be used to simulate or control substations. OSHMI is written in 

C++, Lua and JavaScript. Part of the code is written in Portuguese. This may lead to 

some problems for non-portuguese speaking people. In addition to simulate 

substations, OSHMI can be connected to real or simulated RTUs. OSHMI is according 

to Ricardo Olsen used in multiple substations, up to 230kV level control centres [11]. 

QTester104 can be connected to the OSHMI software using a transfer protocol called 

BDTR (QTester104 need configuration) [11]. 

3.2 QTester104 

QTester104 is a tool developed by Ricardo Olsen at the Federal University of Rio 

Grande do Sul. This tool is used to implement the IEC60870-5-104 protocol client side 

for substation data acquisition and control via tcp/ip networks using the QT UI 

Framework. QTester104 can be compiled on Linux and Windows platforms. It provides 

the possibility to poll data, view data and send commands to/from substation systems 

(RTUs) [12]. 

3.3 OpenMUC j60870 

OpenMUC j60870 is a library implementing the IEC 60870-5-104 communication 

standard. The library can be used to program clients as well as servers. OpenMUC 

j60870 is distributed under the GPLv3 license.  The library is developed by Stefan 

Feuerhahn at Fraunhofer Institute for Solar Energy Systems in Freiburg, Germany. 

The library also includes run-scripts and a test client/server [13]. 

3.4 IEC Server 

This IEC Server in a tool used to implement the IEC60870-5-104 protocol server side 

for substation data acquisition and control via tcp/ip networks. IEC server can be used 

to simulate certain IEC message types, configure automatic simulation in cyclic periods 

and configure feedback on receiving of control types messages. The IEC Server is 

distributed under a public domain licence [14]. 

 



Appendix A 

6 
 

4 Security and administration tools 

Software implemented in the intrusion detection side of the framework.  

 

4.1 Suricata 

Suricata IDS is a free and open source next generation intrusion detection and 

prevention system, developed by the Open Information Security Foundation (OISF). 

Suricata is a rule-based IDPS engine that utilises externally developed rule sets to 

monitor network traffic and provide alerts to the system administrator when suspicious 

events occur. Suricata supports rule sets written in Snort lightweight rule description 

language. Suricata also supports powerful Lua scripting for detection of complex 

threats. Suricata is a multi-threaded engine that offers increased speed and efficiency 

in network traffic analysis. It is distributed under the GPLv2 licence [15]. 

 

4.2 Snort 

Snort is an open source network intrusion detection system (NIDS). It is a packet 

sniffer, based on a packet capturing library, called libpcap. Snort monitors network 

traffic and examines each packet closely to detect anomalies. Snort was originally 

developed by Martin Roesch at a company called Sourcefire. This company is now a 

part of Cisco Systems. Snort is distributed under the GPLv2 licence [16]. 

 

4.3 py-idstools 

py-idstools is a collection of Python libraries for Snort and Suricata rule and event 

utilities. py-idstools include multiple programs for rule management and conversion 

tool (eve2pcap, u2json and u2eve). py-idstools is distributed under the BSD license 

[17]. 

4.4 Wireshark 

Wireshark is the world's most widely used network protocol analyzer. It lets you capture 

and browse the traffic running in a computer network. It runs on most computing 

platforms including Windows, OS X, Linux, and UNIX. Wireshark is a free open source 

tool, released under the GPLv2 licence [18]. 

 

4.5 PuTTY 

PuTTY is an open source SSH and Telnet client developed by Simon Tatham. The tool 

is designed for Windows platforms, but is also available for Linux [19]. 

 



Appendix A 

7 
 

5 Security information and event management (SIEM) 

Software implemented in the framework to collect, store, analyse and visualize data. 

 

5.1 Elasticsearch 

Elasticsearch is a distributed, search and analytics engine based on Apache Lucene 

and developed by Elastic. Elasticsearch provides a distributed full-text search engine 

with web interface and schema-free JSON documents. Elasticsearch is written in Java 

and released as open source software, under the Apache License 2.0 [20].  

 

Elastic has developed Elasticsearch alongside a Logstash and Kibana. Elasticsearch 

is an important part of the ELK stack / Elastic stack. At the time this master thesis is 

written, Elasticsearch 5.4.0 is the newest version released [20]. 

 

5.2 Logstash 

Logstash is an open source, server-side data processing pipeline that ingests data 

from a multitude of sources simultaneously, transforms it, and then sends to other 

systems (for example Elasticsearch). Logstash is an open source tool written in Ruby, 

developed by Elastic and released under the Apache License 2.0 [21]. 

 

Elastic has developed Logstash alongside a Elasticsearch and Kibana. Logstash Is an 

important part of the ELK stack / Elastic stack. At the time this master thesis is written, 

Logstash 5.4.0 is the newest version released [21]. 

 

5.3 Kibana 

Kibana is an open source data visualization and analysis tool for Elasticsearch. It 

provides visualization of the content indexed in an Elasticsearch cluster. Kibana 

provide the possibility to create visualization like graphs, pie charts and maps on top 

of large volumes of data. The data can be visualized both in a historical perspective 

and real-time. Kibana is an open source tool written in JavaScript, developed by Elastic 

and released under the Apache License 2.0 [22]. 

 

Elastic has developed Kibana alongside a Elasticsearch and Logstash. Kibana Is an 

important part of the ELK stack / Elastic stack. At the time this master thesis is written, 

Kibana 5.4.0 is the newest version released. Elastic has also released an alpha version 

of Kibana 6.0.0 [23]. 

 

 



Appendix A 

8 
 

5.4 X-pack 

X-pack is an extension of the ELK stack / Elastic stack which unlocks multiple features. 

Security, alerting, monitoring, reporting, graph visualization and machine learning is 

some of the features that is possible to unlock. Four different licenses are available, 

open source, basic, gold, and platinum. The open source license does not provide any 

additional features, other than Elasticsearch, Logstash, Kibana and Beats. The basic 

license is free and unlocks a monitoring feature. The Gold and Platinum licenses 

unlock almost every available feature [24].  

5.5 Filebeat 

Beats is an open source platform written in Go and developed by Elastic. The Beats 

platform has one single purpose; be installed as lightweight agents and send data from 

hundreds or thousands of machines to Logstash or Elasticsearch. It can transfer all 

kinds of data and consists of multiple agents; Filebeat, Metricbeat, Packetbeat, 

Winlogbeat and Hartbeat. Filebeat offers a simple lightweight tool to forward and 

centralize logs and files [25], [26]. 

 



Appendix A 

9 
 

References 

 

[1] ‘Windows 10 Definition from PC Magazine Encyclopedia’. [Online]. Available: 
http://www.pcmag.com/encyclopedia/term/67052/windows-10. [Accessed: 21-
Apr-2017]. 

[2] Henrik Waagsnes, ‘A study of NIDS & HIDS in a controlled environment’, IKT441 
– Specialization Project, University of Agder, Grimstad, 2016. 

[3] ‘Oracle VM VirtualBox’. [Online]. Available: https://www.virtualbox.org/. 
[Accessed: 21-Apr-2017]. 

[4] ‘Ettercap Home Page’. [Online]. Available: 
http://ettercap.github.io/ettercap/index.html. [Accessed: 21-Apr-2017]. 

[5] ‘Nmap: the Network Mapper - Free Security Scanner’. [Online]. Available: 
https://nmap.org/. [Accessed: 20-Apr-2017]. 

[6] ‘hping3 | Penetration Testing Tools’. [Online]. Available: 
http://tools.kali.org/information-gathering/hping3. [Accessed: 20-Apr-2017]. 

[7] ‘Bit-Twist: Libpcap-based Ethernet packet generator’. [Online]. Available: 
http://bittwist.sourceforge.net/. [Accessed: 20-Apr-2017]. 

[8] ‘Packet Sender - Documentation’. [Online]. Available: 
https://packetsender.com/documentation. [Accessed: 25-Apr-2017]. 

[9] ‘Google Code Archive - Long-term storage for Google Code Project Hosting.’ 
[Online]. Available: https://code.google.com/archive/p/plcscan/. [Accessed: 27-
Apr-2017]. 

[10] ‘enddo/smod: MODBUS Penetration Testing Framework’. [Online]. Available: 
https://github.com/enddo/smod. [Accessed: 13-May-2017]. 

[11] ‘OSHMI - Open Substation HMI download | SourceForge.net’. [Online]. Available: 
https://sourceforge.net/projects/oshmiopensubstationhmi/?source=directory. 
[Accessed: 17-Apr-2017]. 

[12] ‘QTester104 download | SourceForge.net’. [Online]. Available: 
https://sourceforge.net/projects/qtester104/. [Accessed: 21-Apr-2017]. 

[13] Stefan Feuerhahn, ‘j60870 User Guide - j60870-doc.pdf’, Fraunhofer Institute for 
Solar Energy Systems in Freiburg, Germany, May 2017. 

[14] ‘IEC Server Manual’. [Online]. Available: http://area-x1.lima-city.de/. [Accessed: 
17-Apr-2017]. 

[15] ‘What is Suricata - Suricata - Open Information Security Foundation’. [Online]. 
Available: 
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/What_is_Surica
ta. [Accessed: 20-Mar-2017]. 

[16] ‘Snort Frequently Asked Questions’. [Online]. Available: 
https://www.snort.org/faq. [Accessed: 21-Apr-2017]. 

[17] ‘jasonish/py-idstools: idstools: Snort and Suricata Rule and Event Utilities in 
Python (Including a Rule Update Tool)’. [Online]. Available: 
https://github.com/jasonish/py-idstools. [Accessed: 21-Apr-2017]. 

[18] ‘Wireshark · Go Deep.’ [Online]. Available: https://www.wireshark.org/#aboutWS. 
[Accessed: 20-Apr-2017]. 

[19] ‘Download PuTTY - a free SSH and telnet client for Windows’. [Online]. Available: 
http://www.putty.org/. [Accessed: 20-Apr-2017]. 

[20] ‘Elasticsearch: RESTful, Distributed Search & Analytics | Elastic’. [Online]. 
Available: https://www.elastic.co/products/elasticsearch. [Accessed: 21-Apr-
2017]. 



Appendix A 

10 
 

[21] ‘Logstash: Collect, Parse, Transform Logs | Elastic’. [Online]. Available: 
https://www.elastic.co/products/logstash. [Accessed: 21-Mar-2017]. 

[22] ‘Kibana: Explore, Visualize, Discover Data | Elastic’. [Online]. Available: 
https://www.elastic.co/products/kibana. [Accessed: 21-Apr-2017]. 

[23] ‘elastic/kibana: Kibana analytics and search dashboard for Elasticsearch’. 
[Online]. Available: https://github.com/elastic/kibana. [Accessed: 21-Apr-2017]. 

[24] ‘Subscriptions · Elastic Stack Products & Support | Elastic’. [Online]. Available: 
https://www.elastic.co/subscriptions. [Accessed: 21-Apr-2017]. 

[25] ‘Beats: Data Shippers for Elasticsearch | Elastic’. [Online]. Available: 
https://www.elastic.co/products/beats. [Accessed: 21-Apr-2017]. 

[26] ‘Filebeat: Lightweight Log Analysis & Elasticsearch | Elastic’. [Online]. Available: 
https://www.elastic.co/products/beats/filebeat. [Accessed: 21-Apr-2017]. 

 

 

 



 
 
 
 
 
 
 
 
 
 

Appendix B – Virtual machine 
specifications 

 

This appendix describes the virtual machines implemented in the SCADA Intrusion 

Detection System Test Framework 

  



Appendix B 

2 
 

 

SCADA Target side  VM specification 

Simulation: HMI and IEC 60870-5-104 Client 

Operating system Microsoft Windows 10 64bit 

CPU 2 Processor kernels 

RAM 1GB 

Graphics 128 MB 

NIC Adapter 1: Internal network – lab 

Storage 32GB 

Software Open Substation HMI (OSHMI) version 4.2 

QTester104 version 1.19 

Simulation: Second IEC 60870-5-104 Client 

Operating system Ubuntu 16.04 LTS 64bit 

CPU 2 Processor kernels 

RAM 1GB 

Graphics 128 MB 

NIC Adapter 1: Internal network – lab 

Storage 32GB 

Software OpenMUC j60870 version 1.2.0 

Simulation: IEC 60870-5-104 Server 

Operating system Microsoft Windows 10 64bit 

CPU 2 Processor kernels 

RAM 1GB 

Graphics 128MB 

NIC Adapter 1: Internal network – lab 

Storage 32GB 

Software IEC Server version 1.03 

PuTTy (Telnet Client) 

Honeypot: Conpot siemens S7- 200 PLC 

Operating system Ubuntu 16.04 LTS 64bit 

CPU 1 Processor kernel 

RAM 1GB 

Graphics 12 MB 

NIC Adapter 1: Internal network – lab 

Storage 40GB 

Software Conpot version 0.5.1 

Telnet Server 



Appendix B 

3 
 

Attacker side VM specification 

Attacker 

Operating system Kali Linux 64 bit 

CPU 2 Processor kernels 

RAM 2GB 

Graphics 128 MB 

NIC’s Adapter 1: Internal network – lab 

Storage 40GB 

Intrusion Detection Systems (IDSs)  

VM specification 

Suricata IDS 

Operating system Ubuntu 16.04 LTS 64bit 

CPU 2 Processor kernels 

RAM 2GB 

Graphics 12 MB 

NIC’s Adapter 1: Internal network – lab 

(Promiscuous mode) 

Adapter 2: Bridged Adapter – eth0 

Storage 40GB 

Software Suricata IDS version 3.1.4 

Filebeat 5.3.0 

Bit-Twist 2.0 

NTP client daemon 

Snort IDS 

Operating system Ubuntu 16.04 LTS 64bit 

CPU 2 Processor kernels 

RAM 2GB 

Graphics 12 MB 

NIC’s Adapter 1: Internal network – lab (Promiscuous mode) 

Adapter 2: Bridged Adapter – eth0 

Storage 40GB 

Software Snort IDS version 2.9.9 

Filebeat 5.3.0 

Bit-Twist 2.0 

NTP client daemon 



Appendix B 

4 
 

 

 

Security information and event management (SIEM) VM specification 

ELK Monitor VM (node -1) 

Operating system Ubuntu 16.04 LTS 64bit 

CPU 3 Processor kernels 

RAM 4GB 

Graphics 12 MB 

NIC’s Adapter 1: Bridged Adapter – eth0 

Storage 40GB 

Software Elasticsearch version 5.3.0 

Logstash version 5.3.0 

Kibana version 5.3.0 

NTP client daemon 

Plugins X-Pack version 5.3.0 (with Basic Licence) 

External plugins: 

• kibana_health_metric_vis 

• Network Plugin for Kibana 5 

Elasticsearch node-2 

Operating system Ubuntu 16.04 LTS 64bit 

CPU 1 Processor kernels 

RAM 2GB 

Graphics 12 MB 

NIC’s Adapter 1: Bridged Adapter – eth0 

Storage 40GB 

Software Elasticsearch version 5.3.0 

NTP client daemon 

Elasticsearch node-3 

Operating system Ubuntu 16.04 LTS 64bit 

CPU 1 Processor kernels 

RAM 2GB 

Graphics 12 MB 

NIC’s Adapter 1: Bridged Adapter – eth0 

Storage 40GB 

Software Elasticsearch version 5.3.0 

NTP client daemon 



 
 
 
 
 
 
 
 
 
 

Appendix C – Logstash configuration 
This appendix includes the code used to configure Logstash in the SCADA 

Intrusion Detection System Test Framework  



Appendix C 

2 
 

Code: 

 

input { 
  beats { 

    port => 5044 

    codec => json 

  } 

} 

 

filter { 

 

 if "Suricata" in [tags] { 

    mutate { 

      add_field => { 

        "engine" => "suricata" 

     } 

   } 

  } 

 

 else if "Snort" in [tags] { 

    mutate { 

      add_field => { 

        "engine" => "snort" 

     } 

   } 

  } 

  

  else if "Bro" in [tags] { 

    mutate { 

      add_field => { 

        "engine" => "bro" 

    } 

   } 

  } 

 

  else{ 

   mutate { 

     add_field => { 

        "engine" => "unknown" 

   } 

  } 

 } 

 

 if "beats_input_codec_json_applied" in [tags]{ 

 mutate{ 

         remove_tag => ["beats_input_codec_json_applied"] 

         remove_field => ["type", "input_type"] 

         rename => {"timestamp" => "IDS_timestamp"} 

 } 

} 

 

  if [src_ip]  { 

    geoip { 

      source => "src_ip" 

      target => "geoip" 

      add_field => [ "[geoip][coordinates]", "%{[geoip][longitude]}" ] 

      add_field => [ "[geoip][coordinates]", "%{[geoip][latitude]}"  ] 

      add_tag => ["geoip"] 

    } 



Appendix C 

3 
 

    mutate { 

      convert => [ "[geoip][coordinates]", "float" ] 

    } 

 

    if ![geoip.ip] { 

      if [dest_ip]  { 

        geoip { 

          source => "dest_ip" 

          target => "geoip" 

          add_field => [ "[geoip][coordinates]", "%{[geoip][longitude]}" ] 

          add_field => [ "[geoip][coordinates]", "%{[geoip][latitude]}"  ] 

          add_tag => ["geoip"] 

    } 

        mutate { 

          convert => [ "[geoip][coordinates]", "float" ] 

          remove_tag => ["_geoip_lookup_failure"] 

        } 

      } 

    } 

 

# Add severity level 

 if [event_type] == "alert" { 

 

   if [alert][severity] == 1 { 

      mutate { 

       add_field => { "severity" => "High" } 

      } 

    } 

   else if [alert][severity] == 2 { 

      mutate { 

        add_field => {  "severity" => "Medium" } 

      } 

    } 

   else if [alert][severity] == 3 { 

      mutate { 

        add_field => {  "severity" => "Low" } 

      } 

   }else{ 

      mutate { 

        add_field => {  "severity" => "Unknown" } 

      } 

    } 

  } 

 } 

} 

output { 

  elasticsearch { 

     hosts => "192.168.0.125:9200" 

     index => "filebeat-%{+YYYY.MM.dd}" 

     document_type => "IDS-event" 

     template => "/etc/logstash/templates/elasticsearch-filebeat-*.json" 

     template_name => "filebeat-*" 

  } 

} 

 


