
	

	
	

Classification with Multiple
Classes using Naïve Bayes and
Text Generation with a Small
Data Set using a Recurrent
Neural Network	

TORE ELIAS GJERVIK REITEN	

SUPERVISOR
Morten Goodwin	

University of Agder, 2017
Faculty of Science and Technology
Department of ICT
	

University of Agder

Master’s Thesis

Classification with Multiple Classes
using Näıve Bayes and Text Generation

with a Small Data Set using a
Recurrent Neural Network

Author:

Tore Elias Reiten

Supervisor:

Morten Goodwin

A thesis submitted in fulfilment of the requirements

for the degree of Masters in ICT

in the

Department of ICT

May 2017

http://www.uia.no
http://www.uia.no/studier/elektronikk-ingenioerfag

Acknowledgements

Completing a master’s degree in ICT has been a challenge. With my background in

electronics, the transition to pure software and computer science with specialization in

artificial intelligence has not been an easy task. It has, however, been an educational

adventure.

I would like to use this opportunity to express my gratitude to my supervisor Asso-

ciate Professor Morten Goodwin for assisting me with technical details as well as the

formalities required for writing a good thesis.

I also thank my fellow students who have been great discussion-partners through the

period of my masters degree.

i

Abstract

In this thesis, text classification and text generation are explored using only a small

data set and many classes. This thesis experiments with text classification, and show

how it is able to find the most similar output compared to the input even with thou-

sands of classes. Furthermore, text generation is explored on a small data set to create

a unique output. By using Näıve Bayes text classifier combined with a Recurrent Neu-

ral Network language-model, it is possible to use new deviations as input before an

original suggestion for a measure is generated as the output.

Contents

Acknowledgements i

Abstract ii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Problem Statement . 1

1.1.1 Research Questions . 2

1.1.2 Hypotheses . 2

1.2 Contributions . 2

1.3 Thesis Outline . 3

2 Theoretical Background 4

2.1 Classification . 4

2.1.1 Text Classification . 5

2.2 Näıve Bayes . 5

2.2.1 Multinomial Näıve Bayes . 7

2.3 Artificial Neural Network . 8

2.3.1 The Perceptron . 9

2.3.2 Feed-Forward ANN . 9

2.3.3 Recurrent Neural Network . 11

3 State-of-the-Art 13

3.1 Text Classification . 13

3.2 Text Generation . 15

4 Implementation 18

4.1 Text Classification . 18

4.2 Text Generation . 20

5 Results 22

5.1 Näıve Bayes Classifier . 22

5.1.1 Proof of Concept . 23

5.1.2 Proof of Concept using Modified Inputs 26

5.1.3 Validation of the Classifier . 27

5.2 Text Generation with RNN . 30

iii

iv

5.2.1 Proof of Concept . 30

6 Discussion 36

7 Conclusion 38

iv

List of Figures

1.1 A graphical representation of the expected output when using NB. . . . 2

2.1 A simple example, showing how linear classification can be used for
weather prediction. 4

2.2 A venn diagram of people who have a deadly disease and people who
test positive for a deadly disease. 6

2.3 Bag of words assumption before any operations. 7

2.4 Bag of words assumption after removing frequent words. 8

2.5 A perceptron with n number of inputs. 9

2.6 An example of a perceptron with two inputs. 10

2.7 A simple neuron summing n number of weighted inputs, before going
through an activation function and a single output is given. 10

2.8 A small ANN. Each node represents a neuron while the arrow shows the
pathway for the flow of information. This example has only one hidden
layer between the input and output. 11

2.9 An example of a simple RNN. 12

4.1 A graphical illustration of the system. 18

5.1 A graphical representation of the output of the 250 top suggestions when
the input is as in Table 5.2. The y-axis represents probability while the
x-axis represents deviations. 24

5.2 Five graphs representing the probability distributions of the five devia-
tions from Table 5.7. The x-axis shows the the 250 most similar devia-
tions (i.e. the classes) to the input, while the y-axis is the corresponding
probability. 28

5.3 A graphical representation of the char-RNN training loss on the data
set with Shakespeare and all the deviations, respectively. 32

5.4 A graphical representation of the word-RNN training loss on the data
set with Shakespeare and all the deviations, respectively. 33

v

List of Tables

2.1 How the bag of words are represented in an array. 8

4.1 An example of how the text documents is represented in an array format. 19

4.2 The left column displays the word arrangement before any operations,
while the right column shows how the input might look like when the
stop words have been removed, and the “not” has been combined with
the following word. 20

4.3 The essential parameters in the char-RNN. 21

5.1 A small table comparing the the training duration between SVM, KNN
and MNB. 22

5.2 An example where the input is the same as an existing deviation. The
column to the left shows the probability of its respective output, which
is found in the right column. 24

5.3 An example where the input is the same as an existing deviation. The
column to the left shows the probability of its respective output, which
is found in the right column. 25

5.4 A short text example where the input is the same as an existing devia-
tion, but with adding not to the sentence, making it somewhat opposite
of the example from Table 5.3. The column to the left shows the prob-
ability of its respective output, which is found in the right column. . . . 25

5.5 A long text example where the input is the same as an existing deviation.
The column to the left shows the probability of its respective output,
which is found in the right column. 26

5.6 Caption . 27

5.7 A list of five deviations which are used for validating the text classification. 28

5.8 The output of the algorithm when the input is as shown in Table 5.7. . 29

5.9 The five top outputs when the input is deviation 2 from Table 5.7. . . . 30

5.10 The parameters used for training with the Shakespeare and deviation
data set using the char-RNN. 31

5.11 The parameters used for training with the Shakespeare and deviation
data set using the word-RNN. 31

5.12 An example which compares some of the original text (input) with some
of the generated text (output) after training char-, and word-RNN to
write Shakespeare. 32

5.13 An example which compares some of the original text (input) with some
of the generated text (output) after training char-, and word-RNN to
write unique deviations. 33

vi

List of Tables vii

5.15 The parameters used for training with the Shakespeare and deviation
data set using the char-RNN. 34

5.14 The input and output of Deviation 2 from Table 5.7. 34

5.16 An example of overfitting and underfitting the 627 bytes of data. 35

5.17 A list over di↵erent amount of data sets used for generation, and if it is
enough to be able to generate reasonable output. 35

5.18 The output from the word-RNN when the input is a 50KB chunk of the
Shakespeare data set. 35

vii

1 Introduction

Text classification and text generation are familiar topics for research, in the fields

of machine learning. Machine learning requires training- and validation data for the

computer to be able to learn. For the testing to give good results, a fair amount of

data is needed. It is, therefore, interesting to see how machine learning can be used

on relatively small data sets and to see if the output can still be reliable.

Näıve Bayes (NB) is known as a very famous and powerful classification technique,

and is commonly used as a text classifier [1]. The 20 newsgroups data set, consisting

of 20000 documents divided over 20 classes [2], is very popular for testing classification

techniques. However, using many classes (thousands) and short texts for the sake of

text classification is not as commonly explored, and is tested and validated in this

thesis. Recurrent Neural Networks (RNNs) can create its outputs based on the input

given. It can remember sequences and generate, based on these sequences, similar ones

without being copies. This thesis explores the use of RNN on a small data set, and we

will see that without enough data, it is di�cult for the RNN to learn and create its

own output.

As the small data set deviation forms will be used. In short, a deviation form is a

form which needs to be filled out when something unusual (a deviation) occurs in the

workplace. Later on, a person - typically the HSE-responsible (Health, Safety and

Environment) at the company - takes a look at the deviation and writes a suggestion

for a measure, so the deviation does not happen again.

The goal of this thesis is to demonstrate the use of text classification with text gen-

eration, combined in a novel way. This thesis examines the use of small data sets for

classification and generation, specifically.

1.1 Problem Statement

Usually when using machine learning; hundreds or thousands of megabytes are con-

sidered as a fair amount of training data. When the amount of data is too small, the

1

Chapter 1 - Introduction 2

algorithm might not have enough data to be able to learn properly - which will lead

to the results being bad, or even useless.

This thesis will research the use of Multinomial Näıve Bayes (MNB) on a small data set

with several classes. In addition to MNB, research will be done on a Recurrent Neural

Network (RNN) to generate new text based on the best suggestions for a measure to

create an even more appropriate advice.

1.1.1 Research Questions

1. Is it possible to use Näıve Bayes to find a deviation similar to the input?

2. Can the RNN combine the best suggestions for a measure to create a consistent

output with the given data?

1.1.2 Hypotheses

1. Näıve Bayes can find the most similar deviations even with a small dataset and

many classes, where the output will resemble the graphical representation as

shown in Figure 1.1.

Figure 1.1: A graphical representation of the expected output when using NB.

2. MNB can find similar deviations, but the RNN might need more data to create

a consistent output.

1.2 Contributions

This thesis covers the use of MNB, with several classes, for text classification, as well

as covering the use of an RNN for text generation on a relatively small data set.

2

Chapter 1 - Introduction 3

1.3 Thesis Outline

Further, the report will cover theoretical background, in Chapter 2 for better appre-

hending the entity of the implementation and results, which are shown in Chapter 4

and 5, respectively. In between the theory and implementation, Chapter 3 will cover

State-of-the-Art, which consists of other people’s work. Finally there will be a dis-

cussion in Chapter 6 before Conclusion and Future work is represented in Chapter

7.

3

2 Theoretical Background

This chapter describes some theory used in this thesis to grasp the entity of it better.

The main subjects are text classification using Näıve Bayes (NB), and text generation

using an RNN.

2.1 Classification

Classification is a systematic arrangement in groups or categories according to a certain

established criteria [3]. In computer science it is used to categorize any set of data. The

data can be of any form i.e.; text, image and sound. A common method to implement

this is to convert the data to points in a space with n-number of dimensions which

represents a specific characteristic of the sample.

Figure 2.1 shows a simple example of how classification works. Based on some param-

eters, which in this case are humidity and temperature, points are assigned within the

dimensions of the diagram. Each point represents a day, where the blue points are

days with sunny weather and the red points are days with rainy weather. There are

two parts for the classification - the training phase and the classification phase. In

the training phase, a set of samples is fed to the algorithm. These samples are called

training data. Based on the said training data, the algorithm constructs a model which

Figure 2.1: A simple example, showing how linear classification can be used for
weather prediction.

4

Chapter 2 - Theoretical Background 5

in this case is a line. When the classification phase starts, the model can predict the

class of samples of which the class is unknown. E.g. for Figure 2.1 if the new samples

are measured to be above the line, it is classified as sunny, and vice versa below the

line.

2.1.1 Text Classification

The aim of text classification is to assign a given text into one or more classes in a

predefined set of classes [4]. The given text could be a document, email, tweet, news

post etc. Text classification includes categorizing all given text into topics. The user

decides how many topics the text could be classified into.

Popular learning algorithms for text classification are decision tree learning, support

vector machine, regression methods (e.g. Näıve Bayes), neural network and rule learn-

ing methods [5].

2.2 Näıve Bayes

NB is an algorithm which uses Bayes’ Theorem. Bayes’ Theorem is a formula that

calculates a probability by counting the frequency of given values or combination of

values in a data set [6]. If A represents the prior events, and B represents the dependent

event then Bayes’ Theorem can be stated as in equation 2.1 [7].

P (A | B) =
P (B | A)P (A)

P (B)
(2.1)

For further explanation of Bayes’ Theorem, Figure 2.2 illustrates a Venn diagram where

the pink color represents those who have a deadly disease while the purple represents

those who tests positive for a deadly disease.

5

Chapter 2 - Theoretical Background 6

Figure 2.2: A venn diagram of people who have a deadly disease and people who
test positive for a deadly disease.

Out of 100 people, 5 have a deadly disease. If the test is 85% accurate, the intuitive

answer is that one person has 85% chance of getting the correct diagnose, i.e. has a

deadly disease, or has not a deadly disease. From the diagram in Figure 2.2 it is clear

to see that this is not the fact. By using Bayes’ Theorem (equation 2.1) where the

number of people who has a deadly disease is P (A) = 0.05, and the number of people

with a deadly disease who actually tests positive is P (B | A) = 0.85. Further, let 6%

of the population test positive even without having a deadly disease, then P (B) will

be as stated in equation 2.2.

P (B) = 0.85P (A) + 0.06(1� P (A))

P (B) = 0.0425 + 0.057

P (B) = 0.0995

(2.2)

Bayes’ Theorem will then be indicated as in equation 2.3.

P (A | B) =
0.85⇥ 0.05

0.0995
= 0.427 (2.3)

The result from equation 2.3 states that given the above criteria, the probability of

having a deadly disease when testing positive is 42.7% and not 85% which is the

intuitive answer.

6

Chapter 2 - Theoretical Background 7

2.2.1 Multinomial Näıve Bayes

To compute the probability of binary outcomes, like the likelihood of getting heads or

tails, when flipping a coin (i.e. there are only two possible outcomes) is called binomial

distribution [8]. To compute the probabilities in situations where there are more than

two possible outcomes, multinomial distribution is used.

As this thesis considers the frequency of words to find the most fitting deviation form,

the multinomial distribution is used. By comparing how many times a word occurs in

every deviation, it is possible to statistically find the existing deviation which is most

similar to the input.

From equation 2.1, let us say that D represents a document and C represents a class.

C
MAP

= argmaxP (C | D) (2.4)

MAP stands for “maximum a pistori”, which, in this case, means the most likely class.

By using Bayes Rule and dropping the denominator the formula can be written as in

equation 2.5.

C
MAP

= argmaxP (D | C)P (C) (2.5)

Moreover, when document D is represented as features (x1, ..., xn), the formula can be

written as in equation 2.6.

C
MAP

= argmaxP (x1, x2, ..., xn | C)P (C) (2.6)

This method of MNB is called the “bag of words assumption”, which assumes that

position does not matter. Figure 2.3 shows how a bag of words is represented before

any operation is done.

Figure 2.3: Bag of words assumption before any operations.

7

Chapter 2 - Theoretical Background 8

To make the process of classification better, the most frequent words are deleted.

Figure 2.4 shows how the bag of words is represented after the most frequent words

are removed from the “bag”. Since NB uses a statistical approach to the input, based

on how often a word appears given the database, it is necessary to remove the most

common words to decrease processing time, as well as increasing the chance of finding

a more reasonable suggestion.

Figure 2.4: Bag of words assumption after removing frequent words.

Table 2.1 shows how the bag of words is represented when using it in the implementa-

tion. This will be thoroughly explained in Chapter 3.

Philadelphia 1

born 1

raised 1

playground 1

... ...

Table 2.1: How the bag of words are represented in an array.

The bag of words model - also well known as the unigram model - does not care about

the order of the words.

2.3 Artificial Neural Network

?? As the name implies, an Artificial Neural Network (ANN), comes from and is

inspired by how the neural network (NN) in a brain is functioning1. The human brain

is excellent at seeing patterns and using connections from previous experience to decide

whether a symbol represents e.g. the letter g, or the number 9. This is done by a system

consisting of several billions of neurons in the brain which makes the human able to

learn [10]. A neuron collects signal spikes of electrical activity from a connection of

1
Much is still unknown about how the brain trains itself to process information. The NN model is

therefore still a theory in development [9]. it is, however, this theory ANN is based on.

8

Chapter 2 - Theoretical Background 9

Figure 2.5: A perceptron with n number of inputs.

thousands of other neurons. When it receives excitatory input that is su�ciently large,

compared with its inhibitory input, it sends an electrical spike. The learning occurs

by changing the e↵ectiveness of the synapses. In that way, the influence of one neuron

on another change [9].

2.3.1 The Perceptron

In 1957, Frank Rosenblatt invented the perceptron. A perceptron is the simplest

possible form of an NN - a computational model of a single neuron [11, 12]. There

can be several inputs on a perceptron, but only one output. A perceptron follows

the feed-forward model which is explained in Section 2.3.2. Figure 2.5 represents a

perceptron; N number of inputs with di↵erent weights are summed up before it gives

a binary output, typically 1 or 0. Perceptrons , as shown in equation 2.7 where x is

the input, w is the weight, while b is a bias2.

f(x) =

(
1 if w ⇥ x+ b > 0

0 otherwise
(2.7)

2.3.2 Feed-Forward ANN

In feed-forward ANNs, the information flows in only one direction - forward. There are

no feedback loops i.e, it does not remember previous operations [14, 15]. To explain

how the feed-forward ANN learns, a perceptron will be used as an example.

2
The bias is an o↵set which, in e↵ect, allows the user to shift the activation function to the left or

right [13].

9

Chapter 2 - Theoretical Background 10

Figure 2.6: An example of a perceptron with two inputs.

Figure 2.6 shows a perceptron with the two inputs 1 and 0, with the respective weights

of 0.7 and 0.4. This gives the output 1 since 1⇥ 0.7 + 0⇥ 0.4 = 0.7.

w
new

= w
old

+ ↵(desired� output)⇥ input (2.8)

Like the NN in a brain, ANNs are large collections of simple neurons (artificial neurons,

that is)3. Each neuron is connected with many others, which links and can enhance or

inhibit the activation state of any other adjoining neuron. In short, a simple neuron is

a device with several inputs, and only one output. Figure 2.7 shows how every input

are weighted and summed up before going through an activation function - typically

a sigmoid function, which determines the output value of the neuron between 0 and 1,

or -1 and 1 [16].

Figure 2.7: A simple neuron summing n number of weighted inputs, before going
through an activation function and a single output is given.

Figure 2.8 shows how a feed-forward ANN works. Each connection has a weight - a

number which controls the signal between the two neurons connected together. The

network can either generate a desired or undesired output. Desired output means there

is no need for adjustment on the weights, while undesired output means the system

alters the weights in order to improve subsequent results - the system learns based on

the generated output [14].

3
Artificial neurons are from here on out referred to only as neurons.

10

Chapter 2 - Theoretical Background 11

Figure 2.8: A small ANN. Each node represents a neuron while the arrow shows the
pathway for the flow of information. This example has only one hidden layer between

the input and output.

2.3.3 Recurrent Neural Network

According to the definition, recurrent means returning or happening time after time

[17]. A RNN is, as the meaning of the word recurrent implies, an ANN that uses

a feedback loop which makes the network capable of remembering past events al-

lowing information to persist. Figure 2.9 shows an example of a simple RNN. The

connections between units on the same layer allow mapping the history of previous

inputs to the output vectors. The activation a
k

, for each unit k, depends on the in-

puts {x1, x2, ..., xn} with their respective weight connections {w1, w2, ..., wn

} It can be

mathematically described as shown in Equation 2.9 [18, 19]:

a
k

= f(
nX

i=1

w
i

x
i

+ b
k

). (2.9)

The most common activation functions are sigmoid-, hyperbolic tangent, and linear

functions. The aim, during the training phase of an RNN, is to update the weights for

a given input to be able to produce an output that minimizes a loss function which is

to measure the similarity between the network and the desired output [19]. There are

three major steps for training an RNN [18, 19]:

1. Initialize the weights (a small value between -0.1 and 0.1).

2. Forward pass: compute the activation a
k

for all units in the RNN.

3. Backward pass: update the weights using a gradient descent for minimizing the

loss function between the output of the RNN and the desired output. Backprop-

agation is used to e�ciently compute the gradient and update the weights.

11

Chapter 2 - Theoretical Background 12

Figure 2.9: An example of a simple RNN.

These three steps are repeated until a minimum of the loss function is reached. The

solution converged might, however, represent a local minimum.

12

3 State-of-the-Art

This chapter presents existing NB classification techniques and other common text

classification algorithms as well as di�culties and how the said di�culties are addressed

by others for text generation, using RNN.

3.1 Text Classification

There are multiple ways of classifying text. This thesis considers text classification

using machine learning. As explained in Chapter 2, there are multiple text classification

algorithms. This section explores the most common ones, and reflect on the results of

other people’s experiments.

Support Vector Machine (SVM) is a very popular algorithm for learning text classifiers

from examples. In 1998, Thorsten Joachims analyzed the particular properties of

learning with text data and identifies why SVMs are appropriate for this certain task

[20]. Joachims gives arguments on SVMs’ high dimensional input space and that text

categorization problems are mostly linearly separable which give theoretical evidence

that SMVs should perform well for text categorization. In his experiments he compares

SVM with other text classification algorithms like k-NN (which will be explored later

in this section) and his results show, with empirical evidence, that SVMs consistently

achieve good performance on text categorization tasks.

A popular data set for doing experiments in text applications of machine learning

techniques, such as text- classification and clustering is called The 20 Newsgroups data

set. The 20 newsgroups data set is a collection, originally collected by Ken Lang, and

consist of approximately 20000 newsgroup documents divided evenly across 20 di↵erent

news groups [2]. Shuo Xu uses the 20 newsgroups data set for text classification and

experiments with di↵erent models of NB, i.e. Multinomial-, Bernoulli- and Gaussian

event model. Xu concludes that the multinomial event model is more accurate than

the other models [21].

13

Chapter 3 - State-of-the-Art 14

In 2001, Jason D. M. Rennie, proposed a thesis on how to improve multi-class text

classification with NB [1]. He states that Näıve Bayes is the de-facto standard text

classifier, and discuss di↵erent variants of using NB, depending on the data used and the

wanted output. Rennie writes about the Maximum Likelihood Näıve Bayes (MLNB),

which is a way of formulating Näıve Bayes which chooses the parameters that produce

the largest likelihood of the training data [1].

Furthermore, in 2003, Rennie and others, write a paper [22] where they compare SVM

with a slightly modified NB. According to the report, the modified NB is a fast, easy-

to-implement, near state-of-the-art classification algorithm, while SVM supposedly is

the fastest algorithm for text classification.

In a report by Ge Song and others in 2013 [23], short text classification research has

been done. They state that the most traditional methods for text classification (such

as SVM, NB and KNN) are all based on the similarity of term frequency. They also

state that most of the said classification techniques may fail to obtain high accuracy

if the labeled information is insu�cient. The processing of text classification is gen-

erally in Vector Space Model (VSM), which has the underlying assumption that the

relationships of words are independent, neglected the correlation between text. Song

[23] brings up a good point regarding the semantics of text - short texts has a weaker

capacity of semantic expression. Semantic analysis pays more attention to the concept,

and to the correlation of texts to obtain the logic structure, understanding the contents

rather than using a statistical approach. Zelikovitz [24] applies an algorithm based on

semantic analysis that proposed to deal with short text classification. Quiang Pu etc

[25] combine Latent Semantic Analysis (LSA) and Independent Component Analysis

(ICA) [26, 27] together. LSA transforms the vector space into semantic space, and

based on statistical method, LSA extracts, and quantify the semantic structure, elimi-

nating the correlation between terms [23]. Song etc [23] state that LSA can reduce the

high-dimensional vector matrix to construct the low-dimensional subspace which can

e↵ectively describe the relationship of term-document. Some Many Dimension reduc-

tion methods in LSA are proposed by Deerwester etc [28] and Landaues [29] such as

Singular Value Decomposition (SVD), Semi-Discrete Decomposition (SDD) and Non-

negative Matrix. Ge Song etc. [23] explores SVD. In Song’s report [23] it is discovered

that short text classification is a challenging field because many technologies are in the

initial stage.

A method for obtaining better undestanding of context it is possible to use a higher

level of n-gram language models. In 2003 Fuchun Peng and Dale Schuurmans [30]

experiments on how n-gram language models can be used as text classifiers. Peng and

Shuurmans’ results show that using the word models, using n-gram with n > 1, does

14

Chapter 3 - State-of-the-Art 15

not demonstrate any significant improvement, and when n > 2 the results are even

more inaccurate [30].

3.2 Text Generation

Ilya Sutskever and others [31] states that RNN is a powerful tool because of their

capability of having a high-dimensional hidden state with non-linear dynamics that

remember and process past information. They demonstrate, in the report, a character

based language model with an RNN, trained with the Hessian-Free (HF) optimizer

for generating text. HF, also known as truncated-Newton, is a 2nd-order optimization

approach, which is relatively new in the fields of machine learning [32]. The goal in the

report by Sutskever etc [31] is to demonstrate the power of large RNNs trained with

the new HF-optimizer by applying them to the task of predicting the next character

in a streaming text.

Following is the formalization of the standard RNN: Given a sequence of input vectors

(x1, x2, ..., xT), the RNN is able to compute a sequence of hidden states (h1, h2, ..., HT

)

in addition to a sequence of outputs (o1, o2, ..., oT) by iterating equation 3.1 for t = 1

to T.

h
t

= tanh(W
ih

x
t

+W
hh

h
t�1 + b

h

)

o
t

= W
ho

h
t

+ b
o

(3.1)

W
ih

is the input-to-hidden weight matrix, W
hh

is the hidden-to-hidden (aka recurrent)

weight matrix while W
ho

is the hidden-to-output weight matrix. b
h

and b
o

are the

biases.

By using back-propagation through time, the gradients of the RNN are easy to compute

[33, 34]. The relationship between the parameters and the dynamics of the RNN is,

in reality, highly unstable which makes gradient descent ine↵ective. Hochreiter [35]

and Bengio [36] formalizes the intuition that it may seem that RNNs are easy to train

with gradient descent. They proved that the gradient decays exponentially as it is

back-propagated through time. These results were used to argue that RNNs can not

learn long-range temporal dependencies when gradient descent is used for training.

Furthermore, there is a tendency of the pack-propagated gradient to exponentially

blow-up greatly. This increases the variance of the gradients, which makes the learning

unstable.

15

Chapter 3 - State-of-the-Art 16

There are some ways to deal with the inability of gradient descent to learn long-range

temporal structure in a standard RNN. One way is to modify the model to include

“memory”-units which are designed to store information over long time periods. This

approach is known as the Long-Short Term Memory(LSTM) [37]. LSTM has been

successfully applied to complex real-world sequence modeling tasks [38]. LSTM makes

it possible to handle data sets which require long-term memorization.

Another way to avoid back-propagation through time problems is the Echo State Net-

work (ESN) [39]. ESN forgoes learning the recurrent connections all together, and

trains only the non-recurrent output weights. This makes the learning task easier,

moreover, it works surprisingly well, provided that the recurrent connections are care-

fully initialized.

In 2013, Alex Graves [40] write an article about generating sequences with RNNs.

He shows how LSTM RNN can be used to produce complex sequences with long-

range structure, simply by predicting one data at a time. The approach he uses is

demonstrated for text and online handwriting - where the focus is on handwriting in

particular. Graves states that in most cases, text prediction, or language modelling,

is formed at the word level. However, because the number of words often exceeds

100,000 it becomes a problematic task to realize. Having so many classes, in addition

to requiring many parameters to model demands an enormous amount of training

data to adequately cover the possible contexts for the words [40]. Furthermore, there

is a di�culty in the high computational cost of evaluating all the exponentials during

training. Besides, word-level models are not applicable to text data containing non-

word strings, such as multi-digit numbers or web addresses.

According to Graves [40] Character-level language modelling with NN is found to

give slightly worse performance than equivalent word-level models [31, 41]. Graves

states that predicting one character at a time, however, is more interesting from the

perspective of sequence generation, as it allows the network to invent original words

and strings [40].

In a report by Razvan Pascanu and others[42] they address two issues for training

an RNN, i.e. the vanishing and the exploding gradient problem, which is detailed in

Bengio’s report [36]. They look at previous solutions to the problem, where one of

them is Doya [43], who proposes, in 1993, to pre-program the model or to use teacher

forcing. The downside is that it is not always possible to know the required asymptotic

behaviour, and, even if it is known, it might not be trivial to initialize the model

accordingly. Pascanu reviews Hochreiter and Schmidhuber [37] and Graves et al.[38]

who proposes the LSTM model to deal with the vanishing problem. This solution does

not, however, address the exploding gradients problem explicitly. Another way to deal

16

Chapter 3 - State-of-the-Art 17

with the two said problems, is to use the Hessian-Free optimizer in conjunction with

structural damping, which is proposed by Sutskever et al. [44]. According to Pascanu

etc [42] the Sutskever et al. approach [44], regarding the vanishing gradient problem

works because in high dimensional spaces there is a high probability for long-term

components to be orthogonal to short term ones. Regarding the exploding gradient,

Pascanu et al. [44] take curvature into account. The Jacobian matrices @xt
@✓

are forced,

by the enhancement called structural damping, to have a small norm, hence further

helping with the exploding gradient problem. Pascanu et al. [42] put, after looking

at previous solutions, forward their assumption stating that gradients explode, there

is a cli↵-like structure in the error surface and devise a simple solution based on this

hypothesis, i.e. clipping the norm of the exploding gradients. This solution [42] provide

some indirect empirical evidence towards the validity of their hypothesis, even though

further investigations are required for more evidence.

17

4 Implementation

As mentioned earlier, this thesis consist mainly of two topics, namely text classification

with multiple classes and text generation with a small dataset.

Figure 4.1: A graphical illustration of the system.

Figure 4.1 shows a graphical illustration of the implementation. The input is a new

deviation and is sent to a text classifier which gives an output of the most similar de-

viations. The similar deviations send in their corresponding suggestions for a measure

into a text generator which in the end give a unique suggestion for a measure, which

is a combination of the said suggestions for a measure. This chapter goes through the

approaches used for text classification and text generation.

4.1 Text Classification

There are multiple algorithms for classifying text using machine learning. For the

classification, SKlearn’s libraries for text classification are used [45]. To use SKlearn

for classification the input needs to be in an array format. That is, each deviation

needs to be represented as an array. If there is a document saying “a man buys a nice

car”, it will then be presented as shown in Table 4.11. The representation of each

deviation needs to be represented with an equally long array as there are unique words

in all the documents.
1
This representation is the bag of words representation, as described in Chapter 2

18

Chapter 4 - Implementation 19

Word representation a man other words buys nice car

Array representation 2 1 0 0 1 1 1

Table 4.1: An example of how the text documents is represented in an array format.

Algorithm 1 shows how the pseudocode for making the data ready for training, using

SKlearn’s libraries for text classification.

Algorithm 1 Pseudocode for preparing the data to be used with SKlearn’s libraries.
1: Initialize variables
2: Import deviations from file
3: Initialize i = 0
4: for deviation 2 deviations do
5: deviationArray[i] = {}
6: for word 2 deviation and word 62 stopwords do
7: deviationArray[i] word
8: if word.isUnique then
9: UniqueWords word

10: end if
11: end for
12: i += 1
13: end for
14: number = 0
15: for word 2 UniqueWords do
16: wordInNumberArray = word.mapWordToNumber(number)
17: Initialize number += 1
18: end for
19: for deviation 2 deviationArray do
20: deviationAsnumberArray deviation.representedAsArray
21: end for

The stopwords in line 6 are words which are very common (words like it, is, then, the,

etc.). They are removed for making the classification better, as well as making the

training phase faster.

The data for classifying is circa 450 KB (kilobytes), consisting of approximately 2000

deviation forms. The length of the deviations varies from a couple of words to several

sentences. Within the 2000 deviations, all together, there are approximately 7300

unique words which means that each deviation will represent an array of 7300 elements.

The final array will, therefore, be a 2000⇥ 7300 matrix.

The classifier does not have any predefined classes, and since the deviation forms con-

tains no specific topics, every deviation gets its own class, i.e. there are corresponding

circa 2000 classes. When the implementation of the code takes an input, the output

will be the deviation which is most similar to the input.

19

Chapter 4 - Implementation 20

Input Modified Input
the ...
man man
did ...
not ...

remember notremember
to ...

wear wear
his ...

sunglasses sunglasses

Table 4.2: The left column displays the word arrangement before any operations,
while the right column shows how the input might look like when the stop words have

been removed, and the “not” has been combined with the following word.

Deviations are descriptive texts. It is, therefore, relevant when a sentence has the

word “not” in it. “The man did not remember to wear his sunglasses” means the

exact opposite of “the man did remember to wear his sunglasses”. The word not is,

however, one of the stop words, which means that it is not taken into consideration.

To solve this problem, I combine the not word with the next word in line. That is, if a

sentence represents the example with the sunglasses, then the algorithm from Chapter

3 will fetch the words, as shown in Table 4.2.

When the input is classified, the output is ready to be inserted in an RNN for training

and generating an unique suggestion for a measure.

4.2 Text Generation

For the text generation two RNNs are used, namely a char-RNN and a word-RNN.

Andrej Karpathy has made a char-RNN code which implements multi-layer RNN for

training/sampling from character-level models [46]. That is, it takes a text file as

input and trains an RNN that learns to predict the next character in a sequence. The

implementation made by Karpathy makes it possible for the users to adjust parameters

for tailoring the RNN to fit the data used.

In Table 4.3 the essential parameters are displayed. The RNN size decides the size

of the LSTM internal state, number of layers decides how many hidden layers there

should be in the LSTM, sequence length sets the number of time steps to unroll for,

while batch size is the number of sequences to train in parallel. There are other

parameters, like what the fractions for training- and validation data should be2, but

2
training- and validation data is divided into 80% and 20% respectively.

20

Chapter 4 - Implementation 21

Essential parameters
RNN size number of layers sequence length batch size

Table 4.3: The essential parameters in the char-RNN.

they do not have a significantly impact of the output (according to Karpathy [46]).

The two most important parameters that control the model are the RNN size- and

number of layers. As this thesis is all about generating text using a small amount of

data, the parameters will be adjusted thereafter. In Chapter 5 we will experiment with

di↵erent values of the essential parameters.

The word-RNN (made by Sung Kim[47])is mostly reused code, which was inspired

from Andrej Karpathy’s char-RNN.

21

5 Results

This chapter covers all the results from the two parts of this thesis i.e. the text

classification and the text generation. The input and verification data used in this

thesis is written in Norwegian. It is not important for the sake of the results what

language it is. It is, however, important that the output is as expected. The results,

of which the output text is relevant, will be translated into English.

5.1 Näıve Bayes Classifier

As described in Chapter 4, the implementation for text classification can be used for

SKlearn’s libraries. The ones tested are Multinomial Näıve Bayes (MNB), Support

Vector Machine (SVM) and K-Nearest Neighbor (KNN), concerning the expected out-

put and performance. When using MNB, all classes will get a probability of similarity1.

SVM and KNN do not use a statistical approach meaning there will not be a distribu-

tion for the most similar ones, and only for the single “best” one.

Furthermore, the MNB classifier is the fastest of all three approaches. Table 5.1 shows

a comparison of how much time each of the algorithms need for training the data.

SVM is the slowest (by far), while MNB beats the KNN in a fraction of a second. All

algorithms returns the same output, i.e. the expected output2.

Algorithm Time Training

SVM 32.9 seconds

KNN 3.0 seconds

MNB 2.8 seconds

Table 5.1: A small table comparing the the training duration between SVM, KNN
and MNB.

1
The sum of all probabilities for the deviations will result in 1.0 or 100%.

2
Section 5.1.1 gives a detailed explanation of the expected output.

22

Chapter 5 - Results 23

Based on the training time in Table 5.1 and the fact that MNB uses a statistical

approach which gives a probability output for every deviation (making it possible to

easily gather the five most similar suggestions for a measure to generate an unique

measure, using RNN later on), the text classifier chosen for this thesis is MNB.

The tests considered are divided into the following: “Proof of Concept” , “Proof of

Concept using Modified Inputs” and “Validation of the Classifier”. The section with

“Proof of Concept” will use already existing deviation as input, and the goal is for

the output to be the same as the input. For the section with “Proof of Concept

using Modified Inputs”, the input consist of existing deviations as well, but slightly

modified. The final section, “Validation of the Classifier”, will consist of random

deviations created by someone else than the author of this thesis.

5.1.1 Proof of Concept

In these tests already existing deviation are used, of which the output should be equal

to the input. This is solely to see if the algorithm can find the same output to be equal

to the input, then the classifier works as intended.

When searching for a deviation, which is exactly the same as an existing one, the

algorithm always finds the output to be exactly the same as the input. Even though

the distribution varies from a few percents to 99%3, the “correct” i.e. the expected

answer is found. However, when the input text is only a couple of words, the algorithm

becomes very uncertain.

Table 5.2, shows an example of when the input is intentionally put as one of the already

existing deviations. In this example, the input is only a short sentence. In English

the input means: “The card reader on pump 1 is bad.” Even though the most likely

deviation is below 0.5%, it finds the expected one. The second most likely deviation

has, more or less, the same probability, but due to the output is (in English): “The

card reader on pump 1 seems bad”, there is no wonder the probability is almost the

same.
3
It will most likely never reach 100% due to the removal of the stop words.

23

Chapter 5 - Results 24

Figure 5.1: A graphical representation of the output of the 250 top suggestions
when the input is as in Table 5.2. The y-axis represents probability while the x-axis

represents deviations.

Input: Kortleser p̊a Pumpe 1 er d̊arlig
Probability Output

0.3749% Kortleser p̊a Pumpe 1 er d̊arlig
0.3747% Kortleser p̊a pumpe 1 virker d̊arlig
0.1402% Pumpe nr 1 ga melding om ”in-

gen pumpe tilgjengelig” selv om
pumpen var ledig. Skjedde søndag
ettermiddag

0.1401% Kunde Odd Steinar rotet olje fra sin
egen bil mellom pumpe 1 og 2 og ved
pumpe 7. Var hull under bilen.

Table 5.2: An example where the input is the same as an existing deviation. The
column to the left shows the probability of its respective output, which is found in

the right column.

The example in Table 5.2 is great to show how the algorithm is able to find the expected

output, using only a few words. One problem occurs, however, when the input text is

slightly changed. When giving the input: “The card reader is not bad”, the output is

the same as in Table 5.2. It makes no sense writing a deviation about a card reader

not being bad, but it shows how short deviations are subject to potentially obtaining

the exactly opposite suggestion for a measure than expected. For longer texts this

problem is slightly avoided.

Table 5.3 and 5.4 are examples of how the probability changes by adding the not-word

for describing a, more or less, opposite situation of the original one. Table 5.3 shows

an original deviation and its corresponding output while in Table 5.4 the deviation

has added the not-word to see if there are any changes. The algorithm finds the same

deviation, but with a lot smaller probability (from 25% to 14.5%).

24

Chapter 5 - Results 25

Input: Skulle krane ei skinnelengde som l̊a
vanskelig til. Lengden glapp slik at enden spratt
opp og nesten tra↵ basen
Probability Output

25.2% Skulle krane ei skinnelengde som l̊a
vanskelig til. Lengden glapp slik
at enden spratt opp og nesten tra↵
basen

0.394% Skulle kranevekk ei skinnelengde da
ei skinne i enden p̊a lengden datt av
og tra↵ hytta p̊a bilen og for̊arsaket
en liten bulk

Table 5.3: An example where the input is the same as an existing deviation. The
column to the left shows the probability of its respective output, which is found in

the right column.

Input: Skulle krane ei skinnelengde som l̊a
vanskelig til. Lengden glapp slik at enden ikke
spratt opp og nesten tra↵ basen
Probability Output

14.5% Skulle krane ei skinnelengde som l̊a
vanskelig til. Lengden glapp slik
at enden spratt opp og nesten tra↵
basen

0.45% Skulle kranevekk ei skinnelengde da
ei skinne i enden p̊a lengden datt av
og tra↵ hytta p̊a bilen og for̊arsaket
en liten bulk

Table 5.4: A short text example where the input is the same as an existing deviation,
but with adding not to the sentence, making it somewhat opposite of the example
from Table 5.3. The column to the left shows the probability of its respective output,

which is found in the right column.

Furthermore, Table 5.5 shows an example where there is an even longer input. The

most likely deviation has 88.2% probability of being the correct one while the rest is

below 1%. Looking at Tables 5.2 and 5.5 and after doing further empirical tests, it is

easy to see that the more words used in the input, the more certain the algorithm is

of finding the most likely deviation based on the given data.

25

Chapter 5 - Results 26

Input: Verkstedet har hatt inne 8508 p̊a full
sjekk! Jobben som er gjort er meget bra og det
er n̊a tomt for feilkoder! T.o.m abs er i orden
og ingen blinkende lamper!!! BRA!!! :-))) DVS
ABS feil er kommet tilbake n̊a da, men men...
Probability Output

88.2% Verkstedet har hatt inne 8508 p̊a full
sjekk! Jobben som er gjort er meget
bra og det er n̊a tomt for feilkoder!
T.o.m abs er i orden og ingen blink-
ende lamper!!! BRA!!! :-))) DVS
ABS feil er kommet tilbake n̊a da,
men men...

<1% N̊a fungerer henger til 1066 som den
skal.Ingen feil med ABS eller SAM

<1% Det skulle skiftet abs føler p̊a en bil.
det ble skiftet føler p̊a feil side, selv
om det sto riktig p̊a notaplan.Bilen
må inn igjen f̊ar og f̊a skiftet rett
føler.

Table 5.5: A long text example where the input is the same as an existing deviation.
The column to the left shows the probability of its respective output, which is found

in the right column.

5.1.2 Proof of Concept using Modified Inputs

This section will show the results when experimenting with inputs which are similar

to already existing deviations. This section’s purpose is the same as in the previous

section. That is, to find the expected output. The di↵erence is, in this section the

texts are slightly modified, by removing parts of the text.

Table 5.6, shows what the input is and what the expected output should be, in addition

to showing what the actual output is, as well as the probability of the corresponding

result based on the given data. The examples in Table 5.6 consist of both short and

long texts. The short text gives a probability of scarce 0.2% and the long texts get

between 4- and 5% which all are considered small, but they all find the expected

output. In the bottom row, the deviation is modified as much as possible, while still

making, somewhat, sense and it still was able to find the expected output.

26

Chapter 5 - Results 27

Input Expected Output Actual output %
fyringsolje
p̊afylling ikke
merket

fyringsolje p̊afylling
ikke merket ved 1-2-3
Hafrsfjord

fyringsolje p̊afylling
ikke merket ved 1-2-3
Hafrsfjord

0.19

Det var g̊att ett
snøras p̊a vegen
mellom festøya i
Ørstad i Møre og
Romsdal

Sj̊afør ble st̊aende i
timevis og vente til
vegen skulle åpne! Det
var g̊att ett snøras p̊a
vegen mellom festøya
iØrstad i Møre og
Romsdal.

Sj̊afør ble st̊aende i
timevis og vente til
vegen skulle åpne! Det
var g̊att ett snøras p̊a
vegen mellom festøya
iØrstad i Møre og
Romsdal.

4.39

Tusen takk til
han som orka å
høre p̊a me å
komme me
forslag p̊a natta

Tusen takk til Øystein
som orka å høre p̊a me
å komme me forslag p̊a
natta n̊ar fryseren
stoppa:)

Tusen takk til Øystein
som orka å høre p̊a me
å komme me forslag p̊a
natta n̊ar fryseren
stoppa:)

4.95

Lekkasje av n̊ar
du losser.
Lekkasje nederst i
kasse.

Lekkasje av 95 i Ørsta
n̊ar du losser,det ligger
absorberende kluter
nederst i kasse fra
før.Lekkasje nederst i
kasse mellom glasset og
bunnen.

Lekkasje av 95 i Ørsta
n̊ar du losser,det ligger
absorberende kluter
nederst i kasse fra
før.Lekkasje nederst i
kasse mellom glasset og
bunnen.

0.56

Table 5.6: Caption

5.1.3 Validation of the Classifier

In this section the MNB text classification algorithm will be put to the test regarding

new deviations. The new deviations are created by a person without insight in this

report to get an objective perspective for the validation. The purpose of these tests

are to see if it is possible to use the existing data set to find similar suggestions for

a measure when a, more or less, random input is given. The deviations to validate

are shown in Table 5.7, which will be classified based on the given data set with

approximately 2000 classes.

Figure 5.2 shows the distribution of the output of the 250 most similar deviations,

using the deviations from Table 5.7. All the curves resemble the graph, which is in

the hypotheses from Chapter 1. Taking a closer look at Figure 5.2, all the graphical

representations of the probability distributions, are giving the most similar deviations

probabilities of 1% or less, except for “deviation 3”. Finally, Table 5.8 displays the

output of their respective inputs from Table 5.7.

27

Chapter 5 - Results 28

Nr Input
1 Jeg ble stoppet p̊a veien av det som s̊a ut som en regelmessig kontroll.

Politiet sa at ene lyset bak p̊a bilen ikke virket, og at jeg måtte f̊a det
fikset s̊a fort som mulig

2 Det var bestilt opp feil type rekkverk og det var umulig for oss å gjøre
noe som helst.

3 Jeg fikk ikke til å sette bilen i revers da jeg skulle parkere bilen. Jeg
prøvde å sl̊a bilen av og p̊a igjen, men fikk fortsatt ikke sette bilen i
revers. Jeg prøvde å sette bilen i første gir, og kjørte et lite stykke
fremover før jeg prøvde å sette bilen i revers igjen. Det gikk heldigvis
da, og fikk parkert bilen. Da jeg skulle starte bilen igjen fikk jeg fortsatt
ikke til å sette bilen i revers.

4 Vi hadde en EU-kontroll av en Peugeot GT-Line og den manglet kun en
refleksvest, men vi skrev p̊a kontrollen at kunden måtte sende inn bilen
for å reparere girkassa.

5 Antennen fikk ikke til å ta inn nøyaktige signal, s̊a etter at jeg registrerte
sporene p̊a rekkverket ble det vist helt feil i systemet. Det var gult signal
p̊a antenna, og det trodde jeg var bra nok.

Table 5.7: A list of five deviations which are used for validating the text classifica-
tion.

Figure 5.2: Five graphs representing the probability distributions of the five devia-
tions from Table 5.7. The x-axis shows the the 250 most similar deviations (i.e. the

classes) to the input, while the y-axis is the corresponding probability.

28

Chapter 5 - Results 29

Nr Output Prob

1

Kom kjørende p̊a RV65 ved Svorkmo p̊a svingete vei da jeg møtte en
tømmerbil i venstresving. Passerte hytte p̊a bilen hans s̊a smalt plutselig
speilet inn og i ansiktet p̊a meg. Må ha tru↵et noe bak p̊a hans bil. Holdt
p̊a å besvime, var utom veien p̊a høyre side men klarte å komme innp̊a
igjen. Bare flaks at bilen kom p̊a veien igjen, hvis ikke hadde det g̊att
rett i fjellet. Fikk stoppet p̊a en lomme rett foran, ringte Solheim som
videre varslet 113 og 112 før han kom tilbake. Blødde fra ansiktet. Ble
kjørt i ambulanse til sykehus, hvor de plukket glass og stelte s̊ar. Politiet
stoppet ogs̊a tømmerbilen fra Vuttudal som bare hadde kjørt videre uten
å merke noe. Politiet har opprettet sak.

1.13%

2
Rekkverk over undergang hadde feil lengde i forhold til mur, feil bolter
og for langt rekkverk med feil vinkel

0.20%

3

Sku hente Atego’n til G-lag p̊a Molde. Hadde d̊arlig tid p̊a ferga, s̊a
droppet å fylle selv om det var lite p̊a tank. Det var ingen varsellampe
om at bilen var p̊a reservetank, s̊a regnet med at det holdt til Åndalsnes.
Bilen stoppet p̊a kul’n før Nebbatunellen, s̊a fikk trillet bilen p̊a statoil
og fylt diesel. Bilen ville ikke starte etter fylling, og fant heller ingen
fødepumpe eller utstyr til å jekke hytte ned. Ringte 3 mann fra G-lag
uten å f̊a svar, og verksmester 3 ganger pluss at jeg sendte han sms.
Ingen respons... Satt igjen bilen p̊a Statoil. - G-lag ringte opp igjen
etter at jeg hadde dratt, og kunne fortelle at det ikke fins fødepumpe p̊a
bil og at han må ha trykkluft p̊a tank for å f̊a diesel frem til motor.

55.8%

4

kjørte gjenom lærsta tunelen og fik fartsmåling over 80. da speedopme-
teret viste rett over 70. speedometeret viser nesten 10 km/t forlite p̊a
grunn av at verkstedet har sotte p̊a alt for store hjul. s̊a kan f̊a ei dyr
overaskelse til jul, vist eg f̊ar fartsbot for alle fotoboksene eg har pasert
dei siste 6 ukene. og f̊ar eg prikkbelastning s̊a kan eg bli lapplaus!!! detta
er ein uakseptael feil, som verkstedet var klar over da dei sette p̊a hjula
og sa me måtte tenke over hjulbuan og heve bilen p̊a lufta...(som d̊a var
deira løsning)må kjøre med bilen heva p̊a lufta hele tida, og det hørtest
tøft ut nor eg måtte avlaste boogien for å f̊a meir tyngde p̊a driven.

0.13%

5

For d̊arlig signal fra satelitter. Store problemer p̊a Lesja/Lora under
telling. Varierende forhold. Ofte fikk man bare rødt signal om man
stod å prøvde aldri s̊a lenge. Men om man kom tilbake 10 timer senere
kunne man oppleve å f̊a grønt signal umiddelbart.Sist uke under telling
med gtac mistet den kontakten med altus. Måtte sl̊a av/p̊a s̊a virket
den. Skjedde 2 ganger.Etter oppdatering til versjon 2,5.Fungerte fint
en stund, s̊a kom denne beskjed midt i en telling:” En feiloppsto:Kunne
ikke starte Altus B lag. Sjekk Altus og altus-adresse og prøv p̊a nytt.
Slo av/p̊a antennen mange ganger. Samme feil kommer.Sl̊ar til slutt av
b̊ade gtac og antenne, da f̊ar gtac kontakt med altus å kunne fortsette
telling.

0.87%

Table 5.8: The output of the algorithm when the input is as shown in Table 5.7.

Analyzing the input from Table 5.7 compared with the corresponding output from

Table 5.8, it is easy to see that deviation 1,3,4 and 5 has no correlation. Using the

suggestion for a measure for the said deviations will not make any sense. On deviation

29

Chapter 5 - Results 30

2, however, the subject is not just the same, but the problem is almost identical. In

Table 5.9 the five top outputs from Deviation 2 in Table 5.7 are given. By analyzing

the content, it is fairly easy to see that all these deviations has the same subject,

and a combination of all the suggestions for a measure for all the said deviation could

potentially create a unique suggestion for a measure to the input, which should make

sense. In Section 5.2 we will see if we are able to use RNN to create a reasonable

suggestion for a measure using the corresponding suggestions for a measure from the

output in Table 5.9.

Input: Det var bestilt opp feil type rekkverk og det var umulig for oss å gjøre noe
som helst.
Nr Output

1
Rekkverk over undergang hadde feil lengde i forhold til mur, feil bolter og for
langt rekkverk med feil vinkel

2
VikØrsta leverte feil rekkverk mot ordre.AG lossa bakskinne/p̊aler/sk. som
skulle lenger nord. Skal ikke brukes n̊a - må flyttes.Tegninger som var sendt
med var feil.Bestilt feil lakkert sigma (feil lengde og hullbilde)

3
Var registrert feil type rør p̊a bruen. Må ha nøyaktig beskrivelse n̊ar det ikke
er vanlig rekkverk

4
Laget ble trekt i lønn for å ha satt opp rekkverk p̊a feil sted, ble s̊a trekt i lønn
for dette. De mener dette er urettferdig, og at de da skal ha kompensasjon
n̊ar andre gjør feil som rammer de.

5

Rekkverksmateriellet stemte ikke overens med rekkverksmateriellet. Feil avs-
tand mellom boltegrupper i forhold til rekkverksmateriell. Feil radie p̊a han-
dlister. Feil hullbilde p̊a handlister, feil lengde p̊a handlister, feil lengde p̊a
sprosser. Brukte mye ekstra tid pga dette. Etter litt om og men s̊a skulle vi
prøve s̊a godt som mulig å montere materiellet. Måtte kappe, rette sveise og
tilpasse handlist. Kappe og tilpasse sprosser og vinkler samt borre opp nye
hull.

Table 5.9: The five top outputs when the input is deviation 2 from Table 5.7.

5.2 Text Generation with RNN

The purpose of this section is to see if it is possible to create unique suggestions for

a measure which makes sense, given the input deviation. As described in Chapter 4,

two approaches are explored, namely word- and char-RNN.

5.2.1 Proof of Concept

First we will see that the algorithm works, using data set known as “tinyshakespeare”,

which is a document consisting of a subset of works, made by Shakespeare, before the

data set with all the deviations will be used. The example from Table 5.12 shows how

30

Chapter 5 - Results 31

RNN size Number of layers Sequence length Batch size
128 2 50 50

Table 5.10: The parameters used for training with the Shakespeare and deviation
data set using the char-RNN.

RNN size Number of layers Sequence length Batch size
256 2 50 25

Table 5.11: The parameters used for training with the Shakespeare and deviation
data set using the word-RNN.

powerful the RNN can be when used on a proper amount of data. The left column

displays the original text while the middle and right column show the text generated

using char-RNN and word-RNN respectively, after training for a while (approximately

30 minutes)4. Taking a closer look at Table 5.125, the char-rnn’s output does not make

any sense. The word-rnn’s output, on the other hand, looks real.

The parameters used for training with the Shakespeare and deviation data set are

the default values, shown in Table 5.10 and 5.11. These tests are mostly for proof of

concept, and I have therefore not performed any more empirical tests for the two said

data sets.

Table 5.12 shows how great the RNN is at learning and generating its own text, with a

reasonable amount of data. It is therefore interesting to see if it is possible to generate

equally good text using only a small set of data6.

As the example used in this thesis are deviation forms, we will see if it is possible to

create an original deviation based on the deviation forms in the data set. There are

about 2000 existing deviations, consisting of approximately 440KB of text (which is

less than half of the amount of data compared to the Shakespeare data). Table 5.13

shows two examples (one long, and one short deviation) of original- and generated

deviations using the said data set. The generated deviations in the right column of

Table 5.13, does not make much sense.

4
The training loss stopped decreasing after 25 minutes or so, meaning that the generated text would

not become any better at this point. That is, it would not be necessary to train the RNN any further.

5
Note that the input is only clear text, as well as the output. I have made the names bold for

cosmetic intentions only.

6
The Shakespeare data set is approximately 1 MB, which actually already is considered as a small

data set.

31

Chapter 5 - Results 32

Training data char-rnn output word-rnn output
DUKE OF AUMERLE:
Yea, at all points; and longs
to enter in.
Lord Marshal: The Duke
of Norfolk, sprightfully and
bold, Stays but the summons
of the appellant’s trumpet.
DUKE OF AUMERLE:
Why, then, the champions
are prepared, and stay For
nothing but his majesty’s ap-
proach.
KING RICHARD II: Mar-
shal, demand of yonder cham-
pion The cause of his arrival
here in arms: Ask him his
name and orderly proceed To
swear him in the justice of his
cause.

GLOUCESTER: Then
mercy! let their shepherd,
whose place, I access you for
her.
Son: Even uncle. I perceived
so much uneven With thyself
on my beg, and cat all guilty:
Ha, with a have; be revel I al-
low.
HENRY BOLINA: A swal-
low, nurse, I see her royal
heart! Hath wit, e Turn un-
form’d arrestory this is his
watch. And little dukedica-
tion. The wrong up, Bein
thy earthoment, no foregen
his gentleman, Desparted un-
hoolesh ones shows to rite are
drunk.

CLARENCE: The noble
masters, Clarence for the
cause of that I had thee!
To make the orator as still
as I am bigger, but let thy
dauntless mind Still ride in
fury with the ireful part of
any of our meeds, He
Shepherd: Why, let the peb-
bles on the hungry beach Fil-
lip the stars; I’ll slay the help-
less king. Lord of mine love
the Duke of York is slain!
EDWARD: O Warwick,
Warwick! that Plantagenet,
Which will you grant me with
the selfsame king? ’Tis time
the murderer will be slain,
That let the mutinous winds
Strike the Duke of York was
slain!

Table 5.12: An example which compares some of the original text (input) with
some of the generated text (output) after training char-, and word-RNN to write

Shakespeare.

Figure 5.3: A graphical representation of the char-RNN training loss on the data
set with Shakespeare and all the deviations, respectively.

32

Chapter 5 - Results 33

Figure 5.4: A graphical representation of the word-RNN training loss on the data
set with Shakespeare and all the deviations, respectively.

Training data char-rnn output word-rnn output
Juli: I Juli leide vi inn en
gammel Heggem- sj̊afør. Han
er ikke vant til å tenke p̊a at
han skal kjøre etter kjøre og
hviletid fordi han kjører tipp-
bil til vanlig. Derfor ordner
pausene seg selv grunnet faste
mat- pauser. Han har i løpet
av Juli hatt en del brudd, ikke
store men litt her og der. Han
har flere steder ikke f̊att god-
kjente 45 min, pauser. Han
kjører ikke for oss n̊a s̊a prob-
lemet er ikke s̊a stort. Men
hvis han skal kjøre hos oss ig-
jen skal han f̊a opplæring p̊a
rutinene, lovene og reglene!

Sj̊afør glemte å ta ut under
fylling, blir det seg ukjørte
me dagen og f̊att hjulponinits
stoppet av C26627 jeg trodder
p̊a obe soflirmidd. Verkste og
forsyner dette var. Ringte seg
ikke fylle hjøretiden. Da alt
varm og virke. soven p̊a vaske-
maskin. pumpekontorene til
F4 å som godkall god i -
metinga til Statoil Sunndve-
len sl̊ag, da skilles med grun-
net vi hadde den tilfaker p̊a
volamen som holdt p̊a ca kort
meg p̊a truckbra:

det var p̊a måndalen Kunden
ringte Monica og pølsedisken.
under Autotank og den
ankom Statoil Valderøy, fikk
ikke sikkerhetsmargin i denne.
Etter skift av toppakning p̊a
verksted ringte det som av-
talt s̊a jeg skulle tilpasse en
kjetting til forrige jobb :) Da
sto den inn p̊a verksted å sa
at jeg skulle levere p̊a hvil
mange timer døgnhvil. Jeg
ringte igjen og da kom det en
annen plass!

Jeg skal gjøre mitt for at jeg
selv skal bli bedre. Dette er
en fest. Eller er det test ?

Telemer for st̊ar døgnhvil må
skjøres og pent blir trukte og
vannp̊a.

Jeg har ikke vært p̊a en haug
og gi fantastisk plan og prob-
lemet er kjempe flink.

Table 5.13: An example which compares some of the original text (input) with some
of the generated text (output) after training char-, and word-RNN to write unique

deviations.

Looking at the results from Table 5.12 and 5.13 as well as Figure 5.3 and 5.4 it seems

like the char-RNN is bad at handling small amounts of data to generate unique outputs

that makes sense. From this point the tests will therefore be done using only the word-

RNN algorithm.

For the next tests we will try to use the data, as explained in Section 5.1.3, to create

an unique suggestion for a measure.

33

Chapter 5 - Results 34

RNN size Number of layers Sequence length Batch size Valid
200 2 10 10 no
200 2 3 3 no
100 2 10 10 no
70 2 3 3 no
55 2 3 3 no
55 2 1 1 no
50 2 5 5 no
50 2 4 4 no
50 2 3 3 no
50 2 2 2 no
50 1 5 5 no
50 1 4 4 no
50 1 3 3 no
50 1 2 2 no
50 1 1 1 no
30 2 3 3 no
30 2 3 3 no
25 2 4 4 no
25 2 3 3 no
20 2 1 1 no
10 2 3 3 no
10 2 2 2 no
10 2 1 1 no

Table 5.15: The parameters used for training with the Shakespeare and deviation
data set using the char-RNN.

Nr Corresponding suggestion for a measure from Table 5.9

1
Det er veldig viktig å bestille riktig rekkverk p̊a første forsøk. Det kan ta tid
å bestille p̊a nytt.

2 Sendt klage og Faktura til Vik.

3
Viktig å passe p̊a at det blir bestilt riktig type rør, ettersom det kan da ta
lang tid å f̊a bestilt nye.

4
Det er ikke meningen at ansatte skal stra↵es for s̊anne årsaker. Det vil bli tatt
opp p̊a neste styremøte.

5

Dette er noe de som registrerer må være oppmerksom p̊a. Siden dette er
et gjenntakende problem må vi kanskje se p̊a om vi må endre rutinene for
registrering av brurekkverk. Dette er mye mer spesielt og stiller helt andre
krav til tilpasning enn vanlig autovern.

Table 5.14: The input and output of Deviation 2 from Table 5.7.

In Table 5.14 is corresponding suggestions for a measure for the deviations in Table

5.9. The total amount of data, in this case is 627 bytes. That is, more than 15 000

times less data than in the Shakespeare data set. t

34

Chapter 5 - Results 35

Overfitting Underfitting
Det vil bli tatt opp p̊a neste
styremøte. Dette er noe de som reg-
istrerer må være oppmerksom p̊a.
Siden dette er et gjenntakende

bestille p̊a Sendt klage klage klage
klage klage klage klage klage klage
Vik til Vik til

Table 5.16: An example of overfitting and underfitting the 627 bytes of data.

Data used Valid
1KB no
5KB no
10KB no
20KB no
50KB yes

Table 5.17: A list over di↵erent amount of data sets used for generation, and if it
is enough to be able to generate reasonable output.

Generated output with the 50KB Shakespeare data
PROSPERO: Thou dost, and then and, For the very son
in the purpose hurried tell thou camest first, I have not
Lucentio. GREMIO: Ay, and the purpose hurried tell I
will not shift my bush; and houses Cursed thou have each
together capable

Table 5.18: The output from the word-RNN when the input is a 50KB chunk of the
Shakespeare data set.

Table 5.15 shows, in the first four columns, the parameters tested, while the fifth

column represents says if it is makes sense or not, i.e. if it gives a valid output.

Looking at the output when training using the parameters in Table 5.15 and the 627

bytes, the empirical results turns out like in Table 5.16 every time. That is, either it

is overfitted, or it gets underfitted.

Using < 1KB inn an RNN clearly is too little data. It is therefore interesting to see

how much data is needed to be able to get a valid output. For the following tests, I

will take chunks from the Shakespeare collection, to see if how little data it is able to

create similar data without copying the text. I will use empirical tests to try to find

the best parameters for the short texts.

Table 5.17 shows that the minimum7 need of data to be able to generate unique text

which makes some sort of sense. As seen in Table 5.18 the text does not make much

sense, but a lot of Shakespeare’s texts are di�cult to understand anyway, so I decided

to validate this output.

7
It might be possible to use even less data, with some other parameters by someone more experienced

with RNNs.

35

6 Discussion

The results from Chapter 5 are somewhat divided. Looking at the proof of concept of

the NB classifier it is able to find the most similar deviation, even though it has to find

the most similar deviation, by searching through 2000 classes. The proof of concept

shows that even if the probability is low, it is able to find the expected output.

There is a problem regarding the negatives in a sentence. I used an approach which

combines the not-word with the following word to be able to divide the typical example

as explained in Section 5.1.1. Using this approach is a good idea for all sentences which

does not end with the Norwegian word for “not”. Furthermore, in Section 5.1.2, the

results show that because of the not-word, the algorithm becomes more uncertain

regarding the most similar output. The algorithm does not, however, change its mind.

If there were a lot more data, the issues mentioned above gets somewhat dismissed.

The not-word technique would work better as well as it would be easier to find the

most similar deviation. If there were more data, then maybe a higher level of n-gram

models should be tested, even though Peng and Shuurmans [30] (see Chapter 4) shows

with their empirical values that there were no significant increase in accuracy using

n-gram models with n > 2.

In Section 5.1.3, about the validation of the classifier, it is evident to see that there

is too little data to find similar deviations based on random suggestions. Out of five

random deviations, created by an unbiased person, only one of them found a similar

deviation which is subject to using its corresponding suggestion for a measure. The

deviation who scored highest out of the five, however (55.8% at that), has no correlation

with the input. This is most likely due to the weak link in the bag of words model.

That is, the order of words does not matter. Because of this assumption, the MNB

compares the number of times a word appears in a sentence and checks it with all the

classes to find the most fitting. This gives MNB a tendency of choosing the classes

with most text.

Both the char-RNN and word-RNN works well with the Shakespeare data set, and are

able to generate unique Shakespeare data. At first, I was surprised at how much better

36

Chapter 6 - Discussion 37

the word-RNN was compared to the char-RNN in writing Shakespeare text. But then I

realized that because word-RNN uses words as sequences, it does not give any rubbish

as output (meaning that the phrase is not making sense). The char-RNN is much

more of a subject to making rubbish, as it needs to generate its words based on the

characters in a text. Looking at the results (in the text generation) from the training

with the Shakespeare and deviation data set, I decided to use only the word-RNN

because it gave the best results. In addition, my intuition says that using char-RNN

on data sets < 1 KB, is a bad idea. Furthermore, I tried generating a new suggestion

for a measure based on the five which corresponded to the five most similar deviation

regarding the given input. The data used were only 627 bytes, which intuitively was

too little data, and some experiments approved the validity of my intuition.

With further testing, it seems like approximately 50KB is the least amount of data

needed to use for training a text generating RNN.

37

7 Conclusion

This thesis consist of empirical testing regarding the use of, mainly, Multinomial Näıve

Bayes text classification with many classes, and text generation with only a small data

set using a Recurrent Neural Network. Looking at the results in Chapter 6, we can see

that even if the probability is low for the output in the MNB classifier, the expected

output is found, and the probability distribution is as I foresaw in my hypothesis.

RNN, more specifically, word-RNN feels almost like magic with the correct tuning of

the essential parameters. With big enough data set, it can generate its own unique

output texts, based on the input. When the data set becomes smaller, the word-RNN

struggles with the training phase, ending up with overfitting or underfitting.

This thesis shows, with empirical results, how great NB is for categorizing, even with

many classes. Moreover, it shows that combining just a few suggestions for a measure,

is insu�cient amount of data for the word-RNN to be able to create a original and

consistant suggestion for a measure.

38

Bibliography

[1] J. D. M. Rennie, “Improving multi-class text classification with naive bayes,”

September 2001.

[2] K. Lang, “Newsweeder: Learning to filter netnews,” in Proceedings of the

Twelfth International Conference on Machine Learning, 1995, pp. 331–339.

[3] M. Webster. (2017) Merriam webster dictionary. [Online]. Available:

https://www.merriam-webster.com/dictionary/classification

[4] (2015) Text classification: Step 1 of 5, data preparation. [Online]. Available:

https://gallery.cortanaintelligence.com/Experiment/

Text-Classification-Step-1-of-5-data-preparation-3

[5] F. Sebastini, “Machine learning in automated text categorization,” 2002.

[6] J. E. Oracle, Oracle Data Mining Concepts, release 1 (11.1) ed., Oracle, May

2008.

[7] J. V. Stone, Bayes’ Rule: A Tutorial Introduction to Bayesian Analysis. Sebtel

Press, 2013.

[8] D. M. Lane et al., “Introduction to statistics,” pp. 208–210.

[9] C. Stergiou and D. Siganos, “Neural networks.” [Online]. Available:

https://www.doc.ic.ac.uk/⇠nd/surprise 96/journal/vol4/cs11/report.html

[10] B. Voytek. (2013, May) Are there really as many neurons in the human brain as

stars in the milky way? [Online]. Available:

https://www.nature.com/scitable/blog/brain-metrics/are there really as many

[11] D. Shi↵man, The Nature of Code. Free Software Foundation, 2012.

[12] (2016) Perceptrons - the most basic form of a neural network. [Online].

Available: https://appliedgo.net/perceptron/

39

https://www.merriam-webster.com/dictionary/classification
https://gallery.cortanaintelligence.com/Experiment/Text-Classification-Step-1-of-5-data-preparation-3
https://gallery.cortanaintelligence.com/Experiment/Text-Classification-Step-1-of-5-data-preparation-3
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
https://www.nature.com/scitable/blog/brain-metrics/are_there_really_as_many
https://appliedgo.net/perceptron/

References 40

[13] (2010) Role of bias in neural networks. [Online]. Available:

http://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks

[14] Artificial intelligens - neural networks. [Online]. Available:

https://www.tutorialspoint.com/artificial intelligence/

artificial intelligence neural networks.htm

[15] S. R. Kishan Mehrotra, Chilukuri K. Mohan, Elements of Artificial Neural

Networks. MIT Press, 1997.

[16] N. Sarten. (2016, March) Simple artificial neural networks with fann and c++.

[Online]. Available: https://genbattle.bitbucket.io/blog/2016/03/19/

Simple-Artificial-Neural-Networks-with-FANN-and-C

[17] (2017) Merriam webster. [Online]. Available:

https://www.merriam-webster.com/dictionary/recurrent

[18] O.-C. G. Mehdi Ben Lazreg, Morten Goodwin and J. Radianti, “Addressing the

crisis responders’ needs with information abstraction from crises related tweets

using recurrent neural network,” 2017.

[19] A.Graves, “Supervised sequence labelling,” 2012.

[20] T. Joachims, “Text categorization with support vector machines: Learning with

many relevant features,” 1998.

[21] S. Xu, “Bayesian näıve bayes classifiers to text classification,” 2016.

[22] J. T. Jason D. M. Rennie, Lawrence Shih and D. R. Karger, “Tackling the poor

assumptions of naive bayes text classifiers,” 2003.

[23] X. D. X. H. Ge Song, Yunming Ye and S. Bie, “Short text classification: A

survey,” 2013.

[24] M. F. Zelikovitz, S, “Transductive learning for short-text classification problems

using latent semantic indexing,” in International Journal of Pattern Recognition

and Artificial Intelligence, vol. 19, 2005.

[25] Q. Pu and G.-W. Yang, “Short-text classification based on ica and lsa,” in

Advances in Neural Networks - ISNN 2006, 2006.

[26] J. M. I. BACH F, “Kernel independent component analysis,” in The Journal of

Machine Learning Research, vol. 3, 2003.

[27] L. H, “Text classification retrieval based on complex network and ica algorithm,”

in Journal of Multimedia, vol. 8, 2013.

40

http://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks.htm
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks.htm
https://genbattle.bitbucket.io/blog/2016/03/19/Simple-Artificial-Neural-Networks-with-FANN-and-C
https://genbattle.bitbucket.io/blog/2016/03/19/Simple-Artificial-Neural-Networks-with-FANN-and-C
https://www.merriam-webster.com/dictionary/recurrent

References 41

[28] F. G. W. L. T. K. Deerwester S., Dumais S. T. and R. Harshman, “Indexing by

latent semantics analysis,” in Journal of the American Society for Information

Science, vol. 41, 1990.

[29] L. D. Landaues T. K., Foltz P. W., “An introduction to latent semantic

analysis,” in Discourse Processes 25, 1998.

[30] F. Peng and D. Schuurmans, “Combining naive bayes and n-gram language

models for text classification,” 2003.

[31] J. M. Ilya Sutskever and G. Hinton, “Generating text with recurrent neural

networks,” 2011.

[32] J. Martens, “Deep learning via hessian-free optimization,” 2010.

[33] H. G. Rumelhart, D.E. and R. Williams, “Learning representations by

back-propagating errors,” in Nature, 1986.

[34] P. Werbos, “Backpropagation through time: What it is and how to do it,” 1990.

[35] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen. diploma

thesis,” Ph.D. dissertation, Technische Universitat Munchen, 1991.

[36] S. P. Bengio, Y. and P. Frasconi, “Learning long-term dependencies with

gradient descent is di�cult,” 1994.

[37] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” in Neural

Computation, 1997.

[38] A. Graves and J. Schmidhuber, “O✏ine handwriting recognition with

multidimensional recurrent neural networks,” 2009.

[39] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems

and saving energy in wireless communication.” in Science, 2004.

[40] A. Graves, “Generating sequences with recurrent neural networks,” 2013.

[41] A. D. H. L. S. K. T. Mikolov, I. Sutskever and J. Cernocky., “Subword language

modeling with neural networks,” 2012.

[42] R. Pascanu, T. Mikolov, and Y. Bengio, “On the di�culty of training recurrent

neural networks.” ICML (3), vol. 28, pp. 1310–1318, 2013.

[43] K. Doya, “Bifurcations of recurrent neural networks in gradient descent

learning,” IEEE Transactions on neural networks, vol. 1, pp. 75–80, 1993.

41

References 42

[44] J. Martens and I. Sutskever, “Training recurrent neural networks with

hessian-free optimizaiton,” 2011.

[45] Scikit-learn Machine learning in python. [Online]. Available:

http://scikit-learn.org/stable/index.html

[46] A. Karpathy. (2016) char-rnn. [Online]. Available:

https://github.com/karpathy/char-rnn

[47] S. Kim. (2017) word-rnn-tensorflow. [Online]. Available:

https://github.com/hunkim/word-rnn-tensorflow

42

http://scikit-learn.org/stable/index.html
https://github.com/karpathy/char-rnn
https://github.com/hunkim/word-rnn-tensorflow

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.1.1 Research Questions
	1.1.2 Hypotheses

	1.2 Contributions
	1.3 Thesis Outline

	2 Theoretical Background
	2.1 Classification
	2.1.1 Text Classification

	2.2 Naïve Bayes
	2.2.1 Multinomial Naïve Bayes

	2.3 Artificial Neural Network
	2.3.1 The Perceptron
	2.3.2 Feed-Forward ANN
	2.3.3 Recurrent Neural Network

	3 State-of-the-Art
	3.1 Text Classification
	3.2 Text Generation

	4 Implementation
	4.1 Text Classification
	4.2 Text Generation

	5 Results
	5.1 Naïve Bayes Classifier
	5.1.1 Proof of Concept
	5.1.2 Proof of Concept using Modified Inputs
	5.1.3 Validation of the Classifier

	5.2 Text Generation with RNN
	5.2.1 Proof of Concept

	6 Discussion
	7 Conclusion

