

A novel learning automata
game with local feedback for
parallel optimization of
hydropower production

JAHN THOMAS FIDJE
CHRISTIAN KRÅKEVIK HARALDSEID

SUPERVISOR
Prof. Ole-Christoffer Granmo
Assoc. Prof. Morten Goodwin, PhD
Bernt Viggo Matheussen, PhD

University of Agder, 2017
Faculty of Engineering and Science
Department of ICT

This page is left intentionally blank.

Abstract

Hydropower optimization for multi-reservoir systems is classified as a com-
binatorial optimization problem with large state-space that is particularly
difficult to solve. There exist no golden standard when solving such prob-
lems, and many proposed algorithms are domain specific.

The literature describes several different techniques where linear program-
ming approaches are extensively discussed, but tends to succumb to the curse
of dimensionality problem when the state vector dimensions increase. This
thesis introduces LA LCS, a novel learning automata algorithm that utilizes
a parallel form of local feedback. This enables each individual automaton
to receive direct feedback, resulting in faster convergence. In addition, the
algorithm is implemented using a parallel architecture on a CUDA enabled
GPU, along with exhaustive and random search.

LA LCS has been verified through several scenarios. Experiments show that
the algorithm is able to quickly adapt and find optimal production strategies
for problems of variable complexity. The algorithm is empirically verified
and shown to hold great promise for solving optimization problems, includ-
ing hydropower production strategies.

Preface

This thesis is made as a completion of the master education in communication
and information technology (ICT), at the University of Agder, Norway.

Several individuals have contributed towards the completion of this mas-
ter thesis, and the authors would like to thank in particular our dedicated
supervisors Professor Ole-Christoffer Granmo, Associate Professor Morten
Goodwin and Doctor Bernt Viggo Matheussen, who all have gone above and
beyond what is expected.

Furthermore, we would like to thank our fellow masters student, Knut Eivind
Sandsmark, for valuable ideas and discussion regarding the handling of in-
valid production-strings.

Grimstad, 21 Mai 2017.

. .
Jahn Thomas Fidje

. .
Christian Kr̊akevik Haraldseid

Contents

1 Introduction 1

1.1 Problem statement . 3
1.1.1 Research questions . 4

1.2 Contributions . 5

1.3 Report Outline . 6

1.4 Theoretical Background . 6
1.4.1 Modeling . 6
1.4.2 Cuda . 8
1.4.3 Learning Automata . 12

2 State of Art 15

3 Approach 19

3.1 Environment . 19

3.2 Assumptions . 22

3.3 Reference system . 23

3.4 Parallelization . 25

3.5 Algorithms . 26
3.5.1 Exhaustive Search . 26
3.5.2 Random Search . 29
3.5.3 Learning Automata . 33

4 Experiments 44

4.1 Experiment 1 . 47

4.2 Experiment 2 . 49

4.3 Experiment 3 . 51

4.4 Experiment 4 . 54

4.5 Experiment 5 . 57

5 Conclusion 60

5.1 Future Work . 61
5.1.1 Improved GPU parallelization 61
5.1.2 Further verification and testing 62

References 65

List of Figures

1 Diagram showing the vital parts of an impoundment plant. . . 6
2 Diagram showing the possibilities for inter-connected systems. 7
3 An illustration of a 1D thread arrangement 10
4 State illustration for a 2 action LA implementation. 14
5 Relationship between environment and algorithms. 19
6 A simple model of a basic hydropower system. 20
7 Possible connections between vertices: magazine and turbine . 21
8 Presentation of reference model 23
9 Production-string . 23
10 A flowchart illustrating the inner workings of the model. . . . 24
11 Exhaustive search flowchart 27
12 Flowchart illustrating the Random Search GPU implementation 30
13 Figure illustrating the inner workings of the improved random

search algorithm . 32
14 Learning Automata setup . 34
15 Sequential gpu-thread overview 36
16 Parallel reduction example . 38
17 Cost calculation for a given base with the old and new method 40
18 Cost calculation for a given base with method 1 41
19 Cost calculation for a given base with method 2 42
20 Scenario overview . 46
21 Experiment 1 convergence graph. 48
22 Experiment 2 convergence graph. 50
23 The two optimal production strings that exist for scenario 3 . 51
24 Experiment 3 convergence graph 52
25 The single optimal production string for experiment 4. 54
26 Experiment 4 convergence graph for 0-state initialization. . . . 55
27 Experiment 4 convergence graph for random state initialization. 55
28 Experiment 5 convergence graph for zero state initialization. . 58

Listings

1 Simple CUDA Kernel . 9

List of Tables

1 Different memory types in the GPU 11
2 Overview of reservoir properties 21
3 Overview of turbine properties 21
4 Thread ID to binary conversion example 28
5 Average computation time in seconds 39
6 Reward Function Comparison 42
7 Reservoir / Efficiency . 44
8 Binomial Probability Distribution for Experiment 1 47
9 Results from Experiment 1 . 47
10 Binomial Probability Distribution for Experiment 2 49
11 Results from Experiment 2 . 49
12 Binomial Probability Distribution for experiment 3 51
13 Results from Experiment 3 . 52
14 Binomial Probability Distribution for Experiment 4 54
15 Results from 4 . 54
16 Binomial Probability Distribution for experiment 5 57
17 Results from Experiment 5 . 57
18 GPU vs CPU scenario execution runtime in minutes. 59
19 Bytes used of shared memory for 71 and 72 timesteps in bytes. 61

Abbreviations

CAIR Center for Artificial Intelligence Research

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DP Dynamic Programming

GA Genetic Algorithm

GG Gore Game

GPU Graphics Processing Unit

IWO Invasive Weeds Optimization

LA Learning Automata

LARW Learning Automata Random Walk

LCS Local Contribution Sampling

LP Linear Programming

MPPSO Multicore Parallel PSO

MST Minimum Spanning Tree

PSO Particle Swarm Optimization

RAM Random Access Memory

SAT Satisfiability Problem

SDDP Stochastic Dual Dynamic Programming

SDP Stochastic Dynamic Programming

TSP Traveling Salesman Problem

UIA University of Agder

URS Uniform Random Search

Hydropower Optimization

1 Introduction

Hydroelectric production are in most cases scheduled with respect to the
current demand in the power network at any given time. Demand influence
prices, which again increases the potential income. This creates a hierarchy
of complex variables like available water-resources, production-capacity and
systemflow. To maximize income, water has to be strategically stored. The
stored water can then be optimally used when prices are high, maximizing
profit for the producer.

The challenge with such a task is the number of possible solutions. Should
the system produce at all times? Should it save water based on a likelihood
of higher prices in the future? Or maybe alternate production? All these
possibilities add up to thousands of different solutions that all need to be
evaluated in order to find an optimal solution.

This problem falls under the domain of optimization algorithms that try to
find the best element from a set of elements [26]. One branch from these
optimization problems is combinatorial optimization, where the objective is
to find an optimal object from a finite set of objects. A common approach
to such problems is exhaustive search algorithms. However, when the search
space gets too large, exhaustive search is not feasible.

Examples of combinatorial optimization problems may include navigation
where we want to find the fastest route, or avoid traffic or toll-roads. De-
livery of packages along a route, and other optimization problems where
the feasible solutions are discrete, or can be reduced to discrete. Well de-
fined problems withing combinatorial optimization are the traveling salesman
problem (TSP) [15] and the minimum spanning tree problem (MST) [33].

Since combinatorial optimization problems search for the best element of
some set of discrete items, any sort of search algorithm or meta heuristic can
be used to solve them.

In this thesis an approach is taken using reinforcement learning techniques,
where autonomous agents learn from experience. These agents can then learn
heuristics and strengthen meta heuristic search approaches as described by
Wauters et.al [35].

This thesis presents a hybrid solution where reinforced learning and meta-
heuristic search are combined to solve complex combinatorial optimization

1

Hydropower Optimization

problems in parallel using learning automatas and CUDA.

The goal is to maximize the returned profit of a hydropower system simula-
tion, by predicting the optimal production strategy over a given time-span.
The upper part of Mandalsvassdraget 1 is used as a reference system. The
hydropower system is owned by Agder Energi and is located in Mandal, Nor-
way. Agder Energi is a research partner with CAIR (Centre for Artificial
Intelligence Research) at the University of Agder.

1A river system consisting of several large rivers that collectively form Mandalselva. 11
power plants has been built in this system, totaling 1700GWh in yearly production.

2

Hydropower Optimization

1.1 Problem statement

Hydropower optimization is as previously mentioned a combinatorial opti-
mization problem with a potentially large search space, and thus assumed to
be limited by the same factors as other NP-complete optimization problem.

This means that it may not be possible to verify the chosen solution as the
optimal, due to the drastic increase in difficulty when the problem is scaled
up, resulting in an exponential increase in search space (Equation2).

This strengthens the assumption of the NP Complete properties, which
means that an optimal solution may not be found in polynomial time as
long as P 6= NP .

A good search algorithm should avoid local optima, produce profitable solu-
tions in a short amount of time and scale well with varying problem sizes.
[35].

The main contribution from this thesis is the exploration of using learning
automatas to solve combinatorial optimization problems, with regards to
hydropower optimization and parallel processing.

The main contribution from this thesis is the use of a novel learning au-
tomata approach to solve combinatorial optimization problems, with regards
to hydropower production.

3

Hydropower Optimization

1.1.1 Research questions

I. How well suited is GPU-programming when applied to complex combi-
natorial optimization problems with regards to hydropower production
using exhaustive search, random search and learning automata algo-
rithms?

II. Would a learning automata algorithm be able to converge and find a
global, optimal production strategy for a multi-reservoir hydropower
production system?

4

Hydropower Optimization

1.2 Contributions

This thesis introduces Local Contribution Sampling (LCS), a replacement
feedback method to the well-defined, widely used, global feedback approach
used in learning automata algorithms. [21].

The local feedback in LCS enables direct feedback to each individual au-
tomaton. LCS has also been designed in a decentralized manner, making it
capable of parallel execution. A parallel implementation of both GPU and
CPU versions are presented.

The algorithm is applied on optimization problems related to hydropower
production, and are to the best of our knowledge the first documented case
where a learning automata algorithm has been applied within the studied
field.

5

Hydropower Optimization

1.3 Report Outline

The report is structured in a manner where chapter 1 and 2 explains the
problem, domain and current state of related research. Chapter 3 explains the
proposed solution, algorithms and approach. Experiments and verification
of results with a conclusion follows in chapter 4 and 5.

1.4 Theoretical Background

1.4.1 Modeling

A hydropower installation is regarded as a complex system, with a variety
of variables spanning across several different aspects of the installation. In
general a basic system can be decomposed into the following main parts,
shown in Figure 1.

Figure 1: Diagram showing the vital parts of a impoundment2plant (biologydiscussion.com).

We can extract the following important features from Figure 1:

(1) Water is collected and stored in a designated reservoir.
(2) Water is fed trough the system passing a turbine to produce power.

2A type of powerplant where water is stored in a upstream reservoir.

6

Hydropower Optimization

To uncover further challenges with hydropower systems, we need to dive
deeper into each component. The first stop is water collection. This can
happen in several different ways, but some of the most common sources in-
clude rain, rivers, lakes and other reservoirs. The next aspect of complexity
is the option for chained systems. Reservoir A may feed its tail-water down-
stream, directly into reservoir B. There may also exist dedicated reservoirs,
called ”non-powered dams”, whose sole purpose is to collect water that can
be released on demand. No production takes place during this process.

Figure 2: Diagram showing the possibilities for inter-connected systems.

Figure 2 tries to illustrate the variety of possible connections throughout a
system. In the figure, we see reservoirs (system with reservoirs and turbine
attached) A and B feeding water into reservoir C. The combined amount
of water is then fed through C and into F, with additional water from dam
(reservoir with no production) D and E. This shows the increase in complex-
ity when systems are chained, which is often the case. Especially in larger
commercial settings.

7

Hydropower Optimization

1.4.2 Cuda

A modern GPU is designed as a high compute density, fixed-function proces-
sor. The GPU was originally created to meet the needs of computer graphic
workloads, but has in later years seen increasing general-purpose capabili-
ties such as flexible control flow and random memory access. The original
GPU design was focused around parallel architecture and has seen a steady
performance growth. [32]

In the early 2000s, attempts were made to utilize GPUs as general-purpose
devices for parallel workloads - an adaptation that was ignited by the intro-
duction of Nvidia CUDA. CUDA exposes a clean, general-purpose interface
for easy interaction with GPU hardware. The potential gains from GPU
processing triggered further development, and today CUDA and other tech-
nologies are used extensively for parallel processing, providing processing
capabilities several orders faster than the CPU for certain workloads.

8

Hydropower Optimization

Threading

Threading is a key point when working with a parallel architecture. The
threads in a conventional sequential CPU are fairly different than the ones
used in a GPU. A higher grade CPU may present threads in the 8-60 range,
while the number of threads that are ready to process large parallel workloads
on the GPU may be in the millions. In CUDA, the threads are organized
into blocks and grids. Each block contains an amount of threads optimal for
solving the problem at hand. Blocks and threads are then placed in a grid of
blocks, which can exist in multiple directions (X,Y,Z). The key point of this
ordering relates to the indexing of threads in terms of the problem, but also
serves as a way to distribute a problem over several GPU-chips. To further
elaborate on the concept of CUDA threading, a simple example is shown in
Listing 1.

1 #include <s t d i o . h>
2
3 g l o b a l void pr in t (int∗ a r r i n) {
4
5
6 // Get l o c a l and g l o b a l thread id
7 unsigned int idx = threadIdx . x ;
8 unsigned int id = idx + (blockDim . x ∗ blockIdx . x) ;
9

10 i f (a r r i n [id] % 2) {
11 p r i n t f (”%d” , a r r i n [id])
12 }
13
14 }

Listing 1: Simple CUDA Kernel

The example kernel in Listing 1 illustrates the concepts of threads and blocks.
The kernel prints a value from an array if the value is an odd number. Let’s
assume an array of size 6, containing the numbers 1-6. The array gets copied
from host (CPU) memory into device (GPU) memory. Each spawned thread
on the GPU now runs the exact same kernel code, but with their own unique
ID. In this particular example we need 6 threads to process all 6 numbers in
parallel. A typical high-end GPU3 can handle 1024 threads within a single
block, so a single block containing 6 threads, satisfies the requirements. When
the GPU starts, each thread reads from the same array in parallel, using their
unique id as index, printing the number if odd.

3Nvidia Tesla K80 used as reference http://www.nvidia.com/object/tesla-k80.html

9

Hydropower Optimization

To keep count of threads, a global thread ID is supplied through the CUDA
API. The previous example is constrained to the X-dimension. It is possible
to spawn blocks in a grid for all 3 dimensions (x,y,z), as long as it is contained
within the bounds of the max-threads limit, for the specific hardware used.
The idx variable contains the unique id for the current thread within this
block, and the id variable contains the global id for this thread on the grid.

Figure 3: An illustration of a 1D thread arrangement

10

Hydropower Optimization

Memory
Memory is another aspect in the realm of CUDA processing. The initial
copying of data between host and device is slow, and has a lot of overhead
attached. It is therefore important to plan ahead and execute kernels with
this in mind. The only way to maximize throughput is with proper mem-
ory management. The GPU itself has several different memory locations:
Global, Texture, Constant, Shared and registers. Table 1 explains the differ-
ent memory types used in this thesis.

Global Memory Slow and big, global access for all threads.
Shared Memory Fast and small, shared access for threads within block.
Registers Fastest but smallest, local thread access only.

Table 1: Different memory types in the GPU4.

4Excluded Texture Cache and Constant Memory.

11

Hydropower Optimization

1.4.3 Learning Automata

In larger, complex systems, decentralization is often seen and can even be
traced back to nature [17]. Decentralized systems forces decision makers to
take action based on a limited set of knowledge. This is due to the decen-
tralized nature and its impact on information exchange between all agents.
To deal with such problems, the ”theory of teams” was developed. This the-
ory addresses questions related to decision and rule design [31]. Later the
mathematical foundation was laid to analyze decentralized problems trough
game theory [6].

Game theory is particularly suited for political, social and economic problems
due to the lack of knowledge in the decentralized system. Each agent takes
an individual choice based on their preferences or knowledge. This makes
game theory applicable to problems where conflict of interest may be an
issue among agents.

A game can be seen as a decentralized problem consisting of different agents
(decision makers). In such an example the uncertainty is usually linked to the
unknown actions of other players. To solve such problems, learning schemes
are used to seek asymptotic performance that can coincide with rational
behavior built on the concepts of game theory [21].

To further elaborate on this concept in the context of the learning automata
algorithm (LA), a game is used as an example. The game is played repeatedly
in conjunction with a large amount of uncertainty. Each automata is blind
to other players in the game, and also knows nothing about the strategy
chosen by other players, including the response given to the players, except
itself. The automata chooses a strategy and receives a probability response
from the environment. This response is used in conjunction with a stochastic
element to determine the final outcome.

A more applicable presentation of the above scenario is presented by ML.
Tsetlin[21], mentioned in [23],[21] and [13], known as a Goore Game (GG).
The game is presented below using the formulation of B.J Oommen et al.
[23].

”Imagine a large room containing N cubicles and a raised platform. One
person (voter) sits in each cubicle and a Referee stands on the platform. The
Referee conducts a series of voting rounds as follows. On each round the
voters vote ”Yes” or ”No” (the issue is unimportant) simultaneously and in-

12

Hydropower Optimization

dependently (they do not see each other) and the Referee counts the fraction,
A, of ”Yes” votes. The Referee has a uni-modal performance criterion G(A),
which is optimized when the fraction of ”Yes” votes is exactly A*. The cur-
rent voting round ends with the Referee awarding a dollar with probability
G(A) and assessing a dollar with probability 1 -G(A) to every voter inde-
pendently. On the basis of their individual gains and losses, the voters then
decide, again independently, how to cast their votes on the next round.”

A few features of this game can be extracted and tied with game-theory.
First, the Gore Game is a practical example of a non-zero-sum game. This
means that the participants of the game’s aggregated gains and losses can be
less or more than zero. Since there is no knowledge of the other participants
the game can be classified as a distributed game. Another important feature
is that the environment function penalizing or rewarding the participants can
be arbitrary as long as it is uni-modal[23].

When the LAs adapts to the referee’s feedback, or from the responses from
the environment, they will asymptotically optimize their responses towards
the optimal solution.

In the GG presented above, each player represents a learning automata, while
the referee is the environment. In other words, a group of automata inter-
acting with an environment. The GG can be used as a case-study of LA
performance. Learning is accomplished by interacting with the environment.
The LA processes and replies based on this interaction, while gradually con-
verging towards an optimal solution. It is shown that a group of automatons,
when given enough memory, is able to asymptotically optimize their collec-
tive responses [21].

It is assumed LA An has an even number of states Sn. The initial number of
states is given as a single value s, which is multiplied by the size of the action
set A0

n, A
1
n. When the environment responds to an action An

n, the state moves
towards the extreme of either end. States Ss−(s−1) to Ss yields action A0

n,
while Ss+1 to Ss+s yields action A1

n. A0
n is defined as a negative action, while

A1
n is a positive action. A response r is returned from the environment. Here r

represents the probability of reward. A reward-probability gives an indication
of how the environment wants the states to change. A low-probability r would
give a high chance for punish with an associated state-change towards the
center of the state-space. I.e if the current selected action is in the range
Ss−(s−1) to Ss, a punish would move the state towards Ss+1.

13

Hydropower Optimization

Figure 4: State illustration for a 2 action LA implementation.

On the environment side a uni-modal function is responsible for determining
the output for an input set of actions. In the GG description the referee or
environment handles the counting of votes from the participants. The GG
utilizes a global feedback scheme where the response to each automaton from
the environment is a direct result of the joint inputs. This means that each
automaton has an impact on the feedback given to each of the participants.

The environment returns a probability for success/reward. This probability
is then returned to each automaton and a stochastic process decides the final
environment action.

14

Hydropower Optimization

2 State of Art

Hydropower optimization techniques are a broad field, and several different
approaches exists. A broad range of classical optimization algorithms, like
linear programming, are extensively discussed in the literature [1, 3, 2, 8].
One common form of solving problems related to hydropower production is
the use of dynamic programming (DP). Within this field several optimization
algorithms exists. One form of DP Stochastic Dynamic Programming (SDP)
was introduced early by R.Belleman [5] in 1957, and has been extensively
researched in the field of hydropower optimization [28, 29].

SDP is shown to perform well on single-reservoir systems but the added
complexity of multi-reservoir systems tends to limit the success of solutions
affected by the curse of dimensionality [5].

For a multi-reservoir system the number of solutions increase exponentially,
and is directly tied to the number of timesteps, reservoirs and production
choices available. Since the reservoirs are interconnected, production in one
reservoir may affect the possibility of production in another. This creates
complex relationships.[29]

In dynamic programming, the size of the state-space greatly increase the
computational requirements when the dimensions of the state vector increase.
This is especially true for multi-reservoir systems. Each reservoir adds a
separate dimension to the problem, where different water levels makes up
the states. The state-space is the product of the allowable water states for
all dimensions.

With added dimensions, efficient search policies, like exhaustive search (for
low state problems), is not feasible and approximation or aggregation of
states into a single dimension is necessary to avoid falling into the curse of
dimensionality. This greatly affects the accuracy of the algorithm and fails
to properly account for the complex relationships between reservoirs.

Limited by the curse of dimensionality, additional algorithms were devel-
oped. Stochastic Dual Dynamic Programming (SDDP) was introduced in
1987 as a solution to the curse of dimensionality problem for hydropower
optimization, making use of Bender’s decomposition [7, 14, 27]. With SDDP
the need to discretize the search space disappears. However, results show
that SDDP struggles to handle extreme variations in inflow due to the limits
in inflow model complexity [14]. It is argued that ”SDDP need for inflow-

15

Hydropower Optimization

modeling yields a statistical difference compared to simulations executed with
historical-records (A.Helseth et. al [14]). SDDP relies on aggregated reser-
voirs, and can solve a given problem in reasonable time.

Martinez et. al showed that SDDP caused lower average power-generation
and higher operation cost compared to SDP. This is explained by the dis-
cretization of the state space by not calculating every part of the problem,
accounting for all relationships in every step [20].

Lately, Genetic Algorithms (GA) has found its place in hydropower optimiza-
tion. GA mimics the behaviour of genes in a gene-pool, where each individual
in the population has its own set of genes. The individuals are rated using a
fitness function, and based on their fitness a subset of individuals are chosen
to have their genes put through a crossover function. New individuals are
created and given a set of genes returned from the crossover function. Mu-
tations may also occur in the new individuals’ genes. GAs are suitable for
parallel search within a search space, due to working with a population of
possible solutions[16].

MV. Devisree et. al applied GA alongside a Linear Programming model (LP)
and showed an increase in power generation with the GA approach compared
with the LP model[9].

Other non-linear approaches, like Particle Swarm Optimization (PSO), have
produced interesting results and is characterized as a good optimization ap-
proach for global optimum problems [18, 4, 25]. S. Liao et.al [19] reviews
these approaches and points out the difficulties related to PSO. A concern is
the stochastic nature of the problem, making initial parameters a source of
trapping the PSO in a local optimum. The PSO algorithm also suffers from
poor fine-tuning capabilities.

Recently M. Azizipour et. al (2016) presented the Invasive Weed Optimiza-
tion Algorithm (IWO) [3]. IWO is a stochastic optimization algorithm in-
spired from weed colonization. Weed colonization is initialized by invading
a cropping system by means of dispersal. The weeds are located in unused
space between the crops and take remaining resources so that they can grow
to flowering weeds and produce seeds. Weeds better adapted to the environ-
ment has increased probability of producing more seeds, which consequently
leads to more new weeds in the system. This process is repeated until the
maximum number of weeds is reached.

IWO mimics this process by defining an initial population of seeds that gets

16

Hydropower Optimization

Algorithm 1 High-level pseudo code for IWO

1: Generate random population of N0 solutions
2: for i← 0,maximum number of generations do
3: Calculate maximum and minimum fitness in the colony
4: for all w ∈ W do
5: Calculate number of seeds from w according to its fitness
6: Randomly distribute seeds over the search space with normal dis-

tribution around w
7: Add generated seeds to the solution set, W
8: end for
9: if W > Wmax then

10: Sort the population W in ascending order of their fitness
11: Truncate population of weeds with worse fitness until W = Wmax

12: end if
13: end for

spread randomly over the field, where seeds and field represent randomly
generated initial solutions and N -dimensional problem space, respectively.
A predefined function is used to calculate the fitness of each seed in the
colony. The seed then calculates the number of new seeds that it is allowed
to produce based on its own fitness, and the max fitness in the colony. The
results presented by M. Azizipur et.al shows that IWO is more efficient and
effective than both PSO and GA for single and multi-reservoir systems [3].

S. Liao et.al [19] released a paper in 2017 that proposed an extension to the
PSO algorithm to compensate for some of the drawbacks described when
working with large search spaces (as described above). The paper discov-
ered that an increase in sub-populations (population quantity) with equiv-
alent population sizes help PSO converge towards global optimum. An in-
crease also improves reliability through randomness in the population. The
downside of increasing population sizes is increased computational penalty in
terms of processing time. A parallel implementation of the algorithm, called
Multi-core Parallel PSO (MPPSO) is therefore presented which leverages the
multi-threaded capabilities of modern computers.

In later years, multi-core processing has been widely used for parallelized
processing in computer science. The increase in cores available, as well as
the growing maturity of GPU related frameworks like Nvidia CUDA, enables
a severe increase in compute capabilities as long as the algorithm applied can
be rebuilt for efficient parallel execution.

17

Hydropower Optimization

Several advances has been made when harnessing the power of parallel-
processing. One recent example is the extension of PolyAco to PolyAco+,
where T. Tufteland et.al parallelized the single-threaded PolyAco algorithm
and optimized it to run on a CUDA enabled GPU, showing a performance
increase with a factor of 80, and improved accuracy [34]. Other advances
have also been made in recent years, including parallel implementations of
IWO [11] and GA [30].

A untested [to the best of our knowledge] algorithm in the field of hydropower
optimization is the learning automata, a reinforced learning capable algo-
rithm that falls under the group of policy iterators (direct manipulation of
the policy π), and can be classified under the same roof as other policy iter-
ators, like evolutionary algorithms (hereby GA, PSO and IWO) as described
earlier. A learning automata can learn the optimal actions when acting
against a stochastic environment. As with IWO, learning automatas have
a low computational cost, combined with rapid and accurate convergence
and has been proposed as a solution to combinatorial optimization prob-
lems. Several papers discussing the use of this algorithm exists. In [24, 10]
learning automatas are used to solve the classical equipartitioning problem,
with several orders of magnitude faster convergence than any other known
solution at the time. In [22] B. J Oommen et.al presents a solution to the
uniform graph partitioning problem that outperforms other algorithms, such
as local search and genetic algorithm implementations.

In addition to the above findings, a report by O. C Granmo et. al presents
a learning automata solution to the Satisfiability Problem (SAT)[12], where
learning automatas are incorporated with the Random Walk algorithm (LARW).
Here each variable in the SAT equation is replaced by a learning automaton.
The automaton chooses an action, true or false, and the whole equation is
evaluated based on the changes introduced by this single LA. This sequential
form of local feedback proved to be efficient in solving the SAT problem and
serves as a basis to the LCS scheme presented in this thesis.

Previous results have shown that learning automatas are capable of solv-
ing complex combinatorial optimization problems when interacting with un-
known stochastic environments, and as such could be a potential approach
for solving complex issues related to hydropower.

18

Hydropower Optimization

3 Approach

A model is implemented to emulate an environment. This environment is
used in the verification and testing of all algorithms. The algorithms input
a solution i, and is returned a profit p as shown in Figure 5.

Figure 5: Relationship between environment and algorithms.

3.1 Environment

The model is made to emulate a realistic environment for use when developing
and verifying algorithms. The model is based on a simple graph structure,
where each vertex is an element from a hydropower system. The vertices are
connected using edges, which simulate water flow in the system. A simple
system is described in Figure 6, which shows the simplest model of a single-
reservoir system. Here the reservoir refers to a magazine collecting water,
and an attached turbine that produces energy from the water. The reservoir
is filled by inflow. The inflow can be from a defined inflow-array (rain, rivers
etc..) or be inflow from an upstream reservoir. This means that a vertex
can have multiple edges as shown in Figure 7. The turbine vertex acts a the
power-generating component that receives water through the penstock5 edge,

5Penstock: waterway that leads water from the reservoir to the turbine.

19

Hydropower Optimization

and generate power when given an amount of water units. The water then
flows downstream as tail-water6.

MAGAZINE

INFLOW

POWERWATER

OVERFLOW / PASSTROUGH

TURBINE

Figure 6: A simple model of a basic hydropower system.

The overflow / pass trough vertex defines the possibility of excess water being
released downstream, circumventing the turbine. This may be done when
the optimal production strategy requires such a move to maximize profit, or
when the reservoir is full. Some systems may also require a constant release
of water to keep in line with local environment policies. It is important to
note that even though Figure 6 show the same edge for overflow and tail
water, separate edges and vertices are a valid configuration. For instance a
reservoir may have an edge for overflow that is separate from the tail water
edge.

6Tailwater: water downstream from the turbine is called tail-water.

20

Hydropower Optimization

Figure 7: Possible connections between vertices: magazine and turbine

The reservoir vertex is represented programmatically using a composite data
type in the programming language C, called a struct. The model is written
in CUDA-compatible C for easy porting to GPU when necessary. The vertex
has the following important properties.

water capacity The maximum allowable water-level before overflow.
water level The initial water-level at simulation start.
water unit Definition of one power-producing water-unit7.
next mag Next reservoir for overflow / water downstream.
turbine The turbine attached to the reservoir.

Table 2: Overview of reservoir properties

Next is the turbine vertex. This vertex is responsible for generating power
from released water units. A released water unit yields a predefined amount
of power.

reservoir The designated reservoir receiving tail-water from up-
stream reservoir.

power Modifier determining output efficiency gained from each
water-unit.

Table 3: Overview of turbine properties

21

Hydropower Optimization

3.2 Assumptions

In terms of physics the model is greatly simplified compared to a real world
system. This simplification is done for several reasons. The first reason is the
limited time available for the project. A trade-off was necessary in order to
accomplish the goals set for algorithm development. Another point of view
is the complexity added to more advanced models. Verification of the model
has been an ongoing task, made even harder when executed on a GPU. This
makes a valid argument for keeping it simple. The aim is to provide results
that may serve as a proof of concept for further development. There is no
need for a complex model if the general algorithm is incapable of optimizing
simpler systems.

The model consists of the most important elements in a hydropower plant;
water, waterways and turbines. This excludes a magnitude of variables and
functions. Most notable is the lack of physics in the production part of the
plant. Since there is no virtual implementation of penstocks or intakes there
is not enough data present in the model to calculate the water pressure.
Without water pressure the calculation of the turbine speed / operating
frequency is left out. This means that the effect from the turbine is constant,
and X amount of water will yield Y amount of power in every scenario with
no ties to reservoir levels. Another simplification is the movement of water,
in the described model water moves each timestep. This means that water
used in timestep t0 is ready for usage in the next reservoir in timestep t1.

In this preliminary research, input (inflow,prices) are treated as deterministic,
i.e no uncertainty is assumed. For a real-world implementation, this would
not be the case, as both the inflow and prices are of a stochastic nature. It
is assumed that an algorithm that handles deterministic input can deal with
stochastic input by running several simulations based on the uncertainty of
the input.

22

Hydropower Optimization

3.3 Reference system

To test the proposed solutions, a reference system was built. This system is
supposed to emulate the upper-part of the previously described Mandalsvass-
draget. The system is Y-shaped, and consists of 3 reservoirs A,B,C. Figure
8 illustrates the system as a graph.

A

INFLOW

TAILWATERA

B

C TAILWATERB

INFLOW

INFLOW

Figure 8: Presentation of reference model

The model serves as a heuristic function for a given solution. The input is a
production string that instructs the model how to run the simulation over T
timesteps. Figure 9 shows a production string. The presented string contains
3 reservoirs, divided by the stipulated lines, each number within these lines
contains the production action for each reservoir for each timestep. As an
example, the left most reservoir should not produce in t1, produce in t2 and
not produce in t3.

Figure 9: Production-string

The returned value from a production string simulation is the total profit,
used when measuring success. The model is timestep based, which means

23

Hydropower Optimization

that the calculations done are valid for a given timestep range. In the exper-
iments, 1 timestep is defined as a whole day, 24 hours. The simulation will
start at t0 and process all graphs in a downstream fashion, starting at the
top.

The model can take 2 different values as a production action. These are
0 and 1. 0 denotes a strategy where the graph should not produce, while
1 denotes a production strategy where power is being produced, generating
profit.

Profit Generation
The profit is a direct result of the inputted production string, and is calcu-
lated with the help of the price in the current timestep, water available in the
reservoir and the current production string. In addition, each reservoir has
a modifier variable that makes it possible to tweak input/output efficiency.

Figure 10: A flowchart illustrating the inner workings of the model.

24

Hydropower Optimization

3.4 Parallelization

The model has a sequential design and can therefore be run on singe threads.
This means that each thread is responsible for running their own simulation,
and enables the execution of several thousand simulations in parallel.

Global inflow and price arrays gets copied from host-to-device, along with
initial parameters such as water level, turbine efficiency constants and reser-
voir water capacity variables. This set of input is shared among all threads
running this simulation. The next step is to create the base production string
that will be run through the model for simulation. The end result (profit) is
returned to identify the simulation(s) that made the best profit.

Each block of threads shares the same scenario (input parameters), but the
architecture supports running different scenarios on multiple blocks as long
as there is enough memory available on the GPU.

The result of the model is a highly customizable system enabling simulation
of different hydropower scenarios.

One concern is the linearity of the model. The loss of important properties
may make the model unable to simulate the dynamics in a real world system,
because of the less accurate detailed description. This may be due to the
simplification of the hydraulic model as described in section 3.2.

The model itself is sequential and not distributed across several threads. The
run-cost of a single simulation is low, which serves as the main reason for
this implementation. A sequential design is also easier to verify and can be
executed on the CPU for testing and debugging. The low-processing costs
also make it possible to utilize parallel threads running the same scenario
searching for an optimal solution.

The model is verified in terms of conservation of mass after each alteration.
A test set is used for simulation to verify that the integrity of all values is
intact.

25

Hydropower Optimization

3.5 Algorithms

The defined environment model is used in the implementation of the pre-
sented algorithms; exhaustive search, random search and learning automata.

3.5.1 Exhaustive Search

As a preliminary task, exhaustive search was implemented to create a baseline
for further algorithms. As mentioned in the introduction, exhaustive search
is not viable for an NP Complete problem because the search space and
computational cost will increase exponentially in both size and difficulty as
the problem is scaled (see Equation 2).

The exhaustive search implementation was designed for parallel execution on
a GPU. This enabled the algorithm to find optimal solutions in larger search
spaces due to increased computing capabilities across many parallel threads.
This was seen as very beneficial as the results could be used to verify the
validity of other algorithms. Manually calculating the optimal solution gets
harder for each added additional timestep. The increase in possible solutions
of the reference system is given by Equation 1, and further elaborated in
Equation 2.

AR·T (1)

Here,P denotes the number of different production actions that is possible
(produce / not produce), R denotes the number of reservoirs and T denotes
the number of timesteps. A few example calculations reveal the exponential
nature of the problem.

23·5 = 3, 27 · 104

23·10 = 1, 07 · 109

23·20 = 1, 15 · 1018

(2)

This greatly limits the total number of timesteps an exhaustive search algo-
rithm is able to solve for.

26

Hydropower Optimization

Implementation
The implementation of exhaustive search is done by calculating the total
size of the search space, and then queue an equal number of threads on the
GPU to simulate one unique production string each. All necessary variables
gets copied into GPU memory, and when the threads have finished their
simulation and stored the results in GPU global memory, the data gets copied
from the GPU to CPU memory (RAM). If needed, the algorithm is split into
separate batches in cases where there is not enough memory available on the
GPU. Flowchart 11 shows this process in more detail.

Figure 11: Exhaustive search flowchart

A method was needed to generate all the unique production-strings, and it
had to be computationally viable. This was solved by exploiting the fact that
when programming on a GPU, each thread has its own unique ID. A function
was written to convert each thread’s unique ID into its binary representation.
As long as the number of spawned threads equals the size of the search space,
this method ensures that each thread gets its own unique production-string,
and that all possible production-strings are created.

A scenario with 1 timestep and 3 reservoirs can be used as an example. Here,
the size of the search space is 23∗1 = 8, and can be translated to 8 unique
production strings. A binary conversion table for this scenario is presented
in Table 4. As can be seen, zero padding is necessary to ensure that the

27

Hydropower Optimization

production string have the correct length.

Thread ID Binary Padded

0 0 000
1 1 001
2 10 010
3 11 011
4 100 100
5 101 101
6 110 110
7 111 111

Table 4: Thread ID to binary conversion example

28

Hydropower Optimization

3.5.2 Random Search

The next step involved creating a simplified version of random search, and
have it run in parallel on the GPU. The basic principle of a random search
algorithm involves minimizing the distance to an optimal solution be taking
small, iterative steps within a defined hypersphere of possible solutions. The
hypersphere can be defined in several different ways, but is usually deter-
mined by some sort of stochastic process.

The variant of random search implemented in this thesis is called Uniform
Random Search (URS). URS is, as the name entitles, a variant of random
search that uses an all random approach. This means that there are no
defined hyperspheres, except the bounds defined by the number of timesteps
in the simulation. The random element is the unique production string.
The reward / solution element is the returned profit from the simulation.
After each iteration, the production-strings yielding the highest profit are
compared to a global high, and saved if equal to or greater than this value.
The algorithm is finished after the preset number of iterations have been run.

In the first iteration of this algorithm, a similar technique to the one used by
exhaustive search was created. To generate the random production strings,
the GPU was first instructed to generate a given number of random floating
point numbers in the range [0, 1]. The numbers were stored in global GPU
memory. The main part of the algorithm were then launched with an equal
amount of threads as was used to generate the previous numbers. Each thread
will then get its designated random number, multiply it with the total size of
the search space and then type cast the result into an integer. The threads
will then take this new integer value and convert it to a binary representation
before running it through a simulation. A flowchart demonstrating these
steps are shown in Figure 12.

29

Hydropower Optimization

Figure 12: Flowchart illustrating the Random Search GPU implementation

This approach was both fast and efficient, but as the search space grew larger,
the floating point numbers started to lose precision8 when the threads did
their multiplication. This lead to precision errors that in some cases kept the
algorithm from finding an optimal solution.

8http://docs.nvidia.com/cuda/floating-point/#axzz4gxODUGkr

30

Hydropower Optimization

To counter this issue, the algorithm was rebuilt and the integer to binary
method was abandoned. A new design approach was taken, being careful to
avoid potential precision loss. It works by doing the following steps:

1. Generate n uniform random numbers in the interval [0, 1], storing them
in global GPU memory. The amount of random numbers generated are
decided by doing the the following calculation: parallelsimulations ×
timesteps× reservoirs.

2. Allocate empty space in global GPU memory to hold the number of
random production string, equal to the amount of parallelsimulations.
Launch the GPU with as many threads as there were generated random
numbers. Each thread will then apply its designated random number
to equation 3, storing the output in its designated memory location in
the production string array.

3. The GPU is now launched a third time, but now with as many threads
as there are productions strings available in the global GPU memory
from the previous step. Each thread copies their designated production
string, runs it through a simulation and stores the result back into
global memory.

An illustrative explanation is done with the help of Figure 13. The figure is
separated into 3 different blocks (stipulated lines), and each block represents
one of the steps in the algorithm. In the provided example, we are operating
with a simulation count of 3, combined with 3 timesteps and 3 reservoirs.

f(nx) =

{
0 nx < 0.5

1 nx ≥ 0.5
(3)

31

Hydropower Optimization

Figure 13: Figure illustrating the inner workings of the improved random search algorithm

As will be shown in the experiments section, if the exact number of possible
solutions are known, it is possible to calculate the probability for Random
Search to find an optimal solution after a given number of attempts. These
calculations can be done using the following equations:

P (x) =
n!

(n− x)!x!
· px · qn−x (4)

P (x ≥ 1) = 1− P (x = 0) (5)

In Equation 4, n denotes the number of trials and x denotes the total number
of successes. p and q denotes the probabilities for success and failure, respec-
tively. Since our interest lies in the probability to find any one arbitrary
optimal solution, Equation 5 can be simplified to Equation 6.

P = 1− qn (6)

32

Hydropower Optimization

3.5.3 Learning Automata

The main algorithm presented in this thesis is the learning automata imple-
mentation. The algorithm is based on a finite-state automata and makes use
of parallel computation techniques.

The implementation is based on a state-of-the-art technique using a new
proposed form of parallel local feedback. As described in section 1, a learning
automata consists of two different parts; the automata and the environment.
The environment returns output based on the input from a single or group
of automatons. The output is called feedback and is a reward probability for
the automaton based on the effect their actions has on the environment.

A commonly used form of feedback is the global feedback scheme. Here
all automatons are working together in a goore-game situation where they
share the results as an input to the environment (a unified solution), the
automatons are then given the same probability reward from the environment
and a random process occurs to decide the final outcome.

In this type of feedback, no direct relationship between each automaton and
their decisions are obvious. This lays the ground for the introduction of
local contribution sampling, or LCS, a novel contribution for a local feedback
approach. LCS looks at all the actions given from the automatas collectively,
as well as looking at each action individually. By separately assessing each
automatons contribution to the whole, LCS is able to converge more quickly
to a global optimum.

The main concept behind LCS is optimization by exploiting the potential
profit in small, individual changes, from the current best strategy. This
is done through systematic testing of alternative strategies where each au-
tomaton changes its current action to test if this individual change moves the
unified solution towards a more optimal strategy. This gives better ground
for individual reward and allows the algorithm to create individual reward
probabilities based on each automatons contribution.

A detailed process overview of LCS is presented in Figure 14. Opposed to the
two-step generic global-feedback automata described earlier, LCS has 3 main
steps. As with the other versions, a automata implementation is joined with
an environment function, but an extra step called action change is added.
Here each automaton reports its current chosen action, which is used to build
a base-strategy. This is represented in Figure 14 as base. Each automaton

33

Hydropower Optimization

then do a action change from the base position corresponding to its own. I.e
An flips Bn, where A is an automaton, and B is the base-strategy. Each of
these alternative production strategies, B,A1, A2...An, is then simulated and
the profit is returned to the uni-modal environment function 7.

f(x) = 1− (x−min) · 0.6
max−min

+ 0.2 (7)

This algorithm act as the environment in the system and enables the local
feedback scheme by calculating the reward probability with consideration of
the global max and min profits from all A. x is the profit from the current
automaton XAn . The calculation is done for all XAn and a calculated proba-
bility R is returned to each automaton where a stochastic process determines
if a state-change occurs, based on the returned probability.

Figure 14: Learning Automata setup

34

Hydropower Optimization

This process is then iterated for a set number of times, and the highest profit
is kept as the current optimal solution.

Another aspect of the LCS method is the decentralization properties. In
the action change function each automaton needs to run its corresponding
simulation, which can be done in parallel. When all sub-production strings
A1..An are calculated, a min-max function is executed to get all the necessary
parameters for Equation 7. On the GPU the min-max function is calculated
in parallel, while on the CPU it is happening in a sequential manner.

35

Hydropower Optimization

GPU
The first implementation of the algorithm was made for GPU with the help
of CUDA. To make the algorithm run on several threads the grid, block and
thread layout was exploited. A block in a grid was reserved for an instance
of the algorithm, where a set of threads within this block represented the
individual automata in the simulation (one for each element in the production
string).

Figure 15 represents the sequential processing in each thread based on the
overall idea presented in Figure 14 and the section above.

Figure 15: Sequential gpu-thread overview

36

Hydropower Optimization

When keeping each automaton in separate threads, shared memory is used
for communication between them. Since the implementation is using the
LCS feedback-scheme, parallel execution is possible. The min-max function
is parallelized having several of the threads work together, based on a tech-
nique called parallel reduction (see Figure 16)9. A custom approach where
made to fit the needs of our algorithm. The method utilizes all threads to
find the biggest and lowest values in parallel. This is done by two-on-two
cascading comparison of numbers until both numbers are found. A graphical
representation of this approach is shown in Figure 16. Here we represent the
profit for all automatons in an arbitrary iteration as an array with the length
of threads within the block (or the number of automatons).

In Figure 16, eight automatons are running on eight separate threads. The
numbers represent the profit from each automaton in the current iteration.
The goal is to sort the array so the highest value is at the left-most position,
while the lowest value is at the middle. This divides the array in the middle
into a high- and low end. In the first step, half of the threads compares
their element to the associated position in the other end. After this step,
it is guaranteed that the highest value resides somewhere on the left half,
while the lowest value resides somewhere in the right. The next step compare
numbers within the same sides, and the last moves the high-low combinations
to position zero in each half. This method greatly reduces the computational
cost, and keeps iteration count low, as shown by Equation 8 and 9. Here
N ∈ {2x | x > 1}, denotes the length of the array. Equation 8 calculates the
number of steps needed to find the min-max in a sequential manner, while
Equation 9 shows the number of steps for parallel computation. As seen the
parallel approach is much more efficient.

2N − 1 (8)

log2N (9)

When parallelizing the min-max function the only sequential part in the en-
tire algorithm is the simulation of the base production-string (the production-
string created by querying all the automatas in the beginning of each iter-
ation). This calculation is done by thread zero, before this thread start
calculating its assigned sub-string.

9http://developer.download.nvidia.com/compute/cuda/1.1-
Beta/x86 website/projects/reduction/doc/reduction.pdf

37

Hydropower Optimization

Figure 16: Parallel reduction example

38

Hydropower Optimization

By keeping each instance of the algorithm within a single block, several differ-
ent instances can be executed in parallel. This may be beneficial when testing
different hyper-parameters, or when working with uncertainty in stochastic
input.

The results of the GPU implementation is a highly-scalable (block-wise) al-
gorithm that handles a high count of parallel algorithm instances.

CPU
For performance testing, a multi-threaded CPU implementation where made.
This implementation is fundamentally the same as the GPU implementation,
without the added benefit of massive parallel execution possibilities due to
core and thread limitations. Here, the parallelization is performed while sim-
ulating all the production strings (the action change stage of the algorithm).
Everything else is done in a sequential manner. This resulted in the exe-
cution times shown in Table 5 The results confirms that to really benefit
from a GPU implementation the algorithm needs to keep as many threads
as possible occupied on the GPU at all times. To accomplish this, several in-
stances needs to be executed. This means that the GPU implementation is a
great addition when exploring hyper-parameters, or working with stochastic
input, but the CPU-implementation is still faster for smaller scenarios with
a moderate amount of timesteps.

Timesteps Processor Number of iterations

1000 5000 10000

10 GPU 0.26 ±0.0860 1.17 ±0.0736 2.10 ±0.0588
CPU 0.09 ±0.0561 0.22 ±0.0812 0.38 ±0.0951

50 GPU 2.77 ±0.0825 13.36 ±0.0941 26.44 ±0.0973
CPU 0.17 ±0.0787 0.49 ±0.0980 0.90 ±0.0759

Table 5: Average computation time in seconds

39

Hydropower Optimization

Minimizing impact of invalid production-strings.
In later stages a fundamental change was made to account for non-valid pro-
duction strings. The model handles all action changed production-strings
(A1...An in Figure 14) based on available resources in the system at all times
during the simulation. Since the environment is unknown to the automata
a production-string may instruct the model to produce in cases where there
is not enough resources available. In earlier versions, this was handled by
returning a profit of 0 for this individual production-string An. The idea be-
hind this were that the automaton should have a low probability of changing
to the state causing the invalid production-string.

In the improved implementation this is handled by returning a partial profit
for invalid production-strings. Here an invalid action results in a penalty to
the overall profit but is not returned as 0. Instead, the returned profit is the
sum of all valid actions in that production-string.

To further elaborate upon the implications of this change, an example is
presented. As shown in Figure 17 an arbitrary base is presented, with cor-
responding production-strings A1..An. In addition to this method 1 and
method 2 columns represent the profit calculation for each An. Method 1
refers to the old approach, returning 0 for invalid production-strings. Method
2 refers to the new approach where the returned profit is the sum of all valid
actions. The marked element in A2 represents the non-valid production-
string. As seen, the production string is actually the second best, even tough
it contains an invalid action.

Figure 17: Cost calculation for a given base with the old and new method10

10In this example the profit gained from base is not included.

40

Hydropower Optimization

To help visualize this, Figure 18 presents the calculated reward probabil-
ity from the environment (Equation 7) for all An sorted by probability. As
shown this approach results in an uneven distribution of probabilities where
A1, A3, A4 gets a fairly low probability of reward, while A2 gets a high prob-
ability. Note that reward in this context refers to not changing the co-
herent action in the base production-string. This should occur when the
modified action-change alternation An returns a higher profit than the base
production-string. Since a profit of 0 is treated as an extreme the algorithm
rewards with an uneven scaling, forcing all probability rewards towards one
of the ends (0.2 / 0.8). This keeps the algorithm from converging towards
the optimum solution because automatons with low profit production-strings
may change their action due to the low reward probability given to them.
A1 is in our example the worst performing production-string with a returned
profit of 5550, but with the 0-profit strategy it is rewarded with a fairly low
reward probability increasing the chance that this automaton will alter its
state, even though this should normally not occur. A better scenario would
be a more even distribution (ref Figure 18).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
 p

ro
ba

bi
lit

y

A1A3

A2

A4

Figure 18: Cost calculation for a given base with method 1

To counter this behavior method 2 was applied to the algorithm. As seen in
Figure 17 a partial profit of 6000 is returned for production-string A2, this
shows that the strategy chosen here is fairly profitable, and is the second
best after A4. The correct action here would be to yield a low probability
of reward for A2 since this is a favorable strategy. Figure 19 demonstrates

41

Hydropower Optimization

how this method looks for all An. As seen the distribution of probabilities
are evenly distributed, motivating convergence towards an optimal strategy.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
 p

ro
ba

bi
lit

y

A1

A3

A2

A4

Figure 19: Cost calculation for a given base with method 2

To verify the superiority of method 2 a practical test were created. In this
test an experiment is executed using method 1 and method 2. The test
environment is a 3 reservoir scenario with 10 timesteps, yielding a total of 30
automatons with a fixed low/high price input and a static low inflow. This
scenario is designed in a way that the algorithm needs to conserve the water
until the price shifts from low to high to an the optimal solution (highest
profit). Further elaboration and verification of this test is shown in section
4. The experiment compares the number of iterations needed to find the
optimal solution and is presented in Table 6. As shown, method 2 clearly
outperforms method 1, with an iteration reduction factor of ∼ 495.

Reward function Iterations

Method 1 29596.73 ±853.54
Method 2 60.82 ±0.85

Table 6: Reward Function Comparison

Since an optimal solution created with method 2 may contain illegal moves,
the solution is simulated a final time after the last iteration to change invalid

42

Hydropower Optimization

actions to the ”not-produce” position, denoted with 0. This ensures that all
outputted final production-strings are valid. Given the benefits of method 2,
it is used in all experiments presented in chapter 4.

Even though exhaustive search and random search are rather naive, they
serve a purpose in terms of testing and verifying as section 4 shows. Since
the problem is assumed to be NP-Complete an optimized answer is hard to
calculate, and as timesteps and complexity increase the possibility to make
realistic and verifiable tests disappears. Exhaustive search techniques like
the ones presented in this section helps search for optimal (exhaustive search)
and sub-optimal (random search) answers to help debug and verify the LA
algorithm. As shown later the naive approaches were able to solve several
complex experiments which helped the overall research.

43

Hydropower Optimization

4 Experiments

To verify the validity of the algorithms 5 experiments is created. The exper-
iments are designed to validate the behavior of the algorithms in a range of
different hyper-parameters and inputs. For all experiments, the efficiency of
the reservoirs / turbines are static, and are documented in Table 7.

Reservoir Input Output

A 25m3/s 45 MWh
B 16m3/s 100 MWh
C 25m3/s 40 MWh

Table 7: Reservoir / Efficiency

The important part of Table 7 is the relationship between the numbers.
Reservoir B is the most efficient power-producer, with the highest power
output for the least amount of water. The calculations within the algorithm
are done in terms of cubic metre, denoting inflow as (m3)/s, reservoir capac-
ity as m3 · 106, and power output as MWh. Profit is calculated using the

following formula: Profit =
T∑
t=0

2∑
r=0

Outputr · Pricet · 24, where T equals

the total number of timesteps, Outputr corresponds to the power outputs in
Table 7 and Pricet is the available price at timestep t. In layman terms, this
means that the returned profit from a production string equals the sum of
the power output of all producing reservoirs r, multiplied with the price at
all timesteps T , and lastly multiplied with 24 hours.

Preceding the results in each experiment, a probability table for Random
Search algorithm will be presented. This table shows pre-calculated prob-
abilities for Random Search to find a global optimum. The table includes
both the probability for a sequential, non parallel version, run on a single
thread, and a parallel version, run on a large number of GPU threads.

The results in each experiment are presented in two forms; First, a table
showing the percentage of how many times, across all test runs, global op-
tima was found, using Random Search, LA with global feedback (LA Global)
and LA with LCS (LA LCS). Second, a graph is presented showing the aver-
age convergence rate of the learning automata using LCS throughout all test
runs. In each experiment, both LA Global and LA LCS have been tested

44

Hydropower Optimization

with 1000 and 10000 iterations, respectively. To make the Random Search
algorithm comparable, the number of iterations used in the LA algorithms
were translated into an equal amount of attempts, letting each thread in the
Random Search algorithm make as many attempts at randomly generating
an optimal solution as the number of iterations used by the LA algorithms.

Due to the difference in computation time between the LA algorithms and
Random Search, the LA is averaged over 1000 test runs in each experiment,
while Random Search is averaged over 100 test runs. In addition, the sce-
narios used in experiments 1 through 4 are all limited to 10 timesteps, with
the exception of experiment 5 which is a 50 timestep scenario. This enabled
exhaustive search to find the highest achievable profit, and the exact number
of optimal solution. Preliminary test had shown that running exhaustive
search on more than 10 timesteps, using the current GPU implementation,
the computation time increased drastically. Using 12 timesteps, the algo-
rithm finished after ∼ 15minutes, and with 13 timesteps the algorithm fin-
ished after ∼ 60minutes. As a consequence of this, exhaustive search has not
been run in any experiments using a scenario with more than 10 timesteps,
and thus neither the highest achievable profit, nor the exact number of op-
timal solutions are know. The only exceptions to this are if a scenario with
more than 10 timesteps has been explicitly designed in such a way the the
optimal solutions are known.

The LA algorithm with global feedback is implemented using the techniques
described in section 1.4. The algorithm utilizes a modified version of the
reward function used by LA LCS, shown by Equation 10 and Equation 11.

Remark A production run refers to starting an algorithm and letting it
run for a given number of iterations.

g(x) =
(x−min) · 0.6
max−min

+ 0.2 (10)

P (x) =


0.2 x < min

0.8 x > max

g(x) min ≤ x ≤ max

(11)

Figure 20 presents the different scenarios used in the experiments.

45

Hydropower Optimization

May 22, 2017

1 Introduction

Scenario Optimal Solutions Reservoir Start Levels Inflow Price

1 20
A = 10m3 · 106

B = 10m3 · 106

C = 0m3
2.0m3/s (p0, ..., pt), pt =

{
$5 t < T

2

$15 t ≥ T
2

2 200
A = 10m3 · 106

B = 10m3 · 106

C = 0m3
2.0m3/s (p0, ..., pt), pt =

{
$15 t < T

2

$5 t ≥ T
2

3 2
A = 10m3 · 106

B = 10m3 · 106

C = 0m3
2.0m3/s (pt) = ($10, $19, $13, $16, $10, $10, $6, $10, $9, $8)

4 1
A = 2.16m3 · 106

B = 0m3

C = 0m3
0.0m3/s (pt) = ($0, $20, $0, ..., $0, $20)

1

Figure 20: Scenario overview

46

Hydropower Optimization

4.1 Experiment 1

Experiment 1 is constructed in such a way that to reach global optima, the
algorithm is forced to be conservative on how much water is used in the first
part of the production run. As shown in Figure 20, scenario 1 has a low
amount of water inflow (2.0m3/s) throughout the entire run, and thus there
is only a limited amount of water available for production. The production
price in the scenario is split into two halves, where the first half is set at $5,
and the second is set at $15.

Iterations Parameters Probabilities

1 thread (Seq) 105 threads (Par)

1000 q = 1− 20
230
, npar,seq = 108, 103 1.86× 10−5 0.84

10000 q = 1− 20
230
, npar,seq = 109, 104 1.86× 10−4 0.99

Table 8: Binomial Probability Distribution for Experiment 1

Algorithm Initialization Number of iterations

1000 10000

Random Search - 0.91 ±0.0561 1.0
LA Global 0 0.0 0.0
LA Global 1 0.0 0.0
LA Global Random 0.0 0.0
LA LCS 0 1.0 1.0
LA LCS 1 1.0 1.0
LA LCS Random 1.0 1.0

Table 9: Results from Experiment 1

47

Hydropower Optimization

Figure 21: Experiment 1 convergence graph.

The results from Table 9 shows that LA LCS is capable of finding global
optima from every initialization state, which indicates that the algorithm is
capable of accounting for complex requirements, such as conservation of wa-
ter. LA Global is not able to reach a global optima in any initialization setup.

Figure 21 indicates that LA LCS converges to a near optimal state, where
global optima can be reach by local search of the state space.

48

Hydropower Optimization

4.2 Experiment 2

In Experiment 2 the scenario has been reversed with regard to the production
price. The first half of the input is set at $15, and the second half is set at $5.
The consequence of this reversal is that it is no longer necessary to conserve
water in the beginning of the run. Instead, it is more profitable to have the
production rate high in the first half. This change also leads to a tenfold
increase in the number of optimal solutions.

Iterations Parameters Probabilities

1 thread (Seq) 105 threads (Par)

1000 q = 1− 200
230
, npar,seq = 108, 103 0.18× 10−4 0.99

10000 q = 1− 200
230
, npar,seq = 109, 104 0.18× 10−3 0.99

Table 10: Binomial Probability Distribution for Experiment 2

Algorithm Initialization Number of iterations

1000 10000

Random Search - 1.0 1.0
LA Global 0 0.16 ±0.0227 0.16 ±0.0227
LA Global 1 1.0 1.0
LA Global Random 0.002 ±0.0028 0.002 ±0.0028
LA LCS 0 1.0 1.0
LA LCS 1 1.0 1.0
LA LCS Random 1.0 1.0

Table 11: Results from Experiment 2

49

Hydropower Optimization

Figure 22: Experiment 2 convergence graph.

The results from Table 11 shows the effect from having an increased num-
ber of optimal solutions. All algorithms and variations were able to locate
a global optimum with this specific scenario. Despite this, however, there is
a significant difference between the performance of LA Global and LA LCS.
While LA LCS is able to reach global optima 100% of the runs, LA Global
struggles when initialized to 0 and random. When initialized to 1, LA Global
is able to find global optima every run. It can be reasoned that this behavior
is in coherence with the properties of an optimal production string for this
specific scenario. Since it is not necessary to conserve water in the first half
of the run, there will be more ones than zeros in the production string. This
then means that fewer state changes are necessary to be able to find an op-
timal solution if the algorithm gets initialized to 1.

Figure 22 shows a smaller gap between the minimum and maximum line,
and the average line. This indicates that the algorithm is converging to a
more stable state than in Experiment 1.

50

Hydropower Optimization

4.3 Experiment 3

Experiment 3 follows the same direction as 1 and 2. The initial parameters
are identical with the same inflow. The price is randomly generated and
selected based on its property of only containing 2 optimal solutions. This
makes for an interesting case because it limits the probability of the LAs
to rely on the initialization method 1/0/stochastic to be in close vicinity to
an optimal solution. This is further verified by looking at the two optimal
production-strings in Figure 23, found by the exhaustive search algorithm.
Here we see a variable distribution of state-actions along the production
interval. It is also apparent that the only alternation is possible in later
timesteps in reservoir A.

Experiment 3 follows in the same direction as experiment 1 and 2. The initial
parameters and input are the same as the previous scenarios, except for the
production price, which has been randomly generated for this scenario. With
the generated price, only 2 optimal solutions exist, and they have the same
distribution of ones and zeros as the solutions that exist for scenario 2. De-
spite this, given there are only 2 solutions it is unlikely that the initialization
of the LA algorithms will have an impact on the results in this experiment.

A B C

1111000100 1111110110 0111111111

1111010000 1111110110 0111111111

Figure 23: The two optimal production strings that exist for scenario 3

Iterations Parameters Probabilities

1 thread (Seq) 105 threads (Par)

1000 q = 1− 2
230
, npar,seq = 108, 103 1.86× 10−6 0.16

10000 q = 1− 2
230
, npar,seq = 109, 104 1.86× 10−5 0.84

Table 12: Binomial Probability Distribution for experiment 3

51

Hydropower Optimization

Algorithm Initialization Number of iterations

1000 10000

Random Search - 0.18 ±0.0753 0.84 ±0.0719
LA Global 0 0.015 ±0.0075 0.022 ±0.0091
LA Global 1 0.03 ±0.0106 0.027 ±0.0100
LA Global Random 0.0 0.0
LA LCS 0 1.0 1.0
LA LCS 1 1.0 1.0
LA LCS Random 1.0 1.0

Table 13: Results from Experiment 3

Figure 24: Experiment 3 convergence graph

Table 13 show that even though the optimal production strings were similar
to the ones that exist for scenario 2, LA Global returned overall worse results
compared with Experiment 2. When initialized at 1, LA Global did not
return with 100% success rate as it did in Experiment 2, and when initialized
with random states it was unable to find an optimal solution all together.

52

Hydropower Optimization

LA LCS returned with 100% success rate in this experiment as well, but this
time Figure 24 shows signs of a slower rate of convergence than the previous
experiments, indicating an impact in performance for LA LCS.

53

Hydropower Optimization

4.4 Experiment 4

Experiment 4 uses a scenario that has been designed in such a way the there
will always exist only one optimal solution, and this solution is always known.
This scenario has been deprived of almost all water, leaving just enough to
let reservoir A be able to produce power once. The water will then flow into
reservoir C, and can now be used to produce power one more time. The price
has also been set to $0 for all timesteps, except for the second and last. By
doing this, the algorithm has to learn that after using the water in reservoir
A at the second timestep, it has to wait until the very last timestep before
permitting reservoir C to produce.

A B C

0100000000 0000000000 00000000001

Figure 25: The single optimal production string for experiment 4.

Iterations Parameters Probabilities

1 thread (Seq) 105 threads (Par)

1000 q = 1− 1
230
, npar,seq = 108, 103 9.31× 10−7 0.09

10000 q = 1− 1
230
, npar,seq = 109, 104 9.31× 10−6 0.60

Table 14: Binomial Probability Distribution for Experiment 4

Algorithm Initialization Number of iterations

1000 10000

Random Search - 0.08 ±0.0532 0.64 ±0.0941
LA Global 0 0.065 ±0.0153 0.022 ±0.0091
LA Global 1 0.056 ±0.0143 0.07 ±0.0158
LA Global Random 0.032 ±0.0109 0.051 ±0.0136
LA LCS 0 1.0 1.0
LA LCS 1 1.0 1.0
LA LCS Random 0.963 ±0.0117 1.0

Table 15: Results from 4

54

Hydropower Optimization

0 200 400 600 800 1000
Iterations

0

5000

10000

15000

20000

25000

30000

35000

40000
Ba

se
 p

ro
fit

Optimal
Min / Max
Average

Figure 26: Experiment 4 convergence graph for 0-state initialization.

0 200 400 600 800 1000
Iterations

0

5000

10000

15000

20000

25000

30000

35000

40000

Ba
se

 p
ro

fit

Optimal
Min / Max
Average

Figure 27: Experiment 4 convergence graph for random state initialization.

The results in Table 15 shows again how LA LCS is able to outperform LA
Global. An interesting observation is how LA LCS has experiences a decrease
in performance when initiated with random states. As an attempt to explain
this behavior, it can be argued that when the states in LA LCS is initialized
to all 1 or 0, the Learning Automata start moving towards their optimal state
more quickly. Also, when the algorithm is initialized with random states, the
Learning Automata has to spend more iterations exploring the local search
space, learning how their individual actions are contributing to the whole,

55

Hydropower Optimization

before starting to move towards their optimal state. By comparing Figure
26 with Figure 27, there is a noticeable difference in how the algorithm
converges, supporting what has been argued.

56

Hydropower Optimization

4.5 Experiment 5

Experiment 5 is an extension of Experiment 4, using the same scenario but
with the number of timesteps increased to 50. The total size of the search
space in this experiment is 2150, or∼ 1.43×1045, number of possible solutions.
As explained in the beginning of the experiments section, the size of the
search space is to large for an exhaustive search, but because of the way this
scenario was designed, the optimal solution is known.

Iterations Parameters Probabilities

1 thread (Seq) 105 threads (Par)

1000 q = 1− 1
2150

, npar,seq = 108, 103 8.88× 10−13 8.88× 10−8

10000 q = 1− 1
2150

, npar,seq = 109, 104 8.88× 10−12 8.88× 10−7

Table 16: Binomial Probability Distribution for experiment 5

Algorithm Initialization Number of iterations

1000 10000

Random Search - - -
LA Global 0 - -
LA Global 1 - -
LA Global Random - -
LA LCS 0 0.125 ±0.0205 0.494 ±0.0310
LA LCS 1 0.037 ±0.0117 0.441 ±0.0308
LA LCS Random 0.0 0.0

Table 17: Results from Experiment 5

57

Hydropower Optimization

0 2000 4000 6000 8000 10000
Iterations

0

5000

10000

15000

20000

25000

30000

35000

40000
Ba

se
 p

ro
fit

Optimal
Min / Max
Average

Figure 28: Experiment 5 convergence graph for zero state initialization.

The results shown in Table 17 clearly reflects the added complexity that
has been introduced from the increased search space. The only algorithm
that is able to find the optimal solution is LA LCS, but with a much lower
success rate than in the previous experiments.Figure 28 shows that LA LCS
is unable to converge to a state where the learning automaton representing
the timesteps of interest for reservoirs A and C both settles at their optimal
states. The fact that LA LCS is able to reach the optimal solution in nearly
50% of the runs shows that even when the algorithm converges to a local
optimum, it is still able to search far enough to find the global optimum.

When running experiments with more than 50 timesteps, the GPU becomes
indispensable. There are two reasons for this. First, the computational
requirements when processing scenarios of this scale is a challenge for the
limited number of available threads on a CPU. Second, the uncertainty that
gets added when the search space is increased with a timestep amount of this
size, greatly impacts the probability of finding an optimal solution. This can
be deduced from Table 15 and Table 17. To counter this trend, additional
runs needs to be executed in order to increase the probability of finding an
optimal solution. Much like the GPU was used to increase the probability
for random search, the GPU can be used to run several thousand instances
of LA LCS, in parallel, thus increasing the probability of finding an optimal
production-string. This is backed by the execution time comparison shown
in Table 18. The comparison is made executing a 100 000 run with 1000
iterations on both the CPU, and GPU. This clearly shows the benefit of
using the GPU.

58

Hydropower Optimization

Method Time

LA LCS GPU ∼18
LA LCS CPU ∼72

Table 18: GPU vs CPU scenario execution runtime in minutes.

59

Hydropower Optimization

5 Conclusion

In this thesis we introduce Local Contribution Sampling (LCS), a novel op-
timization algorithm which is derived from the learning automata algorithm
that relies on reinforcement learning for optimization, and parallel computing
for decreasing runtime. LCS adds several modifications and improvements to
the original learning automata, such as individual evaluation and feedback
of automata actions, efficient parallelization design and the possibility for
handling uncertain input using parallel GPU architecture.

LCS employs a novel approach in the interaction between the algorithm en-
vironment, and the learning automata. By individual evaluation of each
automaton’s action, LCS is able to give a more precise and decisive feedback
to the actions. When applying this approach on scenarios where the global
optimums are known, the performance of the algorithm could be precisely
measured. In several of the cases LCS had a success rate of 100%, and in
examples where the size of the search space prohibited the use of exhaus-
tive search to decisively find the global optimas, LCS returned results that
strongly indicated convergence into an optimal state.

The learning automata algorithm that LCS is derived from is a purely sequen-
tial algorithm, while LCS has been designed to work using parallel computing
techniques. The introduction of local feedback ads more complexity to the
algorithm, making it more computationally heavy. LCS mitigates this by
dividing the extra workload between multiple threads, reducing the runtime
compared to a sequential version.

The potency of GPU parallelization is also demonstrated using a random
search algorithm. By utilizing the large amounts of threads that is available
on a GPU, the probability to find a solution were improved by a factor of
over 45’000.

This thesis shows empirically that the introduced LCS successfully finds
global optima in vast search spaces utilizing parallel computing. This con-
clusively shows that LCS creates promise for solving optimization problems
including hydropower production strategies.

60

Hydropower Optimization

5.1 Future Work

Several approaches can be taken to further strengthen and explore the pos-
sibilities of LA LCS. Two known necessities are mentioned in this section.
The first is related to the parallel design choices, and the implications this
presents in the current state. The other is related to further strengthen the
results by comparing the LA LCS against other known algorithms that has
shown good results when applied to similar problems within the domain.

5.1.1 Improved GPU parallelization

When executing large instances with regard to input and number of timesteps,
the memory requirements increases. This is due to the nature of the algo-
rithm where each block shares input parameters and stores shared variables
in the shared memory on the GPU. On our reference card, the Nvidia K80,
available shared memory for each block is limited to 49152 bytes. With the
current implementation of LA LCS, the GPU is able to execute scenarios
with ≤ 71 timesteps. A breakdown of the memory requirements are pre-
sented in Table 19 for a 71 and 72 timestep scenario. The breakdown reveals
that the result struct is the biggest constraining element for higher GPU
timestep counts. When increasing the number of timesteps to 72 the block
uses more shared memory than available and crashes the simulation.

Description Type Type size 71 Timesteps 72 Timesteps
States char 1 byte 1 byte 1 byte
Automatas char 1 byte 213 bytes 216 bytes
Inflow array float 4 bytes 852 bytes 864 bytes
Price array float 4 bytes 285 bytes 288 bytes
Result struct char 1 bytes 46655 bytes 47960 bytes
Result 48006 bytes 49329 bytes

Table 19: Bytes used of shared memory for 71 and 72 timesteps in bytes.

To combat this constraint, a redesign of the GPU implementation is neces-
sary. Redesigning the implementation would allow for execution of a higher
number of timesteps, while freeing the algorithm of the constraints presented
by the max allowable number of threads in a block. In the current design each
instance of the algorithm is contained within a block. Each thread is running
an individual automaton, meaning that the number of automatons for a 71

61

Hydropower Optimization

timestep scenario is 71 ·3 = 213, a practical limit of ∼ 340 timesteps is there-
fore imposed on the algorithm in its current design, due to using all available
threads in the block 340 · 3 = 1024. Another side effect of dividing instances
down in blocks is the impact on performance, this is due to utilizing a low
thread count within the block for timesteps < 340, meaning several threads
within this block are idling, when they could provide computing power for
maximum GPU utilization.

The new design should avoid dividing separate runs into individual blocks,
and use a more free floating design pattern, where all threads are free to be
utilized.

5.1.2 Further verification and testing

The algorithm should be verified with known, successful approaches like the
earlier presented Invasive Weed Optimization algorithm (IWO)[11] or the
Particle Swarm Optimization algorithm (PSO) [4]. The IWO algorithm has
attached pseudo code, and has a fairly simple design, making it an ideal
candidate that could be implemented and tested against our environment.
This should produce interesting material for verification and comparison of
the algorithms.

62

Hydropower Optimization

References

[1] TW Archibald, KIM McKinnon, and LC Thomas. “An aggregate stochas-
tic dynamic programming model of multireservoir systems”. In: Water
Resources Research 33.2 (1997), pp. 333–340.

[2] E Arnold, P Tatjewski, and Wo. “Two methods for large-scale nonlin-
ear optimization and their comparison on a case study of hydropower
optimization”. In: ().

[3] Mohammad Azizipour et al. “Optimal operation of hydropower reser-
voir systems using weed optimization algorithm”. In: Water Resources
Management 30.11 (2016), pp. 3995–4009.

[4] Alexandre M Baltar and Darrell G Fontane. “Use of multiobjective par-
ticle swarm optimization in water resources management”. In: Journal
of water resources planning and management 134.3 (2008), pp. 257–
265.

[5] RICHARD Bellman. “Dynamic programming”. In: Princeton, USA:
Princeton University Press 1.2 (1957), p. 3.

[6] Richard Bellman and David Blackwell. “Some two-person games in-
volving bluffing”. In: Proceedings of the National Academy of Sciences
35.10 (1949), pp. 600–605.

[7] Jacques F Benders. “Partitioning procedures for solving mixed-variables
programming problems”. In: Numerische mathematik 4.1 (1962), pp. 238–
252.

[8] Philip D Crawley and Graeme C Dandy. “Optimal operation of multiple-
reservoir system”. In: Journal of Water Resources Planning and Man-
agement 119.1 (1993), pp. 1–17.

[9] MV Devisree and PT Nowshaja. “Optimisation of Reservoir Operations
Using Genetic Algorithms”. In: IJSER 5 (7 2014).

[10] William Gale, Sumit Das, and Clement T. Yu. “Improvements to an
algorithm for equipartitioning”. In: IEEE Transactions on Computers
39.5 (1990), pp. 706–710.

[11] “GPU-based variation of parallel invasive weed optimization algorithm
for 1000D functions”. In:

[12] Ole-Christoffer Granmo and Noureddine Bouhmala. “Solving the Sat-
isfiability Problem Using Finite Learning Automata.” In: IJCSA 4.3
(2007), pp. 15–29.

63

Hydropower Optimization

[13] Ole-Christoffer Granmo and Sondre Glimsdal. “Accelerated Bayesian
learning for decentralized two-armed bandit based decision making
with applications to the Goore game”. In: Applied intelligence 38.4
(2013), pp. 479–488.

[14] A Helseth, B Mo, and G Warland. “Long-term scheduling of hydro-
thermal power systems using scenario fans”. In: Energy Systems 1.4
(2010), pp. 377–391.

[15] Karla L Hoffman, Manfred Padberg, and Giovanni Rinaldi. “Traveling
salesman problem”. In: Encyclopedia of operations research and man-
agement science. Springer, 2013, pp. 1573–1578.

[16] John H Holland. Adaptation in natural and artificial systems: an in-
troductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[17] Steven Johnson. Emergence: The connected lives of ants, brains, cities,
and software. Simon and Schuster, 2002.

[18] D Nagesh Kumar and Falguni Baliarsingh. “Folded dynamic program-
ming for optimal operation of multireservoir system”. In: Water Re-
sources Management 17.5 (2003), pp. 337–353.

[19] Sheng-li Liao et al. “Long-Term Generation Scheduling of Hydropower
System Using Multi-Core Parallelization of Particle Swarm Optimiza-
tion”. In: Water Resources Management (2017), pp. 1–17.

[20] Luciana Martinez and Secundino Soares. “Primal and dual stochas-
tic dynamic programming in long term hydrothermal scheduling”. In:
Power Systems Conference and Exposition, 2004. IEEE PES. IEEE.
2004, pp. 1283–1288.

[21] Kumpati S Narendra and Mandayam AL Thathachar. Learning au-
tomata: an introduction. Courier Corporation, 2012.

[22] B. John Oommen and EV de St Croix. “Graph partitioning using
learning automata”. In: IEEE Transactions on Computers 45.2 (1996),
pp. 195–208.

[23] B John Oommen, Ole-Christoffer Granmo, and Asle Pedersen. “Us-
ing stochastic AI techniques to achieve unbounded resolution in finite
player Goore Games and its applications”. In: Computational Intelli-
gence and Games, 2007. CIG 2007. IEEE Symposium on. IEEE. 2007,
pp. 161–167.

64

Hydropower Optimization

[24] B. John Oommen and Daniel C. Y. Ma. “Deterministic learning au-
tomata solutions to the equipartitioning problem”. In: IEEE Transac-
tions on Computers 37.1 (1988), pp. 2–13.

[25] Leila Ostadrahimi, Miguel A Mariño, and Abbas Afshar. “Multi-reservoir
operation rules: multi-swarm PSO-based optimization approach”. In:
Water resources management 26.2 (2012), pp. 407–427.

[26] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial opti-
mization: algorithms and complexity. Courier Corporation, 1982.

[27] Mario VF Pereira and Leontina MVG Pinto. “Multi-stage stochastic
optimization applied to energy planning”. In: Mathematical program-
ming 52.1-3 (1991), pp. 359–375.

[28] MVF Pereira. “Optimal stochastic operations scheduling of large hy-
droelectric systems”. In: International Journal of Electrical Power &
Energy Systems 11.3 (1989), pp. 161–169.

[29] MVF Pereira and LMVG Pinto. “Stochastic optimization of a mul-
tireservoir hydroelectric system: a decomposition approach”. In: Water
resources research 21.6 (1985), pp. 779–792.

[30] Petr Pospichal, Jiri Jaros, and Josef Schwarz. “Parallel genetic algo-
rithm on the cuda architecture”. In: Applications of Evolutionary Com-
putation (2010), pp. 442–451.

[31] Roy Radner. “Team decision problems”. In: The Annals of Mathemat-
ical Statistics 33.3 (1962), pp. 857–881.

[32] Mark Silberstein. “GPUs: High-performance Accelerators for Parallel
Applications: The multicore transformation (Ubiquity symposium)”.
In: Ubiquity 2014.August (2014), p. 1.

[33] Minimum Spanning Tree. “Minimum Spanning Tree”. In: (2007).

[34] Torry Tufteland, Guro Ødesneltvedt, and Morten Goodwin. “Optimiz-
ing PolyACO Training with GPU-Based Parallelization”. In: Interna-
tional Conference on Swarm Intelligence. Springer. 2016, pp. 233–240.

[35] Tony Wauters et al. “Boosting metaheuristic search using reinforce-
ment learning”. In: Hybrid Metaheuristics. Springer, 2013, pp. 433–
452.

65

	Introduction
	Problem statement
	Research questions

	Contributions
	Report Outline
	Theoretical Background
	Modeling
	Cuda
	Learning Automata

	State of Art
	Approach
	Environment
	Assumptions
	Reference system
	Parallelization
	Algorithms
	Exhaustive Search
	Random Search
	Learning Automata

	Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

	Conclusion
	Future Work
	Improved GPU parallelization
	Further verification and testing

	References

