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Abstract

This master thesis aims to value American put options by using di�erent numerical

methods. Three valuation methods for valuing an American put option will be pre-

sented and analyzed; the binomial method, the implicit �nite di�erence method and the

least squares Monte Carlo approach (LSM). Due to the opportunity of early exercise

of American option contracts, our goal is to �nd the optimal exercise strategy which

maximizes the payo� by using numerical methods. We provide examples of how to

implement each algorithm in di�erent types of software. A comparison of the methods

are given at the end.
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1 Introduction

An American put option, is a contract that gives the holder the right, but not the obli-

gation, to sell a speci�ed asset (stock, bond, currency etc.) for a speci�ed price at or until

a speci�ed time in the future. Due to the early exercise feature, the question for an op-

tionholder is: when is it optimal to exercise the option? We could wait until the expiry

date, but is this the optimal value of the option? Figure (1) gives a demonstration of the

problem. In the �gure, we see a simulated price path for a stock S1. The stock price series

is starting at time t = 0 with a value of S0 = 1.0. This time series plot shows how the

stock price is moving over a time period of 100 observations. The risk-free rate is 5%, with

a volatility of 32%. The red line is representing the strike price K = 1.05. Above the red

line is the out-of-the money region, in other words, the option is worthless and the investor

would let the option expire. He could also hold on to the option to see if the stock price

decreases before expiry of the option. Below the red line, the option is in-the-money. Here,

the investor has many opportunities to exercise the option. As the stock price decreases the

option becomes more valuable. The payo� function for an American put option at maturity

is given by V put
0 = max(K − S, 0). Which exercise date is the optimal one? When is the

payo� maximized?

Figure 1: Simulated Stock Price Path for S1
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This thesis aims to �nd the optimal stopping time for an American put option where the

payo� is maximized by using di�erent numerical valuation methods. We value an American

option by using three di�erent approaches. We present the binomial method by Cox, Ross

and Rubinstein (1979), the �nite di�erence method by Schwartz (1977) and the least squares

Monte Carlo approach by Longsta� and Schwartz (2001). Each valuation method will be used

in numerical examples and we shown how to implement them in various type of softwares

such as Excel, STATA and Matlab. In the numerical analysis we shows how we �nd the

optimal value of the American put and when the optionholder should exercise the option.

Thereafter we compare prices of American put options obtained by the the di�erent methods,

and show that the early exercise value of the American put option is larger than the value

at maturity for an European put option. At the end, we compare the methods in terms of

computational time of how closely they value the option.

The structure of this thesis is as follows. In Section 2, literature is reviewed. Section 3

presents the valuation methodology for the three valuation frameworks. Examples of how to

implement each method is given in section 4. Last section 5, concludes.
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2 Literature Review

Pricing of American style options are usually attained by numerical methods, since there

is no analytical solution available. A major breakthrough in option pricing was done by

Black and Scholes in 1973, when they introduced the famous Black-Scholes equation to

value options contracts. Their approach was mainly for European options which is solved

analytically. A few years later, in 1977, Schwartz were the �rst to introduce the �nite

di�erence method, where the partial di�erential equation is transformed by approximation

of the partial derivatives to a di�erence equation. Shortly after, in 1979, Cox, Ross and

Rubinstein introduced the binomial tree, a method that constructs a stock price tree of

upward and downward movements of the stock price and discounting the expected payo� at

each node of the tree. Recently, in 2001, Longsta� and Schwartz introduced a new approach

to value American options by using simulation. Their approach is called least squares Monte

Carlo (LSM), where the conditional expectation function is estimated to �nd the expected

value of continuing to hold the option.

On the topic of valuing American options, there is a large contribution in the literature.

Since there are many di�erent varieties of option contracts with di�erent features of exercise

policy, there has been considerable research on the topic. This master thesis di�ers in how it

provides implementation to use the valuation methods in di�erent softwares. Of literature,

Lin & Liang (2007) price a perpetual Bermudan option and a perpetual American option by

using the binomial method. They obtain a closed form solution and the optimal boundary

condition for the options, and present a numerical experiment based on the pricing formulas

they found. Stentoft (2004) gives a detailed analysis of the least squares method by Longsta�

and Schwartz (2001). He analyzes how the LSM approach goes by increasing the number

of stochastic factors. He concludes that for higher dimensional problems the LSM method

should be preferred to the binomial method. Another article by Chen, Huang and Lyuu

(2015) parallelize the LSM by space decomposition, where they analyze the accuracy and

e�ciency the parallelized LSM. They �nd that the option price obtained by the parallelized

LSM are close to the values obtained by the sequential LSM and binomial tree, and by using

parallel LSM the pricing of option is e�ectively speeded up and still is accurate.

7



3 Valuation Methodology

A popular topic in �nance are derivative contracts. One type of a derivative, is the option

contract. Options are actively traded in the �nancial market. An option is a contract to buy

or sell a speci�c �nancial product. Options come in di�erent versions, they can be simple or

very complex. Two types of common option contracts are the European and the American.

Kijima (2013) states that American options are at least as valuable as the European option

because the exercise decision for an American option can be postponed until maturity. Also

the possibility of exercising the American option at an earlier time, make American options

more valuable than the European option. American options are more widely traded compared

to European options. In 1977, Chicago Board Options Exchange added put options on their

exchange board. An American put option gives its buyer the right but not the obligation

to sell an asset for a speci�ed price at or until a speci�ed time in the future. Due to the

opportunity of early exercise, the objective is to determine the optimal exercise strategy

that maximizes the payo� of an American put option. For some options, such as American

options, numerical methods are used in determining the value of the option.

Today, there exists a variety of di�erent valuation methods accounting for the early ex-

ercise feature of American options. The most well-known methods used to value American

options is the binomial tree, the �nite di�erence method and the least squares Monte Carlo

approach. In the binomial method, expected payo� is discounted recursively and compared

with the value of immediate exercise. As for the implicit �nite di�erence method, we can

compute the option price by approximating the partial di�erential equation by a di�erence

equation and solving the di�erence equation numerically. For the relatively new approach

called least squares Monte Carlo, a conditional expectation function is estimated by least

square regression, giving an estimated conditional expectation of the continuing value to

hold on to the option. By using these valuation methods we can �nd an approximate value

of the American option.

The question for a holder of an American put option is to decide when or if he should

exercise the option. If the option is out-of-the-money at time t, he should not exercise the

option. However, if the option is in-the-money it may be bene�cial to exercise the option, or

even wait longer because the payo� might be larger at a later time.

This section presents three di�erent frameworks to value an American put option. Each

valuation framework consider an American put option on a stock that pays no dividends.

For simplicity of presenting the methodology and implementation of the valuation methods,

we consider a short timeframe of n = 3.
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3.1 Binomial Method - Framework to Value an American Put Op-

tion

This text1 is based on Higham (2014). An elegant and easy way to value American options

is the binomial method. The objective is to present a framework to value an American option

by constructing a tree of stock prices and option prices. The framework will price the option

and determine the optimal exercise strategy at every time step of the option.

We let δt = T/n, represent the timeframe in this model, where T is the expiry date of

the option and n is the number of steps. Stock prices will be considered at times ti = iδt

for 0 ≤ i ≤ n. At time t0 = 0, the initial price of the stock is S0, which is a known number.

At the next period this stock price will either go up by a factor u or down by factor d. This

gives the prices of the stock in the next period at time t1 = δt, that we denote as S0u for an

upward movement in the stock price and S0d for a downward movement in the stock price.

At time t2 = 2δt the stock prices will be S0u
2, S0ud and S0d

2. In the last period t3 = 3δt,

the stock price will be S0u
3, S0u

2d, S0d
2u and S0d

3. A demonstration of the movement of the

stock price over 0 ≤ n ≤ 3 time increments is given in Figure (2).

1 Part of this text is based on Valeriy Zakamulin lecture notes from course BE-419 at University of Agder, Lecture 15:

Pricing and Exercising of American Options in the Binomial Model.
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Figure 2: A Three Period Binomial Tree of Stock Prices

To obtain an expression for the up and down factor u and d in the binomial method we de�ne

a Bernoulli random variable Ri, with E(Ri) = p and var(Ri) = p(1 − p). If the stock price

goes up, then Ri = 1 with a probability of p, and if the stock price goes down Ri = 0 with a

probability of (1− p). In the case of n time increments, the stock has
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∑n
i=1Ri upward movements and n −

∑n
i=1Ri downward movements. At time t = nδt,

the stock price S(nδt) is given by

S(nδt) = S0u
∑n

i=1Ridn−
∑n

i=1Ri .

We re-arrange the equation by moving S0 to the left, and �xing the expression on the right

side

S(nδt)

S0

= dn
(u
d

)∑n
i=1Ri

.

Then we take logs on both sides of the equation

log

(
S(nδt)

S0

)
= n log d+ log

(u
d

) n∑
i=1

Ri.

The Central Limit Theorem says that for large n, the sum
∑n

i=1Ri behaves like a normal

random variable. Consequently, log
(
S(nδt)
S0

)
will be close to normal for large n. We require

the mean of log
(
S(nδt)
S0

)
to be (µ − 1

2
σ2)nδt and its variance to be σ2nδt in order to match

the continuous stock price model. If we impose the risk-neutrality assumption that µ = r,

we get two conditions:

p log u+ (1− p) log d = (r − 1

2
σ2)δt. (1)

log(
u

d
) = σ

√
δt

p(1− p)
. (2)

Equation (1) and (2) contains three unknown variables u, d and p. To �nd one possible

solution we may set p = 1
2
, which gives

1

2
log u+

1

2
log d = (r − 1

2
σ2)δt. (3)

log(u)− log(d) = σ2
√
δt. (4)

Multiply equation (3) by 2 and add equation (4), we get

2 log(u) = 2

{
(r − 1

2
σ2)δt+ σ

√
δt

}
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⇒ log(u) = (r − 1

2
σ2)δt+ σ

√
δt

By solving for u, we obtain the expression for u, an upward movement in the stock price

u = e(r− 1
2
σ2)δt+σ

√
δt. (5)

For d, we multiply equation (3) by 2, but subtract equation (4), this gives

2 log(d) = 2

{
(r − 1

2
σ2)δt− σ

√
δt

}

⇒ log(d) = (r − 1

2
σ2)δt− σ

√
δt

Solving the equation for d, we obtain the expression for d, the downward movement in the

stock price

d = e(r− 1
2
σ2)δt−σ

√
δt. (6)

It follows that d < erδt < u, otherwise there will be arbitrage opportunities that one can gain

risk-less pro�t.

Cox, Ross and Rubinstein (1979)2 have another solution of �nding u and d. An assumption

about the behavior of the underlying stock's stochastic process has to be done. We assume

that the stochastic process is continuous as n → ∞. The parameters must be chosen in a

way to determine the right values of the expected return and variance of the stock at the

end of each time interval, ∆t. The one period expected return of the stock is equal to the

risk-free rate r∆t given the assumption about risk-neutrality, and the expected future price

of the stock is Ser∆t.

Ser∆t = pSu+ (1− p)Sd

and

er∆t = pu+ (1− p)d. (7)

2This paragraph is based on Alberto Barola (2013): �Monte Carlo Methods for American Option Pricing�
12
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A one period variance of σ2∆t is assumed in the stochastic process and formulated as

pu2 + (1− p)d2 − [pu+ (1− p)d]2 = σ2∆t. (8)

Inserting p from equation (7) into (8) we get

er∆t(u+ d)− ud− e2r∆t = σ2∆t. (9)

A third condition was introduced to derive the equations for u, d and p,

u =
1

d
. (10)

Condition (7), (9) and (10) can be solved for each of the three unknown variables and gives

p =
er∆t − d
u− d

, u = eσ
√

∆t, d = e−σ
√

∆t.

Our task is to �nd the value of the option today at time zero, V0. As the binomial method

is recursive, we work backwards through the tree. An American put option can be exercised

at any time step n but only exercised one time. At time 3 the option is represented by its

payo� which has four possible values. The price of the option has three possible values. At

time 2 the writer of the option can choose between exercising the option immediately or wait

until time 3. Staring at the end of the tree and working backwards, the payo� functions at

expiry n = 3 for an American put option are

V u3 = max(K − u3S, 0)

V u2d = max(K − u2dS, 0)

V d2u = max(K − d2uS, 0)

V d3 = max(K − d3S, 0)

Figure (3) represents the option payo� tree for three periods.
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Figure 3: A Three Period Option Payo� Tree

Once the payo� at the �nal expiry date for each node is found, the next task is to compare

the value of keeping the option V keep with the value of exercising the option V exercise at each

node in the tree.

V = max(V keep, V exercise) = max(e−rδt(pV u+ (1− p)V d), K − S).

The optionholder chooses to exercise the option when the value of exercising is larger than

the value of keeping the option, V exercise > V keep.
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3.2 Implicit Finite Di�erence Method

This text is based on Kyng, Purcal and Zhang (2006) and �erný (2009). Another numer-

ical method to value American options is the �nite di�erence method. The �nite di�erence

method comes in di�erent varieties. Examples are explicit, implicit and Crank-Nicolson.

Since the explicit �nite di�erence method can be unstable if we don't choose the value of

discretization parameters carefully, we decided to use the implicit �nite di�erence method as

it is always stable. Stability of the implicit �nite di�erence method will be discussed later in

the text.

The objective by using the implicit �nite di�erence method is that we approximate the

partial di�erential equation (PDE) by using di�erence equations to solve the di�erence equa-

tion numerically. By working recursively, we �nd the option price. For American style option

there are no closed form analytical solutions, hence, we have to solve the PDE numerically.

First, construction of the stock price grid accounting for the boundary conditions for an

American put option will be given. The next step is to solve the PDE by �nding expressions

for the derivatives and partial derivatives in the PDE equation. The last step is to solve a

set of linear simultaneous equations by matrix algebra.

Consider a stock price process following the risk-neutral stochastic di�erential equation

(SDE)

dS = rSdt+ σSdZ,

where r and σ are constants, Z is a standard Brownian motion. The well-known partial

di�erential equation (PDE) by Black and Scholes (1973) is given by

∂F

∂t
+ (r − y)S

∂F

∂S
+

1

2
σ2S2∂

2F

∂S2
− rF = 0, (11)

For an American put, the boundary conditions are

F (S, T ) = max(K − S, 0), (12)

F (0, t) = Ke−r(T−t) − Se−y(T−t) (13)

and

limS→∞F (S, t) = 0, (14)

then the solution to the PDE equation (11) is given by
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F (S, t) = Ke−rτN(−d2)− Se−yτN(−d1), (15)

F is the option price de�ned on the domain D = {(S, t) : S ≥ 0, 0 ≤ t ≤ T} . t stands for
time, S is stock price, K is strike price, y is dividend yield, r is the risk-free rate, the

volatility of the stock is represented by σ and T is the maturity date. N(· ) is the cumulative
distribution function of the standard normal distribution. τ = T − t represents the time to
expiry, when t goes from 0 to T.

To obtain the �nite di�erence approximated form of the required partial derivatives, we

need to de�ne the increments ∆S and ∆T. Assume N equally spaced time intervals until

the expiry of the option at T. ∆T will then represent the length of each interval, that is

∆T = T/N. The boundary conditions for the American put option need to be adjusted

before we can specify the stock price increment ∆S. Boundary condition (13) applies for

S ≤ Smin, and S ≥ Smax applies for boundary condition (14).

When the stock price S is extremely high, the American put option is deeply out of the

money. Assume there exists a stock price Smax such that S ≥ Smax, the put option is deeply

out of the money with a value approximately zero

S ≥ Smax ⇒ F (S, t) = 0. (16)

Equation (16) is another way of representing equation (14), this is the boundary condition

at the bottom of the grid to be constructed. Usually the boundary is set to be Smax = 2 ·S0.

Conversely, when the stock price is extremely low, the American put option is deeply in

the money. Assume there exists a low stock price S ≤ Smin, making the option deeply in

the money and certain to be exercised at expiration. Hence, the option can be regarded

approximately as a forward contract

S ≤ Smin ⇒ F (S, t) = Ke−r(T−t) − Se−y(T−t).

Usually Smin = 0, so that

S = Smin ⇒ F (S, t) = Ke−r(T−t). (17)

Equation (17) is the boundary condition for the top of the grid. Using equation (16) and

(17) leads us to de�ne the stock price increment as ∆S = (Smax − Smin)/M. Now we are

able to create a grid of the change in stock prices and times. Time is indexed by i and j is

indexes the stock price level. The range of values for i is i = 0, 1, 2, ..., N, so that for i there

are N + 1 di�erent values of time. For j, the range of values is j = 0, 1, 2, ...,M, with M + 1

16



di�erent values for the stock price level. A discretized version of function F , can be de�ned

as f(i, j) = F (j × ∆S, i × ∆T ), so that there is (M + 1) × (N + 1) di�erent values of the

function f(i, j). By using �nite di�erence approximation to the partial derivatives in PDE,

the function F (S, T ) di�erential equation becomes a di�erence equation for f(i, j), and will

be shown soon. Figure (4) 3 is a representation of the grid of stock price levels and time step

increments.

Figure 4: Structure of the Grid in the Finite Di�erence Approximation

On the horizontal axis, we have time t, where each step increases from left to right by

∆T. Time steps indexed by i, runs from 0 to the largest value of N. The vertical axis shows

the stock price S, starting from the top at Smin and the stock price level increases as we

reach the bottom, Smax. ∆S is showing each step in the stock price level. Stock price steps

are indexed by j, and runs from 0 to the largest value of M. The white circles represents the

values we want to �nd. On the upper, left and bottom of the grid, we have black circles, here

the values are known from the boundary conditions (17), (12) and (16) .

Now we need to �nd the approximate di�erence equations of the derivatives. By using

Taylor's expansion, we can obtain an approximation for the partial derivatives in PDE (11)

3Illustration of the stock price grid is made by Kathrine Salamonsen in Adobe Illustrator CS3 and has inspiration from

Kyng, Purcal and Zhang (2016) Figure 1, page 6.
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equation. Recall that the discretized version of F is f(i, j), then a forward approximation

for the derivative of F with respect to t at time i×∆T is given by

∂F

∂t
≈ (f(i+ 1, j)− f(i, j))

∆T
. (18)

A central approximation for the derivative of F with respect to S at time i×∆T and stock

price j ×∆S is

∂F

∂S
≈ (f(i, j + 1)− f(i, j − 1))

2∆S
. (19)

For the second derivative of F with respect to S at time i×∆T with stock price j ×∆S, we

use a standard approximation

∂2F

∂S2
≈ (f(i, j + 1) + f(i, j − 1)− 2f(i, j))

(∆S2)
. (20)

Now that we have the approximate derivatives, we can substitute these into the PDE (11),

which leads to the following equation

0 =
f(i+ 1, j)− f(i, j)

∆T
+ (r − y)× (j∆S)

(
f(i, j + 1)− f(i, j − 1)

2×∆S

)

+
1

2
σ2(j∆S)2

(
f(i, j + 1) + f(i, j − 1)− 2f(i, j)

(∆S)2

)
− rf(i, j). (21)

We may rewrite the equation as

f(i, j − 1) · a(j) + f(i, j) · b(j) + f(i, j + 1) · c(j) = f(i+ 1, j), (22)

and the coe�cients a, b and c are de�ned by

a(j) =
1

2
(r − y)× j∆T − 1

2
∆Tσ2j2, (23)

b(j) = 1 + σ2j2∆T + r∆T, (24)

and

c(j) = −1

2
(r − y)× j∆T − 1

2
∆Tσ2j2 (25)

for i = 0, 1, 2, ..., N−1 and j = 0, 1, 2, ...,M−1. Note that these values will vary by the steps

j of the stock price and not vary by i steps of time. A graphical representation of equation
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(22) is given in Figure (5)4 below.

Figure 5: Graphical Representation of Equation (22)

The implicit �nite di�erence method is known to be stable under some assumptions about

the coe�cients. A lemma is used to demonstrate the stability of the implicit �nite di�erence

method.

Lemma 15 If b(j) ≥ 0, a(j) ≤ 0 and c(j) ≤ 0, i = 0, 1, .., (N − 1), j = 1, .., (N − 1), then

the implicit method is stable.

Proof: Suppose f(i, j) and f̃(i, j) both satisfy the same boundary conditions and the equation

(22) for some i ∈ {0, 1, ..., N − 1} and that | f(i+ 1, j)− f̃(i+ 1, j) |≤ ε∀j. Denote

Ej = f(i, j)− f̃(i, j), j = 0, ..,M.

Denote by V the maximal value of | Ej |, j = 0, ...,M . We want to show that V ≤ ε; this

shows the stability of the system. Since both f(i, j) and f̃(i, j) satisfy (22), their di�erence

also satis�es the system. We write the equation for the di�erence in the form

b(j)Ej = f(i+ 1, j)− f̃(i+ 1, j)− a(j)Ej−1 − c(j)Ej+1.

By taking absolute values of both sides and using properties of the absolute value, we get

b(j) | Ej |≤ ε− a(j) | Ej−1 | −c(j) | Ej+1 | .

Here we used all of the assumptions of the lemma. We can make the right hand side larger,

by replacing the absolute values of Ej−1 and Ej+1 with the maximal value V :

b(j) | Ej |≤ ε− a(j)V − c(j)V.
4Made in Adobe Illustrator CS3 by Kathrine Salamonsen. Source of illustration: http://www.goddardconsulting.ca/option-

pricing-�nite-di�-implicit.html.
5See Section 1.7.2 The stability of the basic implicit method p.30-31 Computational Finance (2011) by Raul Kangro for the

origin of the Lemma.
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The last inequality holds for all j = 1, ..,M − 1. Choose the value of j ∈ {1, ..,M − 1} such
that | Ej |= V. In the case of that j we have

b(j)V ≤ ε− a(j)V − c(j)V

hence

(a(j) + b(j) + c(j))V ≤ ε.

But a(j) + b(j) + c(j) = 1 + r∆T, hence we have shown that

V ≤ ε

1 + r∆t
< ε.

This proves the lemma.

As the solution procedure work backwards, from right to left, it is called the implicit �nite

di�erence method. At each time point, we have a set of simultaneous equations to solve. In

order to value the option at t = 0, we start backwards by �nding the payo� at maturity

which are the known values f(i, j) for i = N . One time step before maturity at i = N − 1,

the boundary conditions gives values at j = 0 and M. For j = 1, 2, 3, ..,M − 1 the values

f(N − 1, j) are still unknown. As we consider N = 3 and M = 6 the process to solve the set

of simultaneous equation are given to correspond. In equation (22), for N = 3, i = 2, this

will be the starting point of solving the equations. Boundaries are excluded, thus j varies

from 1 to 5, and our set of equations are

f(2, 0) · a(1) + f(2, 1) · b(1) + f(2, 2) · c(1) = f(3, 1), (26)

f(2, 1) · a(2) + f(2, 2) · b(2) + f(2, 3) · c(2) = f(3, 2), (27)

f(2, 2) · a(3) + f(2, 3) · b(3) + f(2, 4) · c(3) = f(3, 3), (28)

f(2, 3) · a(4) + f(2, 4) · b(4) + f(2, 5) · c(4) = f(3, 4), (29)

and

f(2, 4) · a(5) + f(2, 5) · b(5) + f(2, 6) · c(5) = f(3, 5). (30)

We may rewrite the �rst equation (26) as

f(2, 1) · b(1) + f(2, 2) · c(1) = f(3, 1)− f(2, 0) · a(1). (31)

Values on the RHS are known from the boundary conditions, while the values on the LHS

still are unknown. Equations (27) - (29) in the middle can be left the way they are, but the
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last equation needs to be adjusted as

f(2, 4) · a(5) + f(2, 5) · b(5) = f(3, 5)− f(2, 6) · c(5). (32)

Now we have a set of �ve simultaneous equations (31), (27), (28), (29) and (32) in �ve

unknowns, we can express these in matrix form as


b(1) c(1) 0 0 0

a(2) b(2) c(2) 0 0

0 a(3) b(3) c(3) 0

0 0 a(4) b(4) c(4)

0 0 0 a(5) b(5)

×


f(2, 1)

f(2, 2)

f(2, 3)

f(2, 4)

f(2, 5)

 =


f(3, 1)

f(3, 2)

f(3, 3)

f(3, 4)

f(3, 5)

−


f(2, 0)a(1)

0

0

0

f(2, 6)c(5)

 . (33)

A× fi = (fi+1 − di)

where A is an (M − 1)× (N − 1) tridiagonal square matrix, and both fi and di are vectors of

dimension M −1. Our boundary conditions gives us the values for f(3, ·), f(2, 0) and f(2, 6).

The unknown values remains to �nd for f(2, ·). If we rearrange the equation, we can solve

for these unknown variables


f(2, 1)

f(2, 2)

f(2, 3)

f(2, 4)

f(2, 5)

 =


b(1) c(1) 0 0 0

a(2) b(2) c(2) 0 0

0 a(3) b(3) c(3) 0

0 0 a(4) b(4) c(4)

0 0 0 a(5) b(5)



−1

×


f(3, 1)− f(2, 0)a(1)

f(3, 2)

f(3, 3)

f(3, 4)

f(3, 5)− f(2, 6)c(5)

 (34)

a representation of the general solution is fi = A−1 × (fi+1 − di), which gives the vector of

option values at time step i in terms of those at time step i+ 1. Applying the equation (34)

by using backward recursion from time step i = N − 1 to i = 0 we eventually will �nd the

option value at time 0. Option values at i = 2, are found by multiplying the inverse matrix

with the values of the option at t = 3 in the grid.

The solution in equation (34) provides us with the values of the function f at time i = 2

in terms of f values of i = 3. In general, we can obtain the values of f(i − 1, ·) from the

values f(i, ·). To �nd the values for i = 1 and i = 0, we use the exact same process, by using

f(2−1, ·) and f(1−1, ·) from the values of f(3, ·). Option values at the beginning of the grid

f(0, ·) is at the end calculated from the known maturity values at f(T, ·). As N and M get
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bigger then the �nite di�erence method will converge to the correct option value at time 0.

3.3 Least-Square Monte Carlo Method

Longsta� and Schwartz (2001) introduced the least squares Monte Carlo method of valu-

ing American options. Their process starts by generating a chosen number ω of price path

for a stock over a chosen number of time periods T . Each stock price path will be di�erent

when we use simulation of the paths.

The objective of the least squares approach is to �nd the optimal stopping time that

maximizes the value of the American option. By using least squares regression, it is possible

to estimate a conditional expectation function that gives an expected value of continuing

to hold the option. By comparing the value of immediate exercise with the expected value

of continuing to hold the option, one can �nd when the option should be exercised. After

�nding the optimal stopping time for the chosen number of paths ω, the optimal payo� for

each path is discounted back to t = 0. At the end, the value of the American put option

is found by averaging the discounted payo� by the number of paths. The advantage of this

simulation method as opposed to �nite di�erence and the binomial method, is that it is

simple to apply when the value of the option depends on multiple factors. In this section, the

valuation framework and the notation necessary to describe the LSM algorithm is presented.

3.3.1 Valuation Framework for Least Squares Monte Carlo

Let S be the stock price at time t. The expected drift in S is assumed to be µS, where µ is

a constant parameter. µ is the expected rate of return on the stock. In a short interval of time,

denoted as dt, the expected increase in S is µSdt. The volatility of a stock is represented by

σ, which is the measure of uncertainty about the return on the stock. In risk-neutral pricing

we change the parameter µ to r. Hence, the stock price is following the risk neutral stochastic

di�erential equation

dS = rSdt+ σSdZ,

where r and σ are constants, and Z is a standard Brownian motion. The stock does not pay

any dividends. The process to generate the stock price path in the risk-neutral world, and

the solution to the stochastic di�erential equation (SDE), is given by

St = S0e
(r− 1

2
σ2)δt+σ

√
δtZ

where Z is a geometric Brownian motion. The random variable St has a lognormal distribu-
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tion, its log is normally distributed.

The least squares approach assume a complete probability space(Ω,F , P ) and a �nite

time horizon [0, T ]. The probability space consist of Ω, the set of all possible realization and

usually has an element ω sample path, F is the �ltration element that represents information

until time T. P is the probability measure de�ned on the elements of F . Q is the martingale

measure consistent with the no-arbitrage argument. We are interested in valuing American

options with random cash �ows which may occur over[0, T ] .We consider options with payo�s

that are elements of the space of square-integrable or �nite-variance functions L2(Ω,F , Q).

The path of cash �ows generated by the option de�ned by C(ω, s; t, T ), conditional on the

option not being exercised at or before time t, and the optionholder follows the optimal

stopping strategy for all s, t < s ≤ T.

The LSM method aims to give a pathwise approximation to the optimal stopping rule

that maximizes the value of the option. Although, in practice options are continuously

exercisable, we use discrete exercise times in this framework. Consider K discrete times

0 < t1 ≤ t2 ≤ t3 ≤ ... ≤ tK = T, where the option is exercisable and we examine the optimal

stopping strategy at each exercise date. The investor has to decide wether to exercise the

option or let it expire at the �nal expiration date. He chooses to exercise the option if it

is in the money, or let it expire if it is out of the money. Prior to the �nal expiration date

tk, the optionholder must decide if he wants to exercise the option immediately, or let the

option continue and make a decision at the next date wether he should exercise or not. The

optionholder decides to exercise the option as soon as the value of immediate exercise is larger

or equal to the value of continuation. However at time tk, the cash �ows from continuation

are not known. Hence, the value of continuation is given by taking the expectation of the

remaining discounted cash �ows C(ω, s; tk, T ) with respect to the risk-neutral pricing measure

Q. Thus, at time tk, we express the value of continuation F (ω; tk) as

F (ω; tk) = EQ

 K∑
j=k+1

exp

(
−
∫ tj

tk

r(ω, s)ds

)
C(ω, tj; tk, T ) | Ftk

 (35)

r(ω, t) is the riskless discount rate and C(ω, tj; tk, T ) is the discounted cash �ow. The

expectation is taken conditional on the information setFtk at time tk. By this representation,
the problem of optimal exercise reduces to compare the value of the conditional expectation

with the value of immediate exercise, and then exercise when the value of immediate exercise

is larger or equal to the conditional expectation.
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3.3.2 The LSM Algorithm

The conditional expectation function at time tK−1, tK−2, ..., t1 is approximated by using

least squares. The paths of cash �ows C(ω, s; t, T ) generated by the option is de�ned re-

cursively, meaning we work backwards, since the cash �ow at tk can di�er from the cash

�ow at tk−1. This is because over a given timeframe it could be optimal to stop at an earlier

date. At time tK−1, the function F (ω; tK−1) can be represented as a linear combination of a

countable set of FtK−1
- measurable basis functions. If the conditional expectation function is

an element of the L2 space of square-integrable functions and because L2 is a Hilbert space

with countable orthonormal basis, the conditional expectation can be represented as a linear

function of the elements of the basis. One option is to use the set of weighted Laguerre

polynomials as basis functions. Longsta� and Schwartz suggested to use

L0(X) = exp(−X/2), (36)

L1(X) = exp(−X/2)(1−X), (37)

L2(X) = exp(−X/2)(1− 2X +X2/2), (38)

Ln(X) = exp(−X/2)
eX

n!

dn

dXn
(Xne−X), (39)

as basis functions. Hermite, Legendre, Chebyshev, Gegenbauer and Jacobi are other types

of basis functions that could be used. Now, the value of continuation F (ω; tK−1) can be

represented as

F (ω; tK−1) =
∞∑
j=0

ajLj(X). (40)

Here we assume X is the value of the asset underlying the option and that X follows

a Markov process. aj coe�cients are constants. The LSM approach is implemented by

approximating F (ω; tK−1) using the �rst M <∞ basis function. Denote this approximation

as FM(ω; tK−1). Next, FM(ω; tK−1) is estimated by regressing the discounted
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values of C(ω, s; tK−1, T ) onto the basis functions for the paths where the option is in the

money at time tK−1. By limiting the region of where the conditional expectation function

is estimated, less basis functions are needed to obtain an accurate approximation to the

conditional expectation function. We use the three �rst basis functions (36), (37) and (38)

in our analysis. Theorem 3.5 of White (1984) is used to show that the �tted value of the

regression F̂M(ω; tK−1) converges to FM(ω; tK−1) as the number N of in the money paths in

the simulation goes to in�nity.

After estimating the conditional expectation function at time tK−1, we are able to decide

wether early exercise at time tK−1 is optimal for an in the money path ω by comparing

the value of immediate exercise with F̂M(ω; tK−1), and repeating this process for each in the

money path. Once we have identi�ed the exercise decision, then we can approximate the cash

�ow paths C(ω, s; tK−2, T ) from the option. Continue to repeat this process for each price

path until the exercise decision at each time has been made. At last, the American option is

valued by starting at time zero, moving forward along each path until the �rst stopping time

occurs, and discount the cash �ow from exercise back to time zero, then taking the average

over all paths ω.
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4 Implementation of Valuing American Options

4.1 Implementation of the Binomial Method in Excel

A spreadsheet found at http://investexcel.net/binomial-tree-american-option/ can be used

to value the American put option by the binomial method. The goal is to �nd the value of

the option today by working recursively, and determine when the option should be exercised

or if we should keep the option for one more period. Table (1) contains the parameters with

their values needed to value the American put option in the binomial method. By inserting

these values into the excel spreadsheet one can obtain the lattice tree shown in Figure (6).

Parameter Meaning Value

n Number of Nodes 3
T Time to Maturity 1
r Risk-free Rate 5%
σ Volatility 32%
S0 Initial Stock Price 1.0
K Strike Price 1.05
u Upward Movement in Stock Price 1.2029
d Downward Movement in Stock Price 0.8313
p The Risk-Neutral Probability 0.5

Table 1: Parameters Used in the Binomial Method

The possible stock prices is shown in the yellow boxes. Recall Figure (2) how the stock

price tree is constructed. The stock price is starting at an initial price of S0 = 1.0. u and

d are found by Equation (5) and (6). By multiplying the initial price with u = 1.2029

the stock price move up one step. For a downward movement, multiplying the initial price

with d = 0.8313 the stock price will move down one step. To do create a stock price tree

by hand, one can follow the structure in Figure (2). Once the stock price tree has been

made, the next step is to �nd the payo� at expiry. Recall the structure of the option

price tree in Figure (3). As an example, at expiry n = 3, the payo� for V ud2 is V ud2 =

max(K − Sd2, 0) = max(1.05 − 0.83131, 0) = 0.21869. After the payo� at expiry for each

node has been found, we compare the value of exercising the option with the value keeping

the option. For example the value of exercising the option at n = 2 is V d2 exercise = max(K−
S0d

2, 0) = max(1.05 − 0.6910, 0) = 0.3589 and the value of keeping the option is V d2 keep =

e−rδt[pV d2u+ (1− p)V d3] = e−0.05·1/3[0.5 · 0.2186 + 0.5 · 0.4755] = 0.3413. At this node, the

optimal strategy is to exercise the option as the value of exercising is larger than keeping the

option.
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The price and value of the option today is V0 = e−rδt[pV u + (1 − p)V d] = e−0.05·1/3[0.5 ·
0.0530 + 0.50.2296] = 0.1391. Immediate exercise is V0 = max(K − S, 0) = max(1.05 −
1.00, 0) = 0.05.

Figure 6: Lattice Tree of Possible Stock Prices and Option Values

To �nd the value of the option today, it is also possible to use Matlab. The program to

run in Matlab can be found in the Appendix (7.3). By running this program, it will only give

the value of the option today, it will not give the value step by step as in the Excel example.
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4.2 Implementation of the Implicit Finite Di�erence Method in Ex-

cel

This section gives an implementation of the implicit �nite di�erence method in a Nor-

wegian version of Excel. This implementation is based on the Excel implementation of the

implicit �nite di�erence method for option pricing by Kyng, Purcal and Zhang (2016). The

goal is to obtain the price of the American put option.

Figure (7) contains the parameters used with the corresponding value chosen to value the

American put option in the implicit �nite di�erence method. The parameter values ranges

from cell A6:A18, and insert the values according to Figure (7) in a Excel spreadsheet.

Figure 7: Parameter Values

To generate the stock price grid called Table 2 in Excel corresponding to Figure (8), we

insert in cell F7 =$A$12+$E7*$A$14, and copy this to cell I13 in order to obtain all the

possible stock prices. Stock prices are generated according to S(i,j) = j×∆S at time i×∆T.

i indexes time in the columns and j indexes the stock price in the rows.
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Figure 8: Stock Price Grid

We use the boundary condition equations (12),(16) and (17) to calculate the values of

f(i, j) on the boundary of the grid. The values on the righthand side are calculated according

to the boundary equation (12) at maturity. The excel code in cell I19 is =STØRST($A$7-I7;0)

and copy this to cell I25. The bottom of the grid is calculated according to equation (16), here

we insert zero in cell F25:H25. The upper row is calculated according to boundary condition

(17) and the excel code in cell F19 is given by =$A$7*EKSP(-($A$9-F$18)*$A$15*$A$16)-

F7*EKSP(-($A$9-F$18)*$A$15*$A$17) and copied to cell H19. Figure (9) shows the values

along the boundary of the grid.

Figure 9: Values Along the Boundary of the Grid

The implicit coe�cients are calculated according to the equation (23), (24) and (25) by

inserting the parameter values from table (7). Figure (10) shows the values obtained for

the coe�cients. To compute the a(j) coe�cient we insert =0,5*($A$16-$A$17)*E31*$A$15-

0,5*$A$18^2*E31^2*$A$15 in cell F31 and copy to cell F37.

In cell G31 we insert =1+$A$18^2*E31^2*$A$15+$A$16*$A$15 and copy to cell G37

to compute the b(j) coe�cients. For the last coe�cient c(j), we insert =-0,5*($A$16-

$A$17)*E31*$A$15-0,5*$A$18^2*E31^2*$A$15 in cell H31 and copy to cell H37. Observe
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that the stability condition for the coe�cients is met, and Lemma 1 holds,a(j)+b(j)+c(j) =

1 + r∆T .

Figure 10: Coe�cients a(j), b(j) and c(j)

The values for the tridiagonal matrix A is presented in Figure (11). To obtain the values

for the tridiagonal matrix A, it is best to copy the code in cell G32 and insert it into F42 and

then copy. By copying the codes into the tridiagonal matrix, it will be easier if one wants to

change some of the parameter values for other examples. It is also possible to just enter the

numbers from Figure (10) but then it will only work for this numerical example.

Figure 11: Tridiagonal Matrix A

Figure (12) contains the values for the adjustment vector. In cell F50 we calculate the

entries of the adjustment vector by entering the code =F19*$F$32 and copy to cell H50.

Enter =F25*$H$36 in cell F54 and copy to H54.
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Figure 12: Adjustment Vector di

To value the American put option we �rst enter =STØRST($A$7-I8;0) in cell I59 and copy

to I63. Then enter =STØRST(INDEKS(MMULT(MINVERS($F$42:$J$46);(G$59:G$63-

F$50:F$54));$E59); STØRST($A$7-F8;0)) in cell F59 and copy to H63 to compute the rest

of the option prices. Finally the American put option values are presented in Figure (13).

The American put option price is given in the yellow box f(0, 3) = 0.11336.

Figure 13: Option Prices for the American Put Option

31



4.3 Implementation of Least Square Monte Carlo Method in STATA

This section is based on Longsta� and Schwartz (2001) numerical example. We consider an

American put option on a share of a non-divided paying stock, with a strike price K = 1.05,

which is exercisable at time t = 1, 2 and 3. The risk-less rate is set to r = 5% and volatility

σ = 0.32. ∆t = 1/3. To present the implementation from the algorithm we choose only eight

paths for simplicity. These stock price paths are generated under the risk-neutral measure Q.

These stock price paths can be generated in STATA by the running the program in Appendix

(7.1). Eight simulated stock price paths are presented in the following matrix

Path t = 0 t = 1 t = 2 t = 3
1 1.00 1.14 0.91 0.79
2 1.00 1.14 1.67 1.73
3 1.00 0.74 0.71 0.88
4 1.00 0.97 0.84 0.89
5 1.00 1.30 1.13 1.32
6 1.00 1.02 0.94 0.73
7 1.00 0.89 0.81 1.03
8 1.00 1.01 1.04 1.11

Table 2: Stock Price Paths

After all the stock price paths has been generated, the values obtained are entered in the

data editor in STATA. Name each variable t0, t1, t2 and t3 as shown below

Figure 14: Stock Price Paths in STATA

and enter the stock prices according to table (2). The program given in Appendix (7.2) is

a do-�le for STATA that values the American option in the LSM method. As we continue the

numerical example, the implementation of the least squares Monte Carlo method in STATA

for an American put option is given along.

Our goal is to solve for the stopping rule that maximizes the value of the option at each

point along each path. The algorithm is recursive, and we start considering the last time
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period for the option. Following the optimal strategy at time 3, the cash �ow realized by

the optionholder, conditional on not exercise the option before maturity, are presented in the

cash-�ow matrix

Path t = 1 t = 2 t = 3
1 - - .26
2 - - .00
3 - - .17
4 - - .16
5 - - .00
6 - - .32
7 - - .02
8 - - .00

Table 3: Cash-Flow Matrix at Time 3

This is the cash �ow a holder of a European option would get if the option were European

instead of an American option. Discounting back the cash �ow three periods and average

over all paths gives us the European value of the option, which is 0.1000.

The commands in STATA are shown below. As the method is recursive, we consider time

3 �rst. First we generate the strike price sp and a variable for the cash �ow at time 3 P3.

The replace command sorts out in-the-money paths. d0 generates the cash �ow matrix at

time 3, by discounting the cash �ow back to time zero. The summarize command take the

average over all paths which gives the value of the European put option as shown in Figure

(15).

// ----------------------- t = 3 -----------------------------------------

gen sp=1.05

gen P3=sp-t3

replace P3=0 if P3<0

gen d0=exp(-0.05*3)*P3

summarize d0 // the mean is the value of the EU option

Figure 15: STATA: Value of the European Put Option
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At time 2 the optionholder must decide if he want to exercise the option immediately or

continue to hold the option until the �nal expiration date time 3. Let X denote the stock

price where the option is in-the-money at time 2. The matrix presents six possible paths

for the stock prices where the option is in-the-money. Let Y denote the discounted cash

�ow received at time 3 if the option is not exercised at time 2. The conditional expectation

function is better estimated when we consider only in-the-money paths for the stock. The

e�ciency of the algorithm is also signi�cantly improved. Vector X and Y are given in the

matrix below

Path Y X
1 .26×.95122 .91
2 - -
3 .17×.95122 .71
4 .16×.95122 .84
5 - -
6 .32×.95122 .94
7 .02×.95122 .81
8 .00×.95122 1.04

Table 4: Regression at Time 2

Regressing Y on a constant X and X2, will give an estimate for the expected cash �ow

from continuing to hold the option, conditional on the stock price at time 2. We obtained the

conditional expectation function E [Y | X] = −2.937 + 7.228X − 4.172X2. By inserting the

value of X, where the stock price is in-the-money at time 2, into the conditional expectation

function, we get an expected value of continuing to hold the option. The value of immediate

exercise is equal to the intrinsic value, 1.05−X. In the �rst column the value of immediate

exercise is given, and the expected value of continuation is given in the second column. We

compare these two values for each path, and exercise the option when immediate exercise is

higher or equal to the value of continuation.

Path Exercise Continuation
1 .14 .1856
2 - -
3 .34 .0917
4 .21 .1907
5 - -
6 .11 .1709
7 .24 .1804
8 .01 .0676

Table 5: Optimal Early Exercise Decision at Time 2
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This implies that it is optimal to exercise the option at time 2 for the third, fourth and

seventh path. The following matrix present the cash �ow received from exercising and the

cash �ow from continuing to hold the option.

Path t = 1 t = 2 t = 3
1 - .00 .26
2 - .00 .00
3 - .34 .00
4 - .21 .00
5 - .00 .00
6 - .00 .32
7 - .24 .00
8 - .00 .00

Table 6: Cash-Flow Matrix at Time 2

Observe that when the option is exercised at time 2, column for time 3 becomes zero.

This is because the option can only be exercised once and there will be no further cash �ows.

Future cash �ow can only occur at time 2 or time 3, but not both.

Below are the commands in STATA considered at time 2. First we generate a new variable

xt2 containing the stock prices at time 2. The replace command eliminates the cases where

the option is out-of-the-money. Then we generate a variable y2 which is the discounted

payo� at time 2. We need to generate the variable X2 called xt22, which is the stock price

squared. The regress command is estimating the conditional expectation function at time

2 by polynomial regression. Figure (16) shows the estimated coe�cients for the conditional

expectation function at time 2, E [Y | X] = −2.937+7.228X−4.172X2. Then the immediate

exercise value is obtained by generating the variable ex2. The replace command sorts out

the cases where the option is being exercised. The cash �ow matrix at time 2 will be made

by generating the variable P2. At the end, the replace command is updating the cash �ow

matrix at time 2 to be the same as in (6).

// ------------------------ t = 2 -----------------------------------------

gen xt2 = t2

replace xt2=. if xt2>sp // eliminate out-of-money cases

gen y2=exp(-0.05*1)*P3

gen xt22=xt2^2

regress y2 xt2 xt22 // estimate polynomial regression

predict y2hat, xb

gen ex2=sp-xt2

replace ex2=0 if ex2<y2hat
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gen P2=ex2 // set up P2

replace P2=0 if ex2==.

replace P3=0 if P2>0 // update P3

Figure 16: STATA: Regression at Time 2

Next, we analyze if the option should be exercise at time 1. From the stock price matrix,

at time 1 there are �ve paths where the option is in-the-money. For these paths, we de�ne

X as the stock price at time 1, and Y as the discounted cash �ow from time 2. The actual

realized cash-�ow along each path is used in de�ning Y. This is because discounting back the

conditional expected value could lead to an upward bias in the value of the option.

The nondashed elements in the matrix shows the vectors for X and Y .

Path Y X
1 - -
2 - -
3 .34×.95122 .74
4 .21×.95122 .97
5 - -
6 .00×.95122 1.02
7 .24×.95122 .89
8 .00×.95122 1.01

Table 7: Regression at Time 1

Again, we estimate the conditional expectation function at time 1, by regressing Y on a

constant X and X2. This gives the estimated conditional expectation function E [Y | X] =

−3.290 + 9.221X − 5.871X2.
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By substituting the value of X into the estimated conditional function, we obtain the

expected value of continuation. Column one represent the immediate exercise value and

column two gives the estimated expected value of continuation. Comparing the two values,

we see that we should exercise for the sixth and eighth paths.

Path Exercise Continuation
1 - -
2 - -
3 .31 .3185
4 .08 .1303
5 - -
6 .03 .0072
7 .16 .2662
8 .04 .0342

Table 8: Optimal Early Exercise Decision at Time 1

The commands to do the valuation of the option at time 1 is given below. First we generate

a variable xt1 which is the stock price at time 1. Then the cases where the option is out-of-the-

money is eliminated. Generation of the variable y1 is the discounted cash �ow at time 1 for

in-the-money cases. Then we generate a new variable X2, which is the stock price squared at

time 1. Again, we use polynomial regression to obtain the conditional expectation function at

time 1. Figure (17) shows the estimated coe�cients for the conditional expectation function

at time 1, E [Y | X] = −3.290 + 9.221X − 5.871X2. ex1 gives the immediate exercise value

and the replace command sorts out the cases where the option is being exercised. P1 gives

the cash �ow matrix at time 1 and the replace command updates the matrix for where it is

optimal to exercise the option.

// ------------------------ t = 1 -----------------------------------------

gen xt1 = t1

replace xt1=. if xt1>sp // eliminate out-of-money cases

gen y1=exp(-0.05*1)*P2

gen xt12=xt1^2

regress y1 xt1 xt12 // estimate polynomial regression

predict y1hat, xb

gen ex1=sp-xt1

replace ex1=0 if ex1<y1hat

gen P1=ex1

replace P1=0 if ex1==.

replace P2=0 if P1>0 // update P2
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replace P3=0 if P1>0 // update P3

Figure 17: STATA: Regression at Time 1

After identifying the optimal exercise strategy for time 1, 2 and 3, we are able to identify

when we should exercise the option for each path. The number one indicates where the

option should be exercised.

Path t = 1 t = 2 t = 3
1 0 0 1
2 0 0 0
3 0 1 0
4 0 1 0
5 0 0 0
6 1 0 0
7 0 1 0
8 1 0 0

Table 9: Stopping Rule

From this speci�cation of the stopping rule, is easy to determine the realized cash �ow by

following the stopping rule. Where there is a one in the matrix above, the option is exercised

at that time. Below is the realized cash �ow for each path along with the time it should be

exercised.
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Path t = 1 t = 2 t = 3
1 .00 .00 .26
2 .00 .00 .00
3 .00 .34 .00
4 .00 .21 .00
5 .00 .00 .00
6 .03 .00 .00
7 .00 .24 .00
8 .04 .00 .00

Table 10: Option Cash Flow Matrix

Discounting back the future cash �ow for each path by e−rt to time zero, and averaging

over all paths one �nds the value of the American put option. This gives an value of 0.1256 for

the American put option. Compared with the value of 0.1000 for the European put option.

The �nal commands values the American option today. Three new variables are generated

pd3, pd2 and pd1, which are the discounted cash �ows at time 1, 2 and 3. Then we generate

total which is the sum of these discounted cash �ows. At the end, by the command summarize

total, we obtain the value of the American put option as seen in Figure (18).

//------------------------- t = 0 ------------------------------------------

gen pd3 = exp(-0.05*3 )*P3

gen pd2 = exp(-0.05*2 )*P2

gen pd1 = exp(-0.05*1 )*P1

gen total = pd1 + pd2 + pd3

summarize total // the mean gives the value of the AM option

//--------------------------------------------------------------------

Figure 18: STATA: Value of the American Put Option

Table (11) summarizes the value obtained for the American put option by using the three

di�erent numerical methods. The European put option values are also given to compare the

value. American put options typically has a larger value than the European put due to the

feature of early exercise as seen in the table. The reason for the lower value in the �nite

di�erence method, comes from the boundary condition. We only need to �x one boundary
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condition in the implicit �nite di�erence method, that is for Smax, and can be di�cult to

choose. We set Smax = 2 · S = 2 in this example. As N → ∞ the boundary should be set

higher. Conversely, for a shorter time period, the boundary should be deceased.

Numerical Method American Put European Put

Binomial Method 0.1391 0.0881
Finite Di�erence Method 0.1133 0.1099
Least Squares Monte Carlo 0.1256 0.1000

Table 11: Comparison of Results

4.4 Comparison of the Valuation Methods in Matlab

Table (12)6 contains values for an American put option by using the three di�erent valuation

methods with a given set of parameters. We compare the di�erence of the value obtained for

the American put option for the methods used. The idea behind the early exercise column, is

to see how much more the American put option is worth because of its early exercise feature

as opposed to the value of the European put option which can only be exercised at maturity.

S is the initial stock price, which has �ve di�erent values. The volatility σ has two di�erent

values. Number of years until maturity is given by T and has two values. The strike price

K = 100. The risk-free rate is r = 5%. Matlab was used to obtain the values in the table. To

replicate the table, the programs in Appendix (7.3), (7.4) and (7.5) can be used. Although,

one should note that the program for least square Monte Carlo will give di�erent values in

every attempt. This is because it is simulation and the stock price paths di�er for every

attempt. The program allowed for a maximum of N = 50 time steps andM = 50 stock price

steps.
6Based on Longsta� and Schwartz's (2001) Table 1, Section 3 Valuing American Put Options, page 127.
Bin M (1) is the price of the American put option using the binomial method.
FDM (2) is the price of the American put using the �nite di�erence method.
LSM (3) is the price of the American put using the least squares Monte Carlo method.
BS (4) is the price of a European put obtained the Black-Scholes formula.
(1)-(3) is the di�erence in price of the American put option obtained by the binomial method and least squares Monte Carlo

method
(2)-(3) is the di�erence in price of the American put option obtained by the �nite di�erence and least squares Monte Carlo

method
(3)-(4) is the early exercise value showing how much more the American put option is worth compared with the European

put option
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S σ T Bin M (1) FDM (2) LSM (3) BS (4) (1)-(3) (2)-(3) Early exercise value (3)-(4)

90 .20 1 11.4852 10.9195 12.6251 10.2141 -1.1399 -1.7056 2.4110

90 .20 2 12.6012 11.8183 11.7325 10.3925 0.8687 0.0858 1.3400

90 .40 1 18.1466 17.6936 18.2927 17.3726 -0.1461 -0.5991 .9201

90 .40 2 22.0408 21.3107 20.8924 20.3398 1.1484 0.4183 .5526

95 .20 1 8.4417 8.8481 9.9781 7.6338 -1.5364 -1.1300 2.3443

95 .20 2 9.9012 9.8015 11.6686 8.3250 -1.7674 -1.8671 3.3436

95 .40 1 15.8433 16.0600 15.5315 15.1306 0.3118 0.5285 .4009

95 .40 2 19.9546 19.7118 22.4999 18.4702 -2.5453 -2.7881 4.0297

100 .20 1 6.0737 7.0858 9.8146 5.5735 -3.7409 -2.7288 4.2411

100 .20 2 7.7011 8.0967 12.8670 6.6105 -5.1659 -4.7703 6.2565

100 .40 1 13.6257 14.5564 15.6318 13.1458 -2.0061 -1.0754 2.4860

100 .40 2 17.9393 18.2340 21.0994 16.7739 -3.1601 -2.8654 4.3255

105 .20 1 4.3120 5.0976 4.8299 3.9808 -0.5179 0.2677 .9219

105 .20 2 6.0290 6.3069 8.4242 5.2077 -2.3952 -2.1173 3.2165

105 .40 1 11.8889 12.6410 19.0821 11.3976 -7.1932 -6.4411 7.6845

105 .40 2 16.3389 16.5225 16.1370 15.2364 0.2019 0.3855 .9006

110 .20 1 3.0096 3.6014 4.4898 2.7858 -1.4802 -0.8884 1.7040

110 .20 2 4.6354 4.8904 5.7079 4.0738 -1.0725 -0.8175 1.6341

110 .40 1 10.2316 10.9597 10.1144 9.8642 0.1172 0.8453 .2502

110 .40 2 14.8420 14.9792 14.3669 13.8436 0.4751 0.6123 .5233

Table 12: Simulation of an American Put Option

In column 8 and 9 we observe that there are more negative values in the di�erences than

positive di�erence. This means that the least squares Monte Carlo method has the tendency

to slightly overvalue the option. One explanation for the di�erences could be the length of

the time steps and/or the length of stock price steps, as all these methods has a convergence

theorem, meaning that when M →∞ and N →∞ then the value will converge to the true

value of the option.

The last column presents the di�erence in early exercise value. Here, we took the di�erence

between the value in the least squares Monte Carlo for an American put option with early

exercise feature with the value of an European put option that could only be exercised at

maturity. Observe how much more value the American put option gives compared to the

European.

Figure (19) illustrates a comparison of each valuation method of how fast the option

price is being calculated in terms of time taken. To obtain these two graphs one can use the

program given in the Appendix (7.6). The parameter numbers in bold in Table (12) were

used for this comparison of the methods. The risk free rate is r = 5% and strike price is

K = 100 . Number of grid space and simulation paths were set to M = 10000. Maximum

41



time steps were N = 100. The graph on the top in �gure (19) illustrates the resulting price

of the American option in terms of time taken. The price of the American put is 11.1797 for

this simulation as seen on the Y−axis. The second plot shows the computational time taken

for each method. The maximum time to compute is 0.3586 seconds for the LSM method,

which is relatively quick. As for the binomial and �nite di�erence the computation was even

quicker.

Figure 19: Computational Time

Figure (20) plots the comparison of each methods in a 3D surface. The option price is

shown on the Y−axis ranging from 0 to 100. On the X−axis we have time to maturity

ranging from 0 to 1. The steps of the stock price is shown on the Z−axis ranging from 0 to

800. The colored surface in the back is the �nite di�erence method, the blue surface is the

binomial method and the red and blurry dots in front is the least squares Monte Carlo. Each

of the three surfaces are compared in this plot, and demonstrates the domain (minimum

and maximum values) for the option price, time to maturity and the stock price steps. For

example consider the blue surface for the binomial method. The maximum value of the stock

price is 665 and the maximum value of the option price is 87.
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Figure 20: 3D Surface of the Valuation Methods

5 Conclusion

The goal of this thesis was to �nd the optimal stopping time for an American put option

where the payo� is maximized. We introduced three possible valuation frameworks to value an

American put option numerically. Explanation of how to implement each method for di�erent

softwares was given. First, we introduced the binomial method to �nd the optimal exercise

strategy along the lattice three. Then we presented the implicit �nite di�erence algorithm

which approximates the partial di�erential equation by a di�erence equation. Implementation

of the binomial method and the implicit �nite di�erence method was given by a numerical

examples in Excel. Last, we presented the least squares Monte Carlo approach to �nd the

optimal stopping time maximizes the value of the American put option. We showed how

to implement the least squares Monte Carlo approach by using STATA. At the end, we

compared the valuation methods in terms of time taken to compute the value and looked

at the di�erences in early exercise value of an American put option with the European put

option value.

Suggested future research would be to include alternative basis function and check the

performance by using the least squares Monte Carlo method. One could also try to estimate

the conditional expectation function by using other alternative methods of ordinary least

squares.
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7 Appendix

7.1 STATA: Generating a Stock Price Path to Use in the LSM

Below is a program to generate stock price paths. To make your own example some

parameters in the program can be changed. Observations is the length of the price path

that one can change if a longer time frame is needed. The initial price s can be adjusted, as

well as µ, σ2 and δt. It is important to have the same value in set obs 4 as in the command

forvalues i=2/4. By running this program for example eight times, one obtain eight di�erent

price paths.

//program ppath1

drop _all /* clear workspace */

set obs 4 /* length of price path */

set matsize 1000 /* reserve space for matrix */

gen xi=rnormal(0,1) /* generate pseudo normal realizations */

gen s=1 /* intialize price path (initital price) */

//--------------------------input-----------------------------------------------

scalar mu=0.05

scalar var=0.1024

scalar del=1/3

//------------------------------------------------------------------------

scalar sqrtdel=sqrt(del) /* square root of delta */

scalar std=sqrt(var) /* compute standard deviation */

mkmat xi, matrix(e) /* convert variable e to matrix xi */

mkmat s, matrix(S) /* convert variable s to matrix S */

matrix list e

matrix list S

forvalues i=2/4 {

matrix S[`i',1] = S[`i'-1,1]*exp((mu-0.5*var)*del+ std*sqrtdel*e[`i',1]) }

matrix list S

svmat S /* make matrix S into a STATA variable S1 */

list S1

gen t=_n

tsset t

tsline S1

//end
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7.2 STATA: Program to Value an American Put Option in the Least

Squares Monte Carlo Method

This program values American and European put options. Enter these commands in a do-�le

in STATA and press do. Remember to create the stock price paths in the data editor before

running this program.

//--------------------------LSAM-----------------------------------

// this do file performs all computations necessary to generate

// the example on pages 32-39.

// ----------------------- t = 3 -----------------------------------------

gen sp=1.05

gen P3=sp-t3

replace P3=0 if P3<0

gen d0=exp(-0.05*3)*P3

summarize d0 // the mean is the value of the EU option

// ------------------------ t = 2 -----------------------------------------

gen xt2 = t2

replace xt2=. if xt2>sp // eliminate out-of-money cases

gen y2=exp(-0.05*1)*P3

gen xt22=xt2^2

regress y2 xt2 xt22 // estimate polynomial regression

predict y2hat, xb

gen ex2=sp-xt2

replace ex2=0 if ex2<y2hat

gen P2=ex2 // set up P2

replace P2=0 if ex2==.

replace P3=0 if P2>0 // update P3

// ------------------------ t = 1 -----------------------------------------

gen xt1 = t1

replace xt1=. if xt1>sp // eliminate out-of-money cases

gen y1=exp(-0.05*1)*P2

gen xt12=xt1^2

regress y1 xt1 xt12 // estimate polynomial regression

predict y1hat, xb

gen ex1=sp-xt1

replace ex1=0 if ex1<y1hat
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gen P1=ex1

replace P1=0 if ex1==.

replace P2=0 if P1>0 // update P2

replace P3=0 if P1>0 // update P3

//------------------------- t = 0 ------------------------------------------

gen pd3 = exp(-0.05*3 )*P3

gen pd2 = exp(-0.05*2 )*P2

gen pd1 = exp(-0.05*1 )*P1

gen total = pd1 + pd2 + pd3

summarize total // the mean gives the value of the AM option

//--------------------------------------------------------------------
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7.3 MATLAB: Program to value an American Put Option in the

Binomial Method (Cox, Ross and Rubinstein)

A zip �le containing all the programs used in Matlab can be found here Pricing American

Options by Mark Hoyle (2016).

To be able to value the American put option using the Matlab programs, one should enter

the function as shown here

function [Price,P,S,Time] =

AmericanOptCRR();S0=100;K=105;r=0.05;T=1;sigma=0.2;N=50;type=true;

and in line 16, N needs to have the same value as in the function to run this program.

This applies for Matlab programs in Appendix (7.4) and (7.5).

function [Price,P,S,Time] = AmericanOptCRR(S0,K,r,T,sigma,N,type)

%AmericanOptCRR - Price an American option via Cox-Ross-Rubinstein tree

%

% Returns the price of an American option computed using finite

% difference method applied to the Black Scholes PDE.

%

% Inputs:

%

% S0 Initial asset price

% K Strike Price

% r Interest rate

% T Time to maturity of option

% sigma Volatility of underlying asset

% N Number of points in time grid to use (minimum is 2, default is 50)

% type True (default) for a put, false for a call

if nargin < 6 || isempty(N), N = 50; end

if nargin < 7, type = true; end

dt = T/N;

u = exp(sigma*sqrt(dt)); d = 1/u;

a = exp(r*dt); p = (a-d)/(u-d);

% Create final Returns on the tree S{N+1} = S0*u^N*d.^(0:2:2*N);

if type

% Put option

P{N+1} = max(K-S{N+1},0);
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else

P{N+1} = max(S{N+1}-K,0);

end

Time{N+1} = T*ones(1,N+1);

% Now move back through time and calculate the expected return at previous

% nodes on the tree. Compare this with the immediate return. Exercise the

% option if the immediate return is greater than the expected return

for ii = N:-1:1

Q = zeros(1,ii);

V = zeros(1,ii);

for jj = 1:ii

% Share price at current node

V(jj) = S0*u^(ii-1)*d^(2*(jj-1));

% Expected value of option due if we continue to hold

E = p*P{ii+1}(jj)/a+(1-p)*P{ii+1}(jj+1)/a;

% Value of early exercise

if type

% Put option

I = max(K-V(jj),0);

else

I = max(V(jj-K),0);

end

% Value of option at this Node

Q(jj) = max(E,I);

end

S{ii} = V;

P{ii} = Q;

Time{ii} = ii*dt*ones(size(S{ii}));

end

Price = P{1};

P = [P{:}];

S = [S{:}];

Time = [Time{:}];
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7.4 MATLAB: Program to Value an American Put Option in the

Finite Di�erence Method

A zip �le containing all the programs used in Matlab can be found here Pricing American

Options by Mark Hoyle (2016).

function [P_FD,P,s,t] = AmericanOptFD(S0,K,r,T,sigma,N,M,type)

%AmericanOptFD - Price an American option via finite differences

%

% Returns the price of an American option computed using finite

% difference method applied to the Black Scholes PDE.

%

% Inputs:

%

% S0 Initial asset price

% K Strike Price

% r Interest rate

% T Time to maturity of option

% sigma Volatility of underlying asset

% N Number of points in time grid to use (minimum is 3, default is 50)

% M Number of points in asset price grid to use (minimum is 3, default is 50)

% type True (default) for a put, false for a call

if nargin < 6 || isempty(N), N = 50; elseif N < 3, error('N has to be at least 3'); end

if nargin < 7 || isempty(M), M = 50; elseif M < 3, error('M has to be at least 3'); end

if nargin < 8, type = true; end

% create time grid

t = linspace(0,T,N+1);

dt = T/N; % Time step

% Share price grid

Smax = 2*max(S0,K)*exp(r*T); % Maximum price considered

dS = Smax/(M);

s = 0:dS:Smax;

% Now find points either side of the initial price so that we can calculate

% the price of the option via interpolation

idx = find(s < S0); idx = idx(end); a = S0-s(idx); b = s(idx+1)-S0;

Z = 1/(a+b)*[a b]; % Interpolation vector

% Set up a pricing matrix to hold the values we compute
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P = NaN*ones(N+1,M+1); % Pricing Matrix (t,S)

% Boundary condition

if type

P(end,:) = max(K-(0:M)*dS,0); % Value of option at maturity - Put

else

P(end,:) = max((0:M)*dS-K,0); % Value of option at maturity - Call

end

P(:,1) = K; % Value of option when stock price is 0)

P(:,end) = 0; % Value of option when S = Smax

% Create matrix for finite difference calculations

J = (1:M-1)';

a = r/2*J*dt-1/2*sigma^2*J.^2*dt;

b = 1+sigma^2*J.^2*dt+r*dt;

c = -r/2*J*dt-1/2*sigma^2*J.^2*dt;

D = spdiags([[a(2:end);0] b [0;c(1:end-1)]],[-1 0 1],M-1,M-1);

% Finite difference solver

for ii = N:-1:1

y = P(ii+1,2:end-1)'+[-a(1)*K; zeros(M-3,1); -c(end)*0];

x = D\y; % Value of the option

if type

P(ii,2:end-1) = max(x,K-s(2:end-1)'); % Put

else P(ii,2:end-1) = max(x,s(2:end-1)'-K); % Call

end

end

% Extract the final price P_FD = Z*P(1,idx:idx+1)';

end
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7.5 MATLAB: Program to value an American put Option in the

Least Squares Monte Carlo Method

A zip �le containing all the programs used in Matlab to price American options can be found

here Pricing American Options by Mark Hoyle (2016).

function [Price,CF,S,t] = AmericanOptLSM(S0,K,r,T,sigma,N,M,type)

%AmericanOptLSM - Price an American option via Longstaff-Schwartz Method

%

% Returns the price of an American option computed using finite

% difference method applied to the Black Scholes PDE.

%

% Inputs:

%

% S0 Initial asset price

% K Strike Price

% r Interest rate

% T Time to maturity of option

% sigma Volatility of underlying asset

% N Number of points in time grid to use (minimum is 3, default is 50)

% M Number of points in asset price grid to use (minimum is 3, default is 50)

% type True (default) for a put, false for a call

if nargin < 6 || isempty(N), N = 50; elseif N < 3, error('N has to be at least 3'); end

if nargin < 7 || isempty(M), M = 50; elseif M < 3, error('M has to be at least 3'); end

if nargin < 8, type = true; end

dt = T/N;

t = 0:dt:T;

t = repmat(t',1,M);

R = exp((r-sigma^2/2)*dt+sigma*sqrt(dt)*randn(N,M));

S = cumprod([S0*ones(1,M); R]);

ExTime = (M+1)*ones(N,1);

% Now for the algorithm

CF = zeros(size(S)); % Cash flow matrix

CF(end,:) = max(K-S(end,:),0); % Option only pays off if it is in the money

for ii = size(S)-1:-1:2

if type

Idx = find(S(ii,:) < K); % Find paths that are in the money at time ii
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else

Idx = find(S(ii,:) > K); % Find paths that are in the money at time ii

end

X = S(ii,Idx)'; X1 = X/S0;

Y = CF(ii+1,Idx)'*exp(-r*dt); % Discounted cashflow

R = [ ones(size(X1)) (1-X1) 1/2*(2-4*X1-X1.^2)];

a = R\Y; % Linear regression step

C = R*a; % Cash flows as predicted by the model

if type

Jdx = max(K-X,0) > C; % Immediate exercise better than predicted cashflow

else

Jdx = max(X-K,0) > C; % Immediate exercise better than predicted cashflow

end

nIdx = setdiff((1:M),Idx(Jdx));

CF(ii,Idx(Jdx)) = max(K-X(Jdx),0);

ExTime(Idx(Jdx)) = ii;

CF(ii,nIdx) = exp(-r*dt)*CF(ii+1,nIdx);

end

Price = mean(CF(2,:))*exp(-r*dt);

end
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7.6 MATLAB: Program to Compare the Valuation Methods

A zip �le containing all the programs used in Matlab can be found here Pricing American

Options by Mark Hoyle (2016).

Below is the program to compare the valuation methods in terms of computational time.

S0 is the initial stock price. K is the strike price. T is the time to maturity. sigma is the

volatility. M is the number of stock price steps (�nite di�erence)/ length of price path (least

squares Monte Carlo). N is the time steps. By changing these parameters one can obtain a

graph of the di�erence in computational time and 3D plots for comparison of the valuation

methods.

%% Compare the various methods

% Try up to 100 timesteps and compare the results in terms of time taken

% and how they agree

S0 = 90; K = 100; r = 0.05; T = 1; sigma = 0.2;

Timings = zeros(98,3);

Results = zeros(98,3);

M = 10000; % Number of grid spacings/MC paths for LSM and FD

for N = 3:100

tic;

Results(N-1,1) = AmericanOptCRR(S0,K,r,T,sigma,N);

Timings(N-1,1) = toc;

tic;

Results(N-1,2) = AmericanOptFD(S0,K,r,T,sigma,N,M);

Timings(N-1,2) = toc;

tic;

Results(N-1,3) = AmericanOptLSM(S0,K,r,T,sigma,N,M);

Timings(N-1,3) = toc;

end

%% Plot the results of this

subplot(2,1,1);

plot(Results);

grid

title('Option price','fontsize',14);

xlabel('Number of timesteps','fontsize',14);

ylabel('Option price','fontsize',14);

legend('CRR','FD','LSM','location','SE');
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subplot(2,1,2);

plot(Timings);

grid

title('Time taken to compute','fontsize',14);

xlabel('Number of timesteps','fontsize',14);

ylabel('Method timings','fontsize',14);

legend('CRR','FD','LSM','location','NW');

%% How do they compare over a surface?

[Price,Pcrr,Scrr,Tcrr] = AmericanOptCRR(S0,K,r,T,sigma,100);

[Price,Pfd,Sfd,Tfd] = AmericanOptFD(S0,K,r,T,sigma,100,100);

[Price,Plsm,Slsm,Tlsm] = AmericanOptLSM(S0,K,r,T,sigma,100,100);

figure;

surf(Sfd,Tfd,Pfd); shading interp

line(Slsm,Tlsm,Plsm,'linestyle','none','marker','.','color','r');

line(Scrr,Tcrr,Pcrr,'linestyle','none','marker','.','color','b');

data.CRR.P = Pcrr;

data.CRR.S = Scrr;

data.CRR.T = Tcrr;

data.FD.P = Pfd;

data.FD.S = Sfd;

data.FD.T = Tfd;

data.LSM.P = Plsm;

data.LSM.S = Slsm;

data.LSM.T = Tlsm;

save AMERICAN_OPTION_DATA data;
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