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Abstract 

 

In this thesis, we will use the natural and horizontal visibility graph algorithms to look at financial 

time-series. We will apply the two algorithms to time-series generated from thirteen sets of 

simulations with the help of GARCH-processes, as well as ten subsets of daily data from S&P 500, 

both in its raw form, and in terms of returns. The five network statistics mean degree, average 

shortest path length, assortativity, local transitivity and global transitivity will be used in an 

attempt to see whether the visibility graph algorithms are in fact able to differentiate between 

time-series of different structures. This thesis will contribute to the literature with a more 

extensive investigation of the visibility graph’s behavior when applied to financial time-series than 

we have yet to see. The results obtained in this thesis will show that especially the natural visibility 

graph has the ability to differentiate between different time-series, and that it is an analysis tool 

that deserves more research in the future.  
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1. Introduction 

Time-series analysis of financial processes is undoubtedly an important aspect in the understanding of 

financial data. By performing a time-series analysis on the data, one can obtain important statistics, 

estimated parameters and other characteristics that can later be used to understand, predict and forecast 

the behavior of the data.  

As a variety of time-series analysis tools has been popular for a good amount of time, the research has 

obviously come a long way in this field. However, most methods of time-series analysis have some 

prerequisite of the data’s structure, like for example stationarity. When time-series data are stationary, it 

shows constant mean and variance through time, but this is normally not seen in financial time-series, and 

transformation of the data is necessary in order to make it compatible with the analysis-tool to be used. 

Some examples of ways to transform data are to use returns instead of prices or to use log transformations 

of the data. While these transformations often are effective, in that it saves the essence of the data, while 

allowing you to reliably analyze it, some information of the original time-series will also inevitably be lost. 

As a reason, it is important and interesting to still investigate new methods of time-series analysis that can 

avoid these transformations, or possibly rely on alternative structures. One form of alternative analysis 

that has grown in popularity over the last decade is complex network theory. For it to be used effectively 

on a time-series, the time-series will have to be plotted into a network with the help of an algorithm. 

Consequently, some information will be lost here, as in the case for classical linear time-series analysis, 

but depending on the algorithm chosen, theory suggests it should be possible to avoid transformations 

that remove the non-linear properties of the data.  

This paper will cover analysis of time-series by complex network theory, and the two algorithm we have 

chosen to utilize are one who was first introduced by Lacasa, Luque, Ballesteros, Luque, and Nuño (2008) 

called the visibility graph, and its successor, the horizontal visibility graph (Luque, Lacasa, Ballesteros, & 

Luque, 2009). These algorithms will be discussed thoroughly in later sections. However, it is worth noting 

that they are straightforward geometric algorithms, making it suitable for virtually every time-series you 

can imagine.   

Although the two visibility algorithms have been around for about a decade, there are still question marks 

regarding their effectiveness as an analytical tool, especially from a financial point of view. In an effort to 

get a better base of knowledge surrounding this tool, we will further investigate its properties.  
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In a recent paper by Zhang, Zou, Zhou, Gao, and Guan (2017) it was studied how visibility graphs and the 

statistics gathered from it would behave when applied to autoregressive processes of form AR(1) and 

AR(2). Several different parameters and combinations of parameters were used for the AR(1) and AR(2)-

process, both positive and negative. Motivated by the mentioned study, we will be performing similar 

tests, but rather than studying autoregressive processes, we will be looking towards a better financial 

interpretation. Consequently, generalized autoregressive conditional heteroscedasticity-processes, more 

famously known as GARCH will be used.  

The GARCH-model was first introduced by Bollerslev (1986) as an extension of the autoregressive 

conditional heteroscedasticity-model (ARCH) proposed by Engle (1982). Ever since, GARCH has been an 

extremely popular tool in financial forecasting and time-series modeling, and the most popular type, 

GARCH(1,1) has been said to describe the volatility dynamics of almost any financial time-series (Engle, 

2004). What makes GARCH-processes very interesting and well suited for what we want to do, is that 

rather than assuming that the error of variance always is constant, it models a process where the variance 

changes with time.  

First we will use GARCH(1,1) to estimate the parameters from a time-series consisting of daily return-data 

from the S&P 500-index. These estimated parameters will be used as a basis-point in our simulations, but 

we will also vary them, and in total perform simulation of thirteen different parameter-combinations. We 

have chosen to investigate six different combinations that we believe will cover the parameter space in an 

adequate way, and will perform seven simulations where one or both of the two parameters are set to 

zero. In addition, we will look at natural visibility graphs and horizontal visibility graphs on 10-year subsets 

of the S&P 500-index. This will be done for both the price-series as well as the return-series.  

Similarly to the mentioned study from Zhang et al. (2017), we will keep our focus on five different network 

statistics. These are degree distribution, average shortest path length, assortativity by degree, global 

transitivity and local transitivity, and will all be described further in later sections. These are statistics that 

are common of use in network theory, and should give us a good idea about the properties of the networks 

created from the different time-series. In general, there are limited information and knowledge in the 

literature about how natural visibility graphs and horizontal visibility graphs behave when applied to 

financial time-series. 

As we will see in the Section 2, most of the research in the literature has had a focus on what kind of 

networks the visibility algorithms are creating, while few has investigated what the networks statistics 

actually look like under controlled conditions. We believe our focus on how the network statistics differ 
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between different time-series, and whether these network statistics actually can be used to describe a 

financial time-series, clearly separate itself from previous studies within this field. This also includes the 

mentioned study by Zhang et al. (2017) that we have used as motivation for this thesis, considering how 

they looked at whether their network statistics was following similar patterns as their auto correlation 

function, and we, as mentioned have a slightly different approach where we use them to differentiate 

between different types of time-series.  

With this study, we will take a significant step towards describing the behavior of visibility graph algorithms 

in a financial context, something we deem as an important part in the process of eventually evaluating the 

effectiveness of this analytical tool. Our combination of data sets, the different network statistics and both 

the natural and horizontal visibility graph should provide us with information that can later be of value 

when investigating most financial time-series.  

Going from here, this thesis will be structured in the following way. A literature-review mainly concerning 

network theory and applications for the visibility graph will be given in Section 3. In Section 4 we will give 

a review of the methodology used, and will describe the processes we have conducted to obtain our 

results. Section 5 will give information on the data-sets used, as well as the sources they are obtained 

from, and we will then present our results for both simulation-study and the study of S&P 500 in section 

6. Finally, the thesis will be completed with a discussion in Section 7 and a conclusion in section 8.  
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2. Literature review 

As we briefly discussed in the introduction, the motivation behind this study is to investigate the possible 

success of an analytical tool that can be applied to data that show non-linear properties. Non-linear 

properties are something we often see in financial data, but are something most analytical tools are unable 

to operate with, due to pre-requisites in the data’s structure. Brooks (2008, p. 380) states that it is 

especially three main sources of non-linearity that we often observe in financial data. The first is called 

leptokurtosis. This term refers to a distribution with fatter tails and a higher kurtosis than what would be 

the case in a traditional Gaussian distribution. Leptokurtosis is also commonly known as fat-tailedness, but 

we will stick to the former way of describing it in this paper.  

Secondly, we often observe what is called volatility clustering. As explained by Mandelbrot (1963) this is a 

tendency often seen in financial data, where the volatility of a time-series varies in bursts, rather than 

staying constant throughout the whole time-series. Easily told, it is the tendency of small changes being 

followed by small changes either positive or negative and for large changes to be followed by large changes 

either positive or negative.  

The third and final non-linear effect mentioned by Brooks (2008, p. 380) is something called leverage 

effects, which is a tendency seen in financial data where the volatility rises more after a big price fall than 

after a similar price rise.  

As we mentioned in the introduction, we will utilize network theory in this thesis. A network can be 

described as a simplified representation that reduces a system to an abstract structure (Newman, 2010, 

p. 2). A network is a collection of points that are joined together in pairs by lines in-between them. These 

points will be referred to as nodes by us, but are also often referred to as vertices in the literature. The 

lines between the nodes are referred to as edges. The nodes and edges can be labeled with several types 

of additional information of the connectivity, and the possibilities are too many for us to cover, but there 

are two types structures that are important to note in regards to the visibility graph. A network from a 

visibility graph algorithm is always connected and undirected. (Lacasa et al., 2008). What this implies will 

be discussed later in the thesis.  

Although the usage of complex network theory in time-series analysis is relatively new, network science 

stretches as far back as the mid-18th century, and possibly even further. The study of large complex 

networks started in the 1950s, and Erdös and Rényi (1959), (1960) took a substantial step towards the 

network modeling we see today, by introducing what is known as random graphs. Here it is assumed that 



10 
 

any given two nodes in a network have a certain probability of being connected to each other, and that 

the amount of total edges in the network consequently were dependent on this probability and the 

amount of nodes in the network. However, with the improvement of computers, it has later been shown 

that real-life networks rarely follow a complete random distribution of its edges, and two seminal complex 

network models has later been proposed. Watts and Strogatz (1998) introduced a network model called 

small-world networks. They showed with this model that networks can be highly clustered like for example 

regular lattices, yet have small path length between any two nodes, like we often observe in random 

graphs.  

A second highly popular model is the one of scale-free networks,  proposed by Barabási and Albert (1999). 

The authors demonstrate that a lot of real-life networks follow what is called scale-free properties, 

meaning that the networks degree distribution follows a power-law 𝑃(𝑘)~𝑘−𝑦. Especially two main 

mechanisms have been said to cause large networks to convert into scale-free networks. The first one is 

that these networks are continuously expanding through addition of new nodes in the network. The 

second is that new nodes in a network tend to connect itself with existing nodes of a high degree. This 

mechanism is often referred to as preferential attachment in the literature. 

The process of mapping a time series into a network has been widely discussed with the increased 

popularity of complex network theory since the beginning of this century. The process of transforming a 

time series into a complex network is interesting because of the possibility that it can provide us with 

information that are not available from classic linear time-series analysis, and especially in cases where 

information gets lost due to transformation of data, as we discussed in the introduction. Several methods 

of plotting a time-series into a network have been proposed in recent years, showing the growing interest 

in the topic. Although most of these methods will not be utilized in this paper, it is worth giving a brief 

review of the literature at hand.  

Zhang and Small (2006) developed a method of constructing complex networks from pseudo-periodic time 

series. Each cycle in the time series represents a node in the network, and whether nodes were connected 

or not was determined by the strength of temporal correlation between different cycles.  

Yang and Yang (2008) introduced an algorithm that constructed a complex network from the time series’ 

correlation matrix. A correlation coefficient is found for each element 𝐶𝑖𝑗  in the time-series, and 

connections in the network were based off this correlation coefficient. A critical value 𝐶𝑟  has to be chosen 

as a separating point between nodes that are connected and those who are not.  
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Xu, Zhang, and Small (2008) embedded a time-series into an appropriate phase-space following the 

methods of Packard, Crutchfield, Farmer, and Shaw (1980), and then using each phase-space point as a 

node to create a network.  

Lacasa et al. (2008) were the first to introduce the visibility graph algorithm, hereby referred to as the 

natural visibility algorithm to avoid confusion. In short, it is an algorithm for translating a time-series into 

a complex network. Every observation in the time series will be treated as a node in a network, and 

connection between nodes will be realized if no intermediate nodes intervene the visibility between them. 

An intermediate node will intervene the visibility if it lays as high or higher than the visibility-line created 

between the nodes at time t. The algorithm and its properties will be more thoroughly covered in Section 

3. What most importantly separates the natural visibility graph from the other methods of plotting time-

series into networks, is its straight-forward geometric interpretation. Its easy algorithm makes it 

theoretically possible to apply this technique to virtually any time-series you can imagine. However, 

whether the algorithm will be effective on all sorts of time-series is still something that needs to be 

investigated, and it is our understanding that the most successful implementation has been on time-series 

with constant mean.  

Several alternative ways to use the visibility graph algorithm has later been proposed. Luque et al. (2009) 

followed up the natural visibility graph with an algorithm for the horizontal visibility graph. Here, two 

nodes 𝑥𝑖  and 𝑥𝑗   can only be connected if no intermediate node is higher than the two nodes. In other 

words, this is an even simpler algorithm than the natural visibility graph, and the horizontal visibility graph 

will always be a subgraph of the natural visibility graph.  

We will utilize the natural and horizontal visibility graph algorithm in this paper, and they have both 

previously been successfully applied in a variety of fields. Some of these fields include hurricane data 

(Elsner, Jagger, & Fogarty, 2009), turbulence (Liu, Zhou, & Yuan, 2010), solar flares (Yu, Anh, & Eastes, 

2012), seismology (Telesca & Lovallo, 2012), wind speeds (Pierini, Lovallo, & Telesca, 2012) and human 

heartbeat dynamics (Shao, 2010), to name a few. 

Although the natural and horizontal visibility graph have not been extensively used in the financial world, 

some research has in recent years been done by using this method on economic and financial time-series. 

Long (2013) analyzed gold fixings from the London Bullion Market Association from 1971-2012 using the 

natural visibility graph algorithm. He found that both the return-series and price-series are fractal series 

with long-term correlation. By analyzing the relationship between the Hurst exponent and the degree 
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distribution, it was shown that the logarithmic price series is of fractional Brownian motion and the 

logarithmic return series agrees with fractal Gaussian noise. Furthermore, it was showed that the gold 

price-series is a small-world network with hierarchical characteristics, which means that the gold price 

fluctuates in form of waves, in agreement with Elliot’s wave theory. Similarly, Sun, Wang, and Gao (2016) 

investigated time-series on the North American gas price market, and found the network generated with 

the natural visibility graph to have both small-world and scale-free properties. The scale-free properties 

means that the impact on price fluctuations from the many low degree nodes are small, while the few high 

degree nodes having a great influence on the price fluctuation. The small-world characteristics means that 

the impact range of hubs is large or price fluctuations of a long period leads to hubs. High degree nodes 

often correspond to significant economic or geopolitical events, such as the Iraq war 2003, and is found to 

have a huge impact on the neighboring nodes in the network. 

Ni, Jiang, and Zhou (2009) applied the natural visibility graph to study the degree distributions extracted 

from fractional Brownian motions and multifractal random walks. They found that the degree distributions 

exhibit power-law behavior and that the power-law exponent is a linear function of the Hurst exponent 

inherent in the series. In addition, they showed that temporal correlation of the time-series is what mainly 

determines the degree distribution. 

Yang, Wang, Yang, and Mang (2009) applied the natural visibility graph to study six different exchange 

rate-series. First off all, they found that all the series they studied converted into scale-free networks with 

a hierarchical structure. They also found that the visibility graph can be used to find reliable values for the 

Hurst exponent in time-series that are of the fractional Brownian motion type. This finding is supported 

by Lacasa, Luque, Luque, and Nuño (2009), who proved that a fractional Brownian motion maps into a 

scale-free visibility graph and that the power-law degree distribution depends linearly on the Hurst 

exponent. 

Economic time series have also been studied using the natural visibility graph. Wang, Li, and Wang (2012) 

did a visibility graph analysis on four different Chinese macroeconomic time-series. The industry series 

converted into exponential networks and the GDP series converted into a scale-free network. All four 

networks also showed small-world properties, characterized by their high clustering coefficient and small 

average shortest path length. The observations in the series with a high degree was found to usually reflect 

turning points in the business activity. Wang et al. (2012) argued that the use of the natural visibility graph 

offers a new way to understand the dynamic processes of economic development. 
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Zhuang, Small, and Feng (2014) used the natural visibility graph to study the segmentation of developed 

financial markets. Time-series from industry sector Indices for the world and 22 developed markets from 

1973-2012 were studied. They found a clear trend of market integration in the time series. By dividing the 

full time-series into smaller 10-year periods, they were able to locate the historical incidents leading to 

increased integration and in some cases leading to a segmentation of the market. The use of the natural 

visibility graph allowed them to find large cycles and noise in the series by detecting different communities. 

The window from 2003-2012 was a relatively steady period when it comes to segmentation. They found 

that there were a few incidents early in the period that increased the market integration, but later in the 

period, some incidents led to market segmentation. The natural visibility graph allows them to locate 

incidents that drive either integration or segmentation in a market.  

As we mentioned earlier in the literature review, our focus will revolve around applications of the natural 

and horizontal visibility graph to financial time series. A more thorough look at how we plot time-series 

into networks with the two algorithms will be given in the next section, together with methodology 

surrounding GARCH, the network statistics utilized and the simulation strategy we have used.  
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3. Methodology 

3.1 GARCH-simulation 

As previously mentioned, we will be simulating data for this thesis with the help of a generalized 

autoregressive heteroscedasticity-process (GARCH) as proposed by Bollerslev (1986), which is an 

extension of the autoregressive conditional heteroscedasticity-model (ARCH) proposed by Engle (1982).  

The ARCH-model was developed as a solution to two problems often seen when analyzing financial data. 

The first being heteroscedasticity, meaning that the error of variance is not constant. A classical linear 

regression model can be written as 

𝑌 =  𝛾0 + 𝛾1𝑋1 + 𝛾2𝑋2 + ⋯ + 𝛾𝑞𝑋𝑞 + 𝑒,   𝑒 ~ 𝑁(0, 𝜎2) (1) 

In this model homoscedasticity is assumed, and failure to satisfy this assumption will likely mean that 

estimates of standard error will be wrong.  

The second reason for the development of the ARCH-model was the fact that financial data has a tendency 

to exhibit a volatility clustering (Mandelbrot, 1963), which we discussed in Section 2.  

What separates an ARCH model from a classical linear regression model like Equation (1), is while this 

often can be expressed the error distributed as 𝑒𝑡  ~ 𝑁(0, 𝜎2), the ARCH-model will have a variance of 

error which is conditional with time, giving us 𝑒𝑡  ~ 𝑁(0, 𝜎𝑡
2). Instead of the variance of error being 

constant, we can regress the conditional variance 𝜎𝑡
2 of the error term on the immediately previous values 

of the squared errors. The process of finding 𝜎𝑡
2 can be written in the following way 

𝜎𝑡
2 =  𝛼0 + 𝛼1𝑒𝑡−1

2 + 𝛼2𝑒𝑡−2
2 + ⋯ + 𝛼𝑞𝑒𝑡−𝑞

2 (2) 

Equation (2) is describing an autoregressive model of length AR(q), which would result in the ARCH-model 

being of form ARCH(q) as well. Basically any integer above zero can be used for q in the model, but a 

regression based off one previous value is normally more than sufficient (Engle, 2004). It is also worth 

noting that conditional variance, because of it being a squared number, has to be positive. For this 

condition to always be satisfied, some constraints are needed for the coefficients in the AR-model. It is 

common to set 𝛼𝑖 ≥ 0, 𝑖 > 0 for all values of 𝑖 larger than zero, although this is actually stricter than what 

is absolutely needed (Brooks, 2008, p. 389). 𝛼0 in the model is a constant that has to be larger than zero, 

but at the same time mostly are estimated to be very close to zero.   
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An ARCH(1)-model can for example be expressed in the following manner: 

𝑌 =  𝛾0 + 𝛾1𝑋1 + 𝛾2𝑋2 + 𝑒𝑡 ,         𝑒𝑡  ~ 𝑁(0, 𝜎𝑡
2) (3) 

𝜎𝑡
2 =  𝛼0 +  𝛼1𝑒𝑡−1

2 (4) 

However, the ARCH-model is rarely used in financial modelling anymore, due to some limitations which 

can be accounted for by some of the many models made to succeed the ARCH-model (Brooks, 2008, p. 

391). One of these models are the previously mentioned GARCH-model proposed by Bollerslev (1986).  

Where GARCH separates itself from ARCH is in that it estimates the conditional variance of error based of 

both the autoregressive part used in ARCH and a lag of previous conditional variances. Thus, we get 

𝜎𝑡
2 =  𝛼0 + 𝛼1𝑒𝑡−1

2 + ⋯ + 𝛼𝑞𝑒𝑡−𝑞
2 + 𝛽1𝜎𝑡−1

2 + ⋯ + 𝛽𝑞𝜎𝑡−𝑞
2 (5) 

And consequently for a GARCH(1,1) the conditional variance is forecasted as 

𝜎𝑡
2 =  𝛼0 + 𝛼1𝑒𝑡−1

2 + 𝛽1𝜎𝑡−1
2 (6) 

Where the beta-parameters are the ones forecasting a future conditional variance based on previous 

observations. Where ARCH can be said to be closely related to an AR-process due to its auto-regression of 

the variance errors, GARCH is more related to an autoregressive moving average-process (ARMA), since a 

moving average-process of the lagged conditional variances are added to the model.   

(Brooks, 2008, pp. 393-394) argues that the GARCH-model outperforms ARCH in several ways, including it 

being more parsimonious, which makes it avoid overfitting and as a consequence makes it less likely to 

breach the previously mentioned constraints on non-negativity in the conditional variance of error. At the 

same time it is said that any model of GARCH(p,q) higher than GARCH(1,1) rarely is used, since the latter 

is able to capture the volatility clustering in financial data in a sufficient way. This statement is supported 

by Engle (2004) who argues that GARCH(1,1) is considered as the workhorse among all the models that 

has been succeeding ARCH in the later years, and that it is able to describe almost any financial time-series.  

Consequently, we will be focusing exclusively on GARCH(1,1). We mentioned earlier that it is necessary to 

set some constraint for negative parameters in the ARCH-model. We will carry this constraint over to the 

GARCH-model, and just simulate with non-negative parameters. This way, we are absolutely sure that we 

avoid a situation where we estimate the conditional variance to be a negative number. A second constraint 

comes from the relationship between 𝛼1 and 𝛽1. The value of these two parameters must never equal or 

exceed one, giving us 𝛼1 +  𝛽1 < 1 as an unalterable constraint. When we estimate parameters from a 

time-series with a GARCH, the maximum log-likelihood approach will be used.  
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3.2 Simulation strategy 

As we mentioned earlier, there will in the case of GARCH(1,1)-simulation be a parameter space in which 

the parameter subscripts will constrained by. In total, we will investigate six different points within this 

parameter space. We believe this will give us a good idea about the results we can achieve over the 

parameter space as a whole. In addition, we will run seven simulations where one or both of the two 

parameters are set to zero.  

In order to create results we believe to be valid, we will run one hundred replications of each simulation. 

The GARCH(1,1)-simulation will obviously not generate the same time-series each time, and multiple 

replications are therefore needed to give validity to the estimations.  

Further, we will assume that all the network statistics we estimate from our time-series should come from 

a normal distribution. This makes us able to use maximum likelihood estimation to estimate the network 

statistics that will be presented later in this thesis. In all cases, the maximum likelihood estimation will 

simply be the arithmetic mean of observations, formally written as 

𝑋̅ =
∑ 𝑋𝑡

𝑁
𝑡=1

𝑁
(7) 

Where N obviously is the number of replications, in our case 100, and 𝑋𝑡
̅̅ ̅ indicates an estimation from a 

given simulation. At the same time, we can never be absolutely sure what the actual arithmetic mean of 

an unlimited amount of replications would be, and will have to create a confidence interval in which we 

believe the mean will lie. The confidence interval will be computed in the following way: 

 

𝑋̅  ± 𝑍𝛼 2⁄ ∗
𝜎

√𝑁
(8) 

Where 𝜎 is the standard deviation and 𝑍𝛼 2⁄  is alpha half percentage point from a z-table of a standard 

normal distribution. We will be working with a confidence interval of 95 %, giving us 𝛼 of 0.05, which is 

then divided by two, since we have a two-tailed distribution. This will ultimately lead to an approximate 

value of 1.96 for 𝑍𝛼 2⁄ . The confidence interval will in this situation represent our interval estimate of the 

mean of a given network statistic, and it is given by the estimated mean ± the confidence interval.  

Lastly, it is worth mentioning that all simulations in this thesis was done with 3000 observations, and that 

the first 500 were discarded, in order to avoid possible start-up transients and biases.  
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3.3 Visibility graph algorithms 

The visibility algorithm was first proposed by Lacasa et al. (2008). The algorithm is a simple and fast 

computational method that converts a time series into a graph consisting of nodes and edges. The graph 

constructed inherits several of the time series properties and theory suggests that the graph can be used 

to reliably study the time-series it was generated from.  

 

Figure 1: Example of the natural visibility algorithm applied to a time-series consisting of ten observations create by us. 

The visibility algorithm produces a graph from the time series. Two nodes in the graph are connected if 

they have visibility to each other. This implies that if you can draw a straight line between the top of the 

two nodes, that does not intersect with any other intermediate observation, the visibility criterion is 

fulfilled. More formally, Lacasa et al. (2008) establish the following visibility criteria for the natural visibility 

graph: in a given time-series (t, y), where t is the time variable and y is the value of an observation, two 

arbitrary data values (𝑡𝑎 , 𝑦𝑎) and (𝑡𝑏 , 𝑦𝑏) will have visibility, and consequently will become two connected 

nodes of the associated graph, if any other data (𝑡𝑐 , 𝑦𝑐) placed between them fulfills: 

𝑦𝑐 <  𝑦𝑏 + (𝑦𝑎 − 𝑦𝑏)
𝑡𝑏 − 𝑡𝑐

𝑡𝑏 − 𝑡𝑎

(9) 
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In Figure 1, we have given an example of a time-series where we have applied the natural visibility 

algorithm. We have visualized each observation in the time-series as a pole, where the value of the 

observation is the height of the pole. Lines are drawn between the poles, and these lines indicates that 

the visibility criterion has been fulfilled between two observations. Based on these fulfillments, we are 

able to create an adjacency matrix and a network. The meaning of the former will be described further 

down in this section. As we can see from the network on the right in Figure 2, we have turned the 

observations of the time-series in Figure 1 into nodes of a network, and the edges connecting the nodes 

are similar to the lines drawn in Figure 1.  

  

Figure 2: Adjacency matrix and graphical visualization for the network created from the time-series in Figure 1.  

According to Lacasa et al. (2008) there are three main structures that will always be present in a visibility 

graph. First of all, it is always a connected graph. What this means, is that if you pick two arbitrary nodes 

from the graph, they will always be indirectly connected by at least one possible path in-between them. 

With this assumption, another assumption follows, which is that all nodes must have at least one other 

node connected to it, also known as neighbor. In our case, the visibility graph will always be connected 

due to the fact that any given observation in a time-series are forming a node with a connected edge to 

the observation it immediately succeeds, and its immediate successor. Thus, it will be guaranteed that 

there exists a connection between all nodes in the graph. This leads to a situation where all nodes have at 

least two other nodes connected to it, except for the nodes created from the first and last observation in 

the time-series. They have at least one edge connected to them.  

Secondly, the graph will always be undirected. This means that the edges in the graph have no separation 

in terms of which way they are going from one node to another. Simultaneously, it will consequently not 

discriminate between edges coming in and going out from a node. For a network generated from a visibility 
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graph, this will lead to a loss of the information about time. In difference from a time-series, the graph will 

have no information about the sequence the observations happened in, nor whether observation  𝑡𝑎  or 𝑡𝑏  

happened first.  

At last, the visibility criterion is invariant under affine transformation of the time-series data. This means 

that the original time-series can be rescaled both horizontally and vertically without the graph being 

affected. At the same time, it will also be possible to do certain translations of the data, such as adding a 

linear trend, without it having any effect.  

The second algorithm we will apply in this thesis, the horizontal visibility graph, as first proposed by Luque 

et al. (2009), is a subgraph of the natural visibility graph. Here, two observations form directly connected 

nodes if, and only if, no intermediate observation is higher. Formally, we can write this as; 

𝑥𝑖 , 𝑥𝑗 > 𝑥𝑛, 𝑖 > 𝑛 > 𝑗 (10) 

Here 𝑥𝑖  and 𝑥𝑗  represent any two given nodes in a time-series, while 𝑥𝑛 represents every intermediate 

observation.  

In Figure 3, we have given an example of how the observations in a time-series are formed into a network 

with the horizontal visibility graph algorithm. The time-series used here is the same as the one in Figure 1, 

but the algorithms applied in the two cases are obviously different. The concept is the same, but as we 

said, in this case, the criterion is only fulfilled if both 𝑥𝑖  and 𝑥𝑗  are higher than any intermediate node 𝑥𝑛.  

Again we have transformed the time-series into an adjacency matrix and a network, as shown in Figure 4. 

The main thing to note between Figure 2 and Figure 4 is that the natural visibility graph algorithm clearly 

creates a network with more edges than the horizontal visibility graph algorithm does.  

As for the natural visibility graph algorithm, the three main structures we mentioned earlier are also 

present in the horizontal visibility graph algorithm. For the horizontal visibility graph, we have the 

possibility to discriminate between nodes going in and out. In this case, every node would send out two 

edges, the out-degrees, one in each horizontal direction, and the recipients would get the in-degree. 

However, we have not seen this method being applied in the literature, and will stick to the original 

horizontal visibility graph, as it was proposed by Luque et al. (2009).  
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Figure 3: Example of the horizontal visibility algorithm applied to a time-series consisting of ten observations created by us. 

We also mentioned earlier how every node has at least two edges connected to it, except for the first and 

last observation in the original time-series, which has at least one. This comes apparent in Figure 3 and 4, 

by looking at the node created from the 10th observation and comparing it to the other nine.  

 

Figure 4: Adjacency matrix and graphical visualization for the network created from the time-series in Figure 3. 

It is important to note that for both the natural visibility graph and the horizontal visibility graph, the length 

of the original time-series is important in evaluating the results obtained. As argued by Zhuang et al. (2014) 
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boundary effects can affect the properties of the visibility graph. We will also see later in this thesis, that 

some of the network statistics used require consistent time-intervals when used for comparative 

purposes. Lastly, it can be a challenge to find the length of a time-series that provides enough information 

to perform a visibility graph analysis, without making it so complex it becomes impossible to analyze. 

Rather than trying to find the optimal number of observations, we will make our decisions based on 

previous literature. In Zhuang et al. (2014), it was argued for the use of ten-year intervals when working 

on financial data, and we will stay consistent with that.  

Based on the connections we are able to obtain in the original time-series, an adjacency matrix will be 

created. We briefly mentioned it further up, and as we saw in both Figure 2 and 4, this matrix will consist 

of zeros and ones only, where one will indicate that two nodes are directly connected by an edge, while a 

zero-value will indicate no such connection. Any given two nodes in the network will be presented in the 

adjacency matrix (A) the following way: 

𝐴𝑖𝑗 = { 
1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑗 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                      

} (11) 

The adjacency matrix will be of form n by n, where n in this case is equal to the number of observations in 

the original time-series. The diagonal in the adjacency matrix will always consist of zeros, since we are 

operating with an algorithm where nodes are not connected to themselves. At the same time, we will 

always have ones in the items next to the diagonal, as a result of every observation being connected to its 

two closest neighbors. An adjacency matrix will in the case of undirected graphs always be symmetric, 

meaning that it looks the same above and below the diagonal. This means that 𝐴𝑖𝑗, and 𝐴𝑗𝑖  always will be 

of the same value.  

In Figure 5 we display a graphical interpretation of two different adjacency matrices generated with a time-

series consisting of 250 observations from S&P 500 return-series. In the graph, a connection is represented 

with a black dot, similarly to how it was represented by a 1 in the previous example of adjacency matrices. 

The one on the left is for the natural visibility graph, while the one on the right is for the horizontal visibility 

graph. This figure nicely shows us two important aspects about the graphs we study. First of all, we see 

clearly from the areas around diagonal the effect of all observations being connected with its nearest 

neighbors, and that observations have a tendency to connect to other observations that lay close to them. 

Connections observed further from the diagonal are very sparse. However, these observations are 

important as they often are related to the hubs of the network.  
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Figure 5: The adjacency matrix created from a natural visibility graph (left) and horizontal visibility graph (right), from a return 
series consisting of 250 observations from S&P 500. 

Secondly, we see an obvious difference between the natural visibility graph and the horizontal visibility 

graph in regards to the amount of edges created. The connections from the natural visibility graph 

undoubtedly spreads more out in the adjacency matrix, and we can see that there are a lot more nodes 

with a high degree. This is similar to what we saw in the examples of the time-series we used as an example 

above. 

While the adjacency matrix is a mathematical representation of the graph from a visibility graph, we can 

also exhibit it as a graphical figure. In Figure 6, we show how the same network as in Figure 5, but this time 

graphically. Again, we are showing the natural visibility graph on the left and the horizontal visibility graph 

on the right. As previously, we can see two main things: firstly, nodes are often connected to its nearest 

neighbors, and these connections create so-called neighborhoods, which are a heavy clustering of parts of 

the nodes in a graph. Secondly, we also here see a significant difference in the amount of edges between 

the two algorithms. In this visualization we have kept the nodes constant, and it helps to show how the 

horizontal visibility graph is a subset of the natural visibility graph. Every edge you can find in the horizontal 

visibility graph is also present in the natural visibility graph.   
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Figure 6: Natural visibility graph (left) and horizontal visibility graph (right) of a return series consisting of 250 observations from 
S&P 500. 

Additionally, we have in Figure 7 plotted similar networks as above, this time both are generated from the 

S&P 500 raw price-series. This shows the significant differences we obtain by using these two algorithms 

for different types of processes. The natural visibility graph (left) has a substantially larger amount of edges 

than the case was for the return-series. Because of the time-trend we often see in raw financial data, the 

visibility criterion is more easily and more often fulfilled than in the case of return-series. For the horizontal 

visibility graph, it visually looks like we have a similar situation with more edges for the raw series than the 

return-series, but as we will show in Section 5 this is actually not the case. What happens is that in addition 

to connection to its nearest neighbors, nodes in a horizontal visibility graph often connects with nodes far 

from itself in time. When we look at the visibility graph in regards to raw prices, we will often get highly 

clustered neighborhoods, created between the top of one price-cycle and the top of the next. These cycles 

can easily be seen by looking at the most clustered areas of the graphs below.  
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Figure 7: Natural visibility graph (left) and horizontal visibility graph (right) of a price series consisting of 250 observations from 
S&P 500. The time-frame is the same as in the return-series above. 

 

3.4 Network statistics 

As we briefly mentioned in previous sections, we will look at five main network statistics for complex 

networks. These five are degree distribution, assortativity, local and global transitivity (clustering 

coefficient) and average shortest path length. The networks statistics chosen were picked due to the same 

five network statistics being used by Zhang et al. (2017). Some of these network statistics have a 

fundamental standing in the complex network theory, and will be seen in virtually every study within this 

field, while others are of relatively less importance. In general, there exists nearly an unlimited amount of 

statistics than can be applied to a network, but in the context of our research problem, it seems reasonable 

to limit ourselves to the five network statistics mentioned above.  
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3.4.1 Node degree 

The degree of a node in a network is the amount of other nodes it is connected to (Newman, 2010, p. 133). 

A connection between two nodes is called an edge, and it is the amount of edges it has connected to it 

that makes up a node’s degree. In a directed graph, we would separate between incoming and outgoing 

edges, but in undirected graphs, as we will be working with, the degree is just the total number of edges 

connected to a node. If we denote 𝑘𝑖  as the degree of any given node, we can express this in term of the 

adjacency matrix 𝐴𝑖𝑗  in the following way: 

𝑘𝑖 = ∑ 𝐴𝑖𝑗

𝑛

𝑗=1

(12) 

In a network derived from a time-series, all nodes except for those from the first and last observation will 

have at least two edges connected to it. Most nodes in a network tend to have a relatively small number 

of edges, and for a graph derived from a time-series this will mean a value not much larger than two. From 

time to time we see single nodes with a very large degree. These nodes are called hubs, and is often found 

to have a significant influence on the network’s structure and statistical measures.  

A node’s degree can be described as a local network statistic, since it is looking at every node’s degree in 

isolation to the rest. However, we are mainly working with global network statistics in this paper, and will 

use the arithmetic mean of the node degrees in our presentations.  

The degree of the nodes in a graph can also be used to form the graph’s degree distribution, one of the 

most defining statistics of a network’s structure. If 𝑘𝑖  is the degree of a given node in the network, a degree 

density p(k) will give the fraction of nodes in the network with degree k. Consequently, the degree 

distribution is given as F(K)  =  p(k < K). As previously stated, a node’s probability of having a low degree 

tends to be high, and it has been shown that p(k) becomes lower as k grows. We will show examples of 

this for a network generated form S&P 500 in Section 6, although degree distribution is not the most 

important aspect of this thesis. The degree distribution is often suggested as a possible tool for 

determining what type of network one is dealing with. Barabási and Albert (1999) showed that the degree 

distribution of large networks tends to converge to a power law, and that if the degree distribution follows 

a power law, the network can be described as scale-free. Lacasa and Toral (2010) stated that one can 

differentiate between chaotic and correlated stochastic processes with help from the horizontal visibility 

graph in instances where the degree distribution followed an exponential distribution.  
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3.4.2 Assortativity 

Assortative mixing is a preference for nodes to connect with other nodes that are of similar nature in some 

way. In, for example, a social network this may be that people connect with people they find similar to 

themselves whether the similarity is of age, gender, race, income, interests or any other characteristic. 

One could also have disassortative mixing, which is when nodes tend to connect with nodes that are 

dissimilar to themselves. Assortative mixing may be examined by a variety of enumerative characteristics, 

but most network theorists choose to examine assortativity by node degree (Newman, 2003). Assortative 

mixing by degree is a special case of a scalar characteristic. It examines if nodes of a high degree tend to 

connect with other nodes of a high degree, and nodes of a low degree with other nodes of a low degree. 

The reason why this method is interesting is that a node’s degree in itself is a property of the network 

structure. 

Assortativity by degree is calculated by the assortativity coefficient r, which is the Pearson correlation 

coefficient of degree between pairs of linked nodes (Newman, 2002). When 𝐴𝑖𝑗 is a given observation in 

the adjacency matrix, 𝑘𝑖 and 𝑘𝑗  represents the degree of two arbitrary nodes, 𝛿𝑖𝑗 is the ratio between nodes 

and edges between a pair of nodes and m is the number of edges in the network. We can write the formula 

for the assortativity coefficient in the following way: 

𝑟 =  
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
) 𝑘𝑖𝑘𝑗𝑖𝑗

∑ (𝑘𝑖𝛿𝑖𝑗 −
𝑘𝑖𝑘𝑗

2𝑚
) 𝑘𝑖𝑘𝑗𝑖𝑗

(13) 

The values of r lie in the interval [-1,1] where a positive value indicates assortative mixing and a negative 

value shows disassortative mixing. If the value is 0 the network is non-assortative or in other words random 

in regards to assortativity. 

Newman (2002) examined multiple real world networks for the assortativity coefficient and found that 

while social networks normally were assortative, technical and biological networks often were 

disassortative. Newman (2002) also found that networks modelled according to the random graph theory 

of Erdos and Rényi (1960) and the scale-free model of Barabási and Albert (1999), had a coefficient of zero. 

The latter was deemed as a bit of a surprise, since scale-free networks often had been used to model 

networks with disassortative structures.  

A reason for this disassortative mixing can be a function of preferential attachment that often is found in 

networks. New nodes have a tendency to connect to already high degree nodes and this can cause 
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disassortative mixing throughout the network (Barabási & Albert, 1999). Although there has been done 

some research on assortative and disassortative mixing in a variety of networks, little research has been 

done in regards to network generated from economic and financial time-series, and it will therefore be 

hard to conclude on whether the results found theoretically are making sense or not. However, based on 

how the visibility graph is generated, where the hubs have good visibility over the time-series, and 

consequently often create an edge to other hubs in the network, we do expect most financial time-series 

to give networks with a positive assortativity-coefficient.  

 

3.4.3 Local and global transitivity 

Transitivity, often also called clustering coefficient in the literature, is a statistic that measures whether a 

node y and another node z are connected, when we already know that both y and z are connected to a 

third node x. Although there are several different interpretations of how to calculate the transitivity of a 

network we will stick to the interpretation mentioned above, which is also used by (Newman, 2010, p. 

198). These interpretations assume that the graph is undirected, as is the case for visibility graphs. Two 

different measures will be used, global and local transitivity.  

The global transitivity refers to the transitivity for the network as a whole. A coefficient between 0 and 1 

tells us about the probability of a given node and two of its connections being part of a triplet. Described 

in other words, what we measure is the ratio of connected edges that also form a triplet. We can write the 

formula for global transitivity as: 

𝐶 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑝𝑎𝑡ℎ𝑠 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑤𝑜

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ𝑠 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑤𝑜
(14) 

 

Another way of writing it is the following: 

𝐶 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑟𝑖𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘) ∗ 3

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑠
(15) 

Here a connected triple is three nodes that are connected with at least two edges. The number of triangles 

needs to be multiplied by three because every edge in the triangle represents a unique closing of three 

connected nodes, even though it is the same three nodes in all three instances.  
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In the case of a coefficient value of 1, we have what is called perfect transitivity. For this to be possible, 

every component of the network is a closed clique. Obviously, the probability of this happening in large 

networks are very small, to say the least. On the other hand, for a network to have the coefficient of 0, 

there would have to be no closed triplets of observations in the network. As for the case of a coefficient 

value close to 1, this is unlikely when working with networks from time-series. Although obtaining the 

polar-values are highly unlikely, we can find values close to them in, for example, a fractional Brownian 

motion type process with Hurst exponent close to either 0 or 1.  

Unlike the global transitivity, the local transitivity looks at single nodes, and the probability that two of its 

𝑖 connected nodes are also connected.  

𝐶𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑝𝑎𝑟𝑖𝑠 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑜𝑟𝑠 𝑜𝑓 𝑖 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑖
(16) 

 

For a lot of networks, it is shown that the local transitivity has a rough negative dependence on the degree 

of a node (Newman, 2010, p. 265). Nodes with high degree tend to have a low local transitivity and the 

other way around.  

In this paper, we will similarly to Zhang et al. (2017), use the statistic mean local transitivity. This simply 

means that we take the arithmetic mean of each node’s local transitivity and create a global network 

measure out of it.  

Let it be said that we believe this statistic to have some clear weaknesses, but have included it to stay 

consistent with the mentioned study from Zhang et al. (2017). The reason why we lack faith in it, is because 

in its original form the local transitivity of a node is given as a percentage value. This percentage value 

loses its meaning when it is no longer tied up to the degree of the node it represents, as will be the case 

when we find the arithmetic mean. As an example, when we find the mean local transitivity, we fail to 

differentiate between a node with degree 10 and a 0.25 local transitivity value, and a node with degree 20 

and a 0.25 local transitivity value. This is obviously problematic, since it overlooks an important part of 

information about the network. For a financial comparison, it is like investing money in two assets with 

respectively a 10 % and 20 % return, and thinking that your payoff is 15 %, without actually considering 

how much money you invested in each of the two assets.  

 



29 
 

3.4.4 Average shortest path length 

A shortest path, also called geodesic path, is a path between two nodes such that no shorter path exists 

(Newman, 2010, p. 139). The average of the shortest path is used as a measure of how effectively 

information is transported throughout the network. A path in a network is the road along edges that 

connects a pair of nodes and the length of a path is the number of edges that must be passed from one 

node to another. In a directed network, the path must be traversed in a given direction, and in some 

networks there may not always be a path that exists between any given pair of nodes. However, we know 

by definition that the visibility algorithm gives us a network that is both connected and undirected, which 

means that there exists a path between all pairs of nodes and the direction of the path does not matter. 

There are several different types of paths, but we decide to focus on the geodesic path, which is the most 

relevant to the visibility algorithm. 

The length of a geodesic path between two nodes equals the amount of edges that the path goes through 

between the pair. Thus, the average shortest path length for a connected and undirected network can be 

defined as followed: Consider a network G with a set of nodes N. Define the shortest path between a pair 

of nodes as 𝑠𝑝(𝑛𝑖 , 𝑛𝑗) and 𝑝𝑎𝑡ℎ(𝑛𝑖 , 𝑛𝑗) as a path between a pair of nodes.  

𝐴𝑆𝑃𝐿𝐺 =
∑ 𝑠𝑝(𝑛𝑖 , 𝑛𝑗)𝑁

𝑖,𝑗

∑ 𝑝𝑎𝑡ℎ(𝑛𝑖 , 𝑛𝑗)𝑁
𝑖,𝑗

(17) 𝐴𝑆𝑃𝐿(𝐺) =
∑ 𝑠𝑝(𝑛𝑖, 𝑛𝑗)𝑁

𝑖,𝑗

∑ 𝑝𝑎𝑡ℎ𝑠(𝑛𝑖, 𝑛𝑗)𝑁
𝑖,𝑗

(𝑋) 

To get the average shortest path length we have to take the value of the shortest path length between all 

pair of nodes in the network and divide it by the value of all existing paths in the network. For a connected 

and undirected graph, as the visibility graph, ∑ 𝑝𝑎𝑡ℎ(𝑛𝑖 , 𝑛𝑗)𝑁
𝑖,𝑗 = 𝑁(𝑁 − 1) because there exists a path 

between any pair of nodes in the network (Mao & Zhang, 2013). Therefore, for a visibility graph we get 

the following equation for average shortest path length:  

𝐴𝑆𝑃𝐿𝐺 =
∑ 𝑠𝑝(𝑛𝑖 , 𝑛𝑗)𝑁

𝑖,𝑗

𝑁(𝑁 − 1)
(18) 

The length of the average shortest path length will normally be dependent on especially two things. The 

first is obviously the amount of edges in the network. Many edges give us more sets of nodes that are 

connected, and where the path length is only one, which makes the average shortest path length shorter. 

The second phenomenon that affects the path length of a network are structural holes. Structural holes 

are nodes, often a hub, that controls the flow of information in a network, in that a high fraction of the 
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paths has to go through it. As an example, for a financial return-series plotted into a visibility graph, this 

will often correspond to incidents where the return is very high compared to the mean.  

The value of the average shortest path length gives us some indications of what type of network we are 

dealing with. Random networks tend to have a higher average shortest path length than the networks 

mentioned below because there is no order in the pattern of the network, which usually leads to shorter 

distances between a pair of nodes in contrast to non-random networks. Small-world networks will typically 

have a low average shortest path length, L  ̴ ln(N) (Watts & Strogatz, 1998) and scale-free networks will 

typically have an even lower average shortest path length, L  ̴ ln ln(N) (Cohen & Havlin, 2003). 

Previously in this section, we showed some networks generated with short time-series from S&P 500. As 

these were just examples, we did not further discuss the underlying data used to create these network, as 

well as the data’s source. This will obviously have to be done for the actual studies, and in Section 4 we 

will present the data we have used to obtain the results given in Section 5.  
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4. Data 

4.1 S&P 500 

We will apply the natural visibility graph and horizontal visibility graph algorithm on subsets of the S&P 

500 portfolio. The data we have used are available from Yahoo Finance.1 We will use the adjusted closing 

price, both in its raw nature, and as regular return-prices. Rather than looking at all the available data in 

the time-series as a whole, we have divided the data into ten subsets of 2500 observations, with a rolling 

start for each 1250th observation. This makes the subsets overlap each other, such that every observation 

of the original time-series is present in exactly two of the ten subsets.  

 

Figure 8: Prices (upper) and returns (lower) for S&P 500 from 1967 to 2016. 

                                                             
1 https://finance.yahoo.com/quote/%5EGSPC/history?period1=-
157770000&period2=1454194800&interval=1d&filter=history&frequency=1d 
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In a regular year there are normally between 250 and 252 business days, so for daily prices, 2500 

observations will equal approximately 10 years of data. The last observation used is the last business day 

of 2016, more precisely December 30th. As some of the network-statistics used are dependent on the 

amount of observations in it, we find it important out of consistency purposes to keep every time-series 

of equal length, which is why we have chosen to use 2500 observations rather than ten years exactly.  

The full time-series as well as the return-series can be seen in Figure 8. As we can see, the raw time-series 

has neither constant mean, nor variance. It can therefore be an interesting study to apply the visibility 

graph algorithms to it, and to compare the findings to those of the return-series. The return-series show 

signs of constant mean, but bursts of volatility clustering, especially centered around the different financial 

crises such as Black Monday in 1987, the dot com-bubble around year 2000, and the global financial crisis 

of 2007-2008. The return-series is not available from S&P 500, and needs to be calculated with the 

following formula 

𝑟𝑡 =
𝑝𝑡 − 𝑝𝑡−1

𝑝𝑡−1

(19) 

The descriptive statistics of the raw series and the return-series can be seen in Table 1 and Table 2 below. 

As is expected, these tables show us quantitatively the difference between the two time-series. Skewness 

and kurtosis is only calculated for the return-series, since the observations in the price-series obviously is 

nowhere near following a normal distribution. The kurtosis in Table 2 is calculated under the assumption 

that a value of 3 is the normal distribution, in other words, the kurtosis is not adjusted to show an excess 

value.  

 Prices S&P 500 

 mean sd min max 

1962-1971 87.006 12.502 52.32 110.46 
1967-1976 96.110 10.616 62.28 120.24 
1972-1981 103.371 14.769 62.28 140.52 
1977-1986 145.740 48.301 86.90 301.64 
1982-1991 252.376 83.749 102.42 420.77 
1987-1996 421.045 126.670 223.92 816.29 
1992-2001 855.114 370.498 394.50 1527.46 
1997-2006 1158.326 177.480 737.65 1527.46 
2002-2011 1166.644 183.623 676.53 1565.15 
2007-2016 1516.990 394.627 676.53 2271.72 

Table 1: Descriptive statistics for the price-series of S&P 500.  
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 Returns S&P 500 

 skew kurt mean sd min max 

1962-1971 -0.08 11.42 0.00 0.01 -0.07 0.05 
1967-1976  0.32 5.49 0.00 0.01 -0.04 0.05 
1972-1981  0.17 4.51 0.00 0.01 -0.04 0.05 
1977-1986  0.13 4.87 0.00 0.01 -0.05 0.05 
1982-1991 -2.82 60.65 0.00 0.01 -0.20 0.09 
1987-1996 -3.89 87.73 0.00 0.01 -0.20 0.09 
1992-2001 -0.21 7.49 0.00 0.01 -0.07 0.05 
1997-2006  0.02 5.99 0.00 0.01 -0.07 0.05 
2002-2011  0.03 11.35 0.00 0.01 -0.09 0.12 
2007-2016 -0.09 13.07 0.00 0.01 -0.09 0.12 

Table 2: Descriptive statistics for the return-series of S&P 500. 

 

4.2 GARCH-simulation 

As discussed in Section 3, the most important portion of data in this thesis will be generated with 

simulation from a GARCH(1,1)-process. As previously stated, a GARCH(1,1)-process consist of three 

parameters, the constant 𝛼0, a parameter 𝛼1, performing an auto regression of the previous error-

variance, and a parameter  𝛽1, performing a moving average process on the previous observations of 

conditional variance. The goal for this paper is to see the effects of visibility graphs on financial time-series, 

and consequently, we want our simulations to be as close to real-life financial time-series as possible. In 

order to achieve this, we need parameters that are representative for a typical financial time-series, and 

have decided to estimate GARCH-parameters from the S&P 500 time-series. We will use the same time-

series as we showed in section 5.3, and more precisely, we chose to estimate the parameters from the 

most recent of our ten subsets, the one stretching from 2007 to 2016.   

A more detailed plot of the time-series we have estimated our GARCH-parameters from can be seen in 

figure 9. There is clear evidence of volatility clustering in this data set, as we can see several bursts of 

increased volatility compared to the mean. Especially the period around the 500th observation is glaring. 

This obviously corresponds to the global financial crisis of 2007/2008. 
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Figure 9: Time-series plot of S&P 500 returns (2007-2016) 

 Test statistics 

 Estimate Std Error t-value p > |t| 

𝛼0 2.938 ∗ 10−6 5.290 ∗ 10−6 5.553 0.00 
𝛼1 0.1169 1.328 ∗ 10−2 8.802 0.00 
𝛽1 0.8612 1.429 ∗ 10−2 60.628 0.00 

Table 3: Estimated parameters and test statistics for the return-series from S&P 500, stretching from 2007 to 2016.  

The estimated parameters for the GARCH(1,1)-process can be seen in Table 3 above, together with the 

associated test statistics. As mentioned, these parameters will be used to simulate data, to which we will 

apply the visibility graph and horizontal visibility graph. In addition, we will investigate other possible time-

series from GARCH within the given three-dimensional parameter space. As discussed in Section 3, there 

are some boundaries to the parameters. We will not consider parameters of negative value, and we always 

have to make sure that 𝛼1 + 𝛽1 < 1. Lastly, we choose to keep the constant 𝛼0 fixed throughout all our 

simulations. Consequently, our remaining parameters will come from a two-dimensional space bounded 

by the x-axis, the y-axis and the line 𝑦 = −𝑥 + 1. In total, we have chosen to investigate six different time-

series of varying parameter-combinations where 𝛼1 and 𝛽1 are both positive and seven simulations where 

one or both of the two parameters are set to zero. This gives us a simulation strategy consisting of thirteen 

total simulations, as portrayed by Table 4.  
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 𝛼0 𝛼1 𝛽1 𝛼1 + 𝛽1 

Case 1: 𝑙𝑜𝑤 𝛼1, ℎ𝑖𝑔ℎ 𝛽1 2.938 ∗ 10−6 0.1169 0.8612 0.9781 
Case 2: 𝑙𝑜𝑤 𝛼1, 𝑚𝑒𝑑𝑖𝑢𝑚 𝛽1 2.938 ∗ 10−6 0.1169 0.4755 0.5924 
Case 3: 𝑙𝑜𝑤 𝛼1, 𝑙𝑜𝑤 𝛽1 2.938 ∗ 10−6 0.1169 0.1169 0.2338 
Case 4: 𝑚𝑒𝑑𝑖𝑢𝑚 𝛼1, 𝑙𝑜𝑤 𝛽1 2.938 ∗ 10−6 0.4755 0.1169 0.5924 
Case 5: ℎ𝑖𝑔ℎ 𝛼1, 𝑙𝑜𝑤 𝛽1 2.938 ∗ 10−6 0.8612 0.1169 0.9781 
Case 6: 𝑚𝑒𝑑𝑢𝑚 𝛼1, 𝑚𝑒𝑑𝑖𝑢𝑚 𝛽1 2.938 ∗ 10−6 0.4755 0.4755 0.9510 
Case 7: 𝑧𝑒𝑟𝑜 𝛼1, ℎ𝑖𝑔ℎ 𝛽1 2.938 ∗ 10−6 0 0.1169 0.1169 
Case 8: 𝑧𝑒𝑟𝑜 𝛼1, 𝑚𝑒𝑑𝑖𝑢𝑚 𝛽1 2.938 ∗ 10−6 0 0.4755 0.4755 
Case 9: 𝑧𝑒𝑟𝑜 𝛼1, 𝑙𝑜𝑤 𝛽1 2.938 ∗ 10−6 0 0.8612 0.8612 
Case 10: 𝑧𝑒𝑟𝑜 𝛼1, 𝑧𝑒𝑟𝑜 𝛽1 2.938 ∗ 10−6 0 0 0 
Case 11: 𝑙𝑜𝑤 𝛼1, 𝑧𝑒𝑟𝑜 𝛽1 2.938 ∗ 10−6 0.1169 0 0.1169 
Case 12: 𝑚𝑒𝑑𝑢𝑚 𝛼1, 𝑧𝑒𝑟𝑜 𝛽1 2.938 ∗ 10−6 0.4755 0 0.4755 
Case 13: ℎ𝑖𝑔ℎ 𝛼1, 𝑧𝑒𝑟𝑜 𝛽1 2.938 ∗ 10−6 0.8612 0 0.8612 

Table 4: Design points of the simulation study 

As we can see from Table 4, we have decided upon a simulation strategy where we use large variations in 

both 𝛼1 and 𝛽1. This way, we are able to cover the whole parameter space in a good way, without ever 

leaving the boundaries. We have decided upon a strategy where we only use four different values for both 

of the parameters. The clear advantage in only changing one parameter at the time is that we with 

certainty can contribute changes in the estimated network statistics to the change in parameter-value.  

The combinations given in table 4 is also shown graphically in Figure 10, together with the constraint line 

𝑦 = −𝑥 + 1. The results obtained with the data presented in this section will be given in Section 6. First 

for the simulation study, and then for the data from S&P 500.  

 

Figure 10: Graphical display of design points for the simulation study 
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5. Results 

5.1 Simulations 

 
Case 1 

𝛼1  = 0.1169, 𝛽1 = 0.8612 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean -0.013   5.100 1.5*10−6   0.011 0.058 -0.060 
Standard deviation   0.152   1.750 2.3*10−4   0.001 0.016   0.019 
Confidence interval ±0.030 ±0.034 ±4.6*10−5 ±0.000 ±0.003 ±0.004 

 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 10.878 0.154 0.339 0.122 3.984 
Standard deviation 1.051 0.010 0.002 1.6*10−4 0.003 
Confidence interval ±0.206 ±0.002 ±4.7*10−4 ±3.2*10−5 ±0.001 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 5.452 0.229 0.357 0.154 6.107 
Standard deviation 0.257 0.025 0.010 5.8*10−4 0.085 
Confidence interval ±0.050 ±0.005 ±0.002 ±1.1*10−4 ±0.017 

Table 5: Simulation case 1: 𝛼1 = 0.1169 and 𝛽1= 0.8612 

 

 
Case 2 

𝛼1  = 0.1169, 𝛽1= 0.4755 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean 0.003 3.12 -4.0*10−6 0.003 0.010 -0.010 
Standard deviation 0.043 0.15 5.4*10−5 5.1*10−5 0.001 0.002 

Confidence interval ±0.008 ±0.030 ±1.1*10−5 ±9.9*10−6 ±2.3*10−4 ±2.9*10−4 

 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 9.287 0.164 0.337 0.122 3.986 
Standard deviation 0.551 0.011 0.003 1.5*10−4 0.003 
Confidence interval ±0.108 ±0.002 ±5.0*10−4 ±3.1*10−5 ±5.4*10−4 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 5.688 0.194 0.376 0.154 5.947 
Standard deviation 0.211 0.015 0.006 7.0*10−4 0.066 
Confidence interval ±0.041 ±0.002 ±0.001 ±1.4*10−4 ±0.013 

Table 6: Simulation case 2: 𝛼1  = 0.1169 and 𝛽1= 0.4755 
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Case 3 

𝛼1  = 0.1169, 𝛽1= 0.1169 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean -0.004 3.084 -1.1*10−6 0.002 0.007 -0.007 
Standard deviation 0.061 0.122 3.4*10−5 3.3*10−5 7.2*10−4 8.9*10−4 
Confidence interval ±0012 ±0.024 ±6.7*10−6 ±6.4*10−6 ±1.4*10−4 ±1.8*10−4 
 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 9.231 0.167 0.337 0.122 3.986 
Standard deviation 0.480 0.010 0.003 1.9*10−4 0.003 
Confidence interval ±0.094 ±0.002 ±5.1*10−4 ±3.7*10−5 ±5.7*10−4 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 5.709 0.192 0.376 0.154 5.925 
Standard deviation 0.226 0.014 0.006 6.5*10−4 0.061 
Confidence interval ±0.044 ±0.003 ±0.001 ±1.2*10−4 ±0.012 

Table 7: Simulation case 3: 𝛼1  = 0.1169 and 𝛽1= 0.1169 

 

 
Case 4 

𝛼1  = 0.4755, 𝛽1= 0.1169 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean 0.007 6.841 1.2*10−6 0.003 0.017 -0.017 
Standard deviation 0.315 3.754 5.5*10−5 1.3*10−4 0.006 0.005 

Confidence interval ±0.062 ±0.736 ±1.1*10−5 ±2.5*10−5 ±0001 ±0.001 

 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 9.830 0.137 0.338 0.122 3.985 
Standard deviation 0.582 0.011 0.002 1.8*10−4 0.003 
Confidence interval ±0.114 ±0.002 ±4.6*10−4 ±3.5*10−5 ±5.9*10−5 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 5.290 0.157 0.353 0.156 6.283 
Standard deviation 0.254 0.028 0.015 6.4*10−4 0.117 
Confidence interval ±0.498 ±0.006 ±0.003 ±2.3*10−4 ±0.023 

Table 8: Simulation case 4: 𝛼1  = 0.4755 and 𝛽1= 0.1169 
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Case 5 

𝛼1  = 0.8612, 𝛽1= 0.1169 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean -0.180 76.966 1.5*10−6 0.006 0.081 -0.086 
Standard deviation 4.214 99.083 1.4*10−4 0.002 0.044 0.083 
Confidence interval ±0.926 ±19.420 ±2.8*10−5 ±4.4*10−4 ±0.009 ±0.016 

 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 11.063 0.106 0.340 0.122 3.984 
Standard deviation 0.905 0.012 0.002 1.7’10−4 0.003 
Confidence interval ±0.178 ±0.002 ±4.5*10−4 ±3.3*10−5 ±6.8*10−4 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 4.635 0.041 0.283 0.158 7.195 
Standard deviation 0.346 0.040 0.041 9.1*10−4 0.297 
Confidence interval ±0.068 ±0.008 ±0.008 ±1.7*10−4 ±0.058 

Table 9: Simulation case 5: 𝛼1  = 0.8612 and 𝛽1= 0.1169 

 

 
Case 6 

𝛼1  = 0.4755, 𝛽1= 0.4755 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean -0.014 27.729 1.7*10−6 0.007 0.072 -0.072 
Standard deviation 1.476 34.195 1.6*10−4 0.003 0.051 0.073 
Confidence interval ±0.289 ±6.702 ±3.1*10−5 ±5.4*10−4 ±0.010 ±0.014 

 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 11.479 0.122 0.342 0.122 3.983 
Standard deviation 0.909 0.012 0.002 1.7*10−4 0.004 
Confidence interval ±0.178 ±0.002 ±4.2*10−4 ±3.2*10−5 ±7.1*10−4 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 4.919 0.112 0.315 0.156 6.814 
Standard deviation 0.324 0.057 0.040 6.7*10−4 0.266 
Confidence interval ±0.064 ±0.011 ±0.008 ±1.3*10−4 ±0.052 

Table 10: Simulation case 6: 𝛼1 = 0.4755 and 𝛽1= 0.4755 
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In table 5-10 we have given a quantitative summary of the results obtained by our simulation study. Each 

table includes descriptive statistics and network statistics for both the horizontal and natural visibility 

graph. As previously noted, each simulation was replicated 100 times, and the estimates presented here 

are the maximum likelihood estimate of these replications. In addition, the standard deviation of all the 

statistics are presented, as well as a confidence interval for the arithmetic mean. An interval estimate can 

easily be found from the point estimate and confidence interval, as described in section 3.2.  

First off all, we observe that in the case of the horizontal visibility graph, the mean degree is very close to 

four in all cases. This is something that is expected, as the mean degree of a network generated with a 

horizontal visibility graph never can exceed four, an easy calculation, given that all nodes sends out two 

edges, and receives an average of close to two edges.  

Further, we see that the mean local transitivity returns the same or nearly the same estimate for all six of 

the simulations for both graphs. This solidifies our initial belief of the weakness of this statistic, but we did 

not expect it to return such similar values. The same thing can also be seen for the global transitivity 

statistic for the horizontal visibility graph, while we see bigger variations when the statistic is estimated 

for the natural visibility graph.  

The most interesting and intriguing results from these simulations are the relationship between the 

kurtosis of the time-series, the average shortest path length, and the mean degree. We previously 

discussed that there for obvious reasons often can be a dependence between path length and mean 

degree, but will also show in the S&P 500-case that mean degree can vary significantly between networks 

with relatively similar average shortest path length. However, here, we observe that if you rank the 

estimated statistics of the six simulations from highest to lowest kurtosis, from highest to lowest mean 

degree and from lowest to highest average path length, you would get them ranked in the exact same 

order. In addition, we also observed that the estimated values we obtained showed signs of dependence 

on the parameters used in the simulations, and where in the previously shown parameter-space they were 

laying.  

Similar tendencies were also seen in the cases for both assortativity and global transitivity, without them 

being as strict for these cases. For both the assortativity and the global transitivity we observed that their 

estimated values decreased when 𝛼1 was increased, while we observed less change in the estimated value 

by changes in 𝛽1.  
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In addition to Case 1-6 presented above, we simulated seven more cases with different parameter 

combinations (tables can be seen in the appendix). Case 7-13 were all simulations where one or both of 

the parameters were set to zero. To get a look at how all the simulations compare to each other, and how 

they depend on the GARCH-parameters used, we have in Figure 11 plotted them all in four separate 

graphs, with the value of 𝛼1 on the y-axis, the value of 𝛽1 on the x-axis, and a point-estimate as the label. 

From graphs generated with the natural visibility graph algorithm has been done for average shortest path 

length, mean degree, assortativity and transitivity. 

 

Figure 11: Plots showing the estimated value of the average shortest path length, mean degree, assortativity and global transitivity 
for all thirteen simulations with the natural visibility graph. 
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As we can see in Figure 11, the signs we saw in case 1-6 (table 5-10) of dependence between location in 

the parameter space and the estimated value of the different statistics is only solidified with the seven 

additional simulations. For average shortest path length, the graph in Figure 11 shows clear signs of a 

dependence between the parameters used in the simulation and the estimated network statistics 

obtained from these simulation cases. We see that the average shortest path length is at its longest when 

both parameters are set at zero, or close to zero. Moving out of the graphs origin, we see a significantly 

lower path length when 𝛼1 is increased, and also some changes with increased 𝛽1, however not as 

substantial. The changes in estimated average shortest path length are so large between simulations 

where alpha is changed that the confidence intervals are not overlapping. With that in mind, we can at a 

significance level of 95 % say that these estimates are in fact different.  

We also see signs indicating that changes in 𝛽1 are more substantial when 𝛼1 is high, rather than when it 

is zero. When 𝛼1 is fixed at zero and the 𝛽1 is varied, the average shortest path length shows very small 

variations, and based on the point-estimate, does not showcase the same trend as we see in the rest of 

the parameter-space with decreased 𝛽1 leading to increased average shortest path length. However, if we 

look at the interval estimates (case 7-10 in the Appendix), we see that these confidence intervals are 

overlapping, and we can not conclude that there is not a similar, but weaker relationship between these 

statistics as well. At the same time, we do not have a basis to say that these network statistics are 

significantly different from each other.  

The same thing as we saw for average shortest path length is seen in mean degree, only with the 

development being opposite. Where average shortest path length returns small estimates, mean degree 

are high, and the other way around. This makes us believe that there in the case of GARCH-simulated time-

series are strong dependences between average shortest path length and mean degree, a relationship we 

also suggested in Section 4.3.4. 

In the cases of assortativity and global transitivity, we see something similar to what we saw in average 

shortest path length and mean degree above. Changes in 𝛽1 create less significant changes in the network 

statistics than what changes in 𝛼1 does. However, the changes we see in these two cases are not as clear 

as the ones we see in the two graphs above. With that in mind, it is possible that average shortest path 

length and mean degree are better statistics to use when the goal is to separate between different 

parameter-combinations, and following, when separating between different types of financial time-series.  

In Figure 12 we have done the same drill as in Figure 11, but in this case for the horizontal visibility graph. 

Since mean degree and the two transitivity-statistics, as we showed earlier, produces very similar 
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estimates between the different simulations, we only show graphs for average shortest path length and 

assortativity here.  

Compared to what we saw from the natural visibility graph, the horizontal visibility graph has some 

interesting results. As in the case for natural visibility graph, we see tendencies of a dependency between 

the parameter combination and the average shortest path length, but there seems to be a negative 

correlation between the estimation from the natural and horizontal visibility graph. The horizontal visibility 

graph has its lowest average shortest path length around the origin and along the x-axis. For the natural 

visibility graph it is the opposite way around, where these simulation cases have high average shortest 

path length around origin and along the x-axis.  

 

Figure 12 Plots showing the estimated value of the average shortest path length and assortativity for all thirteen simulations with 
the horizontal visibility graph. 

For the assortativity, we see similar patterns between the natural and horizontal visibility graph. It is low 

when 𝛼1 is set high, and high when it is set at a lower value. Based on our simulations we also see that the 

range is larger for the assortativity in the case of natural visibility graphs. Based on these findings, and how 

much more clear cut the findings are when natural visibility graph is used, it seems to us like the natural 

visibility graph has more power than the horizontal visibility graph does, when the goal is to differentiate 

between financial time-series.  
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5.2 S&P 500 

As discussed in Section 4, we have applied the natural visibility graph and horizontal visibility graph 

algorithm on ten subsets of the S&P 500 portfolio, all consisting of 2500 observations. This is done for both 

the return-series and the raw price-series, and the results obtained from both will be presented in this 

section. We will also in this section show some examples of what the degree distribution of a time-series 

like this will typically look like. We will use the most present of the ten sub-sets as an example. Although 

we will do no further testing of the degree distribution, and will stick to mean degree as our test statistic, 

we believe it can be helpful to show some examples of what it looks like, in the process of understanding 

how the edges are distributed between nodes in a network like this. Finally, we have in this section 

estimated GARCH-parameters for all ten of the subsets from the S&P 500 return-series. We believe it can 

be an interesting study to see whether the relationships we saw between the parameters and the network 

statistics in the simulation case will carry over to real-life data. The estimated parameters are presented 

in table 11, and we will see the network statistics for the return-series in table 12.  

year 𝛼0 𝛼1 𝛽1 

1962-1971 1.124 * 10−6 0.1671 0.8137 
1967-1976 6.991 * 10−7 0.0776 0.9121 
1972-1981 6.339 * 10−7 0.0501 0.9423 
1977-1986 8.664 * 10−7 0.0352 0.9535 
1982-1991 5.446 * 10−6 0.0926 0.8548 
1987-1996 1.745 * 10−6 0.0905 0.8915 
1992-2001 5.759 * 10−7 0.0698 0.9271 
1997-2006 7.417 * 10−7 0.0726 0.9241 
2002-2011 1.346 * 10−6 0.0836 0.9075 
2007-2016 2.938 ∗ 10−6 0.1169 0.8612 

Table 11: Estimated parameters for each sub-set of the S&P 500 return-series. All values are significant, and the rest of the test 
statistics can be seen in the appendix.  

As we can see from the GARCH-parameters, the variations between the different subsets are far smaller 

here than what we were using in our simulation-study. The highest estimated 𝛼1 is 0.1671 and the lowest 

estimated 𝛽1 is 0.8137, both representing the first of the ten subsets. Consequently, this leads to less 

variation in the obtained network statistics than what we saw in the simulation-study. In addition, we have 

a third variable which is changing between the ten subsets, that we did not have in the simulation-study, 

namely the 𝛼0-parameter. The effect of this variable is to us unknown, but the variations in the parameter 

seems to be relatively small, and as a consequence we do not think its variations are very important for 

the obtained results. 
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As we remember from the simulation-study, we saw the clearest sign of a relationship between the 

network statistics and parameters in the case of natural visibility graph for the average shortest path 

length and mean degree, and there were especially two things that had an effect on the obtained results. 

First, we saw that the higher the added parameter values were, the higher the network statistics became 

for mean degree and the lower it became for average shortest path length. We also saw that the same 

changes were obtained when we increased 𝛼1 while decreasing the 𝛽1 proportionally.  

When we look at the results form S&P 500 in Table 10, the mentioned relationship for mean degree is not 

showing up in the same way as in the simulation-study. However, for average shortest path length, we see 

some very similar results. In general, we see that time-series with a high estimated 𝛼1 often returns 

network with a short average shortest path length, and the other way around for low estimated 𝛼1. The 

only subset that stands out as an outlier in terms of this relationship is the one stretching from 2002 to 

2011, where the average shortest path length was low despite of a low estimated 𝛼1. Exactly why this is 

so, is something we do not know with certainty, but our main theory is that the financial crisis in the middle 

of this subset is contributing to shorten the average shortest path length. The highest returns during this 

period are higher than what we see in most of the other subsets, and it gives these observations great 

visibility over the time-series.  

Although we see a similar relationship in this real-life case as we did in the simulation-study, these results 

are obviously not as solid. In the simulations, we were comparing the mean of 100 replications for each 

simulation, while we here compare the network statistics from a single replication. Consequently, these 

results are more prone to outliers, which as we will show from the simulation-study in the appendix, can 

be significant. With that in mind, these relationships that we have seen in this case might just as well be 

spurious as something real. An alternative argument can just as well be made saying that the constant 

being high leads to a short average path length, and it will make sense based on the obtained results.   
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S&P 500: returns 

Horizontal visibility graph Natural Visibility Graph 

ASPL Assorta-
tivity 

Transi-
tivity 

Mean 
degree 

ASPL Assorta-
tivity 

Transi-
tivity 

Mean 
degree 

1962-1971 9.94 0.16 0.35 3.99 4.90 0.10 0.32 6.63 
1967-1976 11.53 0.17 0.35 3.98 5.20 0.18 0.36 6.50 
1972-1981 19.25 0.18 0.35 3.98 5.53 0.19 0.37 6.28 
1977-1986 10.44 0.17 0.34 3.98 5.52 0.18 0.37 6.17 
1982-1991 10.46 0.17 0.34 3.99 4.83 0.18 0.34 6.20 
1987-1996 10.05 0.18 0.34 3.98 4.95 0.19 0.35 6.11 
1992-2001 10.01 0.17 0.34 3.98 5.67 0.18 0.36 6.07 
1997-2006 11.34 0.17 0.34 3.98 5.35 0.22 0.36 6.00 
2002-2011 11.23 0.17 0.33 3.99 4.80 0.22 0.32 6.09 
2007-2016 11.47 0.16 0.34 3.97 5.00 0.22 0.33 6.02 

Table 12: Network statistics for networks created with the hoirzontal and natural visibility graph algorithm on the return-series 
of S&P 500. The statistics used are the same as in the simulation-study, except for mean local transitivity that were excluded due 
to its lack of variation between the different simulation sets. Each set is of 2500 observations 

As we previously mentioned, the obtained network statistics in this study are more clustered than what 

we saw in the simulation case. This is likely because the fractal structure of the ten subsets are self-similar 

to the fractal structure of return-series as a whole, according to the theories of Mandelbrot (1997).  

Further, what we see here is very similar to what we saw in the simulation-study. The average shortest 

path length for the horizontal visibility graph is again significantly higher than what we see for the natural 

visibility graph. Again, this is clearly due to the natural visibility graph having more edges in it than the 

horizontal visibility graph does. An interesting thing to note on the path length, is that the five portfolios 

with the shortest average path length also are the five portfolios with the highest kurtosis. This is a 

relationship we also saw in the simulation-case, and there might be a dependence there, but based on 

such a small sample size it might also be a spurious relationship.  

The rest of the statistics for the horizontal visibility graph does not seem to show much difference between 

the different subsets. For mean degree and global transitivity, this is similar to what we saw in the 

simulation case. For assortativity we saw some larger variations, but we are not able to see similar results 

here. This is likely due to the closeness of the estimated parameters, indicating that the time-series are 

more similar here than in the simulations. 

In the case of the natural visibility graph, we see signs of a growing assortativity coefficient. We mentioned 

that we expected a positive coefficient in Section 3.4.2, but why it is differing so much between some of 

the subsets, and if an increased assortativity coefficient has a financial meaning, is something we are not 

fully able to explain. As in the case for the horizontal visibility graph, the global transitivity seems to be 
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fairly constant across subsets, but here as well, a case can be made for a possible relationship with the 

kurtosis. The arithmetic mean of the node degree, seems to be following an opposite trend of the 

assortativity, where it is lower in recent years than it is for the subsets further back in time. Unlike the 

average shortest path length, we are not able to see relationships for the other test statistics similar to 

those we saw in the simulation-study.   

In table 13, we can see the results obtained when both visibility graph-algorithms were applied to the raw 

S&P 500 price-series. We believe it is interesting to see some examples of this as well, since it obviously is 

a totally different process than what the return-series is. That fact can clearly be seen by comparing the 

test statistics between networks from the return-series and price-series. As we saw in Figure 8 in the data-

section, the trend for S&P 500 has been that it is steadily increasing with time, except for some periods of 

decline due to different financial crises. This clearly has an effect on the average shortest path length for 

the horizontal visibility graph, due to a structure like this creating far less edges than what we saw for the 

return-series. We can also see that the mean degree goes down, a consequence of the time-series 

structure, where a high degree of the observations are larger than every single node preceding it. We can 

also see that the graphs created from this time-series are close to non-assortative and that the global 

transitivity actually goes up in comparison to the return-series. As we mentioned in Section 3.4.2, a random 

network should have an assortativity of zero, and we are laying close to this in all the subsets. However, 

we do not believe the graph actually is random, due to its very high average shortest path length.  

 
 

 

S&P 500: Prices 

Horizontal visibility graph Natural Visibility Graph 

ASPL Assorta-
tivity 

Transi-
tivity 

Mean 
degree 

ASPL Assorta-
tivity 

Transi-
tivity 

Mean 
degree 

1962-1971 97,98 0.05 0.40 3.78 5.62 0.40 0.29 17.69 
1967-1976 64.40 0.04 0.40 3.87 4.70 0.41 0.27 18.29 
1972-1981 38.72 0.03 0.40 3.91 4.77 0.39 0.26 16.90 
1977-1986 68.24 0.04 0.39 3.82 4.17 0.24 0.21 19.23 
1982-1991 84.37 0.05 0.38 3.81 4.67 0.28 0.29 15.02 
1987-1996 74.05 0.06 0.39 3.81 4.06 0.21 0.21 18.19 
1992-2001 134.19 0.06 0.40 3.72 4.80 0.22 0.18 21.89 
1997-2006 59.65 0.05 0.39 3.89 5.99 0.32 0.23 16.63 
2002-2011 71.23 0.02 0.38 3.90 5.38 0.17 0.25 15.37 
2007-2016 66.36 0.02 0.38 3.87 4.57 0.05 0.18 16.62 

Table 13: Table 14: Network statistics for networks created with the hoirzontal and natural visibility graph algorithm on the raw 
price-series of S&P 500. The statistics used are the same as in the simulation-study, except for mean local transitivity that were 
excluded due to its lack of variation between the different simulation sets. Each set is of 2500 observations.  

For the natural visibility graph, we can also see from the statistics that the network this time-series 

generates are very different in comparison to what we saw from the return-series. While we see that the 
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mean degree goes up significantly, the changes in average shortest path length are relatively small, and 

does not follow a specific pattern in comparison to the return-series. The fact that the mean degree goes 

up substantially, without much change in path length indicates that this graph has some structural holes 

which the flow of information is forced through. We also see significant variations between the sub-sets 

in both transitivity and especially in assortativity. While these results obviously showcase the different 

network statistics for two very different financial processes, it is still necessary to investigate the 

effectiveness of the visibility graph algorithm when applied to time-series without constant mean, as this 

has not been done in this thesis.  

Finally, in the last part of this result section will show some examples of the cumulative frequency and 

relative frequency of the degree distribution of a network. We have used the one stretching from 2007 to 

2016 as our example. We will show it for both the natural and horizontal visibility graph of the return-

series, but only for the natural visibility graph of the price series, as we found these results to be more 

interesting than those of the horizontal visibility graph.  

 

Figure 13: Cumulative frequency of the degree distribution. The data set is the return series of the S&P 500 stretching form 2007-
2016. Horizontal visibility graph (left) and natural visibility graph (right). 

Figure 13 shows the cumulative frequency of nodes with a certain degree from the horizontal visibility 

graph and the natural visibility graph. This is undoubtedly an uncommon way of presenting the probability 

density function in terms of financial data, as we normally would see a graph going from the bottom left 

corner to the upper right corner, meaning that we here look at P(X ≥ x) rather than P(X ≤ x) which is 

the more common way. However, this seems to be the consensus way of doing it within graph-theory, and 

we are hence choosing to stay consistent with that. As we can see in Figure 13, the cumulative frequency 

of nodes with a degree of one or two is laying very close to 100 % (in fact, all but one node has at least two 

degrees in this graph). This is obviously due to the previously discussed nature of the visibility graphs 
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applied in this paper, where the graph is connected, making it so that all nodes are connected to at least 

its nearest neighbors.  

After the mandatory connections, we see a rather quick decline in the amount of nodes with a given 

degree. In fact, no more than approximately 50 % of the nodes in the horizontal visibility graph have a 

degree of three or higher, while the same number is four in the natural visibility graph. Clearly there is a 

large amount of nodes within the network with a relatively small degree, while only a few nodes, the hubs, 

showcase a high number of connected nodes. This is common to see in networks, and can be shown even 

more clearly by looking at the relative frequency of degrees. Figure 14 shows that in the horizontal visibility 

graph, nearly 35 % of nodes have a degree of two, and that the amount of nodes with a given degree 

declines quickly, following something that looks like an exponential distribution. Something similar can be 

seen in the case of the natural visibility graph. Due to the horizontal visibility graph being a subgraph of 

the natural visibility graph, and the natural visibility graph consequentially having more edges, we observe 

a lower amount of nodes with degree two. We also see that there are in fact more nodes with degree 

three than two, but as in the case for the horizontal visibility graph, there is a steep decline from there. 

Another thing to observe is that the degrees of the hubs in the natural visibility graph is way higher than 

in the horizontal visibility graph.  

 

Figure 14: Relative frequency of the degree distribution. The data set is the return series of the S&P 500 stretching form 2007-2016. 
Horizontal visibility graph (left) and natural visibility graph (right) 

Finally, we have in Figure 15 plotted cumulative frequency and relative frequency of the node degree for 

the subset consisting of data from 2006 to 2017 form the S&P 500 price-series. This is from the natural 

visibility graph. Visually the distributions themselves look very similar to what we saw from the return-

series, but by looking at the axes, we can see the results of a higher mean degree. The price-series has 

fewer nodes with a low degree, and the hubs are significantly bigger than in the return-series.   
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Figure 15: Cumulative frequency and relative frequency from a network generated with the natural visibility graph algorithm. The 
data set is S&P 500 price-series stretching from 2006 to 2017. 
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5 Discussion 

As we discussed in the literature review, there has not been a lot of studies covering this specific topic, 

especially in regards to financial time-series. As far as we are concerned, the only comparable study that 

has looked thoroughly into network statistics of graphs generated from natural and horizontal visibility 

graph algorithms on simulated time-series are the one of Zhang et al. (2017). Similar to what we have 

done, they applied the five network-statistics mean degree, average shortest path length, assortativity, 

local transitivity and global transitivity to their networks, however, with a slightly different approach than 

what we have done. Consequently, the results obtained in this thesis and that paper are not directly 

comparable. Zhang et al. (2017) tested whether their network measures showed similar variation patterns 

as their auto correlation function itself did, and found evidence supporting that for all five of the network 

statistics. In our thesis we have tested how the network statistics respond to changes in the parameters 

for a GARCH-process, and unlike Zhang et al. (2017) have found conflicting results between the different 

network statistics. With that in mind, we do not share the belief in the effectiveness of all the network 

statistics, especially in the case of horizontal visibility graph, where most of them showed no, or very small 

changes with variation in the GARCH-parameters, and thus a limited ability to detect differences between 

time-series.  

Another important aspect of this thesis is to investigate how real-life examples compare to those of the 

simulated time-series. Although the results obtained in the simulations are intriguing and interesting, they 

are eventually not worth much unless the results show similar patterns as we see in real-life time-series. 

To account for this aspect, as shown in the results section, we have applied the natural and horizontal 

visibility graph to ten subsets of the S&P 500 index. The subset with data from 2007-2016 and Case 1 of 

the GARCH-simulation should be the most comparable cases, since they both share the same GARCH-

parameters. Between them, we see that we get similar results in regards to the network statistics, 

especially in the case of natural visibility graph. The assortativity, global transitivity and the mean degree 

are almost identical between the return-series and the simulation. We find a bit of discrepancy when it 

comes to the average shortest path length, but the difference is not huge, and although the result from 

the S&P 500 are outside of our estimated confidence interval for the mean, it is still within the range of 

estimated statistics from the 100 simulations (as can be seen in the appendix).  

We have seen in the simulation-cases that especially the estimated mean degree and average shortest 

path lengths seems to be very good at indicating differences between GARCH-processes with different 
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parameter-combinations when applied to networks generated with the natural visibility graph algorithm. 

With that in mind, we believe we have a basis to say that in a situation like the simulations, where we can 

use maximum likelihood estimation to find an estimate of the network statistic from multiple replications, 

the natural visibility algorithm has ability to differentiate between different processes. However, in real-

life situations, like in our study of the S&P 500, we do not have multiple samples with equal GARCH-

parameters to find an estimate from, and our estimate will consequently be more prone to outliers. As we 

saw in the study of S&P 500, it is clearly possible to find relationships similar to what we saw in the 

simulations, but the close similarity of the ten subsets and the relatively small sample size. This makes it 

hard to say whether these relationships are in fact real or just a spurious relationship.  

Considering this, a method that can better estimate the network statistics might possibly be needed for 

this algorithm to ever be reliable when we are looking at a single time-series, rather than a large group of 

replications. Exactly how this should be done is obviously beyond the scope of this thesis, but a possible 

suggestion is to divide the time-series into subgroups at a variety of different lengths. We can then find 

network statistics for all the different sub-groups, and then use a suited estimator to find an estimate of 

the network statistic of for the network as a whole. However, there is obviously a lot to consider in such a 

process, including how to deal with the fact that the networks statistics will vary between networks of 

different size.  
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6 Conclusion 

Throughout this thesis, we have tested both the natural and horizontal visibility graph on ten subsets of 

the S&P 500 index and on thirteen sets of simulations from a GARCH(1,1)-process. The main focus has 

been the five network statistics mean degree, average shortest path length, assortativity, local transitivity 

and global transitivity, and how they behave in networks from different time-series with varying GARCH-

parameters.  

The most intriguing findings in this thesis are those found when using the natural visibility graph algorithm 

on the GARCH-simulated time-series. We showed that especially mean degree and average shortest path 

length were able to separate between time-series of different GARCH-parameters in a nice way. Further it 

was shown that changes in the parameter 𝛼1 lead to larger changes in the estimated network statistics 

than changes in the 𝛽1-parameter did. Changes in 𝛽1 also seemed to be more substantial the higher the 

𝛼1-parameter was set. Even in the case of S&P 500, we saw indications of a relationship between the 

estimated GARCH-parameters and average shortest path length, but as we previously stated, we do not 

feel like we have enough information to conclude whether this relationship is real or just spurious.  

Our analysis with the horizontal visibility graph algorithm did in general not give as interesting and 

intriguing results as the natural visibility graph algorithm did. Although far fewer than with the natural 

visibility graph, we also saw some signs of the horizontal visibility graph being able to separate between 

different time-series. Consequently, we are not going to dismiss future utilization of this algorithm, but 

will based on the findings in this thesis rather advocate for the usage of the natural visibility graph in 

regards to future studies of financial time-series.  

Although the sample size of real-life time-series in this thesis is rather small, we believe that our findings 

from the simulation study, and from the study of S&P 500 suggests that the natural visibility graph can be 

a useful tool in analyzing financial time-series. However, we also believe that this is a topic that needs 

further testing before any conclusions of the tools effectiveness can be drawn. In future research we 

suggest to perform similar simulation studies as in this paper, but with a varying constant, and more 

importantly, under variations of the length of the time-series. We would also suggest that the algorithm 

should be tested on a larger portfolio of real-life time series, and compared to the findings in this study. In 

that way, we would get a better indication of whether the possible relationships we observed in the case 

of S&P 500 is something that can repeatedly be seen in financial time-series.  
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received has been critical for the possibility to write this thesis.  

 

9.2 Tables 

 
Case 7 

𝛼1  = 0, 𝛽1 = 0.8612 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean -0.006 3.013 -3.79*10-6 0.005 0.016 -0.016 

Standard deviation 0.054 0.099 7.52*10-5 5.92*10-5 1.6*10-3 1.6*10-3 
Confidence interval ±0.011 ±0.019 ±1.47*10-5 ±1.16*10-5 ±3.2*10-4 ±3.1*10-4 

 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 9.055 0.176 0.337 0.122 3.987 
Standard deviation 0.465 0.011 0.002 1.52*10-4 0.003 

Confidence interval ±0.091 ±0.002 ±4.05*10-4 ±2.98*10-5 ±5.4*10-4 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean   5.711 0.191 0.376 0.154 5.877 
Standard deviation   0.189 0.006 0.006 6.2*10-4 0.052 

Confidence interval   ±0.037 ±0.003 ±0.001 ±1.2*10-4 ±0.010 
Table 15: Simulation case 7: 𝛼1  = 0 and 𝛽1 = 0.8612 
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Case 8 

𝛼1  = 0, 𝛽1 = 0.4755 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean -0.007 3.001 -2.7*10-6 2.4*10-3 0.008 -0.008 

Standard deviation 0.050 0.108 5.4*10-5 3.3*10-5 7.4*10-4 7.9*10-4 
Confidence interval ±9.7*10-3 ±0.021 ±1.1*10-5 ±6.5*10-6 ±1.5*10-4 ±1.5*10-4 

 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 9.059 0.192 0.336 0.122 3.988 
Standard deviation 0.425 0.014 0.002 1.6*10-4 2.6*10-3 
Confidence interval ±0.083 ±0.003 ±4.1*10-4 ±3.2*10-5 ±5*10-4 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 5.739 0.192 0.376 0.154 5.863 
Standard deviation 0.216 0.014 0.005 6.4*10-4 0.058 

Confidence interval ±0.039 ±0.003 ±2.7*10-3 ±1.3*10-4 ±0.011 
Table 16: Simulation case 8: 𝛼1 = 0 and 𝛽1 = 0.4755 

 

 

 
Case 9 

𝛼1  = 0, 𝛽1 = 0.1169 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean -0.003 2.987 -2.901 1.8*10-3 6.3*10-3 -0.006 

Standard deviation 0.050 0.096 3.9*10-5 2.6*10-5 5.3*10-4 6*10-4 
Confidence interval ±9.8*10-3 ±0.019 ±7.7*10-6 ±5.1*10-6 ±1*10-4 ±1.2*10-4 

 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 9.058 0.176 0.336 0.122 3.987 
Standard deviation 0.0445 0.010 0.002 1.8*10-4 0.003 

Confidence interval ±0.087 ±0.002 ±4.5*10-4 ±3.5*10-5 ±5.5*10-4 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 5.750 0.190 0.377 0.154 5.870 
Standard deviation 0.170 0.013 0.005 6.5*10-4 0.047 

Confidence interval ±0.033 ±2.5*10-3 ±0.001 ±1.3*10-4 ±0.009 
Table 17: Simulation case 7: 𝛼1  = 0 and 𝛽1 = 0.1169 
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Case 10 

𝛼1  = 0, 𝛽1 = 0 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean 0.002 2.986 -3.7*10−6 0.002 0.006 -0.006 

Standard deviation 0.050 0.088 3.4*10−5 2.3*10−5 5.3*10−4 4.9*10−4 
Confidence interval ±0.010 ±0.017 ±6.6*10−6 ±4.6*10−6 ±1.0*10−4 ±9.7*10−5 
 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 9.062 0.176 0.336 0.122 3.986 
Standard deviation 0.421 0.009 0.002 1.6*10−4 0.003 

Confidence interval ±0.082 ±0.002 ±4.3*10−4 ±3.2*10−5 ±5.6*10−4 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 5.742 0.190 0.376 0.154 5.865 
Standard deviation 0.190 0.012 0.005 7.1*10−4 0.054 

Confidence interval ±0.037 ±0.002 ±0.001 ±1.4*10−4 ±0.011 
Table 18: Simulation case 10: 𝛼1  = 0 and 𝛽1 = 0 

 

 

 
Case 11 

𝛼1  = 0.1169, 𝛽1 = 0 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean -1.7*10-3 2.981 -9.5*10-7 1.7*10-3 0.006 -0.006 

Standard deviation 0.043 0.085 3.4*10-5 2.4*10-5 5.4*10-4 4.9*10-4 
Confidence interval ±0.008 ±0.017 ±6.7*10-6 ±4.7*10-6 ±1*10-4 ±9.7*10-5 

 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 9.082 0.175 0.337 0.122 3.987 
Standard deviation 0.425 0.011 0.002 1.4*10-4 2.6*10-3 
Confidence interval ±0.083 ±0.002 ±3.6*10-4 ±2.8*10-5 ±5*10-4 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 5.723 0.194 0.378 0.154 5.882 
Standard deviation 0.190 0.015 0.006 7*10-4 0.045 

Confidence interval ±0.037 ±0.003 ±0.001 ±1.4*10-4 ±0.010 
Table 19: Simulation case 11: 𝛼1  = 0.1169 and 𝛽1 = 0 

 

 



58 
 

 
Case 12 

𝛼1  = 0.4755, 𝛽1 = 0 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean -0.021 6.334 -1.9*10-6 2.4*10-3 0.014 -0.014 

Standard deviation 0.312 4.591 4.9*10-5 8.9*10-5 4.5*10-3 0.005 

Confidence interval ±0.061 ±0.899 ±9.6*10-6 ±1.7*10-5 ±8.9*10-4 ±0.001 

 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 9.598 0.139 0.338 0.122 3.986 
Standard deviation 0.598 0.013 0.003 1.7*10-4 0.003 

Confidence interval ±0.117 ±0.002 ±5*10-4 ±3.4*10-5 ±6.3*10-4 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 5.320 0.157 0.356 0.156 6.237 
Standard deviation 0.258 0.027 0.015 7.7*10-4 0.088 

Confidence interval ±0.051 ±0.005 ±0.003 ±1.5*10-4 ±0.017 
Table 20:: Simulation case 7: 𝛼1 = 0.4755 and 𝛽1 = 0 

 

 

 
Case 13 

𝛼1  = 0.8612, 𝛽1= 0 

Descriptive Statistics 

Skewness Kurtosis Mean SD Max Min 

Mean 0.815 57.870 1.4*10−5 0.004 0.054 -0.052 

Standard deviation 3.702 115.983 8.4*10−5 0.002 0.054 0.069 
Confidence interval ±0.726 ±22.733 ±1.6*10−4 ±4.4*10−4 ±0.011 ±0.014 

 Horizontal Visibility Graph 

 ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 10.335 0.113 0.339 0.122 3.985 
Standard deviation 0.775 0.012 0.003 1.7*10−4 0.003 

Confidence interval ±0.152 ±0.002 ±5.0*10−4 ±3.3*10−5 ±6.3*10−4 

 Natural Visibility Graph 

ASPL Assortativity Global 
Transivitivty 

Mean Local 
Transitivity 

Mean 
Degree 

Mean 4.780 0.066 0.302 0.158 6.920 
Standard deviation 0.329 0.041 0.044 9.3*10−4 0.266 

Confidence interval ±0.065 ±0.008 ±0.009 ±1.8*10−4 ±0.052 
Table 21: Simulation case 13: 𝛼1 = 0.8612 and 𝛽1 = 0 
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Range 

Case 1 𝛼1  = 0.1169, 𝛽1 = 0.8612 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  10.878 0.154 0.339 0.122 3.984 
Max 14.917 0.181 0.345 0.122 3.991 
Min 9.150 0.126 0.333 0.122 3.974 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 5.452 0.229 0.357 0.154 6.107 
Max 6.341 0.281 0.376 0.156 6.323 
Min 4.971 0.152 0.305 0.152 5.906 

Case 2 𝛼1  = 0.1169, 𝛽1 = 0.4755 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  9.287 0.164 0.337 0.122 3.986 
Max 11.218 0.189 0.343 0.122 3.992 
Min 8.016 0.141 0.330 0.121 3.979 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 5.688 0.164 0.376 0.154 5.974 
Max 6.250 0.228 0.390 0.156 6.105 
Min 5.281 0.161 0.355 0.153 5.778 

Case 3 𝛼1  = 0.1169, 𝛽1 = 0.1169 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  9.231 0.167 0.337 0.122 3.986 
Max 10.623 0.190 0.343 0.122 3.992 
Min 8.313 0.143 0.332 0.121 3.976 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 5.709 0.192 0.376 0.154 5.925 
Max 6.639 0.229 0.396 0.156 6.070 
Min 5.221 0.160 0.360 0.153 5.747 

Case 4 𝛼1= 0.4755, 𝛽1= 0. 1169 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  9.830 0.137 0.338 0.122 3.985 
Max 11.298 0.164 0.344 0.122 3.993 
Min 8.582 0.115 0.332 0.121 3.978 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 5.290 0.157 0.353 0.156 6.283 
Max 6.125 0.209 0.379 0.157 6.624 
Min 4.765 0.064 0.305 0.154 6.026 

Case 5 𝛼1= 0.8612, 𝛽1= 0. 1169 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  11.063 0.106 0.340 0.122 3.984 
Max 14.751 0.141 0.350 0.122 3.992 
Min 9.416 0.078 0.334 0.121 3.974 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 4.635 0.041 0.283 0.158 7.195 
Max 5.607 0.136 0.353 0.160 8.119 
Min 3.835 -0.045 0.148 0.157 6.613 

Table 22: Range for simulation case 1-5 
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Range 

Case 6 𝛼1= 0.4755, 𝛽1= 0.4755 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  11.479 0.122 0.342 0.122 3.983 
Max 13.840 0.153 0.347 0.122 3.992 
Min 9.955 0.091 0.336 0.121 3.974 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 4.919 0.112 0.315 0.156 6.814 
Max 5.801 0.221 0.365 0.159 7.997 
Min 3.710 -0.070 0.116 0.155 6.374 

Case 7 𝛼1  = 0, 𝛽1 = 0.8612 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  9.055 0.176 0.337 0.122 3.987 
Max 10.224 0.201 0.341 0.122 3.993 
Min 8.283 0.149 0.332 0.122 3.981 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 5.711 0.191 0.376 0.154 5.877 
Max 6.390 0.237 0.390 0.155 6.023 
Min 5.390 0.162 0.365 0.152 5.739 

Case 8 𝛼1  = 0, 𝛽1 = 0.4755 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  9.059 0.192 0.336 0.122 3.988 
Max 10.629 0.198 0.342 0.122 3.991 
Min 8.248 0.148 0.332 0.122 3.980 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 5.739 0.192 0.376 0.154 5.863 
Max 6.305 0.230 0.388 0.156 6.090 
Min 5.334 0.165 0.363 0.152 5.744 

Case 9 𝛼1  = 0, 𝛽1 = 0.1169 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  9.058 0.176 0.336 0.122 3.987 
Max 10.647 0.197 0.342 0.122 3.992 
Min 8.164 0.147 0.331 0.122 3.978 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 5.750 0.190 0.377 0.154 5.870 
Max 6.373 0.229 0.396 0.156 5.958 
Min 5.400 0.158 0.367 0.153 5.735 

Case 10 𝛼1  = 0, 𝛽1 = 0 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  9.062 0.176 0.336 0.122 3.986 
Max 10.142 0.198 0.341 0.122 3.991 
Min 8.228 0.156 0.331 0.122 3.979 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 5.742 0.190 0.376 0.154 5.865 
Max 6.381 0.217 0.388 0.156 5.985 
Min 5.318 0.164 0.358 0.153 5.751 

Table 23: Range for simulation case 6-10 
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Range 

Case 11 𝛼1  = 0.1169, 𝛽1 = 0 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  9.082 0.175 0.337 0.122 3.987 
Max 10.528 0.205 0.342 0.122 3.993 
Min 8.247 0.151 0.332 0.122 3.979 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 5.723 0.194 0.378 0.154 5.882 
Max 6.305 0.230 0.391 0.156 5.989 
Min 5.271 0.161 0.363 0.153 5.762 

Case 12 𝛼1  = 0.4755, 𝛽1= 0 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  9.598 0.139 0.338 0.122 3.986 
Max 11.318 0.114 0.344 0.122 3.994 
Min 8.400 0.110 0.330 0.122 3.976 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 5.320 0.157 0.356 0.156 6.237 
Max 6.015 0.210 0.386 0.158 6.443 
Min 4.795 0.047 0.301 0.154 6.043 

Case 13 𝛼1  = 0.8612, 𝛽1 = 0 

Horizontal ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean  10.335 0.113 0.339 0.122 3.985 
Max 14.178 0.138 0.345 0.122 3.992 
Min 9.024 0.084 0.331 0.121 3.972 

Natural ASPL Assortativity Global Tran Local Tran Mean Deg 

Mean 4.780 0.066 0.302 0.158 6.920 
Max 5.902 0.142 0.355 0.163 8.304 
Min 3.550 -0.063 0.118 0.156 6.440 

Table 24: Range for simulation case 11-13 
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Test statistics 

1962-1971 Estimate Std Error t-value p > |t| 

𝛼0 1.124 ∗ 10−6 2.443 ∗ 10−7 4.600 0.00 
𝛼1 0.1671 1.755 ∗ 10−2 9.523 0.00 
𝛽1 0.8137 1.811 ∗ 10−2 44.919 0.00 

1967-1976 Estimate Std Error t-value p > |t| 

𝛼0 6.991 ∗ 10−7 2118 ∗ 10−7 3.301 0.00 
𝛼1 0.0756 1.043 ∗ 10−2 7.434 0.00 
𝛽1 0.9121 1.149 ∗ 10−2 79.373 0.00 

1972-1981 Estimate Std Error t-value p > |t| 

𝛼0 6.339 ∗ 10−7 2.233 ∗ 10−7 2.838 0.005 
𝛼1 0.0501 6.693 ∗ 10−3 7.481 0.00 
𝛽1 0.9423 7.638 ∗ 10−3 123.379 0.00 

1977-1986 Estimate Std Error t-value p > |t| 

𝛼0 8.664 ∗ 10−7 2.929 ∗ 10−7 2.958 0.005 
𝛼1 0.0352 5.689 ∗ 10−3 6.189 0.00 
𝛽1 0.9535 7.601 ∗ 10−3 125.435 0.00 

1982-1991 Estimate Std Error t-value p > |t| 

𝛼0 5.447 ∗ 10−6 1.216 ∗ 10−6 4.479 0.00 
𝛼1 0.0926 1.208 ∗ 10−2 7.660 0.00 
𝛽1 0.8548 2.105 ∗ 10−2 40.616 0.00 

1987-1996 Estimate Std Error t-value p > |t| 

𝛼0 1.745 ∗ 10−6 5.016 ∗ 10−7 3.480 0.00 
𝛼1 0.0905 1.249 ∗ 10−2 7.242 0.00 
𝛽1 0.8915 1.639 ∗ 10−2 54.396 0.00 

1992-2001 Estimate Std Error t-value p > |t| 

𝛼0 5.759 ∗ 10−7 1.971 ∗ 10−7 2.922 0.00 
𝛼1 0.0698 1.054 ∗ 10−2 6.624 0.00 
𝛽1 0.9217 1.066 ∗ 10−2 86.983 0.00 

1997-2006 Estimate Std Error t-value p > |t| 

𝛼0 7.417 ∗ 10−7 3.125 ∗ 10−7 2.373 0.00 
𝛼1 0.0726 1.007 ∗ 10−2 6.739 0.00 
𝛽1 0.9241 1.113 ∗ 10−2 83.038 0.00 

2002-2011 Estimate Std Error t-value p > |t| 

𝛼0 1.346 ∗ 10−6 3.141 ∗ 10−7 4.287 0.00 
𝛼1 0.0836 9.514 ∗ 10−3 8.791 0.00 
𝛽1 0.9075 9.909 ∗ 10−3 91.579 0.00 

2007-2016 Estimate Std Error t-value p > |t| 

𝛼0 2.938 ∗ 10−6 5.290 ∗ 10−6 5.553 0.00 
𝛼1 0.1169 1.328 ∗ 10−2 8.802 0.00 
𝛽1 0.8612 1.429 ∗ 10−2 60.628 0.00 

Table 25: Test statistics for estimation of GARCH-parameters 
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9.3 R-codes 

This is the code used to simulate the GARCH-processes, as well as the code that estimates the network 

statistics and the confidence interval. We have not included the codes we used to find the network 

statistics for S&P 500, as these are very similar, with just some minor modifications.  
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9.4 Reflection notes 

Espen Segberg 

The main part of our thesis was time-series analysis using a new method that has been gaining momentum 

in recent years. The new methods consists of a tool for transforming time-series into graphs and use 

network analysis to study them further and give another perspective on the network. The reasoning for 

using this method is, contrary to many of the old methods, one can capture the non-linear properties that 

is often found in time-series. We focused on the visibility graph method proposed by Lacasa et al. (2008). 

The network is created from the time-series through something called the visibility criterion. Loosely 

explained this means that if two realizations in the time-series can “see” each other, no realizations in 

between have a higher value than either of them, a connection between the realizations are established. 

By following this criterion, we get a network or a graph from the original time-series. Thereafter we can 

analyze several different network statistics that tells us something about the underlying time-series. The 

motivation for our thesis was to find out if the visibility graph method was a useful tool in analyzing 

financial time-series. The method has been used extensively in other fields, but the use in finance have 

been relatively sparse. To first test out this method we used it on some real-world data, namely a time-

series from the S&P 500, and collected the statistics value from real-world data to use as a baseline. We 



65 
 

then ran 13 different GARCH-simulations, which is a method for generating random time-series that is 

found to be similar to financial time-series found in the real world. The first simulation was set as to 

replicate the time-series extracted from the S&P 500 data and the rest we changed up the parameters to 

see if the visibility graph could separate between different processes in the time-series. Our first simulation 

case gave us pretty similar results as the real-world data in regards to the network statistics we were 

analyzing. On the surface this is a good result for us as this shows that the visibility graph method 

recognizes similar processes in time-series. As we ran the other 12 simulations and shifted parameters, we 

could see a trend in how the network statistics changed in the different simulations. Again, this tells us 

that the visibility graph can separate between processes in different time-series and is a good tool for 

analyzing financial time-series. We were also able to locate specific incidents that drives fluctuations in a 

time-series using the visibility graph method. As we noted in the thesis, our sample size from real-world 

data is small and consequently more research is needed to confirm our findings. All in all our results 

indicates that the visibility graph is a good tool to use in the financial world for people that analyze time-

series of this nature. 

Our findings can not be directly related to internalization in any way, but the method we have used may 

play a part in regards to internationalization. To take an example, as we mentioned in our literature review, 

the visibility graph method have been used to analyze time-series from the north-American natural gas 

price market to see what drives the price fluctuations. By doing this, one may be able to find some results 

that may help in dealing with emerging markets as they are maturing and to be better suited to deal with 

eventual problems that may arise or just be prepared for how the industry will possibly behave later on. 

The visibility graph is also a useful tool to locate important events, like economic, political or any other 

major events that play a significant role in fluctuation in prices in any given time-series. Therefore, another 

way this method can be used in terms of internationalization is to look at different time-series of all types, 

whether it be geographic, industry based or even compare from time-series from different fields of study. 

If one can find common events that plays a huge role in multiple time-series one can find solutions and 

cooperate between international borders or fields to find a solution if there is a problem. To sum up, our 

findings does not directly play a part in internationalization, but the method we have used may prove to 

be a useful tool to get a better understanding of different problems and how different time-series behave 

and in so may play an indirect role in problems regarding internationalization. 

In regards to innovation we believe that our findings in and off itself are innovative. We have found 

evidence that this new method, the visibility graph, is a useful tool in analyzing financial time-series. This 
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provides a new way to analyze and understand different financial time-series and as mentioned is a good 

tool to capture non-linear properties that is not found in using the older methods for analyzing time-series. 

We may discover things we did not already now by looking at time-series in a different way especially in 

regards to what drives price fluctuations and how prices fluctuate.  

It is hard to see that our findings may pose potential ethical challenges. We have found evidence for a new 

method to study time-series and we do not think there may be any ethical challenges at all considering 

this is just a research and analysis tool. Our findings may lead to a competitive advantage and/or risk 

mitigation. In regards to the completive advantages our findings may provide one may get a better 

understanding of how prices fluctuates for example, which is an extreme advantage in the financial world. 

If you are able to locate a trend or cycles in for example oil prices, you will have an advantage over 

competitors. Also by using the visibility graph, you may be able to reduce risk. This method is able to locate 

events that drives price fluctuations and, for example an oil company, may be able to locate specific events 

that drives the oil price and hence can hedge against these events occurring. 

 

Sindre Skoglund 

This thesis has focused on natural and horizontal visibility graphs, two algorithms for plotting a time-series 

into a complex network. We have applied these two algorithm to financial data, first by simulating data, 

and investigating what results were estimated in a controlled context, and then on real-life data, to see 

how those compared to what we simulated. The motivation behind studying these algorithms, has been 

to see whether they actually have the ability to differentiate between different types of financial time-

series. To achieve this, we have simulated time-series with different GARCH-parameters, as well as 

estimated GARCH-parameters for the real-life data we used, and compared the estimated network 

statistics to these. Our findings suggest that especially the natural visibility graph algorithm combined with 

the network statistic of average shortest path length has the ability to differentiate between time-series, 

but that further testing on real-life data are necessary before we can conclude on whether this analysis 

tool works outside of a controlled simulation environment.  

The knowledge we have gathered trough courses in the Master’s program at UiA has been essential for us 

to be able to write this thesis. Especially courses in methodology and econometrics, as well as learning 

how to use the coding language R in Computational Finance has been important. At the same time, 

complex network theory has been something we had to learn from scratch throughout the process of 
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writing the thesis. Consequently, it has made the writing of this thesis a demanding task, but the 

experience of combining this new knowledge with what we already learned from financial and economic 

courses has been an interesting and enjoyable task.  

The rest of this reflection note will cover three themes, namely internationalization, innovation and 

responsibility. The visibility graph algorithm is not the easiest topic to relate to these themes, to say the 

least, and whether the findings in this study will be affected by these themes is highly debatable.  

However, it can be argued that internationalization clearly affects the financial markets, in the form of 

increased market integration. When countries become more internationalized, they often become more 

developed. It then makes sense that their financial markets also become more developed, and 

consequently become more integrated with the world economy as a whole. It was suggested by Zhuang 

et al. (2014)that the visibility algorithm can be used as a tool to measure market integration, and the tool 

can consequently also be relevant to internationalization. In our thesis, we have showed examples of how 

the network statistics will look like when the visibility graph algorithms are applied to S&P 500, an index 

consisting of some of the most internationalized companies in the world, listed on the stock exchange in 

one of the most developed countries in the world. With that in mind, it is possible that the findings in this 

thesis can be used as a basis if one wants to see whether an index is highly internationalized. Results 

obtained from a highly internationalized index should probably look approximately like the ones we have 

estimated in this thesis.  

The connection between the visibility graph algorithms and innovation is more apparent. As this is a tool 

that can be used to analyze financial time-series, including for example stock prices and exchange rate, it 

can be a competitive advantage if someone were able to implement it effectively. Technical analysis is an 

important and widely used form of stock-price analysis, and innovation should be welcomed to stay ahead 

of the trends. Visibility graph analysis can possibly be used for this purpose, but further research is still 

needed before it can be utilized effectively.  

The last theme to relate visibility graph to is responsibility. Right now, I would personally deem it as a 

stretch to see any responsibility issues in regards to the visibility graph algorithms application in finance, 

as it is still a tool under investigation. However, if someone were use these tool for any purpose right now, 

like for example portfolio management, and tried to sell a product based on this tools effectiveness, I 

believe it would be irresponsible, given how little we still know about it. As I stated, I believe further 

research surrounding this tool is still necessary, and that responsible use of it, would be to further 
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investigate how well it works, primarily in controlled environments, like we have done in this thesis, rather 

than trying to use it on real-life data prematurely.  


