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Abstract 

 

     This research proposes two novel types of hierarchical search based solution to the 

Stochastic-Point Location (SPL) problem. In the SPL problem, placing a point on the 

line is the main goal of the robot. In order to find the best position of the unknown 

parameter (ψ
*
) on the line, the robot communicates with an Environment which 

basically guides it with p (the “effectiveness” of the Environment) probability, which 

means that the robot has a probability of being given erroneous recommendations by the 

Environment for choosing right or left side of a given point. The first investigation on 

the SPL problem by using a hierarchical search space [36] executed a controlled 

random walk on a discretized space constructed as a binary tree to place the unknown 

parameter in an accurate and quick way. The main deficiency of the Hierarchical 

Stochastic Search on the Line (HSSL) solution [36] is the fact that the robot can still 

visit the rest of the nodes after finding the optimal action. In addition, HSSL approach 

makes transitions between consecutive levels in the tree structure of the search space.  

 

     To deal successfully with locating the unknown parameter on the line, two novel 

alternatives, Learning Automata based solution to HSSL and Multilevel Jumps based 

solution to HSSL, are proposed. The former is a new search method with a logic that 

resorts to Reward-Inaction Learning Automata (LRI) operation, and the latter is a simple 

search method that allows transitions across multiple levels, rather than only between 

consecutive levels. The advantages of using Learning Automata (LA) and Multilevel 

jumps that provide accurate and simple techniques are novel features of the proposed 

methods. The strategies proposed here can be applied to learn the best parameter to be 

used in the optimization. The solution has been simulated, with interesting results. 
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1 Introduction 

 

 

Nowadays, discrete optimization problem has become one of the essential 

problems by which engineers and decision makers collect information about 

stochastic systems. Handling these systems is performed by the discrete 

events with interactions between these events over time. 

     This project considers a problem in discrete optimization called 

Hierarchical Stochastic Searching on the Line (HSSL). The problem 

involves a robot (Learning Mechanism (LM)) walking along the real line 

planning to place a special point ψ*. It is assumed that LM can interact with 

an Environment (“Oracle”), which notifies it with information regarding the 

direction in which it should go.  

     The discrete optimization problem is cited as “deterministic point 

location problem”, if the Environment is deterministic. In its pioneering 

type, Baeza-Yates et al. [19] offered the problem in a form that the 

Environment could allocate a cost to the robot that is corresponding to the 

distance it is from the point searched for. The question of having multiple 

interacting LMs place a point on the line has also been investigated by 

Baeza-Yates et al. [19, 20]. 

     In the stochastic variant of the point location problem proposed by 

Oommen [15], [31], [16], the Learning Mechanism intends to place a point 

in an interval with stochastic (i.e., possibly erroneous) feedbacks from the 

Environment, rather than deterministic feedbacks. Hence, when it should 

really be going to the “right” it may be recommended to go to the “left” and 

vice versa, with a probability p (p ≠ 0). 

     The Stochastic Point Location (SPL) problem is related to the field of 

Learning Automata (LA) problems [42–47], in which the LM aims to learn 

from a stochastic Environment. Particularly, unlike the pioneering type of 

LA model in which the LA intends to determine the optimal action 

proposed by the Environment, in this research it is considered the LM is 
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attempting to place an unknown point ψ*
 
on an interval by communicating 

with the random
1
 Environment through a sequence of informed estimates. 

 

     The purpose of the optimization problems is to perform a given task with 

the minimum cost or with the maximum profits. If the basic cost function 

(or benefit function) is recognized, then the problem is normally one of 

minimizing (or maximizing) this function.  

     The algorithm for SPL executes its way iteratively from its current point 

to the optimal point, like many of the optimization approaches such as 

image processing, pattern recognition, and neural computing [15], [21- 27], 

[49]. Such algorithms have a key parameter that indicates the algorithm 

convergence to the optimal action. Selecting the value for this parameter is 

crucial to the algorithm. In many methods, the scheme parameter is related 

to the second derivative of the function, which ends in a technique 

analogous to a “Newton’s” root solving method. The deficiency of the latter 

is the fact that it needs the additional computation for assessing the (matrix 

of) second derivatives [23, 24, and 26]. In order to solve this shortage, in 

the work of [36] it is declared that their solution solves the stochastic 

hierarchical search with the best parameter that can be used in any 

algorithm. It should be cited that their solution needs no additional 

computations for derivatives. Furthermore, in the method of [36] there 

exists a learning strategy in order to converge to a value arbitrarily close to 

the best parameter. Therefore, in our solutions, the method presented in [36] 

is utilized to develop an accurate technique with less computation. 

     The main shortages of the state-of-the-art solution to the Stochastic-

Point Location (SPL) problem presented in [36] are two cases. First, in the 

[36] approach when the LM reaches the optimal action, it can still visit the 

rest of the nodes in the tree, so the scheme convergence is decreased. 

Second, it makes transitions between consecutive levels in the tree means 

                                                           
1
 - Random Environment will be briefly described in section 1.1.1. 
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that LM can move up to the immediate Parent, so finding a node placed at 

four (or more than four) levels upwards in the tree is time consuming.   

     Unlike the investigation of Yazidi et al. [36] in this research, designing 

two novel approaches of hierarchical learning schemes named as LA based 

solution to HSSL and Multilevel Jumps based solution to HSSL for solving 

the SPL problem is devised. In the former solution presented in our 

investigation Reward-Inaction LA converges to the best value of the 

unknown parameter ψ*
 
and never comes to another node, hence the scheme 

convergence is increased and in the latter approach the scheme allows the 

LM to move up for more than one level in the hierarchical search space, 

rather than only between consecutive levels. 
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1.1 Background  

1.1.1 Learning Automata 

 

A Learning Automata (LA) is an adaptive and stochastic decision making 

automaton
2
 with relatively little initial knowledge that is placed in a random 

Environment and concurrently learns the optimal action through frequently 

interactions with its Environment and based on its achieved experience. The 

actions are selected corresponding to a particular probability distribution 

that is updated based on the response that automaton gains from the 

Environment by executing a specific action.  

     Learning Automata is associated with the design and programming of 

methods that allows computers to generate behavior based on experimental 

input data, such as sensor data or databases. The Learning Automata 

concept is created on the basis of psychologists’ work in behavior modeling 

and statisticians’ efforts in determining the choice of trials based on past 

experience. The aim of scientists is to produce intelligent decisions. 

     In the study of LA, the Environment is typically developed as one that 

rewards or penalizes the automaton randomly; the LA aims to find the 

optimal strategy, hence it maximizes the probability of being rewarded. The 

key point is that the success probability for each action is unknown to the 

automaton; it adapts itself to the Environment by learning the optimal 

action.  

     In other words, while interacting with the Environment, the Learning 

Automaton chooses an action and then the Environment response tells the 

LA whether the selected action was rewarded or penalized. Afterward, the 

automaton makes use of this information in order to decide which action to 

take next time, and the cycle continues. 

                                                           
2
- “An automaton (plural: automata or automatons) is a self-operating machine. The word 

is sometimes used to describe a robot.” [55] 

 

http://en.wikipedia.org/wiki/Robot
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     The LA operates in either random Environment or unknown 

Environment. In the former case, an action does not present the same 

response each time it is executed and in the latter, the action does not 

require information about the impact of its action at the start point of the 

operation.  

     A strong feature of Learning Automata is that it can progress its 

performance by means of a learning process. LA combines quick and 

precise convergence with low computational complexity. Therefore, LA is 

employed in this research as one of our proposed solutions to solve a 

stochastic learning problem. 

     The automaton chooses an action ai at instant i from a finite action set 

{ai │i=1 to R} (see Figure 1). The chosen action acts as the input to the 

Environment that yields a response bi at time i. The bi is an element of B = 

{0, 1}. It is assumed that 1 is Penalty and 0 is Reward. When performing an 

action ai, there is a certain probability that the Environment responds with a 

Penalty: 

 

P (Penalty | Action =ai ) = ci ,   1 ≤ i ≤ R 

 

Remark: If the Environment does not respond with a Penalty, it responds 

with a Reward instead.  

 

Figure 1: Learning Automata [35] 
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1.1.2 The Stochastic Point Location Problem 
 

In this section, the main definition of the Stochastic Point Location (SPL) 

problem, which was first proposed by Oommen in [15], is briefly presented. 

In the SPL problem a Learning Mechanism (LM) is applied in order to 

determine the best value of a parameter, ψ. It is assumed that there exists an 

optimal value for ψ – an unknown value, called ψ*
 
in a unique search 

interval, [0, 1). Learning the unknown parameter ψ*
 
in an efficient way is 

the main goal of the SPL problem. Although, the value of ψ*
 
is unknown to 

the scheme, it is supposed that it has feedbacks from an intelligent 

“Environment” (“Oracle”) which is enable to inform it whether any value of 

ψ is too small or too big. It should be stated that the Environment feedback 

is assumed “faulty”; hence the problem is different from its deterministic 

counterpart. Indeed, the Environment may recommend the LM to increase ψ 

when it should be decreased, and vice versa, with a probability 1 – p that is 

bigger than zero. In this area, the quantity “p” indicates the “effectiveness” 

of the “Environment” E which is normally suggested bigger than 0.5. Thus, 

whenever the current ψ is smaller than ψ*, the Environment correctly 

responds that LM should increase ψ with probability p. It synchronously 

could have incorrectly replied that LM should decrease ψ with probability 

(1 − p). The reverse is also true whenever ψ ≥ ψ* [36]. 

 

1.1.3 The Hierarchical Stochastic Search on the Line 
 

In order to solve the SPL problem, the Hierarchical Stochastic Searching on 

the Line (HSSL) solution has been proposed in [36], which supplies much 

faster convergence compared to the work [15]. Besides, HSSL scheme is 

able to deal with non-stationary Environments
3
. Indeed, the Hierarchical 

                                                           
3
 - The Environment is cited as a non-stationary Environment when its feedback for placing 

a point in an interval to find the best value of ψ is both uncertain and time varying. 
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Stochastic Search is similar to the binary search
4
, but in the HSSL 

technique, ψ*
 
changes over time, which means that the Environment is non-

stationary. In addition, the quantity p in HSSL solution indicates the 

probability that Environment correctly suggests to LM moves in the tree, 

which confirms the non-deterministic property of HSSL. Hence, finding the 

target node in HSSL method is rigorous compared to simple binary search, 

since the Environment of the binary search generates deterministic 

feedback.  

     HSSL strategy executes a controlled random walk on a discretized 

search space constructed as a binary tree with maximum depth D. It is 

assumed that [α, β) is the current search interval containing the unknown 

parameter ψ*. To each node in the hierarchy it is associated an interval 

containing three points, i.e., left and right boundary points (α and β) along 

with the middle point of the interval ((α+ β)/2). 

     In the HSSL solution, the LM searches for the target node including ψ*
 

by two kinds of random walk transitions. When the LM aims to reach the 

immediate Parent (a larger search interval), the reverse transition is 

applied; hence it corresponds to a lower level movement in the hierarchy. 

Besides, a top-down transition is employed whenever the LM performs a 

transition to a deeper level in the hierarchy by selecting a Child node. In 

fact, in top-down transition the search space becomes small, and so the LM 

will concentrate on one of the adjacent intervals at the next level of the tree 

that may include the unknown parameter ψ*. 

     By making use of the HSSL solution in solving the SPL problem, the 

convergence speed of the scheme is remarkably increased compared to the 

original SPL solution reported in [15], since in the HSSL technique the 

search space is discretized and is structured as a binary tree. Therefore, the 

HSSL solution is applied in this research as our second solution to solve a 

stochastic learning problem. 

                                                           
4
 - For more information about binary search see Appendix. 
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1.2 Thesis Definition and Hypothesis 

1.2.1 Thesis Definition 

 

 

We formulate the thesis definition in the following way: 

 

The main goal of this thesis is to determine how LA based solution to HSSL 

and Multilevel Jumps based solution to HSSL can be used to solve the SPL 

problem with high accuracy and low complexity convergence. To evaluate 

the performance and scalability empirically, a tree-based search space 

should be designed and developed. Further, novel proposed approaches 

should be tested with faulty feedbacks from the Environment.  

 

 

1.2.2 Hypothesis 

 
 

As the growing need of efficient ways to solve the SPL continues, it is in 

this research hypothesized that combining the Reward-Inaction LA (LRI) 

and Multilevel jumps with the existing approach will drastically increase 

the efficiency of the solving SPL. The reason to this is that the Reward-

Inaction LA is ɛ-optimal and it converges to the optimal action precisely 

[57]. Hierarchical Stochastic Search on the Line (HSSL) [36] is an existing 

approach which has been proved to be a very efficient method to solve the 

SPL problem, therefore this approach has been chosen to be combined with 

the Reward-Inaction LA (LRI) and Multilevel jumps, in order to prove 

whether LA and Multilevel jumps will increase the efficiency to solve SPL 

or not. This combination will create the LA based solution to HSSL and 

Multilevel Jumps based solution to HSSL techniques. 
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1.3 Importance of the Topic 

 

 

Implementing capable techniques for solving discrete optimization 

problems such as the SPL problem is a significant area of engineering 

research. Such techniques could be utilized to assist in solving the 

stochastic resonance problem [40], the stochastic sampling problem in 

computer graphics [41], the problem of determining roads in aerial images 

by utilizing geometric-stochastic models [37], the stochastic and dynamic 

vehicle routing problem [38], and different variants of location problems 

[39].  

     Considering the above reasons, we hope that the reader is convinced that 

searching for an effective solution for such an underlying problem can be 

quite rewarding. Hence, in this research the HSSL [36] has been utilized 

since it is proved as an effective approach in stochastic optimization 

problem. In addition, the HSSL technique has been shown to supply orders 

of magnitude faster convergence than the traditional SPL solution [15] 

when implemented in non-stationary Environment where ψ* changes over 

time. In this sense, LA has also been used since it converges accurately in 

learning schemes, so this research will introduce new and efficient ways of 

solving SPL by proposing the LA based solution to HSSL and Multilevel 

Jumps based solution to HSSL in hierarchical structure of the search space.  
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1.4 Motivation  

 

If the problem is solved, the research will offer two novel and drastic 

techniques of solving SPL by applying Reward-Inaction Learning 

Automata and Multilevel jumps in the original HSSL solution in [36]. 

Adding a new algorithm to the collection of solver algorithms is a step 

further of solving complex problems that can be represented as SPL, and an 

advancement in the science of SPL.  

      

 

1.5 Research Questions 

 

In our research we will answer the following questions: 

 

 How can LA based solution to HSSL be applied to design a new accurate 

strategy of solving the SPL problem in stationary Environments? 

 

The question covers one of the central research elements, i.e., to accurately 

solve the discrete optimization problem by using Learning Automata in the 

tree-based search space and in the stationary Environment where ψ*
 
is time-

invariant. The question also defines a technique that should be applied to 

the problem. The technique is the Hierarchical Stochastic Searching on the 

Line (HSSL), which is presented by Yazidi, Granmo, Oommen and 

Goodwin [36]. The heart of the HSSL strategy includes executing a 

controlled random walk on a discretized space structured as a binary tree.  

The HSSL strategy is specially presented to determine the best parameter to 

be used in the optimization. The overall learning scheme has been shown to 

be optimal [36].  
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 How to incorporate Multilevel jumps with the HSSL solution for designing 

a new simple strategy of solving the SPL problem in non-stationary 

Environments? 

 

The question refers to the second central research element, i.e., how the LM 

can move upwards for more than one level in the tree-based search space to 

solve the discrete optimization problem with less complexity compared to 

the work [36]. It is interesting to observe how the solution behaves when 

residing in a wrong sub tree, i.e., one that does not include ψ*. This 

alternative is executed in a non-stationary Environment where ψ*
 

is 

changing over the time. 

 

 Will the integrated methods make locating the stochastic point more 

efficient, and how can we test it? 

 

After modeling the hierarchical structure of the search space and merging 

LA and Multilevel jumps with the original HSSL solution [36], we will 

compare our results to the algorithm introduced in [36] to disclose whether 

our results have been obtained in high enough efficiency or not. Therefore, 

we will find out whether the proposed alternatives can be useable in SPL 

solving or not. 

 

 

1.6 Claim 

 

In this thesis it is claimed that using a LA based solution to HSSL clearly 

provides more accurate convergence compared to the original HSSL 

solution offered in [36]. Further, we claim that Multilevel jumps in the 

hierarchical structure of the search space can be applied in order to find the 

best unknown parameter ψ* by a less complex technique compared to the 
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original HSSL proposed in [36]. Lastly, we claim that the solution is 

scalable, but the total running time is increasing when adding more levels to 

the tree structure of the search area. 

 

 

 

 

1.7 Limitations and key Assumptions 

 

 

The implementation of the proposed algorithms, LA based solution to HSSL 

and Multilevel Jumps based solution to HSSL, will be done in the Java 

programming language. Although, two novel variants of HSSL proposed in 

this research may require much work to be implemented very efficiently in 

Java. Finding the best parameter in the optimization problem could be done 

by different algorithms, which each of them can affect the results. However, 

all of these algorithms will not be performed in this research due to the 

limited time span of the thesis. Besides, by increasing the scheme resolution 

N (or tree depth D=log2(N)), the convergence rate of our proposed solutions 

is also increased, but handling large values of N demands a high number of 

simulation runs which was not done in this project due to limitations in 

computational resources. 

     We have made two significant assumptions. First, the Learning 

Automata applied in the project is Reward-Inaction LA in which the effects 

of non-optimal actions are ignored. In other words, if the LA is rewarded by 

the Environment for choosing an action, it increases the probability of 

choosing this action at the next time instant, otherwise if LA is penalized 

then the probability of choosing this action remains unchanged. Secondly, 

the responses from the Environment to a LM in the tree structure of the 

search space are Binary (Reward or Penalty). 
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1.8 Contribution to the Knowledge 

 

The outcomes of this project will contribute with a new experience in the 

computer research domain. Indeed, the results will assist discrete 

optimization solver algorithms. By making use of the results achieved in 

this research, the optimal value of the parameter will be found with a higher 

accuracy and less complexity, and therefore with the least computational 

complexity. 

     In the area of computer science, this project will test a different strategy 

by incorporating the HSSL technique with Learning Automata operations in 

solving SPL problem for the first time. The proposed solution in this project 

will work in a stationary Environment where ψ*
 
is time-invariant. Further, 

applying Multilevel jumps in the HSSL solution will be presented in this 

thesis research which provides a simple solution to the SPL problem when 

the Environment is non-stationary where ψ* is time varying.   

    

1.9 Target Audience 

 

 

The target audience of this thesis is anyone that has interests within the 

hierarchical stochastic search for solving the SPL problem. Particularly, it is 

targeted at people who are interested in the usage of tree-based search 

technique along with LA concepts for finding the best value in optimization 

problems. Since the main contribution of the thesis is to apply a machine-

learning technique called Hierarchical Stochastic Search on the Line 

(HSSL), Artificial Intelligence researchers and other people interested in 

this field may find this thesis interesting.  

     For the reader to fully understand the concepts and reasoning behind the 

proposed solutions, some knowledge of machine learning and a good 
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understanding of common basic elements within the field of computer 

science is recommended.  

 

 

1.10   Thesis Report Outline 

 

The rest of this thesis is organized as follows: Chapter 2 represents the 

previous research in the field of SPL problem solver methods. Chapter 3 is 

intended to present theoretical background of the Learning Automata 

concept, i.e., what LA is, how LA operates in a system and what the 

Reward-Inaction LA is. Besides, Chapter 3 introduces briefly concepts 

behind discrete stochastic optimization, hierarchical structure of the search 

space and the Stochastic Point Location (SPL) problem. Chapter 4 is aimed 

to explain the proposed solutions formally. A combination of the HSSL 

solution with the Learning Automata concept in a stationary Environment is 

thoroughly stated in this chapter. It also describes how Multilevel jumps 

based solution to HSSL will be executed in order to find the best value for 

the unknown parameter ψ* when the Environment is non-stationary. In 

chapter 5 the results achieved from the experiments are delineated as 

commented plots. In Chapter 6 the main findings of the proposed solutions 

will be discussed. Chapter 7 is intended to wrap up, supply a conclusion and 

offer interesting aspects that may be pursued in further research. 
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2 Significant Prior Research 

 

The focus in this chapter is on significant prior work. There have not been 

done many researches in solving the SPL problem using tree-based search 

space. We will therefore mention two important papers in solving the SPL 

problem in the following sections. The first paper is important for solving 

SPL in an efficient way without applying hierarchical structure and the 

second one is significant for applying hierarchical search space for solving 

SPL. In both papers the discretizing search space method is applied to solve 

the SPL problem, because this method takes benefit of the restricted 

accuracy available in practical implementations to limit the probability of 

selecting an action to only finitely many values from the unique search 

interval [0, 1]. 

     In the first paper a “one-dimensional” controlled random walk in a 

discretized search space is executed in order to place the unknown 

parameter ψ*. However, the second paper makes use of a discretized search 

space constructed as a binary tree; an efficient method that has been used to 

solve the Stochastic Point Location (SPL) problem. 
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2.1 Solving Stochastic Point Location by 

Discretizing the Space 

 

The heart of the strategy proposed in [15] consists of discretizing the search 

space and executing a controlled random walk on this space. The scheme 

has been proved to be ɛ-optimal and to converge with probability 1. One 

difference among traditional learning systems and the discrete learning 

scheme is that Discretized Point Location algorithm (DPL) modifies the 

action probability in discrete steps and not continuously. The DPL 

algorithm restricts the action likelihood into finite values of the search 

interval. In contrast, in the concept of traditional learning algorithms is the 

fact that the probability of selecting an action may be any real number in the 

interval [0, 1].  

     The solution cited in [15] for the SPL problem performed as follows: the 

search space is partitioned by subdividing the unit interval into N steps {0, 

1/N, 2/N, . . . , (N − 1)/N, 1}. The discretization is assigned as linear if the 

allowed values are equally subdivided in the interval [0, 1] and contains the 

points 0 and 1; otherwise, the discretization is cited as nonlinear. In this 

approach, a larger value of N will indicate a more precise convergence to 

the unknown ψ* (target node). The algorithm then executes a controlled 

random walk on the discretized space. Whenever the Environment informs 

the LM to go to the right (or left), it moves to the right (or left) by a single 

step in the discretized space.  

     Indeed, the scheme alluded in [15] performs the following updating 

rules: 

Assume ψ (n) is the value at time step “n”. In other words, ψ (n) is a guess 

of the unknown value of ψ* at time step “n” [15]. Then,  
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ψ (n + 1) := ψ (n) + 1/N              ;if E suggests to increase ψ and 0 ≤ ψ (n) < 1 

ψ (n + 1) := ψ (n) − 1/N             ;if E suggests to decrease ψ and 0 < ψ (n) ≤ 1 

 

At the end states the scheme performs: 

 

ψ (n + 1) := ψ(n)                       ;if ψ (n) = 1 and E suggests increasing ψ 

ψ (t + 1) := ψ(n)                       ;if ψ (n) = 0 and E suggests decreasing ψ 

 

     The analytical outcomes achieved in [15] determined that if the 

“Oracle”
5
 was informative

6
 then the discretized random walk learning was 

optimal. Hence, the mechanism would move toward a position arbitrarily 

close to the true target position with an arbitrarily high likelihood. 

     The main deficiency of the scheme explained in [15] is the fact that the 

steps made are always very conservative. If the size of each step is 

increased the convergence speed of the scheme is improves, but the 

accuracy is correspondingly diminished.   

 

 

2.2 Solving Stochastic Point Location by 

Hierarchical Stochastic Search on the Line 

 

The approach [15] which was stated in section 2.1 limited the parameter to 

be one of the finite number of values in the unique interval [0, 1], and then 

executed a “one-dimensional” controlled random walk on the discretized 

search space, where “left” and “right” are the only choices for the learning 

mechanism. Hence, the size of the scheme resolution, N, was proportional 

to the convergence speed. Meaning that as the scheme resolution got bigger, 

the scheme convergence performed slower. This deficiency was resolved by 

                                                           
5
 - The scheme is informed by “Oracle” or “Environment” E whether the present value of ψ  

is too small or too big. 
6
 - The definition of the “informative” Environment is stated in section 3.1. 
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Yazidi et al. in their work in [36]. In this paper, a different approach is 

proposed for discretization, where the search operation is performed in a 

discretized search space constructed as a binary tree with maximum depth 

D=log2 (N) where N is the resolution of the scheme, so the convergence 

speed is improved by using a tree-based search space. In this technique, a 

resolution is associated to each level of the tree, which becomes better at 

deeper levels of the tree. In fact, executing a managed random walk by the 

Learning Mechanism on the tree-based search space is the main part of this 

solution, which distinguishes this solution from the approach stated in [15]. 

It has been shown in this paper that Hierarchical Stochastic Search on the 

Line (HSSL) supplies a much more faster convergence compared to the 

original SPL solution presented in [15]. It has also been proved that the 

overall scheme is ɛ-optimal when the Environment effectiveness, p, is 

greater than the golden ratio conjugate
7
 [10]. In this paper it has been 

demonstrated that the HSSL solution supplies a more accurate scheme than 

the original SPL approach in [15]. HSSL solution requires less iteration 

compare to the original SPL solution in order to obtain 95% of the unknown 

parameter ψ*.  

     For the sake of brevity, the construction of the hierarchy and other 

concepts related to HSSL will be described later, since in this thesis 

research, similar concepts are applied. 

 

 

                                                           
7
 - The quantity of golden ratio conjugate is stated in section 3.4.3. 
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3 Research Methodology 

3.1 Learning Automata 

 

In order to put our work in the right perspective, this section is started by 

providing a brief review of the main concepts of the Learning Automata 

first introduced by Tsetlin in [14].  

     Learning Automata (LA) [11, 15-17, 28, 34] have been utilized in order 

to design and form biological learning systems. Learning Automata aim to 

find the optimal action
8
 which is suggested by a random Environment. 

Learning is carried out by clearly communicating with the Environment, 

and processing its responses to the selected actions, while gradually 

converging toward a final goal. Two entities, the random Environment and 

a learning automaton are involved in the learning loop. As mentioned 

before, a strong feature of Learning Automata (LA) is that it can improve its 

performance by means of a learning process. LA combine quick and precise 

convergence with low computational complexity, so in this research LA is 

utilized as one of the variants of the Hierarchical Stochastic Search on the 

Line in order to precisely find the optimal value of ψ*. There exist two main 

types of LA in the machine learning area, one that is deterministic and one 

that is stochastic [50]. The former type possesses fixed states, transition and 

action functions, while the state output of the stochastic LA is decided by 

certain likelihood. In this research the stochastic type of LA is used. The 

reader is referred to the books of Lakshmivarahan [11], Narenda and 

Thathachar [16], Najim and Poznyak [15], and Poznyak and Najim [28] for 

more information about Learning Automata. 

     As alluded to earlier, the purpose of the learning process is to discover 

the optimal value of some parameter ψ*
 ∈ [0, 1). However, the value of ψ* 

is unknown to the learning process, it is supposed that the Learning 

                                                           
8
 - The action with the highest reward probability is called optimal action. 
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Mechanism possesses responses from the Environment E, which is able to 

notify it whether the current estimate ψ is too small or too big.  

     There exist two different types of Environment—informative and 

deceptive. An Environment is cited as “informative” if the probability p of 

the Environment, is greater than 0.5. If p < 0.5, the Environment is stated as 

“deceptive,” this means that the Environment will generate erroneous 

feedback more than correct feedbacks. Finally, the Environment is a 

compulsive liar, if the probability of a correct feedback p of the 

Environment approaches zero. 

 

 

3.1.1 The Operation of an Automaton 
 

 
An automaton remembers which actions are “good” by maintaining a state 

St ϵ { S1, . . . ,Sn }. 

 

 

Operation of an automaton is as follows: 

 

“1. Selects and outputs an action based on its present state 

2. Takes a response from the Environment as input 

3. Changes its state based on (a) the response and (b) the action performed 

(see Figure2).”
 
[54] 

     An automaton can be said to learn if it reduces the number of Penalties 

received as a result of interacting with the Environment. Indeed, the 

automaton makes use of the Environment feedback and the knowledge 

obtained in the past actions to decide which the next action is. 
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Figure 2: Operation of an Automaton [54]  

 

 

     In order to clarify the LA definitions, the ɛ-optimality concept of LA and 

two other different types of LA, namely discretized and continuous LA is 

described in following.  

     It is assumed that Pb is the probability that the learning automaton selects 

the best action [31]. A learning automaton is ɛ-optimal if Pb (t) → 1 as         

t →∞ [31]. In other words, when the time goes to infinity, the learning 

automaton will finally find out the correct answer.  Hence, a learning 

automaton is called ɛ-optimal if the probability of selecting the best action 

can be made as close to unity as desired, even if the automaton is not able to 

find the best action with probability of unity. 

 

 

 

Figure 3: Comparison of probability of choosing optimal     

     action for continuous and discretized learning algorithm.  

(a) Continuous case. (b) Discrete case. [31] 
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     From Figure 3 it can be observed when the optimal action has been 

discovered, say a time t, and the corresponding action probability is close to 

unity, the discretized automaton will increase the probability of selecting 

that action to the value of unity directly, instead of coming near to the value 

unity asymptotically [31]. Figure 3 depicts that for the continuous case, A, if 

the probability of selecting the optimal action is at 0.98, and the automaton 

achieves reward for five times, then at time t +5 the probability of selecting 

the optimal action will come near to unity. Indeed, the value will depend on 

the scheme parameters. In the discretized case, B, the probability of 

selecting the optimal action will be unity if the probability space is 

partitioned into intervals of width 0.01 [31]. In general, the speed of 

convergence utilizing this method is substantially improved. Discretization 

is also profitable when it concerns issues related to implementation and 

representation. Since this type of algorithms utilizes integer (as opposed to 

real number) representations, they allow addition (as opposed to 

multiplication) operations. Some of the existing outcomes about discretized 

automata are considered in [27, 29, 30, 31, 32, and 33]. Therefore, 

discretized learning automata are employed in this research. 

     In learning systems, a Reward-Inaction learning automaton (LRI) is an 

effective type of LA compared to Reward-Penalty counterpart; hence it is 

chosen for this research and is described in the following section. 

 

 

 

3.1.2  Reward-Inaction Learning Automata 

 
 

Making use of Reward-Inaction model of Learning Automata causes the 

algorithms to approach the optimal action, since actions are chosen near to 

optimal point. In this model only the optimal actions influence the 

probabilities of action and non-optimal actions are disregarded. 
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     Challenges included in biasing two components of Reward and Penalty 

in the Reward-Penalty technique has become one of the most significant 

reasons of the popularity of the Reward-Inaction solution. A normal 

Reward-Penalty algorithm can be specified as follow [18]: 

 

Pi (n+1) = Pi (n) + a. (1-β (n)) (1-Pi (n))-b.β (n) Pi (n)               ; for the 

chosen action 

 

Pj (n+1) = Pj (n) - a. (1-β (n)) Pj (n) +b.β (n). [(r-1)-1- Pj (n)]    ; for the 

other action  

 
where β is the response from the Environment in the interval [0, 1], and 

constants a and b are the Reward and Penalty parameters, respectively. In 

this formula if b=0 then the model is stated as Reward-Inaction in which 

the effects of non-optimal actions are ignored. In other words, if Learning 

Automata selects an action and achieves Reward response from the 

Environment then it increases the probability of choosing this action at the 

next time instant and decreases the probability of the other action that has 

not been chosen, otherwise if the Learning Automata obtains Penalty 

feedback from the Environment in the new action, then the probability of 

selecting this action remains unchanged, hence the algorithm is called 

Reward-Inaction. 
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3.2 Discrete Optimization Problem  

 

Discrete optimization is a branch of optimization in applied mathematics 

and computer science. Unlike continuous optimization, the variables used in 

the mathematical program (or some of them) are restricted to assume 

only discrete values, such as the integers [51]. The main goal of a discrete 

optimization operation is finding the maximum (minimum) using the local 

information that is accessible.  

     Discrete optimization has a significant position in modeling and 

analyzing of discrete event systems. Configuration design of distributed 

computer systems, VLSI design, the routing design in commutation 

networks, and many scheduling schemes in communication networks are 

examples of the discrete optimization problem [53]. A common property of 

the discrete optimization problems in mentioned systems is that they are 

NP-complete
9
. In order to solve this deficiency one has to relax the 

objective somewhat. For instance, it should be only queried for algorithms 

that can supply a good model with high probability. In fact, this is a good 

compromise, since in most positions if a poor system is chosen by the 

algorithm, it normally can be identified by inspection.  

     In order to familiarize the reader with the definition of discrete stochastic 

optimization problems, one example is cited in the following.  

     Consider the following optimization problem  

 

Min f (n) = E {Xn}    ; nϵ ℕ               (1)   

where ℕ = {1, 2, … } and { Xn } is a sequence of random variables [52]. 

Suppose 𝒮 ⊂ ℕ demonstrates the set of local minimizers of the function  f . 

When the expected values of random variables, E {Xn} where n = 1, 2, ..., , 

can be analytically estimated, standard integer developing methods can be 

applied in order to solve the optimization problem (1) [52]. A new 

                                                           
9
 - “NP-complete is a class of decision problems. A decision problem L is NP-complete if it 

is in the set of NP (Non-deterministic Polynomial time) problems, so that any given 

solution to the decision problem can be verified in polynomial time”. [56]  

http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Discrete_mathematics
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/Nondeterministic_algorithm
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/Polynomial_time
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technique is proposed in [52] that is modeled to place an element of the set 

𝒮   in the position where the expected values E { Xn }, n = 1, 2, ..., cannot be 

analytically estimated. This new method is similar to a stochastic 

approximation algorithm in the following definition: when employed to 

resolve a minimization problem, a stochastic approximation algorithm, such 

as the Robbins-Monro algorithm (Robbins and Monro 1951) and the 

algorithms introduced by Andradottir (1995, 1996a) produces a sequence of 

the solution guesses, where each new guess is achieved from the previous 

guess by taking a small step through the direction of the negative gradient 

of the objective function [52]. As this is the way through which the 

objective function will be diminished the fastest, a logical description of 

these algorithms is that each step includes of determining a “good” 

direction, that is a direction through which researchers assume the objective 

function to diminish, and then taking a small step through this direction. 

One simple algorithm for solving discrete stochastic optimization is 

presented in the following, which is based on the same principle.  

     Since the objective function is specified on a discrete set, gradient 

information is not applied for determining a “good” direction. However, as 

the set of possible approaches is ℕ, natural integers set, so at each possible 

point, there exist two directions to select: up or down. Hence, in each 

iteration, the algorithm is expected to determine whether to take a small step 

up or down or to resides at the same position. Since the length of the 

smallest step that can be taken is one, if n > 1 is the current position, then it 

should be specified whether n or one of its neighbors n - 1 or n + 1 is the 

next position (e.g. if the current position is 1, then it should be identified 

whether 1 or its neighbor 2 is the next position). This is obtained by 

selecting at random either n - 1 or n + 1 as a next position, then running the 

scheme at n and its selected neighbor to specify at which position the 

objective function has a lower value, and then letting the next position be 

the better of the two. The reader is referred to [52] for more details about 

this method. 
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     In the rest of this section, two more algorithms for solving discrete 

stochastic optimization are briefly described. The first algorithm is 

proposed by Yan and Mukai [53], which is a random search technique and 

is cited as the Stochastic Ruler (SR) algorithm. This algorithm compares 

observations of the objective function values with observations of a uniform 

random variable, called the “Stochastic Ruler,” whose range contains the 

range of the observed objective function values. The number of such 

comparisons will be increased when the number of iterations grows.  

     For the sake of comparing observations, the Stochastic Ruler method 

proposes neighborhood structure. The candidate of the next step will be 

selected from the neighbor set of current decision parameter. The algorithm 

makes use of the elements in neighbour set to estimate the optimal solution.     

In other words, the Stochastic Ruler technique includes generating up to MK 

observations of the objective function values in iteration k, where MK →∞ 

as k→∞ [53]. One deficiency of this method in practical implementations is 

that the method is very sensitive to the rate at which the sequence {MK} is 

increased. If the sequence {MK} is increased quickly, then the Stochastic 

Ruler technique may end up at a local solution, whereas if the sequence 

{MK} is increased slowly, then the technique will take a long time in order 

to converge. However, Yan and Mukai [20] supply guidelines for how the 

sequence {MK} should be chosen, choosing these guidelines in practical 

implementations is hard, since they rely on parameters that are commonly 

unknown. Besides, the experimental results of Alrefaei and Andrado´ttir [2] 

imply that mentioned guidelines do not end to a good execution of the 

method, even if these guidelines guarantee the convergence of the 

Stochastic Ruler method.  

     The second algorithm is introduced by Gong, Ho, and Zhai (1992) called 

Stochastic Comparison (SC) method [53]. It utilizes a growing amount of 

computer work per iteration when the number of iterations is growing. 

Stochastic Comparison algorithm compares estimated objective function 

values at neighbouring points. 
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     One shortage of this method is that if the objective function is definitely 

determined, then the SC algorithm converges insignificantly to the 

optimum. Moreover, the analysis of convergence will be complex when 

objective function has to be estimated. 

     Solving Stochastic Point Location (SPL) problem which is a sample in 

discrete stochastic optimization is the goal of the thesis project. Hence, in 

order to make the reader familiar with the SPL definition, next section is 

included below. 

 

 

 

  



 

34 

 

3.3 The Stochastic Point Location Problem 

3.3.1 Defining SPL problem 
 

As alluded to previously, the “Stochastic Point Location Problem,” was first 

proposed in the work of Oommen et al. in [15]. The Stochastic Point 

Location (SPL) problem [15]–[17] is a general learning problem in which 

the Learning Mechanism (which is either a robot or a learning automaton) 

aims to find a “parameter,” for instance, ψ*, in a closed search interval. It is 

considered the problem of a Learning Mechanism (LM) walking on the line 

trying to place a special point.  The LM communicates with an Environment 

that provides stochastic (i.e., erroneous with a given probability) feedbacks. 

Hence, when LM should really be going to the “Right” direction it may be 

recommended to go to the “Left” and vice versa [13, 16].  

     In Point Location problem, if the Environment is deterministic, the 

problem is called “Deterministic Point Location Problem,” which has been 

investigated in [19, 20]. In fact, the SPL problem contains searching without 

certainty, since the target is unknown, and the only case that is known is the 

robot’s movement direction.  

     SPL possesses potential applications in solving optimization problems. 

The aim of the optimization problems is to carry out a task with the 

minimum cost or with the maximum profits. If the cost function (or profit 

function) is known, the problem is normally one of minimizing 

(maximizing) this function. In many optimization solutions—for example in 

pattern recognition [15], [21- 27], [49], the algorithm executes its way from 

its “current” action to the optimal action based on its achieved information.  

     Indeed, the problem of a stochastic learning automation interacting with 

a random Environment is investigated in this research. The main parts of the 

learning schemes are executing a controlled random walk on the search 

interval and placing a position in this closed interval in order to find the 

optimal action with the highest probability of success.      
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3.3.2 Continuous Point Location with Adaptive d-ARY 

Search  

 

In the investigation of [20], Oommen et al. presented the Continuous Point 

Location with Adaptive d-ARY Search (CPL-AdS), which is a 

generalization of a portion of the work in his previous paper [19]. In [19] 

Oommen et al. divided the search interval into three disjoint subintervals, 

while in CPL-AdS, the given search interval is partitioned into d partitions 

displaying d disjoint subintervals, where d > 3. In each interval, primarily, 

the midpoint of the given interval was determined as the estimate of the 

unknown ψ*. Each of the d partitions of the interval is independently 

traversed using an ɛ-optimal two-action Learning Automata (LA), where the 

two actions are those of choosing a point from the left or right half of the 

partition. Then, the paper researchers omit at least one of the subintervals 

from being searched further, and recursively seek the rest of the pruned 

adjacent interval until the seek interval is at least as small as the required 

resolution of estimation. This omission process basically makes use of the ɛ 

-optimality feature of the automata and the monotonicity of the intervals to 

ensure the convergence. At each epoch including of a definite number N∞ of 

iterations, the algorithm “confidently” discard regions of the search space. 

     Generally, there exist two basic weaknesses of these later two algorithms 

[19, 20]. First, both algorithms work with the assumption that the parameter 

ψ* is time-invariant. In this case, they are not able to manage with non-

stationary features where the parameter ψ* changes over time. Suppose that 

ψ* is a time-variant parameter. Hence, if ψ*
 
modifies to a new value 

contained in an interval that was already eliminated, both the tertiary search 

[19] and CPL-AdS [20] will not succeed to converge to the optimal 

parameter ψ*. Contrary, our second novel variant of the HSSL, i.e., 

Multilevel jumps based solution to HSSL, proposed in this research is shown 

to be able to work with non-stationary features where ψ* is time varying. 
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     Besides, the two algorithms stated in [19] and in [20] rely on the ɛ-

optimal feature of the individual LA, so both of them are error prone. 

Indeed, at each epoch of the algorithms proposed in [19], [20], it is required 

to execute each individual LA for an infinite number of iterations in order to 

assure its convergence to its optimal action with probability 1. Thus, the 

smaller number of iterations may lead to the higher probability to converge 

to a wrong interval and discard the interval of interest that contains ψ*. In 

fact, in order to increase the confidence of the search process at each epoch, 

a considerable number of iterations per epoch are necessitated, leading to a 

slow speed of convergence. 

 

 

3.4 Combining the Field of Binary Search and the 

Stochastic Point Location Problem 

 

Since in this research, our novel approaches for solving the Stochastic Point 

Location (SPL) problem are performed in the search space prepared in the 

form of a binary tree with depth D = log2 (N), where N is the resolution of 

the scheme, so in the rest of this chapter the construction of hierarchy, 

Environment feedbacks and transitions in the tree is described. By using a 

tree structure of the search space, the Learning Mechanism (LM) rapidly 

travels the search space and concentrates its movements on the district that 

includes ψ*.  

     For convenience, in our proposed solutions some definitions and 

notations of [34] and [36] are used in order to describe the hierarchical 

structure of the search space and to index the nodes in the binary tree. These 

definitions and notations are explained in the following sections. 
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3.4.1 Definitions 
 

  

Hierarchy Structure. Suppose ∆ = [α, β) is the current search interval 

including ψ*. It is assumed that α = 0 and β = 1, so LM organizes a 

controlled random walk on a unique search interval. The following parts 

describe the main concepts of the hierarchical search space. The hierarchy is 

managed as a binary search tree with maximum depth D. To each node of 

the binary search tree in the hierarchy it is associated an interval containing 

three values, i.e., left and right boundary values (α and β) along with the 

middle value of the interval (0.5*(α+ β)).  

     Root Node. The interval ∆ = ∆{0,1} = [0, 1) is assigned the root node (at 

depth 0), which it is denoted by I{0,1}. This interval is subdivided into two 

separate equi-sized intervals ∆{1,1} and ∆{1,2} , that ∆1,1 = [0, 1/2) and ∆1,2 = 

[1/2, 1). It should be mentioned that 1/2 = mid (∆{0,1}), where mid (∆{0,1}) 

determines the middle point of ∆{0,1}. Furthermore, the interval ∆{1,1} is 

presented as the Left Child of the root node and ∆{1,2} as the Right Child. 

     Leaf Node at Depth D. At depth D, which defines the maximum level 

of the binary search tree, the nodes have no children.  

     For a node i at level d connected to the specific interval ∆{d,i}, it can be 

inferred the left and right boundaries of the interval, i.e., α{d,i} = (i−1)(1/2)
d 

and β{d,j} = i( 1/2 )
d
, for i ϵ {1, ..., 2

d
} where 0 ≤ d≤  D. 

     Intermediate Node at Depth d. Node i ϵ {1, ..., 2
d
} at depth d, denoted 

I{d,i}, where 0 < d < D, is assigned the interval ∆{d,i} = [α{d,i}, β{d,i}) which is 

subdivided into two separate equi-sized intervals ∆{d+1,2i−1} and ∆{d+1,2i}. 

Therefore, ∆{d+1,2i−1} is the Left Child and ∆{d+1,2i} is the Right Child of ∆{d,i}. 

     Remark. Since level “D+1” is not employed, so the Right Child and the 

Left Child of a leaf node are the same as the leaf node. It can be cited that 

Left Child(I{D,i})=Right Child(I{D,i})= I{D,i} for i ϵ {1, ..., 2
D
} depth. Besides, 

“−1” is not utilized in the binary tree, so the Parent of ∆{0,1} is illustrated by 

∆{0,1}. In other words, Parent of the interval ∆{0,1} is ∆{0,1}. 
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     Scheme Resolution. The scheme resolution is applied in order to 

determine the number of leaf nodes, i.e., N = 2
D
. 

      Target Node. The leaf node that is associated with an interval includes 

ψ*
 
is stated as the target node. 

     Non-Target Node. The leaf nodes that associated intervals do not 

include ψ* are presented as non-target nodes. 

     Using the middle point of each interval as an estimate of the unknown 

ψ*
 
is recommended to the learner which resides at a certain node in the 

binary tree. Indeed, when a LM is standing at a leaf node, the guess of ψ* 

will select a discretized value among the N following values [36]: 

 

{mid(∆{D,1}),mid(∆{D,2}),…,mid(∆{D,N})} = {(1/2)
D+1

, 3(1/2)
D+1

, 5(1/2)
D+1

,…, 

(2N-1)(1/2)
D+1

} 

 

     When LM is standing at a node of depth d i.e., at intermediate node, 

where 0 <d<D, a discretized value among the Nd (where Nd =2
d 

) following 

discretized values will be taken as the guess of ψ* [36]: 

 

{mid(∆{d,1}),mid(∆{d,2}),…,mid(∆{d,Nd})} = {(1/ Nd)-(1/(2Nd)), (2/ Nd)-( 1/(2Nd)), 

(3/ Nd)-( 1/(2Nd)),… (Nd / Nd)-( 1/(2Nd))} 
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3.4.2 Construction of the Search Space and Feedbacks 

from the Environment 

 
 

As alluded to previously, in this research the search space is organized as a 

balanced binary tree, where an interval is assigned for each node. In the first 

step of scheme running, the middle point of the given interval is suggested 

as the estimate of the unknown ψ*. The LM looks for the best value of ψ* 

by executing a random walk on the tree-structured search space, going from 

one node of the tree to another. As delineated in Figure 4, each node of the 

tree is matched with an interval; e.g., the root is matched with the unique 

interval [0, 1). This interval is subdivided into two separate equi-sized parts. 

Therefore, the left child of the root is associated with [0, 1/2) interval and 

the right child with [1/2, 1), and so on.  

     At any running time instance, the LM stands at a node I{D,i} of the tree, 

where i ϵ {1, . . . , 2
d
} and 0 ≤ d ≤ D. Finding the next search interval that is 

suggested to include ψ*
 
is the purpose of the LM which is done by 

generating a sequence of “informed” estimates. For each estimation, the 

Environment E informs the LM, perhaps erroneously (i.e., with likelihood 

p), which path it should go to achieve the best value of ψ*. Suppose ∆{d,i} is 

the interval that is matched to the node where the LM stands at the current 

time instant. The “informed” estimates correspond to a sampling at the 

boundary values of the search interval ∆{d,i}, and at the middle point of the 

interval: mid(∆{d,i}). 

     A vector   ⃗ =[ x
1
, x

2
, x

3
] demonstrates the sampled points, where x

1
= 

α{d,i} = (i−1)(1/2)
d 

, x
2
= mid {∆{d,i}} =(2i-1)(1/2)

d+1
 and x

3
=β{d,j} = i(1/2)

d
 

[36]. 

    A tuple  ⃗⃗⃗ = [Ω
1
, Ω

2
, Ω

3
] illustrates the feedbacks of the Environment E 

[36]. When k ϵ {1, 2, 3}, Ω
k
 is a random variable which can select either 

“Left” or “Right” value. For convenience, L will be utilized for determining 
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the “Left” side of the sampled point and R indicates the “Right” side of the 

sampled point. As mentioned before, the Environment E is supposed faulty, 

so it recommends the correct path with a likelihood p and Ω
k  

when k ϵ {1, 2, 

3} is denoted as follows [36]: 

If ψ*
 
< x

k 
  

    {
                                                 
                                           

  

If ψ*
 
≥ x

k 
  

     {
                                             
                                                    

 

 

 

 

    

 

Figure 4: The search space is managed as a binary search tree. Each node I{i,j}  

is associated with an interval ∆{i,j} = [α{i,j}, β{i,j}). This interval is sampled at α{i,j}, 

β{i,j}, and mid(∆{i,j}), generating one of the eight feasible Environment 

feedbacks: {[L, L, L], [L, L, R], [L, R, L], [L, R, R], [R, L, L], [R, L, R], [R, R, 

L], [R, R, R]} [36] . 
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Remark. In hierarchical stochastic search technique, [L, R, R], [L, L, R], 

[R, L, R] and [L, R, L] feedbacks are stated as inconsistent and the results 

are obtained when LM only utilizes the consistent responses. Hence, 

inconsistent responses are not considered. 

 

 

3.4.3 Mapping the Feedbacks to Transitions in the Tree 
 

As alluded to earlier, in order to find the predicted value for ψ*, the middle 

point of the search interval which is corresponding to the current node in 

which the LM stands is considered. The main point is that of deciding how 

to modify the scheme guess ψ of the unknown ψ* based on the faulty 

property of the Oracle’s feedback. From this viewpoint, the goal is finding a 

method that determines the next search interval of the LM, which finally 

ends to defining a set of rules that manages the movements of the LM in 

way that it proceeds towards the next probable node in the tree (i.e., the one 

matched to an interval that is expected to include the unknown ψ*). 

     The LM proceeds to another node based on these feedbacks, either to the 

current node’s parent, or to one of its children (Right Child or Left Child). 

The moving rules in the tree are presented in Table 1 [36]. 

 

 

Next Search Interval Condition 

 

Parent(∆{i,j}) [R, R, R] ⋁ [L, R, R] ⋁ 

[L, L, R] ⋁ [L, L, L] 

Left Child(∆{i,j}) [R, L, R] ⋁ [R, L, L] 

Right Child(∆{i,j}) [R, R, L] ⋁ [L, R, L] 

 

 

    Table 1: Decision table to select the next interval based on the 

feedback vector [Ω
1
, Ω

2
, Ω

3
], when ∆{i,j} is the current search interval 

[36]. 
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     Two versions of random walk transitions in the tree are recommended in 

[36], which are used in our proposed solutions: 

 

 “Reverse transitions: This type of transition corresponds to a movement to 

a lower level in the hierarchy. This happens when the LM moves to the 

immediate Parent (a larger search interval), which, in turn, allows the LM 

to escape from getting trapped in a wrong subtree, i.e., one that does not 

contain ψ*.”[36] 

 “Top-down transitions: This type of transition corresponds to a movement 

to a deeper level in the hierarchy. Whenever the LM performs a transition to 

a deeper level in the hierarchy by choosing a Child node, the search space 

shrinks, and will, hopefully, concentrate on one of the contiguous intervals 

at the next level of the tree that contains the unknown parameter ψ*.”[36] 

          It has been shown in [36] that the Hierarchical Stochastic Search on 

the Line (HSSL) method is asymptotically optimal. This has been proved by 

analyzing the Markov chain properties along with the rules in Table 1. The 

proof is eliminated due to space limitation. Considering “informed” series 

of estimates, the LM will focus its movements within nodes in the tree that 

are corresponded to small intervals including the optimal value ψ* (if p is 

bigger than the conjugate of the golden ratio).  

 

Theorem. “The parameter learning algorithm specified by the rules 

summarized in Table 1 is asymptotically optimal if p is bigger than the 

conjugate of the golden ratio. Formally,  

LimN→∞ Limn→∞ E [ψ (n)] → ψ*.” [36] (proof of theorem is available in 

[36]) 
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Remark. “The golden ratio conjugate quantity [10] is determined by Φ, 

where Φ = (√5−1)/ 2 ≈ 0.61803. Suppose that the Environment is 

informative, but its effectiveness p is less than Φ. The issue that p is less 

than the Φ can be countered by applying a majority voting algorithm. If p is 

known to the LM, this reduces to finding a minimum number of queries one 

has to ask to the “Oracle” which ensures that the probability that the 

majority of responses are correct is bigger than the conjugate of the golden 

ratio. It should be obvious to the reader that similar reasoning can be 

applied if p is unknown to the LM, and we only know a lower bound pmin of 

p such that pmin > 0.5. It will not be elaborated on these ideas here.” [36] 
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4 Solution 

 

 

In this section the two novel types of the Hierarchical Stochastic Searching 

on the Line (HSSL) will be presented, in the first type, the field of Reward-

Inaction Learning Automata in HSSL is utilized when the Environment is 

stationary and in the second type, the Multilevel jumps in HSSL solution is 

applied when the Environment is non-stationary, so the non-consistency 

feature of the Environment presents the challenging problem. In the HSSL 

approach, the Learning Mechanism (LM) intends to learn a best value of the 

parameter ψ* within a closed interval. In this research, for each estimate the 

mechanism is informed by the Environment with a probability p of being 

informed erroneously about which path it should select to achieve the 

optimum value of ψ*. Indeed, the suggestion of the Environment for LM in 

both proposed solutions is uncertain. 

     The requirements of this project, which will be explained in this chapter, 

were to use a hierarchical structure of the search space, Multilevel jumps in 

the tree-based search space, and Reward-Inaction Learning Automata (LRI) 

for selecting an action and searching in the binary tree in order to find the 

optimal value of the unknown parameter ψ* (target node) accurately.  
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4.1 Merging the Field of Reward-Inaction Learning 

Automata and the Original HSSL 

 

 

In this and next section, two novel approaches for discrete stochastic 

optimization is proposed and shown how the generalized types of the HSSL 

technique can be employed in order to solve discrete optimization problems. 

 

     The first solution proposed in this chapter is Reward-Inaction LA based 

solution to HSSL, which has the following feature: it converges almost 

certainly to the best value of the unknown parameter ψ*. In other words, the 

proposed method spends most of the computational effort close to the 

optimal point of the ψ* in the hierarchical structure of the search space. 

     Finding the optimal parameter problem in the hierarchical search space 

could be merged with the Learning Automata (LA) problem. While 

communicating with the Environment, the LA chooses one action from a set 

of actions, and the response from the Environment guides the LA if the 

selected action was rewarded or penalized. Then LA makes use of this 

information to determine which action to take next, and the cycle continues.  

     For convenience, in LA based solution to HSSL, the same definitions and 

notations as in [36] are used such as the sampled points of each search 

interval in hierarchical structure is demonstrated as a vector   ⃗=[ x
1
 ,x

2
 ,x

3
] , 

where x
1
= α{d,i} = (i−1)(1/2)

d 
, x

2
= mid {∆{d,i}} =(2i-1)(1/2)

d+1
 and x

3
=β{d,j} = 

i (1/2)
d
  and the Environment feedbacks can also be illustrated as a tuple  ⃗⃗⃗ 

= [Ω
1
, Ω

2
, Ω

3
].  

     Each node in the tree is associated with a Learning Automaton which has 

three actions for choosing such as “Up”, “Right Child” or “Left Child”. The 

action which has the highest “Reward” probability is chosen by the LA. 

However, two exceptions occur at the root node and leaf nodes, i.e., at the 
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root level, LA can stay at the same level rather than choosing “Up” or can 

move either to “Right Child” or “Left Child” and at leaf nodes, LA stays at 

the same node instead of moving to “Right Child” or “Left Child” or can 

move to its immediate Parent.  In this approach, if LA chooses one action 

e.g. “Right Child” and the “Oracle” also responds “Right” for the next 

movement, then LA achieves “Reward” from the “Oracle”. Since a 

Reward-Inaction LA is used in this research, the LA will increase the 

reward probability of chosen action when it is rewarded by the 

Environment.  

     In order to express our first solution in detail, it should be mentioned that 

each node is associated with an interval that contains sampled points and 

each sampled point of the current search interval, i.e., x
1
, x

2
 or x

3
 is attached 

to one learning automaton. Each learning automaton correctly estimates the 

direction towards the unknown ψ* with p and incorrectly with 1-p 

likelihood, where p is the probability of the “Oracle” correctly providing the 

responses. Hence, there exist three different LAs in the current search 

interval which select “Right” or “Left” action based on three different 

Environment feedbacks, i.e., tuple  ⃗⃗⃗ = [Ω
1
, Ω

2
, Ω

3
]. Afterward, by 

considering the moving rules quoted in Table 1, the LA selects the next 

search interval and moves to another node, either to the current node’s 

parent or to one of its children (Right Child/Left Child). 

     If a learning automaton chooses an action, either “Right” or “Left”, and 

the Environment also responds the same action, the automaton is rewarded 

and so it increases the reward probability of chosen action. In other words, 

at each scheme running, the action with the highest “Reward” probability is 

chosen for the next step.  

     The algorithm for updating the probabilities is presented as follows: 
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Procedure HSSL_LA 

 

Begin 

Initialize number of tree levels and Reward parameter of LA 

If LA chooses action ω, update P(t) as follows: 

 

      IF β(t)=0 THEN  

                P(t+1)=P(t)+a(1-P(t)) 

      ELSE 

                P(t+1)=P(t) 

      ENDIF 

 

End If 

End 

 

where β (t) = 0 means that the LA is rewarded by the Environment for 

choosing the action ω at time t  and a is the reward parameter of LA, like in 

the formula in section 3.1.2.  

 

 

     By making use of Reward-Inaction LA in our proposed solution, the 

scheme precisely converges to the interval which has the best value of ψ* 

and afterward will not erroneously move to the lower or deeper level. 

Therefore, the scheme never modify the best obtained value for ψ* after 

convergence, since the interval including ψ*
 
is chosen by LA with the 

highest “Reward” probability. However, in the original HSSL method 

introduced in [36], the scheme may move to lower or deeper level, after it 

finds the best value of the ψ* and the convergence rate is decreased by the 

scheme fault.  
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4.2 Implementing HSSL with Multilevel Jumps 

 

 

As previously mentioned, another novel approach proposed in this research 

involves studying how the Multilevel jumps can be made by the scheme. In 

this section, it is shown that using Multilevel jumps in a hierarchical 

construction of the search space could lead to a less complex scheme. 

Although schemes with Multilevel jumps can easily be described, they 

would, typically, be hard to develop. 

     In this new approach, the corresponding feedbacks of the Environment E 

can be presented as a tuple or unique.  Tuple response means  ⃗⃗⃗=[Ω
1
, Ω

2
, 

Ω
3
] quoted previously where Ω

k
, for k ϵ {1, 2, 3}, is a random variable 

which can take either the value “Left” or “Right” and unique response 

means informing “Left” or “Right” to the LM. Like in the original HSSL 

technique [36] and LA based solution to HSSL, each node is associated with 

an interval, which is subdivided into two separate equi-sized parts. At each 

node the midpoint of the interval is considered as an estimate of the 

unknown ψ*. The LM tries to find the next promising search interval that 

maybe contain ψ*
 
by generating a sequence of “informed” estimates. 

Similar to the original HSSL [36] and LA based solution to HSSL, in this 

new approach, the Environment guides the LM probably faulty (i.e., with p 

likelihood), which path it should select to find the best value of ψ*.  

     The differences between the original HSSL solution [36] and Multilevel 

jumps based solution to HSSL are listed as follows: 

 

 In the Multilevel jumps based solution to HSSL at root node (at depth zero) 

and at odd levels in the tree (d= {1,3,…, D-1}
10

), only the middle point (i.e., 

x
2 

in the sampled points) is queried by the LM and the Environment 

response is unique, either “Right” or “Left” rather than tuple feedback. 

                                                           
10

 - It is assumed that the tree depth D = log2(N) is an even number. 
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 In the Multilevel jumps based solution to HSSL only at even levels in the 

tree (d= {2,4,…, D-2}
11

), all three points (i.e., x
1
, x

2
, x

3
 in the vector of 

sampled points) are asked by the LM and the Environment response is a 

tuple, i.e.,  ⃗⃗⃗=[Ω
1
, Ω

2
, Ω

3
].  

 Unlike the original HSSL solution [36], in this research, for the nodes at 

depth d where 0 < d < D and d is an odd number (d= {1,3,…, D-1}), the 

LM possesses two choices for selecting either “Right Child” or “Left 

Child”, hence at these levels the LM is not able to move “Up” . However, 

for the nodes at depth d where 0 < d < D and d is an even number (d= 

{2,4,…, D-2}), the LM has three actions for choosing; “Right Child”, “Left 

Child” and “Up”, means that reverse transition for moving to a lower level 

in the hierarchy could be done at these levels.  

 In the original HSSL [36], the reverse transition corresponding to the 

immediate Parent (a larger search interval) means one level movement 

upwards, while in our proposed solution the reverse transition is performed 

for more than one level reflects a Multilevel jump in the hierarchy. 

 In the Multilevel jumps based solution to HSSL, for the nodes at depth D 

(leaf nodes), when D is an even number the LM could stay at the same level 

or jump to the lower level, while at depth D where D is an odd number the 

LM could only stay at the same level, which means that it could not escape 

from getting trapped in a wrong leaf node, i.e., one that does not include ψ*. 

However, in the original HSSL solution [36] for nodes at depth D, which D 

could be either odd or even number the LM could stay at the same level or 

move up for one level when it resides at a non-target node.  

 

 

 

                                                           
11

 - It is assumed that the tree depth D = log2(N) is an even number. 
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     Figure 5 delineates the hierarchical structure in our second solution; 

Multilevel jumps based solution to HSSL technique, along with the LM 

movements when the tree depth D = log2(N) is equal to 4.  

 

 

Figure 5: The figure depicts the tree structure of the search space in Multi-

level Jumps based solution to HSSL with LM movements in the tree. Each 

node I{i,j} is associated with an interval ∆{i,j} = [α{i,j}, β{i,j}). This interval is 

sampled at α{i,j}, β{i,j}, and mid(∆{i,j}), creating one type of these Environment 

feedbacks: {[L, L, L], [L, L, R], [L, R, L], [L, R, R], [R, L, L], [R, L, R], [R, R, 

L], [R, R, R]} or {[L],[R]}. 

 

 

 

 

     As alluded to previously, it can be observed from the figure above that a 

LM at root node (at depth 0) has two actions for moving, “Right Child” and 

“Left Child”, which means that the LM is not able to move up. Likewise, at 

odd levels in the tree (d= {1,3,…, D-1}), the LM has two choices, while at 

even levels (d= {2,4,…, D-2}), the LM has three actions, “Right Child”, 

“Left Child” and “Up”.  Indeed, if the LM moves to an even level in the 

binary tree, it could move up for two or more than two levels. Hence, our 

solution is called Multilevel jumps based solution to HSSL, since a LM can 

move up for more than one level when it resides at even levels. However, if 
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the LM jumps to an odd level in the tree structure, it is not able to move to a 

lower level and therefore the scheme will not find the optimal action. 
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5 Simulation Results 

 

 

In this section, the performance of the proposed methods, Reward-Inaction 

Learning Automata based solution to HSSL and Multilevel Jumps based 

solution to HSSL, through numerical experiments is explained. In order to 

plot accurate diagrams, MATLAB software is utilized for our experiments 

in this chapter. 

     Since there is no previous information about the value ψ*, at time instant 

0, we initialize the first position of LM in our proposed solutions is the root 

node of the tree. 

 

 

5.1 Results from Merging the Field of Reward-

Inaction Learning Automata and the Original 

HSSL  

 

The LA based solution to HSSL described in this research was 

experimentally assessed to identify the validity of the results and to 

investigate its convergence rate. To specify the power of the proposed 

solution and to display its effectiveness for various conditions, the 

simulation was performed for different values for p, the probability of the 

“Oracle” correctly supplying the response, and for different values for N, 

the scheme resolution.  

     In this case, the value of the parameter ψ* was supposed to be unknown 

to the LA. Although several experiments have been executed, for the sake 

of brevity, we report the results achieved for one set of experiments 

including the unknown parameter ψ* = 0.947. 
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     The true value of E[ψ(∞)] is demonstrated in Table 2. The results 

achieved from the scheme running after 10
6
 iterations and for different 

values of p and the scheme resolution N=2
D 

(D, the tree depth is equal to 

log2 (N)), when the reward parameter of LA, a, is 0.05 and value of ψ* = 

0.947.  

     In each case the E[ψ(∞)] converges accurately. For instance, when p is 

0.72 and is N is equal to 64 (i.e., the tree depth, D=6), the value of E[ψ(∞)] 

is 0.915. It grows to 0.942 when N = 512 (i.e., the tree depth, D=9). The 

results are more “accurate” for larger values of p. Hence, when p is 0.93 and 

N=64, the value of E[ψ(∞)] is 0.946. The final terminal value when N = 

4096 (i.e., the tree depth, D=12) and p is 0.93 demonstrates an error less 

than 0.0004%. The ɛ-optimality feature is empirically verified through the 

simulation, whether the value of p is 0.72 or 0.93, E[ψ(∞)] infinitely 

converges to the optimal ψ* as the scheme resolution is increased.  

 

Scheme Resolution 

(N) 

P=0.72 P=0.93 

64 0.915796875 0.946247195 

128 0.92960498 0.947014632 

256 0.94155459 0.946710170 

512 0.942451001 0.946454641 

1024 0.944934351 0.946423120 

2048 0. 946055675 0.946737844 

4096 0.946134351 0.946954688 

 

 

Table 2: True value of E[ψ(∞)] for different values of p, the 

Environment effectiveness and different resolutions, N, when the value 

of ψ* is 0.947 and a=0.05 in LA based solution to HSSL. 
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     In order to determine the convergence of E[ψ(n)] with time, “n”, in LA 

based solution to HSSL, several experiments were executed in stationary 

Environment where ψ*
 
is constant over time. For the sake of brevity, the 

results of the four experiments are sketched in Figure 6. From the following 

diagrams it is inferred that different values for p, the effectiveness of the 

Environment, and N, the scheme resolution, will affect the scheme 

convergence.  

          In Figure 6, it is observed that the LA based solution to HSSL 

converges to a value that is 98% of the optimal value ψ* and it takes 50 

time instants to obtain the optimal action when the N=4096 (scheme 

resolution) and p (the effectiveness of the Environment) is 0.93, while in the 

case that N is 256 and p=0.93, the algorithm approaches 98% of the optimal 

value of ψ* after 40 time instants. It can be seen from Figure 6, when the 

resolution of the scheme, N, is increased and the effectiveness of the 

Environment, p remains unchanged, then the required time instant for 

finding the optimal action is also increased, e.g., when N=256 and p=0.82 

the LA requires 80 time instants for finding the best value of ψ*, while in 

another experiment when N=4096 and p=0.82 the LA needs 110 time 

instants. However, by increasing the value of p, the required time instant for 

finding the best value of ψ* is diminished when the scheme resolution 

remains unchanged, e.g., when N=256 and p=0.82 the LA needs 80 time 

instants and when N=256 and p=0.93 the LA needs 40 time instants. In 

these four experiments the reward parameter of LA, a, was 0.05. 
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Figure 6: The plots show the convergence rate of E[ψ(n)] with time, 

“n”, in LA based solution to HSSL for different values of p, the 

Environment effectiveness and different values of the resolution 

parameter N when ψ*=0.947 and the reward parameter of LA is 0.05. 

 

 

     The result of another performed experiment for LA based solution to 

HSSL is delineated in Figure 7 when N=4096 and p=0.93. In this 

experiment for finding the best value of ψ*=0.947, different values for a, 

reward parameter of LA, was tested.  
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Figure 7: The figure shows the convergence rate of E[ψ(n)] with time, 

“n”, in LA based solution to HSSL for different values of a, 

reward parameter of LA, when ψ*=0.947, N=4096, and p=0.93. 

 

 

     From Figure 7, it is obvious that the convergence rate of the LA based 

solution to HSSL is diminished by increasing the value of the reward 

parameter of LA, a. Hence, in this research in order to achieve precise 

results for our experiments of LA based solution to HSSL, the minimum 

value of a, i.e., a=0.05 is considered. 
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5.2 Results from Multilevel Jumps Based Solution to 

HSSL 

 

In order to achieve a clear understanding as to how the Multilevel jumps 

based solution to HSSL converges with time, various simulations were 

executed to assess the performance of the algorithm under a variety of 

constraints. As previously mentioned, Multilevel jumps based solution to 

HSSL in this research was executed in a non-stationary Environment where 

the value of ψ*
 
is changing over time, and therefore the problem becomes 

more complex than in a stationary Environment. 

     As mentioned in previous chapter, in Multilevel jumps based solution to 

HSSL, for the nodes at depth D (leaf nodes), when D is an odd number the 

LM is not able to move “Up” and is not able to escape from getting trapped 

in a wrong sub tree, i.e., one that does not include ψ*. Therefore, in our 

experiments, it has been tried to use an even number as the tree depth (D) 

for obtaining more precise results.  

     As in the first experiment, the true value of the E[ψ(∞)]
 
was tested by 

using the original HSSL [36], LA based solution to HSSL and Multilevel 

jumps based solution to HSSL after 10
6 

iterations when the resolution was 

equal to 4096 (i.e., the tree depth, D=12) and the unknown parameter ψ* = 

0.947. In this case, p, the probability of the “Oracle” correctly supplying the 

feedback was 0.93. The results are illustrated in Table 3. In this experiment, 

for running the LA based solution to HSSL the reward parameter of LA, a, 

was equal to 0.05. 

     Here is a comparative brief overview of the results of the executed 

experiment: 
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Scheme 

Resolution 

(N) 

LA based 

solution to HSSL 

Multilevel jumps 

based solution to 

HSSL 

Original 

HSSL  

64 0.946247195 0.94279687 0.94524748 

128 0.947014632 0.941604981 0.94900677 

256 0.946710170 0.945554593 0.946723564 

512 0.946454641 0.945251001 0.946300683 

1024 0.946423120 0.946134351 0.946163106 

2048 0.946737844 0. 946335675 0.946507753 

4096 0.946954688 0.946434351 0.946644342 

 

Table 3: Compare the true value of E[ψ(∞)] by using 

different variants of HSSL when the value of ψ* is 0.947 and p=0.93. 

 

 

     It is obvious from Table 3 that using LA based solution to HSSL 

approach yields a more accurate scheme, since it represents an error less 

than 0.0004% when the scheme resolution is 4096 (i.e., the tree depth is 

12). In addition, it is observed from Table 3 that the size of the binary tree 

was proportional to the performance of HSSL. Meaning that as the scheme 

resolution, N, (or tree depth, D) got bigger, the better hierarchical search 

approaches performed, and vice versa. Therefore, the larger number of N 

leads to more accurate convergence. 

      

     We now present the outcomes of the experiments in which we have tried 

to determine the convergence of E[ψ(n)] with time, “n” by using Multilevel 

jumps in the original HSSL solution [36]. In this case, the unknown 

parameter ψ* changes periodically between the values 0.947 and 1 − 0.947 

means the Environment is non-stationary. From Figure 8, in the first 250 

iterations, it can be found out that the Multilevel jumps based solution to 

HSSL takes 70 time instants to converge to a value that is 93% of the 

optimal value ψ* when the N=4096 (the scheme resolution) and p (the 

effectiveness of the Environment) is 0.93, while in the case that N is 256 
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and p=0.93, the algorithm reaches 93% of optimal action after 65 time 

instants. In order to clarify the effect of the convergence rate, like in Figure 

6 in the previous section, Figure 8 is plotted for different values of N and p. 

 

 
 

Figure 8: The plot shows the case when ψ* switches between the values 

0.947 and 1-0.947 every 250
th

 iteration in Multilevel jumps based 

solution to HSSL for different values of p, the Environment 

effectiveness and different values of the resolution parameter N. 

 

 

 

      

     From Figure 8, it can be seen that like Figure 6 when the resolution of 

the scheme, N, is increased and the effectiveness of the Environment, p, 

remains unchanged, then the required time instant for finding the optimal 

action is also increased, e.g., when N=256 and p=0.82 the LM requires 85 

time instants for finding the best value of ψ*, while in another experiment 

when N=4096 and p=0.82 the LM takes 120 time instants. However, by 

increasing the value of p, the required time instant for obtaining the best 
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value of ψ* is decreased when the scheme resolution remains unchanged, 

e.g., when N=256 and p=0.82 the LM needs 85 time instants and when 

N=256 and p=0.93 the LM needs 65 time instants.  

     With the results shown in the Figure 8, it is observed that in each of the 

four experiments the required time instant for finding the optimal action is 

increased by using the Multilevel jumps based solution to HSSL compare to 

the results achieved by LA based solution to HSSL shown in the Figure 6.  

      

 

     In another experiment, the estimated value of ψ(n)
 
at time “n” was tested  

by using the Multilevel jumps based solution to HSSL when the scheme 

resolution, N, was equal to 64 (i.e., the tree depth, D=6) and the unknown 

parameter ψ* = 0.947. In this case, p, the probability of the “Oracle” 

correctly supplying the feedback was 0.75. The simulation result presented 

in Table 4 obtained by running the learning scheme for 10
4
 iterations. 

Although numerous iterations have been conducted, in the interest of 

brevity the results achieved for the first 22 iterations is reported in Table 4. 

Since there is no previous information about the value of ψ*, at time instant 

0, the initial position of LM in the Multilevel jumps based solution to HSSL 

technique is the root node (depth 0) of the binary tree, which is associated 

with the interval [0,1) and therefore the current interval in Table 4 is also [0, 

1). In this step, the estimated value for ψ* is the middle point of the interval 

[0, 1). This interval is subdivided into two separate equi-sized parts and in 

the next time instant, one of the parts is selected as the next interval, e.g., 

the right child of the root node is associated with [0.5,1) and the left child 

with [0,0.5). The important issue that is addressed in Table 4 is that of 

determining how to change the estimated value of the unknown ψ* based on 

the erroneous suggestions (i.e., with p probability) of the Environment for 

choosing right or left child of the node to obtain the best value of the 

unknown parameter ψ*. By using the moving rules quoted in Table 1, our 

scheme decides the next promising node in the tree (i.e., the node associated 
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with an interval that maybe include the unknown ψ*). Afterward, the LM 

moves to the deeper or lower level of the tree. As it can be seen from Table 

4 and Figure 5, the Multilevel jumps can be performed only at even levels 

(d= {2,4,…, D-2}) of the tree, e.g., at time instant 4, the LM moves upwards 

(a larger search interval) from level 4 to level 2 in order to escape from 

getting trapped in a wrong sub tree, i.e., one that does not involve ψ*. In 

this experiment, from depth 0 (root level) to depth 6 (maximum level), five 

jumps are performed by the LM in order to obtain the unknown point. 

 

Time 

instant 

(n) 

Estimate 

value for ψ* 

Current interval The LM movements in 

the binary tree 

0 0.5 [0,1) The LM resides at depth 0 

(at root level) (d=0) 

1 0.6225 [0.5,1)  The LM moves to level 1 

(d=1) 

2 0.68525 [0.5,0.75) The LM moves to level 2 

3 0.66525 [0.625,0.75) The LM moves to level 3 

4 0.6975 [0.625, 0.6875) Jump from level 4 to level 2 

5 0.737 [0.5,0.75) Jump from level 2 to level 0 

6 0.5 [0,1) The LM resides at depth 0  

7 0.7085 [0.5,1) The LM moves to depth 1 

8 0.791562 [0.75,1) The LM moves to depth 2 

9 0.771562 [0.75, 0.875) The LM moves to depth 3 

10 0.722531 [0.75, 0.8125) The LM moves to depth 4 

11 0.7926562 [0.75, 0.78125) The LM moves to depth 5 

12 0.827687 [0.75, 0.765625) Jump from level 6 to level 4 

13 0.8487343 [0.75, 0.8125) Jump from level 4 to level 2 

14 0.866625 [0.75,1) The LM resides at depth 2 

15 0.874445312 [0.875,1) The LM moves to depth 3 

16 0.902953123 [0.875, 0.9375) Jump from level 4 to level 2 

17 0.911601562 [0.75,1) The LM resides at depth 2 

18 0.920265625 [0.875,1) The LM moves to depth 3 

19 0.9401875 [0.9375,1) The LM moves to depth 4 

20 0.941320314 [0.9375, 0.96875) The LM moves to depth 5 

21 0.942179687 [0.9375, 0.953125) The LM moves to depth 6 

 

Table 4: The estimated value for ψ* at time, “n”, in Multi-level jumps 

based solution to HSSL when the Environment effectiveness, p, is 0.75, 

the resolution parameter, N, is 64, and ψ*=0.947. 
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     In Table 4 there exist different values for the current interval at the same 

level of the tree, e.g., at time instants 11 the LM resides at depth 5 and 

selects [0.75, 0.78125) as search interval, while for the time instant 20 it chooses 

[0.9375, 0.96875) at tree depth 5. The reason for this is that for each estimate 

the Environment informs the LM probably erroneously (i.e., with p 

probability), which path it should move to obtain the unknown point and 

therefore the LM moves to a different interval at the same depth. 

  

 

     Another plot of the asymptotic value of E[ψ(∞)] as a function of  p (the 

effectiveness of the Environment) in LA based solution to HSSL, Multilevel 

jumps based solution to HSSL and the original HSSL [36], is illustrated in 

Figure 9.  The Figure 9 delineates the accuracy rate of the three mentioned 

algorithms when the scheme resolution is 4096 (i.e., the tree depth, D=12). 

In the Figure 9, it is observed that the scheme obtains a higher accuracy by 

using Reward-Inaction LA in HSSL to find the best value of the unknown 

parameter, ψ*, since the LA converges to the interval containing the best 

value of ψ*
 
and the reward probability for the chosen action is close to one. 

In other words, LA based solution to HSSL converges to the optimal action 

at target node and never comes to lower or deeper levels in the hierarchical 

structure after convergence, while in Multilevel jumps approach and in the 

original HSSL [36] the LM will probably move to lower or deeper levels 

after obtaining the optimal action and therefore the scheme accuracy is 

diminished and the running time is increased. The simulation result depicted 

in Figure 9 was achieved by running the learning scheme for 10
6 

iterations.  

It should be mentioned that in Figure 9, all three algorithms were executed 

in a stationary Environment and the reward parameter of LA, a, in LA based 

solution to HSSL was 0.05. The experiment illustrates how E[ψ(∞)] will 

change as the effectiveness of the Environment, p, modifies from p = 0.65 

to p = 1. 
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Figure 9: Comparison of asymptotic value of E[ψ(∞)] with the 

effectiveness of the Environment, p, for different variants of HSSL in a 

stationary Environment when the value of ψ* is 0.947 and N=4096. 

 

 

 

      

     Finally for the sake of determining the convergence rate of E[ψ(n)] with 

time “n”, in LA based solution to HSSL, Multilevel jumps based solution to 

HSSL  and the original HSSL [36] another plot is depicted in Figure 10. In 

this experiment the effectiveness of the stationary Environment, p, was 0.93 

and the scheme resolution, N, was 4096 (tree depth, D, is equal to 12). Like 

in the previous graph, the reward parameter of LA, a, was 0.05 and 

ψ*=0.947.  
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Figure 10: Comparison of the E[ψ(n)] convergence rate with time, “n”,  

for different variants of HSSL in a stationary Environment when the 

value of ψ* is 0.947, N=4096 and p=0.93. 
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6      Discussion  

 

By using LA based solution to HSSL and Multilevel jumps based solution to 

HSSL algorithms in this research, rather interesting results for solving the 

discrete stochastic optimization problem was achieved. Discretizing the 

search space into a binary tree and executing a controlled random walk on 

this search space was an efficient way to find the optimal action.  

     The new LA based solution to HSSL excelled primarily in solving the 

SPL problem. This observation is expected initially due to the Learning 

Automata operation's unique mechanism of accurately finding the optimal 

value of the unknown parameter, ψ*.  

     Indeed, the LA based solution to HSSL is a clear winner over the two 

other algorithms when it comes to convergence accuracy. While Multilevel 

jumps based solution to HSSL and the original HSSL [36] approach the 

optimal action with less precision, since the LM still can visit the rest of the 

nodes in these algorithms after finding the optimal action. In other words, 

the most significant feature of LA based solution to HSSL is that it can 

converge to the optimal action at the target node, and never moves on to 

another node.   

     However, a drawback of LA based solution to HSSL is that LA is not 

able to cope with a non-stationary Environment, while Multilevel jumps 

based solution to HSSL and the original HSSL [36] are performed in non-

stationary Environment where ψ* is time varying.       

     Multilevel jumps based solution to HSSL is a strategy which adopts 

Multilevel jumps in the hierarchical structure of the search space. The 

advantage of using Multilevel jumps in HSSL is that the problem becomes 

less complex than the LA based solution to HSSL and the original HSSL 

[36]. Since, in the Multilevel jumps alternative, for each estimate at odd 

levels in the tree (d= {1,3,…, D-1}
12

), the LM queries from the midpoint 

                                                           
12

 - It is assumed that the tree depth D = log2(N) is an even number. 
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and the Environment essentially guides the mechanism with one response 

rather than three feedbacks in the LA based solution to HSSL and the 

original HSSL [36].  

      However, using Multilevel jumps in HSSL solution leads to slower 

convergence of the scheme. The reason for this is that the LM should move 

up for two or more levels to find a larger search interval and start searching 

from that level which is an even level (d= {2,4,…, D-2}
13

). Indeed, the LM 

should jump to an even level, so an extra attempt must be done for moving 

to the contiguous node at the same level of the tree when the target node is 

not achieved. 

      Generally, based on the obtained results in this investigation, the 

conclusive answer to the question stated in the research questions section 

(section 1.5), which was about whether the integrated methods, using LA 

and Multilevel jumps in HSSL, make the stochastic point locating more 

efficient or not is “Yes”. Besides, using LA based solution to HSSL for 

solving SPL problem is definitely recommendable. The results from this 

technique are truly near to the unknown parameter ψ* which indicates that 

the algorithm is quite stable and the results are not widely spread around the 

optimal point, but close to it.  

 

 

                                                           
13

 - It is assumed that the tree depth D = log2(N) is an even number. 
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7 Conclusion and Further Work 

 

 

In this work, the problem was to solve the Stochastic Point Location (SPL) 

problem by applying a hierarchical stochastic search technique - HSSL - 

and combining the latter with two novel approaches - Learning Automata 

and Multilevel Jumps. Afterward, investigating whether these combinations 

provide better results in terms of solution accuracy and computational 

efficiency while solving SPL. SPL is a Nondeterministic Polynomial time 

complete (NP-complete) problem which LM attempts to learn a parameter 

ψ* within a closed interval. In this research, for each estimate, the 

Environment guided probably erroneously (i.e., with p likelihood) the LM, 

which way it should select to attain the best value of the unknown 

parameter ψ*. Hence, unlike the deterministic binary search, an interesting 

case was examined where the feedback of the Environment was supposed to 

be faulty. 

     In both proposed solutions the search space was implemented in a 

hierarchical construction like a binary tree and a controlled random walk 

was performed on this search space. The introduced solutions have been 

simulated, with interesting results.  

     LA based solution to HSSL was investigated in this research as our first 

novel alternative which converged almost certainly to the best value of the 

unknown parameter ψ* in a stationary Environment. Indeed, LA based 

solution to HSSL provided a more accurate convergence than the original 

approach [36] for solving the discrete stochastic optimization. In this 

technique, the Environment informed the LA with three responses, each 

maybe erroneous with probability p.  

        Our second new solution proposed in this investigation was Multilevel 

jumps based solution to HSSL which was shown to supply a less complex 

algorithm than the SPL solution introduced in [36] when tested in non-

stationary Environment where ψ* is changing over time. In this novel 
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approach, a LM at the even levels (d= {2, 4,…, D-2}
14

) in the tree structure 

based search space, has three choices for moving down or up (i.e., “Right 

Child”, “Left Child” or “Parent”). The main difference between Multilevel 

jumps solution and the original HSSL in [36] is that the former allows 

transitions across multiple levels, rather than only between consecutive 

levels, hence the LM is able to move up for more than one level. The other 

difference is that the scheme complexity diminishes by using Multilevel 

jumps in the hierarchical search space. Therefore, at the odd levels (d= 

{1,3,…, D-1}) in the hierarchical structure, LM asks one question from the 

midpoint of the search interval in order to select either “Right Child” or 

“Left Child” and therefore there exists only one feedback for LM from the 

Environment. 

     Finally, based on the results achieved, our hypothesis got significantly 

strengthened; combining the LA operation and Multilevel jumps with 

existing approach did indeed increase the efficiency of solving SPL 

problem. As steps for further work, it is worth mentioning that combining 

LA based solution to HSSL with Multilevel jumps in a non-stationary 

Environment will show great promise in order to implement an accurate and 

simple scheme for solving the SPL problem, and is definitely worth 

investigating. Furthermore, it is recommended to research the use of the LA 

based solution to HSSL and Multilevel jumps based solution to HSSL in 

order to solve practical stochastic optimization problems. 

 

  

                                                           
14

 - It is assumed that the tree depth D = log2(N) is an even number. 
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     Appendix  

 

Linear Search 

A linear search algorithm is performed by considering each element in an 

array of data without jumping, and it continues its considering until finding 

the target node or obtaining the end of array. The time complexity of linear 

search is O(n) on a given array. 

 

Binary Search 

A binary search (hierarchical search) algorithm is performed in a sorted data 

set and it is started with the middle element of the data set, so the sorted 

data set is essential in binary search. Afterward, it considers whether that an 

element is bigger than or less than the target node, which indicates whether 

the element is in the first or second half of the array. It jumps to the half 

way of the sub array and repeats comparing. By using binary search 

algorithm just the left part of the elements is considered. Therefore, each 

time the algorithm searches for the target and misses, then half of the 

remaining elements are eliminated. O(log n)  is the time complexity of this 

algorithm which is determines binary search is an efficient method since the 

number of search operations grows more slowly than the linear search. 

Halving the search space with each operation is the main reason for the 

binary search time complexity. 
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The differences between the linear and binary search are listed as follows: 

 Sorted input data is required for the binary search; while for linear 

search simple input data. 

 An ordering comparison is required in binary search; while in linear 

search, just equality comparison is needed. 

 The complexity of binary search is O(log n); but for linear search, it 

is O(n). 

 Random access to the data is required in binary search; while 

sequential access is needed in linear search.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


