

On Novel Variants of the Hierarchical

Stochastic Searching on the Line

By

 Pariya Shahbazi

Thesis submitted in Partial Fulfillment of the

 Requirements for the Degree Master of Science in

Information and Communication Technology

 Thesis Supervisor: Professor Ole-Christoffer Granmo

Thesis Co-Supervisor: Dr. Anis Yazidi

 University of Agder, 2012

 Faculty of Engineering and Science

 Department of Information and Communication Technology

2

Abstract

 This research proposes two novel types of hierarchical search based solution to the

Stochastic-Point Location (SPL) problem. In the SPL problem, placing a point on the

line is the main goal of the robot. In order to find the best position of the unknown

parameter (ψ
*
) on the line, the robot communicates with an Environment which

basically guides it with p (the “effectiveness” of the Environment) probability, which

means that the robot has a probability of being given erroneous recommendations by the

Environment for choosing right or left side of a given point. The first investigation on

the SPL problem by using a hierarchical search space [36] executed a controlled

random walk on a discretized space constructed as a binary tree to place the unknown

parameter in an accurate and quick way. The main deficiency of the Hierarchical

Stochastic Search on the Line (HSSL) solution [36] is the fact that the robot can still

visit the rest of the nodes after finding the optimal action. In addition, HSSL approach

makes transitions between consecutive levels in the tree structure of the search space.

 To deal successfully with locating the unknown parameter on the line, two novel

alternatives, Learning Automata based solution to HSSL and Multilevel Jumps based

solution to HSSL, are proposed. The former is a new search method with a logic that

resorts to Reward-Inaction Learning Automata (LRI) operation, and the latter is a simple

search method that allows transitions across multiple levels, rather than only between

consecutive levels. The advantages of using Learning Automata (LA) and Multilevel

jumps that provide accurate and simple techniques are novel features of the proposed

methods. The strategies proposed here can be applied to learn the best parameter to be

used in the optimization. The solution has been simulated, with interesting results.

3

Preface

This master thesis is submitted in partial fulfillment of the requirements for the degree

Master of Science in Information and Communication Technology at the University of

Agder, Faculty of Engineering and Science. This work was carried out under the

supervision of Professor Ole-Christoffer Granmo at the University of Agder, Norway.

 First of all, I want to thank my supervisor Dr. Ole-Christoffer Granmo, for great

assistance and inspiration throughout the project period. Especially for his patience, it is

safe to say that without his assistance the thesis would have faced endless difficulties.

 Secondly, I would also like to thank Dr. Anis Yazidi for introducing me to this

interesting field of computer science and giving his valuable support, feedback and

admirable patience during the entire project period. Under his guidance I learnt a lot

about the project content and technical report writing.

 Last but not the least, I would like to thank my family for supporting, helping and

believing in me. Without their support and understanding, I have never made this

achievement of this study possible.

Grimstad, May 2012

Pariya Shahbazi

4

Contents
1 Introduction…………………………………………………………………...7

1.1 Background.……………………………………………………………10

1.1.1 Learning Automata .………………………………………………10

1.1.2 The Stochastic Point Location Problem .. 12

1.1.3 The Hierarchical Stochastic Search on the Line 12

1.2 Thesis Definition and Hypothesis ……………………………………..14

1.2.1 Thesis Definition ..……………………..14

1.2.2 Hypothesis .. 14

1.3 Importance of the Topic ……………………………………………….15

1.4 Motivation ……………………………………………………………..16

1.5 Research Questions ……………………………………………………16

1.6 Claim …………………………………………………………………..17

1.7 Limitations and key Assumptions ……………………………………..18

1.8 Contribution to the Knowledge ………………………………………..19

1.9 Target Audience ……………………………………………………….19

1.10 Thesis Report Outline ...……………………………………………….20

2 Significant Prior Research …………………………………………………..21

2.1 Solving Stochastic Point Location by Discretizing the Space ………...22

2.2 Solving Stochastic Point Location by Hierarchical Stochastic Search on

 the Line ………………………………………………………………..23

3 Research Methodology ……………………………………………………...25

3.1 Learning Automata …………………………………………………….25

3.1.1 The Operation of an Automaton ... 26

3.1.2 Reward-Inaction Learning Automata ... 28

3.2 Discrete Optimization Problem ………………………………………..30

3.3 The Stochastic Point Location Problem ……………………………….34

3.3.1 Defining SPL problem .. 34

3.3.2 Continuous Point Location with Adaptive d-ARY Search 35

3.4 Combining the Field of Binary Search and the Stochastic Point Location

 Problem ……………………………………………………………….36

3.4.1 Definitions .. 37

3.4.2 Construction of the Search Space and Feedbacks from the

Environment………………………………………………………39

3.4.3 Mapping the Feedbacks to Transitions in the Tree 41

4 Solution ……………………………………………………………………..44

4.1 Merging the Field of Reward-Inaction Learning Automata and the

 Original HSSL …………………….…………………………………...45

4.2 Implementing HSSL with Multilevel Jumps …………………………..48

5 Simulation Results …………………………………………………………..52

5.1 Results from Merging the Field of Reward-Inaction Learning Automata

 and the Original HSSL ………….……………………………………..52

5.2 Results from Multilevel Jumps Based Solution to HSSL ……………..57

6 Discussion …………………………………………………………………..65

7 Conclusion and Further Work ………………………………………………67

Appendix …………………………………………………………………………74

5

List of Figures

Figure Short Description Page

1. Learning Automata 11

2. Operation of an Automaton 27

3. Comparison of probability of choosing optimal action

for continuous and discretized learning algorithm

27

4. The tree structure of the search space in the original

HSSL

40

5. The tree structure of the search space in the Multi-level

Jumps based solution to HSSL with LM movements in

the tree

50

6. The convergence rate of E[ψ(n)] with time,

“n”, in LA based solution to HSSL for different values

of p, the Environment effectiveness and different

values of the resolution parameter N

55

7. The convergence rate of E[ψ(n)] with time,

“n”, in LA based solution to HSSL for different values

of a, reward parameter of LA

56

8. The case when ψ* switches between the values 0.947

and 1-0.947 in Multilevel jumps based solution to

HSSL for different values of p, the Environment

effectiveness and different values of the resolution

parameter N.

59

9. Comparison of asymptotic value of E[ψ(∞)]with the

effectiveness of the Environment, p, for different

variants of HSSL in a stationary Environment

63

10. Comparison of the E[ψ(n)] convergence rate with time,

“n”, for different variants of HSSL in a stationary

Environment

64

6

List of Tables

Table Short Description Page

1. Decision table to select the next search interval in the

hierarchical stochastic search

41

2. True values of E[ψ(∞)] for different values of p and N

in LA based solution to HSSL

53

3. Compare the true value of E[ψ(∞)] by using different

variants of HSSL

58

4. The estimated value of ψ (n) at time, “n”, in Multi-level

jumps based solution to HSSL when the Environment

effectiveness, p, is 0.75, the resolution parameter, N, is

64 and ψ*=0.947.

61

7

1 Introduction

Nowadays, discrete optimization problem has become one of the essential

problems by which engineers and decision makers collect information about

stochastic systems. Handling these systems is performed by the discrete

events with interactions between these events over time.

 This project considers a problem in discrete optimization called

Hierarchical Stochastic Searching on the Line (HSSL). The problem

involves a robot (Learning Mechanism (LM)) walking along the real line

planning to place a special point ψ*. It is assumed that LM can interact with

an Environment (“Oracle”), which notifies it with information regarding the

direction in which it should go.

 The discrete optimization problem is cited as “deterministic point

location problem”, if the Environment is deterministic. In its pioneering

type, Baeza-Yates et al. [19] offered the problem in a form that the

Environment could allocate a cost to the robot that is corresponding to the

distance it is from the point searched for. The question of having multiple

interacting LMs place a point on the line has also been investigated by

Baeza-Yates et al. [19, 20].

 In the stochastic variant of the point location problem proposed by

Oommen [15], [31], [16], the Learning Mechanism intends to place a point

in an interval with stochastic (i.e., possibly erroneous) feedbacks from the

Environment, rather than deterministic feedbacks. Hence, when it should

really be going to the “right” it may be recommended to go to the “left” and

vice versa, with a probability p (p ≠ 0).

 The Stochastic Point Location (SPL) problem is related to the field of

Learning Automata (LA) problems [42–47], in which the LM aims to learn

from a stochastic Environment. Particularly, unlike the pioneering type of

LA model in which the LA intends to determine the optimal action

proposed by the Environment, in this research it is considered the LM is

8

attempting to place an unknown point ψ*

on an interval by communicating

with the random
1
 Environment through a sequence of informed estimates.

 The purpose of the optimization problems is to perform a given task with

the minimum cost or with the maximum profits. If the basic cost function

(or benefit function) is recognized, then the problem is normally one of

minimizing (or maximizing) this function.

 The algorithm for SPL executes its way iteratively from its current point

to the optimal point, like many of the optimization approaches such as

image processing, pattern recognition, and neural computing [15], [21- 27],

[49]. Such algorithms have a key parameter that indicates the algorithm

convergence to the optimal action. Selecting the value for this parameter is

crucial to the algorithm. In many methods, the scheme parameter is related

to the second derivative of the function, which ends in a technique

analogous to a “Newton’s” root solving method. The deficiency of the latter

is the fact that it needs the additional computation for assessing the (matrix

of) second derivatives [23, 24, and 26]. In order to solve this shortage, in

the work of [36] it is declared that their solution solves the stochastic

hierarchical search with the best parameter that can be used in any

algorithm. It should be cited that their solution needs no additional

computations for derivatives. Furthermore, in the method of [36] there

exists a learning strategy in order to converge to a value arbitrarily close to

the best parameter. Therefore, in our solutions, the method presented in [36]

is utilized to develop an accurate technique with less computation.

 The main shortages of the state-of-the-art solution to the Stochastic-

Point Location (SPL) problem presented in [36] are two cases. First, in the

[36] approach when the LM reaches the optimal action, it can still visit the

rest of the nodes in the tree, so the scheme convergence is decreased.

Second, it makes transitions between consecutive levels in the tree means

1
 - Random Environment will be briefly described in section 1.1.1.

9

that LM can move up to the immediate Parent, so finding a node placed at

four (or more than four) levels upwards in the tree is time consuming.

 Unlike the investigation of Yazidi et al. [36] in this research, designing

two novel approaches of hierarchical learning schemes named as LA based

solution to HSSL and Multilevel Jumps based solution to HSSL for solving

the SPL problem is devised. In the former solution presented in our

investigation Reward-Inaction LA converges to the best value of the

unknown parameter ψ*

and never comes to another node, hence the scheme

convergence is increased and in the latter approach the scheme allows the

LM to move up for more than one level in the hierarchical search space,

rather than only between consecutive levels.

10

1.1 Background

1.1.1 Learning Automata

A Learning Automata (LA) is an adaptive and stochastic decision making

automaton
2
 with relatively little initial knowledge that is placed in a random

Environment and concurrently learns the optimal action through frequently

interactions with its Environment and based on its achieved experience. The

actions are selected corresponding to a particular probability distribution

that is updated based on the response that automaton gains from the

Environment by executing a specific action.

 Learning Automata is associated with the design and programming of

methods that allows computers to generate behavior based on experimental

input data, such as sensor data or databases. The Learning Automata

concept is created on the basis of psychologists’ work in behavior modeling

and statisticians’ efforts in determining the choice of trials based on past

experience. The aim of scientists is to produce intelligent decisions.

 In the study of LA, the Environment is typically developed as one that

rewards or penalizes the automaton randomly; the LA aims to find the

optimal strategy, hence it maximizes the probability of being rewarded. The

key point is that the success probability for each action is unknown to the

automaton; it adapts itself to the Environment by learning the optimal

action.

 In other words, while interacting with the Environment, the Learning

Automaton chooses an action and then the Environment response tells the

LA whether the selected action was rewarded or penalized. Afterward, the

automaton makes use of this information in order to decide which action to

take next time, and the cycle continues.

2
- “An automaton (plural: automata or automatons) is a self-operating machine. The word

is sometimes used to describe a robot.” [55]

http://en.wikipedia.org/wiki/Robot

11

 The LA operates in either random Environment or unknown

Environment. In the former case, an action does not present the same

response each time it is executed and in the latter, the action does not

require information about the impact of its action at the start point of the

operation.

 A strong feature of Learning Automata is that it can progress its

performance by means of a learning process. LA combines quick and

precise convergence with low computational complexity. Therefore, LA is

employed in this research as one of our proposed solutions to solve a

stochastic learning problem.

 The automaton chooses an action ai at instant i from a finite action set

{ai │i=1 to R} (see Figure 1). The chosen action acts as the input to the

Environment that yields a response bi at time i. The bi is an element of B =

{0, 1}. It is assumed that 1 is Penalty and 0 is Reward. When performing an

action ai, there is a certain probability that the Environment responds with a

Penalty:

P (Penalty | Action =ai) = ci , 1 ≤ i ≤ R

Remark: If the Environment does not respond with a Penalty, it responds

with a Reward instead.

Figure 1: Learning Automata [35]

12

1.1.2 The Stochastic Point Location Problem

In this section, the main definition of the Stochastic Point Location (SPL)

problem, which was first proposed by Oommen in [15], is briefly presented.

In the SPL problem a Learning Mechanism (LM) is applied in order to

determine the best value of a parameter, ψ. It is assumed that there exists an

optimal value for ψ – an unknown value, called ψ*

in a unique search

interval, [0, 1). Learning the unknown parameter ψ*

in an efficient way is

the main goal of the SPL problem. Although, the value of ψ*

is unknown to

the scheme, it is supposed that it has feedbacks from an intelligent

“Environment” (“Oracle”) which is enable to inform it whether any value of

ψ is too small or too big. It should be stated that the Environment feedback

is assumed “faulty”; hence the problem is different from its deterministic

counterpart. Indeed, the Environment may recommend the LM to increase ψ

when it should be decreased, and vice versa, with a probability 1 – p that is

bigger than zero. In this area, the quantity “p” indicates the “effectiveness”

of the “Environment” E which is normally suggested bigger than 0.5. Thus,

whenever the current ψ is smaller than ψ*, the Environment correctly

responds that LM should increase ψ with probability p. It synchronously

could have incorrectly replied that LM should decrease ψ with probability

(1 − p). The reverse is also true whenever ψ ≥ ψ* [36].

1.1.3 The Hierarchical Stochastic Search on the Line

In order to solve the SPL problem, the Hierarchical Stochastic Searching on

the Line (HSSL) solution has been proposed in [36], which supplies much

faster convergence compared to the work [15]. Besides, HSSL scheme is

able to deal with non-stationary Environments
3
. Indeed, the Hierarchical

3
 - The Environment is cited as a non-stationary Environment when its feedback for placing

a point in an interval to find the best value of ψ is both uncertain and time varying.

13

Stochastic Search is similar to the binary search
4
, but in the HSSL

technique, ψ*

changes over time, which means that the Environment is non-

stationary. In addition, the quantity p in HSSL solution indicates the

probability that Environment correctly suggests to LM moves in the tree,

which confirms the non-deterministic property of HSSL. Hence, finding the

target node in HSSL method is rigorous compared to simple binary search,

since the Environment of the binary search generates deterministic

feedback.

 HSSL strategy executes a controlled random walk on a discretized

search space constructed as a binary tree with maximum depth D. It is

assumed that [α, β) is the current search interval containing the unknown

parameter ψ*. To each node in the hierarchy it is associated an interval

containing three points, i.e., left and right boundary points (α and β) along

with the middle point of the interval ((α+ β)/2).

 In the HSSL solution, the LM searches for the target node including ψ*

by two kinds of random walk transitions. When the LM aims to reach the

immediate Parent (a larger search interval), the reverse transition is

applied; hence it corresponds to a lower level movement in the hierarchy.

Besides, a top-down transition is employed whenever the LM performs a

transition to a deeper level in the hierarchy by selecting a Child node. In

fact, in top-down transition the search space becomes small, and so the LM

will concentrate on one of the adjacent intervals at the next level of the tree

that may include the unknown parameter ψ*.

 By making use of the HSSL solution in solving the SPL problem, the

convergence speed of the scheme is remarkably increased compared to the

original SPL solution reported in [15], since in the HSSL technique the

search space is discretized and is structured as a binary tree. Therefore, the

HSSL solution is applied in this research as our second solution to solve a

stochastic learning problem.

4
 - For more information about binary search see Appendix.

14

1.2 Thesis Definition and Hypothesis

1.2.1 Thesis Definition

We formulate the thesis definition in the following way:

The main goal of this thesis is to determine how LA based solution to HSSL

and Multilevel Jumps based solution to HSSL can be used to solve the SPL

problem with high accuracy and low complexity convergence. To evaluate

the performance and scalability empirically, a tree-based search space

should be designed and developed. Further, novel proposed approaches

should be tested with faulty feedbacks from the Environment.

1.2.2 Hypothesis

As the growing need of efficient ways to solve the SPL continues, it is in

this research hypothesized that combining the Reward-Inaction LA (LRI)

and Multilevel jumps with the existing approach will drastically increase

the efficiency of the solving SPL. The reason to this is that the Reward-

Inaction LA is ɛ-optimal and it converges to the optimal action precisely

[57]. Hierarchical Stochastic Search on the Line (HSSL) [36] is an existing

approach which has been proved to be a very efficient method to solve the

SPL problem, therefore this approach has been chosen to be combined with

the Reward-Inaction LA (LRI) and Multilevel jumps, in order to prove

whether LA and Multilevel jumps will increase the efficiency to solve SPL

or not. This combination will create the LA based solution to HSSL and

Multilevel Jumps based solution to HSSL techniques.

15

1.3 Importance of the Topic

Implementing capable techniques for solving discrete optimization

problems such as the SPL problem is a significant area of engineering

research. Such techniques could be utilized to assist in solving the

stochastic resonance problem [40], the stochastic sampling problem in

computer graphics [41], the problem of determining roads in aerial images

by utilizing geometric-stochastic models [37], the stochastic and dynamic

vehicle routing problem [38], and different variants of location problems

[39].

 Considering the above reasons, we hope that the reader is convinced that

searching for an effective solution for such an underlying problem can be

quite rewarding. Hence, in this research the HSSL [36] has been utilized

since it is proved as an effective approach in stochastic optimization

problem. In addition, the HSSL technique has been shown to supply orders

of magnitude faster convergence than the traditional SPL solution [15]

when implemented in non-stationary Environment where ψ* changes over

time. In this sense, LA has also been used since it converges accurately in

learning schemes, so this research will introduce new and efficient ways of

solving SPL by proposing the LA based solution to HSSL and Multilevel

Jumps based solution to HSSL in hierarchical structure of the search space.

16

1.4 Motivation

If the problem is solved, the research will offer two novel and drastic

techniques of solving SPL by applying Reward-Inaction Learning

Automata and Multilevel jumps in the original HSSL solution in [36].

Adding a new algorithm to the collection of solver algorithms is a step

further of solving complex problems that can be represented as SPL, and an

advancement in the science of SPL.

1.5 Research Questions

In our research we will answer the following questions:

 How can LA based solution to HSSL be applied to design a new accurate

strategy of solving the SPL problem in stationary Environments?

The question covers one of the central research elements, i.e., to accurately

solve the discrete optimization problem by using Learning Automata in the

tree-based search space and in the stationary Environment where ψ*

is time-

invariant. The question also defines a technique that should be applied to

the problem. The technique is the Hierarchical Stochastic Searching on the

Line (HSSL), which is presented by Yazidi, Granmo, Oommen and

Goodwin [36]. The heart of the HSSL strategy includes executing a

controlled random walk on a discretized space structured as a binary tree.

The HSSL strategy is specially presented to determine the best parameter to

be used in the optimization. The overall learning scheme has been shown to

be optimal [36].

17

 How to incorporate Multilevel jumps with the HSSL solution for designing

a new simple strategy of solving the SPL problem in non-stationary

Environments?

The question refers to the second central research element, i.e., how the LM

can move upwards for more than one level in the tree-based search space to

solve the discrete optimization problem with less complexity compared to

the work [36]. It is interesting to observe how the solution behaves when

residing in a wrong sub tree, i.e., one that does not include ψ*. This

alternative is executed in a non-stationary Environment where ψ*

is

changing over the time.

 Will the integrated methods make locating the stochastic point more

efficient, and how can we test it?

After modeling the hierarchical structure of the search space and merging

LA and Multilevel jumps with the original HSSL solution [36], we will

compare our results to the algorithm introduced in [36] to disclose whether

our results have been obtained in high enough efficiency or not. Therefore,

we will find out whether the proposed alternatives can be useable in SPL

solving or not.

1.6 Claim

In this thesis it is claimed that using a LA based solution to HSSL clearly

provides more accurate convergence compared to the original HSSL

solution offered in [36]. Further, we claim that Multilevel jumps in the

hierarchical structure of the search space can be applied in order to find the

best unknown parameter ψ* by a less complex technique compared to the

18

original HSSL proposed in [36]. Lastly, we claim that the solution is

scalable, but the total running time is increasing when adding more levels to

the tree structure of the search area.

1.7 Limitations and key Assumptions

The implementation of the proposed algorithms, LA based solution to HSSL

and Multilevel Jumps based solution to HSSL, will be done in the Java

programming language. Although, two novel variants of HSSL proposed in

this research may require much work to be implemented very efficiently in

Java. Finding the best parameter in the optimization problem could be done

by different algorithms, which each of them can affect the results. However,

all of these algorithms will not be performed in this research due to the

limited time span of the thesis. Besides, by increasing the scheme resolution

N (or tree depth D=log2(N)), the convergence rate of our proposed solutions

is also increased, but handling large values of N demands a high number of

simulation runs which was not done in this project due to limitations in

computational resources.

 We have made two significant assumptions. First, the Learning

Automata applied in the project is Reward-Inaction LA in which the effects

of non-optimal actions are ignored. In other words, if the LA is rewarded by

the Environment for choosing an action, it increases the probability of

choosing this action at the next time instant, otherwise if LA is penalized

then the probability of choosing this action remains unchanged. Secondly,

the responses from the Environment to a LM in the tree structure of the

search space are Binary (Reward or Penalty).

19

1.8 Contribution to the Knowledge

The outcomes of this project will contribute with a new experience in the

computer research domain. Indeed, the results will assist discrete

optimization solver algorithms. By making use of the results achieved in

this research, the optimal value of the parameter will be found with a higher

accuracy and less complexity, and therefore with the least computational

complexity.

 In the area of computer science, this project will test a different strategy

by incorporating the HSSL technique with Learning Automata operations in

solving SPL problem for the first time. The proposed solution in this project

will work in a stationary Environment where ψ*

is time-invariant. Further,

applying Multilevel jumps in the HSSL solution will be presented in this

thesis research which provides a simple solution to the SPL problem when

the Environment is non-stationary where ψ* is time varying.

1.9 Target Audience

The target audience of this thesis is anyone that has interests within the

hierarchical stochastic search for solving the SPL problem. Particularly, it is

targeted at people who are interested in the usage of tree-based search

technique along with LA concepts for finding the best value in optimization

problems. Since the main contribution of the thesis is to apply a machine-

learning technique called Hierarchical Stochastic Search on the Line

(HSSL), Artificial Intelligence researchers and other people interested in

this field may find this thesis interesting.

 For the reader to fully understand the concepts and reasoning behind the

proposed solutions, some knowledge of machine learning and a good

20

understanding of common basic elements within the field of computer

science is recommended.

1.10 Thesis Report Outline

The rest of this thesis is organized as follows: Chapter 2 represents the

previous research in the field of SPL problem solver methods. Chapter 3 is

intended to present theoretical background of the Learning Automata

concept, i.e., what LA is, how LA operates in a system and what the

Reward-Inaction LA is. Besides, Chapter 3 introduces briefly concepts

behind discrete stochastic optimization, hierarchical structure of the search

space and the Stochastic Point Location (SPL) problem. Chapter 4 is aimed

to explain the proposed solutions formally. A combination of the HSSL

solution with the Learning Automata concept in a stationary Environment is

thoroughly stated in this chapter. It also describes how Multilevel jumps

based solution to HSSL will be executed in order to find the best value for

the unknown parameter ψ* when the Environment is non-stationary. In

chapter 5 the results achieved from the experiments are delineated as

commented plots. In Chapter 6 the main findings of the proposed solutions

will be discussed. Chapter 7 is intended to wrap up, supply a conclusion and

offer interesting aspects that may be pursued in further research.

21

2 Significant Prior Research

The focus in this chapter is on significant prior work. There have not been

done many researches in solving the SPL problem using tree-based search

space. We will therefore mention two important papers in solving the SPL

problem in the following sections. The first paper is important for solving

SPL in an efficient way without applying hierarchical structure and the

second one is significant for applying hierarchical search space for solving

SPL. In both papers the discretizing search space method is applied to solve

the SPL problem, because this method takes benefit of the restricted

accuracy available in practical implementations to limit the probability of

selecting an action to only finitely many values from the unique search

interval [0, 1].

 In the first paper a “one-dimensional” controlled random walk in a

discretized search space is executed in order to place the unknown

parameter ψ*. However, the second paper makes use of a discretized search

space constructed as a binary tree; an efficient method that has been used to

solve the Stochastic Point Location (SPL) problem.

22

2.1 Solving Stochastic Point Location by

Discretizing the Space

The heart of the strategy proposed in [15] consists of discretizing the search

space and executing a controlled random walk on this space. The scheme

has been proved to be ɛ-optimal and to converge with probability 1. One

difference among traditional learning systems and the discrete learning

scheme is that Discretized Point Location algorithm (DPL) modifies the

action probability in discrete steps and not continuously. The DPL

algorithm restricts the action likelihood into finite values of the search

interval. In contrast, in the concept of traditional learning algorithms is the

fact that the probability of selecting an action may be any real number in the

interval [0, 1].

 The solution cited in [15] for the SPL problem performed as follows: the

search space is partitioned by subdividing the unit interval into N steps {0,

1/N, 2/N, . . . , (N − 1)/N, 1}. The discretization is assigned as linear if the

allowed values are equally subdivided in the interval [0, 1] and contains the

points 0 and 1; otherwise, the discretization is cited as nonlinear. In this

approach, a larger value of N will indicate a more precise convergence to

the unknown ψ* (target node). The algorithm then executes a controlled

random walk on the discretized space. Whenever the Environment informs

the LM to go to the right (or left), it moves to the right (or left) by a single

step in the discretized space.

 Indeed, the scheme alluded in [15] performs the following updating

rules:

Assume ψ (n) is the value at time step “n”. In other words, ψ (n) is a guess

of the unknown value of ψ* at time step “n” [15]. Then,

23

ψ (n + 1) := ψ (n) + 1/N ;if E suggests to increase ψ and 0 ≤ ψ (n) < 1

ψ (n + 1) := ψ (n) − 1/N ;if E suggests to decrease ψ and 0 < ψ (n) ≤ 1

At the end states the scheme performs:

ψ (n + 1) := ψ(n) ;if ψ (n) = 1 and E suggests increasing ψ

ψ (t + 1) := ψ(n) ;if ψ (n) = 0 and E suggests decreasing ψ

 The analytical outcomes achieved in [15] determined that if the

“Oracle”
5
 was informative

6
 then the discretized random walk learning was

optimal. Hence, the mechanism would move toward a position arbitrarily

close to the true target position with an arbitrarily high likelihood.

 The main deficiency of the scheme explained in [15] is the fact that the

steps made are always very conservative. If the size of each step is

increased the convergence speed of the scheme is improves, but the

accuracy is correspondingly diminished.

2.2 Solving Stochastic Point Location by

Hierarchical Stochastic Search on the Line

The approach [15] which was stated in section 2.1 limited the parameter to

be one of the finite number of values in the unique interval [0, 1], and then

executed a “one-dimensional” controlled random walk on the discretized

search space, where “left” and “right” are the only choices for the learning

mechanism. Hence, the size of the scheme resolution, N, was proportional

to the convergence speed. Meaning that as the scheme resolution got bigger,

the scheme convergence performed slower. This deficiency was resolved by

5
 - The scheme is informed by “Oracle” or “Environment” E whether the present value of ψ

is too small or too big.
6
 - The definition of the “informative” Environment is stated in section 3.1.

24

Yazidi et al. in their work in [36]. In this paper, a different approach is

proposed for discretization, where the search operation is performed in a

discretized search space constructed as a binary tree with maximum depth

D=log2 (N) where N is the resolution of the scheme, so the convergence

speed is improved by using a tree-based search space. In this technique, a

resolution is associated to each level of the tree, which becomes better at

deeper levels of the tree. In fact, executing a managed random walk by the

Learning Mechanism on the tree-based search space is the main part of this

solution, which distinguishes this solution from the approach stated in [15].

It has been shown in this paper that Hierarchical Stochastic Search on the

Line (HSSL) supplies a much more faster convergence compared to the

original SPL solution presented in [15]. It has also been proved that the

overall scheme is ɛ-optimal when the Environment effectiveness, p, is

greater than the golden ratio conjugate
7
 [10]. In this paper it has been

demonstrated that the HSSL solution supplies a more accurate scheme than

the original SPL approach in [15]. HSSL solution requires less iteration

compare to the original SPL solution in order to obtain 95% of the unknown

parameter ψ*.

 For the sake of brevity, the construction of the hierarchy and other

concepts related to HSSL will be described later, since in this thesis

research, similar concepts are applied.

7
 - The quantity of golden ratio conjugate is stated in section 3.4.3.

25

3 Research Methodology

3.1 Learning Automata

In order to put our work in the right perspective, this section is started by

providing a brief review of the main concepts of the Learning Automata

first introduced by Tsetlin in [14].

 Learning Automata (LA) [11, 15-17, 28, 34] have been utilized in order

to design and form biological learning systems. Learning Automata aim to

find the optimal action
8
 which is suggested by a random Environment.

Learning is carried out by clearly communicating with the Environment,

and processing its responses to the selected actions, while gradually

converging toward a final goal. Two entities, the random Environment and

a learning automaton are involved in the learning loop. As mentioned

before, a strong feature of Learning Automata (LA) is that it can improve its

performance by means of a learning process. LA combine quick and precise

convergence with low computational complexity, so in this research LA is

utilized as one of the variants of the Hierarchical Stochastic Search on the

Line in order to precisely find the optimal value of ψ*. There exist two main

types of LA in the machine learning area, one that is deterministic and one

that is stochastic [50]. The former type possesses fixed states, transition and

action functions, while the state output of the stochastic LA is decided by

certain likelihood. In this research the stochastic type of LA is used. The

reader is referred to the books of Lakshmivarahan [11], Narenda and

Thathachar [16], Najim and Poznyak [15], and Poznyak and Najim [28] for

more information about Learning Automata.

 As alluded to earlier, the purpose of the learning process is to discover

the optimal value of some parameter ψ*
 ∈ [0, 1). However, the value of ψ*

is unknown to the learning process, it is supposed that the Learning

8
 - The action with the highest reward probability is called optimal action.

26

Mechanism possesses responses from the Environment E, which is able to

notify it whether the current estimate ψ is too small or too big.

 There exist two different types of Environment—informative and

deceptive. An Environment is cited as “informative” if the probability p of

the Environment, is greater than 0.5. If p < 0.5, the Environment is stated as

“deceptive,” this means that the Environment will generate erroneous

feedback more than correct feedbacks. Finally, the Environment is a

compulsive liar, if the probability of a correct feedback p of the

Environment approaches zero.

3.1.1 The Operation of an Automaton

An automaton remembers which actions are “good” by maintaining a state

St ϵ { S1, . . . ,Sn }.

Operation of an automaton is as follows:

“1. Selects and outputs an action based on its present state

2. Takes a response from the Environment as input

3. Changes its state based on (a) the response and (b) the action performed

(see Figure2).”

[54]

 An automaton can be said to learn if it reduces the number of Penalties

received as a result of interacting with the Environment. Indeed, the

automaton makes use of the Environment feedback and the knowledge

obtained in the past actions to decide which the next action is.

27

Figure 2: Operation of an Automaton [54]

 In order to clarify the LA definitions, the ɛ-optimality concept of LA and

two other different types of LA, namely discretized and continuous LA is

described in following.

 It is assumed that Pb is the probability that the learning automaton selects

the best action [31]. A learning automaton is ɛ-optimal if Pb (t) → 1 as

t →∞ [31]. In other words, when the time goes to infinity, the learning

automaton will finally find out the correct answer. Hence, a learning

automaton is called ɛ-optimal if the probability of selecting the best action

can be made as close to unity as desired, even if the automaton is not able to

find the best action with probability of unity.

Figure 3: Comparison of probability of choosing optimal

 action for continuous and discretized learning algorithm.

(a) Continuous case. (b) Discrete case. [31]

28

 From Figure 3 it can be observed when the optimal action has been

discovered, say a time t, and the corresponding action probability is close to

unity, the discretized automaton will increase the probability of selecting

that action to the value of unity directly, instead of coming near to the value

unity asymptotically [31]. Figure 3 depicts that for the continuous case, A, if

the probability of selecting the optimal action is at 0.98, and the automaton

achieves reward for five times, then at time t +5 the probability of selecting

the optimal action will come near to unity. Indeed, the value will depend on

the scheme parameters. In the discretized case, B, the probability of

selecting the optimal action will be unity if the probability space is

partitioned into intervals of width 0.01 [31]. In general, the speed of

convergence utilizing this method is substantially improved. Discretization

is also profitable when it concerns issues related to implementation and

representation. Since this type of algorithms utilizes integer (as opposed to

real number) representations, they allow addition (as opposed to

multiplication) operations. Some of the existing outcomes about discretized

automata are considered in [27, 29, 30, 31, 32, and 33]. Therefore,

discretized learning automata are employed in this research.

 In learning systems, a Reward-Inaction learning automaton (LRI) is an

effective type of LA compared to Reward-Penalty counterpart; hence it is

chosen for this research and is described in the following section.

3.1.2 Reward-Inaction Learning Automata

Making use of Reward-Inaction model of Learning Automata causes the

algorithms to approach the optimal action, since actions are chosen near to

optimal point. In this model only the optimal actions influence the

probabilities of action and non-optimal actions are disregarded.

29

 Challenges included in biasing two components of Reward and Penalty

in the Reward-Penalty technique has become one of the most significant

reasons of the popularity of the Reward-Inaction solution. A normal

Reward-Penalty algorithm can be specified as follow [18]:

Pi (n+1) = Pi (n) + a. (1-β (n)) (1-Pi (n))-b.β (n) Pi (n) ; for the

chosen action

Pj (n+1) = Pj (n) - a. (1-β (n)) Pj (n) +b.β (n). [(r-1)-1- Pj (n)] ; for the

other action

where β is the response from the Environment in the interval [0, 1], and

constants a and b are the Reward and Penalty parameters, respectively. In

this formula if b=0 then the model is stated as Reward-Inaction in which

the effects of non-optimal actions are ignored. In other words, if Learning

Automata selects an action and achieves Reward response from the

Environment then it increases the probability of choosing this action at the

next time instant and decreases the probability of the other action that has

not been chosen, otherwise if the Learning Automata obtains Penalty

feedback from the Environment in the new action, then the probability of

selecting this action remains unchanged, hence the algorithm is called

Reward-Inaction.

30

3.2 Discrete Optimization Problem

Discrete optimization is a branch of optimization in applied mathematics

and computer science. Unlike continuous optimization, the variables used in

the mathematical program (or some of them) are restricted to assume

only discrete values, such as the integers [51]. The main goal of a discrete

optimization operation is finding the maximum (minimum) using the local

information that is accessible.

 Discrete optimization has a significant position in modeling and

analyzing of discrete event systems. Configuration design of distributed

computer systems, VLSI design, the routing design in commutation

networks, and many scheduling schemes in communication networks are

examples of the discrete optimization problem [53]. A common property of

the discrete optimization problems in mentioned systems is that they are

NP-complete
9
. In order to solve this deficiency one has to relax the

objective somewhat. For instance, it should be only queried for algorithms

that can supply a good model with high probability. In fact, this is a good

compromise, since in most positions if a poor system is chosen by the

algorithm, it normally can be identified by inspection.

 In order to familiarize the reader with the definition of discrete stochastic

optimization problems, one example is cited in the following.

 Consider the following optimization problem

Min f (n) = E {Xn} ; nϵ ℕ (1)

where ℕ = {1, 2, … } and { Xn } is a sequence of random variables [52].

Suppose 𝒮 ⊂ ℕ demonstrates the set of local minimizers of the function f .

When the expected values of random variables, E {Xn} where n = 1, 2, ..., ,

can be analytically estimated, standard integer developing methods can be

applied in order to solve the optimization problem (1) [52]. A new

9
 - “NP-complete is a class of decision problems. A decision problem L is NP-complete if it

is in the set of NP (Non-deterministic Polynomial time) problems, so that any given

solution to the decision problem can be verified in polynomial time”. [56]

http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Discrete_mathematics
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/Nondeterministic_algorithm
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/Polynomial_time

31

technique is proposed in [52] that is modeled to place an element of the set

𝒮 in the position where the expected values E { Xn }, n = 1, 2, ..., cannot be

analytically estimated. This new method is similar to a stochastic

approximation algorithm in the following definition: when employed to

resolve a minimization problem, a stochastic approximation algorithm, such

as the Robbins-Monro algorithm (Robbins and Monro 1951) and the

algorithms introduced by Andradottir (1995, 1996a) produces a sequence of

the solution guesses, where each new guess is achieved from the previous

guess by taking a small step through the direction of the negative gradient

of the objective function [52]. As this is the way through which the

objective function will be diminished the fastest, a logical description of

these algorithms is that each step includes of determining a “good”

direction, that is a direction through which researchers assume the objective

function to diminish, and then taking a small step through this direction.

One simple algorithm for solving discrete stochastic optimization is

presented in the following, which is based on the same principle.

 Since the objective function is specified on a discrete set, gradient

information is not applied for determining a “good” direction. However, as

the set of possible approaches is ℕ, natural integers set, so at each possible

point, there exist two directions to select: up or down. Hence, in each

iteration, the algorithm is expected to determine whether to take a small step

up or down or to resides at the same position. Since the length of the

smallest step that can be taken is one, if n > 1 is the current position, then it

should be specified whether n or one of its neighbors n - 1 or n + 1 is the

next position (e.g. if the current position is 1, then it should be identified

whether 1 or its neighbor 2 is the next position). This is obtained by

selecting at random either n - 1 or n + 1 as a next position, then running the

scheme at n and its selected neighbor to specify at which position the

objective function has a lower value, and then letting the next position be

the better of the two. The reader is referred to [52] for more details about

this method.

32

 In the rest of this section, two more algorithms for solving discrete

stochastic optimization are briefly described. The first algorithm is

proposed by Yan and Mukai [53], which is a random search technique and

is cited as the Stochastic Ruler (SR) algorithm. This algorithm compares

observations of the objective function values with observations of a uniform

random variable, called the “Stochastic Ruler,” whose range contains the

range of the observed objective function values. The number of such

comparisons will be increased when the number of iterations grows.

 For the sake of comparing observations, the Stochastic Ruler method

proposes neighborhood structure. The candidate of the next step will be

selected from the neighbor set of current decision parameter. The algorithm

makes use of the elements in neighbour set to estimate the optimal solution.

In other words, the Stochastic Ruler technique includes generating up to MK

observations of the objective function values in iteration k, where MK →∞

as k→∞ [53]. One deficiency of this method in practical implementations is

that the method is very sensitive to the rate at which the sequence {MK} is

increased. If the sequence {MK} is increased quickly, then the Stochastic

Ruler technique may end up at a local solution, whereas if the sequence

{MK} is increased slowly, then the technique will take a long time in order

to converge. However, Yan and Mukai [20] supply guidelines for how the

sequence {MK} should be chosen, choosing these guidelines in practical

implementations is hard, since they rely on parameters that are commonly

unknown. Besides, the experimental results of Alrefaei and Andrado´ttir [2]

imply that mentioned guidelines do not end to a good execution of the

method, even if these guidelines guarantee the convergence of the

Stochastic Ruler method.

 The second algorithm is introduced by Gong, Ho, and Zhai (1992) called

Stochastic Comparison (SC) method [53]. It utilizes a growing amount of

computer work per iteration when the number of iterations is growing.

Stochastic Comparison algorithm compares estimated objective function

values at neighbouring points.

33

 One shortage of this method is that if the objective function is definitely

determined, then the SC algorithm converges insignificantly to the

optimum. Moreover, the analysis of convergence will be complex when

objective function has to be estimated.

 Solving Stochastic Point Location (SPL) problem which is a sample in

discrete stochastic optimization is the goal of the thesis project. Hence, in

order to make the reader familiar with the SPL definition, next section is

included below.

34

3.3 The Stochastic Point Location Problem

3.3.1 Defining SPL problem

As alluded to previously, the “Stochastic Point Location Problem,” was first

proposed in the work of Oommen et al. in [15]. The Stochastic Point

Location (SPL) problem [15]–[17] is a general learning problem in which

the Learning Mechanism (which is either a robot or a learning automaton)

aims to find a “parameter,” for instance, ψ*, in a closed search interval. It is

considered the problem of a Learning Mechanism (LM) walking on the line

trying to place a special point. The LM communicates with an Environment

that provides stochastic (i.e., erroneous with a given probability) feedbacks.

Hence, when LM should really be going to the “Right” direction it may be

recommended to go to the “Left” and vice versa [13, 16].

 In Point Location problem, if the Environment is deterministic, the

problem is called “Deterministic Point Location Problem,” which has been

investigated in [19, 20]. In fact, the SPL problem contains searching without

certainty, since the target is unknown, and the only case that is known is the

robot’s movement direction.

 SPL possesses potential applications in solving optimization problems.

The aim of the optimization problems is to carry out a task with the

minimum cost or with the maximum profits. If the cost function (or profit

function) is known, the problem is normally one of minimizing

(maximizing) this function. In many optimization solutions—for example in

pattern recognition [15], [21- 27], [49], the algorithm executes its way from

its “current” action to the optimal action based on its achieved information.

 Indeed, the problem of a stochastic learning automation interacting with

a random Environment is investigated in this research. The main parts of the

learning schemes are executing a controlled random walk on the search

interval and placing a position in this closed interval in order to find the

optimal action with the highest probability of success.

35

3.3.2 Continuous Point Location with Adaptive d-ARY

Search

In the investigation of [20], Oommen et al. presented the Continuous Point

Location with Adaptive d-ARY Search (CPL-AdS), which is a

generalization of a portion of the work in his previous paper [19]. In [19]

Oommen et al. divided the search interval into three disjoint subintervals,

while in CPL-AdS, the given search interval is partitioned into d partitions

displaying d disjoint subintervals, where d > 3. In each interval, primarily,

the midpoint of the given interval was determined as the estimate of the

unknown ψ*. Each of the d partitions of the interval is independently

traversed using an ɛ-optimal two-action Learning Automata (LA), where the

two actions are those of choosing a point from the left or right half of the

partition. Then, the paper researchers omit at least one of the subintervals

from being searched further, and recursively seek the rest of the pruned

adjacent interval until the seek interval is at least as small as the required

resolution of estimation. This omission process basically makes use of the ɛ

-optimality feature of the automata and the monotonicity of the intervals to

ensure the convergence. At each epoch including of a definite number N∞ of

iterations, the algorithm “confidently” discard regions of the search space.

 Generally, there exist two basic weaknesses of these later two algorithms

[19, 20]. First, both algorithms work with the assumption that the parameter

ψ* is time-invariant. In this case, they are not able to manage with non-

stationary features where the parameter ψ* changes over time. Suppose that

ψ* is a time-variant parameter. Hence, if ψ*

modifies to a new value

contained in an interval that was already eliminated, both the tertiary search

[19] and CPL-AdS [20] will not succeed to converge to the optimal

parameter ψ*. Contrary, our second novel variant of the HSSL, i.e.,

Multilevel jumps based solution to HSSL, proposed in this research is shown

to be able to work with non-stationary features where ψ* is time varying.

36

 Besides, the two algorithms stated in [19] and in [20] rely on the ɛ-

optimal feature of the individual LA, so both of them are error prone.

Indeed, at each epoch of the algorithms proposed in [19], [20], it is required

to execute each individual LA for an infinite number of iterations in order to

assure its convergence to its optimal action with probability 1. Thus, the

smaller number of iterations may lead to the higher probability to converge

to a wrong interval and discard the interval of interest that contains ψ*. In

fact, in order to increase the confidence of the search process at each epoch,

a considerable number of iterations per epoch are necessitated, leading to a

slow speed of convergence.

3.4 Combining the Field of Binary Search and the

Stochastic Point Location Problem

Since in this research, our novel approaches for solving the Stochastic Point

Location (SPL) problem are performed in the search space prepared in the

form of a binary tree with depth D = log2 (N), where N is the resolution of

the scheme, so in the rest of this chapter the construction of hierarchy,

Environment feedbacks and transitions in the tree is described. By using a

tree structure of the search space, the Learning Mechanism (LM) rapidly

travels the search space and concentrates its movements on the district that

includes ψ*.

 For convenience, in our proposed solutions some definitions and

notations of [34] and [36] are used in order to describe the hierarchical

structure of the search space and to index the nodes in the binary tree. These

definitions and notations are explained in the following sections.

37

3.4.1 Definitions

Hierarchy Structure. Suppose ∆ = [α, β) is the current search interval

including ψ*. It is assumed that α = 0 and β = 1, so LM organizes a

controlled random walk on a unique search interval. The following parts

describe the main concepts of the hierarchical search space. The hierarchy is

managed as a binary search tree with maximum depth D. To each node of

the binary search tree in the hierarchy it is associated an interval containing

three values, i.e., left and right boundary values (α and β) along with the

middle value of the interval (0.5*(α+ β)).

 Root Node. The interval ∆ = ∆{0,1} = [0, 1) is assigned the root node (at

depth 0), which it is denoted by I{0,1}. This interval is subdivided into two

separate equi-sized intervals ∆{1,1} and ∆{1,2} , that ∆1,1 = [0, 1/2) and ∆1,2 =

[1/2, 1). It should be mentioned that 1/2 = mid (∆{0,1}), where mid (∆{0,1})

determines the middle point of ∆{0,1}. Furthermore, the interval ∆{1,1} is

presented as the Left Child of the root node and ∆{1,2} as the Right Child.

 Leaf Node at Depth D. At depth D, which defines the maximum level

of the binary search tree, the nodes have no children.

 For a node i at level d connected to the specific interval ∆{d,i}, it can be

inferred the left and right boundaries of the interval, i.e., α{d,i} = (i−1)(1/2)
d

and β{d,j} = i(1/2)
d
, for i ϵ {1, ..., 2

d
} where 0 ≤ d≤ D.

 Intermediate Node at Depth d. Node i ϵ {1, ..., 2
d
} at depth d, denoted

I{d,i}, where 0 < d < D, is assigned the interval ∆{d,i} = [α{d,i}, β{d,i}) which is

subdivided into two separate equi-sized intervals ∆{d+1,2i−1} and ∆{d+1,2i}.

Therefore, ∆{d+1,2i−1} is the Left Child and ∆{d+1,2i} is the Right Child of ∆{d,i}.

 Remark. Since level “D+1” is not employed, so the Right Child and the

Left Child of a leaf node are the same as the leaf node. It can be cited that

Left Child(I{D,i})=Right Child(I{D,i})= I{D,i} for i ϵ {1, ..., 2
D
} depth. Besides,

“−1” is not utilized in the binary tree, so the Parent of ∆{0,1} is illustrated by

∆{0,1}. In other words, Parent of the interval ∆{0,1} is ∆{0,1}.

38

 Scheme Resolution. The scheme resolution is applied in order to

determine the number of leaf nodes, i.e., N = 2
D
.

 Target Node. The leaf node that is associated with an interval includes

ψ*

is stated as the target node.

 Non-Target Node. The leaf nodes that associated intervals do not

include ψ* are presented as non-target nodes.

 Using the middle point of each interval as an estimate of the unknown

ψ*

is recommended to the learner which resides at a certain node in the

binary tree. Indeed, when a LM is standing at a leaf node, the guess of ψ*

will select a discretized value among the N following values [36]:

{mid(∆{D,1}),mid(∆{D,2}),…,mid(∆{D,N})} = {(1/2)
D+1

, 3(1/2)
D+1

, 5(1/2)
D+1

,…,

(2N-1)(1/2)
D+1

}

 When LM is standing at a node of depth d i.e., at intermediate node,

where 0 <d<D, a discretized value among the Nd (where Nd =2
d

) following

discretized values will be taken as the guess of ψ* [36]:

{mid(∆{d,1}),mid(∆{d,2}),…,mid(∆{d,Nd})} = {(1/ Nd)-(1/(2Nd)), (2/ Nd)-(1/(2Nd)),

(3/ Nd)-(1/(2Nd)),… (Nd / Nd)-(1/(2Nd))}

39

3.4.2 Construction of the Search Space and Feedbacks

from the Environment

As alluded to previously, in this research the search space is organized as a

balanced binary tree, where an interval is assigned for each node. In the first

step of scheme running, the middle point of the given interval is suggested

as the estimate of the unknown ψ*. The LM looks for the best value of ψ*

by executing a random walk on the tree-structured search space, going from

one node of the tree to another. As delineated in Figure 4, each node of the

tree is matched with an interval; e.g., the root is matched with the unique

interval [0, 1). This interval is subdivided into two separate equi-sized parts.

Therefore, the left child of the root is associated with [0, 1/2) interval and

the right child with [1/2, 1), and so on.

 At any running time instance, the LM stands at a node I{D,i} of the tree,

where i ϵ {1, . . . , 2
d
} and 0 ≤ d ≤ D. Finding the next search interval that is

suggested to include ψ*

is the purpose of the LM which is done by

generating a sequence of “informed” estimates. For each estimation, the

Environment E informs the LM, perhaps erroneously (i.e., with likelihood

p), which path it should go to achieve the best value of ψ*. Suppose ∆{d,i} is

the interval that is matched to the node where the LM stands at the current

time instant. The “informed” estimates correspond to a sampling at the

boundary values of the search interval ∆{d,i}, and at the middle point of the

interval: mid(∆{d,i}).

 A vector ⃗ =[x
1
, x

2
, x

3
] demonstrates the sampled points, where x

1
=

α{d,i} = (i−1)(1/2)
d

, x
2
= mid {∆{d,i}} =(2i-1)(1/2)

d+1
 and x

3
=β{d,j} = i(1/2)

d

[36].

 A tuple ⃗⃗⃗ = [Ω
1
, Ω

2
, Ω

3
] illustrates the feedbacks of the Environment E

[36]. When k ϵ {1, 2, 3}, Ω
k
 is a random variable which can select either

“Left” or “Right” value. For convenience, L will be utilized for determining

40

the “Left” side of the sampled point and R indicates the “Right” side of the

sampled point. As mentioned before, the Environment E is supposed faulty,

so it recommends the correct path with a likelihood p and Ω
k

when k ϵ {1, 2,

3} is denoted as follows [36]:

If ψ*

< x

k

 {

If ψ*

≥ x

k

 {

Figure 4: The search space is managed as a binary search tree. Each node I{i,j}

is associated with an interval ∆{i,j} = [α{i,j}, β{i,j}). This interval is sampled at α{i,j},

β{i,j}, and mid(∆{i,j}), generating one of the eight feasible Environment

feedbacks: {[L, L, L], [L, L, R], [L, R, L], [L, R, R], [R, L, L], [R, L, R], [R, R,

L], [R, R, R]} [36] .

41

Remark. In hierarchical stochastic search technique, [L, R, R], [L, L, R],

[R, L, R] and [L, R, L] feedbacks are stated as inconsistent and the results

are obtained when LM only utilizes the consistent responses. Hence,

inconsistent responses are not considered.

3.4.3 Mapping the Feedbacks to Transitions in the Tree

As alluded to earlier, in order to find the predicted value for ψ*, the middle

point of the search interval which is corresponding to the current node in

which the LM stands is considered. The main point is that of deciding how

to modify the scheme guess ψ of the unknown ψ* based on the faulty

property of the Oracle’s feedback. From this viewpoint, the goal is finding a

method that determines the next search interval of the LM, which finally

ends to defining a set of rules that manages the movements of the LM in

way that it proceeds towards the next probable node in the tree (i.e., the one

matched to an interval that is expected to include the unknown ψ*).

 The LM proceeds to another node based on these feedbacks, either to the

current node’s parent, or to one of its children (Right Child or Left Child).

The moving rules in the tree are presented in Table 1 [36].

Next Search Interval Condition

Parent(∆{i,j}) [R, R, R] ⋁ [L, R, R] ⋁

[L, L, R] ⋁ [L, L, L]

Left Child(∆{i,j}) [R, L, R] ⋁ [R, L, L]

Right Child(∆{i,j}) [R, R, L] ⋁ [L, R, L]

 Table 1: Decision table to select the next interval based on the

feedback vector [Ω
1
, Ω

2
, Ω

3
], when ∆{i,j} is the current search interval

[36].

42

 Two versions of random walk transitions in the tree are recommended in

[36], which are used in our proposed solutions:

 “Reverse transitions: This type of transition corresponds to a movement to

a lower level in the hierarchy. This happens when the LM moves to the

immediate Parent (a larger search interval), which, in turn, allows the LM

to escape from getting trapped in a wrong subtree, i.e., one that does not

contain ψ*.”[36]

 “Top-down transitions: This type of transition corresponds to a movement

to a deeper level in the hierarchy. Whenever the LM performs a transition to

a deeper level in the hierarchy by choosing a Child node, the search space

shrinks, and will, hopefully, concentrate on one of the contiguous intervals

at the next level of the tree that contains the unknown parameter ψ*.”[36]

 It has been shown in [36] that the Hierarchical Stochastic Search on

the Line (HSSL) method is asymptotically optimal. This has been proved by

analyzing the Markov chain properties along with the rules in Table 1. The

proof is eliminated due to space limitation. Considering “informed” series

of estimates, the LM will focus its movements within nodes in the tree that

are corresponded to small intervals including the optimal value ψ* (if p is

bigger than the conjugate of the golden ratio).

Theorem. “The parameter learning algorithm specified by the rules

summarized in Table 1 is asymptotically optimal if p is bigger than the

conjugate of the golden ratio. Formally,

LimN→∞ Limn→∞ E [ψ (n)] → ψ*.” [36] (proof of theorem is available in

[36])

43

Remark. “The golden ratio conjugate quantity [10] is determined by Φ,

where Φ = (√5−1)/ 2 ≈ 0.61803. Suppose that the Environment is

informative, but its effectiveness p is less than Φ. The issue that p is less

than the Φ can be countered by applying a majority voting algorithm. If p is

known to the LM, this reduces to finding a minimum number of queries one

has to ask to the “Oracle” which ensures that the probability that the

majority of responses are correct is bigger than the conjugate of the golden

ratio. It should be obvious to the reader that similar reasoning can be

applied if p is unknown to the LM, and we only know a lower bound pmin of

p such that pmin > 0.5. It will not be elaborated on these ideas here.” [36]

44

4 Solution

In this section the two novel types of the Hierarchical Stochastic Searching

on the Line (HSSL) will be presented, in the first type, the field of Reward-

Inaction Learning Automata in HSSL is utilized when the Environment is

stationary and in the second type, the Multilevel jumps in HSSL solution is

applied when the Environment is non-stationary, so the non-consistency

feature of the Environment presents the challenging problem. In the HSSL

approach, the Learning Mechanism (LM) intends to learn a best value of the

parameter ψ* within a closed interval. In this research, for each estimate the

mechanism is informed by the Environment with a probability p of being

informed erroneously about which path it should select to achieve the

optimum value of ψ*. Indeed, the suggestion of the Environment for LM in

both proposed solutions is uncertain.

 The requirements of this project, which will be explained in this chapter,

were to use a hierarchical structure of the search space, Multilevel jumps in

the tree-based search space, and Reward-Inaction Learning Automata (LRI)

for selecting an action and searching in the binary tree in order to find the

optimal value of the unknown parameter ψ* (target node) accurately.

45

4.1 Merging the Field of Reward-Inaction Learning

Automata and the Original HSSL

In this and next section, two novel approaches for discrete stochastic

optimization is proposed and shown how the generalized types of the HSSL

technique can be employed in order to solve discrete optimization problems.

 The first solution proposed in this chapter is Reward-Inaction LA based

solution to HSSL, which has the following feature: it converges almost

certainly to the best value of the unknown parameter ψ*. In other words, the

proposed method spends most of the computational effort close to the

optimal point of the ψ* in the hierarchical structure of the search space.

 Finding the optimal parameter problem in the hierarchical search space

could be merged with the Learning Automata (LA) problem. While

communicating with the Environment, the LA chooses one action from a set

of actions, and the response from the Environment guides the LA if the

selected action was rewarded or penalized. Then LA makes use of this

information to determine which action to take next, and the cycle continues.

 For convenience, in LA based solution to HSSL, the same definitions and

notations as in [36] are used such as the sampled points of each search

interval in hierarchical structure is demonstrated as a vector ⃗=[x
1
 ,x

2
 ,x

3
] ,

where x
1
= α{d,i} = (i−1)(1/2)

d
, x

2
= mid {∆{d,i}} =(2i-1)(1/2)

d+1
 and x

3
=β{d,j} =

i (1/2)
d
 and the Environment feedbacks can also be illustrated as a tuple ⃗⃗⃗

= [Ω
1
, Ω

2
, Ω

3
].

 Each node in the tree is associated with a Learning Automaton which has

three actions for choosing such as “Up”, “Right Child” or “Left Child”. The

action which has the highest “Reward” probability is chosen by the LA.

However, two exceptions occur at the root node and leaf nodes, i.e., at the

46

root level, LA can stay at the same level rather than choosing “Up” or can

move either to “Right Child” or “Left Child” and at leaf nodes, LA stays at

the same node instead of moving to “Right Child” or “Left Child” or can

move to its immediate Parent. In this approach, if LA chooses one action

e.g. “Right Child” and the “Oracle” also responds “Right” for the next

movement, then LA achieves “Reward” from the “Oracle”. Since a

Reward-Inaction LA is used in this research, the LA will increase the

reward probability of chosen action when it is rewarded by the

Environment.

 In order to express our first solution in detail, it should be mentioned that

each node is associated with an interval that contains sampled points and

each sampled point of the current search interval, i.e., x
1
, x

2
 or x

3
 is attached

to one learning automaton. Each learning automaton correctly estimates the

direction towards the unknown ψ* with p and incorrectly with 1-p

likelihood, where p is the probability of the “Oracle” correctly providing the

responses. Hence, there exist three different LAs in the current search

interval which select “Right” or “Left” action based on three different

Environment feedbacks, i.e., tuple ⃗⃗⃗ = [Ω
1
, Ω

2
, Ω

3
]. Afterward, by

considering the moving rules quoted in Table 1, the LA selects the next

search interval and moves to another node, either to the current node’s

parent or to one of its children (Right Child/Left Child).

 If a learning automaton chooses an action, either “Right” or “Left”, and

the Environment also responds the same action, the automaton is rewarded

and so it increases the reward probability of chosen action. In other words,

at each scheme running, the action with the highest “Reward” probability is

chosen for the next step.

 The algorithm for updating the probabilities is presented as follows:

47

Procedure HSSL_LA

Begin

Initialize number of tree levels and Reward parameter of LA

If LA chooses action ω, update P(t) as follows:

 IF β(t)=0 THEN

 P(t+1)=P(t)+a(1-P(t))

 ELSE

 P(t+1)=P(t)

 ENDIF

End If

End

where β (t) = 0 means that the LA is rewarded by the Environment for

choosing the action ω at time t and a is the reward parameter of LA, like in

the formula in section 3.1.2.

 By making use of Reward-Inaction LA in our proposed solution, the

scheme precisely converges to the interval which has the best value of ψ*

and afterward will not erroneously move to the lower or deeper level.

Therefore, the scheme never modify the best obtained value for ψ* after

convergence, since the interval including ψ*

is chosen by LA with the

highest “Reward” probability. However, in the original HSSL method

introduced in [36], the scheme may move to lower or deeper level, after it

finds the best value of the ψ* and the convergence rate is decreased by the

scheme fault.

48

4.2 Implementing HSSL with Multilevel Jumps

As previously mentioned, another novel approach proposed in this research

involves studying how the Multilevel jumps can be made by the scheme. In

this section, it is shown that using Multilevel jumps in a hierarchical

construction of the search space could lead to a less complex scheme.

Although schemes with Multilevel jumps can easily be described, they

would, typically, be hard to develop.

 In this new approach, the corresponding feedbacks of the Environment E

can be presented as a tuple or unique. Tuple response means ⃗⃗⃗=[Ω
1
, Ω

2
,

Ω
3
] quoted previously where Ω

k
, for k ϵ {1, 2, 3}, is a random variable

which can take either the value “Left” or “Right” and unique response

means informing “Left” or “Right” to the LM. Like in the original HSSL

technique [36] and LA based solution to HSSL, each node is associated with

an interval, which is subdivided into two separate equi-sized parts. At each

node the midpoint of the interval is considered as an estimate of the

unknown ψ*. The LM tries to find the next promising search interval that

maybe contain ψ*

by generating a sequence of “informed” estimates.

Similar to the original HSSL [36] and LA based solution to HSSL, in this

new approach, the Environment guides the LM probably faulty (i.e., with p

likelihood), which path it should select to find the best value of ψ*.

 The differences between the original HSSL solution [36] and Multilevel

jumps based solution to HSSL are listed as follows:

 In the Multilevel jumps based solution to HSSL at root node (at depth zero)

and at odd levels in the tree (d= {1,3,…, D-1}
10

), only the middle point (i.e.,

x
2

in the sampled points) is queried by the LM and the Environment

response is unique, either “Right” or “Left” rather than tuple feedback.

10

 - It is assumed that the tree depth D = log2(N) is an even number.

49

 In the Multilevel jumps based solution to HSSL only at even levels in the

tree (d= {2,4,…, D-2}
11

), all three points (i.e., x
1
, x

2
, x

3
 in the vector of

sampled points) are asked by the LM and the Environment response is a

tuple, i.e., ⃗⃗⃗=[Ω
1
, Ω

2
, Ω

3
].

 Unlike the original HSSL solution [36], in this research, for the nodes at

depth d where 0 < d < D and d is an odd number (d= {1,3,…, D-1}), the

LM possesses two choices for selecting either “Right Child” or “Left

Child”, hence at these levels the LM is not able to move “Up” . However,

for the nodes at depth d where 0 < d < D and d is an even number (d=

{2,4,…, D-2}), the LM has three actions for choosing; “Right Child”, “Left

Child” and “Up”, means that reverse transition for moving to a lower level

in the hierarchy could be done at these levels.

 In the original HSSL [36], the reverse transition corresponding to the

immediate Parent (a larger search interval) means one level movement

upwards, while in our proposed solution the reverse transition is performed

for more than one level reflects a Multilevel jump in the hierarchy.

 In the Multilevel jumps based solution to HSSL, for the nodes at depth D

(leaf nodes), when D is an even number the LM could stay at the same level

or jump to the lower level, while at depth D where D is an odd number the

LM could only stay at the same level, which means that it could not escape

from getting trapped in a wrong leaf node, i.e., one that does not include ψ*.

However, in the original HSSL solution [36] for nodes at depth D, which D

could be either odd or even number the LM could stay at the same level or

move up for one level when it resides at a non-target node.

11

 - It is assumed that the tree depth D = log2(N) is an even number.

50

 Figure 5 delineates the hierarchical structure in our second solution;

Multilevel jumps based solution to HSSL technique, along with the LM

movements when the tree depth D = log2(N) is equal to 4.

Figure 5: The figure depicts the tree structure of the search space in Multi-

level Jumps based solution to HSSL with LM movements in the tree. Each

node I{i,j} is associated with an interval ∆{i,j} = [α{i,j}, β{i,j}). This interval is

sampled at α{i,j}, β{i,j}, and mid(∆{i,j}), creating one type of these Environment

feedbacks: {[L, L, L], [L, L, R], [L, R, L], [L, R, R], [R, L, L], [R, L, R], [R, R,

L], [R, R, R]} or {[L],[R]}.

 As alluded to previously, it can be observed from the figure above that a

LM at root node (at depth 0) has two actions for moving, “Right Child” and

“Left Child”, which means that the LM is not able to move up. Likewise, at

odd levels in the tree (d= {1,3,…, D-1}), the LM has two choices, while at

even levels (d= {2,4,…, D-2}), the LM has three actions, “Right Child”,

“Left Child” and “Up”. Indeed, if the LM moves to an even level in the

binary tree, it could move up for two or more than two levels. Hence, our

solution is called Multilevel jumps based solution to HSSL, since a LM can

move up for more than one level when it resides at even levels. However, if

51

the LM jumps to an odd level in the tree structure, it is not able to move to a

lower level and therefore the scheme will not find the optimal action.

52

5 Simulation Results

In this section, the performance of the proposed methods, Reward-Inaction

Learning Automata based solution to HSSL and Multilevel Jumps based

solution to HSSL, through numerical experiments is explained. In order to

plot accurate diagrams, MATLAB software is utilized for our experiments

in this chapter.

 Since there is no previous information about the value ψ*, at time instant

0, we initialize the first position of LM in our proposed solutions is the root

node of the tree.

5.1 Results from Merging the Field of Reward-

Inaction Learning Automata and the Original

HSSL

The LA based solution to HSSL described in this research was

experimentally assessed to identify the validity of the results and to

investigate its convergence rate. To specify the power of the proposed

solution and to display its effectiveness for various conditions, the

simulation was performed for different values for p, the probability of the

“Oracle” correctly supplying the response, and for different values for N,

the scheme resolution.

 In this case, the value of the parameter ψ* was supposed to be unknown

to the LA. Although several experiments have been executed, for the sake

of brevity, we report the results achieved for one set of experiments

including the unknown parameter ψ* = 0.947.

53

 The true value of E[ψ(∞)] is demonstrated in Table 2. The results

achieved from the scheme running after 10
6
 iterations and for different

values of p and the scheme resolution N=2
D

(D, the tree depth is equal to

log2 (N)), when the reward parameter of LA, a, is 0.05 and value of ψ* =

0.947.

 In each case the E[ψ(∞)] converges accurately. For instance, when p is

0.72 and is N is equal to 64 (i.e., the tree depth, D=6), the value of E[ψ(∞)]

is 0.915. It grows to 0.942 when N = 512 (i.e., the tree depth, D=9). The

results are more “accurate” for larger values of p. Hence, when p is 0.93 and

N=64, the value of E[ψ(∞)] is 0.946. The final terminal value when N =

4096 (i.e., the tree depth, D=12) and p is 0.93 demonstrates an error less

than 0.0004%. The ɛ-optimality feature is empirically verified through the

simulation, whether the value of p is 0.72 or 0.93, E[ψ(∞)] infinitely

converges to the optimal ψ* as the scheme resolution is increased.

Scheme Resolution

(N)

P=0.72 P=0.93

64 0.915796875 0.946247195

128 0.92960498 0.947014632

256 0.94155459 0.946710170

512 0.942451001 0.946454641

1024 0.944934351 0.946423120

2048 0. 946055675 0.946737844

4096 0.946134351 0.946954688

Table 2: True value of E[ψ(∞)] for different values of p, the

Environment effectiveness and different resolutions, N, when the value

of ψ* is 0.947 and a=0.05 in LA based solution to HSSL.

54

 In order to determine the convergence of E[ψ(n)] with time, “n”, in LA

based solution to HSSL, several experiments were executed in stationary

Environment where ψ*

is constant over time. For the sake of brevity, the

results of the four experiments are sketched in Figure 6. From the following

diagrams it is inferred that different values for p, the effectiveness of the

Environment, and N, the scheme resolution, will affect the scheme

convergence.

 In Figure 6, it is observed that the LA based solution to HSSL

converges to a value that is 98% of the optimal value ψ* and it takes 50

time instants to obtain the optimal action when the N=4096 (scheme

resolution) and p (the effectiveness of the Environment) is 0.93, while in the

case that N is 256 and p=0.93, the algorithm approaches 98% of the optimal

value of ψ* after 40 time instants. It can be seen from Figure 6, when the

resolution of the scheme, N, is increased and the effectiveness of the

Environment, p remains unchanged, then the required time instant for

finding the optimal action is also increased, e.g., when N=256 and p=0.82

the LA requires 80 time instants for finding the best value of ψ*, while in

another experiment when N=4096 and p=0.82 the LA needs 110 time

instants. However, by increasing the value of p, the required time instant for

finding the best value of ψ* is diminished when the scheme resolution

remains unchanged, e.g., when N=256 and p=0.82 the LA needs 80 time

instants and when N=256 and p=0.93 the LA needs 40 time instants. In

these four experiments the reward parameter of LA, a, was 0.05.

55

Figure 6: The plots show the convergence rate of E[ψ(n)] with time,

“n”, in LA based solution to HSSL for different values of p, the

Environment effectiveness and different values of the resolution

parameter N when ψ*=0.947 and the reward parameter of LA is 0.05.

 The result of another performed experiment for LA based solution to

HSSL is delineated in Figure 7 when N=4096 and p=0.93. In this

experiment for finding the best value of ψ*=0.947, different values for a,

reward parameter of LA, was tested.

56

Figure 7: The figure shows the convergence rate of E[ψ(n)] with time,

“n”, in LA based solution to HSSL for different values of a,

reward parameter of LA, when ψ*=0.947, N=4096, and p=0.93.

 From Figure 7, it is obvious that the convergence rate of the LA based

solution to HSSL is diminished by increasing the value of the reward

parameter of LA, a. Hence, in this research in order to achieve precise

results for our experiments of LA based solution to HSSL, the minimum

value of a, i.e., a=0.05 is considered.

57

5.2 Results from Multilevel Jumps Based Solution to

HSSL

In order to achieve a clear understanding as to how the Multilevel jumps

based solution to HSSL converges with time, various simulations were

executed to assess the performance of the algorithm under a variety of

constraints. As previously mentioned, Multilevel jumps based solution to

HSSL in this research was executed in a non-stationary Environment where

the value of ψ*

is changing over time, and therefore the problem becomes

more complex than in a stationary Environment.

 As mentioned in previous chapter, in Multilevel jumps based solution to

HSSL, for the nodes at depth D (leaf nodes), when D is an odd number the

LM is not able to move “Up” and is not able to escape from getting trapped

in a wrong sub tree, i.e., one that does not include ψ*. Therefore, in our

experiments, it has been tried to use an even number as the tree depth (D)

for obtaining more precise results.

 As in the first experiment, the true value of the E[ψ(∞)]

was tested by

using the original HSSL [36], LA based solution to HSSL and Multilevel

jumps based solution to HSSL after 10
6

iterations when the resolution was

equal to 4096 (i.e., the tree depth, D=12) and the unknown parameter ψ* =

0.947. In this case, p, the probability of the “Oracle” correctly supplying the

feedback was 0.93. The results are illustrated in Table 3. In this experiment,

for running the LA based solution to HSSL the reward parameter of LA, a,

was equal to 0.05.

 Here is a comparative brief overview of the results of the executed

experiment:

58

Scheme

Resolution

(N)

LA based

solution to HSSL

Multilevel jumps

based solution to

HSSL

Original

HSSL

64 0.946247195 0.94279687 0.94524748

128 0.947014632 0.941604981 0.94900677

256 0.946710170 0.945554593 0.946723564

512 0.946454641 0.945251001 0.946300683

1024 0.946423120 0.946134351 0.946163106

2048 0.946737844 0. 946335675 0.946507753

4096 0.946954688 0.946434351 0.946644342

Table 3: Compare the true value of E[ψ(∞)] by using

different variants of HSSL when the value of ψ* is 0.947 and p=0.93.

 It is obvious from Table 3 that using LA based solution to HSSL

approach yields a more accurate scheme, since it represents an error less

than 0.0004% when the scheme resolution is 4096 (i.e., the tree depth is

12). In addition, it is observed from Table 3 that the size of the binary tree

was proportional to the performance of HSSL. Meaning that as the scheme

resolution, N, (or tree depth, D) got bigger, the better hierarchical search

approaches performed, and vice versa. Therefore, the larger number of N

leads to more accurate convergence.

 We now present the outcomes of the experiments in which we have tried

to determine the convergence of E[ψ(n)] with time, “n” by using Multilevel

jumps in the original HSSL solution [36]. In this case, the unknown

parameter ψ* changes periodically between the values 0.947 and 1 − 0.947

means the Environment is non-stationary. From Figure 8, in the first 250

iterations, it can be found out that the Multilevel jumps based solution to

HSSL takes 70 time instants to converge to a value that is 93% of the

optimal value ψ* when the N=4096 (the scheme resolution) and p (the

effectiveness of the Environment) is 0.93, while in the case that N is 256

59

and p=0.93, the algorithm reaches 93% of optimal action after 65 time

instants. In order to clarify the effect of the convergence rate, like in Figure

6 in the previous section, Figure 8 is plotted for different values of N and p.

Figure 8: The plot shows the case when ψ* switches between the values

0.947 and 1-0.947 every 250
th

 iteration in Multilevel jumps based

solution to HSSL for different values of p, the Environment

effectiveness and different values of the resolution parameter N.

 From Figure 8, it can be seen that like Figure 6 when the resolution of

the scheme, N, is increased and the effectiveness of the Environment, p,

remains unchanged, then the required time instant for finding the optimal

action is also increased, e.g., when N=256 and p=0.82 the LM requires 85

time instants for finding the best value of ψ*, while in another experiment

when N=4096 and p=0.82 the LM takes 120 time instants. However, by

increasing the value of p, the required time instant for obtaining the best

60

value of ψ* is decreased when the scheme resolution remains unchanged,

e.g., when N=256 and p=0.82 the LM needs 85 time instants and when

N=256 and p=0.93 the LM needs 65 time instants.

 With the results shown in the Figure 8, it is observed that in each of the

four experiments the required time instant for finding the optimal action is

increased by using the Multilevel jumps based solution to HSSL compare to

the results achieved by LA based solution to HSSL shown in the Figure 6.

 In another experiment, the estimated value of ψ(n)

at time “n” was tested

by using the Multilevel jumps based solution to HSSL when the scheme

resolution, N, was equal to 64 (i.e., the tree depth, D=6) and the unknown

parameter ψ* = 0.947. In this case, p, the probability of the “Oracle”

correctly supplying the feedback was 0.75. The simulation result presented

in Table 4 obtained by running the learning scheme for 10
4
 iterations.

Although numerous iterations have been conducted, in the interest of

brevity the results achieved for the first 22 iterations is reported in Table 4.

Since there is no previous information about the value of ψ*, at time instant

0, the initial position of LM in the Multilevel jumps based solution to HSSL

technique is the root node (depth 0) of the binary tree, which is associated

with the interval [0,1) and therefore the current interval in Table 4 is also [0,

1). In this step, the estimated value for ψ* is the middle point of the interval

[0, 1). This interval is subdivided into two separate equi-sized parts and in

the next time instant, one of the parts is selected as the next interval, e.g.,

the right child of the root node is associated with [0.5,1) and the left child

with [0,0.5). The important issue that is addressed in Table 4 is that of

determining how to change the estimated value of the unknown ψ* based on

the erroneous suggestions (i.e., with p probability) of the Environment for

choosing right or left child of the node to obtain the best value of the

unknown parameter ψ*. By using the moving rules quoted in Table 1, our

scheme decides the next promising node in the tree (i.e., the node associated

61

with an interval that maybe include the unknown ψ*). Afterward, the LM

moves to the deeper or lower level of the tree. As it can be seen from Table

4 and Figure 5, the Multilevel jumps can be performed only at even levels

(d= {2,4,…, D-2}) of the tree, e.g., at time instant 4, the LM moves upwards

(a larger search interval) from level 4 to level 2 in order to escape from

getting trapped in a wrong sub tree, i.e., one that does not involve ψ*. In

this experiment, from depth 0 (root level) to depth 6 (maximum level), five

jumps are performed by the LM in order to obtain the unknown point.

Time

instant

(n)

Estimate

value for ψ*

Current interval The LM movements in

the binary tree

0 0.5 [0,1) The LM resides at depth 0

(at root level) (d=0)

1 0.6225 [0.5,1) The LM moves to level 1

(d=1)

2 0.68525 [0.5,0.75) The LM moves to level 2

3 0.66525 [0.625,0.75) The LM moves to level 3

4 0.6975 [0.625, 0.6875) Jump from level 4 to level 2

5 0.737 [0.5,0.75) Jump from level 2 to level 0

6 0.5 [0,1) The LM resides at depth 0

7 0.7085 [0.5,1) The LM moves to depth 1

8 0.791562 [0.75,1) The LM moves to depth 2

9 0.771562 [0.75, 0.875) The LM moves to depth 3

10 0.722531 [0.75, 0.8125) The LM moves to depth 4

11 0.7926562 [0.75, 0.78125) The LM moves to depth 5

12 0.827687 [0.75, 0.765625) Jump from level 6 to level 4

13 0.8487343 [0.75, 0.8125) Jump from level 4 to level 2

14 0.866625 [0.75,1) The LM resides at depth 2

15 0.874445312 [0.875,1) The LM moves to depth 3

16 0.902953123 [0.875, 0.9375) Jump from level 4 to level 2

17 0.911601562 [0.75,1) The LM resides at depth 2

18 0.920265625 [0.875,1) The LM moves to depth 3

19 0.9401875 [0.9375,1) The LM moves to depth 4

20 0.941320314 [0.9375, 0.96875) The LM moves to depth 5

21 0.942179687 [0.9375, 0.953125) The LM moves to depth 6

Table 4: The estimated value for ψ* at time, “n”, in Multi-level jumps

based solution to HSSL when the Environment effectiveness, p, is 0.75,

the resolution parameter, N, is 64, and ψ*=0.947.

62

 In Table 4 there exist different values for the current interval at the same

level of the tree, e.g., at time instants 11 the LM resides at depth 5 and

selects [0.75, 0.78125) as search interval, while for the time instant 20 it chooses

[0.9375, 0.96875) at tree depth 5. The reason for this is that for each estimate

the Environment informs the LM probably erroneously (i.e., with p

probability), which path it should move to obtain the unknown point and

therefore the LM moves to a different interval at the same depth.

 Another plot of the asymptotic value of E[ψ(∞)] as a function of p (the

effectiveness of the Environment) in LA based solution to HSSL, Multilevel

jumps based solution to HSSL and the original HSSL [36], is illustrated in

Figure 9. The Figure 9 delineates the accuracy rate of the three mentioned

algorithms when the scheme resolution is 4096 (i.e., the tree depth, D=12).

In the Figure 9, it is observed that the scheme obtains a higher accuracy by

using Reward-Inaction LA in HSSL to find the best value of the unknown

parameter, ψ*, since the LA converges to the interval containing the best

value of ψ*

and the reward probability for the chosen action is close to one.

In other words, LA based solution to HSSL converges to the optimal action

at target node and never comes to lower or deeper levels in the hierarchical

structure after convergence, while in Multilevel jumps approach and in the

original HSSL [36] the LM will probably move to lower or deeper levels

after obtaining the optimal action and therefore the scheme accuracy is

diminished and the running time is increased. The simulation result depicted

in Figure 9 was achieved by running the learning scheme for 10
6

iterations.

It should be mentioned that in Figure 9, all three algorithms were executed

in a stationary Environment and the reward parameter of LA, a, in LA based

solution to HSSL was 0.05. The experiment illustrates how E[ψ(∞)] will

change as the effectiveness of the Environment, p, modifies from p = 0.65

to p = 1.

63

Figure 9: Comparison of asymptotic value of E[ψ(∞)] with the

effectiveness of the Environment, p, for different variants of HSSL in a

stationary Environment when the value of ψ* is 0.947 and N=4096.

 Finally for the sake of determining the convergence rate of E[ψ(n)] with

time “n”, in LA based solution to HSSL, Multilevel jumps based solution to

HSSL and the original HSSL [36] another plot is depicted in Figure 10. In

this experiment the effectiveness of the stationary Environment, p, was 0.93

and the scheme resolution, N, was 4096 (tree depth, D, is equal to 12). Like

in the previous graph, the reward parameter of LA, a, was 0.05 and

ψ*=0.947.

64

Figure 10: Comparison of the E[ψ(n)] convergence rate with time, “n”,

for different variants of HSSL in a stationary Environment when the

value of ψ* is 0.947, N=4096 and p=0.93.

65

6 Discussion

By using LA based solution to HSSL and Multilevel jumps based solution to

HSSL algorithms in this research, rather interesting results for solving the

discrete stochastic optimization problem was achieved. Discretizing the

search space into a binary tree and executing a controlled random walk on

this search space was an efficient way to find the optimal action.

 The new LA based solution to HSSL excelled primarily in solving the

SPL problem. This observation is expected initially due to the Learning

Automata operation's unique mechanism of accurately finding the optimal

value of the unknown parameter, ψ*.

 Indeed, the LA based solution to HSSL is a clear winner over the two

other algorithms when it comes to convergence accuracy. While Multilevel

jumps based solution to HSSL and the original HSSL [36] approach the

optimal action with less precision, since the LM still can visit the rest of the

nodes in these algorithms after finding the optimal action. In other words,

the most significant feature of LA based solution to HSSL is that it can

converge to the optimal action at the target node, and never moves on to

another node.

 However, a drawback of LA based solution to HSSL is that LA is not

able to cope with a non-stationary Environment, while Multilevel jumps

based solution to HSSL and the original HSSL [36] are performed in non-

stationary Environment where ψ* is time varying.

 Multilevel jumps based solution to HSSL is a strategy which adopts

Multilevel jumps in the hierarchical structure of the search space. The

advantage of using Multilevel jumps in HSSL is that the problem becomes

less complex than the LA based solution to HSSL and the original HSSL

[36]. Since, in the Multilevel jumps alternative, for each estimate at odd

levels in the tree (d= {1,3,…, D-1}
12

), the LM queries from the midpoint

12

 - It is assumed that the tree depth D = log2(N) is an even number.

66

and the Environment essentially guides the mechanism with one response

rather than three feedbacks in the LA based solution to HSSL and the

original HSSL [36].

 However, using Multilevel jumps in HSSL solution leads to slower

convergence of the scheme. The reason for this is that the LM should move

up for two or more levels to find a larger search interval and start searching

from that level which is an even level (d= {2,4,…, D-2}
13

). Indeed, the LM

should jump to an even level, so an extra attempt must be done for moving

to the contiguous node at the same level of the tree when the target node is

not achieved.

 Generally, based on the obtained results in this investigation, the

conclusive answer to the question stated in the research questions section

(section 1.5), which was about whether the integrated methods, using LA

and Multilevel jumps in HSSL, make the stochastic point locating more

efficient or not is “Yes”. Besides, using LA based solution to HSSL for

solving SPL problem is definitely recommendable. The results from this

technique are truly near to the unknown parameter ψ* which indicates that

the algorithm is quite stable and the results are not widely spread around the

optimal point, but close to it.

13

 - It is assumed that the tree depth D = log2(N) is an even number.

67

7 Conclusion and Further Work

In this work, the problem was to solve the Stochastic Point Location (SPL)

problem by applying a hierarchical stochastic search technique - HSSL -

and combining the latter with two novel approaches - Learning Automata

and Multilevel Jumps. Afterward, investigating whether these combinations

provide better results in terms of solution accuracy and computational

efficiency while solving SPL. SPL is a Nondeterministic Polynomial time

complete (NP-complete) problem which LM attempts to learn a parameter

ψ* within a closed interval. In this research, for each estimate, the

Environment guided probably erroneously (i.e., with p likelihood) the LM,

which way it should select to attain the best value of the unknown

parameter ψ*. Hence, unlike the deterministic binary search, an interesting

case was examined where the feedback of the Environment was supposed to

be faulty.

 In both proposed solutions the search space was implemented in a

hierarchical construction like a binary tree and a controlled random walk

was performed on this search space. The introduced solutions have been

simulated, with interesting results.

 LA based solution to HSSL was investigated in this research as our first

novel alternative which converged almost certainly to the best value of the

unknown parameter ψ* in a stationary Environment. Indeed, LA based

solution to HSSL provided a more accurate convergence than the original

approach [36] for solving the discrete stochastic optimization. In this

technique, the Environment informed the LA with three responses, each

maybe erroneous with probability p.

 Our second new solution proposed in this investigation was Multilevel

jumps based solution to HSSL which was shown to supply a less complex

algorithm than the SPL solution introduced in [36] when tested in non-

stationary Environment where ψ* is changing over time. In this novel

68

approach, a LM at the even levels (d= {2, 4,…, D-2}
14

) in the tree structure

based search space, has three choices for moving down or up (i.e., “Right

Child”, “Left Child” or “Parent”). The main difference between Multilevel

jumps solution and the original HSSL in [36] is that the former allows

transitions across multiple levels, rather than only between consecutive

levels, hence the LM is able to move up for more than one level. The other

difference is that the scheme complexity diminishes by using Multilevel

jumps in the hierarchical search space. Therefore, at the odd levels (d=

{1,3,…, D-1}) in the hierarchical structure, LM asks one question from the

midpoint of the search interval in order to select either “Right Child” or

“Left Child” and therefore there exists only one feedback for LM from the

Environment.

 Finally, based on the results achieved, our hypothesis got significantly

strengthened; combining the LA operation and Multilevel jumps with

existing approach did indeed increase the efficiency of solving SPL

problem. As steps for further work, it is worth mentioning that combining

LA based solution to HSSL with Multilevel jumps in a non-stationary

Environment will show great promise in order to implement an accurate and

simple scheme for solving the SPL problem, and is definitely worth

investigating. Furthermore, it is recommended to research the use of the LA

based solution to HSSL and Multilevel jumps based solution to HSSL in

order to solve practical stochastic optimization problems.

14

 - It is assumed that the tree depth D = log2(N) is an even number.

69

Bibliography

[l] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines.

John Wiley & Sons, Inc., 1989.

[2] B. Hajek. A Tutorial Survey of Theory and Applications of Simulated

Annealing . In Proc. of the 24th CDC, Ft.Lauderdale, Florida, December

1985.

[3] D.J.C MacKay. Bayesian Model Comparison and Backprop Nets. In J.

E. Moody, S. J. Hanson, and R. P. Lippman editors, Advances in Neural

Information Processing Systems 4. Morgan kaufmann, April 1992.

[4] D. L. Isaacson and R. W. Madsen. Markov Chains: Thery and

Applications. John Wiley & Sons, Inc., 1976.

[5] D. Mitra, F. Romeo, and A. Sansiovanni Vincentelli. Convergence and

Finite-Time Behavior of Simulated Annealing. In Proc. of the 24th CDC ,

Ft.Lauderdale, Florida, December 1985.

[6] D. Yan and H. Mukai. Stochastic Discrete Optimization. SIAM Journal

on Control and Optimization, 30, May 1992.

[7] D. A. Cohn, Z.Ghahhramani, and M. I. Jordan. Active learning with

statistical models. In G. Tesauro, D. Touretzky, and T. Leen, editors,

Advances in Neural Information Processing Systems 7. MIT Press, 1995.

[8] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical

Pecipes in C. Cambridge University Press, 1992.

[9] http://stackoverflow.com/questions/700241/what-is-the-difference-

between-linear-search-and-binarysearch

[10] M. Livio. The Golden Ratio: The Story of Phi, the World’s Most

Astonishing Number.

[11] http://en.wikipedia.org/wiki/Global_optimization

[12] http://en.wikipedia.org/wiki/Annealing_(metallurgy)

[13] B. J. Oommen, S.W. Kim, M.T. Samuel, and O-C. Granmo, A solution

to the stochastic point location problem in metalevel nonstationary

Environments, IEEE Transactions on Systems, Man and Cybernetics, Part

B, 38(2):466 –476, April 2008.

http://en.wikipedia.org/wiki/Global_optimization
http://en.wikipedia.org/wiki/Annealing_(metallurgy)

70

[14] -, A learning automaton solution to the stochastic minimum spanning

circle problem, IEEE Trans. Syst. Man Cybem., pp. 598-603, July/August

1986.

[15] B. J. Oommen. Stochastic searching on the line and its applications to

parameter learning in nonlinear optimization, IEEE Transactions on

Systems, Man and Cybernetics, SMC-27B:733–739, 1997.

 [16] B. J. Oommen and G. Raghunath, Automata learning and intelligent

tertiary searching for stochastic point location, IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 28, no. 6, pp. 947–954, December 1998.

[17] B. J. Oommen, G. Raghunath, and B. Kuipers, Parameter learning

from stochastic teachers and stochastic compulsive liars, IEEE Trans.

Syst., Man, Cybern. B, Cybern., vol. 36, no. 4, pp. 820–836, August 2006.

[18] P. Lalbakhsh, B. Zaeri, A. Lalbakhsh, M. N. Fesharaki, AntNet with

Reward-Penalty Reinforcement Learning, IEEE Transactions on Systems,

Man, and Cybernetics, 978-0-7695-4158-7/10, 2010)

[19] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins, Searching

with uncertainty, In Proceedings of Scandinavian Workshop Algorithms

and Theory (SWAT), pages 176–189, Halmstad, Sweden, 1998.

[20] R. A. Baeza-Yates and R. Schott, Parallel searching in the plane,

Comput. Geom. Theory Appl., 5:143–154, October 1995.

[21] R. L. Kashyap and B. J. Oommen, Scale preserving smoothing of

polygons, IEEE Trans. Pattern Anal. Machine Intell. pp. 667–671,

November 1983.

[22] Y.-H. Pao, Adaptive Pattern Recognition and Neural Networks.

Reading, MA: Addison-Wesley, 1989.

[23] T. Pavlidis, Structural Pattern Recognition. New York: Springer-

Verlag, 1977.

[24] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,

Numerical Recipes: The Art of Scientific Computing. Cambridge,

U.K.:Cambridge Univ. Press, 1986.

[25] S. S. Rao, Optimization: Theory and Applications, 2nd ed. New

Delhi,India: Wiley, 1984.

[26] P. D. Wasserman, Neural Computing: Theory and Practice. New

York: Van Nostrand Reinhold, 1989.

71

[27] J. K. Lanctˆot and B. J. Oommen, Discretized estimator learning

automata, IEEE Trans. Syst., Man, Cybern., vol. 22, pp. 1473–1483,

Nov./December 1992.

[28] K. S. Narendra and M. A. L. Thathachar, Learning Automata.

Englewood Cliffs, NJ: Prentice-Hall, 1989.

[29] M. A. L. Thathachar and B. J. Oommen. Discretized reward-inaction

learning automata, Journal of Cybernetics and Information Science, pages

24–29, Spring 1979.

[30] B.J. Oommen and M. Agache. Continuous and discretized pursuit

learning schemes: various algorithms and their comparison, IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

31(3):277 –287, June 2001.

[31] B. J. Oommen and J. K. Lanctˆot. Discretized pursuit learning

automata, IEEE Transactions on Systems, Man, and Cybernetics, SMC-

20(4):931–938, July/August 1990.

[32] B. J. Oommen and E. Hansen. The asymptotic optimality of discretized

linear reward-inaction learning automata, IEEE Transactions on Systems,

Man, and Cybernetics, SMC-14(3), May/June 1986.

[33] M. Agache and B. J. Oommen. Generalized pursuit learning schemes:

New families of continuous and discretized learning automata, IEEE

Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,

32(6):738–749, December 2002.

[34] O-C. Granmo and B. J. Oommen, Solving stochastic nonlinear

resource allocation problemsusing a hierarchy of twofold resource

allocation automata, IEEE Transactions on Computers, 59:545–560, 2009.

[35] B. J. Oommen, Absorbing and Ergodic Discretized Two-Action

Learning Automata, IEEE Transactions on Systems, Man, and Cybernetics,

VOL. SMC-16, NO. 2, March/April 1986

[36] A. Yazidi, O- C. Granmo, B. J. Oommen, and M. Goodwin, A

Hierarchical Learning Scheme for Solving the Stochastic Point Location

Problem. To Appear in Proceedings of the 25
th

 International Conference on

Industrial, Engineering and Other Applications of Applied Intelligence

Systems (IEA-AIE 2012), Springer, Dalian, China, June 2012.

http://www.tandfonline.com/doi/abs/10.1080/19331681.2010.508011#preview
http://www.tandfonline.com/doi/abs/10.1080/19331681.2010.508011#preview
http://www.tandfonline.com/doi/abs/10.1080/19331681.2010.508011#preview

72

[37] M. Barzohar and D. B. Cooper, Automatic finding of main roads in

aerial images by using geometric-stochastic models and estimation, IEEE

Trans. Pattern Anal. Mach. Intell., vol. 18, no. 7, pp. 707–722, July 1996.

[38] D. J. Bertsimas and G. Van Ryzin, Stochastic and dynamic vehicle

routing in the Euclidean plane with multiple capacitated vehicles,

Oper.Res., vol. 41, no. 1, pp. 60–76, January/February 1993.

[39] M. L. Brandeau and S. S. Chiu, An overview of representative

problems in location research, Manage. Sci., vol. 35, no. 6, pp. 645–674,

June 1989.

[40] J. J. Collins, C. C. Chow, and T. T. Imhoff, Aperiodic stochastic

resonance in excitable systems, Phys. Rev. E, Stat. Phys. Plasmas Fluids

Relat. Interdiscip. Top., vol. 52, no. 4, pp. R3 321–R3 324, October 1995.

[41] R. L. Cook, Stochastic sampling in computer graphics, ACM Trans.

Graph., vol. 5, no. 1, pp. 51–72, Jane 1986.

[42] S. Lakshmivarahan, Learning Algorithms Theory and Applications,

Springer-Verlag, New York, 1981.

[43] K. Najimand A. S. Poznyak, Learning Automata: Theory and

Applications, Pergamon Press, Oxford, 1994.

[44] Kumpati S. Narendra and Mandayam A. L. Thathachar, Learning

Automata: An Introduction, Prentice-Hall, Inc., 1989.

[45] M.S. Obaidat, G.I. Papadimitriou, and A.S. Pomportsis, Guest editorial

learning automata: theory, paradigms, and applications, IEEE Transactions

on Systems, Man, and Cybernetics, Part B: Cybernetics, 32(6):706 – 709,

December 2002.

[46] A. S. Poznyak and K. Najim, Learning Automata and Stochastic

Optimization, Springer-Verlag, Berlin, 1997.

[47] M. A. L. Thathachar and P. S. Sastry, Networks of Learning Automata:

Techniques for Online Stochastic Optimization, Kluwer Acadmic

Publishers, Boston, MA, 2004.

[48] Ronald J. Williams, Simple statistical gradient-following algorithms

for connectionist reinforcement Learning, Machine Learning, 8:229–256,

1992.

[49] Jon Louis Bentley and Andrew Chi-Chih Yao, An Almost Optimal

Algorithm for Unbounded Searching, Inform. Proc. Lett., 5:82–87, 1976.

73

[50] T. Bradland and T. Norheim, Empirical evaluation of the bayesian

learning automaton family, 2009.

[51] http://en.wikipedia.org/wiki/Discrete_optimization

[52] S. Andradottir, A Method for Discrete Stochastic Optimization,

Management Science/Vol. 41, No. 12, December 1995.

[53] W. Gong, Y. Ho, W. Zhai, Stochastic Comparison Algorithm for

Discrete Optimization With Estimation, IEEE Transactions on Systems,

Man, and Cybernetics, CH3229-2/92/0000-0795, December 1992.

[54] O-C. Granmo, Learning Problem Part II: Learning Automata,

University of Agder IKT507 Lecture, 2010.

[55] http://en.wikipedia.org/wiki/Automaton#cite_note-0

[56] http://en.wikipedia.org/wiki/NP-complete

[57] B. J. Oommen, J. P. R. Christensen, ɛ-Optimal Discretized Linear

Reward-Penalty Learning Automata, IEEE Transactions on Systems, Man,

and Cybernetics, VOL. 18, NO. 3, May/June 1988.

[58] http://en.wikipedia.org/wiki/NP_(complexity)

[59]

http://wiki.answers.com/Q/What_are_the_differences_between_linear_searc

h_and_binary_search

http://en.wikipedia.org/wiki/Discrete_optimization
http://en.wikipedia.org/wiki/Automaton#cite_note-0
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP_(complexity)

74

 Appendix

Linear Search

A linear search algorithm is performed by considering each element in an

array of data without jumping, and it continues its considering until finding

the target node or obtaining the end of array. The time complexity of linear

search is O(n) on a given array.

Binary Search

A binary search (hierarchical search) algorithm is performed in a sorted data

set and it is started with the middle element of the data set, so the sorted

data set is essential in binary search. Afterward, it considers whether that an

element is bigger than or less than the target node, which indicates whether

the element is in the first or second half of the array. It jumps to the half

way of the sub array and repeats comparing. By using binary search

algorithm just the left part of the elements is considered. Therefore, each

time the algorithm searches for the target and misses, then half of the

remaining elements are eliminated. O(log n) is the time complexity of this

algorithm which is determines binary search is an efficient method since the

number of search operations grows more slowly than the linear search.

Halving the search space with each operation is the main reason for the

binary search time complexity.

75

The differences between the linear and binary search are listed as follows:

 Sorted input data is required for the binary search; while for linear

search simple input data.

 An ordering comparison is required in binary search; while in linear

search, just equality comparison is needed.

 The complexity of binary search is O(log n); but for linear search, it

is O(n).

 Random access to the data is required in binary search; while

sequential access is needed in linear search.

