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Abstract

This paper concerns the problem of enhancing the well-known alpha-beta search technique for intelli-

gent game playing. It is a well-established principle that the alpha-beta technique benefits greatly, that is

to say, achieves more efficient tree pruning, if the moves to be examined are ordered properly. This refers

to placing the best moves in such a way that they are searched first. However, if the superior moves were

known a priori, there would be no need to search at all. Many move ordering heuristics, such as the Killer

Moves technique and the History Heuristic, have been developed in an attempt to address this problem.

Formerly unrelated to game playing, the field of Adaptive Data Structures (ADSs) is concerned with the

optimization of queries over time within a data structure, and provides techniques to achieve this through

dynamic reordering of its internal elements, in response to queries. In earlier works, we had proposed

the Threat-ADS heuristic for multi-player games, based on the concept of employing efficient ranking

mechanisms provided by ADSs in the context of game playing. Based on its previous success, in this

work we propose the concept of using an ADS to order moves themselves, rather than opponents. We call

this new technique the History-ADS heuristic. We examine the History-ADS heuristic in both two-player

and multi-player environments, and investigate its possible refinements. These involve providing a bound

on the size of the ADS, based on the hypothesis that it can retain most of its benefits with a smaller

list, and examining the possibility of using a different ADS for each level of the tree. We demonstrate

conclusively that the History-ADS heuristic can produce drastic improvements in tree pruning in both

two-player and multi-player games, and the majority of its benefits remain even when it is limited to a

very small list.

Keywords: Alpha-Beta Search, Adaptive Data Structures, Move Ordering, History Heuristic, Killer

Moves

1 Introduction

The problem of achieving robust game play, in a strategic board game such as Chess or Go, against an

intelligent opponent is a canonical one within the field of Artifical Intelligence (AI), and has seen a great deal
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of research throughout the history of the field [20, 25]. A substantial portion of the vast body of literature

present in this field is based on the highly effective alpha-beta search technique, which provides an efficient

way to intelligently search a potentially very large number of moves ahead in a game tree, while pruning large

sections of the tree which have been found to be irrelevant [7, 20]. Using this technique, great strides have

been made over the years in competitively playing many strategic board games at the level of top human

players.

It is well known that the performance of the alpha-beta search is greatly impacted by a proper move

ordering. This involves arranging possible moves so that the best move is likely to be searched first. Based

on this knowledge, a substantial body of literature exists that spans a wide variety of move ordering heuris-

tics that attempt to achieve this [7, 17, 23]. Examples of these techniques include the well-known Killer

Moves strategy, and the History Heuristic, which serve as domain-independent approaches, that operate by

remembering those moves that have performed well earlier in the search, and prioritizing them later [23].

The formerly unrelated field of Adaptive Data Structures (ADSs) is concerned with the problem of query

optimization within a data structure, based on the knowledge that not all elements are accessed with the

same frequency [3, 5, 6]. This problem is addressed through dynamic reorganization of the data structure’s

internal order, in an attempt to place elements accessed with a higher frequency nearer to the head of the

list [1]. This reordering is accomplished in response to queries as they are received, and the field of ADSs

proposes a number of possible mechanisms by which a data structure can be reordered in response to the

queries, such as the Move-to-Front or Transposition rules for adaptive lists [1, 5, 6].

Observing that there is an intuitive link between the dynamic reordering of elements of an ADS in response

to queries, and move ordering strategies in games, we had previously proposed the Threat-ADS heuristic, for

multi-player games, which employs an adaptive list to rank opponents based on their relative threats [12].

The specific case of multi-player game playing is relatively unexplored in the literature dealing with intelligent

game playing, and poses a number of unique challenges, which prevent existing multi-player techniques from

achieving a performance comparable to their two-player counterparts [9, 22, 28, 29, 30]. The Threat-ADS

was shown to be able to achieve statistically significant gains in terms of tree pruning, in a wide range of

configurations, by considering different ADS update mechanisms and starting positions of the game [13, 15].

Based on the success of the Threat-ADS heuristic in the multi-player domain, we hypothesize that ADS-

based ranking may be applied in other areas in the context of game playing. Specifically, based on the Killer

Moves and History Heuristic techniques, we propose a related move ordering heuristic, which we refer to

as the History-ADS heuristic, which uses the qualities of an ADS to rank individual moves, augmenting

their position in the ADS when the move is found to produce a cut. In this work, we show that, while

using lightweight, efficient ranking techniques associated with an ADS, the History-ADS is able to obtain

substantial gains in tree pruning in both the two-player and multi-player cases, in a variety of games.

Preliminary results related to this work were presented in [14] and [16]. The remainder of the paper is

laid out as follows. Section 2 presents a background on game playing, and a fairly brief description of the

Killer Moves and History Heuristic techniques. Section 3 introduces the field of ADSs, and the techniques

from that field that we employ in this work. Section 4 details our previous work, the Threat-ADS heuristic,

based on which we describe the novel History-ADS heuristic. Section 6 describes possible refinements to the

History-ADS. Section 7 describes our experimental configuration and game models, and Sections 8, 9, 10
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and 11 present our results. Section 12 provides our discussion and analysis of these results, and Section 13

concludes the paper.

2 Game Playing Background

Historically, the primary technique for achieving competent game play against an adversarial opponent has

been based on the Minimax strategy, which has been successfully applied to the problem of intelligent game

playing from the theoretical roots of the discipline, to the modern era [10, 20, 25]. The Minimax strategy, as

its name implies, attempts to maximize the perspective player’s possible gain, when considering each possible

move or action he could take, while assuming that the opponent does the opposite, or attempts to minimize

the perspective player’s returns.

When applied to a two-player, turn-based board game, such as Chess, the Minimax technique achieves

intelligent and informed game play by searching a number of moves ahead in the game tree that represents

all possible paths of moves in the game, or to a given depth, usually referred to as a ply [20]. The game tree is

explored in a depth-first manner, until the desired ply is reached, at which point the game state is evaluated

according to some form of refined heuristic, assigning a value to the position for the max, or perspective,

player [20]. These values are then passed upwards through the tree, assuming that in positions where the

perspective player is making a move, the maximum of these values will be selected, and the minimum will

be chosen when the opponent can make a decision. In normal games, these options generally alternate with

each level of the tree. Upon completion of the search, the root of the tree, representing the current turn, is

assigned a value. This represents our best estimation, according to our available search depth and heuristic,

of the best possible move available to the perspective player. A simple example of a game tree explored

according to the Minimax strategy is presented in Figure 1.
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Figure 1: A simple example of a game tree explored according to the Minimax strategy. The red nodes
represent the perspective or max player, and blue nodes represent the opponent, or min player.

From the above explanation, one can intuitively see that the strength of the Minimax technique is depen-

dent upon two major factors. The first of these is the strength of the evaluation heuristic employed in leaf

positions, as a weak heuristic will necessarily lead to an ill-informed understanding of the game state, while

the use of highly refined heuristics employing expert knowledge is a standard method of insuring the strong

performance of a game engine [10, 20, 22]. The other factor is the maximum possible ply depth that the

engine can search to, since the ability to search deeper represents a higher degree of lookahead in the game.

This allows for the formulation of more complex strategies, and takes care of avoiding possible pitfalls or

traps set by the opponent. Maximum achievable search can be increased, as expected, through improvements

to available hardware, or refinements to the Minimax technique.

Over the course of its history, a number of refinements, modifications, and improvements to the Minimax

algorithm have been proposed, including techniques to improve gameplay logic, such as quiescence search, and

extensions of the Minimax technique to environments other than those that involve perfect information for

two player strategic games, such as multi-player environments, and games of incomplete information [20, 28].

However, a major focal point of improvements to the Minimax technique is in achieving a greater lookahead,

via a more efficient search, including arguably the most well-known enhancement, alpha-beta pruning.

The well-known alpha-beta search (which refers to a Minimax search employing alpha-beta pruning) is

based upon the observation that not all moves available at different levels of the game tree will impact the

its value. Some of them are so poor that they will never be reasonably selected, while others are so strong

that the opponent will never allow a situation where they can come to pass [7]. Furthermore, it is possible,

through the construction of upper and lower bounds on the possible values at a given node, commonly called

the alpha and beta values, to prove that a given node can never impact the value of the tree, and thus, its
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children no longer need to be searched [7]. Given that there may be many possible descendants of this pruned

node, huge sections of the search tree can be eliminated, greatly increasing efficiency, and the possible ply

depth that can be searched with a specific set of resources can be increased. Due to its well-known nature,

we will not discuss here the technicalities of the alpha-beta search in any greater detail.

It is well-known that the performance of alpha-beta search can be substantially improved by correct move

ordering, that is, by involving methods by which the best possible move is searched first, leading to stricter

bounds being constructed, and thus, more efficient pruning [20, 23, 28]. However, without perfect information

about the game tree, it is intuitively impossible to know, with certainty, the identity of the superior moves.

Thus, a wide range of move ordering heuristics have been proposed over the years. Some of these employ

expert knowledge of the game to insure that strategically good moves are examined first. Others are domain

independent strategies that apply to a wider range of strategic board games [10, 22, 23, 24]. Two well-known

examples of these, upon which the present work is based, are described in detail in the following section.

2.1 The History Heuristic and Killer Moves

The number of techniques available to achieve efficient move ordering in a game playing engine is exhaustive,

and to fully detail every one available in the literature would be outside the scope of this work. In this work,

we specifically consider two well-known, commonly-used move ordering heuristics, which are the Killer Moves

heuristic, and the History heuristic [23]. These techniques are related, in that both attempt to remember

effective moves encountered (“effective” being defined as those likely to produce a cut, resulting in a smaller

tree), and to explore them first if they are encountered elsewhere in the tree. Indeed, the History heuristic is

regarded as a generalization of the Killer Moves heuristic, from a local to a global environment, within the

tree [23]. However, both are still commonly employed in modern game engines [10, 22, 23].

The Killer Moves heuristic (also sometimes called the Killer heuristic) operates by prioritizing moves that

were found to be good (that is, that produced a cut) in sibling nodes. For example, in the case of Chess, if

it was found at some level of the game tree that White moving a bishop from C1 to A3 produced a cut, and

that same move is encountered in another branch at the same level of the tree, it will be examined before

other moves [23]. The heuristic is based on the assumption that each move does not change the board state

that much. Therefore, if a move produced a cut in another position, it is likely to do well elsewhere, even if

the preceding moves are different. Of course, this means that the Killer Moves heuristic can potentially be

less effective in games where single moves do in fact produce large changes within the game.

The Killer Moves heuristic accomplishes this prioritization by maintaining a table in memory that is

indexed by the depth. Within each memory location, a small number of “killer” moves are maintained

(usually two), in a linked list or similar data structure [23]. If a new move produces a cut at a level of the

tree where the list is full, older moves are replaced according to some arbitrary replacement scheme. When

new moves are encountered, the “killer” moves in the table at the current depth are analyzed first, if they

are applicable. Note that, as the algorithm can check if the killer moves are available when expanding a

new node, and examine them immediately, the Killer Moves heuristic does not require the nodes to first be

sorted. In fact additional time can be saved by not even generating the remaining moves if one of the killer

moves produces a cut.

The History Heuristic is an attempt to apply the Killer Moves heuristic on a global scale, allowing moves
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from other levels in the tree to influence decisions. While a simplistic approach would be to maintain only

a single list of “killer” moves and to apply it at all levels of the tree, this would allow moves that produce

cuts near the leaves (as there will be many more of them, due to the explosive nature of the game tree), to

have a disproportionate effect on the moves within the list [23]. The history heuristic therefore employs a

mechanism by which cuts produced higher in the game tree have a greater impact on deciding which move

to analyze first.

This is accomplished by maintaining a large array, usually of three dimensions, where the first index is 0,

for the maximizing player, and 1, for the minimizing player. The next two indices indicate a move in some

way. For example, in the case of Chess, the array is normally indexed by [from][to] where each of [from] and

[to] are one of the 64 squares on the board. Within each of these cells is a counter, which is incremented when

the corresponding move is found to produce a cut [23]. This counter is incremented by the value depth∗depth,

or 2depth, thereby insuring the value increases more if the cut is higher in the tree [23]. When moves are

generated, they are ordered by their value in this array, from greatest to least. In this way, moves that have

produced a cut more often, and moves that produced cuts higher in the tree, are examined first.

The History heuristic is noted as a particularly effective and efficient move ordering technique [23]. How-

ever, it does have some drawbacks. The array of counters it must store is relatively large, although not a

practical concern for modern computers, being two 64-by-64 arrays in the case of Chess. More importantly,

unlike the Killer Moves heuristic, moves cannot be generated from the History heuristic; they must be sorted,

adding non-linear time at every node in the tree. Thus, it is desirable to look at other heuristics if they are

capable of cutting branches of the tree without adding this sorting time. Furthermore, in very deep trees, the

History heuristic is known to become less effective, to the point where some modern Chess-playing programs,

in particular, either do not use it or limit its application [24].

3 Adaptive Data Structures

It is a well-known problem, in the field of data structures, that the access frequencies of elements within

a data structure are not uniform [5, 6]. As an illustrating example, consider a linked list consisting of five

elements, A,B,C,D, and E, in that order, where the corresponding access probabilities are 20%, 5%, 10%,

40% and 25%. Using a traditional singly-linked list, these access probabilities pose a problem, as the two

elements accessed the most frequently, D and E, are located at the rear of the list, thus requiring a longer

access time. We can intuitively see that another linked list, holding the same five elements, in the order

D,E,A,C,B will achieve faster average performance. Thus, by restructuring the list, one can obtain an

improved functionality for the data structure.

In the trivial example above, the reorganization is obvious, as the access probabilities are assumed to be

known and stationary. However, in the real world, the access probabilities are, as one would expect, not

known when the structure is first created. The field of ADSs concerns itself with finding good resolutions

to this problem [1, 3, 5, 6]. As the access probabilities are not known, the data structure must learn them

as queries proceed, and adapt to this changing information by altering its internal structure to better serve

future queries [5]. Individual types of ADSs provide different methods to achieve this sort of behaviour for

the specific data structure. An ADS may be of any type, typically a list or tree, with the well-known Splay

Tree being an example of the second type [1, 11]. However, in this work, we will be focusing exclusively on
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adaptive lists.

The method by which an ADS reorganizes its internal structure, in response to queries over time, must

logically possess several qualities in order to be useful. Specifically, as the goal of an ADS is to improve the

amortized runtime, by allowing more frequently accessed elements to be queried faster, the mechanism by

which it reorders itself must itself be very efficient, or time lost on its execution would render benefits to

query time irrelevant. Thus, methods developed in the fields of ADSs are typically simple, constant-time

operations that do not require many memory accesses, comparison, or the use of counters.

In our previous work, we observed that the specific qualities of ADSs enable an ADS to be used as a

highly efficient, dynamic ranking mechanism for other domains in game playing, provided two requirements

can be met. The first is that the objects that we wish to rank can be represented in some way by the elements

of the data structure, where the internal structure of the ADS can be seen to reflect their relative ranking.

The second is that some method needs to exist to query the ADS when one of the ranked elements should

be moved closer to the top position.

Given the wide range of potential objects that can be ranked within the domain of game playing, especially

in the context of move ordering, we previously proposed that techniques from ADSs could be applied as an

improving agent in the formerly-unrelated domain of game playing. This innovation led to the development

of the Threat-ADS heuristic for multi-player games, where an ADS was employed to rank opponents, and this

information was used to achieve move ordering in a state-of-the-art, multi-player technique. The Threat-ADS

heuristic is described in more detail below.

3.1 ADS Update Mechanisms

The field of ADSs provides a wide range of techniques by which an ADS can reorganize its internal structure.

We shall refer to these as update mechanisms. As alluded to in the previous section, these techniques tend

to be very efficient, with a few constant-time operations, generally consisting of swapping the locations of a

small number of elements in the list. In our previous work, we examined a wide range of known, ergodic, ADS

update mechanisms, and found that they performed roughly equally well when applied to move ordering [13].

We have thus, to avoid repetition, restricted our analysis in this work to two very well known and frequently

contrasted ADS update mechanisms, i.e., the Move-to-Front and Transposition rules.

Move-to-Front: The Move-to-Front update rule is one of the oldest and most well-studied update

mechanisms in the field of ADSs [1, 5, 19, 26]. Not coincidentally, it is also one of the most intuitive. As

its name suggests, when an element is accessed by a query, in a singly-linked list, it is moved to the head,

or front, of the list. Thus, if an element is accessed with a very high frequency, it will tend to stay near the

front of the list, and therefore will be less expensive to access. It is also intuitive to see that, for a list where

elements have O(1) pointers to the next element, performing the action of moving an element to the front of

the list is also O(1), thus making the update mechanism very inexpensive to implement.

Given that elements are always moved to the front of the list when using the Move-to-Front rule, the

list changes quite dramatically in response to each query, and this can cause it to generate more expensive

queries compared to its competitors in many circumstances [19]. However, unlike its competitors, the Move-

to-Front update mechanism provides the valuable property of a lower bound on cost in relation to the optimal

ordering. It has been shown that the Move-to-Front update mechanism will provide a system that costs no
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more than twice that of the optimal ordering[1, 5]. This guarantee insures the Move-to-Front rule remains

attractive, even when compared to competing update mechanisms, which can often outperform it.

Transposition: The most common competitor to the Move-to-Front rule, also studied extensively in the

ADS literature, is the Transposition rule [1, 4, 5]. It is no more difficult to implement or understand than

the Move-to-Front rule, and, like its chief competitor, offers a powerful performance gain with interesting

properties. When an element is accessed, under the Transposition rule, it is swapped with the element

immediately ahead of it in the list. Thus, as an element is accessed more and more frequently, it will slowly

approach the head of the list, contrasted with Move-to-Front, where it is immediately placed there.

As can be deduced from its behaviour, the Transposition rule is less sensitive to change than the Move-

to-Front rule, which, depending on the problem domain, can be a good or bad thing [1]. Under many

circumstances, the Transposition rule will be much closer to the optimal rule than the Move-to-Front rule

over a long period of time [4, 19]. Unfortunately, the Transposition rule does not offer any lower bound on

cost in relation to the optimal ordering, and arguments have been made for either it or the Move-to-Front

rule in different domains, leading to a historical lack of consensus in the field [1, 4, 26]. It is thus natural,

when exploring a new domain of applicability with ADSs, to examine these two contrasting rules.

4 Previous Work: The Threat-ADS Heuristic

Our previous work focused exclusively on the domain of Multi-Player Game Playing (MPGP), which is

a variant on traditional two-player game playing, where the number of opponents is greater than unity.

Although multi-player games can be thought of as a generalization of the two-player environment to an N -

player case, the majority of research has continued to focus on two-player games, with a substantially lesser

focus on MPGP being present in the literature [9, 22, 27, 28, 31]. However, through the addition of multiple

self-interested agents, such games present a number of complications and challenges that are not present in

traditional two-player game playing. These include:

• One player’s gain does not necessarily generate an equal loss amongst all opponents.

• Temporary coalitions of players can arise, even in games with only a solitary winner.

• The board state can change more between each of the perspective player’s moves.

• A single-valued heuristic is not always sufficient to correctly evaluate the game state.

• Established, highly-efficient tree pruning techniques, such as alpha-beta pruning, are not always appli-

cable.

Despite these challenges, due to the historical success of Mini-Max with alpha-beta pruning, in a wide

range of environments, the majority of MPGP strategies have been based on its extensions to a multi-player

environment [9, 22, 27, 28]. These include the Paranoid and Max-N algorithms, which operate by assuming a

coalition of opponents against the perspective player, and by extending the heuristic to a tuple of values, one

for each player, and where one assumes that each agent seeks to maximize his own value [28]. The details of

these algorithms are omitted here in the interest of brevity and relevance.
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In recent years, a novel MPGP technique, named the Best-Reply Search (BRS), has been proposed, which

is capable of achieving substantially stronger performance than either the long-standing Paranoid or Max-N

algorithms in a wide variety of environments [22]. Given its state-of-the-art nature, our previously proposed

technique, the Threat-ADS heuristic, was designed with it in mind. The BRS, and the Threat-ADS heuristic,

are detailed in following sections, as the Threat-ADS forms the basis of the new work that we present here.

4.1 Best-Reply Search

The BRS attempts to simplify the problem of a multi-player game back to a two-player game, to take

advantage of the breadth of techniques available in the two-player context, and avoid the extremely large

search space the Paranoid andMax-N algorithms must consider [22]. It achieves this by grouping all opponents

together, and considering them to be a single,“super-opponent”. During each Min phase of the tree, this

“super-opponent” is only allowed to make a single move, or, in other words, only one opponent is permitted

to act. This opponent is the one who has the most minimizing move, in relation to the perspective player,

at this point in time, or the “Best Reply”. Figure 2 shows a single level of a BRS tree (only a single level is

shown for space considerations, as the branching factor is considerably higher for opponent turns in BRS),

where the minimum of all opponent turns is being selected.

Figure 2: The operation of a single level of the Best-Reply Search. The scores that are reported have the
opponent’s player number listed next to them (in parenthesis) to assist in the clarification.

The immediate, glaring drawback of the BRS algorithm is that it considers illegal move states while

searching. This is certainly a serious drawback, and in fact, limits the games to which BRS can be applied

[22]. BRS can only be applied to those games where it is meaningful for players to act out of turn, and

performs best when the board state does not change too dramatically in between turns [22]. An example of

a game to which BRS can not by applied is Bridge, because scoring in Bridge is based on tricks, and thus,

allowing players to act out of order renders the game tree to be void of meaning. In a game where the game

state changes significantly between turns, there is a serious risk of the BRS arriving at a model of the game

which is significantly different from reality.

However, in cases where it can be applied, the BRS has many benefits over the Paranoid and Max-N
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algorithms, and often outperforms them quite dramatically [22]. By considering the multi-player game as

if there were two players, issues related to pruning and potential lookahead for the perspective player are

mitigated, which can lead to much better game play in certain games where the game state does not change

much during each turn, such as Chinese Checkers, but where many opponents may be present [22].

4.2 The Threat-ADS Heuristic

A factor that is present in multi-player games, but which has no equivalent in the two-player case, is that of

relative opponent threat, which we define as a ranking of opponents based on their potential to minimize the

perspective player, either based on their current board position, or some knowledge we have gained about

their skill. The idea of of considering opponent threat, both to model and predict their future actions, as well

as to prioritize opponents, is a known concept within extant multi-player game playing literature [29, 30, 32].

As the BRS groups all opponents together, and must consider all possible moves they could make to find

the best one, it presents an opportunity where a ranking of opponents based on their relative threats can be

applied to move ordering. This is precisely how the Threat-ADS functions, employing an ADS to enable this

ranking to take place.

Considering the execution of the BRS, we observe that, at each “Min” phase, the BRS determines which

opponent has the most minimizing move. The phenomenon of having the most minimizing move against the

perspective player, and also being characterized by possessing the relatively highest threat level against that

player, are conceptually and intuitively linked. With that in mind, we query an ADS, which contains the

identities of each opponent, with the identity of the opponent that is seen to possess the most minimizing

move during a Min phase. This has the effect of advancing his position in the relative threat ranking, and

allowing the ADS to “learn” a complete ranking over time.

With this ranking provided, we employ it by exploring the relevant moves, at each Min phase, in order

from the most to least threatening opponent. As a threatening opponent is more likely to provide the greatest

minimization to the perspective player, this improves move ordering, and thus the savings from alpha-beta

pruning. We clarify this by means of an example in Figure 3. This figure shows how the ADS updates,

based on which opponent was found to have the most minimizing move, at a certain level of the tree. Here,

opponent “P4” has the most minimizing move, and thus the ADS is updated by moving him to the head of

the list.
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Figure 3: A demonstration of how the Threat-ADS heuristic operates over time.

We observe that the Threat-ADS heuristic is particularly lightweight, requiring only efficient, constant-

time updates, and retains a list of a size equal to the number of opponents, which is likely to be a very

small constant (typically no more then seven). Furthermore, the Threat-ADS heuristic has the quality of not

requiring the moves to be sorted, similar to Killer Moves, as they may simply be generated in the order of

the ADS. In our previous work, we demonstrated that the Threat-ADS heuristic was capable of producing

meaningful, statistically significant gains in terms of tree pruning in a variety of multi-player games, and

employing a range of update mechanisms, at different points in time within the game’s progression, and for

a variety of opponents [12, 13, 15].

5 The History-ADS Technique

As mentioned earlier, the novel technique we propose in this work is inspired by our previous Threat-ADS

heuristic, and by the well-known Killer Moves and History Heuristic move ordering strategies. Specifically,

we wish to employ the same metric for achieving move ordering that the established techniques employ, that

of move history. Thus, we intend to create a ranking of moves based upon their previous performance within

the search, or more specifically, by providing a higher ranking to those that have produced cuts previously.

We then prioritize those moves which possess a higher rank when they are encountered later in the search,

with the expectation that those that have produced a cut before will be more likely to do so again, leading

to improvements in the efficiency of the alpha-beta search technique. As with the Threat-ADS heuristic, we
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wish to accomplish this ranking by means of an ADS, given that ADSs provide efficient and dynamic ranking

mechanisms.

Rather than utilizing an ADS whose elements are opponents, as in the case of the Threat-ADS, we,

instead, employ an ADS containing moves. However, unlike the case with the Threat-ADS, we begin with

an empty adaptive list. When a move is found to produce a cut, we query the ADS with the identity of that

move. To illustrate this, in the case of Chess, we would query it with the co-ordinates of the square that the

piece originated from, and the co-ordinates of its destination, as one does in invoking the History heuristic.

If the ADS already contains the move’s identity, its position within the ADS is changed according to the

ADSs’ update mechanisms. If it is not within the ADS, it is instead appended to the end, and immediately

moved as if it were queried.

An example of how the ADS can manage move history over the course of the game is depicted in Figure

4, which showcases its learning process and application over a fragment of the search.

Figure 4: A demonstration of how an ADS can be used to manage move history over time. The move (7,8)
to (8,8) produces a cut, and so it is moved to the head of the list, and informs the search later.

5.1 Specification of the History-ADS Heuristic

The precise execution of the History-ADS heuristic is very similar to that of our previously-introduced Threat-

ADS heuristic. First of all, we must understand how to update the ADS at an appropriate time, i.e., through

querying it with the identity of a move that has performed a cut. This is analogous to querying the ADS

with the most threatening opponent within the context of the Threat-ADS. Then, at each Max and Min

node, we must somehow order the moves based on the order of the ADS.

Fortunately, within the context of alpha-beta search, there is a very intuitive location to query the ADS,

which is where an alpha or beta cutoff occurs, before terminating that branch of the search. This is, of course,

analogous to the timing with which the History Heuristic updates its structure. To actually accomplish the

move ordering, when we expand a node and gather the available moves, we explore them in the order proposed
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by the ADS, again, similarly to how moves are ordered by their value according to the History Heuristic.

The last issue that must be considered is that, unlike in the Threat-ADS where opponent threats were

only relevant on Max nodes, when considering move history, the information is relevant on both Max and

Min nodes. Furthermore, we observe that a move that produces a cut on a Max node may not be likely to

produce a cut on a Min node, and vice versa. This would occur, for example, if the perspective player and

the opponent do not have analogous moves, such as in Chess or Checkers, or if they are some distance from

each other. We thus employ two list-based ADSs within the History-ADS heuristic, one of which is used on

Max nodes, while the other is used on Min nodes. Algorithm 1 shows the Mini-Max algorithm, employing

the History-ADS heuristic.

Algorithm 1 Mini-Max with History-ADS

Function BRS(node, depth, player)

1: if node is terminal or depth ≤ 0 then
2: return heuristic value of node
3: else
4: if node is max then
5: for all child of node in order of MaxADS do
6: α = max(α,minimax(child, depth− 1)
7: if β ≤ α then
8: break (Beta cutoff)
9: query MaxADS with cutoff move

10: end if
11: end for
12: return α

13: else
14: for all child of node in order of MinADS do
15: β = min(α,minimax(child, depth− 1)
16: if β ≤ α then
17: break (Alpha cutoff)
18: query MinADS with cutoff move
19: end if
20: end for
21: return β

22: end if
23: end if

End Function Mini-Max with History-ADS

5.2 Qualities of the History-ADS Heuristic

As emphasized earlier, the History-ADS heuristic is very similar in terms of construction to the Threat-ADS

heuristic. As with the Threat-ADS, it does not in any way alter the final value of the tree, and thus cannot

deteriorate the decision-making capabilities of the Mini-Max or BRS algorithms. Similar to the Threat-ADS,

the ADSs are added to the search algorithm’s memory footprint, and their update mechanisms with regard

to its running time.

Compared to the Threat-ADS, the History-ADS can be expected to employ a much larger data structure,

as there will be many more possible moves than total opponents in any non-trivial game. Furthermore, as

illustrated above, we maintain two separate ADSs in the case of the History-ADS, which rank minimizing

and maximizing moves, respectively. The History-ADS, as described here, thus remembers any move that
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produces a cut within its ADS for the entire search, even if it never produces a cut again and lingers near the

end of the list. Further, we emphasize that new moves could be regularly added to the corresponding lists.

However, while this may appear to suggest that the data structures are of unbound size, depending on how

we identify a move, there are, in fact, a limited number of moves that can be made within a game.

Revisiting the example of Chess, if, as in the case of the History heuristic, we consider a move to be

identified by the co-ordinates of the square in which the moved piece originated, and the co-ordinates of its

destination square, we see that there are a maximum of 4096 possible moves. This figure serves as an upper

bound on the size of the ADS. In the case of the History heuristic, an array of 4096 values, or whichever

number is appropriate for the game, is maintained for both minimizing and maximizing moves, whereas

the History-ADS only maintains information on those moves that have produced a cut. Unarguably, this

is a significantly smaller subset, in most cases. We thus conclude that the memory requirements of the

History-ADS are upper bounded by the History heuristic.

Perhaps more importantly, unlike the History heuristic, which requires moves to be sorted based on the

values in its arrays, the History-ADS shares the advantageous quality of the Threat-ADS in that it does not

require sorting. One can simply explore moves, if applicable, in the order specified by the ADS, thus allowing

it to share the strengths of the Killer Moves heuristic, while simultaneously maintaining information on all

those moves that have produced a cut.

Lastly, unlike the Threat-ADS, which was specific to the BRS, the History-ADS works within the context

of the two-player Mini-Max algorithm. However, since the BRS views a multi-player game as a two-player

game by virtue of it treating the opponents as a single entity, the History-ADS heuristic is also applicable

to it, and it thus functions in both two-player and multi-player contexts. We will thus be investigating its

performance in both these avenues in this work.

6 Refinements to the History-ADS Heuristic

As was discussed above, unlike in the case of the Threat-ADS, which, at most, contained only a few elements

that represented the number of opponents, the ADS in the present setting could contain hundreds of elements,

as many moves could produce a cut over the course of the search. Thus, it is worthwhile to investigate

possible refinements or improvements to the History-ADS heuristic that can potentially mitigate this effect.

This section describes two of such possible refinements, which are examined in this paper.

6.1 Bounding the Length of the ADS

Retaining all the information pertaining to moves that have produced a cut is logically beneficial. However,

it is possible, and in fact very reasonable to hypothesize, that the majority of savings do not come from

moves which are near the tail of the list, but rather near the front. Therefore, if we provide a maximum size

on the list, and only retain elements in those positions, it may be possible to noticeably curtail the size of the

list, providing some guarantees on its memory performance, while maintaining the vast majority of savings

provided by the History-ADS. The way in which we will accomplish this is by forgetting any element of the

list that falls to position N + 1, if the maximum is N . Otherwise, the History-ADS will operate as it was

described above. An example of such an ADS updating over several queries, operating with a bounded list,
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is presented in Figure 5.

Figure 5: An example of a History-ADS’s list sequence updating over several queries, with a maximum length
of 5. The ADS starts with a list of length four, and is queried with the move (1,3) to (1,6), which it moves
to the front. It is then queried with (2,1) to (2,2), and as (6,7) to (6,6) is pushed to the sixth position, it
is forgotten (highlighted in grey). The process continues as it is queried with (3,2) to (5,1), causing only an
internal change, and finally (1,1) to (1,2), pushing (4,5) to (5,4) off the end of the list.

Beyond limiting the memory usage of the History-ADS heuristic, if the developer is attempting to avoid

sorting moves by generating them in the order of the ADS, having to traverse a very long list to do this could

defeat the purpose of omitting sorting. Thus, demonstrating that the History-ADS can retain the majority

of its savings with a smaller list can assist in managing implementation concerns, as well.

6.2 Multi-Level ADSs

The History-ADS heuristic as presented earlier maintains a single adaptive list, which is updated whenever

a move produces a cut, and is used to order moves when they are encountered elsewhere in the tree. It

performs this operation “blindly”, without giving consideration to the location in the tree where the move

produced a cut, relative to its current location. Thus, if moves are found to produce cuts at the lowest levels

of the tree, they will be prioritized at the upper levels of the tree later in the search.

While this may lead to improved savings, as certain moves may be very strong regardless of which level

of the tree they occur on, there is a potential weakness in such a blind invocation. Consider the case where a

move produces a cut at the highest level of the tree, at node N . It is thus added to the adaptive list, and the

search continues deeper into the tree, exploring it in a depth-first manner. Deeper in the tree, many moves

are likely to produce cuts, and these will be added to the adaptive list ahead of the first move. When the

search returns to the higher levels of the tree, and explores a neighbour of N , these moves will be prioritized
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first, over the move that produced a cut at its neighbour. However, intuitively the move that produced a cut

at N , which is a more similar game state compared to those deeper in the tree, is likely to be stronger at the

current node.

Furthermore, by handling all moves equally, as there are many more nodes towards the bottom of the

tree compared to the top, moves that are strong near the bottom of the tree will receive many more updates

and thus a higher ranking in the adaptive list. This will occur even though cuts near the top of the tree are

comparatively more valuable. Both the Killer Moves and History heuristics employ mechanisms to mitigate

these effects [23]. Inspired by this, we augment the History-ADS heuristic with multiple ADSs, one for each

level, and use them only within the contexts of their sibling nodes.

The use of multi-level ADSs may lead to a reduction in performance, given that learning cannot be

applied at different levels of the tree. But given the precedence set by the existing techniques reported in the

literature and the potential benefits, we consider it a meaningful avenue of inquiry.

7 Experimental Verification of the Strategy

As the two heuristics share many conceptual commonalities, it is logical to employ a similar set of experiments

in analyzing the performance of the History-ADS heuristic that we used in our previous work on the Threat-

ADS heuristic. We are interested in learning the improvement gained from using the History-ADS heuristic,

when compared to a search that does not employ it. We accomplish this by taking an aggregate of the Node

Count (NC) over several turns (where NC is the number of nodes at which computation takes place, omitting

those that were pruned), which we then average over fifty trials. We will repeat this experiment with a variety

of games, with the Move-to-Front and Transposition update mechanisms, and at varying ply depths, so to

provide us with a clear picture of History-ADS, its benefits and drawbacks, and its overall efficacy. While it

would seem intuitive to use the runtime as a metric of performance, it has been observed in the literature

that CPU time can be a problematic metric for these sorts of experiments, as it is prone to be influenced by

the platform used and by the specific implementation [23].

As with our work involving the Threat-ADS heuristic, we will employ the Virus Game, Focus, and Chinese

Checkers when considering the multi-player case. However, as we are also considering the two-player case,

we require an expanded testing set of games. While the Virus Game, Focus, and Chinese Checkers can all be

played with two players, we have elected to also employ some more well-known two-player games, rather than

using the same games in their two-player configurations. This is done so as to provide a wider testing base

for the History-ADS. The new two-player games that we will employ are Othello, and the very well-known

Checkers, or Draughts. The game models are briefly described in the next section.

Since the History-ADS heuristic may be able to retain its knowledge in subsequent turns, we will allow

the game to proceed for several turns from the starting configuration. As the Threat-ADS heuristic does

not influence the decisions of the BRS, but only its speed of execution, the end result of the game is not a

fundamental concern in our experiments. Thus, we will not run the games to termination after this is done.

Specifically, we will run the Virus Game for ten turns, Chinese Checkers for five, and Focus for three, which

is consistent with our previously presented work. For Othello and Checkers, we allow the game to proceed

for five turns in both cases.

As we did for the Threat-ADS heuristic in [15], rather than simply examine the History-ADS heuristic’s
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performance near the start of the game, we also examine its performance in intermediate board states.

Compared to the initial configuration, intermediate board states represent a more challenging problem, for a

number of reasons. These include a greater degree in the variability of intermediate board positions compared

to those close to the start of the game, and the lack of “opening book” knowledge, if applicable, allowing

intelligent play to more easily be achieved [8].

During turns within which measurement is taking place, other than the perspective player, all opponents

made random moves, to cut down on experiment runtime, as we are interested in tree pruning rather than

the final state of the game. However, this is clearly not a valid way to generate intermediate starting

board positions, as these would be very unrealistic if only a single player was acting rationally. Thus, when

considering the intermediate case, we progress the game initially by having each player use a simple 2-ply

alpha-beta search or BRS for a set number of turns, after which we switch to the experimental configuration.

The number of turns we advanced into the game in this way was fifteen for the Virus Game, ten for Chinese

Checkers and Othello, five for Checkers, and, given its short duration, three for Focus.

In order to determine the statistical significance and impact of the History-ADS heuristic’s benefits, we

employ the non-parametric Mann-Whitney test to determine the statistical significance, as we do not assume

that results follow a normal distribution. We also include the Effect Size measure, to illustrate the size of the

effect and as a control against the possibility of over-sampling. In general, an Effect Size of 0.2 is small, 0.5

is medium, and 0.8 is large, with anything substantially larger than that representing an enormous, obvious

impact [2].

We first present our results for two-player games, using the standard alpha-beta search technique enhanced

with the History-ADS heuristic. We then present those results for the multi-player case, where the History-

ADS heuristic is employed to augment the BRS. We then present our results for the refinement proposed

in the previous section, that of providing a bound on the size of the adaptive list. Finally, we present our

results for our second proposed refinement, namely that of providing an ADS for each level of the tree.

7.1 Game Models

In this section, we will briefly detail the games employed in our experiments, to give the reader a better

understanding of their rules and game flow, and to contrast them against each other.

Checkers: Checkers, also known as draughts, is a very well-known board game, designed to be played

by two players on an 8x8 checkerboard. During each player’s turn, he may move any of his pieces one

square diagonally left or right and forward, towards the opponent’s side of the board. If the player’s piece is

adjacent to an opponent’s piece, and the square directly across from it is unoccupied, the player may “jump”

the opponent’s piece, and capture it. If other subsequent jumps are possible, the player can continue to make

them, chaining jumps together. If a piece reaches the opposite side of the board, it is promoted, and is no

longer restricted to moving only forward. A player loses when his last piece is captured, or when he can make

no legal moves. Under normal rules, the game of Checkers requires jumps, if available, to be taken. While

this makes the game strategically interesting, it greatly decreases the variability of the game tree’s size, and

thus we have relaxed this rule, to generate greater search trees. We refer to our variant as Relaxed Checkers.

The starting position for Checkers is shown in Figure 6.

Othello: Othello is a two-player board game also played on an 8x8 board, and based on the capture
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Figure 6: The starting position for Checkers.

of opponent pieces, although the mechanisms by which capturing takes place are quite different. Initially,

each player has two pieces on the board, arranged as in Figure 7, During his turn, a player may place an

additional piece on the board, in a position that “flanks” one or more opponent pieces in a line between

the placed piece and another that the player controls. If the player cannot do this, his turn is passed. This

captures the enclosed pieces, and they are flipped, or replaced by pieces of the color of the capturing player.

Play continues until neither player can make a valid move, at which point the player who controls the most

pieces is declared the winner.

Figure 7: The starting position for Othello.

Focus: Focus is a board game based on piece capturing, designed to be played by two to four players, on

an 8x8 board, with the three squares in each corner omitted. The game was originally developed by Sackson

in 1969 and released since under many different names [21]. Unlike most other games of its type, Focus allows

pieces to be “stacked” on top of each other. The player whose piece is on top of the stack is said to control

it, and during his turn, may move one stack he controls, vertically or horizontally, by a number of squares

equal to the height of the stack. When a stack is placed on top of another one, they are merged, and all

pieces more than five from the top of the stack are removed from the board. If a player captures his own

piece, he may place it back on the board in any position, rather than moving a stack. Starting positions for

Focus are pre-determined to insure a fair board state. The starting positions for Focus are shown in Figure

8.
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Figure 8: The two, three, and four player starting positions for Focus.

Virus Game: The Virus Game is a multi-player board game of our own creation, modeled after similar

experimental games from previous works, based on a biological metaphor [18]. The Virus Game is, in essence,

a “territory control” game where players vie for control of squares on a game board of configurable size (in

this work, we use a 5x5 board). During his turn, a player may “infect” a square adjacent to one he controls,

at which point he claims that square, and each square adjacent to it. The Virus Game is designed primarily

as a highly-configurable testing environment, rather than a tactically interesting game, as it is easy for players

to cancel each others’ moves; however, it shares many elements in common with more complex games. A

possible starting position, and an intermediate state of the Virus Game, are shown in Figure 9.

Figure 9: The Virus Game at its initial state, and ten turns into the game. Observe that two players have
been eliminated, and the pieces are more closely grouped together.

Chinese Checkers: Chinese Checkers is a well-known multi-player board game, played by between two

and six players, omitting five players, as it would give one an unfair advantage. The game is played on a

star-shaped board, and the objective is to move all of one’s pieces to the opposite corner from one’s starting

position. On his turn, a player may move one of his pieces to one of the adjacent six positions, or “jump” an

adjacent piece, which could be either his or his opponent’s. As in Checkers, jumps may be chained together

as many times as possible, allowing substantial distances to be covered in a single move. The possible starting

positions for Chinese Checkers are shown in Figure 10.
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Figure 10: The two, three, four, and six player starting positions for Chinese Checkers.

8 Results for Two-Player Games

Table 1 presents our results for the two-player game Othello. We observe that in all cases, the History-

ADS heuristic produced very strong improvements in terms of NC, compared to standard alpha-beta search.

Furthermore, in each case, the Move-to-Front rule outperformed the Transposition rule. A higher proportion

of savings generally correlates with a larger game tree, both in terms of a greater ply depth, and considering

the more expansive intermediate case. Our best performance was in the 8-ply intermediate case, with savings

of 47%. We observed an Effect Size ranging between 0.5 and 0.75, indicating a moderate to large effect [2].

Table 2 presents our results for Relaxed Checkers. We notice a very similar trend, compared to Othello,

with the History-ADS heuristic generating substantial improvements to pruning in all cases, and generally

doing better the larger the search space is, with Move-to-Front always outperforming Transposition. The

best performance was again observed in the 8-ply intermediate case, with a 63% reduction in tree size, well

over half the tree. In this case, the Effect Size ranged between 0.5 and, in cases with less variance, reached

levels well over 2 or even 3, suggesting an extreme effect.

Results for our final two-player game, Focus, are shown in Table 3. Yet again, the History-ADS heuristic

always produced substantial gains in terms of tree pruning, with larger savings, the Move-to-Front rule
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Table 1: Results of applying the History-ADS heuristic for Othello in various configurations.

Ply Depth Midgame Update Mechanism Avg. Node Count Std. Dev P-Value Effect Size

4 No None 669 205 - -

4 No Move-to-Front 523 162 2.2× 10−4 0.71

4 No Transposition 572 225 0.016 0.47

6 No None 5061 2385 - -

6 No Move-to-Front 3827 1692 6.0× 10−3 0.51

6 No Transposition 4057 2096 0.015 0.42

8 No None 38,800 20,300 - -

8 No Move-to-Front 26,800 12,000 1.2× 10−3 0.59

8 No Transposition 29,700 12,300 0.014 0.45

4 Yes None 2199 745 - -

4 Yes Move-to-Front 1699 633 2.2× 10−3 0.67

4 Yes Transposition 1761 597 0.01 0.59

6 Yes None 20,100 9899 - -

6 Yes Move-to-Front 14,500 6303 6.0× 10−3 0.57

6 Yes Transposition 15,200 6751 0.015 0.49

8 Yes None 182,000 114,000 - -

8 Yes Move-to-Front 95,600 50,200 < 1.0× 10−5 0.76

8 Yes Transposition 113,000 60,900 1.3× 10−4 0.60

always outperformed the Transposition rule, and it did best in larger trees. Our best performance was in the

midgame case, with a 77% reduction in tree size. The Effect Size was over 2 in the more variable intermediate

board case, and exceeded 10 in case of an initial board position, again indicating an extreme effect.

9 Results for Multi-Player Games

Our results for the multi-player Virus Game are presented in Table 4. We observe very similar behaviour, in

comparison to the two-player games. Again, the Move-to-Front rule always outperforms the Transposition

rule, and the History-ADS produces substantial gains in all cases, tending towards greater savings in larger

trees. The best result was a 55% reduction in NC, in the 6-ply initial board position case.

Table 5 holds our results for the multi-player variant of Focus. The trends observed are almost identical to

the two-player case, and match expectations from patterns recognized there, with a slightly higher maximum

of a 78% reduction in tree size in the intermediate case, given that tree sizes are larger in midgame searches.

Lastly, Table 6 presents our results for Chinese Checkers, our final multi-player game. Chinese Checkers

deviated slightly from established patterns, as performance was very uniform, although the History-ADS

heuristic produced large savings in every case, and Move-to-Front continues to outperform Transposition, if

slightly in some situations. Our best results were observed in the four player, initial board position case,

with a 65% reduction in tree size, which is, in fact, the smallest search.
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Table 2: Results of applying the History-ADS heuristic to Relaxed Checkers in various configurations.

Ply Depth Midgame Update Mechanism Avg. Node Count Std. Dev P-Value Effect Size

4 No None 5930 864 - -

4 No Move-to-Front 4712 461 < 1.0× 10−5 1.41

4 No Transposition 5148 675 < 1.0× 10−5 0.90

6 No None 78,600 10,600 - -

6 No Move-to-Front 40,800 5619 < 1.0× 10−5 3.58

6 No Transposition 48,600 6553 < 1.0× 10−5 2.84

8 No None 910,000 172,000 - -

8 No Move-to-Front 362,000 55,900 < 1.0× 10−5 3.18

8 No Transposition 435,000 68,400 < 1.0× 10−5 2.76

4 Yes None 5447 1859 - -

4 Yes Move-to-Front 3772 1257 < 1.0× 10−5 0.90

4 Yes Transposition 4497 1474 4.5× 10−3 0.51

6 Yes None 64,000 25,700 - -

6 Yes Move-to-Front 36,100 12,700 < 1.0× 10−5 1.08

6 Yes Transposition 43,600 16,600 < 1.0× 10−5 0.79

8 Yes None 859,000 408,000 - -

8 Yes Move-to-Front 317,000 135,000 < 1.0× 10−5 1.33

8 Yes Transposition 422,000 161,000 < 1.0× 10−5 1.07

Table 3: Results of applying the History-ADS heuristic to two-player Focus in initial and midgame states.

Ply Depth Midgame Update Mechanism Avg. Node Count Std. Dev P-Value Effect Size

4 No None 5,250,000 381,000 - -

4 No Move-to-Front 1,290,000 88,000 < 1.0× 10−5 10.39

4 No Transposition 1,800,000 158,000 < 1.0× 10−5 9.07

4 Yes None 10,600,000 3,460,000 - -

4 Yes Move-to-Front 2,420,000 637,000 < 1.0× 10−5 2.37

4 Yes Transposition 2,910,000 760,000 < 1.0× 10−5 2.22

The next section presents our results for the possible refinements to the History-ADS heuristic, described

in Section 6. Given that, in the case of the History-ADS heuristic, the Move-to-Front rule outperformed the

Transposition rule in every single case, sometimes by a large margin, we restrict our update mechanism to it

going forward, given its demonstrated superiority.
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Table 4: Results of applying the History-ADS heuristic for the Virus Game in various configurations.

Ply Depth Midgame Update Mechanism Avg. Node Count Std. Dev P-Value Effect Size

4 No None 254,000 28,600 - -

4 No Move-to-Front 157,000 17,900 < 1.0× 10−5 3.37

4 No Transposition 165,000 22,800 < 1.0× 10−5 3.11

6 No None 10,500,000 1,260,000 - -

6 No Move-to-Front 4,690,000 1,010,000 < 1.0× 10−5 4.57

6 No Transposition 4,850,000 739,000 < 1.0× 10−5 4.45

4 Yes None 309,000 40,700 - -

4 Yes Move-to-Front 188,000 17,800 < 1.0× 10−5 2.97

4 Yes Transposition 199,000 20,700 < 1.0× 10−5 2.69

6 Yes None 12,800,000 1,950,000 - -

6 Yes Move-to-Front 5,940,000 832,000 < 1.0× 10−5 3.51

6 Yes Transposition 6,060,000 974,000 < 1.0× 10−5 3.45

Table 5: Results of applying the History-ADS heuristic for multi-player Focus in various configurations.

Ply Depth Midgame Update Mechanism Avg. Node Count Std. Dev P-Value Effect Size

4 No None 6,970,000 981,000 - -

4 No Move-to-Front 2,180,000 184,000 < 1.0× 10−5 4.88

4 No Transposition 2,740,000 271,000 < 1.0× 10−5 4.32

4 Yes None 14,200,000 8,400,000 - -

4 Yes Move-to-Front 3,240,000 1,730,000 < 1.0× 10−5 1.30

4 Yes Transposition 3,570,000 1,860,000 < 1.0× 10−5 1.26

10 Results for Bounded ADSs

Table 7 presents our results for Othello, with a bounded ADS, in the same configurations as earlier. As is

to be expected, due to the History-ADS heuristic being restricted from retaining as much information, some

decay in performance was observed, however in even the worst case, the majority of savings were maintained

even if the size of the ADS was limited by 5. In a very encouraging scenario, the decrease was by only 1%

(from 26% to 25%), when the ply depth was 6 and the size of the list was bounded by 20, from the initial

board position.

Table 8 presents our results for Checkers. A similar pattern was observed as in the case of Othello, where

the smaller the length of the list, the less the improvement gleaned from the History-ADS heuristic, although

the vast majority of savings remained. In the very best case, the reduction in savings was only 2%, when the

size of the list was bounded by 20, from the initial board state (regardless of ply depth).

Consider Table 9, which presents our results for Focus with varying limits on the ADS’ size. We observe the

23



Table 6: Results of applying the History-ADS heuristic Chinese Checkers in various configurations.

Ply (Players) Midgame Update Mechanism Avg. Node Count Std. Dev P-Value Effect Size

4 (4-play) No None 1,380,000 417,000 - -

4 (4-play) No Move-to-Front 486,000 135,000 < 1.0× 10−5 2.14

4 (4-play) No Transposition 505,000 131,000 < 1.0× 10−5 2.09

4 (6-play) No None 3,370,000 1,100,000 - -

4 (6-play) No Move-to-Front 1,250,000 316,000 < 1.0× 10−5 1.92

4 (6-play) No Transposition 1,320,000 338,000 < 1.0× 10−5 1.87

4 (4-play) Yes None 3,340,000 933,000 - -

4 (4-play) Yes Move-to-Front 1,310,000 365,000 < 1.0× 10−5 2.17

4 (4-play) Yes Transposition 1,360,000 314,000 < 1.0× 10−5 2.12

4 (6-play) Yes None 8,260,000 2,640,000 - -

4 (6-play) Yes Move-to-Front 3,400,000 899,000 < 1.0× 10−5 1.84

4 (6-play) Yes Transposition 3,650,000 920,000 < 1.0× 10−5 1.74

same pattern as we did in Othello and Checkers, in both the two-player and the multi-player cases, although

the difference in savings between an unbounded list and a list of length 20 or 5 is quite a bit smaller, with

even the worst case being 78% to 75% in the 4-ply midgame case, which was only a 3% difference.

Table 10 contains our results for the Virus Game. Our observations were analogous to those for the other

three cases presented so far. While the History-ADS heuristic produced noticeable gains in all cases, they

were lessened by a limit being placed on the maximum length of the ADS. In the very worst case, the change

observed was a reduction in savings from 56% to 51% in the 6-ply case, with measurements taken from the

initial board state, a very small change of only 5%.

Finally, Table 11 presents our results for Chinese Checkers. The patterns we observed were similar to

those for the other four games, however in the case of four-player Chinese Checkers, from the initial board

position, a maximum list size of 5 outperformed a list size of 20. As before, for this game, variability was

quite small, such as 62% to 61% in the 4-ply, six player case, with a limit on the list of size of 20. Considering

even the worst situation, the largest change observed was 66% to 62%, in the 4-ply, four player case, with

measurements taken from the initial board position.

11 Results for Multi-Level ADSs

Table 12 presents our results for multi-level ADSs, in the domain of Othello. We observed that, similar to

the limit on the ADS, the use of a multi-level ADS reduces performance by a consistent but small amount.

Limiting the multi-level ADS’s size further reduces the performance, in the majority of cases. In the best

case, savings were reduced from 39% to 36%, when a multi-level ADS with no size limitation was employed,

in the 8-ply case, from the initial board position.

Our results for Relaxed Checkers are shown in Table 8. The patterns observed were similar to those for

Othello, with the use of multi-level ADSs performing slightly worse than the original version. The smallest
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Table 7: Results of applying the History-ADS heuristic to Othello with a varying maximum length on the
ADS.

Ply Depth Midgame Limit Avg. Node Count Std. Dev P-Value Effect Size

4 No No ADS 669 205 - -

4 No Unbound 525 175 3.2× 10−4 0.70

4 No 20 572 196 5.8× 10−3 0.47

4 No 5 596 196 0.041 0.36

6 No No ADS 5061 2385 - -

6 No Unbound 3727 1552 1.7× 10−3 0.56

6 No 20 3779 1884 3.3× 10−3 0.54

6 No 5 3961 1603 0.013 0.46

8 No No ADS 38,800 20,300 - -

8 No Unbound 23,600 10,800 < 1.0× 10−5 0.75

8 No 20 24,900 11,000 1.1× 10−5 0.68

8 No 5 28,600 12,200 5.8× 10−3 0.50

4 Yes No ADS 2199 745 - -

4 Yes Unbound 1702 570 2.7× 10−4 0.67

4 Yes 20 1787 663 2.6× 10−3 0.55

4 Yes 5 1840 576 0.010 0.48

6 Yes No ADS 20,100 9899 - -

6 Yes Unbound 13,300 6916 7.0× 10−5 0.69

6 Yes 20 13,900 6846 6.9× 10−4 0.63

6 Yes 5 14,800 7916 1.7× 10−3 0.54

8 Yes No ADS 182,000 114,000 - -

8 Yes Unbound 92,900 49,700 < 1.0× 10−5 0.79

8 Yes 20 109,000 63,800 7.0× 10−5 0.65

8 Yes 5 116,000 59,800 3.1× 10−5 0.58

change was from 46% to 40%, in the 6-ply case, where measurements were taken from a midgame board

position.

Lastly, we present our results for the Virus Game with multi-level ADSs in Table 14. While we observed,

as before, that the performance worsened when the multi-level approach was employed, the difference was

quite a bit smaller in the context of the Virus Game. The loss in savings was very slight in the best case,

from 56% to 55%, from the initial board position.

12 Discussion

The results presented in the previous sections strongly reinforce the hypothesis that an ADS managing move

history, employed by the History-ADS heuristic, can achieve improvements in tree pruning through better
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Table 8: Results of applying the History-ADS heuristic to Relaxed Checkers with a varying maximum length
on the ADS.

Ply Depth Midgame Limit Avg. Node Count Std. Dev P-Value Effect Size

4 No No ADS 5930 864 - -

4 No Unbound 4638 493 > 1.0× 10−5 1.49

4 No 20 4755 406 > 1.0× 10−5 1.36

4 No 5 4776 516 > 1.0× 10−5 1.33

6 No No ADS 78,600 10,600 - -

6 No Unbound 41,000 5588 > 1.0× 10−5 3.55

6 No 20 42,700 5292 > 1.0× 10−5 3.39

6 No 5 44,700 5545 > 1.0× 10−5 3.20

8 No No ADS 910,000 172,000 - -

8 No Unbound 358,000 53,200 < 1.0× 10−5 3.20

8 No 20 375,000 55,700 < 1.0× 10−5 3.11

8 No 5 398,000 78,300 < 1.0× 10−5 2.97

4 Yes No ADS 5447 1859 - -

4 Yes Unbound 3681 1138 > 1.0× 10−5 0.94

4 Yes 20 4130 1304 1.9× 10−4 0.70

4 Yes 5 4217 1363 4.3× 10−4 0.66

6 Yes No ADS 64,000 25,700 - -

6 Yes Unbound 34,400 12,400 > 1.0× 10−5 1.15

6 Yes 20 36,700 14,200 > 1.0× 10−5 1.06

6 Yes 5 39,500 16,800 > 1.0× 10−5 0.96

8 Yes No ADS 859,000 408,000 - -

8 Yes Unbound 293,000 100,000 > 1.0× 10−5 1.39

8 Yes 20 333,000 133,000 > 1.0× 10−5 1.29

8 Yes 5 397,000 193,000 > 1.0× 10−5 1.13

move ordering, in both two-player and multi-player games. This confirms that such an ADS does, indeed,

correctly prioritize the most effective moves, based on their previous performance elsewhere in the tree, as

initially hypothesized.

Our results confirm that the History-ADS heuristic is able to achieve a statistically significant reduction in

NC in three two-player games, Othello, Relaxed Checkers, and the two-player variant of Focus, as well as three

multi-player games, the Virus Game, Chinese Checkers, and the multi-player variant of Focus. Compared

to our previous work on the Threat-ADS heuristic, where the degree of reduction ranged between 5% and

20%, and which centered around 10%, we observe a much more drastic improvement in pruning when the

History-ADS is employed, to a value as high as 78%. The History-ADS heuristic displayed quite variable

performance, with higher savings generally correlated with the size of the tree. In the case of ply depth, this

is intuitively appealing, as cuts made earlier higher in the tree can lead to large numbers of moves being
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Table 9: Results of applying the History-ADS heuristic to Focus with a varying maximum length on the
ADS.

Ply Depth Midgame Limit Avg. Node Count Std. Dev P-Value Effect Size

4 No No ADS 5,250,000 381,000 - -

4 No Unbound 1,260,000 90,900 > 1.0× 10−5 10.46

4 No 20 1,270,000 96,300 > 1.0× 10−5 10.43

4 No 5 1,330,000 108,000 > 1.0× 10−5 10.28

4 (Multi) No No ADS 6,970,000 981,000 - -

4 (Multi) No Unbound 2,150,000 165,000 > 1.0× 10−5 4.92

4 (Multi) No 20 2,210,000 165,000 > 1.0× 10−5 4.86

4 (Multi) No 5 2,230,000 154,000 > 1.0× 10−5 4.79

4 Yes No ADS 10,600,000 3,460,000 - -

4 Yes Unbound 2,390,000 631,000 > 1.0× 10−5 2.37

4 Yes 20 2,520,000 710,000 > 1.0× 10−5 2.34

4 Yes 5 2,630,000 847,000 > 1.0× 10−5 2.30

4 (Multi) Yes No ADS 14,200,000 8,400,000 - -

4 (Multi) Yes Unbound 3,120,000 1,700,000 > 1.0× 10−5 1.31

4 (Multi) Yes 20 3,310,000 1,700,000 > 1.0× 10−5 1.30

4 (Multi) Yes 5 3,370,000 1,410,000 > 1.0× 10−5 1.29

pruned, and if branching factor is higher, as in Focus, many moves are unlikely to be particularly strong, and

so correct move ordering could, very reasonably, have a high impact on performance.

Our second observation is that in all cases, the Move-to-Front rule outperformed the Transposition rule.

This is a reasonable outcome, as unlike with the Threat-ADS, the adaptive list may contain dozens to hundreds

of elements, and it would take quite a bit of time for the Transposition rule to migrate a particularly strong

move to the head of the list. As opposed to this, the Move-to-Front would migrate the move to the front

quickly, and would likely keep it there. This phenomenon also confirms that the order of elements within the

list matters to the move ordering. In other words, merely maintaining an unsorted collection of moves that

have produced a cut will not perform as well as employing an adaptive list, further supporting the use of the

History-ADS heuristic.

The exception to the above trend occurs in the case of Chinese Checkers. While Chinese Checkers, with its

large branching factor, usually sees a larger reduction in tree size compared to Othello or Relaxed Checkers,

savings for all the cases within the context of Chinese Checkers are roughly equivalent. Furthermore, despite

having the smallest overall tree size, we observe that the best performance occurs for the the four player

case, with measurements being taken from the initial board position. What this suggests is that moves

that produce a cut in Chinese Checkers may not have a very strong natural ranking between them, and so

attempting to rank them in the ADS does not help as much as it does for the other games. This would also

explain why the Move-to-Front rule did not outperform the Transposition rule to the same extent as in the

other cases.
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Table 10: Results of applying the History-ADS heuristic to the Virus Game with a varying maximum length
on the ADS.

Ply Depth Midgame Limit Avg. Node Count Std. Dev P-Value Effect Size

4 No No ADS 254,000 28,600 - -

4 No Unbound 154,000 20,800 > 1.0× 10−5 3.47

4 No 20 158,000 19,000 > 1.0× 10−5 3.36

4 No 5 163,000 19,000 > 1.0× 10−5 3.20

6 No No ADS 10,500,000 1,260,000 - -

6 No Unbound 4,650,000 767,000 > 1.0× 10−5 4.60

6 No 20 4,830,000 640,000 > 1.0× 10−5 4.46

6 No 5 5,110,000 658,000 > 1.0× 10−5 4.24

4 Yes No ADS 308,000 40,700 - -

4 Yes Unbound 187,000 23,100 > 1.0× 10−5 3.00

4 Yes 20 187,000 22,200 > 1.0× 10−5 3.00

4 Yes 5 194,000 21,600 > 1.0× 10−5 2.81

6 Yes No ADS 12,800,000 1,950,000 - -

6 Yes Unbound 5,870,000 863,000 > 1.0× 10−5 3.55

6 Yes 20 5,910,000 821,000 > 1.0× 10−5 3.53

6 Yes 5 6,390,000 767,000 > 1.0× 10−5 3.29

We found that when limiting the maximum size of the ADS, while there was some reduction in perfor-

mance, as was expected, the loss was very slight in most cases. This confirms our hypothesis that elements

near the head of the list tend to remain there, and provide the majority of the move ordering benefits, with

diminishing returns as the list gets longer. The fact that the majority of savings are still maintained in all

cases even when the list is limited to only contain five elements, successfully addresses one of the concerns

we had with of the History-ADS heuristic discussed earlier, namely that the length of the adaptive list can

potentially be quite large.

The multi-level ADS approach was found to do worse than the single ADS approach, suggesting that

savings that may be gained for prioritizing moves that produced a cut on the current level of the tree, if

they exist, are offset by the inability to apply what the algorithm has learned to other levels of the tree.

We can thus conclude that the absolutist approach of having a separate ADS at each level of the tree is

likely not the optimal way to address concerns of overvaluing moves that are strong near the bottom of the

tree. However, the multi-level ADS approach may not be completely useless. If the History-ADS heuristic is

employed alongside other, perhaps domain-specific move ordering heuristics, then prioritizing only the best

moves at each level may be as effective. This approach begs for more investigation.

Despite the presence of multiple ADSs, limiting the size of the list to 5 reduced improvements even more.

Observing the internal functioning of the search, the reason for this appears to be that the limit is only a

factor at the lowest levels of the tree, where many more moves produce cuts and the limit impacts the ADS

heavily. As opposed to this, levels closer to the root do not require as much space. This is especially visible
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Table 11: Results of applying the History-ADS heuristic to Chinese Checkers with a varying maximum length
on the ADS.

Ply Depth Midgame Limit Avg. Node Count Std. Dev P-Value Effect Size

4 (4-play) No No ADS 1,380,000 417,000 - -

4 (4-play) No Unbound 476,000 125,000 > 1.0× 10−5 2.16

4 (4-play) No 20 531,000 125,000 > 1.0× 10−5 2.03

4 (4-play) No 5 525,000 157,000 > 1.0× 10−5 2.04

4 (6-play) No No ADS 3,370,000 1,100,000 - -

4 (6-play) No Unbound 1,280,000 368,000 > 1.0× 10−5 1.90

4 (6-play) No 20 1,330,000 332,000 > 1.0× 10−5 1.85

4 (6-play) No 5 1,360,000 297,000 > 1.0× 10−5 1.83

4 (4-play) Yes No ADS 3,340,000 933,000 - -

4 (4-play) Yes Unbound 1,240,000 335,000 > 1.0× 10−5 2.25

4 (4-play) Yes 20 1,330,000 330,000 > 1.0× 10−5 2.16

4 (4-play) Yes 5 1,370,000 455,000 > 1.0× 10−5 2.11

4 (6-play) Yes No ADS 8,260,000 1,950,000 - -

4 (6-play) Yes Unbound 3,200,000 863,000 > 1.0× 10−5 1.92

4 (6-play) Yes 20 3,290,000 821,000 > 1.0× 10−5 1.88

4 (6-play) Yes 5 3,340,000 767,000 > 1.0× 10−5 1.86

in the case of 8-ply Othello from the midgame case, where a multi-level ADS with a maximum size of 5 did

not, in fact, produce a statistically significant improvement in tree pruning, which is the first time that such

an event has occurred for the History-ADS heuristic. Overall, however, the multi-level ADS’ performance

was close to the original version in the vast majority of cases.

13 Conclusions, Contributions and Future Work

In this work, we introduced the concept of ordering moves, in the alpha-beta search algorithm, based on an

ADS, which is dynamically reorganized according to its update mechanism that ranks moves based on which

moves have performed well earlier in the search. We have named this technique the History-ADS heuristic.

Our results demonstrate conclusively that the History-ADS heuristic is able to obtain a substantial reduction

in tree size, in a range of two-player and multi-player games. Specifically, its efficacy has been proven in

Othello, Checkers, Focus, Chinese Checkers, and the Virus Game of our own invention, which represents a

wide variety of games with different rules and strategies. The results strongly support the hypothesis that

the History-ADS heuristic can perform well in the context of two-player and multi-player games.

Despite the power of the History-ADS heuristic, we observed that it retains a particularly large list of

moves. We conjecture that the majority of those moves, especially near the tail of the list, may be pruned to

save space and assist in implementation, without much loss of performance. Our results strongly support this

hypothesis, and we found that in many games, even in the worst case, only a small proportion of savings was
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Table 12: Results of applying the History-ADS heuristic to Othello with multi-level ADSs.

Ply Depth Midgame Limit Avg. Node Count Std. Dev P-Value Effect Size

6 No No ADS 5061 2385 - -

6 No No 3727 1552 1.7× 10−3 0.56

6 No Yes 4110 1828 0.023 0.40

6 No Yes (5-limit) 4305 1843 0.089 0.37

8 No No ADS 38,800 20,300 - -

8 No No 23,600 10,800 < 1.0× 10−5 0.75

8 No Yes 24,900 11,900 1.0× 10−4 0.68

8 No Yes (5-limit) 25,600 13,100 2.9× 10−4 0.65

6 Yes No ADS 20,100 9899 - -

6 Yes No 13,300 6916 7.0× 10−5 0.69

6 Yes Yes 14,700 7279 1.8× 10−3 0.55

6 Yes Yes (5-limit) 16,000 7283 0.017 0.42

8 Yes No ADS 182,000 114,000 - -

8 Yes No 92,900 49,700 < 1.0× 10−5 0.79

8 Yes Yes 110,000 56,500 1.0× 10−4 0.64

8 Yes Yes (5-limit) 105,000 50,600 < 1.0× 10−5 0.68

lost when restricting the formerly unlimited list to a size of only five, thus overcoming one of the History-ADS

heuristic’s main drawbacks.

While the use of an ADS at each level of the tree performed similarly to the single ADS, it was outper-

formed by the single ADS in all cases. However, given the strong basis in the literature of techniques that

consider moves based on the level of the tree where they are found, such as with the Killer Moves and History

heuristics, we believe that it is worthwhile to investigate this area further. In the hope of striking a more

reasonable balance between the two extremes, work is currently ongoing on methods to prioritize learning at

the level of the tree where it was acquired, while not completely excluding information obtained elsewhere.

The History-ADS heuristic serves as a natural expansion upon our previous work, introducing the Threat-

ADS heuristic, and demonstrates that the use of ADSs in the context of game playing has applicability outside

of the window of ranking opponents based on their threats. This work provides an even stronger basis for

further examination of the applicability of ADS-based techniques to game playing, and we hope it will inspire

others to examine these possibilities in the future.
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