
Ant Colony Optimisation-Based Classification
Using Two-Dimensional Polygons

Morten Goodwin1(B) and Anis Yazidi2(B)

1 Deptartment of ICT, Institute for Technology and Sciences,
University of Agder, Agder, Norway

morten.goodwin@uia.no
2 Department of Computer Science,

Akershus University College of Applied Sciences, Oslo, Norway
anis.yazidi@hioa.no

Abstract. The application of Ant Colony Optimization to the field
of classification has mostly been limited to hybrid approaches which
attempt at boosting the performance of existing classifiers (such as Deci-
sion Trees and Support Vector Machines (SVM)) — often through guided
feature reductions or parameter optimizations.

In this paper we introduce PolyACO: A novel Ant Colony based clas-
sifier operating in two dimensional space that utilizes ray casting. To the
best of our knowledge, our work is the first reported Ant Colony based
classifier which is non-hybrid, in the sense, that it does not build on any
legacy classifiers. The essence of the scheme is to create a separator in
the feature space by imposing ant-guided random walks in a grid system.
The walks are self-enclosing so that the ants return back to the starting
node forming a closed classification path yielding a many edged polygon.
Experimental results on both synthetic and real-life data show that our
scheme is able to perfectly separate both simple and complex patterns,
without utilizing “kernel tricks” and outperforming existing classifiers,
such as polynomial and linear SVM. The results are impressive given the
simplicity of PolyACO compared to other approaches such as SVM.

1 Introduction

Supervised Learning is one of the most central tasks in Machine Learning and
Pattern Recognition. However, it becomes intrinsically challenging whenever the
data to be classified is not easily separable in the feature space. A myriad of
classification algorithms have been proposed in the literature with a variety
of behaviors and limitations [11]. Examples of these algorithms include Neural
Networks, SVM and Decision trees.

Common trends in research is to apply Ant Colony Optimization (ACO) as
rule based variants or as a way to enhance some of the state-of-the-art classifiers.
The latter work as optimisers for classifiers such as decision trees or neural
networks [3,12]. To the best of our knowledge, there is no similar work on non-
hybrid Ant Colony based classifiers that solely resorts to ACO without the aid
of any other legacy classifier.
c© Springer International Publishing Switzerland 2016
M. Dorigo et al. (Eds.): ANTS 2016, LNCS 9882, pp. 53–64, 2016.
DOI: 10.1007/978-3-319-44427-7 5

54 M. Goodwin and A. Yazidi

A broad class of classification algorithms such as SVM and perception rely
upon defining mathematical functions with weights that efficiently can separate
two or more classes of data where unknown weights are learned based the train-
ing data. Often, the “best” hyperplane1 to separate classes does not follow the
mathematical properties of a function. The “best” line can for example be a
polygon encircling certain data points, which is not a function and therefore
cannot straightforward be outputted by SVM or similar classifiers.

Figure 1 shows an example of labeled data where it is not possible to perfectly
separate the data with one function simply because any line separating the data
perfectly will have multiple y−values of some of the x−values — which defies
the definition of mathematical functions. SVM deals with this by projecting the
data in high dimensional space or using the “kernel trick”.

Many kernels are available for SVM as a way to provide a “shape” of the
separator which is not limited to linear or polynomial functions. The kernel
yields an equivalent functionality as to transposing the data to many dimensions.
However, the accuracy of the SVM is dependent on the right choice of the kernel
function, as well as several other parameters, which is not an easy task given the
unlimited number of available kernels. It is often based on trial and error.

Fig. 1. Example of simple two
class classification scenario with the
classes Black (T1) and Gray (T2)
(Color figure online)

This paper introduces PolyACO, a novel
classification scheme operating in two dimen-
sions using ACO that does not involve a
“kernel trick” whenever the data is not
easily separable. The presented approach
deals with classification problems in two-
dimensional Euclidean space by building sep-
arators with many-sided polygons. The poly-
gons are extrapolated from pheromone trails
of ants walking with a preference towards
encapsulating of all items from one class and
excluding any items from other classes from
the encapsulation. This way, emerging poly-
gons encapsulate each class in such a way
that they can be used as classifiers. The clas-
sification takes place by resorting to ray casting unknown items which identifies
whether an item is part of a polygon, and each item is labeled accordingly.

Classification of unknown items based on labeled data is a supervised learning
problem. Hence, in line with common practice, the problem is divided into two
phases, namely (1) training and (2) classification:

1. Training phase: The aim is to create a polygon that encircles classes of
items so that the polygons separate the training classes from each other.

2. Classification phase: In this phase, we use the polygon as a basis to deter-
mine which class a new unknown item to be classified belongs to.

1 The hyperplane is a line in a two-dimensional space.

Ant Colony Optimisation-Based Classification 55

The overall aim of the training phase can therefore be stated as to find a
polygon s∗, consisting of vertices and edges, that minimises f(s∗) where f(s∗)
tells how well the polygon s∗ separate the items in the training. Thus, formally,
we aim to find an s∗ ∈ S so that f(s∗) ≤ f(s) ∈ S. For this we use ACO
explained in Sect. 2. In turn, the classification determining whether the item to
be classified is within or outside of the polygon s∗.

The paper is organised as follows. Section 2 reviews the-state-of-the-art in the
area of swarm intelligence based classifiers with special focus on ACO. Section 3
continues with introducing our solution: PolyACO as a method for creating
polygons for classification with two classes and corresponding results. Finally, in
Sect. 4, we draw conclusions and gives insights into future work.

2 Ant Colony Optimisation (ACO)

For completeness of the paper, we will briefly discuss variants of ACO. Details
of ACO, including updating rules, are presented in many other papers [4]. We
therefore include elements relevant to PolyACO are included.

2.1 Standard ACO

Swarm intelligence denotes a set of nature-inspired paradigms that have received
a lot of attention in computer science due to its simplicity and adaptability
[20]. ACO figures among the most popular swarm intelligence algorithms due
to its ability to solve many optimization problems. ACO involves artificial ants
operating a reinforced random walk over a graph. The ants release pheromones in
favorable paths which subsequent ant members follow creating a reinforcement
learning based behavior. The colony of ants will thus concentrate its walk on the
most favorable paths and in consequence iteratively optimize the solution [4].

Finding the shortest path in a bidirectional graph with vertices and edges
G(V,E) using ACO in its simplest form works as follows. Artificial ants move
from vertex to vertex. An ant that finds a route s from the source vs to the
sink vt will release pheromones τi,j corresponding to all edges ei,j ∈ s, and Δτk

i,j

corresponds to the change in pheromones for ant k . The pheromones for all ants
m is defined as:

τi,j ← (1 − p)τi,j +
m∑

k=1

Δτk
i,j (1)

2.2 MAX − MIN ACO

In order to improve the convergence performance of ACO a special greedier
variant called MAX − MIN ACO was introduced [18,19]. Another variant
referred to as MMAS was reported in [13]. These variants are greedier in the
sense that they only spread out pheromones for the best solutions, and in this way
subsequent ants will converge faster than with the traditional variants. Certain
setups even have theoretically guaranteed convergence [5].

56 M. Goodwin and A. Yazidi

The improvement is summarized as follows [19]: (1) Only the global best ant
is allowed to release pheromones. (2) The pheromones on each edge are limited
to an interval [τmin, τmax] to avoid stagnation. (3) All edges are initiated with
τmax. This is to achieve high exploration in the beginning of the search.

It follows that the pheromone trails are updated according to the function 2
(an update of Eq. 1):

τi,j ← (1 − p)τi,j + Δτ best
i,j (2)

MAX − MIN ACO is shown to be a good alternative to existing algorithms
when solving NP-hard combinatorial optimization problems such as Traveling
Salesman where it performs at the same level as comparative algorithms. In the
asymmetric variants, it outperforms other known approaches [1].

2.3 ACO for Classification

A considerable amount of work for Swarm Intelligence classification tasks, includ-
ing ACO, is reported in the literature. The existing approaches fall into three
main categories: (1) Rule based extractors, and (2) Hybrid approaches involving
ACO that attempt to enhance the quality of existing classifiers, (3) Clustering
based approaches using Swarm Intelligence.

The rule based classifiers [10,12,14] construct graphs by letting the ants walk
with preference towards common occurring examples so that strong pheromone
trails are used as rules in the classifier, or a set of IF-THEN rules. Probably, the
most notable rule based ACO classifiers are the AntMiner series [7] including:
AntMiner [14], AntMiner2, AntMiner3, AntMiner+ [12] and new variantssuch
as MAnt-Miner [6]. All the aforementioned AntMiner variants rely on the idea
of letting the ant walk “on” examples so that the pheromone trails can yield
usable rules.

The hybrid approaches use ACO to improve the performance of legacy clas-
sifiers, for example in feed forward neural networks [16]. In the latter case, this
is achieved by letting the ants minimize a function consisting of a set of decision
variables corresponding to the neuron parameter weights. Furthermore, there is a
multitude of hybrid ACO variants for Bayesian networks [3], multi-net classifiers
[17], and rule pruning [2].

The clustering based swarm intelligence rely techniques such as Particle
Swarm and Artificial Bee Colony to cluster data in an unsupervised manner
[8]. Even though these have similarities with PolyACO, they cannot be directly
applied for supervised learning such as classification.

3 PolyACO

This section presents the novel algorithm PolyACO. For the training phase, it
maps the MAX − MIN ACO to the problem area by formally specifying an
appropriate cost function that encircles one class. PolyACO trains the classifier
by defining a polygon s. Subsequently, it uses s with ray casting to find if an
item is part of the s.

Ant Colony Optimisation-Based Classification 57

Training

ACO Ray tracingLabeled data Polygon

Unknown items
to be labeled

Class 1: T1
Class 2: T2

Fig. 2. Overview of PolyACO

Figure 2 presents an overview of the approach. The data is separated using
ACO yielding a polygon. Next, the polygon is used in the classification with ray
casting. In this example, the first item to be labeled will be classified as a T1

(“Class 1”) since it is shown to be inside the polygon, while the second item will
be classified as T2 (“Class 2”) since it is outside the polygon.

In order to use ACO for encircling points into polygons, we extend the ACO
MAX − MIN update function (Eq. 2) with a cost function that measures the
quality of PolyAco solution. In order to find whether a point is within a polygon
we use ray casting.

3.1 Ray Casting

Vertical ray casting is used to consider whether an item is within or outside
a many edged polygon [15]. Ray casting is a simple algorithm that determines
where a virtual ray enters and exits a given solid.

In a two-dimensional XY-plane, a ray is sent with a y−coordinate and a bit
starting at 0 and is increased by one very time an edged is passed. When the
ray hits the item to be labelled, whether it is inside or outside the polygon is
determined by reading the bit. An even number means outside while an odd
number means inside. Formally, for node ti and a polygon s, we get h(ti, s)
representing to what extent it is inside or outside of the polygon as follows:

h(ti, s) =

{
1 if ti ∈ T1 and is inside of s.

0 otherwise
(3)

h(ti, s) gives 1 if ti is correctly inside of the polygon, 0 otherwise. Note that
the cost function f(s) in Eq. 4 handles both items correctly inside and correctly
outside of polygons.

3.2 Cost Function

Equation 4 presents the cost function. The cost function takes into account the
information about whether an item ti is inside or outside of a polygon s. It
measures how good a polygon s is at encircling and isolating one class in the
training data and is defined as:

f(s) =

∑
ti∈T1

h(ti, s) +
∑

tj �∈T1
(1 − h(tj , s))

|T | . (4)

58 M. Goodwin and A. Yazidi

In layman’s terms; function 4 gives the percentage of items that are either
correctly inside or correctly outside of the polygon. From the example in Fig. 1
the red polygon s correctly encircles all items of class T1, while correctly avoiding
to encircle any other items from the other class T2. Since s is a polygon that
perfectly separates the two classes, it gives f(s) = 1.2

Hence, the pheromones update obeys the following function, combining Eqs. 2
and 4.

Δτi,j =
f(s)
|s| (5)

The problem reduces to optimising f(s), given the training data T , subject
to the search space S — which is equivalent to finding an s∗ ∈ S so that f(s∗) ≤
f(s) ∈ S.

3.3 Training Phase

The classifier is trained using a guided walk with MAX − MIN ACO opti-
mising for the score function f(s) in order to create a polygon. Since new ants
released walk with a preference towards high pheromone areas, the ant will con-
verge towards a polygon that is a good separator. This polygon is the key to
the classification. Hence, the pheromones on the path are deposited directly in
accordance with a score function over the length of the path.

Note that the classifier, implicitly, performs optimization according to two
properties of the data: the score function f(s) and the length of the path, |s|.
A shorter path will give larger amounts of pheromones per edge than a longer
path because a shorter path gives pheromones over fewer edges.

The classifier can therefore be considered as a many-edged polygon with only
vertical or horizontal edges. The ants are not allowed to walk on nodes that has
previously been selected, except for the initial starting node.

Convergence. Figure 3 shows an example for optimisation over time, i, dur-
ing the training phase. The figure clearly depicts that in the beginning of the
optimisation, after 50 ants, i = 50, PolyACO has already found an acceptable
but imperfect solution that gives a score function f(s) = 0.830. The polygon s is
continuously improved according to two ways: (1) The result from the score func-
tion increases and reaches close to 1 at i = 850. It reaches 1 at i = 2000. (2) The
polygon becomes shorter over time. Consequently, the polygon is increasingly
better fitting the data as i increases in this example.

The algorithm includes some off-the-shelf features to aid the convergence
of the training, namely: graph pruning to help stuck ants, random start, and
pheromone evaporation.

Pruning: To improve the performance, the graph is after each iteration pruned
for indisputable simplifications. An example is a solution that goes directly from
2 Note that s is one of the possible polygons with the shortest circumference that is

able to perfectly separate the data. The reason for this is explained in Sect. 3.3.

Ant Colony Optimisation-Based Classification 59

i = 50 i = 350 i = 550 i = 850 i = 2000 i = 2500
f(s) = 0.830 f(s) = 0.869 f(s) = 0.873 f(s) = 0.999 f(s) = 1.0 f(s) = 1.0

Fig. 3. Example of best known polygon, s∗ over training periods.

node vi to vj , and directly back to vi. Such a solution is automatically pruned
by removing vi from the solution s.

Stuck ants: Since the ants cannot walk on previously visited nodes, they can eas-
ily get stuck. Any solution with stuck ants are simply ignored since the solution
is obviously not correct.

Random starts: The ants start at random positions in the grid. A natural strategy
would have been to always start the ants from the same node, say v1. Neverthe-
less, the “best” polygon s∗ harvesting the highest output from the score function
may not include v1. Accordingly, the ants start at a random node.

Pheromone evaporation: Pheromones are evaporated with 1 % probability. This
means that 1 % of the pheromones are after each iteration dropped to avoid too
early convergence and at the same time enable exploration. This is a balance
between exploration and convergence in line with the literature [19].

3.4 Classification Phase

The training phase produces a polygon s∗ that separates the training data in
two sets. For any new unknown item ti, the ray casting function from Eq. 3 is
used. If h(ti, s) = 1, ti is classified as T1, otherwise it is classified as T2. This
section presents results from various scenarios ranging from simple solutions with
easily separable data to more complex settings with noisy data both real-life and
synthetic. For each generated scenario, 1000 data points per class are generated
or extracted. For the real scenarios, all data is used. In all cases, half of the data
is used for training and the other half for classification as cross validation. All
scenarios are run with 10000 ants unless otherwise explicitly specified. Table 1
presents a summary of the results.3

Simple Environments. We shall present a simple experimental settings as
proof of concept of PolyACO. This section empirically shows that the approach
works in a simple environment with two easily separable sets of data. The data
is composed of two blocks of data: T1 and T2. Figure 4(a) shows the pheromone
trails after the training phase in this environment. The pheromones have built
3 Many more data sets where tested, but due to the limited space in the paper only

the most interesting results are included.

60 M. Goodwin and A. Yazidi

(a) PolyACO (b) PolyACO (c)Linear SVM
Pheromones Polygon

Fig. 4. Example of solutions based on easily separable items with the classes Black
(T1) and Gray (T2).

a rectangular polygon encircling all items in T1, but none of the items in T2.
Figure 4(b) presents the best known polygon s based on the pheromone trail.
Since this is a polygon that perfectly separates the classes, it yields f(s) = 1. The
mapping from pheromones to polygon in this example is quite straight forward.
Lastly, for comparison purposes, Fig. 4(c) depicts the corresponding linear SVM.
It is interesting to observe that PolyACO and SVM find the same boundaries.

This example strongly indicates that, for this particular example with easily
separable data, the result of the PolyACO is equivalent to that of a linear SVM —
both can be interpreted as perfect classifiers. Table 1 shows an overview of the
classification results. Both PolyACO and SVM reach an accuracy of 1.0 — which
is not surprising given the simplicity of the classification task.

Overlapping Data. In the above scenario, the data is organized so that it is
perfectly separable. In contrast, the data in Fig. 5 is more challenging because
it is overlapping — no line or polygon can perfectly separate the data sets.

Figure 5(a) shows the pheromones after the training phase. For the left- and
lower part of the polygon, the pheromone trail is strong — the lines are thick. In
contrast, where the data is overlapping in the diagonal where there are both items
from T1 and T2, the scheme is less confident the trail is less strong. This indicates
that when the confidence of the classifier is strong, PolyACO provides heavy
pheromone trails. Figure 5(b) shows the corresponding polygon, and Fig. 5(c)
and (d) show corresponding boundaries of linear and polynomial SVM.

From Table 1, we observe that PolyACO reaches an accuracy of 0.852, while
linear SVM reaches 0.837, and polynomial SVM reaches 0.842. A conclusion to
be drawn from this example is that PolyACO finds a slightly better boundary
than the SVM lines, presumably because the rigged lines better fits the data
than the straight and polynomial lines. Note that for this example, PolyACO
even outperforms SVM with Gaussian kernel.

Circular. Classification in a circular environment is particularly difficult
because there does not exist one mathematical function that separate the data

Ant Colony Optimisation-Based Classification 61

(a)PolyACO (b)PolyACO (c)Linear SVM (d)Polynomial SVM
Pheromones Polygon

Fig. 5. Example of solutions based on overlapping data with the classes Black (T1)
and Gray (T2).

without mapping it to multiple dimensions. The data is generated by a Gaussian
distribution from two circles with the same center but with two different radius.

Figure 6(a) shows that the polygon is able to perfectly encircle class T1, which
is only matched by SVM with and Gaussian kernel in Fig. 6(c). The linear SVM
in Fig. 6(b) and polynomial SVM (not presented as a figure) do not find any
viable solution.

By adding 5 % noise to the data, meaning that 5 % of the data is intentionally
wrongly labelled, Fig. 6(d) shows that PolyACO is still able to a close to perfect
solution despite this discrepancy.

Table 1 shows that PolyACO gets an accuracy of 1 compared to 0.538 for lin-
ear SVM and 0.892 for polynomial SVM. The PolyACO accuracy is only matched
by Gaussian SVM — which relies upon high dimension space. In the noisy envi-
ronment, the PolyACO algorithm has only marginally reduced accuracy to 0.948.
Correspondingly, the polynomial SVM dropped from 0.892 to 0.778.

Real Data Sets. Figure 7 shows the results from two real data sets from the
UC Irvine Machine Learning Repository4; namely the Iris Plant Database and
the Wine Quality Database. The intention is to show that the proposed scheme
works not only in synthetic environments, but with real data.

Figure 7(a) and (b) show the pheromone trail and corresponding polygon for
the Iris Plan Database. It is interesting to observe that there is evenly spread

esion%5htiw
(a)PolyACO (b)Linear SVM (c)Gaussian SVM (d)PolyACO Polygon

nogyloP

Fig. 6. Example of solutions based on circles with the classes Black (T1) and Gray (T2).

4 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/

62 M. Goodwin and A. Yazidi

(a)PolyACO (b)PolyACO (c)PolyACO (d)PolyACO
Pheromones Polygon Pheromones Polygon
for Iris for Iris for Wine for Wine

Fig. 7. Example of solutions with the classes Black (T1) and Gray (T2) for the real
data sets: Iris and Wine tasting.

out pheromones resulting in a solid polygon. Similarly, Fig. 7(c) and (d) show
the pheromone trail and corresponding polygon for the Wine Quality Database.
In this scenario, the data is more chaotic giving polygons with seemingly odd
edges. This demonstrates that PolyACO is able to find rather odd and complex
patterns. For both scenarios, the accuracy in Table 1 is very close to all variants
of SVM. For the Iris Plant Dataset the accuracy for PolyACO is 0.960 compared
to 0.980 for all SVM variants. For the Wine Quality Database, PolyACO reaches
an accuracy of 0.690 compared to 0.685,0.683, and 0.690 for linear, polynomial
and Gaussian SVM. Hence, assuming that SVM is able to classify the data well,
so is arguably the PolyACO algorithm.

3.5 Comparisons

Table 1 presents the classification accuracy of PolyACO on the problems intro-
duced in this paper. For comparison purpose SVM (with linear, polynomial and
Gaussian kernel) is presented with exactly the same data. To avoid side effects
due to the randomness of the data, all results are averages of 1000 runs. This is
true even for the real data where the only randomness is which data is used for
training and classification.

Table 1. Comparisons of the behaviour of various algorithms through classification for
Real or Generated data.

Problem Real or PolyACO Linear Polinomial Gaussian

Generated PolyACO SVM SVM SVM

Easily separable items Generated 1.0 1.0 1.0 1.0

Circles Generated 1.0 0.538 0.892 1.0

Noisy circles Generated 0.980 0.538 0.892 0.959

Overlapping data Generated 0.852 0.837 0.842 0.840

Iris Real 0.960 0.980 0.980 0.980

Wine tasting Real 0.690 0.685 0.683 0.690

Ant Colony Optimisation-Based Classification 63

4 Conclusion

In this paper, we introduced PolyACO, a non-hybrid Ant Colony Optimisation
(ACO) based classifier. To the best of our knowledge, PolyACO is the first non-
hybrid ACO based classifier reported in the literature. It uses a combination of
MAX − MIN ACO and Ray Casting. PolyACO is a classification algorithm for
data in two dimensions which relies upon encircling items with ant pheromones
so that the pheromone trails can be used as polygons in a classification scheme.

We demonstrate that PolyACO gives impressive performance by applying it
in many simulated and real environments. In all situations, PolyACO is able to
perform equally well or better than state-of-the-art algorithms such as Support
Vector Machine with linear, polynomial, and Gaussian kernel. PolyACO does
this without relaying upon high dimensional space or the “kernel trick”.

Even though PolyACO shows very promising classification performance, sev-
eral areas need further exploration. As a future work, we aim to extend the
current approach to work with more than two classes, potentially as a combi-
nation of multiple polygons similar to multiple functions separate many classes
in an SVM. Additional exploration when data are represented by more than
two features presumably means examining the behavior of PolyACO in more
than two dimensions, or as an intelligent combination of several two-dimensional
approaches. Furthermore, we plan to examine the fact some areas in the grid
could benefit from additional fine tuned resolution while other areas do not, for
example using multi-level ACO approach [9].

References

1. Asmar, D., Elshamli, A., Areibi, S.: A comparative assessment of ACO algorithms
within a TSP environment. Dyn. Continous Discrete Impulsive Syst.-Ser. B-Appl.
Algorithms 1, 462–467 (2005)

2. Chan, A., Freitas, A.A.: A new classification-rule pruning procedure for an ant
colony algorithm. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer,
M. (eds.) EA 2005. LNCS, vol. 3871, pp. 25–36. Springer, Heidelberg (2006)

3. Daly, R., Shen, Q.: Learning Bayesian Network Equivalence Classes with Ant
Colony Optimization (2014). arXiv preprint arXiv:1401.3464

4. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput.
Intell. Mag. 1(4), 28–39 (2006)

5. Gutjahr, W.J.: ACO algorithms with guaranteed convergence to the optimal solu-
tion. Inf. Process. Lett. 82(3), 145–153 (2002)

6. Hota, S., Satapathy, P., Jagadev, A.K.: Modified ant colony optimization algorithm
(MAnt-Miner) for classification rule mining. In: Jain, L.C., Patnaik, S., Ichalka-
ranje, N. (eds.) Intelligent Computing, Communication and Devices, pp. 267–275.
Springer, New Delhi (2015)

7. Junior, I.C.: Data mining with ant colony algorithms. In: Huang, D.-S., Jo, K.-
H., Zhou, Y.-Q., Han, K. (eds.) ICIC 2013. LNCS, vol. 7996, pp. 30–38. Springer,
Heidelberg (2013)

8. Karaboga, D., Ozturk, C.: A novel clustering approach: Artificial Bee Colony
(ABC) algorithm. Appl. Soft Comput. 11(1), 652–657 (2011)

http://arxiv.org/abs/1401.3464

64 M. Goodwin and A. Yazidi

9. Lian, T.A., Llave, M.R., Goodwin, M., Bouhmala, N.: Towards multilevel ant
colony optimisation for the Euclidean symmetric traveling salesman problem. In:
Ali, M., Kwon, Y.S., Lee, C.-H., Kim, J., Kim, Y. (eds.) IEA/AIE 2015. LNCS,
vol. 9101, pp. 222–231. Springer, Heidelberg (2015)

10. Liu, B., Abbas, H., McKay, B.: Classification rule discovery with ant colony opti-
mization. In: IEEE/WIC International Conference on Intelligent Agent Technol-
ogy, IAT 2003, pp. 83–88. IEEE (2003)

11. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental
comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104
(2012)

12. Martens, D., De Backer, M., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.:
Classification with ant colony optimization. IEEE Trans. Evol. Comput. 11(5),
651–665 (2007)

13. Neumann, F., Sudholt, D., Witt, C.: Analysis of different MMAS ACO algorithms
on unimodal functions and plateaus. Swarm Intell. 3(1), 35–68 (2009)

14. Parpinelli, R.S., Lopes, H.S., Freitas, A., et al.: Data mining with an ant colony
optimization algorithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)

15. Roth, S.D.: Ray casting for modeling solids. Comput. Graph. Image Process. 18(2),
109–144 (1982)

16. Salama, K.M., Abdelbar, A.M.: Learning neural network structures with ant colony
algorithms. Swarm Intell. 1–37, 229–265 (2015)

17. Salama, K.M., Freitas, A.A.: Ant colony algorithms for constructing Bayesian
multi-net classifiers. Intell. Data Anal. 19(2), 233–257 (2015)

18. Stützle, T., Hoos, H.: MAX-MIN Ant System and local search for the traveling
salesman problem. In: IEEE International Conference on Evolutionary Computa-
tion, 1997, pp. 309–314. IEEE (1997)

19. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Future Gener. Comput. Syst.
16(8), 889–914 (2000)

20. Stützle, T., López-Ibáñez, M., Dorigo, M.: A concise overview of applications of ant
colony optimization. Wiley Encycl. Oper. Res. Manage. Sci. 26(2), 25–27 (2011)

	Ant Colony Optimisation-Based Classification Using Two-Dimensional Polygons
	1 Introduction
	2 Ant Colony Optimisation (ACO)
	2.1 Standard ACO
	2.2 MAX-MIN ACO
	2.3 ACO for Classification

	3 PolyACO
	3.1 Ray Casting
	3.2 Cost Function
	3.3 Training Phase
	3.4 Classification Phase
	3.5 Comparisons

	4 Conclusion
	References

