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Abstract—Cloud Computing (CC) is becoming increas-
ingly pertinent and popular. A natural consequence of this
is that many modern-day data centers experience very high
internal traffic within the data centers themselves. The VMs
with high mutual traffic often end up being far apart in the
data center network, forcing them to communicate over un-
necessarily long distances. The consequent traffic bottlenecks
negatively affect both the performance of the application
and the network in its entirety, posing non-trivial challenges
for the administrators of these cloud-based data centers.
The problem can, quite naturally, be compartmentalized
into two phases which follow each other. First of all, the
VMs are consolidated with a VM clustering algorithm, and
this is achieved by utilizing the toolbox involving Learning
Automata (LA). By mapping the clustering problem onto
the Graph Partitioning (GP) problem, our LA-based solution
successfully reduces the total communication cost by amounts
that range between 34% to 85% when tested on real-life
data center traffic traces. Thereafter, the resulting clusters
are assigned to the server racks using a cluster placement
algorithm that involves a completely different intelligent
strategy, i.e., one that invokes Simulated Annealing (SA).
This phase further reduces the total cost of communication
by amounts that range between 89% to 99%. The analysis
and results for different models and topologies demonstrate
that the optimization is done in a fast and computationally-
efficient way. Indeed, as far as we know, this paper pioneers
the application of LA in the traffic-aware consolidation of
virtual machines in data centers, and also pioneers a strategy
which serializes the tools in LA and SA to optimize CC.

Index Terms—Cloud Computing, Virtual Machines, Graph
Partitioning, Learning Automata, Quadratic Assignment,
Simulated Annealing

I. INTRODUCTION
Cloud Computing (CC) is a relatively new phenomenon.

It refers to an environment and computational model
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in which physical and virtualized computing resources
are distributed and accessed over the network. CC is
maturing to become a very central paradigm within the
theory and applications of computation. Its robustness,
increasing user-friendliness, high flexibility and scalability,
combined with its cost efficiency [8], [23], [28], make it
an increasingly popular model in real-life enterprises.

One of the main reasons behind the success of CC
is that the concept of “virtualization”, central to this
computational model, allows the overall system to create,
clone, migrate, restore, etc. Virtual Machines (VMs) in
a time-effective manner with minimal effort from the
system administrator. Live migration allows VMs to be
moved from one physical host to another without the
client/customer noticing it. Consequently, CC is becoming
one of the major driving forces behind the rapid growth
of data centers around the world [13]. The goal of this
paper is to see how the VMs can be optimally placed
within a data center in a traffic-aware manner. Viewed
from a traffic-aware perspective, the resource of bandwidth
becomes a bottleneck in the higher layers of the network,
decreasing the performance when it concerns communi-
cation [36] between the applications. This also increases
the workload for the network elements on the aggregation
and core layers, which, in turn, often results in higher
power consumption within the data center [13], more
greenhouse emissions, and the increased business costs.
First of all, it is clear that, in most cases, the applications
communicating extensively with each other in the cloud
environment will belong to the same tenant. It would thus
be beneficial for the whole network if the VMs hosting
applications with high mutual traffic were deployed in
the close proximity with each other. To accomplish this,
we would like the VMs that communicate much with



each other to be “clustered” together. Such a placement
would relieve the network elements in the upper layers
of the networking infrastructure where the most expensive
equipment usually operate, and fully utilize the links at the
lower levels of the network. However, this, in and of itself,
is far from trivial because the traffic patterns are not known
a priori. Secondly, once we have identified the VMs that
really should be in the close proximity of each other, the
task is to assign them to the available server racks. This
paper addresses both these issues. Firstly, it investigates
how the VMs with high mutual communication can be
consolidated into clusters in order to reduce the total
communication cost. It then explains how these clusters
can be assigned to the racks.

One approach to resolve this problem could be to
attempt all possible combinations of VM placements and
choose the most optimal configuration. However, since
data centers usually host hundreds/thousands of VMs,
this would require us to test an astronomical number of
different permutations in order to find the best possible
placement when the number of VMs is greater than
20 — the task would be computationally infeasible. The
modus operandus suggested in this paper breaks down
the problem in two main parts - each associated with
one of the above distinct phases of solving the problem.
We first determine the VM clusters using a Graph Parti-
tioning (GP) algorithm. This is achieved by utilizing the
toolbox involving Learning Automata (LA). By mapping
the clustering problem onto the GP problem, our LA-based
solution successfully reduces the total communication cost
since it succeeds in consolidating VMs with high mutual
traffic into distinct clusters. We then address the second
phase of assigning the resulting clusters to the physical
hosts in the server racks in the data center. This problem
is not as computationally hard as the previous phase as any
algorithm that resolves the quadratic assignment problem
should be able to handle it. We have opted to solve this
phase by invoking the tools in the toolbox of Simulated
Annealing (SA).

II. RELATED RESEARCH AND BACKGROUND

Due to the exponential growth of CC, achieving a more
efficient resource provisioning in data centers has become
an increasingly critical issue that has attracted research
interest. This has led to proposals for more efficient and
scalable data center network architectures such as VL2
[16] and PortLand [30]. However, some researchers have
suggested a different, traffic-oriented VM consolidation
approach to the problem. The material in this section
surveys the field.

A. Network-aware Approaches

In this section, we shall briefly review the available re-
search avenues presented in the literature when it concerns
network-aware approaches.

IThe literature survey is quite detailed and comprehensive. It can be
abridged if recommended by the Referees.

Network-aware Virtual Machine Consolidation: Kaka-
dia, Kopri and Varma address the internal bandwidth opti-
mization problem in a data center by identifying groups of
virtual machines based on the network traffic in the data
center in [22]. The paper, which presents a network-aware
consolidation strategy for VMs for large data centers,
proposes a greedy consolidation algorithm to ensure a
small number of migrations and fast placement decisions.
The work includes algorithms to form VMClusters, to
select VMs for migration and to place them using the cost
tree. The paper reports experimental results that evaluate
the scheme in an extended simulated cloud environment
(NetworkCloudSim [14]) with its associated Software De-
fined Network (SDN) functionality support. It also uses
Floodlight? as the SDN controller. The paper measured the
runtime performance improvement for the jobs that were
executed, and based on these results the authors conclude
that I/O intensive jobs benefited the most. Besides these,
short jobs also showed significant improvements. In terms
of traffic localization, the results presented demonstrated
significant superiority to other approaches. The ToR traffic
displayed ~60% increase, while the core traffic yielded
~T70% improvement.

VM Placement and Migration in CC: Piao and Yan
[33] use a hypothetical scenario where a customer requests
a data storage space and VMs from a cloud service
provider in order to host the applications and process data.
In this scenario the resources are arbitrarily provisioned
without taking in account traffic usage and as a result
the data has to travel unnecessarily long distance. The
paper proposes VM placement and migration approach to
be deployed in the host broker which is responsible for
resource allocation. The VM placement algorithm makes
sure that the new VMs are placed intelligently so that
the communication occurs over the shortest possible path
while the VM migration algorithm is triggered when the
communication between existing resources suffers due to
some latency issues on the network. The latter algorithm
is triggered when the predefined service level agreement
(SLA) based on the execution time of the application
is breached. The VM migration algorithm relocates the
affected VM(s) intelligently to the physical host with
better network status. The experiment was conducted on
the CloudSim 2.0 [7] data center simulation environment
and the results showed improved task completion time.
Scalability of Data Center Networks Traffic-aware
VMs: Meng, Pappas and Zhang [29] address network
scalability by formulating the VM placement as an op-
timization problem and propose a two-tier approximation
algorithm to solve it for very large problems. The paper
takes in account recently-proposed data center network
architectures. The authors use real-life production data
center traffic traces and prove that they can obtain signif-
icant improvements when compared to existing methods
that ignore the traffic patterns and data center architectures.

Zhttp://www.projectfloodlight.org/floodlight/



The paper also specifies the network-aware VM placement
problem and attempts to optimize it by minimizing the
average traffic latency caused by the network infrastructure
with the assumption that each network element causes
an equal delay of communication between the VMs.
The so-called Cluster-and-Cut algorithm, which leverages
the unique features of the traffic patterns and network
topologies is used to optimize the solution. The algorithm
has two major components, namely SlotClustering and
VMMinKcut. The authors compare the results of Cluster-
and-Cut and the two associated benchmark algorithms
(i.e., LOPI [1] and SA [6]) involving an environment
with 1,024 slots and VMs are used. From the results
provided, one can conclude that the function value given
by the Cluster-and-Cut algorithm is ~10% smaller than
the measures obtained by the two benchmarks.

Starling: Minimizing Communication Using Decentral-
ized Affinity-Aware Migration: Sonnek et al. [36] intro-
duce a decentralized affinity-aware migration technique for
allocating VMs on the available physical resources. The
technique monitors the network affinity between the pairs
of VMs and uses a distributed bartering algorithm together
with VM migration in order to dynamically move VMs
in a way that ensures that the communication overhead
is minimized. This is achieved by placing the VMs with
a high mutual traffic as close to each other as possible,
and this could involve placing them in the same server
rack, cluster or local network. The salient contributions
of the paper include affinity-based VM placement and
migration, the implicit inference of dynamic job depen-
dencies, and an efficient decentralized control mechanism.
The affinity-aware migration algorithm runs on each node
and incorporates traffic monitoring and fingerprinting,
affinity inference and bartering and migration components.
The experiment was conducted on a 7-node Xen-based
cluster. The Intel MPI benchmark suite* and Cube MHD
Jet (Cube)* were used for simulation and benchmarking.
The results displayed about 42% improvement in the
application’s runtime over a technique that included no
migration, and up to 85% reduction in the associated
network communication overhead.

Detecting and managing vim ensembles: Liting Hu et al.
[19] presents an application called ‘Net-Cohort’, which is
a lightweight system that continuously monitors a system
to identify potential VM ensembles, evaluates the degree
of communication (or so-called ‘chattiness’) among the
VMs in the potential ensembles, and enables optimized
VM placement to reduce the stress on the bi-section
bandwidth of the data center network. Net-Cohort uses
commonly available VM-level statistics in order to create
VM subsets (or ensembles) using correlation values and
a hierarchical clustering algorithm. In the second step,
it invokes a statistical packet sniffer in order to identify

3Please see
benchmarks.
4Please see http://www.astro.umn.edu/groups/compastro/?q=node/1.

https://software.intel.com/en-us/articles/intel-mpi-

VMs as members of a misplaced ensemble using the
statistical algorithm proposed by Golab and De Haan
in [15], and to thus finally make new VM placement
decisions. The experiment was conducted on 15 Xen-
based hosts and 225 VMs. Net-Cohort displayed the
ability to detect VM ensembles at low cost with about
90% accuracy. The experimental results showed that the
new VM placement improved the application throughput
by 385% for an instance of RUBIS , while application
throughput for an instance of Hadoop improved by 56.4%.
The quality of service (QoS) for a SIPp instance displayed
an improvement by a factor of 12.76.

Introducing Predictive Guarantees: In their system Ci-
cada, LaCurts et al. [26] introduce predictive guarantees,
which represents a new abstraction for bandwidth guar-
antees in CC networks. This is achieved by analyzing
traffic traces gathered over six months from an HP Cloud
Services data center and developing a prediction algo-
rithm which is used by the cloud provider in order to
suggest appropriate bandwidth guarantees to the tenants.
Cicada’s prediction algorithm adapts Herbster and War-
muth’s “tracking the best expert” concept [18]. In order to
predict the traffic and the underlying patterns, they utilize
all the previously observed traffic matrices. The advantage
of this method is that it does not require an extensive
amount of data in order to make predictions. For VM
placement, they invoke a two-stage “virtual oversubscribed
cluster” (VOC) algorithm introduced in Ballani et al. [2]
which is designed to place clusters on the smallest subtree.
Cicada’s greedy algorithm tries to place the VM pairs with
the most intercommunication on the highest-bandwidth
paths, typically on the same rack, within the same subtree.
Cicada’s performance was compared to VOC algorithm
on a simulated physical infrastructure with 71 racks with
16 servers each. The reported results show that Cicada’s
placement algorithm leaves more inter-rack bandwidth
available.

Application-Driven Bandwidth Guarantees in Data-
centers: Lee et al. [27] introduce CloudMirror, a so-
lution that provides bandwidth guarantees to cloud ap-
plications by deriving a network abstraction based on
the application communication structure, referred to as
the “Tenant Application Graph” or TAG. CloudMirror
provides a new workload placement algorithm that meets
bandwidth requirements by using TAGs while taking into
account high availability considerations. The TAG model
is introduced as a graph, where each vertex represents an
application component (or a tier) set of VMs performing
the same function. A tenant can simply map each tier
onto a TAG vertex. Example of such tiers are the web,
business logic and database tiers. Users can either specify
a matching TAG model and tune the bandwidth guarantees
by themselves. On the other hand, they can resort to
cloud orchestration systems like OpenStack Heat or AWS
CloudFormation to generate TAG models. The simulation
environment was written in Python and both the efficiency



and the metric of accepting more tenant requests by
the CloudMirror placement algorithm (when compared to
other schemes) were evaluated in it. The results showed
that CloudMirror outperforms the performance of the
existing solutions. CloudMirror was able to handle 40%
more bandwidth demand when compared to the Oktopus
[2] system. It also improved the high availability from 20%
to 70%.

Reducing Network Power Costs in Cloud Data Centers:
The main focus in the paper by Fang er al. [13] is
to consolidate VMs in a way that allows a number of
network elements to become redundant and be removed
or put in a power-saving state. The authors propose
VMPIlanner, a novel approach for network power reduction
in cloud-based data centers. VMPlanner does not merely
try manage the VM placements but also the traffic flow
routing by implementing three approximation algorithms,
namely a traffic-aware VM grouping algorithm, a distance-
aware VM-group to a server-rack mapping algorithm, and
power-aware inter-VM traffic flow routing algorithm. The
VMPIlanner system consists of three modules: an analyzer,
an optimizer and a controller that can all be implemented
as NOX applications [17] to run on top of a network
of OpenFlow switches. The performance of VMPlanner
was evaluated on a simulator developed in C++ using
simulation parameters and traffic conditions from real
cases obtained from a private data center test-bed [10]. The
experiment was conducted with 2,000 VMs. The results
reported were very preliminary but, at the same time, the
paper succeeded in demonstrating the potential of reducing
power usage by consolidating VMs in a traffic-aware way
and intelligently routing the traffic.

III. THREE-TIER NETWORK ARCHITECTURE

A data center network is traditionally based on a layered
[34] or a three-tier approach. Such a three-tier network
architecture consists of three layers of switches and routers
(see Fig.1). The layered approach is designed to enhance
scalability, high performance and flexibility and to also
improve the maintenance associated with data center net-
works. These layers are explained below.

Access layer: This is where the servers are physically
connected to the network by connections to the Layer 2
switches, also called the Access or Edge switches.

Aggregation layer: This layer provides functions such
as service module integration, Layer 2 domain definitions,
spanning tree and default gateway redundancy.

Core layer: This layer handles all the incoming and
outgoing traffic that comes in and leaves the data center.
This layer provides the connectivity required to various
aggregation modules. It handles the Layer 3 networking
with the access and border routers.

IV. DATA CENTER NETWORK ARCHITECTURES

Due to the exponential growth of the cloud in data
centers and the evolution of the computers in an of
themselves, computing power is no longer the constraining

Internet

Layer 3
Core layer i ~_ %

Fig. 1: The architecture of a traditional layered data center.

factor in the data centers. The servers are becoming
increasingly powerful and as the phenomenon of CC
grows, the number of VMs correspondingly explodes.
Thus, data centers are faced with inherent problems in
the traditional data center network (DCN) architecture.
This leads to real problematic issues such as bandwidth
bottlenecks, oversubscription in the higher layers and the
under-utilization of the lower layers of the data center
network are becoming [4]. To resolve this, several new
approaches to designing data center network topologies
have been proposed in the recent years, one of which is
the “tree topology” discussed below.

A tree topology: As mentioned previously, modern-
day data centers usually follow traditional three-tier (or
three-layer) network architectures. At the lowest level,
referred to as the access tier, hosts connect to one or
multiple access switches. Each of the access switches
is connected to one or multiple aggregate switches at
the aggregation layer. The aggregation switches, in turn,
connect to multiple core switches at the core layer. This
design creates a tree-like topology where packets are
forwarded according to a Layer 2 logical topology [29].
The higher level network elements are usually enterprise-
level devices and are often highly oversubscribed.

A. Cost matrix

A cost matrix (or a distance matrix) is a two-
dimensional array which contains information about the
communication cost (or the distance) between the pairs
of nodes in a set of nodes. The matrix usually has a size
of N x N, where N is the number of the nodes in the
set of nodes. Each row in the matrix corresponds to a
single node denoted by ¢ and each column also represents
a single node, denoted by j.

C1,1 C1,2 C1,N
21 C22 -+ Ca2 N

Co=1 . . . 1
CN,1 CN,2 CN,N



In the example matrix displayed above, each element of
the matrix represents cost of communication from node ¢
to node j, or quantifies the “distance” from node ¢ to node

-

V. PROPOSED VM CLUSTERING ALGORITHM

We shall now explain the strategy that we use to resolve
the assignment of VMs. The reader must first of all
appreciate that the assignment of VMs is essentially a
clustering exercise. Indeed, since the traffic patterns are not
known a priori, the assignment algorithm must learn the
best assignment by inferring this from the real-time traffic.
In other words, the VMs that communicate much with
each other must be in the close proximity of each other,
while those that communicate less could be, potentially,
placed further apart. With a little insight, one can see that
this is precisely equivalent to the problem of partitioning
the nodes of a graph into subsets based on some pre-
defined similarity criteria. This is exactly the paradigm
that we invoke. Our proposed VM clustering algorithm is
based on Oommen’s Graph Partitioning Using Learning
Automata (GPLA) [32] algorithm. That being said, the
GPLA, in and of itself, is not directly applicable to our
application domain. Rather, we shall see that it has to be
adapted to resolve VM assignment. The GPLA attempts to
solve the Graph Partitioning Problem (GPP) [5], [11], [21]
by using the toolbox that incorporate stochastic Learning
Automata (LA), which learn the optimal action offered by
a random environment. Learning is achieved by interacting
with the environment as it constantly changes and by
processing the response of the environment to the actions
taken. In this paper we deal with a version of the GPP
in which all the sub-partitions are of equal size, and
this is precisely the so-called Equi-Partitioning Problem
(EPP). The best solution to the EPP is the so-called Object
Migrating Automaton (OMA) proposed by Oommen and
Ma [31]. This technique will be adapted for the GPP and
used in the proposed VM clustering algorithm. As we will
explain later in the section explaining the experimental
results, the algorithm adapted for this work will read the
set of 1,600 nodes or vertices distributed over 16 sub-
partitions, also referred to as groups or arms, and deliver
as its output the final solution of the corresponding graph
partitioning problem. This will be achieved by adopting
the OMA used in Oommen’s algorithm. The strategy
will involve checking pairs of vertices that are randomly
selected by the algorithm in order to determine whether
they are connected “significantly”, based on which they
will be either rewarded or penalized depending on the
corresponding conditions ofconnectivity. In order to de-
termine whether the nodes are connected “significantly”,
we specify two important thresholds, SimilarityThreshold
and DissimilarityThreshold, calculated by the following
formulae:

SimilarityThreshold = (1 + p)MeanEdge
DisimilarityThreshold = (1 — p)MeanEdge

where p will be set to the fixed value of 0.25 and
the MeanEdge value will be calculated by computing the
average edge value based on all the nonzero elements (or
edges between the nodes) of the symmetric VM traffic
matrix D.

When two random vertices V; and V; are picked and
their corresponding edge D;; is higher than the Similar-
ityThreshold the two nodes will be regarded as similar.
If the nodes are found to be in distinct sub-partitions
they will be penalized since this state is unfavorable. If,
however, the nodes are found in the same sub-partitions
they will be rewarded since this scenario is favorable.
The penalize action will move the nodes closer to the
MinimumCertainty state towards the outer boundary of
the sub-partition while the reward action will push the
nodes deeper into their sub-partitions, i.e., towards the
MaximumCertainty state. When the nodes reach the outer
boundaries of their sub-partitions they could be made
to migrate from their current sub-partitions and moved
to a better one. This process will be repeated until the
maximum number of iterations is reached.

A. Pseudocode for the VM Clustering Algorithm

The designed and implemented VM clustering algo-
rithm is described by the following pseudocode:

o V= {V1,Va,...,Vkn}: The set of vertices to be
partitioned

e {a1,as,...,akx}: Set of actions a node can fall into
(K sub-partitions)

o {®1,Po, ..., Prps}: Set of memory states or memory
depth M)

o E: Edges between the nodes with the associated
traffic matrix D

e 8 = {0,1}: Input set, where O is reward and 1 is
penalty

o (): Transition function, which explains how the ver-
tices should be moved between the states

o G Function, which partitions the set of states for the
sub-partitions

VI. ENHANCEMENT OF THE OMA ALGORITHM FOR
SOLVING OUR PROBLEM

Our primary objective is to assign the VM clusters
to the server racks in a manner that decreases the total
cost of communication. This assignment problem will be
treated as a Quadratic Assignment Problem (QAP) [20],
[25], [29], [35], known to be one of the most difficult
combinatorial optimization problems. The assignment of
the 16 clusters to the available 16 server racks that gives
the lowest total communication cost will be considered
as the best assignment. The task of the cluster placement



Data: Node indices i and j, where w; and w; are the
state indices of similar nodes in the same
sub-partition.

if w; mod M # 1 then /x 1 is not in the

most internal state */
‘ W; = W; — 1

end

if wj mod M # 1 then /x j is not in the
most internal state */
‘ OJj = OJj -1

end

Procedure The Pseudocode for the Function Reward-
SimilarNodes(i,j)

algorithm will be to conduct a search of the best assign-
ment in the possible solution space. Since the solution
space for 16 groups is an astronomically large number
(i.e., 16!) the exhaustive search approach in order to find
the best solution is computationally infeasible. Instead,
we seek a solution that is “most optimal” from among a
specific pool of solutions. In order to find such an optimal
solution to QAP, we will invoke a simulated annealing
(SA) phase [9], [24]. SA ensures that the algorithm does
not get trapped in a local minimum and that it will be given
a chance to explore a wider range of possible solutions
by visiting even the inferior solutions with constantly
decreasing probability [12].

1) Setting the Initial Cluster Placements: The cluster
placement algorithm will read the set of nodes previously
partitioned by the VM clustering algorithm and the VM
cluster traffic matrix .S in order to check all the possible
cluster pairs and sort them by the corresponding edge
values {5;;} in the descending order. Subsequently, the
total cost of communication will be calculated using the
VM cluster traffic matrix S and the communication cost
matrix C. The result of this step will be set as the initial
and the current best states of the VM clusters. Observe that
the initial placement will be an already-improved place-
ment when compared to randomly-aligned VM clusters,
and this helps the cluster placement algorithm to find an
even more superior solution. In this regard. the total cost
of communication will be calculated by summing all the
edges multiplied by their corresponding communication
costs using the following formula:

Commroa = Y Dij-Ca(iyniyy ()

ij=-,n

where D;; denotes a traffic rate between nodes V; and Vj,
and Cr(;)x(;) denotes the cost of communication between
the server racks that the nodes V; and V; are assigned to.

A. The Simulated Annealing Process

Once the initial placement has been established and the
initial total cost of communication has been calculated the
algorithm will start executing the N number of iterations

Data: Node indices i and j where w; and w; are the
state indices of dissimilar nodes in the same
sub-partition

if ((w; mod M) # 0)and((w; mod M) #0)))

then

w; =w; + 1

wj =wj + 1

end
else
if w; mod M # 0O then
w; =w; + 1
TempStatel = EvaluateCost of current
partitioning
Prev_Cost = EvaluateCost of current
partitioning
for all remaining K — 1 partitions do
wp, = state of node closest to boundary in
this current sub-partition
TempState2 = w),
wj = (wpdivM +1) - M
wp = TempStatel
New_Cost = EvaluateCost of current
partitioning
if New_Cost > Prev_Cost then
wp = TempState2
wj = TempStatel

end

else
| Prev_Cost = New_Cost

end

end
else
w; =w; +1
TempStatel = w;
Prev_Cost = EvaluateCost of current
partitioning
for all remaining K — 1 partitions do
wy, = state of node closest to boundary
in this current sub-partition, oz
TempState2 = w,
w; = (wpdivM + 1) - M
wy, = TempState]l
New_Cost = EvaluateCost of current
partitioning
if New_Cost > Prev_Cost then
wp = TempState2
w; = TempStatel

end

else
| Prev_Cost = New_Cost

end

end

end

end
end
Procedure The Pseudocode for the Function Penal-

izeDissimilarNodes(i,j)



Data: Node indices i and j, where w; and w; are the
state indices of similar nodes in the different
sub-partitions.

if (((w; mod M) # 0)and((w; mod M) #0)))

then

wi=w;+1/+ both are in internal

states */

Wi = Wj +1

else

end

if w; mod M # 0 then /+x v; is in

internal state */
w; =w; +1 /+x update state of v
*/
temp = w; /*x store the state of
vy */
wj = (widivM) - M /% move v; to
v;’ s sub-partition */

t := index of a node in v;’s sub-partition
with v; # v; and v; closest to the boundary

state of w;

w; =temp /+ move v; to the old

state of vj */

else

end

if w; mod M # 0 then /» v; has to

be moved */
w; =w; +1/+ update state of
Vj */
temp = w; /* store the state
of w; */
w; = (widivM)-M /+ move v; to
v;’s sub-partition */

t := index of a node in v;’s sub-partition
with v; # v; and v, closest to the
boundary state of w;

w; =temp /* move vy to the old
state of w; x/

end

end

end
Procedure The Pseudocode for the Function PenalizeS-
imilarNodes(i,j)

by starting at a predefined value T" (temperature) and de-
creasing the temperature gradually. During each iteration
two distinct clusters will be chosen and they will swap
with places.

After each swap the total cost of communication will
be calculated and the new state will be stored temporarily.
If the new state yields total cost of communication which
is superior to the previous (or the initial) total cost of
communication the algorithm will set is as the current best
state. If the new state is inferior to the previous state the

Input: The set V = {v1,v9,...,vxN} to be
partitioned into K sub-partitions.
D is adjacency traffic matrix and Vy, Vs ...
are current feasible sub-partitions.
p is a parameter used to determine the
similarity or dissimilarity of the vertices.
M=100.
Output: The final partitions {V1, Va, ...
Preprocess:
Compute Mean_Edge. Randomly partition V
into {V1,Va, ..., Vi }
Assign all nodes to the boundary state of the
actions
Data: Set of nodes to be partitioned:
V= {Ul, V2, ..., UKN}

Result: The final solution to the GPP

Method:

for Iteration :=1 to Max_Iterations do

for a random edge E;; do

if Ci; > (1 + p) - Mean_Edge then

if v; and v; are in same sub-partition

then
| RewardSimilarNodes(i,j)
end
else
| PenalizeSimilarNodes(i.j)
end

Vi

, Vie}

end
else
if Ci; < (1—p)- Mean_Edge then
if v; and v; are in same sub-partition
then
| PenalizeDissimilarNodes(i,j)
end
end
else
| Pass

end

end

end

end
Algorithm 1: The Pseudocode for the Function Clus-
terVMs

algorithm will move to it with a certain probability, P,
calculated as below:

s

P=eT, 3

where A = TotalCostyew, — TotalCostyg, is the dif-
ference between the total communication cost yielded by
the new state and the total communication cost of the old
state, and 7' is the temperature.

This process will ensure that the algorithm does not get
stuck in the local minimum and falsely assume that the
optimal result has been obtained. Initially, the probability
P will have a higher value implying that the algorithm



will accept inferior results more frequently. However, as
the temperature 7' decreases over time, the value of P will
gradually decrease and the algorithm will be less and less
likely to accept inferior results. The simulated annealing
technique will render to the cluster placement algorithm
the potential of exploring a wider range of the possible
solutions space. Ultimately, it will yield the most superior
solution encountered.

Pseudocode of the Cluster Placement Algorithm

The implemented cluster placement algorithm is de-
scribed in detail with the pseudocode below:

Input: Set of N partitioned VM clusters
G ={g1,...9gxn} to be assigned to K server racks.
Output: Final solution to QAP.
Preprocess:Compute the cluster communication
matrix S.
Find the highest mutual traffic cluster pairs and sort
the set of clusters accordingly. Store the initial state
as BestState
Calculate the corresponding total cost of
communication, T'otalCost BestState

for Temperature := T to 0 do
Decrease T

for random distinct clusters G; and G; do
TempState = SwapPositions

Calculate T'otalCostrempstate
if TotalCostrempstate |
TOtalCOStBestState then

BestState = TempState /+ go to

the new state */
BestTotalCost = TotalCostestState
end
else
| Retain BestState
end
if TOtalCOStTe’mpState é TOtalCOStBestStute
then
P=e¢"7/+ Calculate
probability P */
if P ; RandomValue then
BestState = TempState /x go
to the new state */
BestTotalCost =
TotalCost geststate
end
else
| retain BestState
end
end
end
end

Algorithm 2: The Pseudocode for the algorithm to
place clusters.

VII. EXPERIMENT SETTINGS

In order to test the proposed algorithms on various kinds
of data sets and to be able to retrieve reliable results, we
performed two sets of experiments. They were conducted
with two different sets of 1,600 VMs selected from the
obtained traffic traces.

The communication data used in this work is obtained
via third party source which made the data available for
the public use. Three actual data center traffic traces
are published on the Computer Sciences User Pages of
the University of Wisconsin-Madison’. The data sets are
dated from 2009 and represent three different university
data centers studied in the paper titled Network Traffic
Characteristics of Data Centers in the Wild [3].

UNII1 data center traces are chosen for the data center
traffic simulation in this work. The traffic traces are
originally stored in the binary packet capture (PCAP) files.
Roughly one hour of traffic data is stored in 20 PACP
files. The start timestamp of the data used in this work is
2009-12-17 17:26:04 and the end timestamp is 2009-12-
17 18:31:19.

The important assumption is that the chosen traces,
even though they represent a short period of time, reflect
the traffic behavior of an average data center over longer
periods of time and can be generalized for other data
centers as well.

We also understood the importance of having a plan by
which one could perform the measurement and evaluation
of the experimental results. We conducted three experi-
ments on each of the simulated data center networking
architectures. In each case, we conducted a separate ex-
periment in order to observe changes in the intracluster
and the intercluster traffic caused by the VM clustering
algorithm with the use of graph partitioning. In the ex-
periments titled “Set A”, we randomly selected the set
of 1,600 VMs from the collected traffic traces, with the
expectation that this set of 1,600 VMs will contain several
VMs who have rather high mutual traffic while most of the
VMs communicate with each other at a significantly lower
rate. As shown in the previous sections, due to the VM
clustering algorithm consolidating VMs with high mutual
traffic in the same clusters, the intracluster communication
increased by 1,369.28% while the intercluster traffic de-
creased by 84.92% at the same time. These changes caused
the decrease of the total communication cost by 97.17%
in the Tree set-up, by 96.82% in the Fat-tree set-up,
and by 97.02% in the VL2 set-up. The smart assignment
of the clusters to the server racks with the use of the
simulated annealing implemented in the cluster placement
algorithm further decreased the total communication cost
by 99.58% in Tree set-up, by 99.52% in the Fat-tree
set-up, and by 99.56% in the VL2 data center network
architecture models. Figure 2 illustrates the total cost of
communication with randomly assigned VMs, after the

Shttp://pages.cs.wisc.edu/ tbenson/IMC10_Data.html



VM clustering phase and after cluster placement in all
three data center network architecture models.

\ | mean | stdev | Aprev.mean | Doverall
Tramarreen | 1601453698.57 | 1811663136 | — —
TGpTreeB 1061026520.0 12608363.74 | -33.75% -33.75%
TgupTrees | 2424486590 | 37348177 | 97.71% -98.49%
Trandrerecs | 19507522360 | T7762337.15 | — =
Tapptreen | 128887747549 | 12621967.57 | -33.93% 33.93%
Touprirees | 3082593492 | 36122503 | -97.61% -08.42%
Thanavion | 183500974869 | 2210044920 | — =
TopvizB 1211796514.7 10158873.22 | -33.99% -33.99%
Toupvion 28061769.69 | 410242.89 | -97.68% 98.47%

TABLE I: Changes in the total cost of communication for
the various set-ups in the case of the data in Set B.
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Fig. 2: Total cost of communication in all three experi-
ments in Set A.
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Fig. 3: Intra and intercluster traffic heatmap before exe-
cuting the GP in Set A.

VIII. CONCLUSION

The aim of this paper was to demonstrate how a Learn-
ing Automaton-based Graph Partitioning (GP) algorithm
could be used to consolidate VMs in a traffic-aware
manner, and to also show how a subsequent solution to
a quadratic assignment algorithm could help in assigning
the produced VM clusters to the server racks in order to
reduce the total communication cost in a data center.

9 10 11 12 13 14 15 16

Fig. 4: Intra and intercluster traffic heatmap after executing
the GP in Set A.
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Fig. 5: Total cost of communication in all three experi-
ments in in the case of the data in Set B.
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Fig. 6: Intra and intercluster traffic heatmap before exe-
cuting the GP in Set B.

The analysis showed that the VM clustering algorithm
was fast, resource-effective and extremely capable of con-
solidating the VMs with high mutual traffic in clusters
while the cluster placement algorithm managed to find a
significantly improved placement for the resulting clusters
in all the data center network topologies tested.
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