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Abstract. The field of game playing is a particularly well-studied area
within the context of AI, leading to the development of powerful tech-
niques, such as the alpha-beta search, capable of achieving competitive
game play against an intelligent opponent. It is well known that tree
pruning strategies, such as alpha-beta, benefit strongly from proper move
ordering, that is, searching the best element first. Inspired by the for-
merly unrelated field of Adaptive Data Structures (ADSs), we have pre-
viously introduced the History-ADS technique, which employs an adap-
tive list to achieve effective and dynamic move ordering, in a domain
independent fashion, and found that it performs well in a wide range
of cases. However, previous work did not compare the performance of
the History-ADS heuristic to any established move ordering strategy. In
an attempt to address this problem, we present here a comparison to
two well-known, acclaimed strategies, which operate on a similar philos-
ophy to the History-ADS, the History Heuristic, and the Killer Moves
technique. We find that, in a wide range of two-player and multi-player
games, at various points in the game’s progression, the History-ADS per-
forms at least as well as these strategies, and, in fact, outperforms them
in the majority of cases.

1 Introduction

Achieving competitive play in a strategic board game, against one or more in-
telligent opponents, is a canonical problem within the field of AI. From the
inception of the field to the present, a broad corpus of literature has been pub-
lished on this topic, introducing a wide range of strategies to achieve effective
game play, in a wide range of board games [1–3]. In particular, one of the most
studied and acclaimed techniques is the alpha-beta search, which is capable of
achieving a much greater look-ahead, or search depth, in game trees, by pruning
large sections of the search space [4, 5]. It is furthermore well-established that
the efficiency of alpha-beta pruning is highly dependent on proper move order-
ing, that is, searching the strongest moves at each level of the tree first, and
a range of move ordering heuristics have been developed to achieve this [2, 6].
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These include the highly regarded and well-studied History Heuristic, and the
Killer Moves strategy [6, 7].

Although a broad range of techniques for achieving competitive game play
have been introduced, the majority of the literature focuses on Two-Player
games, such as Chess and Go, with substantially less emphasis placed on Multi-
Player (MP) games [2, 8]. Indeed, it is well known that most of the techniques for
MP games are extensions of corresponding two-player strategies, and often have
trouble performing on the level of their counterparts, for a variety of reasons [9–
12]. In an attempt to improve MP strategies, in earlier papers, we derived tech-
niques from the formerly unrelated field of Adaptive Data Structures (ADSs), a
field concerned with reorganizing a data structure dynamically, to match query
frequencies [13, 14]. A technique to improve move ordering in a state-of-the-art
MP algorithm, the Threat-ADS heuristic, was introduced in [15], and expanded
on in [16]1. Based on this success, we later generalized ADS-based strategies to
both two-player and MP environments, introducing the History-ADS heuristic
[17]. The History-ADS heuristic operates by ranking potential moves, based on
their previous performance within the tree, using a list-based ADS.

The History-ADS heuristic demonstrated an ability to produce substantial
improvements in terms of tree pruning in a wide range of cases, and without
a substantial investment in terms of computational resources [17, 18]. However,
while the History-ADS heuristic has produced known benefits, it has not been
directly compared to known previously-reported move ordering strategies. Given
its conceptual similarities to the History Heuristic and the Killer Moves strategy,
in this work we present a comparison of its performance to these two well-known,
highly regarded techniques, and demonstrate that it is capable of performing on
their level, and in fact, outperforming them in some cases.

The rest of the paper is laid out as follows. Section 2 discusses in detail the
motivation behind our work in this paper, and Section 3 describes the Threat-
ADS and History-ADS techniques in depth. Section 4 describes our experimental
design, and the game models we will be employing in our work. Section 5 presents
our results for both two-player and MP games, and Section 6 provides our dis-
cussion and analysis of these results. Lastly, Section 7 concludes the paper.

2 Motivation

Our previous work in [17] and [18] demonstrated the potential benefits of the
History-ADS heuristic in a wide range of environments, and explored a large
number of possible configurations within these environments. Unlike the Threat-
ADS heuristic, however, which pioneered an entirely new concept, i.e., that of
using opponent threats to achieve move ordering, the History-ADS heuristic
achieves move ordering through move history, a known metric. While large re-
ductions, of over 75%, for a relatively lightweight technique, clearly demonstrate
the success of the History-ADS, we cannot be sure of its actual relative benefits,
unless it is compared to established, well-known techniques of a similar nature.

1 The latter paper won the Best Paper Award of the IEA/AIE conference in 2015.
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Given the similarities in principle behind the History-ADS heuristic, and
both the History Heuristic and Killer Moves, we have elected to present a com-
parison between its performance and these two well-known methods, under a
similar testing domain to that employed in our earlier work. By providing this
comparison, we believe that we will be able to place the History-ADS heuris-
tic’s achievements in the proper context and perspective. Furthermore, it may
actually be the case that the History-ADS heuristic is able to outperform one or
both of them, which would be a very valuable result, given its inexpensive cost.

In fact, we have reason to suspect that the History-ADS heuristic may be
capable of outperforming the History Heuristic in at least some domains. This is
based on the premise of the results presented in [18]. The History Heuristic em-
ploys a relatively complex mechanism to rank moves, compared to the History-
ADS heuristic. It is, however, less sensitive to change than the History-ADS
heuristic, when employing a “Move-to-Front” adaptive list, which was found to
perform better than strategies that are more conservative in their structural
changes in our previous work. It may prove to be the case that in at least some
domains, the extreme adaptability of the Move-to-Front rule will outperform
even the elaborate History Heuristic. This begs investigation.

The Killer Moves heuristic is already conceptually very similar to the History-
ADS operating with a “multi-level” ADS, introduced in [18] (this concept will be
described in detail in the next section). In that paper, we found that a single ADS
generally outperformed the multi-level variant, despite some potential drawbacks
of applying the same list at all levels of the tree. Given that the Killer Moves
strategy typically retains fewer moves, at each level of the tree, than any of the
multi-level approaches we have previously explored, we highly suspect that the
History-ADS, employing a single list, will be able to outperform it.

The potential to achieving performance on the level of the well-regarded
History Heuristic and Killer Moves, using an ADS-based strategy, motivates the
work presented in this paper.

3 Previous Work

ADSs were, as mentioned earlier, were originally designed to reorganize their
structure, in response to queries over time, to better match access frequencies
[13, 14]. An example of a specific ADS update mechanism, for adaptive lists, is the
Move-to-Front rule, where the accessed element is moved to the head of the list,
and thus, will tend to remain close to the front if it is frequently accessed. The
reader will observe, however, that this organization also provides an intuitive
mechanism by which the elements of the data structure could be ranked. Our
previous work is based on harnessing the lightweight mechanics of ADSs to serve
as a ranking mechanism for elements of a game, such as players, moves, or board
positions, and leveraging this ranking to achieve improvements in performance.
Currently, we have focused on achieving better move ordering, and thus tree
pruning, although this strategy may have broader applications.
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Threat-ADS: Our first attempt to apply ADS-based techniques to game
playing, was motivated by the desire to improve performance in the under-
studied field of MP games. In a MP environment, as opposed to the two-player
case, there are many opponents to consider, instead of just one. Intuitively, each
of these opponents may threaten the player to a different extent. We focused on
the Best-Reply Search (BRS), a recent, powerful MP strategy, which seeks to
manage the complex case of multiple opponents by unifying them into a single
“super-opponent” in its search, which minimizes the player [10]. We observed
that the BRS did not unify the moves for each opponent, at each MIN level of
the tree, in a specific manner, and thus introduced the Threat-ADS, which uses
a small adaptive list containing opponents, to dynamically determine the best
method to do this. An example of the Threat-ADS heuristic in action is shown
in Figure 1. The Threat-ADS heuristic was found to produce statistically signif-
icant results in a wide range of cases, considering different update mechanisms,
ply depths, and games [16, 19].

Fig. 1. The BRS without Threat-ADS on the left, and with it on the right. Notice how
a cut is made faster in the second case.

History-ADS: Based on the success of the ADS-based Threat-ADS heuris-
tic, we sought to generalize its specific, MP approach, to be applicable to both
MP and two-player games. Rather than seeking to rank opponents, which only
has applicability in the MP space, we drew inspiration from the well-known His-
tory Heuristic, and employed a list-based ADS to rank moves. The History-ADS
heuristic operates in the context of the alpha-beta search, maintaining a list of
possible moves. When a move produces a cut, the ADS is “queried” with the
identity of that move, and it is moved towards the head of the list, according
to the ADS’ update mechanism. When moves are explored at a new level of
the tree, this is done in the order dictated by the ADS, if applicable, similar
to exploring the killer moves first. An example of the History-ADS heuristic in
action is provided in Figure 2.

Results from previous work demonstrated clearly that the History-ADS heuris-
tic was capable of obtaining very large reductions in the tree size, through im-
proved pruning, in a wide range of cases [17]. It was furthermore shown to
perform best using the Move-to-Front update mechanism, relative to less sen-
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Fig. 2. A demonstration of how an ADS can be used to manage move history over
time. The move (7,8) to (8,8) produces a cut, and so it is moved to the head of the
list, and informs the search later.

sitive strategies, and that it could keep most of its performance with a strong
restriction on the length of the list [18].

4 Game Models and Experimental Setup

Given that our work in this paper is a logical “next step” of our previously pub-
lished work, it is sensible for us to employ an analogous set of experiments, and
employ a similar software framework, to that which was employed in [17]. We
are interested in the improvement in tree pruning, when employing the History-
ADS heuristic, relative to the established History Heuristic and Killer Moves
techniques. We accomplish this measurement by recording an aggregate of the
Node Count (NC) over several turns of the game. The NC is defined as the num-
ber of nodes that are expanded during the search, i.e. excluding those generated
but then pruned before being visited. Historically, this metric has been shown
to be highly correlated to runtime, while also being platform-agnostic [6]. For a
variety of MP and two-player games, we average this value over fifty trials, for
each technique in question.

As in our previous work, we will employ the known MP games Focus, and
Chinese Checkers, as well as a territory control game of our own devising, which
we have named the Virus Game, the rules for which are described in [15]. We will
employ the same two-player games as well, including the two-player variant of
Focus, the game Othello, and the very well-known Checkers, or Draughts. How-
ever, the requirement in Checkers that forces jumps when possible, often leads
to a game with a very small branching factor, with a highly variable number of
moves available at the midgame state. Thus, for our experiments, we choose to
relax this rule, and do not require that a player must necessarily make an avail-
able jump. We shall refer to this game as “Relaxed Checkers”. While Checkers
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has been solved, nevertheless serves as a useful testing environment for the gen-
eral applicability of a domain-independent strategy, given how well-known and
documented the game is in the literature [20].

Rather than simply test the performance of the History-ADS and other tech-
niques from the initial board state, which can be relatively unchanging between
games, we also provide results for the midgame case, as we did previously in [16].
In order to generate reasonable midgame states, we have intelligent agents play
the game for a number of turns, before measurements take place, in each trial.
The details of how midgame states are generated is described in greater detail in
[16]. The number of turns the games are advanced for has been refined through
observation, and the values we use in this work are 15 for the Virus Game, 5
for Focus (both MP and two-player versions) and Relaxed Checkers, and 10 for
Othello and Chinese Checkers.

The number of turns we aggregate the NC over, for both initial and midgame
cases, is 5 for Relaxed Checkers, Othello, and Chinese Checkers, 3 for Focus
(given its short duration), and 10 for the Virus Game. To determine statistical
significance, we employ the Mann-Whitney test due to a lack of guaranteed
normalcy in the data. Lastly, we provide the Effect Sizes, which serve as an
easily readable indication of the degree of the savings in terms of tree pruning.
We employ a domain-independent version of the History Heuristic, based on its
original specification in [6].

Our results are presented in the following section.

5 Results

The following sections present our results, as well as our statistical analysis, of
the History-ADS heuristic in comparison to the History Heuristic, and the Killer
Moves technique, in both two-player and multi-player contexts.

5.1 Results for Two-Player Games

Our results for Othello are presented in Table 1. We observe that in both the ini-
tial board position and midgame cases, the History-ADS heuristic outperformed
both the History Heuristic, and Killer Moves, which behaved very similarly to
each other. For example, in the midgame case, the History-ADS represented a
14% improvement over the History Heuristic and Killer Moves techniques.

Table 2 showcases our results for Relaxed Checkers. Again, the History-ADS
performed best in all situations, however the Killer Moves technique outper-
formed the History Heuristic, in this game. The History-ADS did 25% better
than the History Heuristic, when measurements were taken from the initial board
position.

In Table 3, we present our results for two-player focus. As is consistent with
previous work, all techniques led to a drastic reduction in NC, although again,
History-ADS did best of all, and Killer Moves outperformed the History Heuris-
tic.
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Table 1. Results comparing the History-ADS, History Heuristic, and Killer Moves in
Othello.

Midgame? Technique Avg. NC Std. Dev P-Value Effect Size

No None 5,061 2,385 - -

No History-ADS 3,727 1,552 1.7× 10−3 0.56

No History Heuristic 4,136 1,711 0.071 0.37

No Killer Moves 4,013 1,720 0.015 0.44

Yes None 20,100 9,899 - -

Yes History-ADS 13,300 6,916 7.0× 10−5 0.69

Yes History Heuristic 15,500 6,939 9.4× 10−3 0.47

Yes Killer Moves 15,500 6,696 0.015 0.47

Table 2. Results comparing the History-ADS, History Heuristic, and Killer Moves in
Relaxed Checkers.

Midgame? Technique Avg. NC Std. Dev P-Value Effect Size

No None 78,600 10,600 - -

No History-ADS 41,000 5,588 < 1.0 × 10−5 3.55

No History Heuristic 54,800 9,018 < 1.0 × 10−5 2.25

No Killer Moves 52,200 6,723 < 1.0 × 10−5 2.50

Yes None 64,000 25,700 - -

Yes History-ADS 34,400 12,400 < 1.0 × 10−5 1.15

Yes History Heuristic 42,800 14,500 < 1.0 × 10−5 0.83

Yes Killer Moves 39,100 14,700 < 1.0 × 10−5 0.97

5.2 Results for Multi-Player Games

Table 4 holds our results for the Virus Game, where the same patterns as previ-
ously were observed. The History Heuristic performed particularly poorly here,
with History-ADS representing 28% improvement over it in the midgame situa-
tion.

In Table 5, we show our results for MP Focus, which again, follow the es-
tablished pattern. In this case, the difference between History-ADS and Killer
Moves was negligible, although History-ADS outperformed it in both cases.

Finally, Table 6 presents our results for Chinese Checkers. We see the pat-
tern observed with the other games repeated again, although Killer Moves was
very close to History-ADS in this case, being approximately equivalent in the
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Table 3. Results comparing the History-ADS, History Heuristic, and Killer Moves in
Two-Player Focus.

Midgame? Technique Avg. NC Std. Dev P-Value Effect Size

No None 5,250,000 381,000 - -

No History-ADS 1,260,000 90,900 < 1.0× 10−5 10.46

No History Heuristic 1,980,000 221,000 < 1.0× 10−5 8.59

No Killer Moves 1,420,000 105,100 < 1.0× 10−5 10.04

Yes None 10,600,000 3,460,000 - -

Yes History-ADS 2,390,000 631,000 < 1.0× 10−5 2.37

Yes History Heuristic 3,500,000 1,040,000 < 1.0× 10−5 2.05

Yes Killer Moves 2,680,000 648,000 < 1.0× 10−5 2.29

Table 4. Results comparing the History-ADS, History Heuristic, and Killer Moves in
the Virus Game.

Midgame? Technique Avg. NC Std. Dev P-Value Effect Size

No None 10,500,000 1,260,000 - -

No History-ADS 4,650,000 767,000 < 1.0× 10−5 4.60

No History Heuristic 6,860,000 1,080,000 < 1.0× 10−5 2.86

No Killer Moves 5,210,000 858,000 < 1.0× 10−5 4.16

Yes None 12,800,000 1,950,000 - -

Yes History-ADS 5,870,000 863,000 < 1.0× 10−5 3.55

Yes History Heuristic 8,190,000 1,080,000 < 1.0× 10−5 2.36

Yes Killer Moves 6,380,000 991,000 < 1.0× 10−5 3.29

midgame case, and the History Heuristic did noticeably worse. In the midgame
case, the History-ADS heuristic did 37% better than the History Heuristic.

6 Discussion

Our results clearly demonstrate the power of the History-ADS heuristic, even
when compared to the established, highly-regarded techniques, specifically, the
Killer Moves strategy, and the History Heuristic. We found that in nearly every
case examined, the History-ADS heuristic outperformed both of these established
techniques, or performed on a level comparable to them.

Although we were somewhat surprised that the History Heuristic was out-
performed by the History-ADS heuristic in every case examined, reviewing our
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Table 5. Results comparing the History-ADS, History Heuristic, and Killer Moves in
Multi-Player Focus.

Midgame? Technique Avg. NC Std. Dev P-Value Effect Size

No None 6,970,000 981,000 - -

No History-ADS 2,150,000 165,000 < 1.0× 10−5 4.92

No History Heuristic 3,360,000 351,000 < 1.0× 10−5 3.69

No Killer Moves 2,220,000 175,000 < 1.0× 10−5 4.84

Yes None 14,200,000 8,400,000 - -

Yes History-ADS 3,160,000 1,700,000 < 1.0× 10−5 1.31

Yes History Heuristic 5,050,000 3,010,000 < 1.0× 10−5 1.09

Yes Killer Moves 3,260,000 1,530,000 < 1.0× 10−5 1.30

Table 6. Results comparing the History-ADS, History Heuristic, and Killer Moves in
Chinese Checkers.

Midgame? Technique Avg. NC Std. Dev P-Value Effect Size

No None 3,370,000 1,100,000 - -

No History-ADS 1,280,000 368,000 < 1.0× 10−5 1.90

No History Heuristic 1,550,000 445,000 < 1.0× 10−5 1.66

No Killer Moves 1,310,000 341,000 < 1.0× 10−5 1.88

Yes None 8,260,000 1,950,000 - -

Yes History-ADS 3,200,000 863,000 < 1.0× 10−5 1.92

Yes History Heuristic 5,050,000 1,090,000 < 1.0× 10−5 1.64

Yes Killer Moves 3,200,000 799,000 < 1.0× 10−5 1.92

findings from [17] with this knowledge in mind, such an outcome is rather pre-
dictable. We had earlier observed that, in the context of the History-ADS heuris-
tic, the Move-to-Front rule consistently outperformed the less sensitive Transpo-
sition rule. The strategy of the History Heuristic, however, is even less sensitive
to change than the Transposition rule. This is because, according to its spec-
ification, the ranking of the moves will only change when one move’s counter
exceeds another. As opposed to this, use of the Transposition rule leads to some
change in structure every time it is queried, even if it is slight.

Our results suggest that the History Heuristic allows very strong moves to
gain a substantial lead over all others. Indeed, when viewing the History Heuris-
tic’s internal updates as the search proceeded, in both the Virus Game and
Othello, a single move would quickly gain a nearly insurmountable lead. This
is the likely reason for the History Heuristic’s poor performance, compared to
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the History-ADS heuristic, and is consistent with our previous observations. Our
results strongly suggest that the History-ADS heuristic outperforms the History
Heuristic under a broad set of board games, and we hypothesize, based on these
results, that it is likely to do so in others as well.

The fact that the single ADS, Move-to-Front History-ADS heuristic outper-
forms the Killer Moves strategy is not at all surprising, considering our previous
observations from [18]. Indeed, we had earlier determined that a single ADS
would generally outperform a multi-level ADS, and that a multi-level ADS with
a restriction on its length would have its performance hampered even further.
As the Killer Moves technique functionally identical to the History-ADS with a
multi-level ADS, and with a limit of two on the length, we would expect it to be
outmatched by the single, unbounded ADS. Our results, clearly, support that.

The degree by which the Killer Moves technique was outperformed varied
between the various game models, with it doing best in Chinese Checkers, and
worst in Relaxed Checkers. Given that it can only maintain a very small number
of moves, this suggests that storing more information achieves a superior move
ordering in the case of Relaxed Checkers, but it is not so critical in the case of
Chinese Checkers, with the other games falling between these extreme cases.

7 Conclusions

Our results reinforce our previous findings, that the History-ADS heuristic is
able to produce strong gains in terms of tree pruning. Additionally, we have also
clearly demonstrated that the History-ADS heuristic is capable of outperforming
the established Killer Moves technique and History Heuristic in a wide range of
game models and configurations, in some cases by a substantial margin. This
is a particularly strong result, which serves to justify its usage in game playing
engines, particularly given its lightweight qualities, and the fact that it does not
need any additional sorting.

Our results further reinforce the idea that, in the context of the History-
ADS heuristic, the most basic configuration tends to perform best. We confirm
this because the single, unbound, Move-to-Front implementation of the History-
ADS outperformed both established heuristics. This suggests that within the
perspective of move ordering, that is based on a move history criterion, the
adage “simpler is better” holds true.
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