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Abstract. This paper deals with the relatively new field of sequence-
based estimation which involves utilizing both the information in the
observations and in their sequence of appearance. Our intention is to
obtain Maximum Likelihood estimates by “extracting” the information
contained in the observations when perceived as a sequence rather than
as a set. The results of [15] introduced the concepts of Sequence Based
Estimation (SBE) for the Binomial distribution. This current paper gen-
eralizes these results for the multinomial “two-at-a-time” scenario. We
invoke a novel phenomenon called “Occlusion” that can be described
as follows: By “concealing” certain observations, we map the estimation
problem onto a lower-dimensional binomial space. Once these occluded
SBEs have been computed, we demonstrate how the overall Multinomial
SBE (MSBE) can be obtained by mapping several lower-dimensional es-
timates onto the original higher-dimensional space. We formally prove
and experimentally demonstrate the convergence of the corresponding
estimates

Keywords: Estimation using Sequential Information, Sequence Based Esti-
mation, Estimation of multinomials, Fused Estimation Methods, Sequential In-
formation.

1 Introduction

Estimation is the central aspect associated with the training phase of classifica-
tion and Machine Learning. Since the sequence-based paradigm for supervised
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learning that is explored in this paper is relatively new, we shall first motivate its
perspective. Estimation methods generally fall into various categories, including
the Maximum Likelihood Estimates (MLEs) and the Bayesian family of esti-
mates [1,3,4,7,20] which are well-known for having good computational and sta-
tistical properties. Consider the strategy used for developing the MLE of the pa-
rameter of a distribution, fX(θ), whose parameter to be estimated is θ. The input
to the estimation process is the set of points/observations X = {x1, x2, . . . , xN},
whose elements are assumed to be generated independently and identically as
per the distribution, fX(θ). The process for computing the Maximum Likeli-
hood (ML) estimate involves deriving the likelihood function, i.e., the likelihood
of the distribution, fX(θ), generating the sample points/observations X given
θ, which is then maximized (by traditional optimization or calculus methods)

to yield the estimate, θ̂MLE . The general characteristic sought for is that the
estimate θ̂MLE converges to the true (unknown) θ with probability one, or in
a mean square sense. The Bayesian schemes work with a similar goal, except
that rather than them using Likelihood functions, they compute the posterior
distributions assuming that θ itself is a random variable with a known distribu-
tional form. Bayesian and ML estimates generally possess desirable convergence
properties. Indeed, the theory of estimation has been studied for hundreds of
years [1,3,10,17,18,19], and it has been the backbone for the learning (training)
phase of statistical pattern recognition systems [4,7,9,20,21].

Traditionally, the ML and Bayesian estimation paradigms work within the
model that the data, from which the parameters are to be estimated, is known,
and that it is treated as a set. The position that we respectfully submit is that
traditional ML and Bayesian methods ignore and discard1 valuable sequence-
based information. The goal of this paper is to “extract” and “utilize” the in-
formation contained in the observations when they are perceived both as a set
and in their sequence of appearance. Put in a nutshell, this paper deals with the
relatively new field of sequence-based estimation in which the goal is to estimate
the parameters of a distribution by maximally “squeezing” out the set-based and
sequence-based information latent in the observations.

The consequences of solving this problem are potentially many. Estimation,
as researchers in almost all fields of science and engineering will agree, is a fun-
damental issue, in which the practitioner is given a set of observations involving
the random variable, and his task is to estimate the parameters which govern
the generation of these observations. Since, by definition, the problem involves
random variables, decisions, predictions, regressions and classification related to
the problem are, in some way, dependent on the practitioner obtaining reliable
estimates of the parameters that characterize the underlying random variables.

More specifically, suppose that the user received X as a sequence of data
points as in a typical real-life (or real-time) application such as those obtained
in a data-mining domain involving sequences, or in data involving radio or tele-
vision news items. The question that we have investigated is the following: “Is

1 This information is, of course, traditionally used when we want to consider depen-
dence information, as in the case of Markov models and n-gram statistics.
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there any information in the fact that in X , xi specifically precedes xi+1?”.
Or in a more general case, “Is there any information in the fact that in X ,
the sequence xixi+1 . . . xi+j occurs ni,i+1,...i+j times?”. Our position, which we
proved in [15] for binomial random variables, is that even though X is generated
by an i.i.d. process, there is information in these pieces of sequential data which
can be “maximally” utilized to yield the so-called family of Sequence Based Es-
timators (SBEs). The problem was initially studied in [15], but only for the case
of binomial random variables.

As far as we know, apart from the results in [15], there are no other reported
results which utilize sequential information in obtaining such estimates. Also,
as highlighted in [15], unlike the use of sequence information in syntactic pat-
tern recognition, grammatical inference and in modeling channels using Hidden
Markov Models (which involve estimating the bigram and n-gram probabilities
of dependent streams of data [2,4,6]), in our case, we assume that the elements
in the stream of data, X , occur independently, and yet have information not
utilized by traditional MLE schemes.

The contributions of this paper can be catalogued as follows:

1. This paper lists the first reported results for obtaining the MLEs of the
parameters (i.e., the vector of probabilities responsible for the generation)
of a multinomial distribution, when the data is processed both as a set of
observations and as a sequence in which the samples occur in the set. These
estimates are called the Multinomial Sequence Based Estimates (MSBEs).

2. The paper pioneers the concept of obtaining MSBEs by invoking the phe-
nomenon of “Occlusion” in which certain observations are hidden or con-
cealed to first yield binomial SBEs, and these are subsequently fused to
yield the MSBE.

3. The paper contains the formal results1 for the MSBE schemes when the
sequence is processed in pairs. They have all been experimentally verified.

To the best of our knowledge, apart from our previous results of [15], all of
these are novel to the field of estimation, learning and classification. Also, In the
interest of space and brevity, the proofs of the theoretical results presented here
are omitted. They are found in [16].

2 On Obtaining MSBEs Using Occluded SBEs

Before we proceed with the theoretical and experimental results, it is necessary
for us to formalize the notation that will be used2.

Notation 1: To be consistent, we introduce the following notation.

– X is a multinomially distributed random variable, obeying the distribution
S.

1 The paper lists numerous theorems whose proofs are found in [16]. The results for
longer subsequences (i.e, three-at-a-time, four-at-a-time etc.) are also found in [16].

2 We apologize for this cumbersome notation, but this is unavoidable considering the
complexity of the problem and the ensuing analysis.
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– X = {x1, x2, . . . , xJ} is a realization of a sequence of occurrences of X, where
each xi ∈ D.

– An index a ∈ D is said to be the unconstrained variable in any computation
if all the other estimates {si} are specified in terms of sa, where i ̸= a.
It will soon be clear that in any computation there can only be a single
unconstrained variable. The other variables are defined in terms of it.

– X ab = {x1, x2, . . . , xNab
} is called the Occluded sequence of X (with Nab

items) with respect to a and b, if it is obtained from X by deleting the
occurrences of all the elements except a and b. Whenever we refer to the
sequence X ab = {x1, x2, . . . , xNab

}, we always imply that the first variable
(in this case a) is the unconstrained variable.

– Let < j1j2 . . . , jk > be the subsequence1 examined in the Occluded sequence
X ab, where each jm, (1 ≤ m ≤ k), is either a or b. Then2:
• The BSBE, for sa obtained by examining in X ab the subsequence <

j1j2 . . . , jk > will be given by q̂a

∣∣∣ab
<j1j2...,jk>

, where, as before, the first

variable (in this case a) is the unconstrained variable.
• Similarly, the BSBE, for sb obtained by examining in X ab the subse-

quence < j1j2 . . . , jk > will be given by q̂b

∣∣∣ab
<j1j2...,jk>

, where the first

variable (in this case a) is the unconstrained variable.
– Consider the sequence X in which the index a is the unconstrained variable.

Let < j1j2 . . . , jk > be the subsequence examined in the sequence X , where
each jm, (1 ≤ m ≤ k), is either a or ‘∗’, where each ‘∗’ is the same variable,
say c ∈ (D − {a}) . Then:
• The MSBE for sa (where a is the unconstrained variable) obtained by ex-

amining in X the sequence < j1j2 . . . , jk > will be given by ŝa

∣∣∣a
<j1j2...,jk>

where each ji that is not a is replaced by a ‘∗’, and where each ‘∗’ is the
same variable, say c ∈ (D − {a}).

• For any constrained variable b, the MSBE for sb obtained by examining

in X the sequence < j1j2 . . . , jk > will be given by ŝb

∣∣∣ab
<j1j2...,jk>

, where

a is the unconstrained variable.
– Trivially, for all a and b:∑

b̸=a ŝb

∣∣∣ab
<j1j2...,jk>

= 1 - ŝa

∣∣∣a
<j1j2...,jk>

. ⊓⊔

Example of Notation 1: Let D = {1, 2, 3, 4}, and X = 134211232341122.
Then, the Occluded sequence X 12 is obtained by erasing from X all occurrences
of 3 and 4, and has the form X 12 = 1211221122. Observe that N12 is 10. Then:

1 For the present, we consider non-overlapping subsequences. We shall later extend
this to overlapping sequences when we report the experimental results.

2 The reader must take pains to differentiate between the q’s and the s’s, because the
former refer to the BSBEs and the latter to the MSBEs.
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– If 1 is the unconstrained variable, the BSBE of s1 obtained by examining

X 12 for all occurrences of the sequence < 121 > will be given by q̂1

∣∣∣12
<121>

.

– If 2 is the unconstrained variable, the BSBE of s4 obtained by examining all

occurrences of the sequence < 224 > will be given by q̂4

∣∣∣24
<224>

.

– If in any specific computation, 4 is the unconstrained variable, the MSBE of
s4 obtained by examining all occurrences of the sequence < ∗ ∗ 4 > will be

given by ŝ4

∣∣∣4
<∗∗4>

, and will be obtained by normalizing using the quantities

ŝ1

∣∣∣41
<114>

, ŝ2

∣∣∣42
<224>

and ŝ3

∣∣∣43
<334>

. ⊓⊔

2.1 The Fundamental Theorem of Fusing Occluded Estimates

Our first task is to formulate how we can compute the MSBEs by utilizing
information gleaned by the Binomial SBEs (BSBEs) obtained from the set of
occluded sequences. Consider an occluded sequence, X ab, extracted from the
original sequence, X , by removing all the variables except a and b. In the sequence
being examined, we choose one variable, say a to be the unconstrained variable.
We shall first attempt to obtain BSBEs of the relative proportions of sa and sb,
the quantities to be estimated, from X ab. Thereafter, we utilize the set of these
relative proportions to compute the MSBEs of all the variables. We formalize
this in what we call the Fundamental Theorem of Fusing Occluded Estimates.

Theorem 1. For every pair of indices, a and b, let X ab be the Occluded se-
quence, extracted from the original sequence, X , by removing all the variables
except a and b. If we consider a to be the unconstrained variable, we define

qa = sa
sa+sb

and qb = sb
sa+sb

, where qa + qb = 1. Now let q̂a

∣∣∣ab
π(a,b)

̸= 0 and

q̂b

∣∣∣ab
π(a,b)

= 1 − q̂a

∣∣∣ab
π(a,b)

be the BSBEs of qa and qb respectively based on the oc-

currence1 of any specific subsequence π(a, b). Then, if c is a dummy variable2

representing any of the variables, the MSBEs of sa and sb obtained by examining
the occurrences3 of π(a, b) in every X ab are:

ŝa

∣∣∣a
π(a,b)

=
1∑
∀c ρc

, and ŝb

∣∣∣ab
π(a,b)

=

q̂b

∣∣∣ab
π(a,b)∑
∀c ρc

, (1)

where ρa = 1 and ∀c ̸= a, ρc =
q̂c

∣∣∣ac

π(a,c)

q̂a

∣∣∣ac

π(a,c)

.

1 How BSBEs are obtained for specific instantiations of π(a, b) is discussed later.
2 The fact that c is a dummy variable will not be repeated in future invocations.
3 This, of course, makes sense only if ∀c, q̂a

∣∣∣ac
π(a,c)

̸= 0.
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Proof. This is the central theorem of this paper. With a being unconstrained, let
the BSBE of qa based on the occurrence of any specific subsequence π(a, b) be

q̂a

∣∣∣ab
π(a,b)

. Clearly, q̂b

∣∣∣ab
π(a,b)

= 1− q̂a

∣∣∣ab
π(a,b)

. The MSBE is then obtained by resort-

ing to the Weak Law of Large Numbers which guarantees that if the sequence
examined is “large enough”, the ratio between the various probabilities is also
the ratio between their estimates, thus providing a mechanism to normalize the
corresponding estimates.

The proof of the result is omitted due to space considerations. It is in [16]. ⊓⊔

3 MSBEs Using Pair-wise Sequential Information

3.1 Theoretical Results

The following results for MSBEs are true when the sequential information is
processed in pairs.

Theorem 2. Let qa = sa
sa+sb

and qb =
sb

sa+sb
, where qa + qb = 1. Then, q̂a

∣∣∣ab
<aa>

and q̂b

∣∣∣ab
<aa>

, the BSBEs of qa and qb obtained by examining the occurrences of

< aa > in X ab are:

q̂a

∣∣∣ab
<aa>

=

√
naa

Nab/2
, and q̂b

∣∣∣ab
<aa>

= 1−
√

naa

Nab/2
, (2)

where naa is the number of occurrences of < aa > from among the Nab

2 non-
overlapping subsequences1 of length 2 in X ab. Consequently,

ŝa

∣∣∣a
<aa>

=
1∑
∀c ρc

, and ŝb

∣∣∣ab
<aa>

=
q̂b

∣∣∣ab
<aa>∑
∀c ρc

, (3)

where ρa = 1 and ∀c ̸= a, ρc =
1−

√
naa

Nac/2√
naa

Nac/2

.

Proof. The proof of the theorem is found in [16]. ⊓⊔

The following example will help clarify the concepts of how the BSBEs are
computed and how the MSBE is obtained from the BSBEs.

Example I: Let us suppose that:
X = {2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 3, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 1, 3}.

We shall consider the MSBEs for the case when the variable 1 is unconstrained.
This will highlight why our present results are far more complex than the corre-
sponding binomial results derived in [15]. Indeed, the extension of the binomial
to the multinomial case depends on the identity of the unconstrained variable.

1 Observe that it would be statistically advantageous (since the number of occurrences
obtained would be almost doubled) if all the overlapping Nab − 1 subsequences of
length 2 were considered. The computational consequences of this are given in [16].
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Estimation of the MSBE when 1 is the Unconstrained Variable

First of all, X 12 = {2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1},
and, X 13 = {3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3}.

From the set X 12,we see thatN12 = 18, and in X 12, n11 = 4, and so, as per
Eq. (2):

q̂1

∣∣∣12
<11>

=
√

4
9 = 2

3 , and

q̂2

∣∣∣12
<11>

= 1−
√

4
9 = 1

3 .

Thus, q̂2

∣∣∣12
<11>

= (0.5) · q̂1
∣∣∣12
<11>

.

Again, from the set X 13,we see thatN13 = 14, and in X 13, n11 = 4, and so,
as per Eq. (2):

q̂1

∣∣∣14
<11>

=
√

4
7 = 0.7559, and

q̂3

∣∣∣13
<11>

= 1−
√

4
6 = 0.2441.

Thus, q̂3

∣∣∣13
<11>

= (0.323) · q̂1
∣∣∣13
<11>

.

Normalizing the above with regard to the relative proportions to variable 1
as per Theorem 1, implies normalizing [θ 0.5θ 0.323θ]T . This yields
the MSBE of [s1 s2 s3]

T , with 1 being the unconstrained variable, to be
[0.5485 0.2743 0.1772]T . ⊓⊔

The corresponding results for ŝa

∣∣∣a
<bb>

, ŝa

∣∣∣a
<ab>

and ŝa

∣∣∣a
<ba>

etc. follow.

Theorem 3. Let qa = sa
sa+sb

and qb =
sb

sa+sb
, where qa + qb = 1. Then, q̂a

∣∣∣ab
<bb>

and q̂b

∣∣∣ab
<bb>

, the BSBEs of qa and qb obtained by examining the occurrences of

< bb > in X ab are:

q̂a

∣∣∣ab
<bb>

= 1−
√

nbb

Nab/2
, and q̂b

∣∣∣ab
<bb>

=

√
nbb

Nab/2
. (4)

where nbb is the number of occurrences of < bb > from among the Nab

2 non-
overlapping subsequences of length 2 in X ab. Consequently,

ŝa

∣∣∣a
<bb>

=
1∑
∀c ρc

, and ŝb

∣∣∣ab
<bb>

=
q̂b

∣∣∣ab
<bb>∑
∀c ρc

, (5)

where ρa = 1 and ∀c ̸= a, ρc =

√
ncc

Nac/2

1−
√

ncc
Nac/2

.

Proof. The proof is similar to that of Theorem 2. The details are omitted. ⊓⊔
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Theorem 4. Let qa = sa
sa+sb

and qb =
sb

sa+sb
, where qa+ qb = 1. Then, q̂a

∣∣∣ab
<ab>

,

the BSBE of qa obtained by examining the occurrences of < ab > in X ab, can
be obtained if and only if the roots of the quadratic equation λ2 − λ+ nab

Nab/2
= 0

are real (where nab is the number of occurrences of < ab > from among the
Nab

2 non-overlapping subsequences of length 2 in X ab). Its value, λa, is the root

whose value is closest to q̂a. Further, in such a case, q̂b

∣∣∣ab
<ab>

= 1− q̂a

∣∣∣ab
<ab>

= λb.

Finally,

ŝa

∣∣∣a
<ab>

=
1∑
∀c ρc

, and ŝb

∣∣∣ab
<ab>

=
q̂b

∣∣∣ab
<ab>∑
∀c ρc

, (6)

where ρa = 1 and ∀c ̸= a, ρc =
λc

λa
.

Proof. The proof of this theorem is also included in [16]. ⊓⊔

The final theorem about the MSBE computed using the occurrences of <
ba > in X ab is given below. Its proof is identical to the one above.

Theorem 5. Let qa = sa
sa+sb

and qb =
sb

sa+sb
, where qa+ qb = 1. Then, q̂a

∣∣∣ab
<ba>

,

the BSBEs of qa obtained by examining the occurrences of < ba > in X ab, can
be obtained if and only if the roots of the quadratic equation λ2 − λ+ nba

Nab/2
= 0

are real (where nba is the number of occurrences of < ba > from among the
Nab

2 non-overlapping subsequences of length 2 in X ab). Its value, λa, is the root

whose value is closest to q̂a. Further, in such a case, q̂b

∣∣∣ab
<ba>

= 1− q̂a

∣∣∣ab
<ba>

= λb.

Finally,

ŝa

∣∣∣a
<ba>

=
1∑
∀c ρc

, and ŝb

∣∣∣ab
<ba>

=
q̂b

∣∣∣ab
<ba>∑
∀c ρc

, (7)

where ρa = 1 and ∀c ̸= a, ρc =
λc

λa
. ⊓⊔

Notice that the four estimates ŝa

∣∣∣a
<aa>

, ŝa

∣∣∣a
<ab>

, ŝa

∣∣∣a
<ba>

and ŝa

∣∣∣a
<bb>

are not

linearly independent. Indeed, this is true because: naa + nab + nba + nbb =
Nab

2 .

3.2 Experimental Results: Sequences of Pairs

In this section, we present the results of our simulations1 on synthetic data
for the case when the sequence is processed in pairs. In every case, we have
considered the Nab − 1 overlapping subsequences of length 2 for the occluded
sequence X ab.Thus, for all b ̸= a, we have used the following expressions to
obtain computational approximations of the true corresponding estimates derived
in Theorems 2 to 5 respectively:

1 In the tables, values of unity/zero represent the cases when the roots are complex
or when the number of occurrences of the event concerned are zero.
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q̂a

∣∣∣ab
<aa>

=
√

naa

Nab−1 ,

The roots of λ2 − λ+ nab

Nab−1 = 0,

The roots of λ2 − λ+ nba

Nab−1 = 0, and

q̂a

∣∣∣ab
<bb>

= 1−
√

nbb

Nab−1 ,

where in each case, we have used (Nab − 1) instead of Nab

2 .

In every case examined, the multinomial distribution was S, where S =
[s1, s2 . . . sd]

T , with d taking values 3, 4 and 5.

The MSBE process for the estimation of S was extensively tested for numer-
ous distributions and for different dimensionalities, but in the interest of brevity,
we merely cite a single specific example for a given value of d. In each case, the
estimation algorithms were presented with random occurrences of the variables
for N = 390625 (i.e, 58) time instances. Each table reports the results of the es-
timation for the specific value of d, and in each table, the respective actual value
of S used has been specified. To render the comparison meaningful, we have also
used the identical data stream to follow the “traditional” MLE computation,
i.e., the one that does not utilize the sequential information.

To compare the value of S to its estimate, we have also computed the Eu-

clidean distance between S and its estimates, Ŝ, namely EMLE = ||S − ŜMLE ||
and EMSBE = ||S − ŜMSBE ||, where ŜMLE was the ML estimate, and ŜMSBE

was evaluated using the corresponding result depending on the pair of symbols
examined in the occluded sequence. The results are tabulated in [16] and re-
spectively, and when the pairs examined in every X ab were aa, ab, ba and bb.
To demonstrate the true convergence properties of the estimates, we have also
reported the values of the ensemble averages of the estimates in Tables 1 and
2 respectively, taken over an ensemble of 100 experiments. The convergence of
every single estimate is remarkable.

To be more specific, for the case when d = 3 and S = [0.6 0.25 0.15]T

and when the pair examined in every X ab was aa, the EMSBE had the ensemble
average of 0.1263 when only N = 25 symbols were processed (please see Table
1). This value decreased to 0.1247 when N = 125 symbols were processed. This
error was marginally lower (due to the sampling variance) than the asymptotic
error at N = 58 of 0.1272. The reader should also observe the manner in which
the EMSBE closely followed the EMLE .

By way of comparison, when the pair examined in every X ab was ab, (again
for the case when d = 3) the value EMSBE had the ensemble average of 0.1740
when only N = 25 symbols were processed. The progressive decrease of the error
was again observed. It became 0.1412 when N = 125 symbols were processed,
and became very close to the steady-state value when even as few as 625 samples
were examined. Due to the sampling error caused by the random sequences, the
MLE and MSBEs taken for a single experiment don’t follow such a regular
pattern, especially for small values of N .

Due to space limitations, the theoretical and experimental results for the
cases when the subsequences are of lengths 3 and 4 are found in [16].
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Table 1. A table of the ensemble averages (taken over 100 experiments) of EMLE , the
error of the MLE, and the error of the MSBE, EMSBE , at time N , for d = 3, where
the latter MSBEs were estimated by using the formal expressions of Theorems 2 to 5
approximated using the issues discussed in the beginning of this section. Here d = 3
and S = [0.6 0.25 0.15]T . In the case of the MSBE, in each column, we mention
the pair being examined, i.e., whether it is < aa >, < ab >, < ba > or < bb >.

N EMLE EMSBE |<aa> EMSBE |<ab> EMSBE |<ba> EMSBE |<bb>

52 (25) 0.1091 0.1263 0.1740 0.1712 0.1725
53 (125) 0.1221 0.1247 0.1412 0.1036 0.1122
54 (625) 0.1252 0.1258 0.1292 0.1248 0.1269
55 (3,125) 0.1270 0.1272 0.1277 0.1284 0.1281
56 (15,625) 0.1273 0.1274 0.1273 0.1281 0.1280
57 (78,125) 0.1272 0.1272 0.1270 0.1274 0.1273
58 (390,625) 0.1272 0.1272 0.1272 0.1273 0.1273

Table 2. A table of the ensemble averages (taken over 100 experiments) of EMLE , the
error of the MLE, and the error of the MSBE, EMSBE , at time N , for d = 5, where
the latter MSBEs were estimated by using the formal expressions of Theorems 2 to 5
approximated using the issues discussed in the beginning of this section Here d = 5
and S = [0.33 0.25 0.18 0.14 0.10]T . In the case of the MSBE, in each column,
we mention the pair being examined.

N EMLE EMSBE |<aa> EMSBE |<ab> EMSBE |<ba> EMSBE |<bb>

52 (25) 0.1363 NaN 0.2217 0.2242 0.2120
53 (125) 0.1696 0.1746 0.1952 0.1751 0.1581
54 (625) 0.1864 0.1861 0.1932 0.1516 0.1541
55 (3,125) 0.1862 0.1856 0.1906 0.1466 0.1468
56 (15,625) 0.1882 0.1883 0.1888 0.1495 0.1497
57 (78,125) 0.1879 0.1879 0.1881 0.1769 0.1770
58 (390,625) 0.1880 0.1879 0.1880 0.1882 0.1882

4 Conclusions

In this paper, we have investigated the relatively new field of sequence-based
estimation. The pioneering work in this area [15] introduced the concepts of
Sequence Based Estimation (SBE) for Binomial distributions. This paper has
generalized the latter results for multinomial distributions. The rationale moti-
vating the development of SBEs and MSBEs is that traditional ML and Bayesian
estimation ignore/discard valuable sequence-based information. SBEs “extract”
the information contained in the observations when perceived as a sequence. In
this paper, we have generalized the results of [15] for the multinomial case. Our
strategy involves a novel and previously-unreported phenomenon called “Occlu-
sion” where by hiding (or concealing) certain observations, we map the original
estimation problem onto a lower-dimensional binomial space. We have also shown



The Foundational Theory of SBEs for Multinomial Random Variables 11

how these consequent occluded SBEs can be fused to yield overall Multinomial
SBE (MSBE). This is achieved by mapping several lower-dimensional estimates,
that are all bound by rigid probability constraints, onto the original higher-
dimensional space. The theoretical and experimental results for the cases when
the subsequences are of lengths 3 and 4 are found in [16].
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