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Abstract. In this paper, we present a novel algorithm that performs
online histogram-based classification, i.e., specifically designed for the
case when the data is dynamic and its distribution is non-stationary.
Our method, called the Online Histogram-based Näıve Bayes Classifier
(OHNBC) involves a statistical classifier based on the well-established
Bayesian theory, but which makes some assumptions with respect to
the independence of the attributes. Moreover, this classifier generates a
prediction model using uni-dimensional histograms, whose segments or
buckets are fixed in terms of their cardinalities but dynamic in terms of
their widths. Additionally, our algorithm invokes the principles of infor-
mation theory to automatically identify changes in the performance of
the classifier, and consequently, forces the reconstruction of the classifi-
cation model in run-time as and when it is needed. These properties have
been confirmed experimentally over numerous data sets (In the interest
of space and brevity, we present here only a subset of the available results.
More detailed results are found in [2].) from different domains. As far as
we know, our histogram-based Näıve Bayes classification paradigm for
time-varying datasets is both novel and of a pioneering sort.
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1 Introduction

In the fields of machine learning and statistical learning, supervised classifi-
cation is a well-known problem that consists of identifying the category (or
class) to which a new observation belongs, based on a sample data set that con-
tains instances for which their respective categories are known. This task can be
achieved using a range of methods, including linear classifiers, Support Vector
Machines (SVMs), decision trees, neural networks, etc. Most of these families of
supervised classifiers operate in an offline manner, i.e., the data set (training
data) used for building the learning model is known in advance. Such algorithms
operate in three phases: First, a learning model is constructed using the training
data in which the instances are all labeled. In the second phase, the model that
has been built is used to classify data instances from a test set, and a perfor-
mance measure is obtained. Finally, in the third phase, the model is deployed
and used to predict the category of an unlabeled data instance data [1].

It is possible to find a wide range of applications where the data arrives in the
form of a stream, consisting of a (theoretically, infinite) sequence of instances that
may become available at a very rapid rate. These applications include telecom-
munications data management, financial applications, sensory analysis, web his-
tory logs, etc. The analysis of dynamic and real-time data streams poses several
challenges when compared to processing the data in an offline manner. In fact,
offline classifiers assume that the training records can be examined and accessed
several times. This is consistent with the three previously-mentioned phases of
any supervised classification algorithm.

Unfortunately, in many real life situations, the rate of arrival of the data
instances is so rapid that it is infeasible to store them for post-processing, forcing
the algorithm to achieve the processing of a single instance at any given time
instant. The work reported in [5] describes another difficulty with classifying
data streams with respect to the dynamic nature of the data in the following
terms: “Even if all the available examples can be handled by the system, the
patterns discovered by an algorithm in the data from the past, may be hardly
valid and useful for the new data obtained hours or even minutes later.” Online
algorithms [1] deal with such data streams, in which the labeled and unlabeled
records are mixed. In this context, the phases of training, testing and deployment
are interleaved. This is precisely the domain of this paper, and the results we
contribute involve histogram-based Bayesian classifiers.

As we know, pattern classification is the discipline of building machines
for classifying patterns based on prior knowledge or on statistical information
extracted from the patterns [4]. However, as opposed to what we shall call tra-
ditional classification, we are interested in data that is generated in real time.
Examples of sources of such streamed data are sensor networks on Mars, under-
water sensors in the deep ocean, atmospheric measurements, etc. These poten-
tially infinite sequences of information are usually known as “data streams” [1].
The data stream serves as an appropriate model when a large amount of data
arrives for processing and where it is impractical to store it all, implying that a
model that attempts to learn from it must achieve the task by processing each
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pattern at a time. Devising classifiers that work with data streams poses new
challenges when compared to the standard classification algorithms, since the
latter algorithms are able to examine the patterns repeatedly.

Algorithms for data streams are more complicated to design because they
must be able to extract all the information needed with just a single examination
of the patterns. According to the author of [1], algorithms capable of learning
from streaming data must process the patterns in amortized O(1) time. From
this we can say that online learners are induction models that are trained –
one instance at a time. The goal is to predict the classes of novel patterns as
accurately as possible. The key feature that defines online learning is that shortly
after the prediction is made, the actual class of the instance is discovered. This
information can then be used to refine the algorithm’s prediction hypothesis [6].

More formally, the classification in an online algorithm proceeds as follows.
The sequence of operations can be decomposed into three phases. First of all, the
algorithm receives an instance. Secondly, the algorithm predicts the class of the
instance. Thirdly, the algorithm receives the true class of the instance [6]. The
third phase is the most crucial one, since the algorithm can use this information
to update the classification model.

Various algorithms that possess online learning properties have been reported
in the literature. An example of one such algorithm, is the Online Random Forest
[7]. In [7], the authors propose an online learning scheme based on the properties
of Random Forests previously described in [3]. The main idea is to build a
sequence of decision trees which learn from the data in an independent manner,
and a final decision is made based on a function that depends on the output
of all these trees. The Online Random Forest starts with a single node as the
root of the tree, and systematically adds new nodes depending on a predefined
criteria. When a new decision node is added to the tree, a series of functions of
the form g(x) < θ divide the data. Both the functions and the constant θ are
defined randomly. These functions produce a division of the feature space, and
according to a performance measure, the best division is selected.

Due to space limitations, a more detailed survey of the field and the details
of the background material is omitted. It is found in [2]. However, we shall
concentrate on our contribution, namely, the formulation of our histogram-based
OHNBC algorithm.

2 The OHNBC Algorithm

Based on the phenomena described above, we now detail the algorithmic charac-
teristics and functionality of our Online Histogram-based Näıve Bayes Classifier
(OHNBC). We first define the general structure of OHNBC. We then specify
some of the algorithm’s functionality in greater detail, and then describe how
the components fit together. The general structure of the OHNBC algorithm is
formalized in Algorithm 1, and also explained in [2] in a textual manner. It is
omitted here in the interest of brevity and due to space limitations.

The two main interleaving phases of the algorithm’s classification and train-
ing are obvious.
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Algorithm 1. OHNBC (X, λ, τ, θ)
Input:

i) X : Stream of instances for classification.

ii) λ: Minimum number of training instances needed for classification.

iii) τ : Size of the reference window.

iv) θ: Threshold for the threshold.
Output:

i) Confusion matrix with the classification results.

ii) The histograms of the classes for the OHNBC.
Method:
1: while an instance x ∈ X do
2: if number of trained instances is less than λ then
3: ω ←Original class of x
4: for all attribute d ∈ x do
5: Get the histogram for the attribute d and the class ω.
6: Add the value of the attribute d to the histogram.
7: end for
8: Update prior probabilities P associated with the class ω.
9: else

10: P ← prior probabilities.
11: for all attribute d ∈ x do
12: for all ωi class do
13: H(d, ωi) ← uni-dimensional histogram for the attribute d ωi.
14: if standard deviation of (H(d, ωi)) equals 0 then
15: Adjust all the H(d, ωi).
16: end if
17: Compute the probability density function for (H(d, ωi))
18: Multiply the the density functions over d with their prior values
19: end for
20: end for
21: if original class of x equals the OHNBC’s predicted class then
22: Update the size of the windows.
23: Update the classification model with the current correct prediction.
24: end if
25: Calculate the difference in entropy of the windows.
26: if the If this difference is larger than θ then
27: Reset the values of the windows.
28: Discard the current classification model.
29: end if
30: end if
31: end while
End Algorithm
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3 Experimental Design and Results

The solution that we propose here was tested for various artificial data sets1 and
three synthetic data which emulate conditions under which concept drift occurs
[1]. These files were generated using the data generation tool DatGen proposed
by Melli2.

There are many situations that deal with the various scenarios involving
concept drift [1]. The following describes each of the proposed scenarios:

– Scenario 0: This corresponds to that case when there is no concept drift.
Here, instances are taken early in the stream, using which the learning model
for the classifier is built, and it is then used to classify the instances.

– Scenario 1: In this scenario, we observe concept drift. Here, the data stream
arrives in the form of data blocks. The data within each block possesses the
same probability distribution. However, contiguous blocks have different data
distributions. The cardinality of the blocks within this scenario is large enough
to allow for the proper training of the classification model.

– Scenario 2 and 3: These scenarios inherit the essential properties of Sce-
nario 1. The fundamental difference is that the sizes of the blocks are not
large enough to allow the proper construction of the learning models. This
corresponds to a complex environment where the instances available are not
sufficient to correctly ensure the update of the classification model, especially
at the boundaries between the blocks. In Scenario 2, the blocks have fixed sizes,
while in Scenario 3, which is the more realistic one, the blocks themselves have
random sizes and frequencies.

For the case of artificially generated data sets, we emulated scenarios 1, 2
and 3, which contained concept drift within their characteristics.

The first synthetic data set follows the characteristics of Scenario 1 and
contains a total of three million instances, divided into three blocks of a million
instances each, respectively. We consider three different categories (“C1”, “C2”
and “C3”) in a five dimensional space (denoted by “A”, “B”, “C”, “D” and “E”).

Figure 1a is a graphical representation of the distribution of blocks for the
synthetic data set ‘1’. The various distributions are represented using gray scales.
The figure shows that for the first block of one million instances the distribution
corresponds to a unique distribution, followed by a block of one million instances
corresponding to the second distribution, and eventually the last block of one
million instances correspond to the third distribution.

The second data set of 4 million instances, emulates the characteristics of
Scenario 2. Figure 1b is a graphical representation of the data set, specifying the
data distribution associated with a block at any given time. The set is divided
into ten blocks of 400,000 instances each. The first block is composed of 90%

1 As mentioned earlier, in the interest of space and brevity, we present here only a
subset of the available results. More detailed results are found in [2].

2 The data generation tool DatGen is publicly available at the following URL: http://
www.datasetgenerator.com.

http://www.datasetgenerator.com
http://www.datasetgenerator.com
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(a) Synthetic data set 1.

(b) Synthetic data set 2.

(c) Synthetic data set 3.

Fig. 1. Graphical representation of the synthetic data sets representing the three
scenarios.

of instances belonging to the first distribution, while 10% corresponds to the
second distribution. The next block has a ratio of 80% of instances of the first
distribution and 20% of instances from the second distribution. This change in
proportions is successively applied to the remaining blocks up to the tenth block,
which contains 100% of instances of the second distribution.

Finally, the third set of data follows the characteristics of Scenario 3 and
contains a total of 3 million and twelve hundred instances divided into several
blocks of different sizes and frequencies. Figure 1c illustrates the distribution of
the blocks for this synthetic data set. Analogous to the above sets, gray scales
are used to differentiate the distributions.

3.1 Parameter Optimization

The OHNBC classifier requires three parameters: λ, which is the minimum num-
ber of instances are required to build the learning model, τ , which is the size of
the reference window, and θ, which is the entropy threshold for identifying that
a concept drift has occurred. The values chosen for each of these parameters are
presented below:

– λ ∈ {2000, 5000, 10000, 20000, 50000, 100000}
– τ ∈ {500, 1000, 2000, 5000, 10000}
– θ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
– λ ∈ {500, 1000, 2000, 5000}
– τ ∈ {50, 100, 200, 500, 1000}



Concept Drift Detection Using Online Histogram-Based Bayesian Classifiers 181

Table 1. Final parameters for the OHNBC for each of the synthetic data sets.

Data sets Parameters

OHNBC

λ τ θ

Synthetic-data-set1 2000 1000 0.10

Synthetic-data-set2 2000 500 0.10

Synthetic-data-set3 2000 2000 0.10

Table 1 lists the values found by applying a Grid Search to determine the
best suitable parameters for the real and synthetic data sets. Each row indicates
a specific data set, while in each column we list the values of the optimum
parameters for each data set, respectively.

3.2 Results

This section presents an overview of the performance of the proposed algorithm,
when compared to the Näıve Bayes algorithm (NB). Subsequently, we also per-
formed a detailed analysis of the OHNBC algorithm relative to the data’s concept
drift. The results presented here are those obtained by averaging over ten runs
of the classifier.

Table 2 presents the results for synthetic data sets. It summarizes the number
of instances correctly classified (“Certainty”) and the proportion of instances
used for training the model (“Training”) for the various synthetic data sets
(rows). As one can see, in all these three scenarios, the accuracy of the OHNBC
far surpasses that of the NB. We attribute the improved performance to the abil-
ity of the OHNBC to detect the changes in the corresponding distributions, which
the NB clearly lacks. Given the artificial construction of these sets, we already
know that there are concept changes in the stream, and the exact times when
they occur in the data stream. Additionally, the way by which these schemes have
been devised make them ideal for situations with a large number of instances,
as in this case. Indeed, from the column titled “Training”, we observe that it
was not necessary to use a large percentage of training instances to build the
learning models that achieved such high accuracy rates.

Table 2. Results obtained for the runs of the synthetic data sets.

Data sets Accuracy Fraction of training data set

NB OHNBC Total Ratio

Synthetic-data-set1 0.824 0.991 3,000,000 0.002

Synthetic-data-set2 0.699 0.988 4,000,000 0.009

Synthetic-data-set3 0.746 0.984 3,120,000 0.005
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Finally, in relation to the amount of concept drifts detected for each of the
synthetic data sets, our algorithm is able to identify all the concept changes that
were artificially embedded in the stream.

4 Conclusion

This article has tackled the problem of classification in environments where the
instances are sequentially arriving in the form of a data stream, and whose
statistical distribution potentially varies over time. We have proposed a novel
method to identify these changes using Bayesian theory and the principles of
Shannon’s information theory. Our proposed classification algorithm, called the
Online Histogram-based Näıve Bayes Classifier (OHNBC) follows the paradigm
of online training outlined by three key phases: First, the algorithm receives
an instance. Next, the algorithm predicts the class of the instance based on a
histogram-based representation. Finally, the algorithm receives the true class of
the instance and uses it to update the classification model. The results that
we have obtained on synthetic and real data clearly demonstrate its power in
classifying data streams characterized by non-stationary distributions.
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