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Abstract—In the first part of our paper, we have proposed
a highly flexible trajectory model based on the primitives of
Brownian fields (BFs). In this second part, we study the statistical
properties of that trajectory model in depth. These properties in-
clude the autocorrelation function (ACF), mean, and the variance
of the path along each axis. We also derive the distribution of the
angle-of-motion (AOM) process, the incremental travelling length
process, and the overall travelling length. It is shown that the path
process is in general non-stationary. We show that the AOM and
the incremental travelling length processes can be modelled by
the phase and the envelope of a complex Gaussian process with
nonidentical means and variances of the quadrature components.
In accordance with empirical studies, we proof that the AOM
process does not follow the uniform distribution. As special cases,
we show that the incremental travelling length process follows the
Rice and Nakagami-q distributions, whereas the overall travelling
path can be modelled by a random variable following either the
Gaussian or the lognormal distribution. The flexibility of the
results is demonstrated and discussed extensively. It is shown that
the results are in line with those of real-world user tracings. The
results can be used in many areas of wireless communications.

Index Terms — Trajectory model, mobility model, Brown-
ian fields, autocorrelation function, angle-of-motion, travelling
length.

I. INTRODUCTION

To evaluate the usefulness of mobility models for system-
level analysis, their statistical properties need to be studied
thoroughly. Many spatial features of the models listed, e.g.,
in [1]–[3] are revealed by investigating their statistical charac-
teristics. However, a gap in the related literature is that there
exist very limited solid mathematical studies on the statistical
properties of spatial trajectory models. These models have
often been proposed in form of Java-based simulation models
from which obtaining a sound understanding of the statistical
characteristics is not an easy task. The path processes’ mean,
variance, ACF, AOM, and the travelling length are among
the most important spatial characteristics that play important
roles in the performance analysis of the overall system. These
quantities can also be very useful for the parametrization of
the mobility model itself.

The random walk [4], [5], random waypoint [6], Gauss-
Markov [7], city section [8], and the pursue [9] mobility
models are examples of established mobility models, in which
the physical location (trajectory) of the user is often deter-
mined by mapping given distributions of the speed/travelled
distance and the AOM on the Euclidian space. Despite the

temporal properties of these models, their spatial characteris-
tics have rarely been studied. The spatial node distribution of
the random waypoint mobility model (as a temporal model)
has been investigated, e.g., in [10]–[12]. The expected epoch
time and the number of states visited at a fixed time are
two important temporal properties of a mobility model that
have often been investigated [13]. Given a typical mobility
model, the effect of the speed distribution on computer-
based simulations was also studied in [15]. Different from
the aforementioned temporal mobility models, a fully spatial
trajectory model, to which different temporal features (speed
scenarios) can be applied, was proposed in the first part [16] of
our paper. The superiorities of a spatial trajectory model over
the temporal one have been addressed in [16] (see Section I).

In this second part of our paper, we analyze the statistical
properties of the trajectory model in [16], which belongs to
the class of spatial trajectory models that are based on the
primitives of BFs. The random components of the path model
are derived from Gaussian processes, which are defined in
position rather than time. Therefore, our analysis is fundamen-
tally different from those in [10]–[12], where the distribution
of nodes associated with a temporal mobility model was
pursued. Herein, we derive the spatial mean and variance of the
stochastic spatial trajectory model. A closed-form expression
for the ACF of the path process is also provided. Moreover,
we introduce a complex spatial increment process, from which
the AOM and the incremental travelling length processes are
derived. The first-order density of these processes is presented
in closed form. By summing up the incremental travelling
lengths, we compute the overall travelling length and its
probability density function (PDF). The results are illustrated
and discussed in detail.

We proof that the path process is in general non-stationary.
Furthermore, it is shown that the AOM and the incremental
travelling length processes are modelled by the phase and
the envelope of a complex Gaussian process with nonidenti-
cal means and variances of the quadrature components. We
show that the AOM and the incremental travelling length
are in general non-stationary processes. In this connection,
we demonstrate that the AOM process does not follow the
uniform distribution, which agrees with empirical traces re-
ported in [17]. However, the uniform AOM can be obtained
as a special case. In addition, we proof that the incremental
travelling length process follows the Rice and Nakagami-q



distributions as special cases. For the path based on the prim-
itives of the standard BFs, we show that the overall travelling
length follows closely the lognormal distribution, which is
in line with many real-world tracing records [17]–[20]. For
the path based on the standard BF, we proof that the overall
travelling length follows the Gaussian distribution, which has
been reported from studies in dense urban environments [ 21]–
[27].

The statistical properties provided in this second paper
are very useful in many areas of science, such as wireless
communications and vehicular technologies. The results of
this paper can be used by researchers dealing with ad hoc
networks, localization (positioning), network mobility proto-
cols, and mobile radio channel modelling under non-stationary
conditions1.

The remainder of this paper is organized as follows. Sec-
tion II recalls the principles of the trajectory model proposed
in the first part of our paper. The statistical properties of the
model are investigated in Section III. Section IV studies the
spatial characteristics of the proposed model. To provide a
sound understanding of the results, two important special cases
of the path model are discussed in Section V. The numerical
results are presented in Section VI. Eventually, the conclusion
is presented in Section VII.

II. A BRIEF REVIEW OF THE TRAJECTORY MODEL

With reference to the first part [16] of our paper, we model
a path starting from (xs, ys) and terminating at or in the
proximity of a given destination point (xd, yd) by the trajectory
pT designed by the following pair

pT :

{
(px(l), py(l))

∣∣∣∣ px(l) = xs + kd lδx + σx pWx(l, kb)

py(l) = ys + kd lδy + σy pWy(l, kb)

}
(1)

in which the position variable l ∈ [0, L] is the countable
parameter of the standard BF in a 2D spatial sample space
(see Section III-B of Part I). For a positive integer L, the
terms δx = (xd−xs)/L and δy = (yd− ys)/L denote the de-
terministic increments along each axis. The drift parameter kd

acts as a switch to control the presence of such a deterministic
drift that forces the path to evolve towards the destination point
(xd, yd) (see Section IV-C of Part I). The parameter σx (σy)
is to control the randomness of the path px(l) (py(l)) along
the x-axis (y-axis)2 (see Section IV-A of Part I). Furthermore,
the objective of the partial random bridge, defined as

pWx(l, kb) = pBx(l)−
kb l

L
pBx(L) (2)

is to model the randomness of the path along each axis
by means of the pth primitive pBx(l) of the standard BF
Bx(l) associated with the x-axis. It is assumed that the
processes pBx(l) and pBy(l) are mutually independent. The
parameter kb is called the bridge parameter, which determines

1For the application in channel modelling, see [28] and [29].
2Due to the symmetry of the trajectory model, the statistical properties

of px(l) and py(l) are the same. Therefore, and for fluency reasons, we
henceforth avoid repeating the analogy between the essential properties of
the path along the x- and y-axis.

the integration degree of the bridge to the destination point (see
Section IV-B of Part I). In addition, the primitive p determines
the smoothness level of the path. We remind that the level of
smoothness increases by increasing p (see Section IV-D of
Part I).

The trajectory pT in (1) has been designed in such a way
that allows 1) arriving at a predefined destination point (xd, yd)
if the bridge is fully established, i.e., kb = 1, 2) arriving at a
target zone with a predefined radius and centre (see Theorem 1
and Corollary 1 of Part I) if the bridge is partially established,
i.e., 0 < kb < 1, 3) a totally random point in the two-
dimensional (2D) plane if the bridge is broken, i.e., k b = 0,
and finally 4) bridging back (closed loop) to the starting point
(xs, ys) if the bridge is fully established, i.e., kb = 1, but
the drift component does not exist, i.e., kd = 0. The entire
configurations above plus several others have been shown and
extensively discussed in Part I of our paper. In addition, the
speed adaptivity of the proposed trajectory model has been
explained in Part I (see Section IV-D in [16]).

III. STATISTICAL PROPERTIES OF THE PROCESS px(l)
(py(l))

In this section, we investigate the statistical properties of
the process px(l) (l = 1, 2, ..., L). We first derive the first-
order density3 of px(l) and then study the corresponding mean,
ACF, and variance. Owing to the statistical equivalence of
the path pT along the x- and y-axis (see (1)), the statistical
characteristics of the process py(l) can be obtained from those
of px(l) by replacing x by y in the respective equations.

A. First-Order Density of px(l)

The process px(l) in (1) is a shifted version of the bridge
process pWx(l, kb), which is consist of the pth primitive of
the standard BF Bx(l), given by

pBx(l) =

∫ l

0
p−1Bx(l

′)d l′ ∀p = 1, 2, ... . (3)

With reference to Part I of the series of two papers, the
process pBx(l) in (3) is a Gaussian process of the form
N(0, σ2

pB
(l)), where [31]

σ2
pBx

(l) =
l2p+1

(p!)2(2p+ 1)
. (4)

Referring to (2), the bridge process pWx(l, kb) is a linear
combination of two Gaussian processes. This allows us to
conclude that the first-order density of px(l) in (1) is a normal
distribution of the form N(m

px(l), σ
2
px(l)), where the mean

m
px(l) and the variance σ2

px(l) are derived in Sections III-B
and III-D, respectively.

It is also worth mentioning that the autocovariance function
rc
pBx pBx

(li, lj) of pBx(l) is given by the following expres-
sion [32]

rc
pBx pBx

(li, lj) =
1

(p!)2

min (li,lj)∫
0

(li − l′)p(lj − l′)pd l′. (5)

3According to [30, p. 375], the fist-order density of a process is nothing
else than its time-varying PDF in the context of stochastic processes.
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The variance σ2
pBx

(l) and the autocovariance function
rc
pBx pBx

(li, lj) of pBx(l) play key roles in the analysis of
the statistical properties of the trajectory pT in (1).

B. Mean of px(l)

The mean m
px(l) of the process px(l) in (1) can be

computed as follows

mpx(l) = E {xs + kdlδx + σxpWx(l, kb)}

= xs + kdlδx + σxE

{
pBx(l)−

kbl

L
pBx(L)

}

= xs + kdlδx + σxE {pBx(l)} −
kbl

L
E {pBx(L)}

= xs + kdlδx (6)

where we have used E{pBx(l)} = 0 for l = 0, 1, ..., L. For
kd = 1 and δx > 0, the mean mpx(l) in (6) increases linearly
with the position index l, which means that the process px(l) is
neither strict-sense stationary nor wide-sense stationary. This
can be attributed to the drift of the path, which establishes the
dependency of the mean m

px(l) upon the position index l. If
the drift does not exist, i.e., kd = 0, then the mean mpx(l)
equals the starting length xs.

C. Autocorrelation Function of px(l)

The expectation E {px(li) px(lj)} equals the ACF
r
px px(li, lj) of the process px(l) at the position indices li

and lj . It can be shown (see Appendix A) that

rpx px(li, lj) = mpx(li)mpx(lj) + σ2
x

(
rc
pBx pBx

(li, lj)

− kblj
L

rc
pBx pBx

(li, L)−
kbli
L

rc
pBx pBx

(L, lj)

+
k2b lilj
L2

rc
pBx pBx

(L,L)

)
(7)

where the autocovariance function r c
pBx pBx

(li, lj) is given
by4 (5). The ACF r

px px(li, lj) in (7) cannot be written as
a function of the difference ld = li − lj , which confirms that
px(l) is not wide-sense stationary.

An important special case occurs if we set one of the
arguments of the ACF in (7) to 0. In this case, (7) reduces
to the following expression

r
px px(0, lj) = m

px(0)mpx(lj) + σ2
x

(
rc
pBx pBx

(0, lj)

− kblj
L

rc
pBx pBx

(0, L)

)
= m

px(0)mpx(lj)

= xs(xs + kdljδx) (8)

where we have used rc
pBx pBx

(0, lj) = rc
pBx pBx

(0, L) = 0.
The recent reduction originates from the fact that min (0, l j) =
0 in (5) forces rc

pBx pBx
(0, lj) to 0. With the same token, it

can be shown that rpy py(0, lj) = mpy(0)mpy(lj), from which
it can be concluded that the correlation between the starting
point and any heading point is determined by the product of

4To cope with the discreteness of the position index l, one may simply use
the equivalent Riemann sum of the integral in (5).

the corresponding mean values. If one of the mean values is
zero, no correlation exists. It can also be shown that if the
bridge is fully established, i.e., kb = 1, then rpx px(L, lj) =
r
px px(lj , L) = m

px(L)mpx(lj). In this case, the correlation
between the terminating point and its posterior points is also
determined by the product of the corresponding mean values.

D. Variance of px(l)

The variance σ2
px(l) of the process px(l) is computed as

follows

σ2
px(l) = r

px px(l, l)−m2
px(l)

= σ2
x

(
rc
pBx pBx

(l, l)− 2
kbl

L
rc
pBx pBx

(l, L)

+
k2b l

2

L2
rc
pBx pBx

(L,L)

)
. (9)

It can be shown that the variance σ2
px(l) of the process px(l)

in (9) is a monotonically increasing function in p. This is
intuitively due to the fact that the integration over the standard
BF increases the correlation between the random components.
Furthermore, it can be verified that liml→0 σ

2
px(l) = 0.

Analogously, one can write liml→0 σ
2
py(l) = 0. The two recent

limits state that the randomness of the points near the starting
point (px(0), py(0)) (or equivalently (xs, ys)) tends to zero.
The randomness of the terminating point (px(L), py(L)) and
the points in its close vicinity, however, do not vanish, as the
limit

lim
l→L

σ2
px(l) = σ2

x(1 − kb)
2rc

pBx pBx
(L,L)

= σ2
x(1 − kb)

2σ2
pBx

(L) (10)

is in general not equal to 0. If kb → 1, then liml→L σ2
px(l) = 0.

It is also worth mentioning that the result in (10) is equal
to the parameter σ2

Dd
of the Rayleigh distributed distance

Dd between the terminating point (px(L), py(L)) and the
destination point (xd, yd), which opens an alternative way
to proof Theorem 1 of Part I [16]. We also remark that
the variance σ2

px(l) of the process px(l) is very useful for
adjusting the standard deviation σx as one of the important
model parameters (see Section V-B in [16]).

IV. SPATIAL CHARACTERISTIC OF THE TRAJECTORY pT
This section deals with the spatial processes, which consist

of the elements px(l) and py(l) of the trajectory pT along the
x- and y-axis.

A. Spatial Increment Process

Let the complex process ps(l) = psx(l) + j psy(l) (l =
1, 2, ..., L) define the spatial increment process of the trajec-
tory pT , where psx(l) = px(l) − px(l − 1) and psy(l) =

py(l)− py(l− 1) are the increments along the x- and y-axis,
respectively, and j =

√
−1.

Theorem 1. The spatial increment ps(l) follows the complex
Gaussian distribution of the form CN

(
mps,Cps

)
, where

m
ps = [kdδx, kdδy]

T ,
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Cps =

(
σ2

psx(l) 0

0 σ2
psy (l)

)
(11)

σ2
psx(l)= σ2

x

(
rc
pBx pBx

(l, l) + rc
pBx pBx

(l − 1, l − 1)

+
k2b
L2

rc
pBx pBx

(L,L)− 2rc
pBx pBx

(l, l− 1)

− 2kb
L

rc
pBx pBx

(l, L)+
2kb
L

rc
pBx pBx

(l − 1, L)

)
(12)

and σ2
psy (l) can be obtained from (12) by replacing the

superscript x by y.

Proof: See Appendix B.
From Theorem 1, it can be concluded that the spatial

increment process ps(l) is not strict-sense stationary, as its
first-order density CN

(
m

ps,Cps

)
varies in l. The spatial

increment process ps(l) is very useful for deriving the AOM
process and the incremental travelling length process of the
path pT , as will be shown in the next two subsections.

B. AOM Process

The AOM pα
v(l) process, defined as

pα
v(l) = arctan

(
py(l)− py(l− 1)

px(l)− px(l − 1)

)

= arctan

(
psy(l)

psx(l)

)
(13)

can be considered as the phase of the spatial increment process
ps(l).

Corollary 1. The first-order density ppαv (αv; l) of the AOM
process pα

v(l) in (13) is given by the following expression

p
pαv(αv ; l) =

1

4πg1(αv; l)σ
psx(l)σpsy (l)

× exp

{
−1

2

(
k2dδ

2
x

σ2
psx(l)

+
k2dδ

2
y

σ2
psy (l)

)}

×
(
1 +

√
πg2(α

v; l)

2
√
g1(αv ; l)

erfc

(
−g2(α

v; l)

2
√
g1(αv; l)

)

× exp

{
g22(α

v; l)

4g1(αv; l)

})
(14)

where

g1(α
v; l) =

1

2

(
cos2(αv)

σ2
psx(l)

+
sin2(αv)

σ2
psy (l)

)
(15)

g2(α
v; l) = kd

(
δx cos(α

v)

σ2
psx(l)

+
δy sin(α

v)

σ2
psx(l)

)
(16)

and erfc(·) stands for the complementary error function [33,
p. 887].

Proof: With reference to Theorem 1, the spatial in-
crement ps(l) follows the complex Gaussian distribution of

the form CN
(
m

ps,Cps

)
. The phase and the envelope of

complex Gaussian processes with correlated quadratures and
non-identical means (variances) have been studied in [ 34]
and [35]. Herein, the correlation ρ between the inphase and
quadrature components of the spatial increment process ps(l)
is zero, i.e., ρ = C12 = C21 = 0. Starting from the
phase distribution of a complex Gaussian distribution with
uncorrelated quadratures in [35, Eq. (2)], setting ρ = 0, and
performing some straightforward mathematical manipulations
results in (14).

In accordance with the spatial increment process ps(l), the
AOM process pα

v(l) in (13) is not first-order stationary, as
its first-order density p

pαv (αv; l) in (14) depends on position
index l. The special case of p = 0, however, results in a
stationary AOM process pα

v(l). In this case, it is straightfor-
ward to show by means of (5) that the variance σ2

psx(l) in (12)
reduces to

σ2
0sx = σ2

x

(
1 +

k2b
L

− 2
kb
L

)
(17)

which does not change in l, stopping the variations of
p

pαv (αv; l) in l as well (see (14)–(16)). Another stationary
case occurs if we decrease the variances σ2

x and σ2
y towards

zero. In this case, p
pαv

l
(αv; l) in (14) tends to the delta function

located at αv = arctan(δy/δx), which is independent of l.
Notice that arctan(δy/δx) indicates the general drift of the
path pT in (1).

An important property of the AOM pα
v(l) of the proposed

trajectory model is that pα
v(l) is in general not uniformly

distributed. The non-uniform distribution of the AOM has also
been reported from the real-world tracing in [17]. Nonetheless,
under special conditions, the first-order density p

pαv (αv; l)
in (14) can be simplified to a constant value, indicating that
the AOM pα

v(l) is uniformly distributed. Notice that the
uniform distribution of the AOM is one of the widely made
assumptions in the synthetic mobility models proposed in the
literature, which is, however, not necessarily true.

C. Incremental Travelling Length Process

The incremental travelling length process pd(l) is defined
by the following expression

pd(l) =

√
(px(l)− px(l − 1))

2
+ (py(l)− py(l− 1))

2

=
√

ps2x(l) + ps2y(l) (18)

which is the envelope of the spatial increment process ps(l).

Corollary 2. The first-order density p
pd(d; l) of the incremen-
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tal travelling length process pd(l) equals

p
pd(d; l) =

d

σ
psx(l)σpsy (l)

exp

{
−
σ2

psx(l) + σ2
psy (l)

4σ2
psx(l)σ

2
psy (l)

d2

−
k2d

(
δ2xσ

2
psy (l) + δ2yσ

2
psx(l)

)
2σ2

psx(l)σ
2
psy (l)

⎫⎬
⎭

∞∑
n=0

εn

× cos (ng3(l)) In

(
σ2

psx(l)− σ2
psy (l)

4σ2
psx(l)σ

2
psy (l)

d2

)

× I2n

⎛
⎝kd

√
δ2xσ

4
psy (l) + δ2yσ

4
psx(l)

σ2
psx(l)σ

2
psy (l)

d

⎞
⎠

(19)

where

g3(l) = 2 arccos

⎛
⎝ δxσ

2
psy (l)√

δ2xσ
4
psy (l) + δ2yσ

4
psx(l)

⎞
⎠ (20)

and In(·) denotes the nth order modified Bessel function of
the first kind [33, p. 629]. The parameter εn stands for the
Neumann factor [36], which equals 1 for n = 0, and 2 for
n = 1, 2, ....

Proof: Following the discussion provided in the proof of
Corollary 1, setting ρ = 0 in the envelope distribution in [35,
Eq. (1)], and applying simple mathematical manipulations give
the PDF in (19).

It has been shown in [35] that the infinite series
in (19) is convergent. It is also not difficult to verify that
∀p, limd→∞ p

pd(l)(d; l) → 0. This means that the probability
of jumping far from (px(l−1), py(l−1)) to (px(l), py(l)) tends
to zero for all p = 0, 1, ..., which is a prerequisite for a realistic
path model. An important property of the PDF p

pd(d; l) in (19)
is its dependency on l, which allows us to conclude that
the incremental travelling length process pd(l) in (18) is in
general non-stationary in the strict sense. Analogously to the
discussion in Section IV-B, this dependency can be relaxed by
setting p = 0. In this case, σ2

psx(l) is given by (17), which
makes p

pd(d; l) in (19) independent of l.
Another important special case is attained if σx = σy = σ0

and δx = δy = δ0. In this case, the PDF ppd(d; l) in (19)
reduces to the Rice distribution of the following form

p
pd(d; l) =

d

σ2
psx(l)

exp

{
−2k2dδ

2
0 + d2

2σ2
psx(l)

}
I0

(
kdδ0

√
2

σ2
psx(l)

d

)
.

(21)

It is worth mentioning that the Rice distribution above is not
a function of l if p = 0. Given this special case, the mean
m

0d and the variance σ2
0d

of the Rician distributed incremental
travelling length 0d(l) is obtained by (see, e.g., [37, p. 28])

m
0d = σ2

0sx

√
π

2
1F1

(
−1

2
; 1; −k2dδ

2
0

σ2
0sx

)
(22)

and

σ2
0d = 2σ2

0sx + 2k2dδ
2
0 −m2

0d (23)

respectively, where the function pFq(a1, ..., ap; b1, ..., bq;x)
stands for the generalized hypergeometric function [ 33, p.
1010].

If the drift component does not exist, i.e., kd = 0, the PDF
p

pd(d; l) in (19) is simplified to the Nakagami-q distribution
of the form

p
pd(d; l) =

d

σ
psx(l)σpsy (l)

exp

{
−
σ2

psx(l) + σ2
psy (l)

4σ2
psx(l)σ

2
psy (l)

d2

}

× I0

(
σ2

psx(l)− σ2
psy (l)

4σ2
psx(l)σ

2
psy (l)

d2

)
(24)

which has been reported, e.g., in [37]–[39].

D. Overall Travelling Length

The overall travelling length pD can be obtained by the
sum of all incremental lengths pd(l), i.e., pD =

∑L
l=1 pd(l).

Even if L → ∞, none of the central limit theorems (CLT)
of Lindeberg-Lévy and Lyapunov can be applied, as the
incremental lengths pd(l) are neither identically distributed,
nor independently. The correlation between the components
is also not low enough to be neglected. However, the case
p = 0 results in identically distributed incremental lengths
0d(l) (see Section IV-C). For such a special case, the CLT for
correlated random variables [40] can be invoked. To provide a
closed-form solution for the overall travelling length pD, we
focus on the special case discussed in Section IV-C, where
the first-order density p

0d(d; l) = p
0d(d) follows the Rice

distribution. Consequently, the CLT for correlated random
variables permits us to conclude that the travelling length
0D is a normally distributed random variable of the form
N
(
Lm

0d, Lσ
2
0d

)
, where the mean m

0d and the variance σ2
0d

are given by (22) and (23), respectively. This distribution can
often be seen in dense and crowded areas, such as shopping
centres and airports [21]–[27]5. In Section VI, the simulation
results show that for p ≥ 1, the travelling length pD follows
closely the log-normal distribution, which has been widely
addressed in the literature [17]–[20].

V. SPECIAL CASES

As discussed in the first part of our paper, the primitive
p = 0 allows erratic paths with sudden changes of direction.
However, the higher primitives p > 0 result in relatively
smooth paths. The level of smoothness increases by increasing
p. From these two major categories, we choose p = 0 and
p = 1 to further simplify some of the statistical properties of
the process px(l). We also assume the full bridge scenario,
i.e., kb = 1, in the presence of a drift component, i.e., kd = 1.
This allows us to get a better understanding of the behaviour
of px(l).

5Notice that most of the related empirical studies concern the speed
distribution of mobile users, but not their travelling length. Nevertheless, the
time-distance transformation allows us to extend their obtained distribution to
that of the travelling length.
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A. The Zeroth Primitive p = 0

The mean m
0x(l) in (6) is independent of p and remains

equal to xs+ lδx. The autocovariance function rc
0Bx0Bx

(li, lj)
in (5) of the standard BF simplifies to min(li, lj), which
complies with the result, e.g., in [31]. Subsequently, the ACF
r
0x0x(li, lj) in (7) reduces to

r
0x0x(li, lj) = m

0x(li)m0x(lj)

+ σ2
x

(
min(li, lj)−

lilj
L

)
. (25)

By setting li = lj = l and subtracting the means’ product, one
can obtain the variance σ2

0x(l) of the process 0x(l) by means
of the following equation

σ2
0x(l) = σ2

xl

(
1− l

L

)
. (26)

The function above has a concave shape with a peak at 6 l =
L/2 and two zeros at l = 0 and l = L. The value σ2

0xmax

of the peak then becomes σ2
0xmax = σ2

0x(L/2) = σ2
x L/4.

Furthermore, the spatial increment 0sx(l) follows the Gaussian
distribution of the form N(δx, σ

2
0sx(l)), where

σ2
0sx(l) = σ2

x

(
1− 1

L

)
(27)

is the simplified version of (12) after setting p = 0 and kb = 1.
The variance σ2

0sx(l) in (27) can also be considered as the
special case, kb = 1, of its more general form in (17).

B. The First Primitive p = 1

In this case, the path can be attained by substituting the
outcomes of the integrated (once) BF in (1). The mean m1x(l)
remains equal to xs + lδx. The auto-covariance function
rc
1Bx1Bx

(li, lj) in (5) of the integrated BF reduces to

rc
1Bx1Bx

(li, lj) = lilj min(li, lj)−
li + lj

2
(min(li, lj))

2

+
1

3
(min(li, lj))

3. (28)

For the special case of li = lj , the auto-covariance function
above becomes l3/3, which agrees with the variance σ2

1B
(l)

in (4) and that of reported, e.g., in [31]. The simplification of
the variance σ2

1x(l) in (9) to

σ2
1x(l) = σ2

x

l2L

3

(
1− l

L

)2

(29)

is also very helpful to confirm its concave shape in l. The
peak of the curve is again at l = L/2, whereas the zeros
are located at l = 0 and l = L. The value σ2

1xmax of the
peak equals σ2

1xmax = σ2
1x(L/2) = σ2

x L
3/48. Notice that

for a given value of σ2
x and for large values of L � 1, the

maximum variance σ2
1xmax of the process 1x(l) is significantly

greater than that of 0x(l), i.e., σ2
0xmax (see Section V-A). It

is worth mentioning that for higher values of p, the peak is
not at L/2 anymore. For p ≥ 2, the position of the peak
has a mild tendency to the terminating position variable, i.e.,

6The nearest natural number to L/2 is acceptable as the position index l
of the peak.

l = L. Furthermore, despite the apparent similarity between
σ2

1x(l) in (29) and σ2
0x(l) in (26), a general extension to higher

values of p cannot be found. For instance, the variance σ 2
2x(l)

associated with the primitive p = 2 becomes

σ2
2x(l) = σ2

x

l2L

60

(
1− l

L

)2

(−l2 + 6Ll+ 3L2) (30)

which has less similarity to (26) and (29). Nevertheless, the
zeros of σ2

2x(l) in (30) are still at l = 0 and l = L/2, while
its maximum occurs at the nearest natural number to 0.55L.

VI. NUMERICAL RESULTS

Herein, we illustrate the statistical properties of the refer-
ence (path) model. We have also obtained these properties
by means of simulation results. This means that we have
generated a large enough number of realizations of the path
by following the procedure described in Section V-A of Part
I. Then, we have derived the statistical properties of the
simulation model. An excellent match between the analyt-
ical and simulation results have been observed. Due to the
similarity of the statistical properties of the reference model
and the simulation model, we, nevertheless, omit to show
those of the simulation model herein. In accordance with the
simulation results presented in Part I of our paper, the starting
point (xs, ys) is set to the origin of the Cartesian coordinate
system, i.e., (0m, 0m), whereas the destination point (xd, yd),
if any, is set to (50m, 50m). The number of points L is
100. The maximum standard deviation σpxmax along the x-
axis is supposed to be equal to the one along the y-axis, i.e,
σ

pxmax = σ
pymax = σmax. The only exception is where

we plot the ACF rpx px(li, lj) of the path 0T , which will be
discussed later. Owing to space restrictions, we focus only on a
special case in which the bridge to the destination point is fully
established, i.e., kb = 1, and the drift component is available,
i.e., kd = 1. The values of the primitive p is displayed in the
figures and/or their captions.

Figs. 1–3 depict the ACF rpx px(li, lj) of px(l) in (7) for
different values of the primitive p. To show the effect of the
primitive p on r

px px(li, lj), we have used the same standard
deviation σx = σy = 2m to plot the three figures. This
results in completely different maximum standard deviations
σ

pxmax of the process px(l) (see Section V-B). The first
common observation in the three figures is that the ACF
r
px px(li, lj) varies in position index l, which indicates that

the process px(l) is non-stationary. The second one is that
r
px px(li, 0) = r

px px(0, lj) = 0, which agrees with the
discussion provided in Section III-C. The third observation
is that the three figures are symmetric with respect to the
line represented by li = lj . Fig. 1 shows that the maximum
correlation occurs at li = lj = L, i.e., at the terminating point.
This can be attributed to the fact that most of the contribution
to the correlation between the samples of 0x(l) is given by its
drift component. As a result, the highest value of the curve
occurs at li = lj = L, where the mean value of the samples
is maximum. Notice that the correlation between the random
components of 0x(l) is relatively low, as the non-overlapping
increments of the standard BF are independent (see Section
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III of Part I). As opposed to this, integrating over the standard
BF (p > 0) adds greatly to the correlation between the random
components of 0x(l). In this case, the contribution of the drift
component to the correlation between the samples of 0x(l) is
in minority. This can be observed in Figs. 2 and 3, in which the
maximum correlation occurs at (about) l i = lj = L/2, where
the variance σ2

px(l) is also maximum (see Section V-B).

The variance σ2
px(l) of the process px(l) in (9) is demon-

strated in Figs. 4 and 5. In accordance with Figs. 1–3, we
remain on the assumption of σx = σy = 2m. Fig. 4 shows
the variance σ2

px(l) for different values of p. As discussed in
Section III-D, σ

pxmax is a monotonically increasing function
in p. The significant increase in σ

pxmax is the result of
integrating over the BF. Referring to Fig. 4, for p equals 0 and
1, the maximum variance σ

pxmax occurs at l = 50. For p = 2,
the peak position, however, moves to l = 55, which verifies the
mild tendency of the peak position to the terminating point (see
Section V-B). Fig. 5 illustrates the variance σ2

2x(l) in (9) for
different values of the bridge parameter kb. Herein, we have set
the maximum standard deviation to σmax = σ

2xmax = 10m.
The importance of the figure is to show the position of the
maximum variance. If kb = 1, the variance σ2

2x(l) is a concave
function given by (30) with a peak at l = 50. For kb = 0,
the variance σ2

2x(l) in (9) turns to σ2
2x(l) = σ2

xl
5/20, which

is a monotonically increasing function in l. Therefore, the
maximum occurs at l = 100. Finally, if 0 < kb < 1, the
variance σ2

2x(l) is a combination of a concave and convex
function as shown in Fig. 5. The combined form of σ2

2x(l)
in the recent case can describe the special configuration of
the path shown in Fig. 11 of Part I, where the trajectory first
turns (as a result of the concave part of σ2

2x(l)) around the
starting point and then leaves (as a result of the increasing tail
of σ2

2x(l)) the close vicinity of the starting point. Notice that
the curves shown in Fig. 5 show the variances of the paths
along the x-axis shown in Figs. 3, 10, and 11 of Part I.

Fig. 1. The ACF r0x0x(li, lj) in (7). The model parameters are kd = 1,
kb = 1, and σx = σy = 2m.

Fig. 2. The ACF r1x1x(li, lj) in (7). The model parameters are kd = 1,
kb = 1, and σx = σy = 2m.

Fig. 3. The ACF r2x2x(li, lj) in (7). The model parameters are kd = 1,
kb = 1, and σx = σy = 2m.
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Figs. 6–8 display the AOM PDF p
pαv (αv; l) in (14) for

different values of p. The maximum standard deviation σmax

has been set to 10 m along both axes. These figures show
the AOM PDFs of the paths shown in Figs. 1–3 of Part I. As
can be observed in Fig. 6, the AOM PDF p

0αv (αv ; l) does not
vary in position (look at the similarity of the colours along any
given value of αv), which indicates that the AOM process 0α

v

is stationary in this case (see Section IV-B). The stationarity,
however, does not hold for p = 1 and p = 2, as p

pαv (αv ; l)
changes in l (see Figs. 7 and 8). A common observation in
Figs. 6–8 is that for a given l, the peak of p

pαv (αv; l) is at
αv = arctan(1) = 0.78 rad, which agrees with the slope of
the drift shown in Figs. 1–3 of Part I. Moreover, by increasing
p, the variance of the AOM process decreases, which is in line
with the observations in Figs. 1–3 of Part I. Furthermore, for
αv = 0.78 rad, the maximum of p

pαv (αv; l) occurs at l = 50
and l = 55 if p = 1 and p = 2, respectively. Finally, as
opposed to many proposed mobility models in the literature,
herein, the AOM is in general not uniformly distributed, which
complies with real-world user tracings reported in [17].

Fig. 6. The AOM PDF p0αv (αv ; l) in (14). The model parameters are
kd = 1, kb = 1, and σmax = 10m.

Fig. 7. The AOM PDF p1αv (αv ; l) in (14). The model parameters are
kd = 1, kb = 1, and σmax = 10m.

Fig. 8. The AOM PDF p2αv (αv ; l) in (14). The model parameters are
kd = 1, kb = 1, and σmax = 10m.

Figs. 9 and 10 exhibit the incremental travelling length
PDF p

pd(d; l) in (19) for p equals 1 and 2, respectively. The
model parameters are kd = 1, kb = 1, and σmax = 10m.
The case p = 0 simplifies ppd(d; l) in (19) to the Rice
distribution (see Section IV-D), which is trivial to be presented
here. It is noteworthy that Figs. 9 and 10 show the incremental
travelling length PDF p

1d(d; l) of the paths shown in Figs. 2
and 3 of Part I, respectively. As can be observed from both
Figs. 9 and 10, limd→∞ p

pd(l)(d; l) = 0, which is in agreement
with the discussion in Section IV-C. Indeed, as a prerequisite
for a realistic path, the proposed path model does not allow
far jumps from (xl−1, yl−1) to (xl, yl). Furthermore, the
variance of the incremental travelling lengths pd decreases
by increasing the primitive p, which can also be confirmed
by the paths shown in Figs. 2 and 3 of Part I. An important
observation is that for a given l, the maximum p

pd(d; l) occurs
slightly after d = 0.5m. This value can be compared with
the contribution of the drift component to (1), which equals
(xd − xs)/L = 0.5m. Adding the contribution of the random
component in (1) to this value, the recent observation in Figs. 9
and 10 can be verified. Eventually, the variations of p

pd(d; l) in
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Fig. 9. The incremental travelling length PDF p
1d(d; l) in (19). The model

parameters are kd = 1, kb = 1, and σmax = 10m.

Fig. 10. The incremental travelling length PDF p
2d(d; l) in (19). The model

parameters are kd = 1, kb = 1, and σmax = 10m.

l indicate that the incremental travelling length process in (18)
is non-stationary in the strict sense.

Figs. 11 and 12 demonstrate the simulated overall trav-
elling length PDF p

pD(d) discussed in Section IV-D. The
simulation results have been obtained by computing the sum
pD =

∑L
l=1 pd(l) for 50000 realizations of the path pT and

then creating the corresponding histogram by means of 100
equally spaced bins. The model parameters are kd = 1, kb = 1,
and σmax = 10m. For p = 0, p

0D(d) follows the Gaussian
distribution of the form N

(
Lm

0d, Lσ
2
0d

)
(see Section IV-D).

In this regard, Fig. 11 shows the aforementioned Gaussian dis-
tribution, which matches excellently the simulation results. As
mentioned before, the Gaussian distribution of the travelling
length has been reported in empirical studies such as [21]–
[27]. It is also worth mentioning that Fig. 11 represents p

0D(d)
associated with the paths shown in Fig. 1 of Part I. For
p ≥ 1, the overall travelling length PDF p

pD(d) does not result
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The model parameters are kd = 1, kb = 1, and σmax = 10m.
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in an analytical closed-form solution. The simulation results,
however, can be obtained by the aforementioned procedure.
The results shown in Fig. 12, are pertinent to the paths shown
in Figs. 2 and 3 of Part I [16]. An important observation from
Fig. 12 is that the travelling length PDF ppD(d) (p ≥ 1)
follows closely the lognormal distribution, which complies
with the results from real-world tracings [17]–[20]. With
reference to Fig. 12, by increasing the primitive p, both the
variance and the mean of the travelling length pD decrease.
However, the mean value cannot be less than the travelling
length of the straight path. For the considered scenario, the
length of the straight path equals 50

√
2 = 70.7m, for which

the corresponding overall travelling length PDF p pD(d) is
given by the delta Dirac function of the form δ(d − 70.7).
From Fig. 12, it can be confirmed that by increasing p, the
travelling length PDF ppD(d) tends to that of the straight path,
i.e., δ(d− 70.7).
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VII. CONCLUSION

This second part of our paper has investigated the statistical
properties of the trajectory model proposed in the first part.
We have studied the spatial mean, variance, and the ACF of
the path model. We have also introduced a new process that is
called the spatial increment process, for which we have shown
that it follows the complex Gaussian distribution with noniden-
tical means and variances of the quadrature components. From
this process, the AOM and the incremental travelling length
processes of the path have been derived. We have computed the
first-order density of these processes in closed form, showing
that the AOM is not uniformly distributed, which agrees
with real-world traces reported in the literature. We have also
proved that the incremental travelling length includes the Rice
and Nakagami-q distributions as special cases. Furthermore,
we have computed the overall travelling length by summing
up the incremental travelling lengths. Simulation results have
shown that depending on the primitive order, the length of the
travelling path follows either the Gaussian distribution, or the
lognormal distribution, which both have been widely reported
in empirical studies. To better highlight the usefulness of the
model, the direct comparison of the results with empirical data
is considered as a topic for future studies.

APPENDIX A
DERIVATION OF THE ACF r

px px(li, lj) IN (7)

To compute E {px(li) px(lj)}, let us recall from (1) that
px(li) = m

px(li) + σxWx(li, kb) = m
px(li) + σx(pBx(li) −

kbli
L pBx(L)), where we have replaced xs + kdliδx by the

mean m
px(li) (see (6)). This allows us to compute the ACF

r
px px(li, lj) as follows

r
px px(li, lj)=E {px(li) px(lj)}

=E

{(
m

px(li)+σx

(
pBx(li)−

kbli
L

pBx(L)

))

×
(
m

px(lj)+σx

(
pBx(lj)−

kblj
L

pBx(L)

))}
= E

{
m

px(li)mpx(lj)

+ σxmpx(li)

(
pBx(lj)−

kblj
L

pBx(L)

)

+ σxmpx(lj)

(
pBx(li)−

kbli
L

pBx(L)

)

+ σ2
x

(
pBx(li)−

kbli
L

pBx(L)

)

×
(

pBx(lj)−
kblj
L

pBx(L)

)}
= m

px(li)mpx(lj)

+ σxmpx(li)E

{
pBx(lj)−

kblj
L

pBx(L)

}

+ σxmpx(lj)E

{
pBx(li)−

kbli
L

pBx(L)

}

+ σ2
xE

{(
pBx(li)−

kbli
L

pBx(L)

)

×
(

pBx(lj)−
kblj
L

pBx(L)

)}
= m

px(li)mpx(lj)

+ σ2
xE

{(
pBx(li)−

kbli
L

pBx(L)

)

×
(

pBx(lj)−
kblj
L

pBx(L)

)}
= m

px(li)mpx(lj) + σ2
x (E {pBx(li)pBx(lj)}

− kblj
L

E {pBx(li)pBx(L)}

− kbli
L

E {pBx(L)pBx(lj)}

+
k2b lilj
L2

E
{
B2

x(L)
})

. (31)

Finally, using rc
pBx pBx

(·, ·) = E {pBx(·)pBx(·)} gives the
result in (7).

APPENDIX B
PROOF OF THEOREM 1

With reference to the path pT in (1), the increment process
psx(l) = px(l)− px(l− 1) along the x-axis can be written as

psx(l) = xs + kdlδx + σx(pBx(l)−
kbl

L
pBx(L))

− xs − kd(l − 1)δx − σx(pBx(l − 1) +
kb(l − 1)

L
pBx(L))

= kdδx + σx(pBx(l)− pBx(l − 1)− kb
L

pBx(L)). (32)

The equation above represents a linear combination of zero-
mean Gaussian processes plus the constant shift kdδx. Ac-
cordingly, the increment process psx(l) follows the Gaussian
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distribution of the form N
(
kdδx, σ

2
psx(l)

)
, where

σ2
psx(l)=E

{
(σx)

2

(
pBx(l)− pBx(l − 1)− kb

L
pBx(L)

)2
}

= σ2
x E

{
pB

2
x(l) + pB

2
x(l − 1) +

k2b
L2 pB

2
x(L)

− 2 pBx(l) pBx(l − 1)− 2kb
L

pBx(l) pBx(L)

+
2kb
L

pBx(l − 1) pBx(L)

}

= σ2
x

(
rc
pBx pBx

(l, l) + rc
pBx pBx

(l − 1, l − 1)

+
k2b
L2

rc
pBx pBx

(L,L)− 2rc
pBx pBx

(l, l− 1)

− 2kb
L

rc
pBx pBx

(l, L) +
2kb
L

rc
pBx pBx

(l − 1, L)

)
. (33)

With the same token, the increment process psy(l) = py(l)−
py(l − 1) along the y-axis follows the Gaussian distribution

of the form N
(
kdδy, σ

2
psy (l)

)
, where σ2

psy (l) is obtained
from (33) by replacing the superscript x by y. Furthermore,
the correlation between the increment processes psx(l) and
psy(l) is zero, as their structural elements pBx(l) and pBy(l)
are statistically independent. Therefore, the spatial increment
process ps(l) = psx(l) + j psy(l) follows the complex Gaus-
sian distribution of the form provided in Theorem 1.
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