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Conditions
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Abstract—This paper proposes a new geometry-based channel
model for shallow-water ocean environments in which the ocean
bottom can slope gently down/up. The need for developing such
an underwater acoustic (UWA) channel model is driven by
the fact that the standard assumption of a flat ocean bottom
does not hold in many realistic scenarios. Starting from a
geometrical model, we develop a stochastic channel model for
wideband single-input single-output vehicle-to-vehicle UWA
channels using the ray theory assuming smooth ocean surface
and bottom. We investigate the effect of the ocean-bottom slope
angle on the distribution of the channel envelope, instantaneous
channel capacity, temporal autocorrelation function, frequency
correlation function, Doppler power spectral density, and the
power delay profile. Theoretical and simulation results show
that even a relatively small slope angle influences considerably
the statistical properties of UWA channels. The validation of the
proposed UWA channel model has been performed by fitting
its main characteristic quantities (average delay, delay spread,
and coherence bandwidth) to measurement data. In comparison
with the conventional UWA channel model, which has been
developed on the assumption of a flat ocean bottom, it is shown
that the proposed UWA channel model enables the modelling of
measured channels with higher precision.

Index terms — Shallow underwater acoustic channels, instan-
taneous channel capacity, Doppler power spectral density, power
delay profile, temporal correlation function.

I. INTRODUCTION

In recent years, underwater acoustic (UWA) communication
systems have received considerable attention. UWA networks
have been studied in various areas due to their potential
applications in oceanography that involve the exploration of
the ocean [1], support for underwater robots [2], offshore oil
industry exploration [3], and pollution monitoring [4], just to
name a few examples. Owing to the fact that electromagnetic
waves and laser beams suffer from high path loss in ocean
water, acoustic signals are being used, especially, in medium-
and long-range underwater communications. For the design,
test, and performance analysis of UWA communication sys-
tems, realistic channel models are required. This calls for
the statistical analysis of UWA channels in terms of the
channel envelope distribution, instantaneous channel capacity,
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correlation functions, Doppler power spectral density (PSD),
and power delay profile (PDP).

UWA wave propagation in the ocean is described by the
wave equation, but the development of a proper propagation
model by solving the wave equation is well known to be a
difficult problem [5]. To circumvent this problem, approxima-
tions by means of the ray theory are often used to model the
acoustic wave propagation phenomena in ocean environments
[6]. By invoking the ray theory, the energy of sound propagates
in shallow-water environments along straight lines like light
rays, where the speed of sound is assumed to be constant
(isovelocity assumption) [5], [7], [8].

Moreover, several stochastic channel models have been de-
veloped for UWA communication systems under the assump-
tion that the ocean bottom is flat [5], [9]–[13]. For example,
in [5] and [9], the total distances that macro-eigenrays travel
between the transmitter and the receiver have been computed
by using the method of image projections, which has first
been introduced in [6]. In both aforementioned papers, the
reference channel models have been developed by combining
the deterministic ray-tracing concept with statistical methods
to account for the randomness of the propagation environment.
However, the ocean bottom is not necessarily flat and most
parts of the ocean bottom slope gradually from the shore
to the high and deep ocean. This natural feature motivated
us to develop a new geometrical model which we call the
sloped-ocean-bottom (SOB) model. The objective of this paper
is to start from the geometrical SOB model and to develop
a general stochastic UWA channel model that accounts for
SOB conditions. It is shown that the flat-ocean-bottom (FOB)
model, which is widely used in the literature [5], [9]–[13],
can be obtained as a special case of the proposed model if the
slope angle is zero.

In this context, several studies have been conducted to in-
vestigate the probability density functions (PDFs) of the UWA
channel gains and the corresponding instantaneous capacity
[14]–[16]. The study of these statistical characteristics is of
great importance as it allows us to gain a deeper insight into
the dynamical and temporal behavior of UWA channels.

In this paper, we develop a geometry-based UWA chan-
nel model assuming ray propagation in shallow-water ocean
environments by taking macro-scattering effects, which are
caused by specular reflections at the surface and bottom of the
ocean, into account. The randomness of the UWA channel as
a result of micro-scattering (diffuse scattering) effects will not
be discussed in this paper. Starting from the geometrical SOB
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model, we derive the time-variant channel impulse response
(TVCIR) of the UWA channel model. Expressions are derived
for the total distances that the macro-eigenrays travel from
the transmitter to the receiver by assuming multiple-bounce
scattering in shallow-water environments. We also study the
angles-of-departure (AODs) and the angles-of-arrival (AOAs)
of the macro-eigenrays. Furthermore, we investigate the effect
of the ocean-bottom slope angle on the PDF of the UWA
channel envelope and the PDF of the instantaneous channel
capacity. Moreover, the statistical quantities of the proposed
SOB-UWA channel model, such as the temporal autocorre-
lation function (ACF), frequency correlation function (FCF),
Doppler PSD, and the PDP, are compared with those of the
FOB-UWA channel model. The influence of the slope angle
on the Doppler spread, average Doppler shift, coherence time,
average delay, delay spread, and the coherence bandwidth
of the UWA channel model are also studied. It is shown
that the ocean-bottom slope angle considerably influences the
statistical properties of UWA channels. The key theoretical
results are illustrated by computer simulations.

In addition, the main statistical properties of the proposed
UWA channel model, such as the FCF, average delay, delay
spread, and the coherence bandwidth have been matched to
real-world measurement data of UWA channels. The observed
excellent agreement between model prediction and experi-
mental measurement confirms the validity of the proposed
SOB-UWA model. Moreover, the superiority of the SOB
model over the FOB model is shown regarding the modelling
of characteristic quantities (such as the delay spread and
coherence bandwidth) of the measurement data, which are
useful quantities for designing UWA communication systems,
especially when orthogonal frequency division multiplexing
(OFDM) techniques are used.

The rest of this paper is organized as follows. In Sec-
tion II, the geometrical UWA channel model is presented.
Section III studies the stochastic UWA channel model from
the geometrical UWA model. Section IV focuses on the
statistical properties of the proposed UWA channel model. The
numerical results are illustrated in Section V. The validation
of the main theoretical results through measurement data is
outlined in Section VI. Finally, the conclusions are drawn in
Section VII.

II. THE GEOMETRICAL SOB-UWA MODEL

In this section, we present a new geometrical model for
a wideband single-input single-output (SISO) shallow-water
ocean environment under the assumption that the ocean surface
and ocean bottom are smooth. In addition, it is assumed that
the ocean bottom declines (inclines) with a slope angle denoted
by φ. The shallow-water ocean environment is considered as
an isovelocity environment. This paper considers medium- and
long-range shallow UWA communication links under line-of-
sight (LOS) propagation conditions. The UWA channel is also
assumed to be wide-sense stationary in time and frequency.

Fig. 1 presents the geometrical model of a SOB-UWA
channel in a shallow-water ocean environment. As can be
seen, the two-dimensional geometrical SOB model is bounded

by the ocean surface and bottom. These natural boundaries
act as reflectors for acoustic waves such that several macro-
eigenrays can travel from the transmitter Tx to the receiver
Rx. With reference to Fig. 1, there are three kinds of macro-
eigenrays. They can be grouped into downward arriving (DA)
macro-eigenrays, upward arriving (UA) macro-eigenrays, and
a LOS macro-eigenray. Each of the DA macro-eigenrays for
which the last reflection originates from the ocean surface
can have a different number of s surface reflections and
b̆ bottom reflections. Let NS be the maximum number of
surface interactions that a DA macro-eigenray can have with
the ocean surface, then s and b̆ are limited by 1 ≤ s ≤ NS
and s − 1 ≤ b̆ ≤ s, respectively. At any time instance t,
the receiver Rx receives 2NS DA macro-eigenrays. The UA
macro-eigenrays for which the last reflection originates from
the ocean bottom can have a different number of b bottom
reflections and s̆ surface reflections. Analogously, let NB
denote the maximum number of bottom interactions that a UA
macro-eigenray can have with the ocean bottom, then b and s̆
are limited by 1 ≤ b ≤ NB and b − 1 ≤ s̆ ≤ b, respectively.
Similarly, at the time instance t, the receiver Rx receives 2NB
UA macro-eigenrays. For instance, if a UA macro-eigenray has
only one interaction with the ocean bottom, i.e., NB = 1, then
there are two possible paths which this macro-eigenray can
travel from the transmitter Tx to the receiver Rx. The first path
arrives at Rx after a single bounce on the bottom of the ocean,
i.e., b = 1, and s̆ = 0. The second path is a double-bounce path
if a UA macro-eigenray starts upward. This means the macro-
eigenray first interacts with the ocean surface and then, after
interacting with the ocean bottom, arrives at Rx, i.e., b = 1
and s̆ = 1. It should be mentioned that experimental results
obtained for medium- and long-range shallow UWA channels
have shown that the number of macro-eigenrays arriving at
Rx rarely exceeds 8, i.e., 2NS + 2NB = 8 [5], [9], [17], [18].

The exact positions of the macro-scatterers are computable
and depend on the waveguide geometry and the number of
macro-eigenrays [6]. In [6], the total distances which macro-
eigenrays travel in FOB models after their interactions with
macro-scatterers, located at the ocean surface and bottom,
have been derived by using the method of images. Micro-
scatterers, which can be clustered around the positions of
macro-scatterers will not be considered in our paper. In other
words, we limit our study to the propagation of deterministic
macro-eigenrays by considering only the specular (mirror-like)
reflections of the ocean surface and bottom.

Moreover, we assume that the transmitter Tx and the re-
ceiver Rx are moving with velocities ~vT and ~vR in the di-
rections determined by the angles-of-motion (AOMs) αTv and
αRv , respectively. As shown in Figs. 1 and 2, the transmitter Tx
(receiver Rx) is located at the distances yT1 (yR1 ) and yT2 (yR2 )
from the ocean surface and ocean bottom, respectively. The
distance along the x-axis between Tx and Rx is denoted by
D. As can be seen in Fig. 2, the symbol βDA

sb̆
(αDA
sb̆

) stands for
the AODs (AOAs) of the DA macro-eigenrays associated with
the number of surface interactions s and bottom interactions
b̆. Analogously, the symbol βUA

bs̆ (αUA
bs̆ ) also denotes the AODs

(AOAs) of UA macro-eigenrays associated with the number of
bottom interactions b and surface interactions s̆. The symbol
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Fig. 1. Illustration of the LOS macro-eigenray and several DA and UA
macro-eigenrays which travel from Tx to Rx in a shallow UWA channel
(NS = 2, NB = 1).
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Fig. 2. The geometrical SOB model of a UWA channel in a shallow-water
ocean environment.

β0 (α0) stands for the AOD (AOA) of the LOS component.

III. THE GEOMETRY-BASED SOB-UWA CHANNEL
MODEL

In this section, we develop a mathematical model for the
macro-eigenray propagation through shallow-water environ-
ments, where it is assumed that the ocean bottom slopes down
or up. We first present the TVCIR of the proposed geometry-
based channel model for a vehicle-to-vehicle (V2V) UWA
wideband fading channel under LOS propagation conditions.
Then, we drive the expressions of the total distances which
macro-eigenrays travel from Tx to Rx after their interactions
with the surface and bottom of the ocean. The AODs and
the AOAs, which are required for computing the Doppler
frequencies, are also studied. We show that the proposed UWA
channel model includes the well-known model in [9], where
the ocean bottom is flat, as a special case.

A. TVCIR

According to the geometrical model shown in Fig. 2, the
TVCIR h(τ ′, t) can be split into three parts. The first part

hLOS(τ ′, t) describes the LOS component, whereas the second
part hDA(τ ′, t) and the third part hUA(τ ′, t) comprise the DA
macro-eigenrays and the UA macro-eigenrays, respectively.
Hence, the TVCIR h(τ ′, t) can be written as

h(τ ′, t) = hLOS(τ ′, t) + hDA(τ ′, t) + hUA(τ ′, t). (1)

The LOS part hLOS(τ ′, t) of the TVCIR is described by the
expression

hLOS(τ ′, t) = c0 e
j(2πf0t+θ0)δ(τ ′ − τ ′0) (2)

in which the gain c0 is given by

c0 =
√
cR/(1 + cR)As(D0)Aa(D0). (3)

The parameter cR is the Rice factor, and τ ′0 denotes the
propagation delay of the LOS component. The symbols f0

and θ0 represent the Doppler frequency and phase shift of the
LOS component, respectively. The Doppler frequency f0 in
(2) is defined by

f0 = fTmax cos(β0 − αTv ) + fRmax cos(α0 − αRv ) (4)

where fTmax (fRmax) denotes the maximum Doppler frequency
associated with the transmitter Tx (receiver Rx), which is
given by fTmax = vT fc/cs (fRmax = vRfc/cs). Therein,
vT = |~vT | (vR = |~vR|) denotes the speed of the transmitter
(receiver), fc indicates the carrier frequency (in Hz), and cs is
the speed of sound in water, which is assumed to be 1500 m/s
(isovelocity environment). With reference to Fig. 2, the AOD
β0 and the AOA α0 of the LOS component can be computed
by

β0 = arctan

(
yT1 − yR1

D

)
(5)

and

α0 = π + β0 (6)

respectively. The propagation delay τ ′0 can be expressed by

τ ′0 =
D0

cs
(7)

where the total distance D0 between Tx and Rx is given by

D0 =
√
D2 + (yT1 − yR1 )2 . (8)

The functions As(·) and Aa(·) introduced in the gain c0 [see
(3)] denote the propagation loss coefficients due to spherical
spreading and absorbtion, respectively. We assume that the
transmitter is equipped with an omnidirectional hydrophone,
which generates spherical waveforms in the isovelocity en-
vironment. The propagation loss coefficient due to spherical
spreading can be written as [19, Eq. (2.16)]

As(d) =
1

d
(9)

where the variable d stands for the total propagation distance
in meters. The absorption loss coefficient Aa(·) is given by
[9, Eq. (4)]

Aa(d) = 10−
dβ

20000 . (10)
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In (10), which is suitable for carrier frequencies between 3 and
500 kHz, the parameter β (in dB/km) is computed as follows
[6, Eq. (1.3.1)]

β = 8.68× 103

(
SafT f

2
cA

f2
T + f2

c

+
Bf2

c

fT

)
(1− 6.54× 10−4P )

(11)

where A = 2.34 × 10−6 and B = 3.38 × 10−6. The symbol
Sa denotes the salinity (in parts per thousand), fc is the
carrier frequency (in kHz), fT is the relaxation frequency (in
kHz) determined by fT = 21.9× 106−(1520/(T+273)), and the
quantity T denotes the water temperature (in ◦C). The symbol
P stands for the hydrostatic pressure (in kg/cm2), which is
determined by P = 1.01 × (1 + 0.1h), where h denotes the
water depth (in m).

The second part hDA(τ ′, t) and the third part hUA(τ ′, t) of
the TVCIR h(τ ′, t) in (1) are given by

hDA(τ ′, t) =

NS∑
s=1

s∑
b̆=s−1

cDA
sb̆
e j(2πf

DA
sb̆
t+θDA

sb̆
)δ(τ ′ − τ ′DA

sb̆
) (12)

and

hUA(τ ′, t) =

NB∑
b=1

b∑
s̆=b−1

cUA
bs̆ e

j(2πfUA
bs̆ t+θ

UA
bs̆ )δ(τ ′ − τ ′UA

bs̆ ) (13)

respectively. The gains cDA
sb̆

and cUA
bs̆ are expressed by

cDA
sb̆

=

√
ηS

2NS(1 + cR)
As(D

DA
sb̆

)Aa(DDA
sb̆

)Ab(ϕ
DA
sb̆

+(2b̆− 1)φ)b̆

(14)

and

cUA
bs̆ =

√
ηB

2NB(1 + cR)
As(D

UA
bs̆ )Aa(DUA

bs̆ )Ab(ϕ
UA
bs̆ )(b−1)

×Ab(ϕUA
bs̆ + 2(b− 1)φ) (15)

respectively. The propagation delays τ
′DA
sb̆

and τ
′UA
bs̆ are deter-

mined by τ
′DA
sb̆

= DDA
sb̆
/cs (s = 1, 2, ..., NS and b̆ ∈ [s− 1, s])

and τ
′UA
bs̆ = DUA

bs̆ /cs (b = 1, 2, ..., NB and s̆ ∈ [b − 1, b]),
respectively. The symbols DDA

sb̆
and DUA

bs̆ denote the total
distances which the DA and UA macro-eigenrays travel form
Tx to Rx given (s, b̆) and (s̆, b) surface-bottom interactions,
respectively. It is shown in the Appendix that the total dis-
tances DDA

sb̆
and DUA

bs̆ can be computed by using the method
of images which results in (16) and (17), respectively (see the
bottom of this page). The functions fDA(φ)

(
fUA(φ)

)
, gDA(φ)(

gUA(φ)
)
, and hDA(φ)

(
hUA(φ)

)
in (16) ((17)) are presented

in the Appendix.
The symbols ηS in (14) and ηB in (15) are used to balance
the contribution of the DA and UA macro-eigenrays to the
total power of the UWA channel model, respectively, such

that ηS + ηB = 1. The phase shifts θDA
sb̆

in (12) and θUA
bs̆ in

(13) are modelled by independent and identically distributed
(i.i.d.) random variables, which are supposed to be uniformly
distributed over the interval (−π, π].

The function Ab(·) in (14) and (15) denotes the reflection
coefficient due to the impedance mismatch between the ocean
water and the ocean bed. It should be mentioned that the
impedance mismatch between the ocean water and air causes
the sea surface to be a very good reflector. If the sea surface
is smooth, the reflection coefficient has a magnitude that
is close to one but the phase shift is π radians, i.e., the
reflection coefficient is close to −1 [5], [6], [20]. In the
area of underwater acoustic channel modeling, the ocean bed
is definitely the most complex boundary, exhibiting vastly
different reflectivity characteristics in different geographical
locations [21], [22]. The impedance mismatch between the
ocean water and ocean bed causes the ocean bed to reflect
some parts of an incident wave. For a smooth ocean bed, the
reflection coefficient Ab(·) is given by [6, Eq. (3.1.12)]

Ab(ϕ) =

∣∣∣∣∣∣
(ρ1/ρs) cos(ϕ)−

√
(cs/c1)2 − sin2(ϕ)

(ρ1/ρs) cos(ϕ) +
√

(cs/c1)2 − sin2(ϕ)

∣∣∣∣∣∣ (18)

where ρs (ρb) and cs (cb) stand for the density of the ocean
water (ocean bed) and the speed of sound in the ocean
water (ocean bed), respectively. The symbol ϕ in (18) denotes
the angle-of-incidence (AOI) of the macro-eigenrays of the
specular reflections at the ocean bottom.

B. Derivation of the AOD and AOA

In this section, we derive analytical expressions for the
AODs βDA

sb̆
(βUA
bs̆ ) and the AOAs αDA

sb̆
(αUA
bs̆ ), which are

necessary to compute the Doppler frequencies of the macro-
eigenrays. The Doppler frequencies fDA

sb̆
and fUA

bs̆ presented
in (12) and (13), respectively, can be computed by using (4),
if we replace β0 by βDA

sb̆
(βUA
bs̆ ) and α0 by αDA

sb̆
(αUA
bs̆ ). Note

that the slope angle φ influences in our model the AOIs at the
ocean surface and bottom as shown in Figs. 3 and 4. This is in
contrast for the FOB environment, where the AOIs at the ocean
bottom are fixed for each macro-eigenray. With reference to
Figs. 3 and 4, the general solutions for the AODs βDA

sb̆
and

βUA
bs̆ can be obtained as

βDA
sb̆

=

(
b̆− s+

3

2

)
π + (−1)(s−b̆)

(
ϕDA
sb̆

+ 2b̆ φ
)

(19)

and

βUA
bs̆ =

(
b− s̆+

1

2

)
π − (−1)(b−s̆) [ϕUA

bs̆ + (2b− 1)φ
]

(20)

DDA
sb̆

=

√
(D − fDA(φ))2 + ((2s− 1)gDA(φ)yT1 + 2b̆hDA(φ)yT2 + yR1 )2 (16)

DUA
bs̆ =

√
(D/ cos(φ)− fUA(φ))2 + (2s̆gUA(φ)yT1 + (2b− 1)hUA(φ)yT2 + yR2 cos(φ))2 (17)
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Fig. 3. The effect of the slope angle φ < 0 on the AOIs ϕDA
sb̆

of the DA
macro-eigenray at the ocean surface/bottom for s = 2 and b̆ = 1.

respectively. Similarly, the general-form expressions for the
AOAs αDA

sb̆
and αUA

bs̆ can be written as

αDA
sb̆

=
π

2
+ ϕDA

sb̆
(21)

and

αUA
bs̆ =

3π

2
−
(
ϕUA
bs̆ − φ

)
(22)

respectively. According to Figs. 3 and 4, the AOIs ϕDA
sb̆

and
ϕUA
bs̆ at Rx play a key role in the determination of the AODs

and AOAs presented in (19)–(22). The AOIs ϕDA
sb̆

and ϕUA
bs̆ can

be expressed by

ϕDA
sb̆

=arctan

(
D − fDA(φ)

(2s− 1)gDA(φ)yT1 + 2b̆hDA(φ)yT2 + yR1

)
(23)

and

ϕUA
bs̆ =arctan

(
D/ cos(φ)− fUA(φ)

2s̆gUA(φ)yT1 + (2b− 1)hUA(φ)yT2 + yR2 cos(φ)

)
(24)

respectively. The proof of the expression in (23) is presented
in the Appendix.

C. FOB Case

In this section, we will show that the proposed geometry-
based SOB-UWA channel model includes the FOB-UWA
model as a special case if φ = 0. Recall that the FOB
model has been widely used in the literature on UWA channel
modelling [5], [9]–[13]. From now on, we underline the
symbols, which are specific for the FOB model. The TVCIR
h(τ ′, t) in (1) will be written as

h(τ ′, t) = hLOS(τ ′, t) + hDA(τ ′, t) + hUA(τ ′, t) (25)

where the first part hLOS(τ ′, t) is the same as in (2), whereas
the second part hDA(τ ′, t) and the third part hUA(τ ′, t) of
h(τ ′, t) are given by

hDA(τ ′, t) =

NS∑
s=1

s∑
b̆=s−1

cDA
sb̆
e j(2πf

DA
sb̆
t+θDA

sb̆
)δ(τ ′ − τ ′DA

sb̆
) (26)
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Fig. 4. The effect of the slope angle φ < 0 on the AOIs ϕUA
bs̆ of the UA

macro-eigenray at the ocean surface/bottom for b = s̆ = 1.

and

hUA(τ ′, t) =

NB∑
b=1

b∑
s̆=b−1

cUA
bs̆ e

j(2πfUA
bs̆
t+θUA

bs̆ )δ(τ ′ − τ ′UA
bs̆ ) (27)

respectively. The gains cDA
sb̆

and cUA
bs̆ can be expressed by

cDA
sb̆

=

√
ηS

2NS(1 + cR)
As(D

DA
sb̆

)Aa(DDA
sb̆

)Ab(ϕ
DA
sb̆

)b̆ (28)

and

cUA
bs̆ =

√
ηB

2NB(1 + cR)
As(D

UA
bs̆ )Aa(DUA

bs̆ )Ab(ϕ
UA
bs̆

)b (29)

respectively. The phase shifts θDA
sb̆

and θUA
bs̆ are again modelled

by i.i.d. random variables, which are uniformly distributed
over the interval (−π, π]. For φ = 0, the total distances DDA

sb̆

and DUA
bs̆ in (16) and (17), respectively reduce to that in [6,

Eq. (5.1.7)], namely

DDA
sb̆

=

√
D2 + ((2s− 1)yT1 + 2b̆yT2 + yR1 )2 (30)

DUA
bs̆ =

√
D2 + (2s̆yT1 + (2b− 1)yT2 + yR2 )2 . (31)

The propagation delays τ
′DA
sb̆

in (26) and τ
′UA
bs̆ in (27) can be

computed by τ
′DA
sb̆

= DDA
sb̆
/cs (s = 1, 2, ..., NS and b̆ ∈ [s −

1, s]) and τ
′UA
bs̆ = DUA

bs̆ /cs (b = 1, 2, ..., NB and s̆ ∈ [b−1, b]),
respectively. Similar to Section III-A, the Doppler shifts fDA

sb̆

and fUA
bs̆

can be computed by using (4), if we replace there β0

by βDA
sb̆

(βUA
bs̆

) and α0 by αDA
sb̆

(αUA
bs̆ ). The expressions of the

AODs βDA
sb̆

and βUA
bs̆

in (19) and (20) reduce to

βDA
sb̆

=

(
b̆− s+

3

2

)
π + (−1)(s−b̆)ϕDA

sb̆
(32)

and

βUA
bs̆

=

(
b− s̆+

1

2

)
π − (−1)(b−s̆)ϕUA

bs̆
(33)

respectively. The corresponding AOAs αDA
sb̆

and αUA
bs̆ are given

by

αDA
sb̆

=
π

2
+ ϕDA

sb̆
(34)
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and

αUA
bs̆ =

3π

2
− ϕUA

bs̆
(35)

respectively. By means of (30) and (31), the AOIs ϕDA
sb̆

and
ϕUA
bs̆

can be determined as

ϕDA
sb̆

= arctan

(
D

(2s− 1)yT1 + 2b̆yT2 + yR1

)
(36)

and

ϕUA
bs̆

= arctan

(
D

2s̆yT1 + (2b− 1)yT2 + yR2

)
(37)

respectively. Note that the special solutions in (36) and (37)
are identical with the known results in [9, Eqs. (11) and (12)].

IV. STATISTICAL PROPERTIES OF THE SOB-UWA
CHANNEL MODEL

In this section, we study the statistical properties of the
developed SOB-UWA channel model including the distribu-
tion of the channel envelope, instantaneous channel capacity,
temporal ACF, FCF, Doppler PSD, and PDP.

A. Distribution of the Channel Envelope

Starting from the TVCIR h(τ ′, t), we can obtain the time-
variant channel transfer function (TVCTF) H(f ′, t) by com-
puting the Fourier transform of the TVCIR h(τ ′, t) with
respect to the propagation delay τ ′. From (1), (2), (12), and
(13), it follows that the TVCTF H(f ′, t) can be written as

H(f ′, t) = HLOS(f ′, t) +HDA(f ′, t) +HUA(f ′, t) (38)

where the function HLOS(f ′, t) represents the LOS part of the
TVCTF H(f ′, t), which is given by

HLOS(f ′, t) = c0e
j[2π(f0t−f ′τ ′

0)+θ0]. (39)

The second part HDA(f ′, t) and third part HUA(f ′, t) of the
TVCTF H(f ′, t) can be represented as

HDA(f ′, t) =

NS∑
s=1

s∑
b̆=s−1

cDA
sb̆
e j[2π(fDA

sb̆
t−f ′τ ′DA

sb̆
)+θDA

sb̆ ] (40)

and

HUA(f ′, t) =

NB∑
b=1

b∑
s̆=b−1

cUA
bs̆ e

j[2π(fUA
bs̆ t−f ′τ ′UA

bs̆ )+θUA
bs̆ ] (41)

respectively. Using the results presented in [23] regarding
the statistics of the envelope of sum-of-cisoids (SOC)-based
multipath fading channel models, the PDF p|H|(z) of the
channel envelope |H(f ′, t)| can be written as

p|H|(z) = 4π2z

∞∫
0

[
N∏
n=1

J0 (2π|cn|x)

]
J0(2πzx)J0(2πc0x)xdx

(42)

where (c1, ..., cN)=(cDA
1,0, c

DA
1,1, c

DA
2,1, c

DA
2,2, ..., c

DA
NS ,NS−1, c

DA
NS ,NS

,
cUA
1,0, c

UA
1,1, c

UA
2,1, c

UA
2,2, ..., c

UA
NB ,NB−1, c

UA
NB ,NB

) and N = 2NS +
2NB .

B. Distribution of the Instantaneous Channel Capacity

According to E. Telatar [24] and G. E. Shannon [25], the
channel capacity C(f ′, t) can be written as

C(f ′, t) = log2

(
1 +

S(f ′)
N(f ′)

|H(f ′, t)|2
)

(43)

where f ′ is a tone frequency within the bandwidth of the
transmit signal. In (43), S(f ′) is the PSD of the transmit signal
and N(f ′) represents the PSD of the total underwater coloured
noise component, which is given by

N(f ′) = Nt(f
′) +Ns(f

′) +Nw(f ′) +Nth(f ′). (44)

Here, Nt(f ′), Ns(f ′), Nw(f ′), and Nth(f ′) are the noise
PSDs resulting from the turbulence, shipping, waves, and
thermal noise, respectively [26]. It should be pointed out
that the noise in underwater propagation environments is
strongly frequency dependent. This characteristic is usually
taken into account for the selection of appropriate frequency
bands for UWA communications. From (43), the instantaneous
channel capacity C(t) can be obtained by integrating over the
frequency variable f ′ within the transmit bandwidth B, i.e.,

C(t) =

fc+
B
2∫

fc−B2

log2

(
1 +

S(f ′)
N(f ′)

|H(f ′, t)|2
)
df ′. (45)

The PDF pC(r) of the instantaneous channel capacity C(t)
can be directly obtained from the PDF p|H|(z) of the channel
envelope |H(f ′, t)| in (42) by applying the concept of trans-
formation of random variables [27, pp. 130], which results
in

pC(r) =
2r−1 log(2)

γ

√
γ

2r − 1
p|H|

(√
2r − 1

γ

)
(46)

where γ is the average signal-to-noise ratio (SNR) viewed at
the receive-hydrophone side.

C. Temporal ACF, FCF, Doppler PSD, and PDP

In the following, we study the temporal ACF, FCF, Doppler
PSD, and the PDP of the proposed UWA channel model. The
knowledge of the TVCTF H(f ′, t) enables us to compute the
time-frequency correlation function (TFCF) of the channel.
Assuming that the geometry-based SOB-UWA channel model
is wide-sense stationary in time t and frequency f ′, we can
compute the TFCF rHH(ν′, τ) of the TVCTF H(f ′, t) by
using

rHH(ν′, τ) = E{H∗(f ′, t)H(f ′ + ν′, t+ τ)} (47)

where (·)∗ represents the complex conjugate operation, and
E{·} is the statistical expectation operator. The symbols ν′

and τ denote the frequency and the time separation variables,
respectively. After averaging over the random phases θDA

sb̆
and

θUA
bs̆ , the TFCF rHH(ν′, τ) of the proposed UWA channel

model results in (48) (see at the bottom of the next page).
It should be noted that the temporal ACF rHH(τ) and the

FCF rHH(ν′) are obtained from the TFCF rHH(ν′, τ) by
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setting ν′ and τ to zero, respectively, can be computed by
(49) and (50) (see the bottom of this page). From (48), we
can obtain the total power σ2

HH of the UWA channel model
as σ2

HH = rHH(0, 0). Moreover, the Doppler PSD SHH(f)
can be obtained by computing the Fourier transform of the
temporal ACF rHH(τ) in (49) with respect to the variable
τ . The PDP Sτ ′(τ ′) can be obtained by taking the inverse
Fourier transform of the FCF rHH(ν′) in (50) with respect to
the variable ν′.

D. Characteristic Quantities

The Doppler PSD SHH(f) enables us to compute the
average Doppler shift B(1)

HH , the Doppler spread B
(2)
HH , and

the coherence time TC of the channel. These characteristic
quantities can also be expressed in closed form by using the
temporal ACF rHH(τ). The average Doppler shift B(1)

HH and
the Doppler spread B(2)

HH are defined by the first moment and
the square root of the second central moment of the Doppler
PSD SHH(f), respectively, i.e., [28, Eqs. (3.28) and (3.29)]

B
(1)
HH =

+∞∫
−∞

fSHH(f)df

+∞∫
−∞

SHH(f)df

=
1

2πj
· ṙHH(τ)

rHH(τ)

∣∣∣∣∣
τ=0

(51)

and

B
(2)
HH =

√√√√√∫ +∞
−∞

(
f −B(1)

HH

)2

SHH(f)df∫ +∞
−∞ SHH(f)df

=
1

2π

√(
ṙHH(τ)

rHH(τ)

)2

− r̈HH(τ)

rHH(τ)

∣∣∣∣∣
τ=0

, (52)

where ṙHH(τ) and r̈HH(τ) are the first and second time
derivative of the temporal ACF rHH(τ) with respect to the
variable τ . The coherence time TC of the channel is approxi-
mately the reciprocal of the Doppler spread B(2)

HH , i.e., TC ≈
1/B

(2)
HH .

Analogously, the PDP Sτ ′(τ ′) enables us to compute the
average delay B(1)

τ ′ , the delay spread B(2)
τ ′ , and the coherence

bandwidth BC of the channel. These characteristic quantities
can be expressed in closed form by means of the FCF. The

average delay B(1)
τ ′ and the delay spread B(2)

τ ′ are defined by
the first moment and the square root of the second central
moment of the PDP Sτ ′(τ ′), respectively, i.e., [28, Eqs. (7.39)–
(7.40)]

B
(1)
τ ′ =

+∞∫
−∞

τ ′Sτ ′(τ ′)dτ ′

+∞∫
−∞

Sτ ′(τ ′)dτ ′
= − 1

2πj
· ṙHH(ν′)
rHH(ν′)

∣∣∣∣∣
ν′=0

(53)

and

B
(2)
τ ′ =

√√√√√∫ +∞
−∞

(
τ ′ −B(1)

τ ′

)2

pτ ′(τ ′)dτ ′∫ +∞
−∞ pτ ′(τ ′)dτ ′

=
1

2π

√(
ṙHH(ν′)
rHH(ν′)

)2

− r̈HH(ν′)
rHH(ν′)

∣∣∣∣∣
ν′=0

, (54)

where ṙHH(ν′) and r̈HH(ν′) are the first and second time
derivative of the FCF rHH(ν′) with respect to the variable ν′.
The coherence bandwidth BC of the channel is approximately
the reciprocal of the delay spread B(2)

τ ′ , i.e., BC ≈ 1/B
(2)
τ ′ .

V. NUMERICAL RESULTS

In this section, we illustrate the theoretical results presented
in the previous sections. One of our main objectives is to show
how much the slope angle φ influences the statistical properties
of UWA channels. Note that the ocean-bottom slope angle
φ = −1◦ (φ = 1◦) results in an increase (or decrease) of
the water depth of 17.4 meter per kilometer. In our simulation
setup, we set the carrier frequency fc to 10 kHz and assume
that the transmitter Tx and the receiver Rx are moving at
the same speed of 3 m/s, which results in maximum Doppler
frequencies of 20 Hz (i.e., fTmax = fRmax = 20 Hz). The
transmitter Tx and the receiver Rx are moving in opposite
directions determined by αTv = 180◦ and αRv = 0◦. The
Tx and Rx location parameters have been set as follows:
yT1 = 40 m, yT2 = 60 m, yR1 = 15 m, and D = 1.6 km. The
remaining parameters of the UWA channel model are listed in
the third column of Table I.

Fig. 5 displays the PDF p|H|(z) of the UWA channel model
envelope |H(f ′, t)| for slope angles φ = −3◦, ..., 0◦, ..., 3◦. A
good fitting between theory and simulation can be observed.

rHH(ν′, τ) = c20e
j2π(f0τ−ν′τ ′

0) +

NS∑
s=1

s∑
b̆=s−1

[cDA
sb̆

]2 e j2π(fDA
sb̆
τ−ν′τ ′

sb̆
) +

NB∑
b=1

b∑
s̆=b−1

[cUA
bs̆ ]2 e j2π(fUA

bs̆ τ−ν′τ ′
bs̆) (48)

rHH(τ) = rHH(0, τ) = c20e
j2πf0τ +

NS∑
s=1

s∑
b̆=s−1

[cDA
sb̆

]2 e j2πf
DA
sb̆
τ +

NB∑
b=1

b∑
s̆=b−1

[cUA
bs̆ ]2 e j2πf

UA
bs̆ τ (49)

rHH(ν′)= rHH(ν′, 0) = c20e
−j2πν′τ ′

0 +

NS∑
s=1

s∑
b̆=s−1

[cDA
sb̆

]2 e−j2πν
′τ ′
sb̆ +

NB∑
b=1

b∑
s̆=b−1

[cUA
bs̆ ]2 e−j2πν

′τ ′
bs̆ (50)
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Moreover, this figure shows that the average and the spread
of the UWA channel model envelope distribution decrease if
φ decreases. Fig. 6 illustrates the effect of the slope angle φ
on the PDF pC(r) of the instantaneous capacity of the UWA
channel model for an average SNR γ set to 17 dB. In fact, a
relatively small decrease of φ results in a considerable decrease
of both the average and the spread of the instantaneous
capacity of the UWA channel model. For example, compared
to the FOB case (φ = 0◦), a slope angle φ of -3◦ results
approximately in an average capacity loss of 0.15 bits/s/Hz.
Here again, a good agreement between the theoretical results
and the corresponding simulation results can be seen.

Figs. 7 and 8 show the influence of the slope angle φ on the
absolute value of the normalized temporal ACF |rHH(τ)| and
FCF |rHH(ν′)| of the UWA channel model, respectively. The
results illustrate that both quantities decay rapidly with τ and
ν′ by decreasing the value of φ from +3◦ to −3◦. It can be
seen from Fig. 7 that the slope angle φ influences significantly
the curvature of the temporal ACF |rHH(τ)| at the origin.
From this figure we notice that the graph that corresponds to
the slope angle φ = −3◦ descends at a faster rate than other
graphs. The same results are obtained for the FCF |rHH(ν′)|
shown in Fig. 8. As can be seen in Figs. 7 and 8, there is a good
match between the theoretical results and the corresponding
simulation results.

Fig. 9 depicts the Doppler PSD SHH(f) of the UWA
channel model for the FOB case. The Doppler PSD SHH(f) of
the UWA channel model for the SOB case has been illustrated
in Fig. 10 by assuming slope angles φ of +3◦ and −3◦. From
the inspection of Figs. 9 and 10, we can conclude that the path
gains are influenced by the slope angle φ, and that its effect is
also noticeable in the range of the Doppler frequencies. It is
obvious that the slope angle φ remarkably affects the AOAs
and consequently the Doppler frequencies.

Figs. 11 and 12 show the PDP Sτ ′(τ ′) of the UWA channel
model for the FOB and SOB cases, respectively. Based on
the results depicted in Figs. 11 and 12, the time range in the
propagation delay axis is extended by decreasing the value of
φ from +3 to −3. The only reason for the extension is the
effect of the slope angle φ on increasing the total distance
which each macro-eigenray travels from the transmitter to the
receiver.

The effect of the slope angle φ on the average Doppler shift
B

(1)
HH , Doppler spread B

(2)
HH , and the coherence time TC of

the UWA channel model is shown in Fig. 13. According to the
results, one can conclude that the slope angle φ does have a
considerable impact on the average Doppler shift and Doppler
spread of the UWA channel model. Moreover, the coherence
time TC of the UWA channel model is almost quadrupled by
increasing φ from −3◦ to 3◦.

Fig. 14 shows the influence of the slope angle φ on the
average delay B

(1)
τ ′ , delay spread B

(2)
τ ′ , and the coherence

bandwidth BC of the UWA channel model. It can be seen from
this figure how the aforementioned characteristic functions
of the UWA channel model vary w.r.t. the slope angle φ.
According to Fig. 14, by increasing φ from −3◦ to 3◦, the
average delay B

(1)
τ ′ decreases from 25 ms to 3 ms, and also
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Fig. 5. The PDF of the channel envelope.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

Capacity level, r (bits/s/Hz)

P
D
F
,
p C

(r
)

 

 

Theory

Simulation

φ = 3◦
φ = 2◦

φ = −3◦

φ = −2◦

φ = −1◦

φ = 0◦

φ = 1◦

Fig. 6. The PDF of the instantaneous channel capacity.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
Theory [Eq. (49)]

Simulation
 = +3°

 = +2°

 = +1°

 = -2°

 = -3°

 = -1°

=0°

Fig. 7. Absolute value of the normalized temporal ACF |rHH(τ)| of the
UWA channel model.

there is a noticeable fall in the delay spread B(2)
τ ′ of the UWA

channel model from 22 ms to 3 ms. The coherence bandwidth
BC experiences a remarkable rise from 45 Hz to 335 Hz by
increasing φ. For ease of reference, some parameters presented
in Section III and associated values used for the computer
simulations are defined in Table I.

According to the simulation results, a gradual slope in the
ocean bottom changes the statistical properties of the UWA
channel, thus, this parameter plays a key role in the modelling
of UWA channels. Notice that the proposed UWA channel
model has been studied by only considering the deterministic
macro-eigenrays.
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TABLE I
DEFINITION AND SELECTED VALUES OF THE CHANNEL PARAMETERS.

Parameters Definitions Figs. 5–14 Figs. 16–19
DDA
sb̆

, DUA
bs̆ Total distances that the DA and UA macro-eigenrays travel from Tx to Rx - -

ϕDA
sb̆

, ϕUA
bs̆ AOIs of the DA and UA macro-eigenrays at the receiver Rx - -

yT1 Distance between Tx and the ocean surface 40 m 45.5 m
yR1 Distance between Rx and the ocean surface 15 m 44 m
yT1 + yT2 Water depth at the transmitter side 100 m 80 m
D Total distance between Tx and Rx along the x-axis 1600 m 1500 m
φ Ocean-bottom slope angle Various Fig. 16: 0◦

Figs. 17–18: Various
Fig. 19: 0◦ and −0.2◦

ρs Density of the ocean water 1000 kg/m3 1000 kg/m3

ρb Density of the ocean bed 1500 kg/m3 1500 kg/m3

cs Speed of sound in the ocean water 1500 m/s 1440 m/s
cb Speed of sound in the ocean bed 1600 m/s 1600 m/s
αTv Angle of motion of the transmitter 180◦ -
αRv Angle of motion of the receiver 0◦ -
fc Carrier frequency 10 kHz 17 kHz
fTmax Maximum Doppler frequency associated with the transmitter Tx 20 Hz 0 Hz
fRmax Maximum Doppler frequency associated with the receiver Rx 20 Hz 0 Hz
cR Rice factor 0.2 0.3
ηS Ratio of the power of DA macro-eigenrays to the total power 0.5 0.5
ηB Ratio of the power of UA macro-eigenrays to the total power 0.5 0.5
NS Maximum number of interactions between each DA macro-eigenray and

the ocean surface
2 2 in Fig. 16, 1 in Figs. 17–19

NB Maximum number of interactions between each UA macro-eigenray and
the ocean bottom

2 2 in Fig. 16, 1 in Figs. 17–19
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0.8

1
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 = 0°
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Fig. 8. Absolute value of the normalized FCF |rHH(ν′)| of the UWA
channel model.

VI. COMPARISON WITH MEASUREMENT DATA

In this section, the main theoretical results presented in
Sections III and IV are verified by measurement data, which
was first presented in [29]. The comparison is assessed in
terms of the FCF rHH(ν′), average delay B(1)

τ ′ , delay spread
B

(2)
τ ′ , and the coherence bandwidth BC of the UWA channel.
The experimental data was collected near the New Jersey

shore in May 2009 by a team from Naval Research LAB. The
water depth was about 80 m and the sediment was a silty clay.
The fixed transmitter was about 45.5 m below the surface float
(yT1 = 45.5 m). The fixed receiver hydrophone was located at
44 m depth (yR1 = 44 m). The receiver was 1500 m away from
the transmitter. Fig. 15 demonstrates the measurement scenario
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Fig. 9. The Doppler PSD SHH(f) of the UWA channel model for the FOB
case.

of the underwater propagation scenario. The speed of sound
in that shallow water environment was about 1440 m/s and the
weather was rainy and windy. The channel measurements were
performed at a carrier frequency of 17 kHz and a signal band-
width of 4 kHz. More details regarding the communication
system, what was sent and received, and the type of equipment
(transducer and hydrophone) can be found in [30].

We start from the measured TVCIR ȟ(τ ′, t) which has
been obtained by M = 20 samples in the time domain over
a time range of Tmes = 8 s. Hence, the sampling interval
∆t in the time domain is ∆t = Tmes/M = 0.4 s. In the
delay domain, the measurement equipment allows a path
resolution of ∆τ ′ = 0.125 ms. The number of samples in
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Fig. 10. The Doppler PSD SHH(f) of the UWA channel model for the
SOB case (slope angles φ = 3◦ and φ = −3◦).
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the delay domain was equal to L = 90. In other words, the
TVCIR ȟ(τ ′, t) has been measured at discrete time instances
tm = m∆t ∈ [0, Tmes), m = 0, 1, . . . , M − 1, and at the
discrete delay interval τ ′l = l∆τ ′, l = 0, 1, . . . , L − 1.
Consequently, the measured TVCIR ȟ(τ ′, t) can be repre-
sented as a discrete TVCIR ȟ[τ ′l , tm]. The discrete TVCTF
Ȟ[f ′q, tm] can be obtained by computing the discrete Fourier
transform of the TVCIR ȟ[τ ′l , tm] with respect to delays τ ′l .
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Fig. 12. The PDP Sτ ′ (τ
′) of the UWA channel model or the SOB case

(slope angles φ = 3◦ and φ = −3◦).
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The discrete frequencies f ′q are given by f ′q = −B/2+q∆f ′ ∈
[−B/2, B/2), q = 0, 1, . . . , Q − 1 and B denotes the
measurement bandwidth. The discrete FCF řHH [ν′] can be
obtained from the discrete TVCTF Ȟ[f ′q, tm] as follows

řHH [ν′] =
1

M

M−1∑
m=0

Ȟ[f ′q, tm] Ȟ∗[f ′q + ν′, tm]. (55)

The discrete PDP Šτ ′ [τ ′l ] of the measurement data can be
computed by taking the inverse Fourier transform of the
discrete FCF řHH [ν′] with respect to ν′. The average delay
B̌

(1)
τ ′ and the delay spread B̌(2)

τ ′ of the measured channel can
be computed by replacing the Continuous PDP Sτ ′(τ ′) in
(53) and (54), respectively, by the discrete PDP Šτ ′ [τ ′l ]. As
mentioned in Section IV-C, the coherence bandwidth B̌c of
the measured channel can be obtained from the channel delay
spread B̌(2)

τ ′ , which is determined by B̌C ≈ 1/B̌
(2)
τ ′ . The Rice

factor cR of the measured TVCIR ȟ[τ ′l , tm] is obtained by
using the moment method presented in [31].

In our simulation setup, we have considered nine macro-
eigenrays including one LOS macro-eigenray, four DA macro-
eigenrays, and four UA macro-eigenrays by assuming NS =
NB = 2. Other model parameters based on the measurement
scenario are defined in the forth column of Table I. Fig. 16
illustrates the PDP Šτ ′ [τ ′l ] of the measured UWA channel
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and that of the simulation model. Note that in case of the
simulation model seen in Fig. 16, four macro-eigenrays which
reach the receiver with delays of more than 10 ms, corre-
spond to triple- and quadruple-bounced macro-eigenrays on
the surface and bottom of the ocean. Such delayed macro-
eigenrays are unobserved in the measurement data. Therefore,
in our simulation model, we should consider only macro-
eigenrays with single and double bounces on the surface and
bottom of the ocean (i.e., NS = NB = 1). With reference
to Fig. 16, the number of macro-eigenrays captured from
the measured UWA channel for single- and double-bounced
macro-eigenrays is higher than those for the simulation model.
Therefore, matching the PDP of the simulation model to that
of the measured UWA channel is meaningless. For comparison
purposes, we choose other statistical properties of the UWA
channel, such as the FCF, average delay, delay spread, and the
coherence bandwidth. Our proposed channel model has the
ocean slope angle φ as an extra degree of freedom compared
with the FOB model. This feature can help us to achieve a
better fitting between our proposed UWA channel model and
the measurement data w.r.t. the statistical properties of the
UWA channel. To find the optimum value of the ocean slope
angle φ, we consider the error function

E(φ) = w1

∣∣∣B̌(1)
τ ′ − B̃(1)

τ ′

∣∣∣2 + w2

∣∣∣B̌(2)
τ ′ − B̃(2)

τ ′

∣∣∣2 (56)

where B̃
(1)
τ ′ (B̌(1)

τ ′ ) and B̃
(2)
τ ′ (B̌(2)

τ ′ ) denote the average de-
lay and the delay spread of the deterministic simulation
model (measured UWA channel), respectively. Note that the
deterministic simulation model can be computed from the
realization of a sample function of the TVCTF H(f ′, t) of the
UWA channel model presented in (38) by fixing the random
phases θ0, θDA

sb̆
, and θUA

bs̆ . The parameters w1 and w2 are
weighting factors for the normalization which have been set
to 0.5, i.e., w1 = w2 = 0.5. The values of other channel
model parameters are listed in the fourth column of Table I.
We have also considered another error function to optimize
the parameter φ for the coherence bandwidth BC , which is
given by

EBC (φ) =
∣∣∣B̌C − B̃C∣∣∣2 (57)

where B̃C (B̌C) is the coherence bandwidth of the determin-
istic simulation model (measured UWA channel). From the
results shown in Figs. 17 and 18, we can conclude that the
minima of the error functions E(φ) and EBC (φ) are reached
at φ = −0.2◦. As can be seen in Figs. 17 and 18, the error
functions E(φ) and EBC (φ) at the slope angle φ = 0◦ result
in 0.09× 10−3 and 1.21, respectively.

Table II provides a comparison between the proposed chan-
nel model and the real-world UWA channel in terms of the av-
erage delay, delay spread, and the coherence bandwidth. With
reference to Table II, a good agreement has been achieved
between the simulation model (if φ = −0.2◦) and the mea-
sured UWA channel w.r.t. the aforementioned characteristic
quantities. As our available measurement data was obtained
in a mild SOB environment, where the slope angle φ was
low, the obtained characteristic quantities associated with the
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Fig. 15. The measurement scenario of the experiment.
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Fig. 16. The PDP of measured UWA channel in comparison with that of
the simulation model.

SOB model (with φ = −0.2◦) are close to those of the FOB
model (with φ = 0◦). The superiority of the SOB case over
the FOB case is more distinguishable under harsh SOB ocean
conditions as discussed in Section V.

Fig. 19 illustrates the FCF of the measured UWA channel
in comparison with those of the simulation model for the
FOB case and the SOB case by assuming φ = −0.2◦.
The values of the remaining channel model parameters are
defined in the fourth column of Table I. As can be seen
from Fig. 19, three curves are similar to each other in terms
of the curvature at the origin and trend. However, the SOB
case demonstrates a better performance in approximating the
FCF of the measurement data. It should be mentioned that
the superiority of the SOB model (over the FOB model) in
approximating the FCF of the measurement data should be
even more evident for ocean environments with considerable
slope angles. To obtain a better fitting, we can consider clusters
of micro-scatterers around macro-scatterers which results in
having different eigenrays like the PDP of the measured
UWA channel shown in Fig. 16. In other words, to make the
proposed channel model more realistic, it should be developed
by taking micro-scattering effects into account.

VII. CONCLUSION

In this paper, a new geometry-based UWA channel model
has been developed under the assumption that the ocean
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TABLE II
CHARACTERISTIC QUANTITIES OF THE MEASURED UWA CHANNEL AND THE CORRESPONDING SIMULATION MODEL.

Characteristic quantities Measured UWA channel Simulation model (φ = −0.2◦) Simulation model (φ = 0◦)

Average delay B̌
(1)
τ ′ = 1.5 ms B̃

(1)
τ ′ = 1.495 ms B̃

(1)
τ ′ = 1.491 ms

Delay spread B̌
(2)
τ ′ = 2.4 ms B̃

(2)
τ ′ = 2.405 ms B̃

(2)
τ ′ = 2.41 ms

Coherence bandwidth B̌C = 416 Hz B̃C = 415.8 Hz B̃C = 414.9 Hz
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Fig. 17. Evaluation of the error function E(φ) in (56) to find the optimum
value of the slope angle φ.

−2 −1.5 −1 −0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

0.06

E
rr
or

fu
n
ct
io
n
,
E

B
C
(φ
)

Ocean slope angle, φ (degree)

×103

Fig. 18. Evaluation of the error function EBC (φ) in (57) to find the optimum
value of the slope angle φ.

Fig. 19. The absolute value of the normalized FCF of the measured UWA
channel against to those of the simulation model.

surface and bottom are smooth and also that the ocean
bottom slopes gently up/down. We have studied the waveguide
model in the general form by considering the SOB case. The
influence of the ocean-bottom slope angle on the statistical
properties of the UWA channel model has been studied.
The validity of the main analytical results is confirmed by
measurement data. It has been shown that the slope angle has a
considerable impact on the quantities of the UWA channel and
has to be considered in the area of UWA channel modelling.
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APPENDIX

This appendix presents the proofs of (16) and (23). For
brevity, we only focus on the double-bounce scattering sce-
nario shown in Fig. 20, in which the DA macro-eigenray
arrives at the transmitter Rx after a single bounce on the
bottom followed by a single bounce on the surface of the
ocean, i.e, NS = 1, s = 1, and b̆ = 1. According to Fig. 20,
the transmitter Tx and the receiver Rx are located at the points
T and R, respectively. As can be seen, the reflected macro-
eigenray may be considered as emitted from the image source
T ′x located at the point T ′ obtained by the specular reflection of
the source Tx at the ocean bottom. In Fig. 20, we also observe
the image source T ′′x at the point T ′′, which is obtained by
the specular reflection of the image source T ′x at the ocean
surface. The total distance that the DA macro-eigenray travels
from Tx to Rx is thus equal to the side length T ′′R, which
can be computed from the side lengths RI and T ′′I by

T ′′R =
√

(RI)2 + (T ′′I)2 . (58)

Thus, we need to compute the lengths of the sides RI and T ′′I
as a function of the parameters of the geometrical channel
model, namely yT1 , y

T
2 , y

R
1 , y

R
2 , φ, and D. The length of the

left side T ′′I is T ′′I = T ′′F + FI , where FI = yR1 and
T ′′F = FT ′. The length of FT ′ is given by FT ′ = yT1 +ET ′,
where ET ′ is the right side of the triangle ETT ′. Thus, ET ′ =
TT ′ cos(φ), where the side TT ′ is the left side of the triangle
TT ′B. With TT ′ = TB cos(φ) and TB = 2yT2 it then follows
ET ′ = 2yT2 cos2(φ). Now, the length of the side T ′′I in (58)
can be expressed by T ′′I = yT1 + 2yT2 cos2(φ) + yR1 . With
reference to Fig. 20, the length of the right side RI is equal
to RG+GI , where RG = D and GI = TE. The side TE is
given by TE = TT ′ sin(φ), where TT ′ = 2yT2 cos(φ). Thus,
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Fig. 20. Double-bounce scattering scenario for a DA macro-eigenray (NS = 1, s = 1, and b̆ = 1).

TE = 2yT2 cos(φ) sin(φ). Now, the side RI can be obtained as
RI = D+ 2yT2 cos(φ) sin(φ). Finally, the total distance T ′′R
can be computed by substituting the obtained expressions for
T ′′I and RI in (58) as

T ′′R=
√

(D+2yT2 cos(φ) sin(φ))2+(yT1 +2yT2 cos2(φ)+yR1 )2 .

(59)

Notice that the same results follows from (16), if we set there
s = 1 and b̆ = 1, i.e., DDA

11 = T ′′R. The AOI ϕDA
11 at Rx

can be computed by applying the tangent law to the triangle
T ′′IR, which results in

ϕDA
11 = arctan

(
D + 2yT2 cos(φ) sin(φ)

yT1 + 2yT2 cos2(φ) + yR1

)
. (60)

The expression above is exactly the same as the result obtained
by setting s = 1 and b̆ = 1 in (23). Similarly, we can compute
all total distances DDA

sb̆
and DUA

bs̆ and the corresponding AOIs
ϕDA
sb̆

and ϕUA
bs̆ by using the same procedure for all values of s,

b̆, b, and s̆. The total distances DDA
sb̆

and DUA
bs̆ can be computed

as (61) and (62), respectively (see the bottom of this page).
The functions fDA(φ), gDA(φ), and hDA(φ) in (61) are given

by

fDA(φ) =

{
4(s− 1)yT1 + 2b̆

[
2 cos4(φ)

](1+sb̆−s−b̆)
yT2

}
× cos(φ) sin(φ) (63a)

gDA(φ) =

[
4

3
cos2(φ)− 1

3

](s−1)

(63b)

hDA(φ) = cos2(φ)
[
2 cos2(φ)− 1

](1+sb̆−s−b̆)
. (63c)

The functions fUA(φ), gUA(φ), and hUA(φ) in (62) can be
expressed by

fUA(φ) =
{

2s̆
[
2 cos2(φ)

](1+bs̆−s̆−b)
yT1

+
[
4 cos2(φ) + 1

](b−1)
yT2 − yR2

}
sin(φ) (64a)

gUA(φ) =
[
2 cos2(φ)− 1

](1+bs̆−b−s̆)
cos(φ) (64b)

hUA(φ) =

[
4

3
cos2(φ)− 1

3

](b−1)

cos(φ). (64c)
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[30] A. G. Zajić and G. F. Edelmann, “Feasibility study of underwater
acoustic communications between buried and bottom-mounted sensor
network nodes,” IEEE J. Ocean. Eng., vol. 38, no. 1, pp. 109–116, Jan.
2013.

[31] I. S. Greenstein, D. G. Michelson, and V. Erceg, “Moment-method
estimation of the Ricean K-factor,” IEEE Commun. Lett., vol. 3, no. 6,
pp. 175–176, Jun. 1999.

Meisam Naderi (S’13) received the B.E. degree in
electrical engineering from Bahonar University of
Kerman, Iran, in 2006, the M.E. degree in telecom-
munication engineering from Shahed University,
Tehran, Iran, in 2010. He is currently working as
a Ph.D. research fellow with the Department of
Information and Communication Technology, Uni-
versity of Agder, Grimstad, Norway. His area of
interests include MIMO-OFDM systems, vehicular-
to-vehicular communications, underwater acoustic
communications, and mobile cellular networks.

Matthias Pätzold (M’94–SM’98) received the
Dipl.-Ing. and Dr.-Ing. degrees in electrical engi-
neering from Ruhr-University Bochum, Bochum,
Germany, in 1985 and 1989, respectively, and the
habil. degree in communications engineering from
the Technical University of Hamburg, Harburg, Ger-
many, in 1998. From 1990 to 1992, he was with
ANT Nachrichtentechnik GmbH, Backnang, Ger-
many, where he was engaged in digital satellite
communications. From 1992 to 2001, he was with
the Department of Digital Networks, Technical Uni-

versity of Hamburg. Since 2001, he has been a full professor of mobile
communications with the University of Agder, Grimstad, Norway. He is the
author of several books and numerous technical papers. His publications
received thirteen best paper awards. He has been actively participating in
numerous conferences, serving as a member and as a chair of technical
program committees. He is currently a senior editor of the IEEE Vehicular
Technology Magazine.

Rym Hicheri was born in Tunis, Tunisia, in
1988. She received the D.P.C.U from the “Institut
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