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Abstract

In this thesis, investigation is carried out on scheduling of shiftable loads
which involves partly selection of loads within the power budget of operator.
Domestic shiftable loads are scheduled along multiple timeslots with the
considerations of the accuracy of scheduling in terms of optimization of
capacity and of the fairness between appliances in terms of frequency of
usage in smart grids. Since the scheduled load can not be over the capacity,
the global optimal point is a combination of loads which are most close or
equal to but not over the capacity.

This optimization problem is shown to be NP hard, and has been formu-
lated as a potential game. To solve this problem in a distributed manner,
Learning Automata (LA) based methods are proposed. Although the LA
based methods do not favour any participants of scheduling which can serve
as a fair selection in the long run, the fairness among the loads in finite time
is still worth studying. To make the scheduling process fair in short time,
virtual coin game is employed into the scheduling.

Simulations have been performed by implementing two LA methods,
namely BLA and LR−I , under different number of timeslots, with and
without consideration of coin game to evaluate and compare the results.
Simulation results show that the accuracy in terms of the closeness of the
converged result to the global optimal point achieved by both LA based
scheduling methods is high and the fairness of the system is increased by
applying the virtual coin game.
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Chapter 1

Introduction

1.1 Background

There has always been an imbalance between the supply and demand in
the society, and the electrical grid system does not undergo any exception.
There has been an ever growing increase in electrical power demand while
the capacity of the grid system is not increasing proportionately. On the
other hand, the technological and communication advancements have been
radical in the 21st century which have been enforced in almost all areas for
betterment. Such advancements implied into the grid system to make it
smart grid has different advantages, one of which is better load scheduling
compared with traditional methods, to balance the capacity and demand in
electricity distribution system. This prevents the grid system from crashing
and total blackout consequently. Such an issue of demand management by
taking advantage of new advanced features of smart grid is a hot topic in
the present context.

The traditional grid systems do not exhibit features that the modern
techniques can be applied, to bring a balance between the ever increasing
demands of electricity and capacity, where the increase in capacity of grids
is not in harmony to increasing load of grids. An operator, user and energy
friendly grid system is required and this has led to development and exis-
tence of more advanced electrical grid systems known as smart grid. The
differences between the traditional and modern grids is pointed out in [1]
as depicted in Fig. 1.1. The existing grid is the traditional grid while the
intelligent grid is smart grid.

Smart grid refers to the electrical grid system with smart communication
and computational capacity and memory for automated distribution and
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Figure 1.1: Features of SG compared to traditional grid [1]

control of electricity supply, with improved efficiency, reliability, and safety
of power distribution [2]. The standards of different components of SG
(building, substation and powerline) and the communication technology is
given in details in [3]. The SG operator and its customers are the two main
entities in SG. Operator is the service provider who supplies electricity into
the grid system and customers are the ones who utilize the electricity from
operator through different appliances. They are connected by the wired
and wireless channels through which the supply of electricity and two way
communication takes place. The users of SG have smart meters through
which the users and their appliances communicate with the operator and
other users as per requirement. Smart meter is the most prominent feature
of modern SG helping in collection and distribution of information to and
from users’ appliances and SG operator. The main features of smart meter
that differentiate modern SG from traditional grid system can be outlined
as follows [4]:

• Powerline communication module - To receive electricity demands
from appliances and send electricity control signals.

• Wireless communication module - With same features as powerline
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communication module but through wireless connection with appli-
ances.

• Processing unit - To perform computational tasks, e.g. decision-making
for optimization purpose.

The main problem with traditional grid system that has led to its impro-
visation into new SG is the lack of power system stability, a balance in the
demand and capacity of grid system with power usage optimization. The
imbalance due to higher demands leading to distribution failures may lead
to catastrophic problems as bad as blackouts [1]. The capacity of SG is not
under much control such that it could be maximized or minimized to meet
the frequently changing demands. Capacity at the operator or utility com-
pany side can be increased by storage of power at low usage times, lowering
the transmission losses, etc. But the lower end of SG’s organizational hierar-
chy [5], i.e., the users or customers are more flexible with their demands. So,
the demands generated at the customer side can be adjusted for smooth and
uninterrupted functioning of grid system. Many demand or load manage-
ment schemes have been proposed that can be implemented into advanced
SGs. During limited power availability, the demands should be curtailed
such that the optimal (maximum available) power is used. While doing so,
some of the demands have to be cut-off directly or encouraged to do so in-
directly. Different strategies have been developed that target to serve the
purpose. This thesis work also intends to mitigate the same problem.

1.2 Demand Management

The demand management schemes will follow certain rules for implementa-
tion. The rules, based on how the communication flows and who controls
the demands to be selected or rejected for power usage, are categorized into
centralized or decentralized methods. The process of selecting the loads or
demands within the rules of demand management is referred to as schedul-
ing and the appliances or their loads that are selected are called scheduled
appliances/loads. The control and management of loads and the system as a
whole is in the hands of single scheduler [6] in centralized scheduling whereas
the control of loads and distribution of electricity is distributed among lo-
cal schedulers or the customers themselves in decentralized method. To
avoid the disadvantages like a single point of failure [7], fairness of the se-
lection method, communication overhead at operator, scalability and social
and legal barriers [8] etc., distributed scheduling methods have been chosen
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and described in this thesis. In the distributed method, the scheduling of
demands is done between the users themselves without the external inter-
vention of SG operator through any means.

The aim of the distributed methods is to reduce the communicational
and computational overhead at the SG operator side with more scalability
and privacy, meanwhile the users of SG can enjoy scheduling within them-
selves without the intervention of SG operator. Distributed scheduling can
be performed in smaller parts by breakdown of whole SG system into re-
gions and areas. Whenever a load is generated, information about the load
including its size (units in KWh), time duration it lasts (minutes) and its
source (appliance which sent the load through IP address or other IDs) is
received by only the ones that the information is intended to be shared with.

Whatever the scheduling method, the scheduling is done at the loads’
level and the loads are generated by appliances belonging to same or different
users. Three different concepts of SG that can influence load scheduling have
been outlined as follows.

i. Load can be served by principle of FIFO (First In First Out), i.e.,
on the basis of first-come-first-serve [9] [10]. This is a very simple
and classical method with centralized approach, which is unbiased
from SG’s standpoint but distance between appliances might play a
vital role in selection process. The advantage of this method is that
loads can be added into SG for service until the full capacity has been
utilized.

ii. Taking Importance of appliances in SG from customers’ point of
view into account, certain appliances can be more important than
others. Scheduling methods that employ this property will categorize
the appliances and their loads on the basis of their importance. Loads
from same category of appliances from any customer will have equal
priority while scheduling. The loads from the important appliances
will be scheduled first while the latter ones will have to wait. Since
the odds for less important loads getting served is low while important
loads continuously snatch the capacity, the tolerance for delay to less
important loads is an issue.

iii. Price of Electricity - The price of electricity is set high during high
demand times so that users are forced to change their electricity us-
age behaviour. This method is more suited to controlling loads from
medium and low income users who consider electricity bills as an is-
sue. But due to dependence on users’ decisions solely, the scheduling
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may not be as accurate as expected. (Optimization of SG’s capacity
depends on historical data and accuracy of expected values). This
method avoids queueing as all load requests are served.

Among the above mentioned concepts, the most discussed and popular
demand management concept is control through price of electricity which
involves time-variant electricity prices, referred to as dynamic pricing [11]
or real-time pricing or time-of-use pricing [12], which is an incentive based
method. The demands are changed (or expected to do so) to make the
total demand below the capacity by providing discounted price at low peak
hours and charging higher electricity rates at peak hours. Dynamic pricing
encourages the customers to utilize the electricity more efficiently and wisely
by changing their usage behaviour [13]. This method has been quite popular
and different approaches for pricing have been proposed by different authors.
The benefit from this method to SG operator is that it escapes the extremely
high additional cost that could incur to increase the capacity. Even though
the dynamic pricing has been hyped as a characteristic of SG, it requires
a practical coordination between the operator and its users to achieve the
goal [14]. The second type of scheduling concept has been chosen in this
thesis where the classification of loads or appliances1 is done firstly based
on their importance.

The customer side demand management (DM) can be done in several
ways but all the DM techniques are based on two aspects, reducing consump-
tion and shifting consumption [15]. Scheduling the loads is also a popular
method of DM where some of the loads are selected while others are shifted.
Loads enter into selection process, so that a number of those loads will be
selected under the restriction of capacity availed by SG. Scheduling meth-
ods may consider some or all loads for scheduling (e.g., only less important
loads are considered for scheduling in the previously mentioned concept of
scheduling by importance of appliances). But the selection can not be ran-
dom, whether the scheduler is the operator itself or any other entity. They
should follow certain rules or algorithms or logics that are implemented on
and acceptable to all users. Due to the large and sophisticated computa-
tion and communication features available in SG, several simple to complex
scheduling methods have been proposed by different authors (Papers [16]
and [17] use particle swarm optimization methods for scheduling).

The aim of the thesis is to optimize the power capacity utilization of

1Loads and appliances undergo same categorization as loads are generated by appli-
ances. So a load from X Type appliance can be called X type load or a appliance that
generated a Y type load can be called Y type appliance.
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SG by decentralized demand scheduling method with consideration of fair-
ness among appliances. The scheduling is done by considering the shiftable
loads from shiftable appliances to undergo distributed scheduling methods
as shown in Fig. 1.2. The rules for selection of users are that the loads
will undergo random selection based method of learning automata (LA).
Maximum capacity exploitation is expected along with unbiased selection
by implementation of two LA based methods, namely Bayesian Learning
Automata (BLA) and Linear Reward-Inaction (LR−I) with introduction of
coin game2 together.

Figure 1.2: Overview of proposed Scheduling Process

1.3 The Scheduling Process

The scheduling is done for demands that are received from appliances in
real time rather than the predicted/computed values. It is assumed that
there exists no reliable historical information for power forecasting (both de-
mands and capacity) and scheduling accurately. Such predicted calculations
will have certain limitations and conditions that need to be avoided. The
communication of load values from secondary or shiftable appliances and
decision calculations is restricted locally between the customers/appliances
and no external influence exists are the conditions predefined for implement-
ing the scheduling methods in this thesis. Due to the distributive property,
a new entity or local scheduler called virtual logical controller (VLC) is re-
quired. It can effectively communicate with the central SG operator for

2Coin game is new proposal in SG field and discussed later in Chapter 4
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Figure 1.3: An Example of Decentralized Scheduling Process

receiving the capacity and also the user appliances for their load demands
in each frame. A VLC will be available on each appliance to run one or
multiple LAs. The VLC will take the loads and make decisions for them in
a purely distributive manner. As the decision-making is iterative process for
each time frame, the decisions are shared among the appliances after each
iteration. The VLCs can perform those tasks easily, being self-sufficient de-
vice with certain level of computational and memory capacities (for taking
load values and applying the scheduling algorithms) and smart communi-
cation features (for communicating with other appliances in a fast, secured
and reliable way). To summarise, the tasks of receiving the capacity from
SG operator and secondary loads from several appliances, performing com-
putational works by executing predefined algorithms, calculating decisions
for users and sending total scheduled load to operator etc. are performed
by VLC.

The process of scheduling can be explained with the help of Fig. 1.3 in
a simple way, where only a few loads from a section of SG are considered.
The total capacity is divided into two parts for serving the primary and
secondary loads. Capacity that is exactly equal to primary (important) loads
is allocated for them. The remaining capacity for secondary (less important)
loads is sent to VLCs which look after those particular appliances. The
shiftable capacity will be distributed to different loads depending upon their
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usage behaviour. Multiple loads could belong to single appliance as well,
which is discussed later in section 3.1. When the total load (from shiftable
loads Load 1, Load 2, . . . , Load 6 considered in figure) from the appliances
exceeds the capacity for shiftable loads, VLC implements one of the LA
methods to select some loads so that their sum will be within the capacity.
As in this example, loads 1, 3 and 4 are selected because the total load is
equal (could be less than) to capacity Ct available.

Two targets are set for scheduling in the thesis. The first one, power op-
timization means all power available for shiftable loads is to be used without
letting any wastage, which leads to profit to the operator. It is also advan-
tageous to the customers as more demands can be served when maximum
capacity is exploited. Similarly, the next target is to keep customers happy
without receiving questions about the scheduling process. If some appliances
are continuously rejected and others are selected more often, this may lead
to dissatisfaction among the customers. Customers will change the power
supplier if they are dissatisfied, as multiple operator distribution system is
another feature of SG. Therefore, it is important to keep fairness in SG.
Paper [18] takes the average task completion time between different loads
that are to be scheduled by game theoritic methods as a measure of fairness.
In that work, only the time taken for scheduling by scheduler and processing
time by processor are taken into account. But in this thesis, the frequency
of selection of appliances is taken as the measure of fairness. Secondary
appliances are expected to be selected equal number of times if they send
equal number of load requests.

1.4 Contribution of this work

The main contributions of this work are itemized in two aspects:

1. Application of LA based methods for scheduling the domestic loads
for accuracy of optimization, and

2. Introduction of coin game along with the LA based methods to increase
fairness of selection between appliances.

The main features of the scheduling process presented are application
of LA in scheduling the shiftable appliances along multiple timeslots and
consideration of fairness of system to bring balance in frequency of selection
of loads. Every scheduling is performed along multiple time slots, which
is one step forward compared to previous report [19] which considered the
application of LA based method in a single time slot only. The LA methods
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have been demonstrated to be able to approach the global optimal point
with great precision. This means the selection of loads by LA method is
good enough to optimize the electricity usage. A new method is introduced
to improve fairness between participants of scheduling.

1.5 Organization of the Thesis

The thesis has been presented in seven chapters. Following the introduction
in this chapter, a brief discussion on previous studies related to this thesis
work is presented in Chapter 2. In Chapter 3, the problem to be solved is
formulated. The following Chapter 4 presents the way (in the form of algo-
rithms) of implementing the proposed LA based methods in the SG. Both
LA methods, LR−I and BLA have been dealt separately for building their
own algorithms and understanding them more properly. The implementa-
tion of the algorithms done in matlab gave several numerical and graphical
results, which are presented and discussed in Chapter 5. Finally, discussion
of the methods based upon their results is made in Chapter 6 and the thesis
concludes in Chapter 7.
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Chapter 2

Related Work

Since this is an era of smart communication and sophisticated technology,
every field of human interest is involved in radical changes to be smart and
automatic. The electrical grid system is not an exception and many arti-
cles have been written and different methods have been proposed to make
it smart. A short discussion of articles which are related to importance
aspects included in this thesis work has been carried out in this chapter.
Different methods of load categorization, distributed and centralized meth-
ods, LA based scheduling and fairness of scheduling methods are subjects
of significance discussed in the following subsections.

2.1 Categorization of Loads/Appliances for Schedul-
ing

Appliances have been differentiated as power-shiftable and time-shiftable
appliances on the basis of their power flexibility and time flexibility in [20]
for power optimization by taking advantages of these flexibilities. A much
detailed classification of loads has been made in [21] where loads have been
categorized on the basis of their physical properties, job types and their
sizes. Paper [22] makes a separation between loads as

• Baseline loads - appliances that need to be served immediately upon
request, e.g. light bulbs,

• Burst loads - appliances that can withstand delay at start but can not
be interrupted until they finish, e.g. washing machine and
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• Regular loads - appliances that need to be served continuously but can
cope with short interruptions, e.g. refrigerator.

Similarly, three categories have been made by [23] on load types depending
upon their power consumption profile namely non-shiftable, power shiftable
and time-shiftable loads. The categorization in [22] and [23] is similar to the
categorization in this thesis work but only two of those have been considered.
Here, the flexibility of some appliances to adjust their power consumption is
not considered. The appliances’ time flexibility in terms of their tolerance
to postponing their loads is considered. The appliances/loads of customers
are categorized into two types only, non-shiftable loads that resemble
the baseline loads whose operation time need to be exactly as specified by
customer and shiftable resembling the burst loads who can suffer delay
without much dismay and these loads are called primary and secondary
loads respectively, as they can be compared to the primary and secondary
users of cognitive radio networks where primary users are protected while
the secondary users compete between each other to exercise the unused
spectrum [24]. In similar fashion, in the SG system networks, there exist
loads/appliances of greater importance and urgency, that will get service
of their demands without any obstructions are the non-shiftable loads or
demands or appliances. These loads and appliances are referred to as pri-
mary loads or primary appliances. While the other loads/appliances that
are offered lower priority, are called shiftable loads or shiftable appliances
and referred to as secondary loads or secondary appliances. Having said
that, the latter kind of loads are our interest and only they will undergo
scheduling process, where the selection is made based on remaining elec-
tricity budget after allocation of electricity to the former ones. The terms
secondary load and shiftable load can be used interchangeably.

2.2 Learning Automata based Scheduling

As previously discussed in Chapter 1, LA has been implemented into schedul-
ing process against secondary loads from secondary appliances. This is ex-
pected to optimize the total scheduled load against shiftable capacity with
high accuracy. “An LA is an adaptive decision-making device that learns
the optimal action out of a set of actions through repeated interactions with
a random environment” [25]. The scheduling process which involves either
selection or rejection of each and every load to generate a final optimal load
that is below the power budget is necessary. The main characterstic feature
of LA is that the actions sets have certain probability distribution and the
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Figure 2.1: The basic schematic of LA

probability distributions are updated based upon feedback from the condi-
tions/environment [25]. The idea implemented by LAs is shown in Fig. 2.1,
where the system’s job is done by VLC to generate new “improved” actions
based on those responses from environment (constraints of optimization).
The action set is selection or avoidance of each user, whose probabilities are
0.5 at the beginning, and the environment is the test of decision against
the power budget. The environment produces the response through the test
(comparison of total load generated against capacity after decision for each
user is made), which again is an input to the action set for updating the
probabilities. The actions will be updated and sent back to environment.
So the decision-making is an iterative process of sending and receiving ac-
tions and response respectively to and from environment. As the name LA
suggests, the LA methods will learn the best decision for each user that will
balance the total load and capacity after some rounds of action-response
phenomenon.

LA has a wide range of applications and the fields of its application
have been shown in [26]. Even though LA based schemes have not been
discussed extensively in SG field, [27] [28] [29] [30] utilize the LA based
schemes to manage the demands in SG. The advantage of implementing LA
in scheduling for DM is that it does not require a training interval and can be
implemented simultaneously when the SG network is under performance but
the disadvantage is that they incur higher expenses for computations [31].

Article [27] uses LA based scheduling at all hierarchical levels of SG for
power management and also for preventing the unauthorized use of grid
system. Four hierarchical levels include the main power stations, transmis-
sion units, distribution substations and smart meters at each household.
That report does not discuss on the method of implementation of LA at
different levels but jumps directly into the results of LA based demand
management of SG. Article [28] formulates the decision-making problem to
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make decisions for customers based on the load profiles and tariff (electric-
ity) schemes. Instead of manual decision-making, the report proposes an
automated decision-making process for each user by implementing two LA
based methods, the ε-greedy algorithm and the pursuit algorithm. That is
a completely different work than this thesis, that being based on the elec-
tricity pricing as a factor for time of scheduling. The loads come under
different categories based on their time of occurrence, quite unusual and
against the fact that most loads occur according to customers’ needs and
preferences. Article [29] also presents the idea of LA based communication
scheme in SG. Routing algorithm is proposed for the efficient communication
that contributes to a optimal delivery path. In that article, the decision-
making is for determining optimal path. The constraints in the LA based
communication model are cost, delay, transmission energy consumption and
power usage. As the communication part has not been discussed in this
thesis, so despite that report utilizing LA in SG, it’s completely different.
Article [30] utilizes the Q-learning algorithm to schedule the charging and
discharging times of electric vehicles, which are large loads with shiftable
features as well. That report also utilizes the hourly pricing as a factor to
calculate maximum profit to the owners of vehicles.

BLA [32] [33] and LR−I [34] have been chosen for the scheduling purpose
in this thesis, and these methods fall under the dynamic non-cooperative
game theories [35]. The dynamic nature of game theories are justified if at
least one the participants can choose a strategy [36], and it is true for all
participants in this thesis (every load is to be selected or rejected). They fall
under the non-cooperative theory as the participants/players of the game
(appliances in SG) need to select an action from decision set (between se-
lection and rejection) to improve their own utility function whose value de-
pends on other users’ decisions also. In both methods, the final decision is
reached after several iterations of independent decision-making between the
customers, communicating with each other about one’s choice and finally
reaching a consensus between themselves (discussed in detail in upcoming
chapters about the properties of LA based scheduling and the algorithm
for implementation). LR−I stands out from BLA in the sense that it in-
volves a learning parameter whose value can be adjusted to control the
decision-making process in terms of speed and accuracy. In contrast, BLA
is self-sufficient, which does not involve such user-defined1 parameters, so
the accuracy and the speed of scheduling for decision-making can not be
structured.

1Here, user is the scheduler.
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2.3 Fairness

Fairness from the appliances’ point of view is another subject of discussion
in this thesis. There has not been much discussion in terms of fairness
among users in SG [37]. “Each user’s throughput is at least as large as
that of all other users which have the same bottleneck” is the definition of
fair flow control scheme given by Jaffe in [38] which is still valid in our
case. The measurement of throughput is not our concern but the number
of times any user is selected when they have nearly equal demand requests
is the unit for measurement of fairness in this thesis (discussed in next
chapter). A fair selection process is exhibited by scheduling process if all
participants are happy with the results obtained from the competition. Since
the appliances from different customers of SG are competing with each other
for power usage, fairness becomes an issue. There can be different aspects in
SG that can be considered to measure fairness between the customers, e.g.
prioritization of customers, energy consumption, or using multiple objective
fairness techniques [39].

Article [37] has studied fairness between users in terms of charging them
according to their contribution in total cost of the system, depending on
the power demand and the flexibility of those demands. A discussion is
made on charging the users in a fair manner depending upon two condi-
tions, first condition where users have equal flexibility but their loads vary
and second condition where loads are equal but their flexibility is different.
Article [39] applies scheduling in air conditioning devices which contribute
to 22.3% [40] of residential power usage, and the proportional fairness among
users is measured in terms of contency of users for receiving the power by
proportional reduction in their demands by adjusting the thermostats in air
conditioning appliances. Three different methods of obtaining fair results
while scheduling flexible users (air conditioning devices) is presented in [41],
namely Round Robin, Highest Power Next and Reciprocal Fair Manage-
ment. Round Robin method considers fairness by selecting users in turns
after queueing of loads to prevent repeated selection by means of switch off
option available in flexible appliances (all users are selected at least once
before some start to get selected twice). Highest Power Next is the method
where the loads with high power are put first in the queue and the other
smaller loads are queued behind (larger loads are switched off more often).
The Reciprocal Fair Management is a constraint for scheduling which takes
users’ comfort and scheduling priorities.

In the following chapter, the optimization problem is modelled and its
properties along with the fairness of scheduling methods are discussed.
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Chapter 3

System Model and Problem
Formulation

Lets take a region of SG system consisting of a VLC as scheduler with N
secondary users (appliances which generate shiftable loads [15]) competing
for power usage in SG. Appliances and users have been used interchangeably,
which are the source of shiftable loads. The aim of this SG model is to select
the loads, by a decentralized and fair method, that will match the capacity
available. So, the users are required to make decisions for their loads within
themselves (without any outside intervention), whether the demand is to
be served or the demand will have to wait and compete again in upcoming
time slots. Time is segmented into smaller frames or slots for scheduling
called timeslots. Any load selected in a timeslot could remain passive or
enter into scheduling process again as a new load as per the appliance’s
need in upcoming timeslots. The scheduling process needs to be carried out
continuously for infinite time period. But due to computational capacity of
SG (to avoid crowding of unserved loads) and ease of calculations, a round
of scheduling lasts and repeats after a finite time period, e.g. a single day or
a week, comprising of T timeslots. For ease of notation, i and t are the user
and timeslot indices respectively, i.e., i ∈ [1, N ] and t ∈ [1, T ]. We assume
that any user will generate only one new load at a given timeslot. Note
that scheduling refers to the load selection process at the beginning of each
timeslot and a round of scheduling will end after T timeslots.

The most important and frequently used notations are specified below.

• di,t(τ) : decision at timeslot τ for a load that emerges at time t from
user i, where τ ≥ t.
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Figure 3.1: Explanation for timeslot notation

Table 3.1: Example for load and decision notations depending upon timeslot

Timeslot (t) → 1 2 3 4

Load 1 (i = 1)
Load L1,1 L1,1 L1,1 L1,1

Decision d1,1(1) = 0 d1,1(2) = 0 d1,1(3) = 1 d1,1(4) = 0

Load 2 (i = 2)
Load x L2,2 L2,2 L2,4

Decision x d2,2(2) = 0 d2,2(3) = 1 d2,4(4) = 0

• Li,t : load emerging at time t, in user i ∈ [1, N ]. The loads can be
served in the same timeslot it appears or the succeeding timeslots. By
default, every Li,t has its corresponding di,t(τ).

• Ct : capacity of SG for shiftable loads at timeslot t.

• C =
∑

tCt : accumulated capacity.

• tn : the current timeslot, i.e., timeslot now.

An explanation for better acquaintance to notations of loads and their
decisions is shown in Fig. 3.1 and Table 3.1 by employing two loads - Load 1
and Load 2 from two appliances. Each appliance generates one load only at
a given timeslot. It is to be noted that there are two notations for timeslot
in a decision, e.g. if notation is di,t′(t

′′), notation in subscript t′ denotes
the timeslot in which the corresponding load first appeared for scheduling
whereas notation inside small braces t′′ is for the indicated timeslot. In
reference to Fig. 3.1, where Load 1 appears at timeslot 1 and exists upto
timeslot 3 with decisions 0, 0 and 1 respectively (L1,1 at timeslot 4 and
afterwards will be ignored as it is already served in previous timeslot) while
Load 2 appears at timeslot 2, gets served in timeslot 3 and a new load
from user 2 appears again at timeslot 4. So the notations for the two loads
and their contemporary decisions are as shown in table 3.1. A load will
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not exist until it participates in scheduling process, e.g., Load 2, L2,1=x at
first timeslot and no decision is required to be made for it (same decision
rule applies to the loads already served). Due to difference in the nature
of appliances, the demand from any appliance may be changing at different
timeslots, which calls for the scheduling process to update the load Li,t
values against those changes. Only few secondary appliances like mobile
phone chargers, TVs etc. are easier to deal with, as their demands remain
constant throughout the usage period. So, different cases have been outlined
as follows, depending upon the variation of loads from appliances and their
effect on scheduling.

3.1 Classification of Appliances According to Se-
lection of Load along Multiple Timeslots

The nature of secondary appliances differs from one another based on de-
mands they generate across many timeslots. Appliances could produce equal
or different demands at different timeslots. But due to scheduling, load de-
mands may be postponed and multiple loads from the same appliance may
exist in a single timeslot. Based on this situation where multiple loads from
same appliance exist at a given timeslot, appliances can be classified into 4
types based on which loads are to be considered in scheduling process. Con-
sider an appliance i1 generating two loads at timeslots t1 and t2 (t1 < t2).
Assuming load at timeslot t1 is rejected and postponed to t2, two loads exist
at timeslot t2. Four categories, on the basis of how the loads are treated by
different appliances, have been made as follows:

Type 1 Consider a washing machine with loads Li1,t1 and Li1,t2 for wash-
ing and rinsing purposes respectively. The appliance has different de-
mands at different times but they need to follow a sequence. In this
case, Li1,t2 needs to be considered only when Li1,t1 is completed.

Type 2 E.g., heater is a load whose demand adjusts frequently with change
in room temperature and even on mood of user. For these kinds,
succeeding load request Li1,t2 will be acknowledged while preceding
request Li1,t1 will be discarded.

Type 3 Certain users may have more than one load existing together, where
it does not matter which load, Li1,t1 or Li1,t2, is scheduled first, but
most importantly, both must be served. So either di1,t1(t) = 1 or
di1,t2(t) = 1 or both could be served by SG simultaneously.
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Type 4 Suppose two demands Li1,t1 and Li1,t2 exist, where it does not matter
who is scheduled first but both loads can not be served simultane-
ously. In such cases, one of the loads, either Li1,t1 or Li1,t2 enters into
scheduling process. It might be left to user’s preference or importance
on which one to allow to be involved in scheduling.

Since loads are specially referenced by their user index i and time index
t, multiple demands from same appliance can be easily distinguished. So it
is easy to address Types 1-3 where the loads are postponed (do not appear
automatically), updated (Li1,t1 = 0) or in coexistance (both di1,t1(t) and
di1,t2(t) can be considered) for scheduling. Type 4 has not been considered
in this work. A further discussion will be carried out in the numerical results
section for Type 4.

In the next section, we proceed to the mathematical formulation of
scheduling process and its analysis.

3.2 The Optimization Problem

Optimization of selected demands is to be done so that the capacity available
is fully utilized. Even when multiple loads from appliances of Type 1, 2 and
3 exist simultaneously, they can be optimized using same equation as there
is no issue with which load to be involved in scheduling process. Equation
3.1 followed by three constraints as shown below is formulated, which targets
on fulfilling the aim of utilizing the full capacity of SG by properly tuning
the decision among the users along the time axis.

max
di,t(τ)

tn∑
τ=1

τ∑
t=1

N∑
i=1

Li,tdi,t(τ), (3.1)

s.t. di,t(τ) ∈ {0, 1},where 1 ≤ t ≤ τ (3.2)

di,t(τ)di,t(τ
′) = 0, where t ≤ τ ′ ≤ tn, t ≤ τ ≤ tn, (3.3)

∀τ,
τ∑
t=1

N∑
i=1

Li,tdi,t(τ) ≤ Cτ , where 1 ≤ t ≤ τ ≤ tn. (3.4)

The first two constraints for the optimization equation 3.1 oblige that
load Li,t can be served only once. The appliances that have been served
once, if request for power in forthcoming timeslots, should be treated as
new loads, as shown in Fig. 3.2. The third constraint guarantees that at
any timeslot τ , the old and new loads will not exceed the capacity available
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for that timeslot. This aforementioned optimization problem is not practical
for solving. The reason is that at the current timeslot, it is impossible to
make any changes (tune) in previous decisions indicated by τ in di,t(τ),
∀τ < tn.

3.2.1 Optimization in Practical Scenario

max
di,t(tn)

tn∑
t=1

N∑
i=1

Li,tdi,t(tn), (3.5)

s.t. di,t(τ) ∈ {0, 1}, t ≤ τ ≤ tn, (3.6)

di,t(τ) di,t(τ
′) = 0, t ≤ τ ′ < τ ≤ tn, (3.7)

tn∑
t=1

N∑
i=1

Li,t di,t(tn) ≤ Ctn. (3.8)

The second condition, equation 3.7, means if there is any di,t(τ
′) = 1,

then di,t(τ) = 0 for τ > τ ′. Again, third condition (equation 3.8) means that
we consider the current timeslot tn, whose capacity is Ctn. As opposed to
equation 3.1, this practical optimization equation ignores optimization for
timeslots preceding current timeslot because we can do nothing for previous
timeslots, where decisions have already been made. The optimization by
tuning the decisions is only possible for the current timeslot where the loads
are known or upcoming timeslots if loads values can be obtained beforehand.
To remind, it is assumed that there is not reliable hint from historical infor-
mation. So no prediction or estimate regarding demands can be provided
to system for future calculations. Therefore, we consider the decision at the
current timeslot only, i.e., tn.

We know at current timeslot tn, the notations for

• new demand = {Li,tn}, ∀i,

• shiftable capacity = Ctn and

• unserved loads in previous slots =
{
Li,t′ |di,t′(t′′) = 0, ∀t′ < t′′ < tn

}
.

Expanding the equation 3.5 w.r.t. the new demands and unserved old
demands that accumulate for new scheduling,

max
{di,tn(tn),di,t′ (tn)}

N∑
i=1

Li,tn di,tn(tn) +
N∑
i=1

tn−1∑
t′=1

Li,t′ di,t′(tn). (3.9)

19



Figure 3.2: Scheduling of new loads and old loads

In equation 3.9, t′ denotes the previous timeslot and tn is the current
timeslot. New loads will appear in left part of equation and the loads on right
hand side are the loads from previous timeslot still unserved, competing for
scheduling. Note that for any load Li,t′ that has been served any time before
tn, di,t′(tn) is zero due to conditions 3.6 and 3.7 of optimization equation.
Thus, only the previous unserved loads are in fact are accumulated and
represented by the right side of equation 3.9 in this optimization problem.
Fig. 3.2 clearly shows the above explanation where old loads are actually
the unserved loads that pass into new timeslot for scheduling with notation
t′ and loads that have been served will be out of the system. It is to be
reminded yet again that the loads from same appliance at different timeslots
are considered two different loads.

3.2.2 Comparison to Subset-sum Problem

This problem of optimization can be compared with 0-1 Knapsack problem
[42] (maximize

∑N
i=1 vi xi, s.t.

∑N
i=1wi xi ≤ W and xi ∈ {0, 1}). With

same values for vi and wi, it becomes a subset-sum problem [43]. In the
subset sum problem, a new subset B (or many subsets if possible) is to be
formed from a given integer set A whose elements will produce a given sum
X. If A = {xj : 1 < j > z, xj ∈ Z+}, then B ⊆ A such that

∑z
j=1 xjyj =

X, ∀i, yj = {0, 1} where X is the targeted sum that will be defined in the
problem already. The load demands Li,t in the SG are comparable to the
integer set A from which a demand subset is to be calculated whose sum
is equal to the capacity Ct of SG for that timeslot, i.e., Li,t → A, di,t →
yi, Li,t di,t → B and Ct → X. Satisfying the conditions of a subset sum
problem, it becomes a NP hard problem [44]. So, the problem is a challenge
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to the SG, to find a solution for the subset sum problem by appropriate
selection of loads that provide optimal power usage (as there exist solutions
with certain conditions to subset sum problem, e.g. lattice basis reduction
[45] [46]). Moreover, the domestic grid system consists of a large number
of participants in the scheduling process. The number of users continuously
grows higher as the number of timeslots increases with addition of rejected
loads from previous timeslots into the current timeslot. Since the problem
stated above is NP hard, the application of game theoretic programming
algorithm along multiple timeslots will be an issue. Hence the problem will
be decomposed by treating a finite number of timeslots T (in a single day),
instead of infinite time period. Furthermore, the whole SG system will be
split into smaller areas/regions, so that smaller number of appliances N are
considered in scheduling each region separately. Reduction in the number
of participants is a solution to subset-sum and knapsack problems [47].

3.3 Fairness among Users/Appliances

The fairness of selection between different appliances can be partially ad-
dressed by application of game theoretic model as a selection process, as
it does not prioritize any user during a timeslot. The issue of fairness can
be said to be non-existent in infinite time period as the loads have equal
chances of selection in each timeslot (under fair random selection method
where no users get any priority). Still some users may be repeatedly selected
while others may get rejected concurrently, within a finite time period. The
number of times appliances are selected also depends upon their nature, like
how often they are used (number of demand requests from each appliance).
Such imbalance of repetition and exclusion of users in the scheduling pro-
cess can be questioned and considered biased from a SG customer’s point of
view and user dissatisfaction is a huge concern for SG operators. Users do
not want to wait longer periods, so the users should be selected rotatively
for serving their demands. This issue of fairness has to be addressed and it
is represented by symbol F in the thesis and obtained from the ρi values.
ρi(tn) is the number of timeslots each appliance i has been selected w.r.t.
number of timeslots it sent request until current timeslot tn and expressed
in mathematical form as follows.

ρi(tn) =
Pi(tn)

Qi(tn)
, (3.10)

where Pi(tn) and Qi(tn) are number of times (timeslots) any user i is
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selected and number of times the appliance sent request for scheduling until
current timeslot tn. Equation 3.10 can be enunciated (indicated) as the
happiness of any user i upon getting scheduled sooner and/or more often.
For any user i at tn, for a given value of Q, P ∈ [0, Q] means ρ ∈ [0, 1]. E.g.,
if an appliance i’s demand is rejected at first, second and third timeslot and
finally selected at forth timeslot, its ρi = Pi=1

Qi=4=0.25 until forth timeslot and
the values are updated as time proceeds. It is straightforward that ρ = 1
means a user (load) will be extremely satisfied for having scheduled without
delay (P and Q values match). P = 0 leads to ρ = 0 meaning frustration
and full dissatisfaction due to repeated rejection. In reference to definition
of fairness, this thesis considers the power of appliances, in terms of speed
or delay, while utilizing the resource of the system. ρ = 1 means no delay
and the delay increases with its lower values. So, this can also be considered
as fairness w.r.t. waiting time (delay).

The scheduling process will be declared fair enough if all users receive
equal or considerably equal proportion of time delay against number of
demands. Considering the speed of selection of users as a factor for the
measurement of fairness, the following equation can be formulated for col-
lective/combined fairness of SG system as a whole, similar to [48].

F =
|
∑N

i=1 ρi,t|2

N
∑N

i=1 ρ
2
i,t

≥ ε,where ε ∈ [0, 1]. (3.11)

In above equation 3.11, the value of F determines the fairness of the SG
model, in the grade between 0 to 1. It assesses the fairness of the scheduling
process of users upon matching or at least being close enough to each other’s
ρi(tn) values. The closer the value of fairness index is to 1, the more fair
is the scheduling. Full fairness (F = 1) is attained when the value of ρi, is
same forall i. F = 0 means all appliances have not been selected even once
(for some i, Pi = 0 exists). But the value of Q in equation 3.10 is different
for different users, which mostly leads to different P values as well. As it is
difficult to get same ρi for all users, there should be a certain limit set to
value of ε which will be the minimal fairness of SG. And F should be equal
to or above ε value. Because it is uncertain that 100% fairness is possible,
this minimal value of F = ε needs to be attained by scheduling, for all users
to be satisfied.

The problem of utilizing the maximum capacity of SG along the time
axis can be modified by adding fairness as a constraint and represented by
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max
di,t(tn)

N∑
i=1

tn∑
t=1

Li,t di,t(tn), (3.12)

s.t.

N∑
i=1

tn∑
t=1

Li,t di,t(tn) ≤ Ctn, (3.13)

di,t(τ) ∈ {0, 1}, t ≤ τ ≤ tn, (3.14)

di,t(τ) di,t(τ
′) = 0, t ≤ τ ′ < τ ≤ tn, (3.15)

|
∑N

i=1 ρi,tn|2

N
∑N

i=1 ρ
2
i,tn

≥ ε. (3.16)

The first three constraints are the repetition of optimization equation
to maximally exploit the capacity left for secondary users as in equation
3.5. Last constraint adds up the fairness issue into optimization process,
allowing all users to be selected proportionately. Due to addition of fairness
constraint, it may become infeasible to solve the optimization problem for a
given ε. A perfectly fair solution that satisfies ∀i,

∑
tn ρi,tn =

∑
tn ρi′,tn, i 6= i′

may not exist in every timeslot, surely for smaller tn values. In the next
chapter, a comprehensive discussion on the solutions to the optimization
problem is given and the issue of fairness of SG system has been elaborated.
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Chapter 4

Implementation of BLA and
LR−I in Demand Scheduling

As the optimization problem is shown as NP hard in previous chapter, we
consider not so large number of appliances ‘N ’ participating in scheduling
[49]. This can be done by segregating the users into different geographical
regions as shown in Fig. 4.1, and considering the customers who have smaller
appliances only1.

Several steps are involved in the demand scheduling processes. Fore-
most, the length of timeslots is to be predefined, so that users know how
long they can get served after they are chosen by scheduling scheme. For

1SG users like factories with big machineries can be treated differently, without consid-
ering them in the general scheduling process. One of the many solutions could be treating
them as primary users/appliances.

Figure 4.1: Grouping of SG users based on location
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every timeslot, the SG should announce the capacity left for the secondary
loads, while appliances announce their demands simultaneously2. Not all
but active appliances [50] (that need to operate) only will need power for a
given timeslot tn. Active loads are the set of loads that want to be sched-
uled in the current timeslot tn, which includes the loads Li,tn that appear
in the current timeslot along with the loads Li,t, t < tn that appeared
and remained unserved until preceding timeslot. For ease of notation and
understanding, active loads at timeslot tn will be denoted by lh(tn) and
corresponding decision dh(tn), ignoring the notation for timeslot when it
first appeared (VLC should be able to address type 3 and 4 in section 3.1
where two or more loads of same appliance from different timeslots exist
simultaneously). Here h is the index of all loads that are to be served at
timeslot tn, and H denotes the total number of loads to be served at tn,
i.e., h ∈ [1, H]. Before the implementation of any scheduling process, firstly
it will be checked at each timeslot if all loads can be accommodated by
the capacity (Ct ≥

∑H
h=1 lh(tn)). If yes, then all demands will be served

at once, skipping the implementation of any algorithm for load selection.
Another case where each load is larger than capacity (∀i, lh(tn) > Ctn) also
permits the scheduling to be skipped for that timeslot as solution does not
exist clearly3. Otherwise the users need to undergo scheduling by algorithms
based on LA, which implement an process iterative (within each timeslot)
of decision-making, reward-penalty allocation based on those decisions and
again new decisions based on reward/penalty received, as shown already in
Fig. 2.1, and this process will repeat in every timeslot.

4.1 Formulating the Decision-making Process as a
Game

The distributed decision-making problem can be formulated as a game4 de-
noted by G = [G, {dh(tn)}h∈H , {Uh(tn)}h∈H ], whose utility function {Uh(tn)}h∈H
for any load h, at a given timeslot tn is formulated as

2Those appliances whose demand values are not received are treated as passive appli-
ances in this slot.

3SG should be able to predict such situation and increase its capacity large enough to
accommodate some of the loads

4The task of formulating the distributed decision-making process as a potential game
has already been done in previous work and follows the same concept.
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Uh(tn)(dh(tn),d−h(tn))

=


1

lh(tn)dh(tn)+
∑
j∈H\h lj(tn)dj(tn)+Ctn

, Ctn < lh(tn)dh(tn) +
∑

j∈H\h lj(tn)dj(tn)

1
Ctn−lh(tn)dh(tn)−

∑
j∈H\h lj(tn)dj(tn)+ε , Ctn ≥ lh(tn)dh(tn) +

∑
j∈H\h lj(tn)dj(tn),

(4.1)
where d−h(tn) denotes the set of decisions taken by loads other than h.
Notations in Equation 4.1 are explained as follows:

• G ∈ {1, 2, 3, ...,H} are the set of shiftable loads from appliances with
specific load indexed by h.

• {dh(tn)} is the set of decision actions taken by the loads, i.e., Dtn =
{d1(tn), d2(tn), ..., dH(tn)}, where dh(tn) ∈ Dtn is the decision/action
of h at tn.

• {Uh(tn)}h∈H is the utility function of h expressed in terms of Ctn.

In G, the players are the set of appliances with active load {lh(tn)}
taking part in scheduling and their strategies are their decisions {dh(tn)}.
The difference of scheduling demands in this thesis compared to previous
work [19] is that this work considers the loads from previous timeslots in the
current timeslot as well. So, considering each timeslot at once, the properties
of game G from previous work still come into effect within same explanations.
The utility function of any user from the system’s perspective is expressed
in terms of Ctn. The optimization problem becomes a game as the utility
function can be expressed as potential function of a potential game. The
justification for the potential game is simple : the payoff due to change
in strategy of any player should be expressed in a single global function,
i.e., potential function. In G, the payoff is given by the utility function, so
utility fucntion is actually the potential function. Game G is actually an
exact potential game as the change in strategy (decision) of any user leads
to exactly equal change in the utility or the potential function. The solution
point attained by the decisions d∗1(tn), d∗2(tn), . . . , d∗H(tn) for H loads is the
NE point of G if no player can improve its utility function by deviating
from it unilaterally. Formally, the NE point satisfies

(
d∗h(tn),d∗−h(tn)

)
as

Uh(tn)
(
d∗h(tn),d∗−h(tn)

)
≥ Uh(tn)

(
dh(tn),d∗−h(tn)

)
, ∀h ∈ G and ∀dh(tn) ∈

Dtn/{d∗h(tn)}5. Note that ε in Equation 4.1 is a small positive number to
prevent Uh(dh,d−h) from infinity when Ctn =

∑
h lh(tn) dh(tn) holds.

5d∗h(tn) denotes the change in decision of player h from previous decision dh (1 → 0 or
0 → 1).
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It can be easily proved that the global optimal point of G is actually the
NE point for each timeslot. It is not possible to increase the global optimal
point by changing the decision of any user. The term global optimal point
means there is not room for new loads to be activated into scheduling. So
change in decision of any user from 0 to 1 will cause the total demand of
selected users (having decisions 1) to exceed the capacity Ctn. Inversely,
change in decision of any user from 1 to 0 will lead to decrease in the utility
function. Thus, this situation follows that global optimal point is actually
the NE point of the game and vice versa.

As already stated, BLA [32] [33] and LR−I [34] methods are chosen for
the task of decentralized scheduling. Both methods adhere to cyclic methods
of decision-making which leads to reward or penalty which again helps in bet-
ter decision-making and ultimately a good decision is attained that satisfies
the optimization equation and the restrictions (constraints). The number of
iterations taken to reach the final set of decisions (d1(tn), d2(tn), . . . , dH(tn))
can not be controlled in BLA but it is possible to do so in LR−I by tuning
a parameter λ, known as learning parameter. This is the main distinctness
between the selected scheduling methods. Value of λ affects the number
of iterations and the accuracy of convergence also. A trade-off exists be-
tween smaller number of iterations and better accuracy (convergence closer
to Ctn) due to converged decisions (Dtn) depending on the value of λ, and
it is controlled by the computational capacity of VLC (good communication
channel with good configuration of processor and memory allow large num-
ber of iterations and thus better accuracy, which is achieved by lower values
of λ)

Each iteration (round) involves decision-making which will yield either a
reward or penalty depending on being able to optimize the power capacity
or not. A reward is given to users if, in every round of decision-making, the
value of

∑H
h=1 dh(tn) lh(tn) is greater than or equal to previous value without

exceeding Ctn, so that it will finally approach to Ctn. Decision yielding a load
value lower than the previous one or exceeding Ctn will be penalized. The
decision-making processes and reward and penalty calculations necessary in
implementing both BLA and LR−I are explained in steps by formulation of
algorithms, in the following subsections.

4.1.1 Calculation of Reward and Penalty

Since several iterations of decision-making is required to reach a final decision
within a given timeslot, let each iteration be indexed by s, so the total of
active loads

∑H
h=1 lh(tn) due to decisions dh(tn) at any iteration s is denoted
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by LF (s). Loads and decisions are denoted by lh(tn) and dh(tn, s). In order
to reach the best possible value of scheduled demand, it is beneficial if the
value of

∑
h lh(tn) = LF (s) approaches Ctn but does not exceed Ctn as the

iteration continues. The beneficial situation leads to a reward to the players.
Otherwise, a penalty is applied, i.e., when LF (s) is either greater than Ctn
or less than its previous value, LF (s−1). The procedure for deciding reward
or penalty is outlined as an algorithm in Algorithm 1.

Algorithm 1 Assignment of Reward/Penalty

Input:

• The active loads {lh(tn)}, {dh(tn, s)} and capacity Ctn.

Output:

• Reward or a penalty for each load.

1: Begin
2: ∀h, dh(tn, s) should be known.
3: Calculate LF (s) =

∑H
h=1 lh(tn) dh(tn, s).

4: if LF (s) ≤ Ctn and LF (s) ≥ LF (s− 1), then
5: dh(tn, s) leads to a reward to load h.
6: else
7: dh(tn, s) leads to a penalty to load h.
8: end if
9: End

At each timeslot, the reward-penalty calculation continues with incre-
ment of s by 1 starting from s = 1 until the decision for each load has
converged for that timeslot (given as Stopping Criteria in subsection 4.1.2).

4.1.2 Decision-Making

LA based methods employ decision-making with reward penalty schemes
which are complementary and act as feedback to each other. New decisions
for each user can be taken after knowing how good the previous decisions
were, good decision set will yield reward while bad decision set will obtain
penalty. This work considers two well-recognized LA based decision-making
methods so that comparisons can be made in-between before implementa-
tion in SG. The selected popular LA methods are BLA and LR−I , whose
decision-making processes are probabilistic where a reward due to old deci-
sion increases the probability of selecting the same decision for most loads
in the current iteration while penalty means higher chances of changing the

28



decisions. The description for the LA methods are presented in algorithm
forms in following successive sub-subsections.

BLA based Decision-Making Process

Two hyper-parameters ah,j and bh,j are considered to count the number of
rewards and penalties respectively, where j ∈ 0, 1 denotes the decisions. So
every load has four hyper-parameters ah,0, bh,0, ah,1 and bh,1. For each itera-
tion, increment in the value of ah,0 or ah,1 if the decision (0 or 1 respectively)
leads to a reward and bh,0 or bh,1 if the decision (0 or 1 respectively) leads
to a penalty. This can be explained by the Table 4.1.

Table 4.1: Effect of reward and penalty on decision parameters for load h at iteration s.

dh(tn, s)=1 dh(tn, s)=0

Reward ah,1 = ah,1 + 1 ah,0 = ah,0 + 1

Penalty bh,1 = bh,1 + 1 bh,0 = bh,0 + 1

• For decision = 1, ah,1 will be increased, if it leads to a reward. Similarly
bh,1 will be increased if it leads to a penalty.

• For decision = 0, ah,0 will be increased if it leads to a reward, and bh,0
will be increased if it leads to a penalty.

The algorithm for BLA for decision-making in detailed form is presented
in algorithm 2 on page 30. The algorithm is carried out simultaneously for
each load.

LR−I based Decision-Making Process

The most peculiar feature of LR−I scheme, in contrast to BLA, is involve-
ment of a learning parameter (denoted by λ) whose value affects the conver-
gence speed and accuracy (proximity to optimal point). Similar to variables
ah,j and bh,j in BLA, LR−I consists of two parameters ph,0(s) and ph,1(s)
representing the probability of selecting decisions 0 and 1 by hth load in the
next (s+ 1) round of iteration respectively, where ph,0(s) + ph,1(s) = 1. For
example, if p1,0(20) = 0.3 and p1,1(20) = 0.7, then appliance 1 will make a
decision d1(tn, 21) = 1 in iteration 21 with 70% probability and decision 0
with 30% probability. Initially, the probability of selecting decision 1 or 0
is set equal, i.e., ph,0 = ph,1 = 0.5 holds and their values will be updated,
based on reward or penalty received in every iteration within a timeslot.
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Algorithm 2 Calculating Decision by BLA

Input:

• lh(tn), Ctn, T , M and Z.

• Declare variables xh,0, xh,1, ah,0, bh,0, ah,1, and bh,1 for each h.

Output:

• Decision for each i, dh(tn).

1: Begin
2: Initialize tn. . From tn = 1→ T
3: Initialize s=1 and ah,0(s) = bh,0(s) = ah,1(s) = bh,1(s) = 1, where s

is the index of iterations.
4: for each load h do
5: Draw two values xh,0 and xh,1 from the Beta distribution func-

tions given by β(ah,0(s), bh,0(s)) and β(ah,1(s), bh,1(s)) respec-
tively.

β(ah,j(s), bh,j(s)) =

∫ xh,j
0 v(ah,j(s)−1)(1− v)(bh,j(s)−1)dv∫ 1
0 u

(ah,j(s)−1)(1− u)(bh,j(s)−1)du
. (4.2)

6: Compare xh,0 and xh,1.
7: if xh,0 < xh,1 then
8: Decision dh(tn, s)=1.
9: else

10: Decision dh(tn, s)=0.
11: end if
12: end for
13: Calculate whether reward/penalty is received as stated in algorithm

1 due to decision set {dh(tn, s)}.
14: s = s+ 1.
15: for each user i do
16: if reward in step 13 then
17: if dh(tn, s)=1 then
18: ah,1(s) = ah,1(s) + 1.
19: else . dh(tn, s)=0
20: ah,0(s) = ah,0(s)+1.
21: end if
22: else . Penalty in step 5
23: if dh(tn, s)=1 in step 5 then
24: bh,1(s) = bh,1(s)+1.
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Algorithm 2 Calculating Decision by BLA (continued)

25: else . dh(tn, s)=0 in step 5
26: bh,0(s) = bh,0(s)+1.
27: end if
28: end if
29: end for
30: Check for stopping criteria given in sub-subsection 4.1.2.
31: if Stopping criteria satisfied then
32: Stop.
33: else
34: Go to Step 4.
35: end if
36: End

The decision-making process for LR−I takes place as outlined in algorithm
3 in page 32.

Stopping Criteria for Algorithms

The LA based scheduling methods run through a number of iterations in
each timeslot for calculating the preferred decision, that exploits the optimal
capacity. But the iterations can not run all along, consuming a lot of time.
So we set a limit M for maximum number of iterations that each round
of decision-making can proceed. Also, the preferred decision set may be
reached within fewer iterations, where the decisions will keep repeating as
no upgrade will be possible. These two are set as criteria for stopping a
decision-making algorithm.

• The number of iterations has reached maximum, i.e., s = M .

• Decisions leading to rewards remain unchanged for certain iterations
Z, i.e., if dh(tn, s)=dh(tn, s+ 1)=.....=dh(tn, s+Z) for any value of s.

To summarize the two algorithms in previous sub-subsections, an over-
all algorithm is illustrated on page 34, by taking BLA as an example for
distributed scheduling by LA. It is to keep in mind that, even before first
step of the algorithm is started, a pre-check is made at each timeslot, if
scheduling can be avoided (enough capacity available or each load is larger
than capacity). If so, all or none of the users are allowed to turn on their
loads.
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Algorithm 3 Decision-making by LR−I
Input:

• lh(tn), Ctn for each timeslot tn, T , M , Z.

• Declare variables ph,0, ph,1 and Ranh, where ph,0 is action probability
of choosing decision 0 by player h, similarly ph,1 is probabilility of
choosing 1 and Ranh is a randomly generated numbers betweem 0
and 1.

Output:

• Final decision for each user dh(tn) for each timeslot tn = [1, T ]

1: Begin
2: Initialize tn and choose a value for tuning parameter λ.
3: Initialize s = 1, ph,0 = ph,1 = 0.5.
4: for every h do
5: Generate Ranh(s).
6: if ph,0(s) ≤ Ranh(s) then
7: dh(tn, s) = 0.
8: else
9: dh(tn, s) = 1.

10: end if
11: end for
12: Calculate reward or penalty received due to dh(tn, s) following steps

in sub-subsection 4.1.1.

13: for each load h do
14: if reward in step 12 then . No update for penalty
15: if dh(tn, s) = 0 then
16: ph,1 = (1− λ)ph,1.
17: ph,0 = 1− ph,1.
18: else . dh(tn, s) = 1
19: ph,0 = (1− λ)ph,0.
20: ph,1 = 1− ph,0.
21: end if
22: end if
23: end for
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Algorithm 3 Decision-making by LR−I (continued)

24: Check for stopping criteria given in sub-subsection 4.1.2.
25: if Stopping criteria satisfied then
26: Turn on the selected loads.
27: Stop the iterations for this tn.
28: else
29: s = s+ 1.
30: Go to Step 4.
31: end if
32: End

4.2 Coin Game Implementation for Increasing Fair-
ness of SG

With the help of algorithms in previous section, the decisions for each user
can be calculated at every timeslot. Users are selected in some timeslots
while they will be passive or rejected in others. Measurement of fairness
F by comparing the number of times each appliance gets selected (Pi) is
to be observed to see the difference in results. So, the need for a solution
to address the problem was felt and a solution has been proposed in this
section.

Figure 4.2: Issue of Fairness with random Scheduling

Fairness of SG system is considered in terms of frequency of appliances
to access the power, i.e., number of times (timeslots) an appliance sends
demands (fresh or rejected or both) versus number of timeslots the demands
stay in scheduling process, ‘F’. Specifically, it is also a measure of waiting
time for appliances, a higher value of ρi for appliance i suggests that loads
from appliance i did not have to wait for long time in average. A system is
declared fair enough if appliances enjoy close values between their individual
ratio of number of timeslots to others. In other words, the happiness of a
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Algorithm 4 Complete scheduling by LA (example by BLA)

Input:

• The active loads lh(tn) and capacity Ctn for each timeslot tn, M , Z

Output:

• The optimized decision for each user and total load served

1: Begin
2: Initialize s=1, ah,j = bh,j = 1, LF (s)=0, Rep = 0.
3: for each load h do
4: Draw two random values of xh,j , i.e., xh0 and xh,1 from the Beta

distribution function given by β(ah,j , bh,j) in equation (4.2).

5: if xh,0 < xh,1 then
6: dh(tn, s)=1.
7: else
8: dh(tn, s)=0.
9: end if

10: end for
11: Calculate LF (s) =

∑H
h=1 lh(tn)dh(tn, s).

12: if LF (s) ≤ Ctn and LF (s) ≥ LF (s− 1) then
13: a reward.
14: else
15: a penalty.
16: end if
17: for each h do
18: if reward was received then
19: if dh(tn, s)=1 then
20: ah,1 = ah,1+1.
21: else
22: bh,1 = bh,1+1.
23: end if
24: else . penalty was received
25: if dh(tn, s)=0 then
26: ah,0 = ah,0+1.
27: else
28: bh,0 = bh,0+1.
29: end if
30: end if
31: end for
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Algorithm 4 Complete scheduling process by LA (example by BLA) (con-
tinued...)

32: if ∀h, dh(tn, s)=dh(tn, s− 1) then
33: Rep = Rep+ 1. . Rep = counter for successive decision repeats
34: else
35: Rep = 0.
36: end if
37: if s = M or Rep = Z then
38: Stop for this timeslot, users should acknowledge the results and

selected loads are powered on.
39: else
40: Go to step 3.
41: end if
42: End

user depends on values of ρi and the fairness of system is measured in terms
of F. As it is easier and reasonable to consider fairness from appliances’
point of view, ρi is taken instead of ρh. The SG operator should try to
maintain balanced ρi values to keep customers happy. Application of LA
itself is anticipated to resolve F values in long run of t due to randomness
of selection but quicker solution is the target for customer satisfaction.

Adding the fairness constraint directly into LA method as an additional
constraint is intricate to implement. So, a separate heuristic based virtual
coin game (VCG) scenario has been proposed which can be combined to both
LAs, and expected to increase F value of SG compared with the scheduling
solely by LA games only. As VCG is a supplement to the LA based schedul-
ing process, VCG should act as a catalyst to improve fairness and mitigate
the unbalanced situation where some users get scheduled quite often while
others need to contend time and again.

The name VCG is chosen as it utlizes the concept of coins in a way similar
to virtual games played on mobile phones or computers, where players are
awarded coins upon success, e.g. completion of certain tasks, and coins give
special benefits to players to boost their game. Opposite to those games
where coins are increased for completing certain tasks, the players in VCG
will lose coins upon success and will gain coins upon their failure during
scheduling process. Similar to VCG in this thesis, [51] presents a game
named ‘Treasure’ which employs coins into the game to measure wireless
network strength. In VCG, the players use the electricity at the expense
of coins (similar to Super Mario video game where 100 coins are deducted
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to give an extra life [52]). The users in VCG will already have coins which
are allocated to each appliance before start of simulation at timeslot 1 and
act as a ticket to enter into scheduling. The coins that each appliance gets
at commencement of scheduling process can be based on equality (same for
all) or proportion (according to loads each requires). The stock of coins
with a player varies as the game proceeds. A minimum reserve of coins is
necessary depending upon the demand value and timeslot (time of day).
Failing to maintain such a reserve transfers the active load to next timeslot
directly without even entering into scheduling game. Having more coins
helps appliances, as appliances can take part in scheduling in more timeslots.

With combination of VCG into LA based scheduling, the users are ben-
efited by double gaming (LA + VCG) with win-win situation, either they
win in scheduling process to enjoy the power demand or else they will be
rewarded with coins. The coins act like a ticket to enter into the scheduling
process. If users are continuously rejected, still collection of more coins will
keep them much longer (in terms of timeslots) in scheduling. The repeatedly
selected users will keep losing their stock of coins and need to wait until they
have collected enough coins to pay for their loads.

The coin game takes place as shown in Fig. 4.3. For every timeslot tn,
values for capacity Ctn, rate of coins Rtn (number of coins per unit load)
and all active load values lh(tn) should be known. A quantity check on the
stock of coins Coh(tn) needed for each load lh(tn) from coins available with
the respective appliance, is made before the scheduling process is started
so that only appliances who have enough coins are allowed to take part
in scheduling. A scheduling between rich loads (owning enough coins to
pay for demands) will be performed by one of the mentioned LA methods.
The selected appliances will have their coins reduced according to the rate
prescribed for that timeslot while the rejected loads (due to lack of coins
and due to scheduling) will receive those coins. Rich users lose coins while
poorer and under-previlaged ones gain them (passive appliances which are
not part of the game are excluded). So, their chances of getting scheduled
in upcoming timeslots will be influenced due to VCG. In addition to Fig.
4.3, coin game is presented in steps by Algorithm 5 in page 37.

To enter into scheduling, a minimum number of coins is to be possessed
by each active appliance, the number of coins determined by the quan-
tity of load lh(tn) and the rate of coins Rtn at that timeslot. The rate of
coins can be static (same throughout all timeslots) to make it simple or dy-
namic (changing like in dynamic electricity pricing and controlled by VLC
or user themselves on mutual understanding). In this thesis, all loads from
an appliance coexisting in a timeslot are rejected if coins that they have are
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Algorithm 5 Coin game (VCG) combined with LA

Input:

• The active loads lh(tn) and capacity Ctn for each timeslot tn, Coh(tn),
Rtn T , M , Z

Output:

• {dh(tn)},
∑H

h=1 lh(tn) dh(tn), Coh(tn).

• ρi.
1: Begin
2: Declare variables Sel, Coh(tn) and CCtn and initialize tn = 1.

. CCtn= coins collected from scheduled loads
3: Initialize CCtn = 0, Sel = 0.
4: for each h do
5: if Coh(tn) ≥ Rtn lh(tn)

(
Rtn

∑
h lh(tn) for multiple loads

)
then

6: Yes.
7: else
8: No.
9: end if

10: end for
11: for all loads with Yes in step 5 do
12: Calculate dh(tn) by BLA (step 3 to 37 in algorithm 4) or LR−I

scheduling.

13: if dh(tn) = 1 then
14: Coh(tn) = Coh(tn)−Rtn lh(tn).
15: CCtn = CCtn +Rtn lh(tn).
16: Sel = Sel + 1 . Sel=counter for scheduled
17: end if
18: end for
19: for each user h do
20: if Coh(tn) < Rtn lh(tn) or dh(tn) = 0 then
21: Coh(tn) = CCtn

H−Sel .
22: end if
23: end for
24: if tn 6= T then
25: tn = tn+ 1.
26: Go to step 3.
27: else
28: Go to step 30.
29: end if
30: End
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Figure 4.3: Steps showing Coin Game Implementation in Scheduling

insufficient, due to proportional distribution of coins between loads sent by
same appliance, rather than prioritizing one or more loads. At least some
loads could take part in scheduling if coins were distributed to older or more
important ones. But the advantage of proportionate distribution is that
the appliances collect coins as no load requests can enter into scheduling.
The difference in result due to variation in coin distribution between loads
from same appliances can be a subject of further study. Once a load with
enough coins gets scheduled, then coins are deducted from the correspond-
ing appliance’s stock. Passive appliances that do not have loads will not
take part in scheduling and also do not get privilege of adding coins into
their stock. Only the appliances with demands (even if they do not have
enough coins) will be benefited by coins collected from the scheduled loads.
If any appliance i has two or more loads simultaneously in same timeslot
(for Type 3 appliances in section 3.1), coins will be reduced from the same
stock Coh(tn) belonging to the appliance that both loads emerged from.

Due to concerns about the existence of parallel load requests from an
appliance and availability of coins with that appliance, following tasks are
to be performed based on different types of appliances in section 3.1.

• Case 1 As second load Li1,t2 will be shifted by i1 if previous load Li1,t1
still exists, coins will be checked against Li1,t1 at current timeslot.
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• Case 2 Coin check will be made against Li1,t2 as it will be the current
load. Appliance deactivates Li1,t1 as soon as Li1,t2 emerges.

• Case 3 Appliance will divide coins to each load and send both Li1,t1
and Li1,t2 if coins are enough for serving both. Coins will be dis-
tributed proportionately. E.g., ∃ (h1,h2) ∈ i1, then coins distributed

to each load is given by Coh1(tn) = Coi1(tn) lh1(tn)
lh1(tn)+lh2(tn) and Coh2(tn) =

Coi1(tn) lh2(tn)
lh1(tn)+lh2(tn) respectively.

• Case 4 Even though this case is not considered in simulation in this
thesis, coin allocation can be discussed. Since only one of the two
loads from an appliance exists, coins need not be distributed. So, all
coins can be used by the selected load like in case 1 and 2.

4.2.1 VCG Implementation in Real Scenarios

For ease of simulations, different conditions have been considered for im-
plementation of VCG. Some of them have been discussed already in this
chapter. But such considerations can be altered for ease of customers and
utility company in real SG. These issues are discussed here.

1. The appliances are charged with coins equal to their load demands.
In reality, VLC can change the rate of coins depending on the pro-
portion of demand and capacity so that enough loads are available for
scheduling. If excess number of loads are rejected, optimal total load
can not be achieved due to lack of coins.

2. A preset value of equal coins (Coi(tn) = Coj(tn), tn = 1, i 6= j), i.e.,
total coins

number of users is allocated for each user i in the simulations in this
thesis. In real life, the preset value can also be set by distributing coins
in proportion to the electricity requirement of each user. Appliances
whose demands are higher along N timeslots will have bigger stock of
coins.

3. The number of coins with each user at the beginning of new round of
scheduling can be an issue as well. In this thesis, a reasonable number
of coins at tn = 1 is given depending upon the appliance types (type
1, 2 or 3) and repeated with same number in next simulation. For real
time implementation, two choices can be suggested, either number of
coins could be reset to the previous preset value (as in this thesis) or
continue with remaining coins after the last T th timeslot of previous
round.
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4. Fairness is measured from appliance’s point of view and coins are allo-
cated to different appliances in this thesis. In reality, when customers
are considered, coins can be transferred between appliances of same
customer so that important loads can be sent into scheduling. In a
broader view, multiple loads from same appliance (type 3) can be
viewed as multiple appliances (with single load in each timeslot) from
a single user case.

5. The coins received by rejected loads is equal in this work, by equal
division of total coins collected from scheduled loads. In practice, the
same or division of coins in proportion to their demands can be done,
i.e., loads with higher values get more coins as they are the ones who
will be paying more coins when scheduled. The same algorithms as
suggested in this thesis are sufficient to serve the purpose, where the
index i will be customer index and h will become appliance index.

The above mentioned implementation aspects are suggestions and may
need simulations to see results before enforcing into action in SG. This is
considered further work in extension to this thesis. The implementation
of the algorithms, discussion and analysis of the results is presented and
discussed in the next chapter.
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Chapter 5

Simulations and Numerical
Results

After formulation of the problem and outlining the solution methods in the
previous chapter, the next step is to see if the results will be as expected.
This chapter proceeds into implementation of prescribed algorithms. mat-
lab is the platform chosen for simulation of algorithms. Results have been
obtained by simulating the coin game into the BLA and LR−I based schedul-
ing methods. Results will be focused on the comparison of fairness between
users (ρ) taking part in scheduling and fairness (F) achieved by system given
in section 5.3 and the accuracy of converged decision given in section 5.2.
The Matlab codes are given in Appendix section 7.4 and 7.5.

In the simulations, the number of appliances N was fixed to 15 while
the comparison of accuracy and fairness of scheduling is made as a function
of the number of timeslots T , LA methods and inclusion/exclusion of VCG
in the scheduling processes. The load demands, provided that they get
rejected during scheduling, exhibit different behaviour at different timeslots
according to nature of appliances, and results are also presented in different
subsections under cases 1, 2 and 3 corresponding to appliance types 1, 2
and 3 in 3.1 respectively. Appliances of case 4 are not been considered in
scheduling due to selection issues. Case 4 can have a compromised solution
(for scheduling) as it can be treated as case 1 by allowing the appliances
or customers themselves to select any one of the coexisting loads. Also,
bad selection of loads (specially if difference between loads Li1,t1 and Li1,t2
is high) might lead to a drift of the sum of selected loads away from the
capacity Ctn. The drift from capacity leads to under utilization of available
capacity in case 4.
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Even though the values of loads from the appliances are not known in
advance in reality, to create uniformity in different scheduling scenarios and
better comparison of results, all results are derived by considering loads from
the Table 7.1 of matrix size 100×15 given in Appendix 7.1. Each row of the
table contains loads for each timeslot in ascending order and the columns
are for the 15 appliances considered. E.g., load of 5th appliance at 10th

timeslot L5,10 is given by element [10, 5] of demand table, which is 53 units.
A load demand of 0 units at any timeslot means that the appliance does not
generate any load in that timeslot, e.g., load of 2nd appliance at 1st timeslot,
L2,1 = 0 units. Depending upon the appliance type considered (except type
2) and scheduling results from previous timeslots, the actual load demands
at any timeslot during simulations alter from loads given in load table. For
T = 25 and T = 50 conditions, the first 25 and 50 rows should be picked.

These loads were simulated in matlab under two scenarios of capacity
for secondary loads as mentioned in following cases:

• Insufficient Capacity In this case,
∑

t

∑
i Li,t > C holds. More

specifically, the capacity is fixed to 60% of total demand request in
each timeslot. It means the capacity varies proportionately with the
total demand. For timeslots with high demands, the capacity is higher
and lower for timeslots with smaller demands. The simulations were
performed taking T=25 timeslots for comparison of accuracy and T is
varied between 25, 50 and 100 for comparison of fairness.

• Sufficient Capacity Capacity is made variable at different times-
lots such that the condition

∑
t

∑
i Li,t ≤ C is fulfilled by capacity.

This scenario presumes a fully fledged power usage environment for
appliances. Numerical results consider T=25 timeslots only for this
assumption. The capacities for each timeslot are taken from Appendix
7.2. The total capacity C =

∑T
tn=1Ctn is not equally distributed along

the timeslots, but rather randomly distributed. So at any tn, Ctn can
be greater than, equal to or less than

∑
lh(tn). The capacities have

been chosen randomly, and the capacity for each timeslot is sometimes
higher and sometimes lower than the total of demands in each timeslot
but at the end, the total of loads in successive timeslots (until T=25)
is smaller than the sum of capacities during the same timeslots. In
those timeslots where capacity is greater than the demands, decision
1 for all users can be done straightforward. Scheduling by LA is not
necessary in such situations and measurement of ability of scheduling
to match the global optimal point by proper selection of users is not
suitable in these cases.
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The sufficient capacity scenario means that the capacity of SG is large
enough to accomodate aggregated loads in a long run, as a result of which
loads that are rejected get served within the next few schedulings. This is
quite common as the SG capacity is almost constant, with loads accumulat-
ing at peak hours and fewer loads appearing at non peak hours. The loads
rejected at timeslots with lower capacities are expected to get a count on at
higher capacity timeslots. The practice of adjusting the loads for balancing
the supply and demand, load shaping as said commonly, is outlined in [14]
as peak clipping, load shifting, valley filling, conservation, etc. in accor-
dance to the scenario. The loads rejected at peak times will succeed in the
off-peak times if there is enough capacity. However, even if

∑
t

∑
i Li,t ≤ C

holds, there is no guarantee that all loads will finally get served. Lets take
an example with two timeslots with demands {7,8} units and {5,2} units in
each timeslot. Let capacities for each slot be 10 units and 12 units respec-
tively, so

∑
t

∑
i Li,t (7+8+5+2=22 units) = Ct (10+12=22 units). Only

one of two loads in first timeslot can be scheduled, say 8 units gets sched-
uled. So, second timeslot will have total demand=14 units which is greater
than the capacity=12 units for that timeslot. That is why, even though the
assumption holds, it is not always rightful to say that all loads will finally
get scheduled, due to granularity of loads. Therefore this scenario deserves
a study and will be discussed later in the results section.

Again the results are also presented under the different cases as case 1,
case 2 and case 3, depending on the behaviour exhibited by appliances for
their load as already discussed in section 3.1.

• Case 1 The results under this section consider the loads from type 1
appliances. As discussed already, the appliances send rejected loads
from previous timeslot in the current timeslot to replace the loads that
would possibly emerge in the current timeslot. That shifts the current
load (given in Table 7.1) to the next timeslot (Li,tn → Li,tn+1) and the
other consecutive loads further by one timeslot (Li,tn+1 → Li,tn+2 and
so on). So, the loads in succeeding timeslots for any appliance will not
be exactly as in load table given in Appendix 7.2 once the appliance’s
load has been rejected. Occurrence of multiple loads from the same
appliance at any timeslot does not happen in this case.

• Case 2 Case 2 considers the type 2 appliances and loads follow the
same pattern as discussed already. Only one load per timeslot from
one appliance exists under case 2, and it will undergo scheduling. The
old rejected loads Li,t from previous timeslots t < tn will be discarded
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in the current timeslot if new load is generated at the current timeslot.
Only if a load of 0 units exists in current timeslot (in load matrix in
Appendix 7.1), the old rejected load is continued in current timeslot
assuming that same load needs to be served as the appliance’s load
has not been updated.

• Case 3 In this scenario, the appliances’ demands that remained un-
served in previous timeslots are also considered in the current timeslot
regardless of presence or absence of new demand in current times-
lot. The loads at current timeslot will also be considered in simula-
tion along with previous unserved loads. So, there is accumulation of
loads with progression of timeslots due to lack of coins or rejection by
scheduling. The loads will repeat continuously in following timeslots
if they are rejected in the current timeslot and they will contend until
they are scheduled.

5.1 Considerations for Simulation

Some considerations have been carried out during scheduling for ease of
simulations, are given as follows:

1. For every simulation, the load requests for each appliance are prede-
termined and are taken randomly between 50 units and 100 units as
shown in Appendix 7.1. The capacity for each timeslot for sufficient
capacity scenario is set to values as given in Appendix 7.2.

2. All loads have completion time of single timeslot only. In reality,
if shiftable loads can be stopped even after they have once started,
scheduled appliances can undoubtedly take part again in consecutive
timeslots. Shiftable loads that can not be stopped once scheduled
and last for more than one time slot can be treated as non-shiftable
loads after that timeslot and they will therefore be served without
interruption regardless of duration of each load.

3. The rate of coins Rtn has been set to 1 in the simulations. It can be
made changeable for each timeslot in order to obtain a balance between
total demand and capacity, so that enough loads are permitted into
game.

One of the issues with appliances is that not all appliances will take
part equally. Some appliances need to operate more often while others may

44



come into usage less frequently. So the value of Qi in equation 3.10 for the
first kinds is higher than the latter ones which might significantly impact
ρ values. The demands with value 0 units1 for the appliances in Table 7.1
refer to timeslot where appliances remain passive, as they do not have any
demands. The number of timeslots where an appliance remained passive is
shown by white bars in figures for comparison of fairness, e.g. Fig. 5.3. But
the effect in fairness due to difference in the number of demand requests has
not been studied in this thesis.

5.2 Results for Comparison of Accuracy of Schedul-
ing

The purpose of the simulation results in this section is to check if the sched-
uled load due to converged decisions leads to the maximum objective func-
tion. The ratio of total demands selected in each timeslot against the global
optimal point within T timeslots is observed and results are compared be-
tween different methods with and without application of VCG.

The LA methods’ competency to bring scheduled load
∑
lh(tn) dh(tn)

equal to or closest to global optimal point for a single timeslot Ctn has
already been discussed in previous work [19]. The accuracy in results is
presented after measuring accuracy along multiple timeslots, in contrast to
previous work where a single timeslot was under consideration, and the av-
erage is taken for each timeslot from multiple simulations. The number of
coins (Coi(tn)) is 400 coins allocated to each user at first timeslot (tn = 1)
and total number of timeslots for simulations T=25, is the common envi-
ronment for case 1 and case 2. 500 coins have been allocated for simulations
in case 3 unless stated otherwise.

Even though the closeness (accuracy) depends on the number of demands
and their values as well [53], a restricted comparison is presented in this
section for the same input demand matrix in Appendix 7.2. Tables and
figures are used to discuss the results, where the values in table represent
the average accuracy in percentage from the ratio of selected demands to

global optimal point2 for a particular timeslot, i.e.,
∑H
h=1 lh(tn) dh(tn)

global optimal point × 100

and figures are plots of total demand
∑H

h=1 lh(tn), capacity Ctn, sum of all

selected loads
∑H

h=1 lh(tn) dh(tn) and global optimal point for each timeslot.
Due to large number of figures from several scenarios, figures from case 1

1The values were allocated randomly to some appliances for each timeslot.
2The global optimal point is calculated by exhaustive search.

45



(appliances of type 1) only has been selected in this section. Rest of the
figures have been given in Appendix 7.3. The figures presented for this
subsection have four bars for each timeslot, where the first bar in legend
denoted by Total demand is for

∑H
h=1 lh(tn), second bar Capacity is for Ctn,

third bar Scheduled demand is for
∑H

h=1 lh(tn) dh(tn) and finally, global
optimal is for the global optimal point that can be achieved for that timeslot.
The figures are obtained from a particular simulation and do not exactly
exhibit the average results as shown in Tables 5.1 and 5.2.

5.2.1 Insufficient Capacity

This scenario of insufficient capacity considers the presumption where capac-
ity is 60% of total demands. All three cases of appliance types are included
together under this subsection. Table 5.1 presents results for all three cases.
The results in figure for case 1 are given in Fig. 5.1, while figures for case
2 and case 3 are given in Fig. 7.2 and Fig. 7.3 respectively in Appendix
section 7.3. Due to the total load request from all appliances for all timeslots
being above the capacity for all timeslots, the global optimal point is mostly
the capacity Ctn of those timeslots.

The results in Table 5.1 show that the scheduling by the two LA methods
are good enough to achieve optimal usage of capacity. It is demonstrated
by high accuracy values, that both methods obtain total scheduled load
closest to global optimal point which helps appliances to capitalize the most
from available capacity. But the slightly better results in terms of better
accuracy for scheduling without VCG compared to VCG considered, shows
that a trade-off exists between better fairness and accuracy of scheduling
(optimization of capacity). The fact that scheduling by LA with VCG limits
some privileged users from scheduling, leads to less number of participants in
scheduling, so the accuracy is slightly lower than scheduling without VCG.
The same reason explains the better results for case 3 than case 1 and 2
which has more loads in scheduling in most timeslots.

In case 3, the scheduling processes took a longer time than other two
cases for convergence in each timeslot. This is due to the higher number
of participants involved in scheduling. For LR−I methods, the speed of
convergence can be increased by increasing value of λ but certainly the
accuracy of convergence needs to be sacrificed. Also, BLA shows a slender
better edge in terms of accuracy in case 3 with insufficient capacity, which
means that BLA has better edge over LR−I when more participants are
involved. Figures 5.1, 7.2 and 7.3 can be used to compare the results for
differences in scheduled load by simulations and global optimal point for
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different cases with insufficient capacity.

5.2.2 Sufficient Capacity

The results for accuracy with sufficient capacity (
∑

tn

∑
h lh(tn) ≤

∑
tnCtn)

are presented in Fig. 5.2 (case 1 scenario only) and Table 5.2. All simula-
tions have considered 25 timeslots as in previous simulations of insufficient
capacity. Figures for case 2 and case 3 have been shown in Appendix 7.3 in
Fig. 7.4 and Fig. 7.5 respectively.

Again, the results show that the LA methods used are good enough to
achieve high accuracy in optimizing the capacity of SG when the capacity is
sufficient to accommodate all loads within 25 timeslots. Since the accuracy
is measured in terms of total scheduled load versus global optimal point in
each timeslot, the accuracy in case 1 and 2 is negligibly lower than in case
3 because case 1 and 2 have fewer demands in most timeslots (maximum
1 demand per appliance per timeslot) even though capacity is enough to
accommodate all loads and no scheduling is required. In case 3, the number
of total demands is higher than or at least equal to the former two cases
in most timeslots. Better scheduling precision can be achieved at the ex-
pense of longer scheduling time. Also, it can be noticed from the results in
figures, that the total demand (first bar) at tn = 25 is much higher than
the capacity (third bar) at that timeslot. These are much notable in case
3, Fig. 7.5, after timeslot 12 and timeslot 18. Even though the sufficient
capacity condition considered is

∑
tn

∑
h lh(tn) ≤

∑
tnCtn, which means all

loads are expected to be scheduled by last timeslot, it is not the case. This
is due to the granularity of the loads. Another reason is that in the first
few slots, there may be less demands even though the capacity is high. So
the capacity in those timeslots is wasted. The total demand becomes higher
than capacity due to rejection after timeslot 12, but the capacity does not
increase accordingly. And the wasted capacity in previous timeslots can not
be utilized later, which explains the existance of more rejected loads’ even
though capacity is sufficient.
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Table 5.1: Comparison of Accuracy of Scheduling Methods (Insufficient capacity)

Case T Method VCG Accuracy(in %)

Case 1 25
BLA

Yes 99.7529
No 99.8475

LR−I
Yes 99.8089
No 99.9010

Case 2 25
BLA

Yes 99.7452
No 99.8659

LR−I
Yes 99.8721
No 99.9211

Case 3 25
BLA

Yes 99.9872
No 99.9931

LR−I
Yes 99.9830
No 99.9989

Table 5.2: Comparison of Accuracy of Scheduling Methods (Sufficient Capacity)

Case T Method VCG Accuracy(in %)

Case 1 25
BLA

Yes 98.2953
No 99.8220

LR−I
Yes 98.7093
No 99.7399

Case 2 25
BLA

Yes 98.5226
No 99.8017

LR−I
Yes 98.5009
No 99.8486

Case 3 25
BLA

Yes 99.5678
No 99.8513

LR−I
Yes 99.8340
No 99.8266
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(a) BLA with VCG, Case 1

(b) BLA without VCG, Case 1
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(c) LR−I(λ = 0.15) with VCG, Case 1

(d) LR−I(λ = 0.15) without VCG, Case 1

Figure 5.1: Comparison of Accuracy by BLA and LR−I (Case 1, T = 25, Insufficient Capacity)

5.3 Results for Comparison of Fairness

Here, the simulation results have been presented separately under the cases
1, 2 and 3 representing the difference in nature of loads from appliances in
section 3.1. Results under case 1 are presented by assuming that all loads are
from appliances of type 1. Similarly, case 2 assumes that loads are from type
2 appliances and case 3 for loads from type 3 appliances. Though all kinds of
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(e) BLA with VCG

(f) BLA without VCG
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(g) LR−I(λ = 0.15) with VCG

(h) LR−I(λ = 0.15) without VCG

Figure 5.2: Comparison of Accuracy by BLA and LR−I (Case 1, T = 25, Sufficient Capacity)

52



appliances exist simultaneously in reality, simulations have considered that
all appliances exhibit same behaviour for the loads. However, the nature
of the problem does not change even if appliances of all types coexist, so
the algorithms given in this thesis are always applicable. Furthermore, the
number of loads or participants of scheduling will be even smaller (when
appliances of all types coexist) than in case where all loads belong to type 3
only. The figures obtained from each round of scheduling contain four terms
in legend (three for scheduling without VCG), namely scheduled, lack of
coins, rejected and passive for each appliance/user (referred to as USER in x-
axis) and the Number of Timeslots is given in y-axis. Legend scheduled refers
to the number of timeslots each appliance was selected in the scheduling
process. Similarly, lack of coins3, rejected and passive refer to the number
of timeslots that each appliance, i. could not participate in scheduling due
to insufficiency of coins, ii. got rejected during scheduling process despite
having enough coins and iii. did not have any load request respectively. The
figures and tables presented may not be from exactly the same simulation
configurations, so differences may exist (in values of Pi) even if the scenario
is same.

The results of simulation presented in tabular form consist of five columns
as shown in sample Table 5.3. The Method column is for LA method used
in scheduling which is either BLA or LR−I . Column T is for number of
timeslots that each round of simulation lasts for. Simulations were done for
25, 50 and 100 timeslots, so column T takes values 25, 50 or 100. Column
VCG suggests if VCG was applied along with LA scheduling method and
expressed by Yes or No depending on whether VCG was applied or not.
Similarly, column ρi is for the ρ values of each appliance i and their values
are in separate columns under each appliance’s index i taking values 1, 2,
. . . , 15 for 15 appliances considered in simulations. Finally, column F gives
the F value of the scheduling process calculated from the ρ values for each
simulation, as per equation 3.11. An extra row has been added for Pi un-
der every ρi value for T = 100 only, which is the count of total number of
timeslots each user was selected within those 100 timeslots. To be noted,
the results for fairness are taken from a single simulation, not the average
of several simulations as in previous section for comparison of accuracy.

3Lack of coins does not exist in figures that do not consider VCG.
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Table 5.3: Sample Table for Results of Measuring Fairness

Method T VCG
ρi F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BLA/LR−I 25/50/10 Yes/No

5.3.1 Insufficient Capacity

As already discussed in the previous section, the capacity available for the
secondary appliances for any timeslot is considered to be 60% of the total
loads to be scheduled at that timeslot. As the loads from the appliances vary
at different timeslots, the capacity is also variable but in proportion to the
total load demand. So, it is assumed that SG supplies higher capacity during
timeslots with higher load demand and lower capacity for lower load demand.
The results have been classified under three separate cases to resemble the
appliances of types 1, 2 and 3 respectively, excluding appliances of type 4.

Case 1

The results from matlab simulations have been presented in tabular form in
Table 5.4. Since VCG is the main aspect expected to influence the fairness
F, the results of simulations with and without VCG have been put together
for ease of comparison.

As expected, the fairness F among appliances is higher with application
of VCG than without it for both BLA and LR−I . It is due to the fact that
the frequency of selection of appliances given by their ρi values are closer to
each other while more dispersion is seen in their values in scheduling without
VCG. E.g., ρ values are limited between 0.5714 and 0.5977 in BLA with
VCG with T=100 while 0.4782 and 0.7303 are the minimum and maximum
values for the same scenario without VCG. Also, argument that users with
the same Pi can not be guaranteed to have equal ρ values within same T
is demonstrated. E.g., both appliances i=4 and i=9 in LR−I (λ = 0.10)
with T=100 and VCG applied, are selected 53 times but yield different ρ
values, i.e., (ρ4 = 0.6091) and (ρ9 = 0.5955). This is due to the difference
in number of timeslots they were rejected.

Furthermore, comparing the methods of scheduling, the fairness brought
by LR−I with all λ values (0.1, 0.15 and 0.3) is almost equal to that of BLA
when VCG is applied. Even when VCG is not applied, scheduling results
by LR−I are similar to those by using BLA. Notably, scheduling without
VCG also delivers better fairness with increase in T (T=100 has F=0.9908
and T=25 has F=0.9864 for LR−I with λ=0.15 without VCG), even though
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it is slightly less compared to its counterpart which considers VCG.
Figures are also presented to exhibit the results of simulations for case 1,

which are presented in Fig. 5.3 and Fig. 5.4. The main focus is to balance
the height of last bar4 (Pi) in the figures for all appliance. Figures explain
the results shown in tabular form in more details. Four plots in Fig. 5.3 for
T=25 and four others in Fig. 5.4 for T=50 have been chosen to compare
results from simulations of BLA and LR−I (with λ=0.15) respectively. Two
sub-figures for each LA method are chosen, first one with application of
VCG and the latter without VCG. Even though the bar plots from LR−I
seem more uniform than plots obtained from BLA, it is hard to notice
the difference between them in figures. But the better fairness achieved by
application of VCG is clear for both T = 25 and T = 50 scenarios with
both LR−I and BLA scheduling methods. In average, the height of bars
representing Pi are shorter when VCG is applied than when VCG is not
applied. Better fairness is achieved by cutting off Pi of some users, e.g.,
only user 4 has been selected 15 times in Fig. 5.3a while four users (user 1,
4, 6 and 13) in Fig. 5.3b have been selected at least 16 times. Fig. 5.5 can
be considered for T=100 even though it is obtained from case 2 scenario, as
the results in case 1 and case 2 showed much resemblances. The number of
times users are scheduled is more uniform in Fig. 5.4 for T = 50 than in
Fig. 5.3 for T = 25. Again, this supports the evidence that fairness increases
with increase in number of timeslots. Results from previous work [19] and
simulations for LR−I with different values of λ show that LR−I with λ=0.15
is arguably better choice than λ=0.10 and λ=0.30, considering the speed of
simulation and accuracy. So, it can be said that the effect of VCG is more
when less timeslots are involved, and negligible differences are seen between
LR−I and BLA methods in terms of fairness.

4Forth bar in simulations with VCG and third bar for simulations without VCG
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Table 5.4: Comparison of Fairness of appliances (Case 1, Insufficient capacity)

Method T VCG
ρi F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BLA

100
Yes

0.5730 0.5714 0.5833 0.5977 0.5806 0.5977 0.5556 0.5889 0.5955 0.5778 0.5824 0.5764 0.5909 0.5795 0.5747
0.9996

51 48 49 52 54 52 50 53 53 52 53 49 52 51 50

No
0.7303 0.5058 0.6309 0.5632 0.6304 0.5747 0.4782 0.5889 0.5444 0.5842 0.4946 0.6309 0.6279 0.6395 0.6321

0.9882
65 43 53 49 58 50 44 53 49 52 46 53 54 55 55

50
Yes 0.5778 0.5909 0.5813 0.5556 0.6000 0.5909 0.5744 0.5681 0.6000 0.5909 0.5681 0.5952 0.5813 0.5681 0.5853 0.9995
No 0.6136 0.6136 0.6341 0.5333 0.6222 0.6279 0.5744 0.5111 0.5778 0.6136 0.6818 0.5111 0.5348 0.7045 0.5000 0.9896

25
Yes 0.5714 0.5909 0.6190 0.6000 0.6190 0.6086 0.5909 0.5000 0.5833 0.6190 0.6190 0.6190 0.5238 0.5909 0.5789 0.9966
No 0.7619 0.5909 0.7000 0.6800 0.7142 0.7391 0.5652 0.6086 0.4166 0.5000 0.5454 0.4347 0.7619 0.4545 0.4736 0.9615

LR−I

λ = 0.10

100

Yes 0.5730 0.5833 0.5952 0.6091 0.5913 0.5977 0.6000 0.6000 0.5955 0.5955 0.5934 0.5882 0.5909 0.5862 0.5862
0.9998

51 49 50 53 55 52 54 54 53 53 54 50 52 51 51

No
0.6067 0.6190 0.6309 0.5402 0.6304 0.5454 0.5164 0.6627 0.6067 0.5556 0.6154 0.6071 0.6136 0.5681 0.5747

0.9956
54 52 53 47 58 48 47 57 54 50 56 51 54 50 50

50
Yes 0.6000 0.5435 0.6341 0.5333 0.5778 0.6279 0.5745 0.6429 0.5778 0.5455 0.5909 0.6341 0.5581 0.6136 0.5854 0.9966
No 0.7500 0.6591 0.4651 0.5111 0.4783 0.5455 0.7174 0.5111 0.6136 0.6364 0.5682 0.6341 0.5581 0.6136 0.6585 0.9815

25
Yes 0.5238 0.6364 0.7000 0.6800 0.6190 0.4583 0.5909 0.4583 0.6667 0.6500 0.6500 0.5455 0.6667 0.5909 0.4737 0.9821
No 0.7143 0.5909 0.5000 0.4400 0.5909 0.6522 0.7273 0.6522 0.5417 0.5714 0.6190 0.6667 0.4286 0.6818 0.5263 0.9777

λ = 0.15

100
Yes

0.5955 0.5833 0.5952 0.6091 0.5744 0.5862 0.5888 0.5777 0.5842 0.5955 0.5934 0.5882 0.5909 0.5977 0.5862
0.9998

53 49 50 53 54 51 53 52 52 53 54 50 52 52 51

No
0.6067 0.6547 0.6428 0.5287 0.5319 0.6279 0.5384 0.5555 0.5222 0.5108 0.6923 0.5340 0.6206 0.6206 0.6321

0.9908
54 55 54 46 50 54 49 50 47 47 63 47 54 54 55

50
Yes 0.6000 0.5652 0.6190 0.6000 0.6000 0.5909 0.5957 0.6047 0.5778 0.6136 0.5910 0.6098 0.5814 0.6136 0.6098 0.9994
No 0.6364 0.5909 0.6585 0.6444 0.5556 0.5682 0.5745 0.4889 0.6000 0.6977 0.6591 0.5227 0.5814 0.6591 0.5000 0.9897

25
Yes 0.6190 0.5909 0.6190 0.6000 0.5454 0.6087 0.5909 0.6087 0.5833 0.6190 0.6190 0.5909 0.5238 0.5909 0.6316 0.9978
No 0.6190 0.5000 0.5714 0.6800 0.6667 0.5652 0.5909 0.5416 0.6250 0.7000 0.6190 0.4347 0.5714 0.5454 0.6667 0.9864

λ = 0.30

100
Yes

0.5730 0.5647 0.5595 0.5747 0.5744 0.5747 0.5667 0.5667 0.5618 0.5778 0.5652 0.5517 0.5454 0.5568 0.5747
0.9997

51 48 47 50 54 50 51 51 50 52 52 48 48 49 50

No
0.6966 0.7778 0.4883 0.4886 0.5212 0.5681 0.6292 0.5556 0.4945 0.5000 0.5934 0.6667 0.6705 0.5568 0.5632

0.9797
62 63 42 43 49 50 56 50 45 46 54 56 57 49 49

50
Yes 0.6136 0.5909 0.5116 0.5333 0.6000 0.5682 0.5957 0.5111 0.6136 0.5909 0.5909 0.6098 0.6047 0.5909 0.6098 0.9966
No 0.5778 0.5652 0.5349 0.6444 0.5556 0.5682 0.5106 0.5333 0.6591 0.6136 0.6364 0.7250 0.4884 0.6364 0.4524 0.9856

25
Yes 0.6190 0.5909 0.6190 0.6000 0.4545 0.6522 0.6364 0.5417 0.5000 0.5455 0.5455 0.6190 0.6190 0.6364 0.6316 0.9912
No 0.5238 0.4091 0.6500 0.6400 0.3913 0.4583 0.7273 0.6522 0.3333 0.7500 0.5455 0.5455 0.6667 0.7273 0.7778 0.9489
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(a) BLA with VCG

(b) BLA without VCG
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(c) LR−I(λ = 0.15) with VCG

(d) LR−I(λ = 0.15) without VCG

Figure 5.3: Comparison of Fairness between appliances by BLA and LR−I (Case 1, T = 25,
Insufficient capacity)
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(a) BLA with VCG

(b) BLA without VCG
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(c) LR−I(λ = 0.15) with VCG

(d) LR−I(λ = 0.15) without VCG

Figure 5.4: Comparison of Fairness between appliances by BLA and LR−I (Case 1, T = 50,
Insufficient capacity)

Case 2

The results of simulation in matlab for appliances of load types in case 2 are
presented in Table 5.5. The result of T = 100 for both LR−I (λ = 0.15) and
BLA is given in Fig. 5.5. Figures for T = 25 and T = 50 have been skipped
in this subsection as the results follow the same pattern as for case 1. So
the results of case 1 and case 2 can be taken into reference interchangeably.
This means the discussion of results for case 1 in previous subsection applies
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in case 2 as well. From the results in Table 5.5, it can be easily seen that
application of VCG increases the fairness and the influence of VCG is more
at lower values of T . The value of F increases with increase of T . Both
LR−I and BLA methods of scheduling are equally efficient with the results
from two methods comparable under same scenario of T and VCG. The
explanation for similar behaviour despite different appliance types in these
two cases 1 and 2 is due to the existance of single load per appliance per
timeslot. For comparison of results, it is not important how the loads are
treated by appliances before scheduling, unless the number of loads per
participant (and their values) are differed [34].
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Table 5.5: Comparison of Fairness of appliances (Case 2, Insufficient capacity)

Method T VCG
ρi F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BLA

100
Yes

0.5824 0.5930 0.6024 0.6000 0.5889 0.5647 0.5889 0.5889 0.5934 0.5889 0.6000 0.5889 0.5714 0.5882 0.6046 0.9996
53 51 50 51 53 48 53 53 54 53 54 53 52 50 52

No
0.5384 0.5955 0.5632 0.6667 0.5744 0.5434 0.5444 0.6626 0.5824 0.7500 0.5454 0.5617 0.5862 0.5833 0.5632 0.9908

49 53 49 58 54 50 49 55 53 66 48 50 51 49 49

50
Yes 0.5869 0.5853 0.6153 0.6250 0.5555 0.5531 0.5434 0.5777 0.5777 0.5833 0.5556 0.5777 0.6046 0.5909 0.5853 0.9985
No 0.5909 0.6511 0.6744 0.5609 0.5957 0.6000 0.7441 0.7619 0.3478 0.5652 0.5333 0.5681 0.5952 0.5348 0.6136 0.9759

25
Yes 0.5833 0.5909 0.5454 0.5416 0.5909 0.5833 0.5833 0.5909 0.5416 0.6086 0.6086 0.6086 0.6000 0.6000 0.5909 0.9985
No 0.5217 0.5909 0.5454 0.4583 0.8095 0.5652 0.4545 0.5652 0.6250 0.5909 0.4166 0.6818 0.7368 0.6667 0.7368 0.9675

LR−I

λ = 0.15

100
Yes

0.5795 0.5813 0.5977 0.5783 0.5869 0.5909 0.5955 0.5862 0.5778 0.5842 0.5714 0.5681 0.5747 0.5977 0.5882
0.9997

51 50 52 48 54 52 53 51 52 52 52 50 50 52 50

No
0.5604 0.6235 0.5632 0.6455 0.6170 0.5747 0.5227 0.5747 0.6022 0.5889 0.6818 0.7261 0.6292 0.4606 0.5465

0.9890
51 53 49 51 58 50 46 50 53 53 60 61 56 41 47

50
Yes 0.5319 0.5909 0.5897 0.6190 0.6000 0.5813 0.5778 0.5869 0.5909 0.5744 0.6086 0.5778 0.5778 0.5909 0.6046 0.9989
No 0.5102 0.5750 0.6341 0.6190 0.6086 0.6000 0.6304 0.5556 0.6279 0.6000 0.5333 0.6590 0.6667 0.6250 0.4250 0.9893

25
Yes 0.5833 0.6190 0.5909 0.5652 0.6363 0.5652 0.5909 0.6086 0.5833 0.6190 0.6190 0.5909 0.5909 0.6190 0.5714 0.9987
No 0.6000 0.6363 0.5714 0.6818 0.6086 0.5833 0.6521 0.5217 0.4000 0.7619 0.6190 0.5454 0.5238 0.6818 0.5714 0.9815

λ = 0.10

100
Yes

0.5714 0.5952 0.6071 0.5903 0.5978 0.5889 0.5862 0.5977 0.5760 0.6000 0.5955 0.5977 0.5747 0.5813 0.5714
0.9996

52 50 51 49 55 53 51 52 53 54 53 52 50 50 52

No
0.7386 0.5454 0.5581 0.6219 0.6086 0.5730 0.6179 0.5903 0.5227 0.7209 0.6250 0.5217 0.6279 0.6046 0.5164

0.9888
65 48 48 51 56 51 55 49 46 62 55 48 54 52 47

50
Yes 0.6087 0.6154 0.6341 0.5435 0.5957 0.5682 0.6222 0.5111 0.6047 0.6087 0.6222 0.6279 0.5455 0.6098 0.5349 0.9959
No 0.6222 0.7436 0.4762 0.7073 0.5417 0.6512 0.5652 0.6279 0.4318 0.6383 0.5778 0.4894 0.6136 0.6905 0.5682 0.9802

25
Yes 0.6667 0.5909 0.5714 0.6190 0.6818 0.5455 0.6250 0.5217 0.5000 0.7143 0.4545 0.6957 0.6500 0.5238 0.5556 0.9842
No 0.6190 0.5000 0.6190 0.5714 0.5909 0.4348 0.6364 0.4400 0.6364 0.7273 0.5238 0.7143 0.7895 0.7000 0.3500 0.9615

λ = 0.30

100
Yes

0.5604 0.5697 0.5604 0.5783 0.5604 0.5681 0.5632 0.5494 0.5730 0.5568 0.5681 0.5568 0.5667 0.5632 0.5384
0.9997

51 49 51 48 51 50 49 50 51 49 50 49 51 49 49

No
0.6483 0.6046 0.5662 0.6951 0.6236 0.5747 0.5681 0.5833 0.5555 0.5889 0.5340 0.6136 0.4945 0.5232 0.5617

0.9930
59 52 47 57 58 50 50 49 50 53 47 54 45 45 50

50
Yes 0.6122 0.6341 0.5122 0.5000 0.5909 0.5349 0.5870 0.5778 0.6000 0.6087 0.5778 0.5366 0.6279 0.6190 0.5682 0.9952
No 0.4286 0.5897 0.5854 0.4375 0.5217 0.6190 0.7021 0.6444 0.6279 0.5435 0.6818 0.5349 0.6250 0.6279 0.6429 0.9828

25
Yes 0.6522 0.5238 0.6190 0.5909 0.6522 0.5417 0.5600 0.6190 0.6087 0.6667 0.5238 0.5652 0.6500 0.4500 0.5714 0.9901
No 0.5909 0.6087 0.5714 0.5000 0.4545 0.4167 0.6818 0.5714 0.5833 0.4348 0.6842 0.6190 0.8000 0.7619 0.4762 0.9649
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(a) BLA with VCG

(b) BLA without VCG

(c) LR−I(λ = 0.15) with VCG
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(d) LR−I(λ = 0.15) without VCG

Figure 5.5: Comparison of fairness between appliances by BLA and LR−I (Case 2, T = 100),
Insufficient capacity

Case 3

In this case, the appliances have higher probability of finishing their loads
earlier if the coins with the user are abundant. Due to accumulation of
loads and the capacity still set to 60% of total demand request, the number
of scheduled loads and rejected loads is expected to grow as time (tn) pro-
gresses. The value of Pi in equation 3.10 should increase as loads (in load
matrix given in Appendix 7.1) participate in their own timeslots along with
previously rejected loads.

The simulation results are presented in Table 5.6, where results for LR−I
method consists of λ=0.15 only. The values of ρ are expected to increase
in case 3 (higher Pi) compared to case 1 and case 2 due to higher number
of load demands existing within same number of T values. In compliance,
the simulation results in Table 5.6 show that the ρ values for this case are
comparatively higher to case 1 and case 2. The reason is that most of the
loads get selected until tn = T is reached. Comparison of values of (Pi)
for T = 100 between the three cases suggests the explanation. The values
for Pi in case 1 and case 2 were in the range of 50 timeslots (Table 5.4 and
5.5) whereas the values have increased to minimum of 78 timeslots in case
3 (Table 5.6). Values of Pi for some appliances are higher for scheduling
without VCG but the proximity of Pi among appliances is higher while
scheduling with VCG. Similarly, the trend of increasing F with increase in
T values also continues in case 3.

The figures from simulation results, given in Fig. 5.6 for the BLA
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method and in Fig. 5.7 for the LR−I method, are a bit unusual as com-
pared to previous two cases. The sum of number of timeslots for selection,
rejection due to coin, rejection from scheduling and passive slots surpasses
T instead of being equal to T . This is because the figures are from loads’
perspective, where if multiple loads occur, one can get selected and oth-
ers get rejected in the same timeslot. The values for both rejected and
lack of coins can increase within a single timeslot for multiple loads from
same appliance. E.g., in case 1 and 2, an appliance’s loads in three times-
lots can be rejected three times only but in case 3 the number of rejections
can be six within the same period (one load in first, two loads in second
and three loads in third if all loads get rejected continuously). The timeslot
values of Pi for scheduling with VCG is almost equal to scheduling without
VCG. Consequently, this has led to almost equal values of F for scheduling
with and without VCG, although presence of VCG in scheduling has a slight
edge over scheduling without VCG.

While performing the simulations, the effect of initial balance of coins
Coi(tn) was noticeable in this scenario. The previous two cases of simula-
tions consider fewer coins (Coi(tn) at tn = 1) while the same number of
coins in this case gave results where loads were rejected more often due to
lack of coins. The difference in results due to difference in initial balance
of coins with each appliance is shown in Fig. 5.7 which considers LR−I
method. Among the first six figures that implement VCG, the first three
figures (5.7a, 5.7b and 5.7c) consider fewer coins while the next three figures
(Fig. 5.7d, 5.7e and 5.7f) consider comparatively more coins at T = 1 (500
coins). Fig. 5.7a and Fig. 5.7c are with 350 coins, while Fig. 5.7b is with
150 coins. It is much evident from Fig. 5.7b that scheduling with less coins
leads to more rejection due to lack of coins, as rejection due to coins has
subsequently decreased in Fig. 5.7a and Fig. 5.7c which consider higher
number of coins and even higher decline in rejection is seen in figures 5.7d,
5.7e and 5.7f which consider highest number of coins. Again, the evidence
that loads in case 3 get scheduled sooner than case 1 and case 2 is provided
by Fig. 5.8 as well, which clearly reveals higher Pi for scheduled loads in
case 3 (almost 20 timeslots) than cases 1 and 2 (almost 13 timeslots) within
same timeslots (T = 25) by BLA method. The bar plot for selected users
(Pi) in case 1 and case 2 given in Figures 5.8a and 5.8b have heights below
15 and 14 timeslots respectively, while appliances in case 3 in Figure 5.8c
were selected for almost 20 timeslots in average.

Again, LR−I still holds a slight edge over BLA method. Similarly, the
effect of larger T value is also the same as in former two cases.
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Table 5.6: Comparison of Fairness of appliances (Case 3, Insufficient capacity)

Method T VCG
ρi F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BLA

100
Yes

0.9239 0.9186 0.8851 0.8523 0.9263 0.9091 0.9011 0.8778 0.8817 0.8542 0.9231 0.8901 0.9091 0.8387 0.8804
0.9991

85 79 77 75 88 80 82 79 82 82 84 81 80 78 81

No
0.8763 0.9176 0.8556 0.8824 0.9462 0.9091 0.8646 0.8764 0.8557 0.9222 0.9333 0.9302 0.9310 0.9286 0.9000

0.9989
85 78 77 75 88 80 83 78 83 83 84 80 81 78 81

50
Yes 0.8958 0.9048 0.8372 0.9070 0.9149 0.9091 0.9130 0.8478 0.8696 0.8723 0.8936 0.8667 0.9070 0.8511 0.8837 0.9992
No 0.9333 0.8837 0.7500 0.8667 0.9556 0.9535 0.9348 0.9111 0.8511 0.9111 0.9149 0.9048 0.9070 0.8636 0.8837 0.9970

25
Yes 0.5128 0.6452 0.6129 0.6563 0.6563 0.5789 0.6471 0.5714 0.6250 0.6786 0.5000 0.5588 0.6129 0.5882 0.5517 0.9925
No 0.5833 0.5405 0.5455 0.5676 0.6897 0.4118 0.6286 0.6000 0.6774 0.5135 0.7083 0.6897 0.7917 0.5556 0.6667 0.9779

LR−I λ = 0.15

100
Yes

0.8660 0.8778 0.8261 0.8605 0.8969 0.8511 0.8542 0.8495 0.8469 0.8723 0.8737 0.8681 0.8617 0.8370 0.8723
0.9996

84 79 76 74 87 80 82 79 83 82 83 79 81 77 82

No
0.8660 0.8478 0.8462 0.8810 0.8866 0.8791 0.8723 0.9080 0.8913 0.8333 0.8557 0.8901 0.8817 0.8556 0.8632

0.9995
84 78 77 74 86 80 82 79 82 80 83 81 82 77 82

50
Yes 0.9149 0.8837 0.7609 0.8667 0.8980 0.8333 0.8750 0.8542 0.8333 0.8163 0.8333 0.7660 0.8864 0.8667 0.8667 0.9975
No 0.8936 0.8810 0.7826 0.9512 0.9149 0.8889 0.9149 0.8125 0.8696 0.9333 0.8936 0.8864 0.8444 0.8511 0.8409 0.9975

25
Yes 0.5938 0.5714 0.6667 0.5526 0.5000 0.6471 0.5641 0.6563 0.6471 0.4750 0.6667 0.6333 0.5938 0.6061 0.5769 0.9911
No 0.4545 0.7143 0.4595 0.6176 0.4444 0.5238 0.6176 0.5714 0.5500 0.7143 0.7308 0.6061 0.6552 0.5135 0.6071 0.9762
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(a) BLA with VCG, T=25

(b) BLA with VCG, T=50

(c) BLA with VCG, T=100
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(d) BLA without VCG, T=25

(e) BLA without VCG, T=50

(f) BLA without VCG, T=100

Figure 5.6: Comparison of fairness by BLA - with and without VCG (Case 3)
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(a) LR−I with VCG (fewer coins), T=25

(b) LR−I with VCG (fewer coins), T=50

(c) LR−I with VCG (fewer coins), T=100
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(d) LR−I with VCG (more coins), T=25

(e) LR−I with VCG (more coins), T=50

(f) LR−I with VCG (more coins), T=100
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(g) LR−I without VCG, T=25

(h) LR−I without VCG, T=50

(i) LR−I without VCG, T=100

Figure 5.7: Comparison of fairness by LR−I - with and without VCG (Case 3)
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(a) BLA with VCG, Case 1

(b) BLA with VCG, Case 2

(c) BLA with VCG, Case 3

Figure 5.8: Comparison of frequency of selection, (by BLA, T = 25)
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5.3.2 Sufficient Capacity

In this scenario, simulations were conducted to emulate the situation wherein
the capacity Ctn varies randomly in each timeslot but the condition

∑
t

∑
i Li,t ≤

C holds true at the end when tn = T . Again, the variable capacities set
for each timeslot is given in Appendix 7.2. The simulation results consist of
25 timeslots (T = 25) only, with same number of users (N = 15) continued
as in previous subsections. The simulation results for this scenario are pre-
sented in Tables 5.7, 5.8 and 5.9 considering case 1, case 2 and case 3 as in
previous sub-section. But λ = 0.15 only is taken into consideration for the
LR−I method. Fig. 5.9 and Fig 7.1 show the simulation results for BLA
and LR−I methods respectively.

From the simulation results in Tables 5.7, 5.8 and 5.9, it can be clearly
observed that the results obtained from condition

∑
t

∑
i Li,t ≤ C are better

than the condition of insufficient capacity. The application of VCG has
increased the fairness between appliances, which can be noticed from the
results in tables and figures as well. Even though the capacity is higher
in almost every timeslot compared to insufficient capacity scenario, there is
not much change in results for case 1 and case 2. In these cases, the total
demand in contention for power is still the same as in previous section of
insufficient capacity. The capacity has increased means more loads need to
be available for scheduling. Otherwise the capacity goes wasted. More loads
contend for power in every timeslot in case 3, so the individual ρi and Pi
values have increased in case 3. There has been slender increase in values of
ρi and Pi in case 1 and 2 as well. The increase in individual ρ values than
in insufficient capacity scenario is good from users’ perspective and high
F is still obtained, which is good from SG operator’s perspective. Within
the scenario of sufficient capacity, all three cases produce results where the
individual Pi values are closer to each other when VCG is applied. The
values are quite large for some users while some others have quite smaller
values when VCG is not considered in scheduling, for both LR−I and BLA.
The difference in results from the two scheduling methods is still not much
and both are equally successful in all three cases of sufficient capacity. Again,
it can be noticed from the figures for case 3 that the height of bars for
rejected timeslots is much higher although the height for selected timeslots
has not decreased. The explanation is again due to rejection of multiple
loads within single timeslot.
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Table 5.7: Comparison of Fairness of appliances (Case 1 with
∑
t

∑
i Li,t ≤ C)

Method T VCG
‘ρi’ and ‘Pi’ F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BLA 25
Yes

0.7619 0.7143 0.7000 0.7600 0.7619 0.7727 0.7727 0.8095 0.7500 0.7000 0.7500 0.7619 0.8095 0.7727 0.7222 0.9981
16 15 14 19 16 17 17 17 18 14 15 16 17 17 13

No
0.8571 0.9524 0.8000 0.9130 0.8571 0.7727 1.0000 0.8571 1.0000 0.7500 0.9474 1.0000 0.8095 0.8182 1.0000 0.9906

18 20 16 21 18 17 22 18 22 15 18 20 17 18 17

LR−I (λ = 0.15) 25
Yes

0.8571 0.7143 0.7500 0.8261 0.7619 0.7727 0.8182 0.8095 0.7500 0.8500 0.7000 0.7619 0.7619 0.7273 0.7778 0.9965
18 15 15 19 16 17 18 17 18 17 14 16 16 16 14

No
0.9048 0.9048 0.8947 0.8261 0.8571 0.8182 0.9091 0.9048 0.9091 0.9500 0.7500 0.8500 0.8571 0.8571 1.0000 0.9958

19 19 17 19 18 18 20 19 20 19 15 17 18 18 17

Table 5.8: Comparison of Fairness of appliances (Case 2 with
∑
t

∑
i Li,t ≤ C)

Method T VCG
‘ρi’ and ‘Pi’ F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BLA 25
Yes

0.7273 0.7143 0.7368 0.7391 0.8095 0.6667 0.7826 0.6957 0.7727 0.7143 0.7619 0.8182 0.7895 0.7500 0.7647 0.9970
16 15 14 17 17 16 18 16 17 15 16 18 15 15 13

No
0.9048 0.9048 0.8947 0.9524 0.7619 0.8636 0.9545 0.9091 0.9130 1.0000 0.9474 0.9000 1.0000 0.7500 0.7778 0.9929

19 19 17 20 16 19 21 20 21 20 18 18 19 15 14

LR−I (λ = 0.15) 25
Yes

0.7619 0.7619 0.7000 0.7273 0.8571 0.7727 0.8636 0.7619 0.7826 0.7000 0.7143 0.7273 0.7619 0.7143 0.7778 0.9960
16 16 14 16 18 17 19 16 18 14 15 16 16 15 14

No
0.9524 0.9524 0.8500 0.8636 0.9048 0.8261 0.8696 0.8636 0.9545 0.8571 0.9474 1.0000 0.7895 0.9000 0.7222 0.9937

20 20 17 19 19 19 20 19 21 18 18 20 15 18 13

Table 5.9: Comparison of Fairness of appliances (Case 3 with
∑
t

∑
i Li,t ≤ C)

Method T VCG
‘ρi’ and ‘Pi’ F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BLA 25
Yes

0.6786 0.5882 0.6786 0.7000 0.7037 0.7692 0.7500 0.7143 0.6452 0.7407 0.6207 0.5667 0.5294 0.7407 0.6800 0.9898
19 20 19 21 19 20 21 20 20 20 18 17 18 20 17

No 0.4048 0.8400 0.7600 0.6250 0.6364 0.5714 0.6250 0.7500 0.8148 0.7500 0.7200 0.8261 0.6207 0.6333 0.7619 0.9741
17 21 19 20 21 20 20 21 22 18 18 19 18 19 16

LR−I (λ = 0.15) 25
Yes

0.8400 0.7037 0.6923 0.7500 0.7143 0.7778 0.5405 0.7241 0.7241 0.6207 0.5667 0.7600 0.6333 0.5000 0.7500 0.9824
21 19 18 21 20 21 20 21 21 18 17 19 19 19 15

No
0.7000 0.8000 0.5152 0.6250 0.7692 0.6774 0.7143 0.5938 0.8400 0.5758 0.4615 0.6552 0.5429 0.6452 0.5357 0.9738

21 20 17 20 20 21 20 19 21 19 18 19 19 20 15
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(a) BLA with VCG, Case 1

(b) BLA without VCG, Case 1

(c) BLA with VCG, Case 2
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(d) BLA without VCG, Case 2

(e) BLA with VCG, Case 3

(f) BLA without VCG, Case 3

Figure 5.9: Comparison of Fairness by BLA ( T = 25, Sufficient Capacity)
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Chapter 6

Discussions

In this thesis, appliances have been categorized based on whether they can
undergo scheduling or not. This protects the important works of customers,
while the necessity of DM is fulfilled through scheduling of appliances who
have tolerance for delay. The load categorization can be done by considering
any other aspect of categorization but the algorithms will still be useful.
The efficiency of the implemented algorithms is seen in the results. Both
BLA and LR−I have been equally successful in terms of both accuracy and
fairness. And the introduction of VCG to be incorporated with LA based
scheduling has helped to significantly increase the fairness of SG system.
Other algorithms can be also tested for scheduling and be compared with
BLA and LR−I ’s results obtained in this thesis.

While the two LA methods succeed in terms of accuracy of optimization,
the main issue is the trade-off between fairness and accuracy after imple-
mentation of VCG. This can be addressed by allowing a variable rate of
coins Rtn for each timeslot and/or proper allocation of initial stock of coins
Coi(tn) at tn = 1 for each user. These constraints play a tricky role in
fairness and proper handling of their values can help reduce and hopefully
eliminate the trade-off. Also, in those timeslots where capacity is larger
than the total of demands or each demand is greater than the capacity, the
scheduling should be avoided to save time of computation, as done in this
thesis work.

The existence of many rejected users, shown by very high demand com-
pared to capacity at the end of T timeslots (tn = 25) in scenarios of sufficient
capacity (evident in figures for measurement of accuracy in case 3), means
that having sufficient capacity does not necessarily lead to selection of all
users. The granularity of loads can be improved, so the results are expected
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to be much better than shown in this thesis. Moreover, case 3 which deals
with multiple loads from the same appliance within the same time frame
can be visualized as scenario of multiple appliances from the same customer
(where appliances have single load only). So the simulation results for case
3 can be used to compare fairness between customers of SG as well.

The effect in fairness due to difference in the number of demands between
different appliances is not studied in this thesis. Some appliances which send
request once in a while compared with those which send request frequently
can have different impact on maintaining fairness level. Simulations can
be done by creating such scenario to observe the results and suggestions
can be made if fairness between those appliances turns out to be an issue.
In addition, when there is excess capacity available, customers should be
encouraged to send loads at those timeslots to make full utilization of the
capacity. This requires the Rtn value to be dropped. As Rtn is fixed in the
simulations in this thesis, the alternative was to allocate more coins to users
at tn=1 when more loads from each appliance are expected, as previously
discussed. But the stock of coins must not be so high that the effect of VCG
is neutralized. High stock of coins with users means all users have enough
coins to enter into scheduling in every timeslot.

In this thesis work, all loads from an appliance are rejected together
due to proportional distribution of coins among the loads. Scheduling can
be done by sending only those loads as the stock of coins permit to avoid
complete rejection of any appliance. E.g., when Rtn = 1 and two loads of
20 units each from an appliance with 30 coins exist, one of these two loads
can be sent into scheduling process instead of rejecting both loads.
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Chapter 7

Conclusions

The main conclusion of this thesis work is that the optimization by both
BLA and LR−I methods can be performed with high accuracy and the
introduction of VCG for improvement of fairness succeeds in its purpose
without much adverse effect in accuracy. VCG can be overlooked when
T is too large, since both kinds of scheduling, LA with and without VCG
produce similar F. The difference in results in terms of accuracy of opti-
mization under different implementation scenarios (cases 1, 2 and 3) and
VCG (with or without) is very marginal, indicating BLA and LR−I ’s worth
in optimization of electricity usage. To avoid the accumulation of demands,
proper selection of intial stock of coins with each user and/or application of
variable rate of coins Rtn in scheduling with VCG should be carried out.
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Appendix

7.1 The Load demand matrix

The loads for each user against each timeslot is given by the following matrix
where 15 columns represent the 15 users and the 100 rows are for the 100
timeslots. For T=25 and T=50, first 25 and 50 rows of the matrix were
selected.

7.2 The Variable capacity vector

Capacity Vector=[810, 896, 790, 1063, 1237, 1124, 986, 713, 1144, 1216,
1306, 749, 666, 845, 1089, 845, 1150, 660, 667, 707, 690, 844, 858, 1072,
794].

7.3 Additional Figures for Comparison of Fairness
and Accuracy

The figures for comparison of fairness between different cases while schedul-
ing by LR−I with sufficient capacity are given in Fig. 7.1. Figures for
scheduling by BLA are already presented in subsection 5.3.2, so comparison
can also be made between scheduling by these two methods.

The figures while measuring the accuracy by BLA and LR−I for T = 25
for case 2 and case 3 with insufficient capacity are given in Fig. 7.2 and 7.3
respectively. The figures for case 1 are already presented in subsection 5.2.1.

In continuation to subsection 5.2.2, the figures for measurement of ac-
curacy while scheduling by BLA and LR−I methods for case 2 and case 3
with sufficient capacities are given in Fig. 7.4 and Fig. 7.5 respectively.
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Table 7.1: The demands for each appliances at different timeslots

Appliances (i)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

85 0 83 77 77 70 72 89 97 78 88 70 0 0 91
71 0 66 58 71 59 90 65 88 0 76 79 94 0 55
74 68 53 85 0 55 53 95 0 69 72 61 81 58 0
84 73 0 69 63 89 88 69 62 99 71 94 54 95 0
52 96 86 52 58 81 81 0 51 90 62 81 0 76 0
75 70 0 99 74 53 0 96 61 56 71 67 78 0 59
77 93 89 68 82 60 50 99 91 0 67 0 91 69 0
0 82 87 59 70 50 52 83 69 68 70 64 0 74 0
67 65 74 77 53 62 87 55 53 54 0 0 94 66 62
74 66 0 89 90 0 99 82 85 0 87 96 87 63 70
0 56 62 88 0 61 89 67 55 54 0 93 99 63 89
0 0 60 85 62 96 92 59 89 65 68 65 0 56 87
92 52 86 68 0 91 55 51 87 95 0 95 65 90 0
0 94 50 97 55 0 0 63 91 57 85 78 93 65 54
99 90 0 81 87 64 82 89 56 75 71 0 61 80 83
75 63 97 52 65 74 0 0 64 0 77 79 100 97 92
69 99 73 54 0 69 92 58 88 71 0 0 55 76 78
61 96 0 68 90 89 58 66 98 0 0 62 56 54 91
98 0 52 80 66 91 95 0 59 61 61 89 55 86 0
74 94 73 0 65 0 91 60 0 61 87 64 68 88 95
75 97 78 0 54 58 68 0 68 84 84 0 89 98 82
62 53 73 68 72 86 91 63 58 66 0 73 100 0 0
76 66 0 54 78 100 99 78 0 78 55 95 100 63 66
71 64 92 0 52 78 65 51 60 60 84 52 0 93 85
89 57 50 0 77 99 83 76 62 55 73 59 0 0 50
63 92 0 0 78 0 75 86 68 95 79 77 51 50 54
97 97 72 53 95 0 71 0 95 0 76 96 84 95 66
80 71 63 57 76 96 77 87 0 87 96 65 0 96 55
99 54 88 93 0 71 98 62 66 77 86 0 62 0 98
67 80 72 53 89 0 70 54 0 90 85 0 90 59 87
0 0 69 50 60 95 56 0 73 62 82 77 57 67 64
56 0 100 70 95 52 74 84 93 76 52 0 94 57 0
0 78 51 72 82 74 96 0 0 91 87 96 91 87 97
78 57 0 91 74 0 61 99 53 72 53 0 78 85 84
66 77 0 55 0 57 63 0 93 64 63 68 87 72 82
77 99 72 0 90 72 87 82 82 0 72 86 61 96 72
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Table: The demands for each appliances at different timeslots (continued)

73 97 95 63 85 82 0 71 67 51 0 0 92 75 76
63 0 99 0 74 61 99 84 80 70 73 86 75 0 57
89 91 0 57 92 92 85 63 0 91 74 60 0 79 69
50 0 59 64 53 60 0 86 56 77 94 60 77 67 0
0 0 54 89 54 84 90 91 82 85 78 90 66 63 0
50 60 76 99 92 55 100 91 51 58 88 0 0 0 99
59 0 64 0 81 0 87 77 80 82 79 84 67 84 66
58 78 61 61 81 82 0 73 81 65 80 83 0 0 83
66 71 0 0 98 83 57 85 89 79 78 93 69 77 52
53 63 0 74 97 55 79 66 0 80 50 57 64 0 61
100 52 0 53 81 92 86 60 0 71 92 100 0 74 73
53 55 76 56 93 0 75 0 64 0 59 52 51 100 72
88 0 84 0 77 65 0 70 67 56 57 99 77 78 93
79 0 0 0 51 80 71 50 53 76 54 58 93 68 66
0 95 54 56 85 79 0 100 53 63 81 83 58 0 92
93 61 75 73 84 60 90 0 63 69 88 89 95 62 0
75 80 90 90 65 0 57 76 93 89 79 65 92 0 58
88 0 90 80 81 0 58 54 52 99 68 0 70 61 78
99 0 82 0 91 57 0 98 98 69 81 76 100 72 84
90 0 83 56 50 61 50 78 94 85 58 77 62 94 0
0 88 87 0 71 56 83 59 0 98 61 91 57 91 64
0 68 73 84 91 0 59 87 67 87 81 60 0 78 75
0 93 0 96 59 70 50 77 72 0 98 98 86 97 65
84 78 100 58 68 51 0 98 100 0 0 55 95 91 92
96 88 52 85 0 82 55 80 0 87 84 0 54 62 75
90 71 0 95 69 83 70 68 57 93 0 98 91 52 98
56 79 54 77 64 0 96 84 53 0 93 0 92 83 88
92 0 85 97 56 62 79 71 62 76 74 0 70 0 50
66 81 93 68 83 82 0 0 99 100 82 57 67 64 77
58 62 84 100 0 79 78 0 98 81 75 61 83 55 58
65 96 95 64 68 100 54 89 66 0 82 0 0 76 55
89 71 74 50 83 0 81 0 90 94 78 61 0 66 60
50 56 58 81 92 0 62 58 65 50 82 73 69 0 0
94 97 97 56 88 95 64 80 0 0 67 53 90 91 83
61 69 65 0 0 55 77 0 88 73 58 73 55 78 97
100 56 0 0 72 52 81 85 97 93 63 83 0 88 63
60 66 0 0 63 50 64 77 92 59 50 53 91 63 64
64 97 90 97 0 90 0 62 70 85 51 94 90 0 100
62 52 0 62 77 87 0 80 53 91 55 57 95 0 76
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Table: The demands for each appliances at different timeslots (continued)

75 0 65 99 57 82 0 73 79 68 66 85 89 86 0
80 89 75 0 69 79 0 81 0 65 79 99 59 71 62
53 87 53 0 64 88 60 52 83 0 0 92 71 98 70
96 0 80 0 0 64 91 85 54 82 96 70 56 85 68
82 87 75 59 0 86 0 0 85 76 93 98 80 97 63
72 0 61 0 88 91 89 69 79 84 91 50 0 63 83
0 73 67 69 79 98 62 87 77 54 0 60 83 0 63
97 70 52 0 58 58 70 0 0 63 66 74 78 74 90
83 61 93 94 100 81 0 90 0 58 88 63 94 67 0
50 83 82 0 87 55 98 0 75 78 54 59 56 78 60
88 75 85 81 74 0 79 84 74 0 0 62 57 79 89
0 81 90 92 87 0 54 69 95 98 76 53 69 80 0
52 70 61 95 64 79 70 58 68 73 50 0 80 0 93
53 0 52 0 59 0 66 87 53 60 72 68 94 97 100
67 81 0 54 63 64 61 60 57 77 0 97 50 71 51
58 0 50 94 73 84 85 0 86 0 58 78 64 56 79
96 88 80 62 79 58 87 80 99 81 0 0 68 0 84
86 61 65 77 88 0 66 77 100 50 0 80 95 0 83
0 53 0 85 90 73 90 84 66 69 64 0 67 77 85
50 67 100 66 85 82 62 0 76 83 72 58 78 0 57
78 58 60 72 92 65 52 92 79 0 99 58 0 62 71
53 81 0 62 74 54 80 89 0 90 74 89 0 95 63
0 63 79 0 81 100 57 90 80 94 56 85 65 0 57
82 83 0 55 86 51 61 0 58 66 57 91 70 56 0
64 91 72 65 86 89 77 0 57 65 0 88 54 62 73
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(a) LR−I with VCG, case 1

(b) LR−I without VCG, case 1

(c) LR−I with VCG, case 2
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(d) LR−I without VCG, case 2

(e) LR−I with VCG, case 3

(f) LR−I without VCG, case 3

Figure 7.1: Comparison of Fairness by LR−I (T = 25, Sufficient Capacity)
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(a) BLA with VCG, case 2

(b) BLA without VCG, case 2

(c) LR−I(λ = 0.15) with VCG, case 2
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(d) LR−I(λ = 0.15) without VCG, case 2

Figure 7.2: Comparison of Accuracy by BLA and LR−I with Insufficient Capacity (Case 2,
T = 25)

(a) BLA with VCG, case 3

(b) BLA without VCG, case 3
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(c) LR−I(λ = 0.15) with VCG, case 3

(d) LR−I(λ = 0.15) without VCG, case 3

Figure 7.3: Comparison of Accuracy by BLA and LR−I with Insufficient Capacity (Case 3,
T = 25)

(a) BLA with VCG (case 2)
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(b) BLA without VCG (case 2)

(c) LR−I(λ = 0.15) with VCG (case 2)

(d) LR−I(λ = 0.15) without VCG (case 2)

Figure 7.4: Comparison of Accuracy by BLA and LR−I with Sufficient Capacity (Case 2, T = 25)
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(a) BLA with VCG (case 3)

(b) BLA without VCG (case 3)

(c) LR−I(λ = 0.15) with VCG (case 3)

96



(d) LR−I(λ = 0.15) without VCG (case 3)

Figure 7.5: Comparison of Accuracy by BLA and LR−I with Sufficient Capacity (Case 3, T = 25)

7.4 Matlab Code for case 1 and case 2 by BLA
method

This section contains the Matlab codes for scheduling by BLA with VCG,
for two cases 1 and 2 with sufficient and insufficient capacity scenarios to-
gether. Only one of them for each scenario is to be chosen as per requirement
of simulation. In the following codes, case 1 with sufficient capacity scenario
is chosen. For implementation without VCG, the VCG part can simply be
removed. The LR−I method is skipped in this section but the codes for
implementation of LR−I can be seen in next section and case 1 and case 2
by LR−I be simulated easily.

1 c l c ;
2 c l o s e a l l ;
3 c l o s e a l l hidden
4 t s =25; % number o f TimeSlots− max t i m e s l o t s =100
5 use r s =15;
6 X0=ze ro s (1 , u s e r s ) ;
7 X1=ze ro s (1 , u s e r s ) ;
8 r e su l tMat r i x=ze ro s ( ts , 4 ) ; % holds t o t a l demand ,

capac i ty and scheduled demand
9 co in s =250∗ones (1 , u s e r s ) ;

10 convergence=ze ro s (1 , t s ) ;
11 LeaDemandX=GenLod( ts , u s e r s ) ;
12 LeaDemand111=ze ro s ( ts , u s e r s ) ; % f o r d e c i s i o n s
13 gop=ze ro s (1 , t s ) ; %f o r s t o r i n g g l o b a l optimal po int
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14

15 f o r z =(1: t s ) % loop to cont inue f o r t s t i m e s l o t s
16

17 loop =150000; %t o t a l i t e r a t i o n s
18 count =0;
19 LeaDemand= LeaDemandX( z , : ) ;
20 totalDemand=sum(LeaDemand) ;
21 %SUFFICIENT CAPACITY
22 %{
23 capac i tyMatr ix

=[810 ,896 ,790 ,1063 ,1237 ,1124 ,986 ,713 ,1144 ,1216 ,1306 ,749 ,666 ,845 ,1089 ,845 ,1150 ,660 ,667 ,707 ,690 ,844 ,858 ,1072 ,794 ] ;

24 capac i ty=capac i tyMatr ix ( z ) ;
25 %}
26 %INSUFFICIENT CAPACITY
27 capac i ty=f i x ( totalDemand ∗0 . 6 ) ; % 60% of t o t a l demand

as capac i ty , f i x=i n t e g e r va lue
28 r a t e =1;
29

30 %GlobalOptimalPoint ( gop )
31 oldgop=gop (1 , z ) ;
32 f o r i =(1: u s e r s ) %assuming at l e a s t u s e r s are needed

to reach gop
33 combos=nchoosek (LeaDemand , i ) ; %g i v e s subse t s o f

LeaDemand s e t with i e lements each
34 sumcombos=sum( combos , 2 ) ;
35 f o r j =(1: s i z e ( sumcombos ) ) ;
36 i f ( sumcombos ( j , 1 )<=capac i ty )&&(sumcombos ( j , 1 )<=

totalDemand )&&(sumcombos ( j , 1 )>oldgop )
37 oldgop=sumcombos ( j , 1 ) ;
38 end
39 end
40 gop (1 , z )=oldgop ;
41 i f ( ( gop (1 , z )==capac i ty ) | | ( gop (1 , z )==totalDemand ) )
42 break % f o r loop broken
43 end
44 end
45

46 pas s i v e=sum(LeaDemand==0) ;
47 %checking i f c o i n s are enough
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48 f o r x=(1: u s e r s )
49 i f LeaDemand (1 , x )˜=0
50 i f ( c o i n s (1 , x )<r a t e ∗LeaDemand (1 , x ) )
51 LeaDemand (1 , x ) =1; %%demand i s changed to 1 f o r

a l l l oads with i n s u f f i c i e n t co in s
52 end
53 end
54 end
55

56 o ldDec i s i on = ze ro s (1 , u s e r s ) ;
57 d e c i s i o n = ones (1 , u s e r s ) ;
58 oldLeaDemandReqd=0;
59

60 maxLeaDemand=0;
61

62 i t e r a t i o n =1;
63 a0=ones (1 , u s e r s ) ; b0=ones (1 , u s e r s ) ; a1=ones (1 , u s e r s )

; b1=ones (1 , u s e r s ) ;
64 whi le ( i t e r a t i o n<=loop )
65 i f ( capac i ty>totalDemand )
66 oldLeaDemandReqd=totalDemand ;
67 break
68 end
69 f o r i =(1: u s e r s ) ;
70 i f (LeaDemand (1 , i )==0 | | LeaDemand (1 , i )==1)
71 d e c i s i o n (1 , i ) =0;
72 e l s e
73 X0(1 , i )=betarnd ( a0 (1 , i ) , b0 (1 , i ) ) ; %obta in ing

value from BETA d i s t r i b u t i o n
74 X1(1 , i )=betarnd ( a1 (1 , i ) , b1 (1 , i ) ) ;
75 i f (X0(1 , i )>X1(1 , i ) )
76 d e c i s i o n (1 , i ) =0;
77 e l s e
78 d e c i s i o n (1 , i ) =1;
79 end
80 end
81 end
82 newLeaDemandReqd=sum( d e c i s i o n .∗LeaDemand) ;
83 f o r i =(1: u s e r s )
84 i f (LeaDemand (1 , i ) ==0||LeaDemand (1 , i )==1)
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85 e l s e
86 i f (X0(1 , i )>X1(1 , i ) )
87 i f ( ( newLeaDemandReqd<=capac i ty )&&(

newLeaDemandReqd>=oldLeaDemandReqd ) )
88 a0 (1 , i )=a0 (1 , i ) +1;
89 e l s e
90 b0 (1 , i )=b0 (1 , i ) +1;
91 end
92 end
93 i f (X0(1 , i )<=X1(1 , i ) )
94 i f ( ( newLeaDemandReqd<=capac i ty )&&(

newLeaDemandReqd>=oldLeaDemandReqd ) )
95 a1 (1 , i )=a1 (1 , i ) +1;
96 e l s e
97 b1 (1 , i )=b1 (1 , i ) +1;
98 end
99 end

100 end
101 end
102

103 %check i f d e c i s i o n i s be ing repeated
104 i f ( d e c i s i o n==o ldDec i s i on )
105 count=count +1;
106 e l s e
107 count =0;
108 end
109 o ldDec i s i on=d e c i s i o n ; % present d e c i s i o n i s o ld

d e c i s i o n f o r next i t e r a t i o n
110 i f ( count>50) % convergence i f same d e c i s i o n occurs

50 t imes
111 f p r i n t f ( ’ %d communication to be stopped due to

repeated answer from use r s \n ’ , z )
112 break
113 end
114 i f ( ( oldLeaDemandReqd<newLeaDemandReqd)&&(

newLeaDemandReqd<=capac i ty ) )
115 oldLeaDemandReqd=newLeaDemandReqd ;
116 end
117 i t e r a t i o n=i t e r a t i o n +1;
118
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119 end %end o f whi l e loop
120

121 r e su l tMat r i x ( z , 1 )=totalDemand ;
122 r e su l tMat r i x ( z , 2 )=capac i ty ; %s t o r e capac i ty
123 r e su l tMat r i x ( z , 3 )=oldLeaDemandReqd ; %s t o r e t o t a l

scheduled LoaDemand
124 r e su l tMat r i x ( z , 4 )=oldgop ;
125

126 convergence ( z )=(oldLeaDemandReqd/gop (1 , z ) ) ∗100 ;
127

128 i f ( capac i ty<totalDemand )
129 % adding and reduc ing the co in s
130 coinsD =0; s e l e c t e d =0;
131 f o r y=(1: u s e r s )
132 i f ( d e c i s i o n (1 , y )==1 && (LeaDemand (1 , y )˜=0 | |

LeaDemand (1 , y ) ˜=1) ) % d e c i s i o n 1 & non−zero
demands

133 co in s (1 , y )=co in s (1 , y )−r a t e ∗LeaDemand (1 , y ) ; % co in s
l e f t with us e r s

134 coinsD=coinsD+rat e ∗LeaDemand (1 , y ) ; % co in s from
s e l e c t e d us e r s d i s t r i b u t e d to non s e l e c t e d

135 s e l e c t e d=s e l e c t e d +1;
136 end
137 end
138

139 co inDi s t=coinsD /( users−s e l e c t e d−pas s i v e ) ;
140 co inDi s t=f i x ( co inDi s t ) ;
141 f o r y=(1: u s e r s )
142 i f ( d e c i s i o n (1 , y )==0 && LeaDemand (1 , y ) ˜=0) %

d e c i s i o n 0 with non−zero demands
143 co in s (1 , y )=f i x ( co in s (1 , y )+co inDi s t ) ;
144 end
145 end
146 end
147

148 %SHIFTING NON ZERO DEMAND to next t i m e s l o t IF
d e c i s i o n i s ze ro

149 f o r y=(1: u s e r s )
150 i f LeaDemand (1 , y )==1 | | ( d e c i s i o n (1 , y )==0 &&

LeaDemand (1 , y )>1)
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151 %−−CASE 1−−
152 f o r y1=t s :−1: z+1 %%s h i f t i n g loads f o r each user

from l a s t t i m e s l o t u n t i l next t i m e s l o t
153 LeaDemandX( y1 , y )=LeaDemandX( y1−1,y ) ; %%% same demand

in next t i m e s l o t i f cur rent d e c i s i o n i s ze ro
154 end
155 %−−CASE 2−−
156 %{
157 i f ( z<=(ts −1) )
158 i f LeaDemandX( z+1,y )==0
159 LeaDemandX( z+1,y )=LeaDemandX( z , y ) ;
160 end
161 end
162 %}
163 end
164 end
165

166 f o r y=(1: u s e r s )
167 i f d e c i s i o n (1 , y )==1;
168 LeaDemand111 ( z , y ) =1;
169 e l s e i f (LeaDemand (1 , y )==0)
170 LeaDemand111 ( z , y ) =7;
171 e l s e i f (LeaDemand (1 , y )==1 )
172 LeaDemand111 ( z , y ) =3;
173 e l s e i f (LeaDemand (1 , y )>1 && d e c i s i o n (1 , y )==0)
174 LeaDemand111 ( z , y ) =0;
175 end
176 end
177

178 end
179

180 pass iveC=ze ro s (1 , u s e r s ) ;
181 i n s u f f i c i e n t c o i n=ze ro s (1 , u s e r s ) ;
182 r e j e c t e d=ze ro s (1 , u s e r s ) ;
183 scheduled=ze ro s (1 , u s e r s ) ;
184 rho=ze ro s (1 , u s e r s ) ;
185

186 f o r yy =(1: u s e r s )
187 pass iveC (1 , yy )=sum( LeaDemand111 ( : , yy )==7) ;
188 i n s u f f i c i e n t c o i n (1 , yy )=sum( LeaDemand111 ( : , yy )==3) ;
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189 r e j e c t e d (1 , yy )=sum( LeaDemand111 ( : , yy )==0) ;
190 scheduled (1 , yy )=sum( LeaDemand111 ( : , yy )==1) ;
191 rho (1 , yy )= scheduled (1 , yy ) /( ts−pass iveC (1 , yy ) ) ;
192 end
193

194 eps i lonN=sum( rho ) ;
195 eps i lonD=sum( rho .∗ rho ) ;
196 e p s i l o n =(eps i lonN ∗ eps i lonN ) /( u s e r s ∗ eps i lonD ) ;
197

198 format shor t % round o f f the numbers to 4 d i g i t s
199 rho
200 format shor t
201 e p s i l o n
202

203 f o r i =(1: u s e r s )
204 user ( i )=( i ) ;
205 end
206

207 f i g u r e (1 )
208 bargraph =[ pass iveC ( : ) , i n s u f f i c i e n t c o i n ( : ) , r e j e c t e d ( : ) ,

scheduled ( : ) ] ;
209 hb=bar ( user , bargraph , ’ grouped ’ ) ;
210 s e t (hb (1 ) , ’ FaceColor ’ , ’w ’ )
211 s e t (hb (2 ) , ’ FaceColor ’ , ’ r ’ )
212 s e t (hb (3 ) , ’ FaceColor ’ , ’ k ’ )
213 s e t (hb (4 ) , ’ FaceColor ’ , ’ b ’ )
214 x l a b e l ( ’USERS ’ ) ;
215 y l a b e l ( ’Number Of Times lots ’ )
216 l egend ’ pa s s i v e ’ ’ l a ck o f co in s ’ ’ r e j e c t e d ’ ’ scheduled

’ ;
217

218 maximumatrix=max( r e su l tMat r i x ) ;
219

220 f i g u r e (2 )
221 bg=bar ( r e su l tMat r i x ) ; %c r e a t i n g bar graphs f o r

d i f f e r n e t t i m e s l o t s
222 s e t ( bg (1 ) , ’ FaceColor ’ , ’w ’ )
223 s e t ( bg (2 ) , ’ FaceColor ’ , ’ r ’ )
224 s e t ( bg (3 ) , ’ FaceColor ’ , ’ k ’ )
225 s e t ( bg (4 ) , ’ FaceColor ’ , ’ b ’ )
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226 a x i s ( [ 0 t s+1 0 maximumatrix (1 ) ] ) ;
227 x l a b e l ( ’ Times lots ’ ) ;
228 y l a b e l ( ’ Load ’ )
229 l egend ’ Total demand ’ ’ Capacity ’ ’ Scheduled demand ’ ’

Global Optimal ’ ;
230 l egend ( ’ Locat ion ’ , ’ northwest ’ ) ;

7.5 Matlab Code for case 3 by LR−I method

The Matlab codes given here includes codes for both the insufficient and
sufficient capacity scenario of case 3 by LR−I method with VCG, so only one
of them is to be chosen in each simulation. In the given codes, the insuffi-
cient capacity with VCG scenario is under implementation. The VCG part
can be removed to simulate the scenario without VCG. The BLA method
can be implemented by replacing the part of codes for LR−I method by
implementing codes from previous section for BLA.

1 c l c ;
2 c l o s e a l l ;
3 c l o s e a l l hidden
4 lambda =0.15;
5 t s =25;
6 % number o f TimeSlots− max t i m e s l o t s =100 , 25 f o r

s u f f i c i e n t capac i ty
7 use r s =15;
8 r e su l tMat r i x=ze ro s ( ts , 3 ) ;
9 co in s =500∗ones (1 , u s e r s ) ;

10 LeaDemandX=2∗ones ( ts , users , 5 ) ;
11 LeaDemandX ( : , : , 1 )=GenLod( ts , u s e r s ) ; %c a l l i n g func t i on

GenLod that s t o r e s the loads
12 LeaDemand111=5∗ones ( ts , users , 5 ) ; %%% t h i s matrix ho lds

the d e c i s i o n s
13 gop=ze ro s (1 , t s ) ; %f o r s t o r i n g g l o b a l optimal po int
14

15 f o r z =(1: t s )
16 f p r i n t f ( ’ This i s t i m e s l o t %d \n ’ , z )
17 loop =150000; %t o t a l i t e r a t i o n s
18 count =0;
19 LeaDemand= LeaDemandX( z , : , : ) ;
20 totalDemand=0;
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21

22 f o r y=(1: u s e r s )
23 f o r y1 =(1:5)
24 i f LeaDemand (1 , y , y1 )>20
25 totalDemand=totalDemand+LeaDemand (1 , y , y1 ) ;
26 end
27 end
28 end
29 %SUFFICIENT CAPACITY
30 %{
31 capac i tyMatr ix

=[810 ,896 ,790 ,1063 ,1237 ,1124 ,986 ,713 ,1144 ,1216 ,1306 ,749 ,666 ,845 ,1089 ,845 ,1150 ,660 ,667 ,707 ,690 ,844 ,858 ,1072 ,794 ] ;

32 capac i ty=capac i tyMatr ix ( z ) ;
33 %}
34 %INSUFFICIENT CAPACITY
35 capac i ty=f i x ( totalDemand ∗0 . 6 ) ; % 60% of t o t a l demand

as capac i ty
36 %GlobalOptimalPoint ( gop )
37 LeaDemandxx=ze ro s (1 , 75 ) ; %assuming max 5 loads per

user per t s
38 mm=0;
39 f o r j =1:5
40 f o r i =1: u s e r s
41 i f LeaDemand (1 , i , j )>10
42 mm=mm+1;
43 LeaDemandxx(mm)=LeaDemand (1 , i , j ) ;
44 end
45 end
46 end
47

48 i f ( capac i ty<totalDemand )
49 oldgop=gop (1 , z ) ;
50 f o r i =(10:24) %assuming 10−24 loads are enough to

reach gop
51 combos=nchoosek (LeaDemandxx ( 1 , 1 : 2 4 ) , i ) ; %g i v e s

subse t s o f LeaDemand s e t with i e lements each
52 sumcombos=sum( combos , 2 ) ;
53 f o r j =(1: s i z e ( sumcombos ) ) ;
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54 i f ( ( sumcombos ( j , 1 )<=capac i ty )&&(sumcombos ( j , 1 )>
oldgop ) )

55 oldgop=sumcombos ( j , 1 ) ;
56 end
57 i f ( ( oldgop==capac i ty ) )
58 break % f o r loop broken
59 end
60 end
61 gop (1 , z )=oldgop ;
62

63 i f ( ( gop (1 , z )==capac i ty ) )
64 break % f o r loop broken
65 end
66 end
67 end
68 r a t e =1;
69 pas s i v e=sum(sum(LeaDemand == 0) ) ;
70 r e c e i v e r s =0;
71 %checking i f c o i n s are enough
72 appload=ze ro s (1 , u s e r s ) ;
73 f o r x=(1: u s e r s )
74 f o r y =(1:5)
75 i f LeaDemand (1 , x , y )==2
76 e l s e
77 appload (1 , x )=appload (1 , x )+LeaDemand (1 , x , y ) ;
78 end
79 end
80 end
81 f o r x=(1: u s e r s )
82 i f c o i n s (1 , x )<r a t e ∗appload (1 , x )
83 f o r x1 =(1:5)
84 i f (LeaDemand (1 , x , x1 )˜=0 && LeaDemand (1 , x , x1 )˜=2

)
85 LeaDemand (1 , x , x1 ) =1; %%demand i s changed to 1

f o r a l l l oads with i n s u f f i c i e n t co in s
86 end
87 end
88 end
89 end
90 o ldDec i s i on=ze ro s (1 , users , 5 ) ;
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91 d e c i s i o n=ones (1 , users , 5 ) ;
92 oldLeaDemandReqd=0;
93

94 i t e r a t i o n =1;
95 PMat=ones (2 , users , 5 ) ∗ 0 . 5 ; %i n i t i a l p r o b a b i l i t y o f

d e c i s i o n o f each user i s 0 . 5
96

97 whi le ( i t e r a t i o n<=loop )
98 %newLeaDemandReqd=0;
99 i f ( capac i ty>=totalDemand )

100 oldLeaDemandReqd=totalDemand ;
101 gop (1 , z )=totalDemand ;
102 f o r x=(1: u s e r s )
103 f o r y =(1:5)
104 i f LeaDemand (1 , x , y )>10
105 d e c i s i o n (1 , x , y ) =1;
106 end
107 end
108 end
109 break
110 end
111

112

113 f o r i =(1: u s e r s )
114 f o r i 1 =(1:5)
115 i f (LeaDemand (1 , i , i 1 )==0 | | LeaDemand (1 , i , i 1 )==1

| | LeaDemand (1 , i , i 1 )==2 )
116 d e c i s i o n (1 , i , i 1 ) =0;
117 e l s e
118 Random=rand (1 , 1 ) ;
119 i f (PMat(1 , i , i 1 )>=Random)
120 d e c i s i o n (1 , i , i 1 ) =1;
121 e l s e
122 d e c i s i o n (1 , i , i 1 ) =0;
123 end
124 end
125 end
126 end
127 newLeaDemandReqd=sum(sum(sum( d e c i s i o n .∗LeaDemand) ) ) ;
128 f o r i =(1: u s e r s )
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129 f o r i 1 =(1:5)
130 i f (LeaDemand (1 , i , i 1 )==0 | | LeaDemand (1 , i , i 1 )==1

| | LeaDemand (1 , i , i 1 )==2)
131 e l s e
132 i f (newLeaDemandReqd<=capac i ty && newLeaDemandReqd

>=oldLeaDemandReqd ) %%REWARD
133 i f ( d e c i s i o n (1 , i , i 1 )==1)
134 PMat(2 , i , i 1 ) = (1−lambda ) ∗PMat(2 , i , i 1 ) ;
135 PMat(1 , i , i 1 ) = 1−PMat(2 , i , i 1 ) ;
136 e l s e i f ( d e c i s i o n (1 , i , i 1 )==0)
137 PMat(1 , i , i 1 ) = (1−lambda ) ∗PMat(1 , i , i 1 ) ; %

change in NO
138 PMat(2 , i , i 1 ) = 1−PMat(1 , i , i 1 ) ;
139 end
140 end
141 end
142 end
143 end
144

145 %check i f d e c i s i o n i s repeated
146 i f ( d e c i s i o n==o ldDec i s i on )
147 count=count +1;
148 e l s e
149 count =0;
150 end
151 o ldDec i s i on=d e c i s i o n ; % present d e c i s i o n i s o ld

d e c i s i o n f o r next i t e r a t i o n
152 i f ( count>50) % convergence i f same d e c i s i o n occurs

50 t imes
153 f p r i n t f ( ’ %d communication to be stopped due to

repeated answer from use r s \n ’ , z )
154 break
155 end
156 i f ( ( oldLeaDemandReqd<newLeaDemandReqd)&&(

newLeaDemandReqd<=capac i ty ) )
157 oldLeaDemandReqd=newLeaDemandReqd ;
158 end
159 i t e r a t i o n=i t e r a t i o n +1;
160 end
161
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162 r e su l tMat r i x ( z , 1 )=totalDemand ;
163 r e su l tMat r i x ( z , 2 )=capac i ty ; %s t o r e capac i ty
164 r e su l tMat r i x ( z , 3 )=oldLeaDemandReqd ; %s t o r e t o t a l

scheduled LoaDemand
165 r e su l tMat r i x ( z , 4 )=gop (1 , z ) ;
166

167 convergence ( z )=(oldLeaDemandReqd/gop (1 , z ) ) ∗100 ;
168

169 % adding and reduc ing co in s from use r s
170 i f ( capac i ty<totalDemand )
171 coinsD =0; s e l e c t e d =0;
172 f o r y=(1: u s e r s )
173 f o r y1 =(1:5)
174 i f ( d e c i s i o n (1 , y , y1 )==1 ) % d e c i s i o n 1 with non−zero

demands
175 co in s (1 , y )=co in s (1 , y )−r a t e ∗LeaDemand (1 , y , y1 ) ; %

co in s l e f t with u s e r s
176 coinsD=coinsD+rat e ∗LeaDemand (1 , y , y1 ) ; % co in s from

s e l e c t e d us e r s d i s t r i b u t e d to non s e l e c t e d
177 s e l e c t e d=s e l e c t e d +1;
178 end
179 i f ( d e c i s i o n (1 , y , y1 )==0 && LeaDemand (1 , y , y1 )˜=0 &&

LeaDemand (1 , y , y1 )˜=2 )
180 r e c e i v e r s=r e c e i v e r s +1;
181 end
182 end
183 end
184 co inDi s t=f i x ( coinsD / r e c e i v e r s ) ;
185

186 f o r y=(1: u s e r s )
187 f o r y1 =(1:5)
188 i f ( d e c i s i o n (1 , y , y1 )==0 && LeaDemand (1 , y , y1 )˜=0 &&

LeaDemand (1 , y , y1 )˜=2 )
189 co in s (1 , y )= co in s (1 , y )+co inDi s t ;
190 end
191 end
192 end
193 %s h i f t i n g o f non−zero DEMAND to NEXT ITERATION i f

r e j e c t e d
194 f o r y=(1: u s e r s )
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195 f o r y1 =(1:5)
196 i f LeaDemand (1 , y , y1 )==1 | | ( d e c i s i o n (1 , y , y1 )==0 &&

LeaDemand (1 , y , y1 )>5)
197 i f ( z<=(ts −1) )
198 f o r y2 =(1:5) %a s s i g n cur rent load to same

appl iance ’ s f i r s t non−0 non−2 load in next
t i m e s l o t

199 i f ( LeaDemandX( z+1,y , y2 )==0 | | LeaDemandX( z+1,y , y2 )
==2 )

200 LeaDemandX( z+1,y , y2 )=LeaDemandX( z , y , y1 ) ;
201 break
202 end
203 end
204 end
205 end
206 end
207 end
208 end
209

210 f o r y=(1: u s e r s )
211 f o r y1 =(1:5)
212 i f ( capac i ty<totalDemand )
213 i f d e c i s i o n (1 , y , y1 )==1;
214 LeaDemand111 ( z , y , y1 ) =1;
215 e l s e i f (LeaDemand (1 , y , y1 )==0)
216 LeaDemand111 ( z , y , y1 ) =7;
217 e l s e i f (LeaDemand (1 , y , y1 )==1 )
218 LeaDemand111 ( z , y , y1 ) =3;
219 e l s e i f (LeaDemand (1 , y , y1 )>5 && d e c i s i o n (1 , y , y1 )==0)
220 LeaDemand111 ( z , y , y1 ) =0;
221 end
222 e l s e
223 i f (LeaDemand (1 , y , y1 )==0)
224 LeaDemand111 ( z , y , y1 ) =7;
225 e l s e i f (LeaDemand (1 , y , y1 )>10)
226 LeaDemand111 ( z , y , y1 ) =1;
227 end
228 end
229 end
230 end
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231

232 end % end o f f o r loop
233

234 pass iveC=ze ro s (1 , u s e r s ) ;
235 i n s u f f i c i e n t c o i n=ze ro s (1 , u s e r s ) ;
236 r e j e c t e d=ze ro s (1 , u s e r s ) ;
237 scheduled=ze ro s (1 , u s e r s ) ;
238 rho=ze ro s (1 , u s e r s ) ;
239

240 f o r yy =(1: u s e r s )
241 f o r yy1 =(1: t s )
242 f o r yy2 =(1:5)
243 i f LeaDemand111 ( yy1 , yy , yy2 )==7
244 pass iveC (1 , yy )=pass iveC (1 , yy ) +1;
245 e l s e i f LeaDemand111 ( yy1 , yy , yy2 )==3
246 i n s u f f i c i e n t c o i n (1 , yy )=i n s u f f i c i e n t c o i n (1 , yy ) +1;
247 e l s e i f LeaDemand111 ( yy1 , yy , yy2 )==0
248 r e j e c t e d (1 , yy )=r e j e c t e d (1 , yy ) +1;
249 e l s e i f LeaDemand111 ( yy1 , yy , yy2 )==1
250 scheduled (1 , yy )=scheduled (1 , yy ) +1;
251 end
252 end
253 end
254 rho (1 , yy )=scheduled (1 , yy ) /( r e j e c t e d (1 , yy )+

i n s u f f i c i e n t c o i n (1 , yy )+scheduled (1 , yy ) ) ;
255 end
256 eps i lonN=sum( rho ) ;
257 eps i lonD=sum( rho .∗ rho ) ;
258 e p s i l o n =(eps i lonN ∗ eps i lonN ) /( u s e r s ∗ eps i lonD ) ;
259

260 format shor t % round o f f the numbers to 4 d i g i t s
261 rho
262 format shor t
263 e p s i l o n
264

265 f o r i =(1: u s e r s )
266 USER( i )=( i ) ;
267 end
268

269 f i g u r e (1 )
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270 bargraph =[ pass iveC ( : ) , i n s u f f i c i e n t c o i n ( : ) , r e j e c t e d ( : ) ,
scheduled ( : ) ] ;

271 hb=bar (USER, bargraph , ’ grouped ’ ) ;
272 s e t (hb (1 ) , ’ FaceColor ’ , ’w ’ )
273 s e t (hb (2 ) , ’ FaceColor ’ , ’ r ’ )
274 s e t (hb (3 ) , ’ FaceColor ’ , ’ k ’ )
275 s e t (hb (4 ) , ’ FaceColor ’ , ’ b ’ )
276 x l a b e l ( ’USERS ’ ) ;
277 y l a b e l ( ’Number Of Times lots ’ )
278 l egend ’ pa s s i v e ’ ’ l a ck o f co in s ’ ’ r e j e c t e d ’ ’ scheduled ’ ;
279

280 maximumatrix=max( r e su l tMat r i x ) ;
281 f i g u r e (2 )
282 bg=bar ( r e su l tMat r i x ) ;
283 s e t ( bg (1 ) , ’ FaceColor ’ , ’w ’ )
284 s e t ( bg (2 ) , ’ FaceColor ’ , ’ r ’ )
285 s e t ( bg (3 ) , ’ FaceColor ’ , ’ k ’ )
286 s e t ( bg (4 ) , ’ FaceColor ’ , ’ b ’ )
287 a x i s ( [ 0 t s+1 0 maximumatrix (1 ) ] ) ;
288 x l a b e l ( ’ Times lots ’ )
289 y l a b e l ( ’ Load ’ )
290 l egend ’ Total demand ’ ’ Capacity ’ ’ Scheduled demand ’ ’

Global Optimal ’ ;
291 l egend ( ’ Locat ion ’ , ’ northwest ’ ) ;
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