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Summary

In the new era of Internet of Things, complex sensor networks are becom-
ing crucial to link the physical world to the Internet. These sensor networks,
composed by hundreds or thousands of nodes, provide many important ser-
vices to promote a heightened level of awareness about the area of interest
such as in predictive maintenance, intelligent buildings, enhanced security
systems, etc. In order to make these services possible, several signal process-
ing tasks are needed to support their operation, some widely used examples
of these tasks are parameter estimation, signal detection and target tracking.
These tasks allow to improve the services by inferring missing data, reducing
samples noise, etc., at the cost of some collaboration of the network nodes
that implies their repeated communication over time. Most of these solutions
are consensus-based strategies, which have recently attracted a great deal of
research work because of its simplicity. These are in-network algorithms,
where each node only exchanges information with its immediate neighbors
and these are able to obtain global information as a function of some sensed
data. A relevant example is the average consensus algorithm, which its goal
is to obtain, in a distributed way, the average of the initial data. These algo-
rithms avoid the need of performing all the computations at one or more sink
nodes, thus, reducing congestion around them and incrementing the robust-
ness of the network.

In this dissertation, we focus on improving consensus algorithms in terms
of different parameters and under different types of communications and net-
work configurations. Each setting considered requires its own assumptions
and methodologies, since the convergence conditions for each of them are
related but different in general. In particular, in this work, all of the method-
ologies proposed are based on designing how the underlying communications
are performed.

In static networks, where the asymptotic convergence to the average value
is easily ensured, a topology optimization can be a priori performed in terms
of several relevant parameters. In particular, we optimize the network topol-
ogy to make consensus algorithms fast and energy efficient. In this setting
and for continuous systems, we derive a general framework to minimize sev-
eral energy related functions under different network and nodes constraints.
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To solve it, we propose a fractional convex-concave optimization problem
with different constraints that leads to obtain the optimal topology in terms
of the energy function considered. As a significant variation of the previ-
ous results, we also optimize the network topology in discrete systems. The
discretization of the system introduces a weight matrix and certain step-size
(related to the discrete increments of time) in the process. We show that if
this step-size is small enough, the energy related problems stated before can
be still casted as convex-concave fractional problems with the weight matrix
as a unique optimization variable. As the step-size of the process increases
in size, a discrete system requires a different approach. To solve it, we aim to
find another formulation based on adding a constraint on the connectivity and
solving the problem several times (for different values of the step-size). In
addition, two low-complex methodologies with different computational re-
quirements are proposed to a posteriori redesign an existing topology by the
collaboration of the network nodes.

On the contrary, in time-varying (random) networks, it is needed to guar-
antee a minimum accuracy of the algorithm, while maximizing the number of
simultaneous exchanges of data to ensure fast convergence. Regarding ran-
dom and asymmetric communications, we propose a novel gossip algorithm,
which is based on the residual information that is generated when an asym-
metric communication is performed. We exploit this information to preserve
the summation of the process and accelerate it. Moreover, our proposal is
useful in the case of having both unicast and broadcast communications, pre-
senting faster convergence in both schemes than existing approaches in the re-
lated literature. When the problem of wireless interferences constraining the
communications is additionally taken into account, we propose a novel and
computationally efficient link scheduling protocol that correctly operates in
the presence of secondary interference. Our protocol is easily implementable
and does not require global knowledge of the network. The main objective
of this new protocol is to be suitable for a cross-layer scheme in which the
execution of the average consensus algorithm is favoured, ensuring neces-
sary conditions for its convergence with certain accuracy. Additionally, the
number of simultaneous links is additionally considered in order to make the
convergence of the consensus process as fast as possible.
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Chapter 1

Introduction

Due to recent advances in microelectronics, the development of tiny devices
with computing, wireless communication and sensing capabilities has drawn
great attention both in the academia and the industry. These are low cost,
low energy consumption and small footprint devices, which have made pos-
sible to create complex sensor networks for very diverse applications. The
sensor nodes gather data from the environment and eventually make simple
processing of it. The data can be transferred to a central node in a centralized
network, or instead it can be locally processed in a decentralized network
[52][6][34], being this second approach more scalable and robust in com-
plex sensor networks. In many real scenarios, such sensor networks have
been revealed as excellent solutions for advanced monitoring [61] and con-
trol problems [68][1], which usually rely on fast-decision tasks, such as event
detection [29][80], dynamic estimation [70][78][94] or tracking [79][36], see
Figure 1.1.1. Current sensor networks, composed by hundreds or thousands
of nodes, are able to distributively solve those tasks by the repeated communi-
cation of their nodes. Most of these solutions are consensus-based strategies
[65] [88], which have recently attracted a great deal of research work be-
cause of its simplicity. These are in-network algorithms, where nodes only
exchanges information with their neighbors and are able to obtain global in-
formation as a function of some sensed data. A relevant example is the av-
erage consensus algorithm, which its goal is to obtain, in a distributed way,
the average of the initial data. These algorithms avoid the need of performing
all the computations at one or more sink nodes, thus, reducing congestion
around them and incrementing the robustness of the network.
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Efficient Consensus in Sensor Networks

Distributed

Control

Process

Distributed 

Estimation

θ +wθ +w
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Actuation Sensing
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(rare event)
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Figure 1.1.1: Sensor networks have been revealed as an excellent tool for performing ad-
vanced monitoring and control in a totally distributed manner. In these tasks, consensus
algorithms play a crucial role by refining measurements θ +w, performing distributed es-
timations θ̂ of the monitored parameters and distributively controlling the phenomena of
interest θ .

1.1 Motivation of this work

Although consensus algorithms are widely used due to their simplicity and
decentralized philosophy, these are iterative processes that incur in a repeated
exchange of data with an associated power consumption. Then, if the con-
sensus process converges slow, taking lot of time steps, the total energy con-
sumption of this process may become excessive. This is specially dramatic
when sensor nodes are not plugged in to any form of power supply, then
energy becomes a scarce resource and must be properly administrated. In sit-
uations where reaching the devices is practically impossible or when the cost
of mobilizing personnel is high, used-up batteries may not be easily replaced.
Although a good option is to provide the sensor nodes with self-rechargeable
batteries using for instance solar energy, this is not always possible and, in
any case, a low-power consumption is always essential to guarantee a longer
lifetime for the entire network.

Many solutions have been proposed for energy efficiency at various levels
of the system architecture, covering from the hardware design [43], coverage
[35], MAC [92], nodes placement [30], etc. In regards to consensus algo-
rithms, the convergence speed and the power consumption have been iden-
tified as the most important performance metrics [76], which in general, are
both determined by the topology of the network. The combination of the con-
vergence time and the power consumption (per time step and per node) leads
to the crucial concepts of total energy consumption and network lifetime,
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Chapter 1. Introduction

which determine the energy efficiency of the consensus process.
Thus, it is crucial to devise new topology optimization methods capable of

both accelerating the consensus process and reducing the associated power
consumption (per time step and per node), in order to improve both the energy
required to reach consensus and the global network lifetime.

An additional limitation to being iterative is that traditional consensus al-
gorithms are synchronous [65][89], which in practice means that every node
is required to communicate with all of their neighbors before a new informa-
tion exchange is started, see Table 1.1.1. This problem has been solved by
allowing asynchronous communications between nodes, leading to the ap-
pearance of the so-called gossip algorithms [31]. However, both consensus
schemes [89] and [31] still require all the communications to be performed in
a symmetric manner, that is, information exchanges between nodes are bidi-
rectional at every time step, see Table 1.1.1. Unfortunately, due to the time
constraints imposed by consensus-based tasks, which require frequent wire-
less communications, it is not easy to satisfy bidirectional communications.
Note that, in this setting, ensuring symmetric communications implies that
any node t, after a transmission of data to any other node r, should wait until
the acknowledgement, including the data from r, is received. In addition, this
latter node r should also wait for the acknowledgement from t. In this con-
text, every node waiting for an acknowledgment cannot mix information with
any other node until the current data exchange is finished. Thus, while a node
is waiting, the data received from other nodes, must be stored and processed
after the current one. This procedure requires a control mechanism that in-
troduces both a communication overhead and an uncontrolled delay in gossip
algorithms, which is opposed to their simplicity and decentralized nature.

Thus, it is also necessary to derive new asymmetric gossip schemes ca-
pable to obtain similar results to traditional gossip schemes, but only using
asymmetric communications.

In practice, all these wireless communications are performed under inter-
ference, making it necessary to include further processing to obtain collision
avoidance during the consensus process, see Table 1.1.1. A collision implies a
waste of energy due to an unsuccessful communication. Moreover less infor-
mation is exchanged per time step, making consensus algorithms to converge
slower. Finally, random packet losses due to collisions make more difficult to
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Efficient Consensus in Sensor Networks

ensure instantaneous symmetric communications. In the context of WSNs,
different MAC protocols have been widely utilized to control the channel ac-
cess and deal with the interference in order to improve the throughput, the
packet reception rate or both at the same time. However, none of them take
into account explicitly the performance parameters of the application in a
cross-layer scheme.

Thus, it is also necessary to include further processing at MAC level in
order to favour, in a cross-layer manner, the convergence of consensus al-
gorithms, reducing both the associated consensus error and the energy con-
sumption, while satisfying the time constraints imposed by the consensus-
based tasks.

Asymmetric

Symmetric
Synchronous

communications

Asymmetric

Symmetric
Asynchronous

communications

Random communications

Implementation details

One or several nodes (randomly chosen) communicate with one or 
several neighbors. Packet losses may occur due to several factors.

One or several nodes (randomly chosen) communicate with one or 
several neighbors

One or several nodes (randomly chosen) bidirectionally communicate 
with one or several neighbors in every iteration: ACKs needed

Every node communicates with all their neighbors in every iteration: 
uncontrolled delay

Every node bidirectionally communicates with all their neighbors in 
every iteration: uncontrolled delay, ACKs needed 
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Table 1.1.1: Synchronization and symmetry in the communications can only be ensured by
introducing control mechanisms that imply certain overhead. These extra mechanisms allow
to exactly characterize the convergence time of these algorithms and ensure asymptotic
convergence to the average value. As soon as the communication exchanges are random, the
consensus process becomes random and only results on probabilistic terms can be derived.
Thus, different approaches and solutions are needed to improve these algorithms, depending
on the type of communications assumed.

We have identified three different problems to be solved within the con-
sensus schemes found in the related literature. This Thesis is motivated by
these unsolved problems and focus on deriving new mechanisms at differ-
ent layers of the protocol stack in order to improve consensus algorithms in
terms of one or several of the following consensus-related parameters: error,
convergence time, energy consumption and network lifetime.
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1.2 State of the art

Consensus and gossip algorithms have been the subject of intensive research
in recent years. These algorithms form the core of multiple tasks, such us
distributed estimation, tracking, detection and control. All these tasks may
be found separately in practice as standalone applications or forming part
of more complex system, as the control loop illustrated in Figure 1.1.1. In
some of these tasks, the convergence time is crucial to ensure their correct
operation, since inaccurate data due to a slow convergence may significantly
affect the whole system. This is why most of the early research in this field
have focused on the convergence time of consensus algorithms.

In the presence of a synchronous scheme of communications, where the
topology is generally undirected, it is well known that the convergence rate
can be measured in terms of the so-called algebraic connectivity [46]. For
that reason, several early works have focused on maximizing this parameter
based on redesigning the underlying network graph. In most cases [65][64],
these topology perturbations involve generating and adding some unrealistic
long links to the network. The main idea behind adding these long links is
to introduce the small-world effect [86] into the original network. However,
creating links between distant nodes might not be always possible due to the
power constraints that are frequently present in sensor nodes. Alternatively,
it has been also investigated how to obtain suitable weights that nodes can
use to mix the exchanged information in order to improve the convergence
time. One important work in this direction is the one carried out in [88],
where the authors showed that it is possible to formulate the problem of find-
ing the fastest convergence as a convex semidefinite optimization problem.
This approach gives the optimal weights to combine the information based
on the solution of a convex optimization problem. An important drawback of
this method is that it requires knowing, at every node, the connectivity of the
deployed network. To solve this drawback, a sub-gradient algorithm was also
proposed in [88]. However this method is relatively slow, and has no sim-
ple stopping criterion that guarantees a certain level of sub-optimality. Other
approaches [67] and [77] focus on other advanced techniques, such us extrap-
olation methods and diffusion equations of particles, in order to accelerate the
distributed linear iterations performed by the consensus algorithm.
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Most of the aforementioned consensus solutions are able to solve the av-
erage consensus problem in a reasonable number of communication steps.
However, these do not take into account the power constraints that sensor
nodes usually have, which implies that these are not easy to implement in
real sensor networks. Moreover, fast convergence does not mean an energy
efficient process. Thus, for obtaining a distributed approach useful in a sensor
network scenario, it is also necessary to take into account the power consump-
tion required by each node at each communication step involved during the
consensus process.

Only few works take into account both the convergence time and the
power consumption simultaneously. First, in [24] it was shown that there
exists an optimum power consumption per iteration step that minimizes the
total energy required to achieve consensus. In this first work, the results are
over random geometric graphs assuming no a priori known locations of the
nodes. This work was extended in [76], where it is shown how to jointly
optimize both parameters, namely, the convergence time and the power con-
sumption, by using a convex-concave fractional problem. However, in this
method, the power consumption of each individual node is not taken into ac-
count, which leads to significantly different nodes lifetime. Finally, due to
the decentralized nature of the consensus algorithm itself, it might be also
desirable to find distributed methods that lead to better designed topologies
with an associated faster average consensus algorithms with a reduced power
consumption.

In practice, when having a synchronous scheme of communications, it
is rare to have asymmetric exchanges of data. The main reason is that the
synchronization mechanism, utilized to ensure that all the nodes have finished
their exchanges of data with their neighbors before the next exchange takes
place, can be also used to ensure the symmetry of the communications. As a
consequence, this is a scenario that only few works [65] have explored and it
is generally investigated at theoretical level only.

In the case of being in the presence of asynchronous communications,
the simplest algorithm solving the average consensus problem is the pair-
wise gossip [31], where each node randomly picks up a neighbor computes a
symmetric pairwise average with it. This approach introduces an interesting
asynchronous mechanism to the original deterministic protocol for consensus
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[89] and the nodes are still able to converge to the average with certain degree
of accuracy. However, this approach suffers from the locality of the updates,
taking lot of iterations to reach consensus. Since each iteration involves an
associated communication cost, geographic routes [41] and broadcast com-
munications [22] has been proposed to reduce the total number of performed
iterations. Finally, the work in [41] was refined by adding path averaging in
[26], which makes this algorithm even faster.

In order to reach convergence almost surely to the average value, previ-
ous schemes need symmetric communications, which would imply the use of
several control mechanism with an additional communication cost. This is
exacerbated when it is required to ensure symmetric long routes or efficient
broadcast communications, which both require complex control mechanisms
in practice. In order to partially solve the problem of having asymmetric com-
munications, several algorithms have been proposed in the related literature.
Most of them are based in the so called push-sum algorithm. The push-sum
algorithm was initially presented in [58], it was latter generalized in [25] to
different weights, and was finally applied to a broadcast scenario in [53].

Besides asynchronous and asymmetric communications, other factors have
been considered in the related literature, such as quantized data [59] [33], de-
layed communications [66][87], packet losses [95], etc. All these problems
may appear when considering real communications, where interference and
other environmental factors constraint the amount of information exchanged
per time step. In order to simplify consensus algorithms and avoid the need to
include further processing to deal with the aforementioned constraints, some
results have been derived in [82]. In this work, necessary and sufficient con-
ditions for almost sure asymptotic consensus are derived for such framework.
The first condition is that the network must be connected on average, that is,
a multi-hop path between every pair of nodes must be possible along the time
the consensus process lasts. This first condition can be easily introduced into
existing carrier sense-based protocols [7] [37][72][74][83] by ensuring that
the transmission range is large enough to create a multi-hop path between
any pair of nodes over time. The second condition is that the instantaneous
weight matrices that result from the random activation of links are balanced.
This second condition is not easily satisfied for real communication and we
have to search for an alternative that suits a real scenario, while ensuring cer-
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tain degree of accuracy. An alternative condition easier to satisfy is that the
connection probabilities between any pair of nodes are symmetric, that is,
the links are symmetric only on probabilistic terms. However, even this last
condition requires some additional mechanism that can hardly be obtained by
using standard carrier sense-based protocols without being extremely conser-
vative. In addition, the benefits of this condition need to be clarified.

Regardless of the condition to be satisfied, these require to introduce cer-
tain criteria about how the links are activated during the iterations of the con-
sensus algorithm. Deciding how the links are activated is a common char-
acteristic of time division multiple access (TDMA) protocols, which are a
family of protocols that are present in different ways in the context of wire-
less networks. For example, in [23], flows and demands are given and the
problem consists of obtaining a set of routes, a bandwidth assignment, and a
link schedule over a sufficiently long scheduling interval that maximizes the
total throughput. In [28], the problem is explicitly referred as link schedul-
ing, where link demands are given and the problem is to construct a schedule
of minimum length that satisfies all demands. However, in all cases of ex-
isting link scheduling protocols the targeted metric is the communications
throughput (related to convergence time) not the consensus energy.

Asymmetric

Symmetric

Asynchronous
communications

Random communications and 
losses

State of the art
solid work in this topic | some relevant work in this topic | marginal work in this topic

convergence time: characterization for some particular cases
consensus energy: average energy expression becomes too complex
network lifetime: average lifetime expression becomes too complex
consensus error: some bounds derived 

convergence time: certain characterization, but not optimized
consensus energy: not considered
network lifetime: not considered
consensus error: new schemes proposed to alleviate it

convergence time: probabilistic properties totally characterized
consensus energy: only number of exchanged packets considered
network lifetime: not considered 
consensus error: characterized for certain particular cases

convergence time: characterized for certain particular cases
consensus energy: not considered 
network lifetime: not considered 
consensus error: characterized for certain particular cases

convergence time: completely characterized and well optimized 
consensus energy: some centralized methods available to optimize it
network lifetime: not considered 
consensus error: it is asymptotically zero, no work needed here

Asymmetric

Symmetric

Synchronous
communications

Type of communications

Table 1.2.1: Summary of the state of the art in consensus algorithms under different schemes
of communications. The main parameters considered in this study are the convergence time,
the energy consumption, the network lifetime and the deviation from the average value.
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1.3 Beyond State of the Art: Scope and Objectives

Although a lot of research work has already been done in the area of consen-
sus algorithms, there is still much more to do, see Table 1.2.1. In this table
we have identified four main parameters that ideally should be optimized in
all existing consensus schemes. However, as introduced in the previous sec-
tion, real communications and environmental factors make this optimization
extremely difficult in general.

There are two different ways of dealing with real communications and the
constraints these impose. The first methodology focuses on masking all the
associated complexity by introducing several control mechanisms at differ-
ent layers of the communications stack. Then, consensus algorithms operate
as if these communications were synchronous and symmetric with an un-
controlled delay between time-steps. The second methodology focuses on
dealing with the asynchronous and asymmetric communications directly at
consensus level by introducing new mechanisms to ensure certain degree of
accuracy. Intuitively, an additional methodology can be envisioned, which
would consist of a combination of the two previous schemes, that is, deal-
ing only with synchronization or symmetry at consensus level and treating at
alternative layers the one not considered at consensus level.

In this dissertation, we focus on improving consensus algorithms in terms
of one or several parameters (see Table 1.2.1) under the two first schemes
described before. A summary of our objectives at different layers, including
some cross-layer1 interactions can be seen in Table 1.4.1.

When synchronous and symmetric communications are satisfied by cer-
tain control mechanisms at lower layers, our main objective is to optimize the
network topology in order to make consensus algorithms fast and energy ef-
ficient. In this setting and for continuous systems, we aim to derive a general
framework to solve the problem of minimizing the total energy consumption
and maximizing the network lifetime under general network and nodes con-
straints (objective 1). Then, in order to show the efficiency of this approach,
we focus on particularizing it to three different node settings appeared in a
real industrial environment [1].

1A cross-layer approach sends feedback dynamically via the layer boundaries to improve the
results of one or the two layers involved.
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The first setting is an heterogeneous network composed by sensor nodes
with different communication and energy supply capabilities. The location
of the nodes is known and these only perform point to point communica-
tions. Besides of improving the energy efficiency of this network setting, we
aim to show that the resulting optimal topology varies from a Random Geo-
metric Graph to a Small World Graph structure and this is related to certain
optimization parameters (objective 1.1). We also consider a variation of the
previous setting, where an existing network infrastructure already exists and
the objective is to provide extra sensing capabilities by adding new sensor
nodes. These sensor nodes, with much lower energy capabilities than the
existing ones, are added to the network over time. In this case, we aim to
solve the problem iteratively in order to obtain the best connectivity for the
new incoming node. Moreover, we focus on showing that depending on the
affinity that these new nodes have for the existing ones, the resulting graph
tends to follow the growth rule of a Scale Free Graph (objective 1.2). Finally,
we also consider the setting where the communications are broadcast, and the
transmission range of every node is limited to a certain amount. In this case,
besides improving the energy efficiency of the network, we focus on showing
that the resulting graph follows a Random Geometric Graph model where the
nodes may present different transmission ranges (objective 1.3).

Besides the topology optimization framework for different nodes settings,
we also focus on introducing several relevant functions related to the energy
consumption of nodes (objective 2). The topology optimization framework

Our objectiveLayer

MAC layer
(CSMA, Link Scheduling, etc.)

New Link Scheduling protocol: 
avoid collisions, reduce energy, 

maximize throughput

Network Topology optimization: 
minimize energy, maximize lifetime

Routing layer 
(gathering, flooding, etc.) 

Consensus algorithm
(synchronous, symmetric, etc.)

New asymmetric gossip:
fast convergence, avoid error

Signal processing task
(estimation, detection, etc.)
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Table 1.3.1: A summary of our objectives at different layers, including some cross-layer
techniques.
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is then applied to two real applications appeared in practice, such as the dis-
tributed detection of a known signal (objective 2.1) and the distributed esti-
mation of an unknown parameter (objective 2.2). In the first case, an energy
efficiency is required to ensure the actuation of every node, while in the sec-
ond, certain minimum accuracy of the estimator is required, which in turn is
related to the nodes lifetime. Both tasks illustrate the importance of consen-
sus algorithms and how our methodology works in practice.

As a significant variation of the results for continuous systems, we also
aim at optimizing the network topology in discrete systems (objective 3). The
discretization of the system introduces a weight matrix and certain step-size
(related to the discrete increments of time) in the process. In this context, we
focus on showing the influence of the step-size in the optimization solution.
When the step-size is small enough, our objective is to show the solution
found for discrete systems is equivalent to the one for continuous systems
(objective 3.1). Oppositely, if the step-size is not small enough, since both
systems are no longer equivalent, we focus on deriving a related optimiza-
tion scheme (objective 3.2) based on applying the previous methodology for
different maximum values of the step size. Finally, we are also interested on
finding alternative methodologies to be applied in already formed topologies
that can be performed in a distributed manner (objective 3.3).

When control mechanisms are no longer used at lower layers, we have
to deal with asynchronous and asymmetric communications at the consen-
sus level. In this scenario, our main objective is to design a new asymmet-
ric gossip algorithm that exploits the residual information involved in each
asymmetric exchange to reach average consensus almost surely (objective
4). Under this new gossip scheme we aim at achieving faster convergence
(objective 4.1) and with less energy consumption (objective 4.2) than exist-
ing studies in the related literature. Moreover, we focus on making this new
scheme suitable for both unicast and broadcast communications (objective
4.3).

Alternatively, when interference is also considered, we are interested on a
cross-layer scheme in which the MAC-layer decisions are influenced by the
consensus layer (objective 5). We first aim to show why symmetric probabil-
ities of connection ensure average consensus with certain degree of accuracy.
Then, we should derive the conditions that a MAC protocol should satisfy in
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order to ensure these symmetric probabilities (objective 5.1). For this pur-
pose, a new link scheduling protocol suitable for this cross-layer approach
is needed (objective 5.2). Finally, we aim at finding a close expression for
the number of simultaneous links, which is a crucial parameter for our link
scheduling protocol and influences the convergence rate of the average con-
sensus protocol (objective 5.3).

1.4 Thesis Outline and Contributions

The work described in this PhD thesis is the result of the study of different
consensus schemes that appeared under different communication settings. On
the one hand, when all the complexity introduced by real communications is
masked at lower layers, we focus on studying the network topology and how
it affects the operation of the average consensus algorithm. What is sought is
to optimize this topology in order to improve the convergence time, the en-
ergy consumption that a consensus process requires to reach asymptotically
average consensus and also the network lifetime that results from it. On the
other hand, when the complexity must be treated at consensus level, we pro-
pose new schemes of communication to reduce the probabilistic error and to
improve, whenever possible, the convergence time and the energy consump-
tion of this process.

The organization of this Thesis and the main contributions from each
chapter are described below, along with the publications resulted from the
involved research. The use of graph theory terms and concepts is widely used
throughout the dissertation, and for that reason, the next chapter is devoted to
introduce them. The third chapter is devoted to consensus algorithms while
the subsequent four chapters present the main results of this Thesis, con-
cerning consensus under different schemes of communications and network
settings. A last chapter, including the conclusions and the related open prob-
lems is finally presented.

Chapter 2
This chapter presents a review of fundamental concepts of algebraic graph
theory and the notation used in subsequent chapters. Notions of graph con-
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nectivity and an overview of common graph topologies are presented. The
matrices associated with a graph, with special focus on the Laplacian matrix
along with its spectral properties are described. Definitions for deterministic
time-invariant and for random time-varying graphs are finally presented.

Chapter 3
This chapter presents an overview on consensus algorithms, giving an overview
of the different schemes of communications where these algorithms are exe-
cuted and how these affect their performance.

Chapter 4
When synchronous and symmetric communications are satisfied by certain
control mechanisms at lower layers, we optimize the network topology to
make consensus algorithms fast and energy efficient. In this setting and for
continuous systems, we derive a general framework to minimize several en-
ergy related functions under different network and nodes constraints. This is
based on a fractional convex-concave optimization with different constraints
that leads to obtain the optimal topology in terms of the energy functions con-
sidered. In addition, we relate the use of several parameters to the appearance
of certain graph models. Finally, we show how two signal processing tasks

Asymmetric

Symmetric

Asynchronous
communications

Random communications and 
losses

Our contribution

We propose a crosslayer approach where the decisions at the MAC layer are made to 
favour the performance of the consensus algorithm. Ensuring certain accuracy of the 
process.

We propose a new asymmetric gossip scheme that ensures average consensus with 
certain degree of accuracy, outperforming in terms of convergence time and power 
consumption the existing approaches in the related literature.

-

-

We provide a general framework for the optimization of the total energy consumption of 
consensus and the network lifetime. Different type of complex networks and functions are 
considered in the optimization. Continuous and discrete systems are both studied.

Asymmetric

Symmetric

Synchronous
communications

Type of communications

Table 1.4.1: A summary of our contributions to the different schemes of communications
considered in this Thesis.
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can be benefited from the use of our methodology.

The work in this chapter has led to the following publications:

[11] Asensio-Marco C.; Alonso-Román, D.; Camaró-Nogués, F.; Beferull-
Lozano, B.; "Topology optimization for a trade off between energy cost and
network lifetime in average consensus." The 38th International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), May 2013.
[19] Asensio-Marco, C. and Beferull-Lozano, B.;" Optimal topology design
for energy efficient consensus in broadcast Wireless Sensor Networks." 2014
IEEE International Conference on Communications (ICC), June 2014.
[8] Asensio-Marco, C.; Alonso-Román, D.; Beferull-Lozano, B.; "Achiev-
ing energy-efficient distributed consensus in wireless Scale Free Networks."
2014 IEEE International Conference on Communications (ICC), June 2014.
[9] Asensio-Marco, C.; Alonso-Román, D.; Beferull-Lozano, B., "Ensuring
High Performance of Consensus-Based Estimation by Lifetime Maximiza-
tion in WSNs," 2015 International Conference on Distributed Computing in
Sensor Systems (DCOSS), vol., no., pp.108,114, 10-12, June 2015.
[20] Asensio-Marco, C. and Beferull-Lozano, B. "Energy Efficient Consen-
sus Over Complex Networks", IEEE Journal of Selected Topics in Signal
Processing, On page(s): 292 - 303 Volume: 9, Issue: 2, March 2015.

Chapter 5
As a significant variation of the previous results, we also optimize the net-
work topology in discrete systems. The discretization of the system intro-
duces a weight matrix and certain step-size (related to the discrete increments
of time) in the process. We show that if this step-size is small enough, the
energy related problems stated before can be still casted as convex-concave
fractional problem with the weight matrix as a unique optimization variable.
As the step-size of the process increases in size, a discrete system requires a
different approach. To solve it, we propose a formulation based on adding a
constraint on the connectivity and solving the problem several times (for dif-
ferent values of the step-size). Finally, we propose two distributed method-
ologies with different computational cost that, by perturbing the topology, are
able to improve the same parameters than the centralized one.
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The work of this chapter has led to the following publications:

[12] Asensio-Marco, C. and Beferull-Lozano, B., "Accelerating Consensus
Gossip Algorithms: Sparsifying Networks Can Be Good for You," 2010 IEEE
International Conference on Communications (ICC), May 2010.
[13] Asensio-Marco, C. and Beferull-Lozano, B., "Finding sparse connectiv-
ity patterns in power-constrained ad-hoc networks for accelerating consensus
algorithms." Proceedings of the 20th European Signal Processing Conference
(EUSIPCO), August 2010.
[14] Asensio-Marco, C. and Beferull-Lozano, B., "A greedy perturbation
approach to accelerating consensus algorithms and reducing its power con-
sumption", IEEE Statistical Signal Processing Workshop (SSP), June 2011.
[17] Asensio-Marco, C. and Beferull-Lozano, B., "Network Topology Opti-
mization for Accelerating Consensus Algorithms under Power Constraints",
IEEE 8th International Conference on Distributed Computing in Sensor Sys-
tems (DCOSS), May 2012.

An important publication that relates Chapters 4 and 5 is the following:

[21] Asensio-Marco, C. and Beferull-Lozano, B., "Optimal topology design
for energy efficient consensus in Broadcast Wireless Sensor Networks", sub-
mitted to IEEE Transactions on Wireless Communications. October 2016.

Chapter 6
Regarding random and asymmetric communications, we propose a novel gos-
sip algorithm, which is based on the residual information that is generated
when an asymmetric communication is performed. We exploit this informa-
tion to preserve the summation of the process and accelerate it. Moreover,
our proposal is useful in the case of having both unicast and broadcast com-
munications, presenting faster convergence and less energy consumption in
both schemes as compared to existing approaches.
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The work of this chapter has resulted in the following publications:

[18] Asensio-Marco, C. and Beferull-Lozano, B.; "Fast Average Gossiping
Under Asymmetric Links in WSNs." 2014 Proceedings of the 24th European
Signal Processing Conference (EUSIPCO), August 2014.

Chapter 7
Regarding random and asymmetric communications in the presence of wire-
less interference, we propose a computationally and efficient link scheduling
protocol that correctly operates in the presence of secondary interference.
Our protocol is easily implementable and does not require global knowledge
of the network. The main objective of this new protocol is to be suitable
for a cross-layer scheme in which the execution of the average consensus al-
gorithm is favoured, satisfying certain conditions that are required to ensure
convergence with certain accuracy.

The work of this chapter has led to the following publications:

[16] Asensio-Marco, C. and Beferull-Lozano, B., "Link scheduling in sen-
sor networks for asymmetric average consensus," 2012 IEEE 13th Interna-
tional Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), June 2012.
[15] Asensio-Marco, C. and Beferull-Lozano, B., "Asymmetric average con-
sensus under SINR-based interference," 2012 Proceedings of the 20th Euro-
pean Signal Processing Conference (EUSIPCO), August 2012.
[10] Asensio-Marco, C.; Alonso-Román, D. and Beferull-Lozano, B., "Cross-
layer MAC Protocol for Unbiased Average Consensus under Random In-
terference," submitted to IEEE/ACM Transactions on Networking, August
2016.

Chapter 8
This chapter summarizes the results and impact of this Thesis and discusses
open problems.
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Other relevant publications related to this Thesis2 are the following:

[52] Hernández-Peñaloza, G.; Asensio-Marco, C.; Beferull-Lozano, B., "Dis-
tributed estimation of statistical correlation measures for spatial inference in
WSNs," Proceedings of the 20th European Signal Processing Conference
(EUSIPCO), August 2012.
[7] Alonso-Román, D.; Celada-Funes, E.; Asensio-Marco, C.; Beferull-
Lozano, B.; "Improving reliability and efficiency of communications in WSNs
under high traffic demand." IEEE Wireless Communications and Networking
Conference" (WCNC), April 2013.
[34] Camaró-Nogués F.; Alonso-Román, D.; Asensio-Marco, C.; Beferull-
Lozano, B.; "Reducing the observation error in a WSN through a consensus-
based subspace projection." IEEE Wireless Communications and Networking
Conference" (WCNC), April 2013.
[6] Alonso-Román, D.; Camaró-Nogués, F.; Asensio-Marco, C.; Beferull-
Lozano, B.; "Distributed subspace projection over wireless sensor networks
with unreliable links". IEEE 13th International Workshop on Signal Process-
ing Advances in Wireless Communications (SPAWC), June 2013.
[37] Celada-Funes, E.; Alonso-Román, D.; Asensio-Marco, C.; Beferull-
Lozano, B.; "A reliable CSMA protocol for high performance broadcast com-
munications in a WSN." IEEE Global Communications Conference (GLOBE-
COM), December 2014.
[3] Alonso-Román, D.; Asensio-Marco, C.; Celada-Funes, E. and Beferull-
Lozano, B. "Consensus based distributed estimation of biomass concentration
in reverse osmosis membranes." In Proceedings of the 1st ACM International
Workshop on Cyber-Physical Systems for Smart Water Networks (CySWa-
ter’15), April 2015.

2We have decided not to include these results in the body of this Thesis for not extending its
length excessively. These works are only referenced along the text to illustrate possible applications
of consensus algorithms.
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Chapter 2

Graph Theory Concepts

Most of the network structures in the real world that present an information
flow between their components can be modeled as a graph. In general, a
graph is a mathematical abstraction used to represent the relation between the
elements of a given set. When talking about graphs, the elements of the set
are usually called vertices and then the edges are the entities that describe the
relation between pairs of these vertices. In the context of sensor networks, the
abstractions of vertices and edges correspond to nodes and links respectively.
The term node in a real network may refer to any existing sensor device,
while the term link may correspond to any form of communication between
two or several devices. Finally, the suitable communication of multiple nodes
leads to the formation of different complex networks, which can be generally
represented by well-known random graph models. Some relevant models are:
the random geometric graph (RGG) model, the small world graph (SWG)
model and the scale free graph (SFG) model, among others.

This chapter gives an overview over the main concepts in algebraic graph
theory, which are useful in the analysis of consensus algorithms. We start
by defining, in Section 2.1, fundamental graph concepts together with their
associated matrices. Then, in Section 2.2, well-known random graph models
are presented. We introduce the Laplacian matrix in Section 2.3, a powerful
tool for the analysis of the performance of consensus algorithms. Finally, the
impact of the distance between the nodes is considered in Section 2.4.
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2.1 Fundamental Concepts of Graph Theory

In general, a graph is defined as G = (V ,E ), where V is the set of vertices
and E is an unordered set of pairs of vertices from V , which are called edges
and represent a connection between any two vertices. In general, a graph can
be classified according to the characteristics of the set of edges. In particular,
if the set of edges change over time, we are in the presence of a time time-
varying graph. Oppositely, if this set remains static over time, the graph can
be classified as a time-invariant graph. Similarly, if the edges are directed or
undirected, we say that the resulting graph is directed or undirected respec-
tively. Finally, if there exist edges that connect vertices with themselves, the
graph is said that contains self-loops. Independently of these general graph
properties, there are several concepts that are common to every graph:

A path is a sequence of vertices such that from each of them there is an
edge to the next vertex in the sequence. A path may be infinite, but a finite
path always has a first vertex, called its start vertex, and a last vertex, called
its end vertex. Both of them are called terminal vertices of the path. The
other vertices in the path are internal vertices.

A cycle is a path such that the start vertex and end vertex are the same.
The choice of the start vertex in a cycle is arbitrary.

A shortest path is a path connecting two vertices with the minimum num-
ber of edges. The distance between two vertices in a graph is the number of
edges in a shortest path connecting them.

The diameter of a graph is the greatest distance between any pair of ver-
tices. To find the diameter of a graph, first find the shortest path between each
pair of vertices. The greatest length of any of these paths is the diameter of
the graph.

The clustering coefficient of a graph is a measure of the degree to which
nodes in a graph tend to cluster together.

A graph is a strongly connected graph if there is a multi-hop path between
every pair of vertices in the graph.

Finally, a graph is said to be fully connected if every pair of distinct ver-
tices is connected by a unique edge.
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2.1.1 Time-invariant and Time-varying Graphs

This section introduces the concepts of time-varying and time-invariant graphs,
which are both used throughout this work.

Time-varying graph: When the set of edges of a graph change over
time1, it can be modeled as a time-varying graph G (k) = (V ,E (k)), con-
sisting of a set V of N nodes and a set E (k)⊂ E of edges. The set E denotes
the maximum number of links that can be simultaneously established, which
may include every of the N× (N−1) possible links or just a subset of them.
Note that we are assuming graphs without self-loops.

A time-varying graph can be generated from a finite number of edge sets
or can be the result of some random process. In this work, every time-varying
graph considered is random, where the set of vertices is assumed constant
throughout time and the set of edges varies randomly over time.

Time-invariant graph: In the particular case that the sequence of connec-
tivity patterns (subsets of links) remains constant over time2, that is, E (1) =
E (2) = . . .= E (k−1) = E (k), the graph can be modeled as a time-invariant
graph G = (V ,E ).

In this work, when a time-invariant graph is considered, this must be
strongly connected. Alternatively, if the considered graph varies over time,
this only should be connected on average terms.

A graph connected on average is a time-varying graph in which any of
the instantaneous subgraphs G (V ,E (k)) may not be a strongly connected
graph, but with the passage of sufficient time, a route between any two nodes
is established.

1Due to several factors affecting the wireless channel, a pair of nodes that is communicating
in a particular time instant might not be able to communicate in future communication steps. This
variation over time may occur due to several reasons, such as nodes failures, packet losses, delays,
etc.

2In a real wireless environment, ensuring every node communicate with each other in every
iteration requires several control mechanisms and a communications overhead.
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Figure 2.1.1: An example of graphs with different type of edges.

2.1.2 Directed and Undirected Graphs

Besides that the edges may vary over time, these may be directed or undi-
rected. We denote an edge from node j to node i as e ji, where the presence of
an edge e ji between two nodes indicates that there exists an information flow
from node j to node i.

Directed graph: If a direction is assigned to the edges, the relations are
asymmetric and the graph is called a directed graph, or a digraph. For a
directed edge e ji, j is called the transmitter and i is called the receiver of
the information flow. In practice, this implies that a node sends a packet
without controlling whether is or is not correctly received, that is, without
requiring that the corresponding receiving node sends a response with its own
information.

Undirected graph: If no direction is assigned to the edges, the relations
are symmetric and the graph is called an undirected graph. In practice, these
bidirectional communications requires a control mechanism such as acknowl-
edgements (ACKs) to ensure that the packets in both directions are correctly
received.

Figure 2.1.2 shows an example of graphs where the links do or do not
present direction. In this work, we only consider directed and undirected
graphs which are the ones that are found in practice.
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2.1.3 Matrices and Structures associated with a Graph

Given any instantaneous graph3 G (k) = (V ,E (k)) at certain time instant k,
the neighborhood of a node i can be defined as:

Ni(k) = { j ∈ V : ei j ∈ E (k)} i ∈ V , i 6= j

and we can assign an N×N adjacency matrix4 A(k), given by:

[A(k)]i j =

{
1 if ei j ∈ E (k)
0 otherwise

(2.1.1)

where an entry [A(k)]i j is equal to 1 if there exists a link between node i and
j and 0 otherwise.

As illustrative example, lets take the undirected graph presented in Figure
2.1.1 (a). The corresponding adjacency matrix is the following:

A(k) =



0 1 0 1 0 1 0 0 0 1
1 0 1 1 1 0 0 0 1 1
0 1 0 0 1 0 0 1 1 0
1 1 0 0 1 1 1 0 0 1
0 1 1 1 0 1 1 0 1 1
1 0 0 1 1 0 1 0 0 1
0 0 0 1 1 1 0 1 1 1
0 0 1 0 0 0 1 0 1 1
0 1 1 0 1 0 1 1 0 1
1 1 0 1 1 1 1 1 1 0



Then, at time instant k, a graph realization G (k) can be seen as a spanning
subgraph of a graph with fixed edges set.

3Note that for a time-invariant graph, the formulation can be obtained by removing the time
index, since for a time constant graph E (1) = E (2) = . . .= E (k−1) = E (k).

4The matrix A(k) represents an instantaneous connectivity pattern that is determined by the
communications between the network nodes at time instant k.
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Given any instantaneous adjacency matrix, we can define the correspond-
ing in-degree and out-degree of a vertex i as the sum of the rows and columns
of this matrix, that is:

din
i (k) =

N

∑
j=1

[A(k)] ji and dout
i (k) =

N

∑
j=1

[A(k)]i j

A vertex i is said to be balanced at time instant k if its in-degree and out-
degree are equal, that is, din

i (k) = dout
i (k). An instantaneous digraph is said to

be balanced if all its vertices are balanced. Therefore, every undirected graph
is a balanced graph.

The instantaneous degree matrix D(k) is the N ×N matrix with entries
given by:

[D(k)]i j =

{
dout

i (k) if i = j
0 otherwise

(2.1.2)

where dout
i (k) is the out degree of node i at time instant k. Thus, the entries

of the degree matrix are equal to the row sums of the adjacency matrix.

Again, if we consider the example of Figure 2.1.1 (a), the corresponding
degree matrix is:

D(k) =



4 0 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0
0 0 0 6 0 0 0 0 0 0
0 0 0 0 7 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0
0 0 0 0 0 0 5 0 0 0
0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0 0 8
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(a) RGG (b) SWG (c) SFG

Figure 2.1.2: Examples of three different graph models: (a) Random geometric graph
(RGG), (b) Small world graph (SWG) and (c) Scale free graph (SFG).

2.2 Examples of Complex Graphs

Complex graphs can be classified according to their diameter, clustering co-
efficient and degree distribution. The combination of these parameters char-
acterize the graph model:

Small world graph: These graphs present a degree distribution similar
to a regular graph. However, in a small-world graph, most nodes are not
neighbors of one another, but most nodes can be reached from every other
by a small number of hops [86]. In other words, these graphs present a high
cluster coefficient and a small diameter.

Scale free graph: The distinctive characteristic of scale-free graphs is that
their degree distribution follows a power law relationship defined by p(q)∼
cq−h, where c is a normalization constant and 2≤ h≤ 3. The highest-degree
nodes are often called hubs, and are thought to serve specific purposes in their
graphs [2]. A high clustering coefficient and a medium to small diameter
characterize this model.

Random geometric graph: This is a graph where some random coordi-
nates are assigned to each of the N nodes in a square area and only those who
are separated by a distance shorter than a given radius R are connected by a
link. The probability p of any node to have q neighbors, in a large scale RGG,

is given by p(q) = e−davgdq
avg

q! , where davg is the average number of neighbors
[69]. These graphs present a medium to high clustering coefficient and a
medium to large diameter.
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2.3 Laplacian Matrix of a Graph

This section is devoted to the Laplacian matrix, which is a useful mathemat-
ical tool to describe in a compact form the connectivity particularities of a
graph. We denote by L(k) the instantaneous N×N Laplacian matrix of the
graph G (k) given by:

L(k) = D(k)−A(k) (2.3.1)

where D(k) and A(k) are the degree matrix and the adjacency matrix defined
in (2.1.2) and (2.1.1) respectively.

By construction, the Laplacian matrix of an undirected graph is always
symmetric and the opposite occurs with a directed graph. Then, for the case
of the instantaneous undirected graph presented in Figure 2.1.1, we have the
following Laplacian matrix:

L(k) =



4 −1 0 −1 0 −1 0 0 0 −1
−1 6 −1 −1 −1 0 0 0 −1 −1

0 −1 4 0 −1 0 0 −1 −1 0
−1 −1 0 6 −1 −1 −1 0 0 −1

0 −1 −1 −1 7 −1 −1 0 −1 −1
−1 0 0 −1 −1 5 −1 0 0 −1

0 0 0 −1 −1 −1 5 −1 −1 −1
0 0 −1 0 0 0 −1 4 −1 −1
0 −1 −1 0 −1 0 −1 −1 6 −1
−1 −1 0 −1 −1 −1 −1 −1 −1 8


Assuming that the eigenvalues of the Laplacian matrix are arranged in in-

creasing order 0 = λ1(L(k)) ≤ λ2(L(k)) ≤ ... ≤ λN(L(k)), all of them are
positive except the first one, which is equal to zero, that is, λi(L(k))≥ 0 ∀i >
1 and λ1(L(k)) = 0, which means that L(k) is always positive-semidefinite.
The number of times 0 appears as an eigenvalue in the Laplacian is the num-
ber of connected components in the graph. λ1(L(k)) is always 0 because
every Laplacian matrix has an eigenvector that, for each row, adds the corre-
sponding nodes degree to a −1 for each neighbor, thereby producing zero by
definition. The second smallest eigenvalue of L(k) is the algebraic connec-
tivity (or Fiedler value) of G (k).
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2.4 Graphs in the Euclidean Space

When considering real networks, maintaining the underlying topology im-
plies a cost on communications, which usually dependes on the physical dis-
tance between the nodes. In the particular case of wireless networks, the
information must be transmitted over the air, which requires certain radio
power consumption. Thus, to maintain a topology at time instant k, each
node of the network needs to invest some power consumption for this. Such
powers can be stored in a vector as follows:

p(k) = (p1(k),p2(k), . . . ,pN(k)) (2.4.1)

where [p(k)]i = pi(k) denotes the power consumption at time instant k of node
i. Let us assume a generic path loss model with path loss exponent γ , then the
power that node i requires to successfully communicate with node j is given
by pi j = pminrγ

i j, where pmin is the minimum power required at the receiver
to successfully decode the incoming information5 and ri j is the distance be-
tween nodes i and j. Let us consider broadcast communications where a
unique transmission is sufficient to reach the nodes within the transmission
range. Then, the expression for pi(k) is given by6:

pi(k) = max
j∈Ni(k)

{pi j}= max
j∈V
{pi j · [A(k)]i j} (2.4.2)

Notice that there is a one-to-one mapping between p(k) and matrix A(k).
Besides having to ensure a minimum power pmin at the receiver, there

exists another inherent limitation on radio communications, consisting of a
maximum power transmission pmax at the transmitter. Both constraints deter-
mine the maximum distance Rmax to which a receiver can correctly decode a
message in absence of interference from a transmitter, which is given by:

Rmax =

(
pmax

pmin

)1/γ

(2.4.3)

5For simplicity, we are assuming a simple SNR model in this work.
6If unicast communications are considered instead, the equivalent expression would be

pi(k) = ∑
j∈Ni(k)

pi j = ∑
j∈V

pi j · [A(k)]i j.
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Chapter 3

Distributed Consensus Algorithms

A consensus algorithm is an iterative process in which the network nodes
compute in a totally distributed way a common value of interest. In each time
step of the consensus process, one or several nodes communicate with one or
several neighboring nodes. The data obtained throughout these communica-
tions is mixed with the current data of the node and this determines the value
of convergence. In particular, if the value to be computed is the average of
the initial data, the algorithm is called the average consensus algorithm. This
distributed philosophy avoids the necessity of forwarding any information to
one or several sink nodes, avoiding congestion around them and increasing
then the robustness of the network.

Consider a network composed of N nodes indexed with i = 1, . . . ,N. Each
of these N nodes contains an associated value xi, which is generally initialized
with the data sensed from the environment. This value is generally known
as the state of the node i. Therefore, consensus is achieved if this state is
the same for all of the network nodes, that is, xi = x j ∀ i, j ∈ V . Consen-
sus algorithms can be classified according to the value computed. When the
application requires only a global agreement and the value reached is not im-
portant, the algorithm is denoted unconstrained. On the other hand, when
the application requires the computation of a specific function of the initial
measurements, the algorithm is denoted constrained. In this Thesis we focus
on a constrained consensus algorithm, where the function to be obtained is
the average of the initial values.

The distributed implementation of inference tasks in WSNs entails that
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nodes have only access to local information, and communicate with just one-
hop neighbors. The most common solution is to split the global problem
in simple local tasks, each one consisting of a first step that involves local
computation followed by a refinement through cooperation between nodes.
In this way, the decomposition of the main task in separable functions that can
be computed locally by nodes and executed in parallel has traditionally been a
popular topic in the computer science community [27]. In general, given both
a network of N nodes, where each i has access to generic local information
given by the vector ς i, and a global objective function f0(ς1, · · · ,ςN) to be
computed in a distributed fashion, the goal is to express the function f0 as
follows:

f0(ς1, · · · ,ςN) =
N

∑
i=1

fi(ςi)

Therefore, if each node i takes xi(0) = N fi(ςi) as its initial value, the
objective function can be computed as the average of these values. Alterna-
tively, when the objective function can be decomposed in a product of the
form:

f0(ς1, · · · ,ςN) =
N

∏
i=1

γi(ςi)

the average of the initial values xi(0) = N log(γi(ςi)) results in log( f0). It
turns out that many statistical problems (Maximum Likelihood Estimator,
Neyman Pearson detector, optimization by ADMM, etc.) can be partially
cast or decomposed in some of the proposed methods. Hence, as long as all
the nodes are able to compute the average of their initial values, the whole
network can accomplish the global task. As explained before, a common
approach to achieve this in a distributed fashion is to apply algorithms of
consensus, where the N nodes of the network aim at computing the average
of their initial values by successive exchanges of information with one hop
neighbors in an iterative scheme.

As we explained in the previous chapter, the graphs and their associated
spectral properties are determined by how the communications are performed
between the network nodes. The same occurs with the convergence properties
of consensus algorithms.
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3.1 Consensus in Time-invariant Graphs

A time-invariant graph is the mathematical abstraction of a network of nodes
where the communications, at each time instant, are always performed be-
tween the same pairs of nodes, that is, the same set of links is activated at
every communication step. In practice, this implies to have several control
mechanisms to ensure that these communications are always correctly per-
formed, so that, every link is activated before a new communication step is
started.

3.1.1 Undirected Graphs

Let us assume that nodes have some initial data at time instant t = 0. We
collect them in an initial vector x(0), whose average is xavg =

11T x(0)
N , where

1 denotes the all ones column vector. The most simple consensus approach
is the general linear update of the state of all sensors at each time instant t,
given by:

ẋ(t) =−Lx(t) (3.1.1)

If the graph is undirected, the matrix L is positive semidefinite by con-
struction, and the convergence to the average of the iterative process de-
scribed in (3.1.1) is then ensured. The convergence time t(L) of this linear
update can be defined as the time required by the second smallest eigenvalue
of the matrix L to be reduced by a certain factor ρ < 1. This is equivalent [65]
to reduce the disagreement of x(t) with respect to xavg by this same factor ρ .
Accordingly, convergence time can be expressed as:

t(L) =−ts
log(ρ)
λ2(L)

(3.1.2)

where ts is the duration of a time slot unit.

Considering the continuous system defined in (3.1.1) and a small enough
time step ∆t implies that ∆x =−Lx(t)∆t and then, x(t+∆t) = x(t)−Lx(t)∆t
or equivalently x(t + ∆t) = (I− ∆tL)x(t). If we discretize this continuos
system by discretizing the instants at which the state of the nodes can be

33



Efficient Consensus in Sensor Networks

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

11

t

x
i

(a) α = 0.025

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

11

t

x
i

(b) α = 0.1

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

11

t

x
i

(c) α = 2
λ2(L)+λN(L)
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Figure 3.1.1: State xi of N = 10 nodes as a function of time t. Solid lines represent the
evolution of the continuous system in an average consensus process. Circles represent the
instants (iterations) where the discrete system is updated. When α is kept small, the discrete
system coincides with the continuous one (a). As α increases the discrete system is no
longer able to follow the evolution of the continuous system, but still converges to the
average (b) and (c). When α > 2

λN(L) , the discrete system diverges (d).

updated, we have the following evolution equation:

x(k+1) = Wx(k) (3.1.3)

where the discrete concept of iteration k is introduced. This implies that we
can consider the general linear update of the state of each sensor i at iteration
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k, using only local data exchange, namely:

xi(k+1) =
N

∑
j=1

[W]i jx j(k) ∀i = 1,2...N (3.1.4)

where xi(k) denotes the value of node i at time instant k and [W]i j is the entry
of the matrix W used by node i to weight the data received from node j. Thus,
matrix W denotes the mixing matrix:

W = I−αL (3.1.5)

where α ≈ ∆t is the so-called step-size of the process and gives the relation
between discrete iterations and continuous time. In particular, larger values
of α imply that more continuous time separates two consecutive discrete it-
erations (see Figure 3.1.1).

The expression in (3.1.5) ensures that W is doubly stochastic1, satisfying
the convergence conditions W1 = 1 and 1T W = 1T [88]. However, to ensure
convergence, an extra condition is needed, namely, ρ

(
W− 11T

N

)
< 1, where

ρ(M) denotes the spectral radius of matrix M, that is, ρ(M) = max
{1≤i≤N}

|λi(M)|.
This last condition is satisfied if:

0 < α <
2

λN(L)
(3.1.6)

Since ρ

(
W− 11T

N

)
= max{λ2(W),−λN(W)} and λi(W) = 1−αλi(L),

then it holds that ρ

(
W− 11T

N

)
= max{1−αλ2(L),αλN(L)− 1} and thus,

the values for α satisfying (3.1.6) ensure that ρ

(
W− 11T

N

)
< 1.

By using again the relation between the eigenvalues of matrices L and W,
we can express the convergence time in (3.1.2) as follows:

t(A,W) =−ts
α(A) log(ρ)
1−λ2(W)

(3.1.7)

where we have made explicitly the dependence of α on the matrix A.

1Note that we are considering here undirected graphs, so that both matrices A and W are sym-
metric.
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Differentiation between Continuous and Discrete Systems

As we increase the value of α and it separates from zero and approaches the
upper limit 2

λN(L)
, systems in (3.1.1) and (3.1.4) become no longer equivalent

(see Figure 3.1.1). Then, the convergence time of the system in (3.1.4) must
be redefined. Let us first rewrite the system defined in (3.1.4) as follows:

x(k) = Wkx(0) (3.1.8)

The distributed linear iteration (3.1.8) converges to xavg if and only if
limk→∞ Wk = 11T

N . Accordingly, the asymptotic convergence factor can be
defined by:

r(W) = sup
x(0)

lim
k→∞

( ||x(k)−xavg||2
||x(0)−xavg||2

)1/k

which has been shown [88] to be equal to ρ

(
W− 11T

N

)
. Given the ma-

trix W in (3.1.5), the optimal expression of the step-size α for minimizing
ρ

(
W− 11T

N

)
and satisfying (3.1.6) is given by:

α =
2

λ2(L)+λN(L)
(3.1.9)

which makes 1−αλ2(L) = αλN(L)−1 and then ρ

(
W− 11T

N

)
= λ2(W).

Then, the convergence time t(W) in a discrete system can be defined by:

t(W) =
−1

log(λ2(W))
(3.1.10)

which gives the (asymptotic) number of steps for the error to decrease by a
factor 1

e .
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3.1.2 Directed Graphs

Directed and undirected graphs are the abstraction of networks following dif-
ferent implementation philosophies. Since directed graphs do not require any
control mechanism to maintain their structure, these are found in lightweight
scenarios, where what is sought is to keep the operation of nodes simple. Op-
positely, undirected graphs appears when it is more important to satisfy some
application requirements than having a simple operation. The use of ACKs
and other control mechanisms become reasonable in this later case.

Continuous system: Lets consider first the system defined in (3.1.1), whose
convergence is totally characterized by the Laplacian matrix. This is a ma-
trix with the sum of all of its rows equal to zero and with a zero eigenvalue
λ1(L) = 0. This zero eigenvalue corresponds to the eigenvector 1 because it
belongs to the null-space of L, that is L1 = 0. Since G is strongly connected,
rank(L) = n−1 and L has a zero eigenvalue λ1(L) = 0 with algebraic mul-
tiplicity of one. Based on the Gersgorin disk theorem, the rest of the eigen-
values of L have positive real-parts and therefore the linear system in (3.1.1)
is stable. On the other hand, any equilibrium of the system (3.1.1) is a right
eigenvector of L associated to λ1(L) = 0. Since the eigenspace associated to
the zero eigenvalue is one-dimensional, there exists a value c ∈ R such that
the consensus has the form c1. Thus, for a strongly connected graph, no mater
if this is directed or undirected, the convergence is always globally exponen-
tially stable [65]. However, this does not guarantee whether the convergence
value c1 of nodes is equal to xavg or not. In fact, this value c may significantly
differ from the average of the initial values. A sufficient condition to ensure
c1 = xavg is that the graph is balanced (1T L = 0), which is always satisfied
for undirected graphs, but not for general digraphs.

Discrete system: Lets consider now, a system that evolves according to
(3.1.4) with a weight matrix given by W = I−αL. In a general case, ac-
cording to the expression in (3.1.4), the convergence of x(k) to a vector of the
form xavg depends on the existence of limk→∞ Wk = 11T

N , which again is inde-
pendent of the initial set of values x(0). Given that W is diagonalizable with
eigenvalues λi(W), i= 1, . . . ,N. The weight matrix can be eigen-decomposed
as W=UΛV−1, where U is a nonsingular matrix whose columns are the right
eigenvectors u1,u2 . . .uN . Λ is a diagonal matrix with the N eigenvalues of
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W arranged in non-increasing order of magnitude, and the columns of V are
the left eigenvectors v1,v2 . . .vN of W. Substituting W for its factorization
we can compute:

Wk =
N

∑
i=1

λ
k
i (W)uivT

i (3.1.11)

where the equality vT
i ui = 1 is satisfied for all i.

Let us consider now the spectral radius of W defined as:

ρ(W) = max
i
|λi(W)|, i = 1..N

If ρ(W) > 1, then Wk does not converge as k increases because the sum
in (3.1.11) grows unbounded, and therefore x(k) in (3.1.4) cannot converge
to a vector of the form c1. Alternatively, if ρ(W) < 1, then Wk converges
to an N×N zero matrix as k increases and x(k) converges to the zero vector.
However, the algorithm converges for the case λ1(W) = ρ(W) = 1, implying
that |λi(W)| < 1, i = 2 . . .N must be satisfied for all i. Therefore, x(k) con-
verges to c1 for any set of initial values x(0) if and only if W satisfies W1 = 1
and ρ

(
W− 1uT

1
N

)
< 1. However, this does not ensure convergence to the av-

erage value. Note that, according to (3.1.11) the consensus value is given by
c = vT

1 x(0). In order to reach the average of the initial values, the left eigen-
vector associated to λ1(W) must be u1 = 1, such that, as k tends to infinity,
we have Wk = 11T

N . In other words, the matrix W has largest eigenvalue 1
with algebraic multiplicity one, with associated left and right eigenvectors 1.
The condition 1T W = 1T implies that the topology is balanced.

The three conditions to ensure convergence to the average are again:

W1 = 1, 1T W = 1T , ρ

(
W− 11T

N

)
< 1 (3.1.12)

The first and third conditions can be easily satisfied for directed and undi-
rected topologies if the matrix structure W = I−αL is chosen and a strongly
connected graph is ensured. However, while the second condition is directly
satisfied for undirected graphs, in directed graphs additional considerations
must be taken into account to ensure that the topology is balanced.
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Review of Existing Weight Matrix Expressions

Once continuous and discrete systems are decoupled, the weight matrix may
present different expressions. Depending on the application, the communica-
tion links may be whether directed or undirected. Some expressions assume
that nodes have global information available while other expressions can be
implemented using local information gathered directly by the nodes through
cooperation. The expression can be also chosen depending on the connectiv-
ity of the network, i.e., whether it is time-varying or fixed. When the topology
is fixed, the expression is chosen to satisfy certain convergence conditions.
Oppositely, when the topology is time-varying, every instantaneous weight
matrix should satisfy that same conditions, which is not always possible.

Max-degree weights: A common expression for the matrix W in graphs
with time-invariant topology consists in assigning a weight on each edge
equal to the maximum out-degree of the network [88], that is:

[W]i j =


1/dout

max if ei j ∈ E

1−dout
i /dout

max if i = j
0 otherwise

(3.1.13)

where dout
max = max

i∈V
{dout

i }. Note that the value of dout
max must be determined

and broadcasted across the network before running the consensus algorithm.
This is an example of a distributed scheme using global information.

Local-degree weights: Another expression for the matrix W consists of
assigning a weight on each link equal to the largest out-degree of its two
incident nodes as follows [88]:

[W]i j =


1/max{dout

i ,dout
j } if ei j ∈ E

1−∑ j 6=i[W]i j if i = j
0 otherwise

(3.1.14)

For this expression, each node requires knowledge of the out-degrees of
all its neighboring nodes. Similarly to the previous example, this information
must be known by the nodes before running the consensus algorithm and can
be exchanged locally at the beginning of the algorithm. This is an example
of a distributed scheme using local information.
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3.2 Consensus in Time-varying (Random) Graphs

When the communication links of a network vary over time, the connectivity
is characterized by a dynamic graph G = (V ,E (k)), where the set of edges
E (k) varies over time while the set of nodes V remains constant. The con-
sensus mechanism on a network with a variable topology becomes a linear
switching system:

ẋ(t) =−L(t)x(t) (3.2.1)

First, we assume at any time instance, the network topology is a balanced di-
graph (or undirected graph) that is strongly connected. Let us denote λ2((L(t)+
L(t)T )/2) by λ2(L(t)) for a topology dependent Laplacian L(t).

Suppose every graph considered is a balanced digraph that is strongly con-
nected and let λ ∗2 = min

k
{λ2(L(t))}. Then, the agents asymptotically reach

an average-consensus [65] for all initial states with a speed faster or equal to
λ ∗2 .

To obtain more detailed results for time-varying graphs, we need to fo-
cus on the discrete consensus algorithm in (3.1.4), which can be rewritten as
follows:

x(k) =
k

∏
l=0

W(k− l)x(0) (3.2.2)

Clearly, the convergence of x(k) to a vector of the form c1 is determined
by the convergence of the product ∏

k
l=0 W(k− l) to a rank one matrix:

lim
k→∞

k

∏
l=0

W(k− l) = 1vT
1 (3.2.3)

The convergence above is ensured if all the matrices involved in the prod-
uct satisfy the first and the third convergence conditions in (3.1.12). In ad-
dition, if all the weight matrices satisfy the second convergence condition in
(3.1.12), x(k) converges to the average consensus vector xavg. It is important
to notice that the state vector still converges to a consensus although the con-
dition ρ(W− 1T vT

1 ) is not satisfied for every iteration k, provided that the
weight matrices have row-sums equal to one.
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Types of Convergence

Given the system in (3.2.2) and depending on the scheme of communications
being used, different forms of convergence for vector x(k) are utilized:

• Sure convergence - We say that x(k) converges to the vector xavg if:

lim
k→∞

x(k) = xavg

• Almost sure convergence - We say that x(k) converges almost surely -or
with probability one- to xavg if:

Pr
{

lim
k→∞

x(k) = xavg

}
= 1

Almost sure convergence is also denoted as strong convergence.

• Convergence in expectation - We say that x(k) converges to xavg in ex-
pectation if:

lim
k→∞

E[x(k)] = xavg

• Mean square convergence - We say that x(k) converges to xavg in the
mean square sense if:

lim
k→∞

E[||x(k)−xavg||22] = 0

where || · ||2 denotes the 2-norm.

• Convergence in probability - We say that x(k) converges to xavg in prob-
ability if

Pr
( ||x(k)−xavg||22]

||x(0)||22
> δ

)
≤ δ (3.2.4)

for all k ≥ t(W,δ ), where t(W,δ ) is the first integer such that it is
accomplished (3.2.4).

Almost sure convergence implies convergence in probability. Conver-
gence in the mean square sense implies also convergence in probability.
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3.2.1 Undirected Graphs: Gossip Algorithms

Gossip algorithms are an interesting variation of consensus algorithms where
an asynchronous random mechanism is introduced. As opposite to consen-
sus algorithms, a gossip scheme randomly activates at each iteration one or
several nodes, which communicate with only one of its neighbors at a time
so that an information exchange is performed. The random way in which
nodes are activated and communicate in this scheme with each other involve
a network topology that varies over time. Gossip algorithms were first intro-
duced by Boyd et al. [31], which analyzes the properties of this distributed
process, providing important analytical results about its performance in terms
of convergence time and communication cost.

Given a network of N nodes and assuming that each node i has some initial
measurement xi, the average gossip algorithm allows every node to estimate
the global average with certain accuracy. In this process, no central entity
is available so that the average has to be obtained by only using local infor-
mation and local communications. Most of the relevant work in gossip algo-
rithms, in order to ensure convergence to the average value almost surely, re-
quires the following: i) a strongly connected undirected graph G = (V ,E ) in
which all the instantaneous subgraphs are included G (k)⊂G , ii) a symmetric
N×N matrix W(k), at each iteration k, such that [W(k)]i j = 0 if [A(k)]i j = 0
and iii) W(k)1 = 1, 1T W(k) = 1T .

In this random scheme, the non-zero entries of W(k) are generated by
randomly activating, at each time instant k, an undirected edge, which deter-
mines the nodes that pairwise exchange and mix information at that iteration.
The information is mixed according to a fix real number α ∈ (0,1), which is
again the step size of the process. This scheme leads to the nodes i and j to
produce a new state according to the equations:

xi(k+1) = (1−α)xi(k)+αx j(k) (3.2.5)

x j(k+1) = αxi(k)+(1−α)x j(k) (3.2.6)

and the state of the rest of nodes remains unaltered.

Thus, this simple random scheme leads all the nodes to reach the average
consensus value xavg almost surely.
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By analyzing the convergence of this algorithm in probabilistic terms, in-
teresting bounds on its convergence time can be obtained. In this context,
convergence time refers to how many steps the value of x(k) is close to xavg

with high probability. For this purpose, lets define ei as the all-zero vector
with exception of its i-th entry which is set to one. Now, lets us assume that
at iteration k, nodes i and j are randomly chosen to exchange data. Accord-
ingly, the corresponding instantaneous weight matrix W(k) can be defined as
follows:

W(k) = I− (ei− e j)(ei− e j)
T

2
Thus, for any pair-wise exchange between any two nodes i and j, it is

accomplished that E[WT W] = W, since:

W(k)T W(k) =

(
I− (ei− e j)(ei− e j)

T

2

)2

=

(
I− (ei− e j)(ei− e j)

T

2

)
= W(k)

Observe that this implies that W is positive semidefinite, since it is also the
expected value of positive semidefinite matrices WT W. So the spectral radius
of W− 11T

N , which governs the rate of convergence of E[x(k)], is simply the
second largest eigenvalue of W.

In this particular case, the averaging time has been shown [31] to be
bounded as follows:

0.5logδ−1

logλ2(W)−1
≤ t(W,δ )≤ 3logδ−1

logλ2(W)−1
(3.2.7)

This is the time for which on any sample path, the values at the nodes are
all δ -close to the average value with probability greater than 1−δ .

The basic gossip algorithm in [31] has been improved in [41] by intro-
ducing geographic information and then refined in [26]. These two new ap-
proaches provide a convergence time and a communication cost of smaller
order than the basic gossip approach.
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3.2.2 Directed Graphs: Asymmetric Gossip

In an asymmetric scenario, all the instantaneous graphs G (k) ⊂ G are di-
rected. The weight matrix W(k), at each iteration k, is asymmetric and only
the condition W(k)1 = 1 is fulfilled. Finally, the data is mixed according to a
fix real number α ∈ (0,1).

Let us consider first the simplest asymmetric gossip scheme:

x j(k+1) = αxi(k)+(1−α)x j(k), ∀ j ∈Ni(k) (3.2.8)

The remaining nodes in the network, including the transmitter node i, do
not update their state value, that is:

x`(k+1) = x`(k), ∀` /∈Ni(k) (3.2.9)

This is the simplest asymmetric scheme for gossiping, which is studied in
[45]. As explained before, this scheme reaches consensus to a value that may
significantly differ from the average.

The Push-sum Algorithm

In order to ensure probabilistic average consensus under asymmetric com-
munications, several algorithms have been proposed in the related literature.
Most of them are based on the push-sum algorithm, which was initially pre-
sented in [58], it was latter generalized in [25] to different weights, and was
finally applied to a broadcast scenario in [53]. In this algorithm, at each time
k, every node i maintains a sum si(k), initialized to si(0) = xi(0), and a weight
wi(k), initialized to wi(k) = 1. At time k, the estimate of node i is computed
as xi(k) = si(k)/wi(k). Assuming that at time k the node i wakes up, it broad-
casts the pair:

(
si(k)

di(k)+1 ,
wi(k)

di(k)+1

)
. Each of the di(k) nodes receiving the packet

updates its state according to:

s j(k+1) = s j(k)+
si(k)

di(k)+1

w j(k+1) = w j(k)+
wi(k)

di(k)+1
(3.2.10)
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and node i updates its own state according to:

si(k+1) =
si(k)

di(k)+1

w j(k+1) =
wi(k)

di(k)+1
(3.2.11)

while the nodes not receiving the packet do not update their state. Using
matrix notation, the algorithm can be rewritten as follows:

s(k) = M(k−1)s(k−1) = P(k)x(0)

w(k) = M(k−1)w(k−1) = P(k)1

where P(k)=M(k−1)M(k−2) . . .M(0), and the individual sums and weights
at time k are respectively collected in the vectors s(k) and w(k). Each matrix
M(k) can be written as:

M(k) = I−L(k)(I+D(k))(−1) (3.2.12)

and provided that the total of the di(k) nodes receive the packet, M(k) is a
column stochastic matrix (1T M(k) = 1T ∀k). It means that for both vectors
s(k) and w(k), the sum of the initial values is preserved at each iteration:

N

∑
i=1

si(k) =
N

∑
i=1

xi(0) = Nxavg

N

∑
i=1

wi(k) = N (3.2.13)

so there is no deviation from the average almost surely. Moreover, in [58] it
is proved that the series (M(k)k≥1) is weak ergodic. It means that as k grows,
P(k) tends to have identical columns (which may vary in k), and the nodes
achieve a common value (xi(k) = x j(k) ∀i, j). All these features imply that,
with no packet losses, the protocol provides probabilistic average consensus.
The accuracy of the method relies on the fact that each node knows, a priori,
how many nodes receive correctly its packet.
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3.2.3 Directed Graphs and Lossy Links: MSE Convergence

The push-sum-based algorithms developed in [25] and [53] are able to reach
average consensus even in the presence of random and asymmetric commu-
nications. However, if this asymmetry is caused by packet losses (collision
due to interferences, fading, etc.), these algorithms tend to deviate from the
target value. In the presence of packet losses, where the convergence is to a
random value is interesting to analyze the deviation in terms of the MSE:

MSE(x(k)) =
1
N
E
[
||x(k)−xavg||22

]
(3.2.14)

By following [71] we can express (3.2.14) as:

MSE(x(k)) =
σ2

N
tr(Rw(k)) (3.2.15)

where Rw(k) = E[MT
w(k)Mw(k)], and by expanding this term we have the

following:

MSE(x(k)) =
σ2

N
tr(Rw(k−1)Cw)

with Cw = E[W(k)WT (k)] which can be expressed as:

Cw = I−2αL+α
2E[L(k)LT (k)]

For a probability [P]i j = p ∀i, j ∈ V equal for all the links, a closed ex-
pression can be obtained:

MSE(x(k)) = σ
2
(

b
1−a+b

− (a−1
1−a+b

(a−b)k
)

(3.2.16)

where we have that a = 1−2(N−1)pα +(2(N−1)p+(n−1)(N−2)p2)α2

and b = 2pα−N p2α2. Finally, for different link probabilities a bound for
the MSE can be derived:

MSE(k)≤ σ2
0

N

(
N +(tr(Cw)−N)

1−λ
k−1
1 (Cw)

1−λ1(Cw)

)
(3.2.17)
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3.3 Conclusions of the Chapter

In this chapter, we have provided an overview on consensus algorithms, ex-
plaining the different schemes of communications where these algorithms
can be executed and how the underlying graph affects its convergence time.
Despite essential progress, some issues in this area remain open. This partly
pertains to a gap between necessary and sufficient conditions for consensus in
continuous-time systems when time-varying topologies are considered. For
discrete-time networks, the above gap was filled in the case of bidirectional
interactions, which means that the graph is undirected but the couplings may
be non-symmetric. The concerned criterion relies on the connectivity of the
graph whose links connect nodes that interact infinitely many times. However
this result cannot be applied even to sampled-data continuous-time systems
since even exact discretization may destroy key companion requirements,
e.g., strict convex hull shrinking or strict positivity of coupling gains.
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Part II

Consensus in Time-invariant Graphs
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Chapter 4

Topology Optimization: Continuous
Systems

4.1 Introduction

In consensus-based applications [36] [55] [94], the convergence time (3.1.2)
and the power consumption (2.4.1) have been identified as the most impor-
tant performance metrics, which are both determined by the network topol-
ogy [24][75]. The convergence speed determines the number of time steps
needed to reach consensus. In each of these steps, because of the inter-node
communication, there is an associated power consumption, which increases
in value with the path loss exponent and the transmission range of each node.
This power consumption maintained over time leads to certain energy con-
sumption associated to the consensus process.

Let us consider the factor ρ in (3.1.2) to be small enough, then the total
energy consumption of a node i after a single consensus process is the product
between the consumed power pi at each time step1 and the convergence time
t(L). Formally, we have the following:

Ei(A) = t(L)pi = K
pi

λ2(L)
(4.1.1)

where K is a parameter value that groups all the irrelevant constants, i.e.,
K =−ts log(ρ).

1Note that for a time-invariant graph, it is accomplished that pi = pi(1) = . . .= pi(k) ∀i ∈ V .

51



Efficient Consensus in Sensor Networks

Moreover, since the nodes in these networks usually operate on batteries,
this energy consumption per consensus process has a decisive bearing on the
lifetime of the network. Regardless of the application being considered, the
concept of network lifetime is associated to the time until one or several nodes
run out of battery [38][90][93]. Thus, it is not only important the energy
consumed by the whole network, but also the energy consumed by individual
nodes. In an average consensus process, every node must participate to obtain
the global average, which is no longer possible as soon as the first node runs
out of battery. In this case, a unique node, the one consuming more energy,
would determine the network lifetime. However, once the first node i runs out
of battery, the remaining nodes are still able to reach consensus to a certain
value while instantaneous connectivity between them is guaranteed. Thus,
the network lifetime may alternatively imply several nodes.

Given that every node presents certain energy capability Ci, the number
of consensus processes that can be executed before node i runs out of battery
can be expressed as:

Li(A) =

⌊
Ci

Ei

⌋
=

⌊
λ2(L)Ci

Kpi

⌋
(4.1.2)

Therefore, in several applications, minimizing the energy consumption at
network and node levels is more appropriate than minimizing only the conver-
gence time. This minimization, including the number of time steps to reach
consensus and their associated power consumption due to communications,
should be tackled by optimizing the network topology. Although, the search
for the optimal topology is very well-known to be a NP-hard combinatorial
problem [76], efficient heuristic solutions can be still used in this context.

In this chapter, we propose the optimization of the network topology in
order to minimize certain function of the energy consumption of the nodes.
In particular, we show how the cost function considered and the capabilities
of these nodes determine the type of network graph obtained when apply-
ing the proposed optimization. Moreover, we present two signal processing
applications where our topology optimization methodology can be exploited
to satisfy certain properties of the application. Several numerical results are
shown to illustrate the efficiency of our methodology.

52



Chapter 4. Topology Optimization

f (p) Definition Description
[p]i pi Power consumption of node i

[O(p)]i Oi i-th largest power consumption of nodes
sum(p) ptotal = ∑

N
i=1 pi Total power consumption of the network

max(p) pimax
= maxi∈V {pi} Maximum power consumption per node

Sm(p) pmmax
= ∑

m
i=1 Oi Summation of the m-largest powers of nodes

Table 4.1.1: List of energy functions considered in this chapter.

4.2 Topology Optimization: General Formulation

In this chapter, we focus on the optimization of the network topology, given
by the matrix A, which is our main optimization variable. As a cost function,
we consider any relevant combination of the entries of the vector in (2.4.1)
and the convergence time in (3.1.2). In general, our problem (P0) can be cast
as follows:

min.{A}
f (p(A))

λ2(L(A))

s. t. ξ ≤ λ2(L(A))

[A]i j = [A] ji ∀i, j ∈ V

[A]i j ∈ {0,1} if condition1
[A]i j = 0 if condition2

where f (·) can be any convex function and ξ is an arbitrary small positive
constant to ensure that the resulting value of λ2(L(A) is greater than zero.
The list of functions f (·) considered in this chapter can be seen in Table 4.1.1.

condition1: The entries of the topology matrix should be zero or one values.
This values correspond to the existence (a value of one) or the no existence
(a value of zero) of a link connecting two nodes. This is a non-convex con-
straint, which we should relax to obtain a convex problem.

condition2: Depending on the maximum transmission range of each node,
some links may not be established, so that the corresponding entries of matrix
A are set to zero, reducing considerably the number of variables.
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Some Background on Convex Optimization

Convex optimization is a special class of mathematical optimization that can
be solved numerically very efficiently. There are several concepts common
to every optimization problem, which most of them have already appeared in
P0. Lets identify and define some of them:

objective function: is either a cost function or energy function which is to
be minimized, or a reward function or utility function, which is to be maxi-
mized. In our problem we have energy functions of the form f (p(A))

λ2(L(A)) . The
expressions in (4.1.1) and (4.1.2) are two examples of functions with this
structure.

optimization variable: is the variable of the problem on which the objec-
tive function depends. In our problem our main optimization variable is A.

constraints: set of conditions for the optimization variables that are re-
quired to be satisfied. These are topological constraints in our problem, which
are given by the nodes capabilities.

optimal solution: is a feasible solution that has the smallest objective value
among all matrices A that satisfy the constraints.

solution method: is an algorithm that computes a solution of the problem
(to some given accuracy), given a particular problem from the class, i.e., an
instance of the problem.

In particular, the objective function f (p(A))
λ2(L(A)) is a convex-concave fractional

function, since we have a convex function divided by a concave one. The
function f (·) is convex since we are restricting it to be any convex combi-
nation of the entries of vector p(A), which is an affine function on A. The
function λ2(L(A)) is well known to be concave, since this is the minimum
of a linear function (eigenvalue) of L(A)+ 11T , which is a matrix with the
spectrum equivalent to L(A).
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Model Set of devices Communications Static/Dynamic Attachment
SWG heterogeneous unicast static no
SFG heterogeneous unicast dynamic yes
RGG homogeneous broadcast static no

Table 4.2.1: Main structural properties that characterize three well-known graph models.

4.3 Topology Optimization in Complex Networks

The frequent appearance of large-scale networks in reality has motivated the
research of complex networks, i.e., networks whose structure is irregular,
complex and that even dynamically evolves in time, with the main focus on
systems with thousands or millions of nodes. These large-scale networks
in the real world include transportation networks, phone call networks, the
Internet and the World Wide Web, as well as systems of interest in biology
and medicine, as neural networks or genetic, metabolic and protein networks.

The comparative analysis of such real networks from different fields has
produced several interesting results, being most of them structural. In par-
ticular, the research on complex networks has involved new concepts and
measures to characterize the topology of real networks, such as the identifi-
cation of a series of unifying principles and statistical properties common to
most of them, see Table 4.2.1.

Alternatively, a further novel topic concerns spatial networks. While most
of the early works on complex networks have focused on the characterization
of the topological properties, the spatial aspect has received less attention,
when not neglected at all. However, it is common that the topology could
be constrained by geographical criteria. For instance, the long range connec-
tions in a spatial network are constrained by the physical distance, which has
important consequences on the statistical properties of the network.

In this section, we focus on the optimization of the topology in terms of
several energy related functions that are relevant for consensus algorithms
when are executed over large-scale sensor networks. Then, we identify three
relevant real scenarios where this solution can be applied by introducing
small changes in the formulation, relating certain network and nodes capa-
bilities to the appearance of well-known graph models.

In order to formulate our optimization problem, we first explain how com-
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mon properties of sensor networks can be represented in matrix form. Firstly,
we introduce a matrix P representing the cost to communicate any two nodes
in the network, i.e., [P]i j depends on the distance rγ

i j between nodes i and j.
If these communicate over a wireless medium, we have 2 ≤ γ ≤ 4. Alter-
natively, if nodes i and j communicate through a wired connection, we have
γ = 1. Second, we define a matrix C representing the energy capabilities
of the nodes, where [C ]i j = 1/Ci ∀ j. Finally, a third matrix A representing
the possible affinity for the pre-existing nodes in the network can be defined.
This matrix is only needed when not all the nodes are available at the very
beginning, and new nodes are added along time. Later on, we explain how
this can be tackled appropriately in a real setting. We combine all this infor-
mation in two different matrices by applying the Hadamard product, so we
can define W1 = P�C �A and W2 = P�A , which are the costs associ-
ated to any link to be activated, that is, any entry of matrix A to be equal to
one. Then, we can define the following cost function for a unicast scenario:

κ max
i∈V

{
∑
j∈V

[W1]i j[A]i j

}
+(1−κ) ∑

i∈V
∑
j∈V

[W2]i j[A]i j (4.3.1)

and the cost function, for a broadcast scenario, can be defined as follows:

κ max
i, j∈V
{[W1]i j[A]i j}+(1−κ) ∑

i∈V
max
j∈V

{
[W2]i j[A]i j

}
(4.3.2)

In these two equations (4.3.1) and (4.3.2), the parameter κ is a constant
between 0 and 1 that controls the trade off between the two terms in each
equation. Let us denote these terms as Cmax and Ctotal respectively. Then, the
general optimization problem can be formulated as follows (P1):

min.{A} κ
Cmax(A)
λ2(L(A)) +(1−κ) Ctotal(A)

λ2(L(A))

s. t. ξ ≤ λ2(L(A))

A = AT

[A]i j ∈ {0,1} ∀i, j ∈ V

[A]i j = 0 if ri j > Ri ∀i, j ∈ V

where ξ is an arbitrary small positive constant to ensure that the resulting
value of λ2(L(A) is greater than zero and Ri is the maximum distance to
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which node i can correctly communicate. The variation of κ gives the Pareto-
optimal points of P1. The objective of P1 is to find the entries of the adja-
cency matrix A that minimize the multi-objective function:

κ
Cmax(A)

λ2(L(A))
+(1−κ)

Ctotal(A)

λ2(L(A))
(4.3.3)

where Cmax(A)
λ2(L(A)) represents the node with minimum lifetime scaled by its scale-

free property. Similarly, Ctotal(A)
λ2(L(A)) represents the total energy consumption

altered by the scale-free property of every node. Notice that in (4.3.3) we
have made explicit the dependence of L(A), Cmax(A) and Ctotal(A), on A.

As stated before, we consider the possibility that nodes are added to the
network along time, allowing to add n = 1,2, · · · ,N nodes at a time in a pre-
existing network composed by m0 = 0,1 · · ·(N− 1). This is summarized in
Algorithm 1, which has to be executed for any addition of nodes.

Algorithm 1 Node addition based on P1
Require: κ , m0, n, P , C , A , Aini and Ri ∀i ∈ V
Ensure: A ∈ Rm0+n×m0+n

% P , C and A are (m0 +n)× (m0 +n) matrices
min.{A} κ

Cmax(A)
λ2(L(A)) +(1−κ) Ctotal(A)

λ2(L(A))

s. t. ξ ≤ λ2(L(A))
A = AT

[A]i j ∈ {0,1} | i > m0, i, j ∈ V
[A]i j = 0 if ri j > Ri ∀i, j ∈ V

A =

[
Aini A1
A2 A3

]
% A1, A2 and A3 are m0×n, n×m0 and n×n matrices
Aini = A

Problem P1 is a combinatorial one because of the binary variables con-
straint. In order to obtain a polynomial time solvable problem, we introduce
a relaxation consisting on assuming the entries of A to be real variables be-
tween 0 and 1, which results in a fractional convex-concave problem. To
solve it, we introduce the following function [42]:

h(µ) = min{κCmax(A)+(1−κ)Ctotal(A)−µλ2(L(A))}

57



Efficient Consensus in Sensor Networks

This function allows us to solve the original problem P1 by applying Al-
gorithm 2, which is based on repeatedly solving the following problem (P2):

min.{A} κCmax(A)+(1−κ)Ctotal(A)−µλ2(L(A))

s. t. ξ ≤ λ2(L(A))

A = AT

0≤ [A]i j ≤ 1 ∀i, j ∈ V

[A]i j = 0 if ri j > Ri ∀i, j ∈ V

which can be easily obtained from P1 by applying standard optimization tools
[32]. Moreover, since λ2(L(A)) is a concave function of matrix A, the prob-
lem P2 can be shown to be convex. Thus, applying the Dinkelbach’s algo-
rithm [42], we are able to obtain the optimal value of the parameter µ , which
is equivalent to the optimal value of the relaxation of the original problem
P1, as described by Algorithm 2.

The value of the parameter ε determines the precision of this algorithm,
that is, how close its solution is from the optimal one of the relaxation of the
problem P1. The result obtained from it are the entries [A]i j of the adjacency
matrix, which define the network topology. However, due to the relaxation
procedure, these matrix coefficients are real variables belonging to the in-
terval [0,1], instead of binary values that determine the presence or absence
of a specific link. Thus, in order to obtain a real network topology, entries
with smaller values than a predefined threshold ath are removed. For a given
solution, the choice of ath determines the final topology. As ath approaches
0, high connectivity is obtained. On the other hand, for values of ath above
certain value, the network becomes disconnected.

The solution matrix Â that results from the previous projection procedure
is feasible for the original problem, which it turns to be a lower bound in the
cost function considered. The difference between the upper and the lower
bounds is called the gap. The gap is always nonnegative and if it is zero, then
Â is actually optimal for the original problem. Not much can be said about
the gap, in general; for example, there are no generic useful bounds on how
large it can be. The gap is, however, very useful when evaluated for a given
problem instance.

In the following subsections we present three network scenarios that are
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Algorithm 2 Solves relaxed version of P1
Require: ε

Ensure: κCmax(A)+(1−κ)Ctotal(A)−µλ2(L(A))≤ ε

Set matrix A as a feasible solution
while κCmax(A)+(1−κ)Ctotal(A)−µλ2(L(A))> ε do

set µ as κCmax(A)+(1−κ)Ctotal(A)
λ2(L(A))

Solve P2 with the current µ

end while

motivated by the need of providing new sensing capabilities in an industrial
environment, e.g. desalination plant, water treatment plant, etc. [1][3]. In
order to meet the specifications, multiple devices are required to sense the
industrial environment magnitudes so that the diverse plants processes are
improved by the early detection of important events, management of data
uncertainty and proper actuation. In these application scenarios, three gen-
eral network settings can be identified. These include nodes with different
communication and energy supply capabilities that in some cases must be
integrated with existing infrastructure of the industrial plant. Thus, to en-
sure energy efficient in-network processes under these network settings, the
topology optimization must be adapted appropriately to each of them. More-
over, depending on the environment and nodes characteristics, the appearance
of certain graph models: small world graphs (SWG) [86], scale free graphs
(SFG) [2] and random geometric graphs (RGG) [69] can be identified, which
present different performance in practice.

4.3.1 Heterogeneous Sensor Networks

The first network scenario arises from the necessity of acquiring accurate
situational awareness (SA) knowledge in an heterogeneous sensor network.
For this purpose, different sensing tasks to collect enough data are needed.
Since this large amount of raw data lacks of significance, several inference
tasks to add important information are additionally necessary. In particular,
to carry out these tasks of collecting and pre-processing sensed data, it is
common to use multiple sensor nodes to collect the raw data, plus several
micro-servers with higher capabilities that are in charge of performing the
inference tasks.

59



Efficient Consensus in Sensor Networks

The former nodes are powered by batteries, while the latter are connected
to the electricity grid. Although all nodes can communicate only wirelessly,
the transmission range of the micro servers is significantly longer than the
rest of nodes, allowing the appearance of shortcuts2 in the network. We are
implicitly assuming that Ri is not the same for all nodes.

The setting described above is an example of an heterogeneous network
consisting of N nodes with different communication and energy supply ca-
pabilities. The former determines the variables in our optimization problem.
These variables are the entries of the topology matrix A and define which
pair of nodes can bidirectionally communicate and which cannot. Moreover,
some nodes in the network present extra energy supply capabilities, so that,
[C ]i j = 1/Ci, ∀ j ∈ V .

In this first setting, unicast communications are assumed, where the power
consumption required to communicate nodes i and j depends on the dis-
tance ri j that separates them. For simplicity, we assume a simplified path
loss model, so that, pi j = pminrγ

i j, where γ is the path loss exponent and pmin

is the minimum power required to decode successfully a message.

The corresponding optimization problem, taking into account both total
energy consumption and network lifetime, is:

min.{s,A} s
s. t. κ

p1(A)
C1

+(1−κ)ptotal(A)−µλ2(L(A))≤ s
...
κ

pN(A)
CN

+(1−κ)ptotal(A)−µλ2(L(A))≤ s

ξ ≤ λ2(L(A))

A = AT

0≤ [A]i j ≤ 1 ∀i, j ∈ V

[A]i j = 0 if ri j > Ri ∀i, j ∈ V

which is the epigraph form of P2 with an all-ones affinity matrix A . Al-
though neither growing nor preferential attachment behavior are present in
this first setting, we have considered the different transmission and energy
capabilities of the nodes.

2The appearance of shortcuts (long distance links) tend to reduce the number of hops between
multiple pairs of nodes.
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4.3.2 Scaling Heterogeneous Sensor Networks

The second configuration arises from the necessity of extending the sensing
functionality of an existing network, whose nodes sense and control certain
specific points of an industrial plant. These pre-existing nodes are generally
connected to the power grid, and can communicate with each other through a
wired network. The purpose, in this setting, is to add low cost sensor nodes
over time according to the requirements of the final user. The existing nodes
with higher capabilities act as hubs and the new nodes may have some affinity
for them. For example, the preexisting nodes may be in charge of reprogram-
ming the network, changing the sampling rate, etc. Growing in time and
preferential attachment are characteristics of the SFG model.

In a SFG, the probability of a node having degree k decays following a
power law, P(k) ∝ k−h, h > 1. As a consequence, SFGs are characterized by
being the outcome of a random growth process with a hub-like core structure
[60]. This means that the few nodes having a huge number of links are highly
connected between them (by means of both one hop and multiple hop routes).
In [60], an indicator to measure the extent to which high-degree nodes are
connected to other high-degree nodes is proposed, which is given by:

s(G ) = ∑
i∈V

∑
j∈Ni

did j (4.3.4)

The Barabási-Albert (BA) model, proposed in [2], reproduces the forma-
tion of such type of networks. This procedure is based on the formation of
the World Wide Web, and incorporates both the growing character of the
network and the preferential attachment. An undirected graph GBA with N
nodes is constructed as follows: starting with m0 isolated nodes, at each step
s = 1,2,3, . . . ,N−m0 a new node j with m ≤ m0 links is added to the net-
work. The probability that a link connects node j to an existing node i is
linearly proportional to the current degree of i:

∏
j−→i

=
di

∑
l∈V

dl
(4.3.5)

At step s, the network will have N = m0 + s nodes and K = m · s links, with
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an average degree davg = 2m.
Due to the signal attenuation, distances between nodes in a wireless net-

work become essential when establishing the links, since longer distances
imply higher powers. More precisely, the required average power for node
i to reach a destination node j can be expressed by the simplified path loss
model. According to it, the work in [91] updates the BA model by consider-
ing the length of the connections, and the probability in (4.3.5) becomes:

∏
j−→i

= diri j
−α (4.3.6)

divided by the appropriate factor to normalize the probabilities. It can be
noticed that neither of these two procedures take into account the algebraic
connectivity. Consequently, topology related features of the resulting net-
work, such as robustness to random failures of nodes and execution time of
iterative processes, e.g. consensus, are far from optimal.

We propose a new growth model where the algebraic connectivity is taken
into account when performing the attachment, while the scale-free property
is maintained. Our problem, at this point, is to obtain for each incoming node
the set of links that lead to the minimum associated energy of consensus and
maximum network lifetime, including preferential attachment, which means
that a new node has an affinity for the existing nodes in the network propor-
tional to their degree.

Therefore, we first set up the problem P1 globally and then we restrict
it to each incoming node, leaving the rest fixed. The complete procedure is
summarized in Algorithm 3. First, given N nodes randomly deployed in a
square area, we divide this area into m0 squares of the same size, assuming m0

to be the square of an integer number and also that there exist at least one node
in each of these squares. We randomly pick one node from each of the m0

squares, in order to form the set of initial existing nodes of the BA model. We
connect these nodes to form a fully connected graph. By doing so, we ensure
that the network is always connected (and λ2(L) > 0). This initial topology
gives us Aini, which is a feasible m0×m0 matrix. Then, for each incoming
node n = 1,2, · · · ,N−m0, we solve the relaxed version of P1 with a (m0 +

n)× (m0 +n) matrix A. In this new matrix, the only variables are the entries
of the (m0+n)-th row and the (m0+n)-th column. The rest of the entries are
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initialized with the values of the previous matrix Aini, and become constants
for the current optimization problem, whose complexity is also reduced as
a consequence. Then, the resulting (m0 +n)-th row and (m0 +n)-th column
determine the importance of every possible link that can be established by the
incoming node n. Finally, we project the solution choosing the best ath and
Aini is updated with the new solution matrix A.

Algorithm 3
Require: κ , m0, m, p, C , A , Aini and Ri ∀i ∈ V
Ensure: A ∈ RN×N

n = 1
while n≤ N−m0 do

A and D are (m0 +n)× (m0 +n) matrices
min.{A} κCmax(A)+(1−κ)Ctotal(A)−µλ2(L(A))
s. t. ξ ≤ λ2(L(A))

A = AT

a ·1T ≤ m or a ·1T = m
0≤ [A]i j ≤ 1 | i = m0 +n, j ∈ V
[A]i j = 0 if ri j > Ri ∀i, j ∈ V

A =

[
Aini a[1:(m0+n−1)]

aT
[1:(m0+n−1)] am0+n,m0+n

]
% a is the (m0 +n)-th column vector of A
FIND ath that minimizes the cost function
Aini = A≥ ath

end while

4.3.3 Homogeneous Sensor Networks

In industrial environments [1], there are several processes which require some
automation in order to reduce associated costs. Examples of such processes
are the heating system, ventilation system, etc., that depending on environ-
mental parameters such as temperature, the presence of human operators,
etc. can vary its operating mode to reduce energy consumption. To tackle
this problem, the deployment of a wireless sensor network (WSN) is pro-
posed. Thus, our last problem consists of efficiently connecting a wireless
network composed by nodes powered by batteries that only perform wireless
communications. Thus, we analyze how these inherently broadcast commu-
nications affect the optimization methodology and the resulting graphs. The
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optimization problem that provides such pareto-optimization is:

min.{s,A} κpimax
(A)+(1−κ)ptotal(A)−µλ2(L(A))

s. t. ξ ≤ λ2(L(A))

A = AT

0≤ [A]i j ≤ 1 ∀i, j ∈ V

[A]i j = 0 if ri j > R ∀i, j ∈ V

[A]i j ≥ [A]il if ri j ≤ ril ∀i ∈ V ,∀ j, l ∈Ni

where R denotes the maximum transmission range common to all nodes in
the network. Since we are considering homogeneous networks where neither
growing nor preferential attachment behavior are considered, then Ctotal =

ptotal and Cmax = pimax
.

Thus, in order to obtain a valid network topology, we apply the same
thresholding technique as in the previous approaches. However, in a broad-
cast scenario, this may lead to non-optimal solutions because the value of
λ2(L(A)) always increases or, at least, remains unaltered when one or sev-
eral links are added to the existing topology. Then, given a set of transmission
ranges with an associated power consumption, the energy is always mini-
mized when all the links under these transmission ranges are established. To
ensure all those links within the communication range are active in the fi-
nal projected binary solution, we have additionally introduced the constraint
[A]i j ≥ [A]il if ri j ≤ ril ∀i ∈ V ,∀ j, l ∈Ni, which ensures to give in every
node i a greater value to [A]i j as shorter the link with node j is.

4.3.4 Numerical Results

In this section, we present the numerical results associated to the different
real settings found in [1]. In each setting, we apply the parameters that best
fit the industrial environment. We assume Ts = 1 ms and the value of ath that
minimizes the cost function considered. Since the location of the nodes de-
pend on the deployment area, the coordinates of the nodes are assumed to be
generated randomly. Then, the results are averaged from 100 different ran-
dom deployments. The power that each sensor node i requires to wirelessly
send its message and reach a given neighbor j is computed by applying a
simplified path loss model.
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Heterogeneous sensor networks

Our first setting includes 20 sensor nodes and 5 micro-servers. Each micro-
server is formed by a sensor node connected to a PC and acts as a cluster head
of the closest nodes by helping on multiple tasks, for a list of them check [1].
Here, we focus on the collaboration of all these nodes (sensor nodes and
micro-servers) to achieve average consensus, which serves to illustrate the
performance of our topology optimization methodology. The area to cover
has been defined to be approximately L = 200 meters side, corresponding to
different phases of the filtrate in the water processing plant, where the accu-
mulation of bacteria must be measured (among other parameters). Finally, a
minimum power pmin = 1.5×10−9 mW. required at the nodes to decode the
signal is needed, such that, pi j = pminrγ

i j, expressed in mW.

Figure 4.3.1 illustrates how the parameters κ and γ affect the graph re-
sulted from applying the proposed optimization methodology. In this setting,
a graph presents the characteristic shortcuts of a small world network when-
ever gamma is small enough regardless of the value of κ . This is because
these shortcuts have a low energy cost as compared to the increasing effect
on λ2(L), leading to reduce the total energy consumption and the maximum
energy consumption per node. On the other hand, if γ presents large values,
these links are created only when the network lifetime takes more impor-
tance than the total energy consumption. This is because the micro-servers
are connected to the power grid and then are able to spend more energy on
communications to connect between them without reducing their lifetime and
making the convergence faster.

Figure 4.3.2 shows the averaged results in terms of energy consumption
resulted from applying our optimization methodology to the settings pro-
posed at the beginning of this subsection. The x-axis represents the applied
threshold and the y-axis represents the associated energy magnitude. Since a
value of the path loss exponent γ = 3 represents accurately the attenuation of
the environment in which the final deployment is performed, it is the one cho-
sen to generate Figure 4.3.1. Moreover, γ = 3 presents the most significant
results in terms of topological variability. For values of γ = 2, the resulting
graphs are very dense, while the value of γ = 4 results in sparse graphs, which
both mask, in part, the resulting graph properties.
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(a) γ = 3, κ = 0
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(b) γ = 3, κ = 1
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(c) γ = 2, κ = 1
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Figure 4.3.1: Illustrative example showing how the parameters γ and κ affect the opti-
mization problem solution. Four different graphs composed by N = 25 nodes have been
generated by applying Algorithm 2 and choosing the optimal value of ath. Red solid lines
and circles represent shortcuts and nodes with extra energy supply capabilities respectively.
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Figure 4.3.2: Influence of ath on the total energy consumption and the maximum energy per
node is shown for different values of κ and γ = 3.
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Scaling heterogeneous sensor networks

In this second case, we assume that a network infrastructure of m0 = 5 nodes
exists in the deployment area. These pre-existing nodes are characterized for
being connected to both a power grid and a wired network and are in charge
of communicating the sensor system with the central management point. To
illustrate how our optimization methodology works in a network growing in
time, we add, one by one, 20 extra sensor nodes.

The number m of links established by each new sensor node can be fixed
(m = 1, · · ·m0), as in most of the existing techniques [2][91], or it can be the
result of our algorithm, which is the value that minimizes the cost function
considered. This lead to certain average optimal value m∗ at the end of the
process. In this subsection, we first show several topologies obtained with the
general constraint of m≤ m0 and then we solve the problem for fixed values
of the parameter m, evaluating the impact of this parameter on both the total
energy consumption and the maximum energy consumption per node.

Figure 4.3.3 illustrates the influence of the parameters κ and γ in the struc-
ture of the resulting graph. On the one hand, the value of γ determines the
length and the number of established links. If the value of γ is small enough,
many long links are created favoring the formation of the SFG structure. Con-
versely, when γ takes large values, the high cost of the links implies that the
network structure depends on the energy parameters to be optimized (con-
sensus energy and network lifetime). For example, when what is sought is to
maximize the network lifetime, the links connecting any node to a hub have
less associated metric cost than the rest, favoring the formation of hubs. Op-
positely, if what is sought is to minimize the total energy consumption, all the
links contribute according to their lengths and less hubs are formed.

Figure 4.3.4 also shows the influence of the number of established links
m in the final solution. It can be easily seen that the total energy consump-
tion and the maximum energy per node are highly influenced by m. In this
case, in order to minimize the former parameter, it is better to keep a moder-
ately connected network, by constraining the number of links that each node
establishes. On the contrary, in order to minimize the maximum energy con-
sumption per node, it is better to let the nodes to establish the maximum
number of available connections (m = m0).
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(a) γ = 3, κ = 0 (m∗ = 1.9)
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2 (m∗ = 4.2)
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Figure 4.3.3: Illustrative example showing how the parameters γ and κ affect the opti-
mization problem solution. Four different graphs composed by N = 25 nodes have been
generated by applying Algorithm 2.
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Figure 4.3.4: The influence of m on the total energy consumption and the maximum en-
ergy per node is shown. The parameter m* represents the average value of m used by our
optimization methodology.
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Broadcast wireless sensor networks

In our last setting, different magnitudes at multiple points of an industrial
plant must be sensed to provide an automatic control of certain industrial
equipment. Since the connection to the electricity grid is not possible, all
sensor nodes must run on batteries. Moreover, all devices present the same
energy and transmission capabilities, that is, C1 = C2 = · · · = CN and R1 =

R2 = · · ·= RN = R. Moreover, the communications between these nodes are
broadcast, which implies that ptotal = ∑

i∈V
max
j∈Ni

(pi j).

Figure 4.3.5 shows an example of the optimization criterium that maxi-
mizes the lifetime of the network (κ = 1), that is, the time until the first node
runs out of batteries. In this case, the best solution consists of making most
of the nodes to transmit with almost the same transmission power, so that
all of them run out of batteries almost simultaneously. Oppositely, if what
is sought is to find the optimal graph in terms of total energy (κ = 0). The
power is distributed among the nodes in a much more heterogeneous way than
in the case of maximizing the network lifetime. The main reason is that any
node may contribute to improve the total energy consumption by reducing its
transmission range, as long as the algebraic connectivity is not significantly
affected.

Finally, the resulting graphs, when broadcast communications are con-
sidered, present a much larger number of links in general. Once a link is
established with a remote node, the nodes at shorter distance can also receive
the data with no extra energy cost. Moreover, since these extra links always
reduce the convergence time due to an increase of the algebraic connectivity,
the total energy consumption and the network lifetime are both improved in
case of adding them. The evolution of these two parameters is shown in Fig-
ure 4.3.6.

The experiments presented earlier in this chapter are useful to illustrate
how our methodology, given a common deployment of nodes, leads to differ-
ent graph formations depending on the constraints imposed by the nodes (R,
pi j, Ei), the environmental parameters (γ) and the chosen cost function (κ).
However, small networks do not present a complex structure and important
properties such scaling law, degree distribution, etc. are not revealed. For this
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Figure 4.3.5: Illustrative example showing how the parameters γ and κ affect the opti-
mization problem solution. Four different graphs composed by N = 25 nodes have been
generated by applying Algorithm 2 and choosing the optimal value of ath. Red and green
circles represents nodes having maximum and minimum transmission ranges.

purpose, from now on, we focus on complex networks of N = 1000 nodes,
comparing the performance of existing models with our own methodology.
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Figure 4.3.6: Influence of ath on the total energy consumption and the maximum energy per
node, which is evaluated for different values of the parameter κ and γ = 3.
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Comparison with existing approaches

Formation of SWN

We first reproduce the methodology proposed by Watts and Strogatz [86]
to create a small-world network by rewiring each existing link with a given
probability p. The network from which the rewiring process is initiated, in-
stead of a regular ring network, is a random deployment of N = 1000 nodes.
These nodes establish a minimum number of links to ensure connectivity, that
is, a multi-hop path exists between every pair of these nodes. Since a random
network with a minimal connectivity has a initial diameter L greater than a
regular ring, for values of p = 1 the result of the ratio L(p)/L(0) is greater
than the ratio resulted from the rewiring in the regular ring3.

Figure 4.3.7 shows that a random rewiring methodology applied to the
proposed network results in a clustering coefficient and a diameter similar to
the one achieved in the work by Watts and Strogatz. It is easy to identify the
region where the network begins to present small-world properties (values of
the clustering coefficient similar to the ones of the initial topology combined
with a considerable decrease of the diameter). However, this random rewiring
does not take into account the spacial distribution of real networks. In real
networks, it is common to have an associated cost to communications, so
that, disregarding this can make the rewiring extremely inefficient from the
point of view of the power consumption. Moreover, the convergence time
may become prohibitive in applications where a dynamic process is executed.
This time combined with the power consumption spent on communications
lead to an extremely large energy consumption due to the rewiring process.

Figure 4.3.7 shows the total energy consumption and the maximum en-
ergy consumption per node associated to each rewiring probability. We have
divided the energy results of the random rewiring by the values obtained with
our methodology, where different values of γ are evaluated. For example,
the energy consumption associated with the random rewiring process, when
a value of γ = 3 is considered, can be 100 times larger than with our method-
ology.

3The parameter L(0) denotes the diameter of the initial graph, that is, when no rewiring have
been performed. Oppositely the parameter L(p) represents such diameter when a rewiring with
probability p has been performed.
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Figure 4.3.7: Comparison between the methodology proposed by Watts and Strogatz and the
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Formation of SFN

We additionally reproduce the methodology proposed in [2] to create a scale-
free network using the preferential attachment. The network from which the
process is initiated, is a fully connected network of 20 nodes which have been
randomly deployed. The growing process is reproduced by adding 980 extra
nodes, creating a large scale network of N=1000 nodes. This experiment is
repeated 100 times and the results are averaged. The same tests are performed
for the BA model plus power and our own methodology.

Figure 4.3.8 illustrates how the existing methods [2][91] for reproducing
the formation of scale-free networks do not consider the energy that a dy-
namic process (e.g. consensus) consumes when is executed in such networks.
The BA model, which does not take into account the distance between nodes
nor the corresponding energy consumption, presents by far the worst energy
results. This is because the preferential attachment is made with the nodes
with highest degree regardless of the existing distance to them.

When spatial considerations are included, the total energy consumption is
significantly improved. However, the individual energy consumption of each
node is still not considered, which leads to some nodes consuming much
more than others, and as a consequence the network lifetime is reduced.

Our methodology is capable of solving such problems, choosing each time
the connections to the nearest hubs that most improve the performance of the
consensus process in terms of both total energy consumption and network
lifetime. Besides this energy preservation, our methodology also allows to
obtain very competitive values of the scale-free network indicator s(G) as
compared to the previous methodologies.
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Figure 4.3.8: Comparison between existing methodologies for the creation of SFN and the
one proposed in this work: a) maximum energy consumption per node, b) total energy
consumption and c) scale-free indicator. Our methodology provides good results in terms
of energy consumption and network lifetime while maintaining a high value of the SFG
indicator.

77



Efficient Consensus in Sensor Networks

Formation of RGG

In the related literature, the formation of random geometric graphs follows
a very simple process: Given a uniform random deployment of nodes, these
connect with every other node at distance shorter than or equal to a given
cut-off distance R.

Finding the value of the parameter R that improves certain properties of
the graph has been the subject of extensive study. However, most related
work ignores the energy required by dynamic processes when these are exe-
cuted over these graphs. The only work taking into account their total energy
consumption is the work in [76]. However, even in this last related work, the
solutions obtained are unsatisfactory because the transmission range must be
the same for every node, which results in sub-optimal solutions. Furthermore,
the network lifetime is not taken into account with nodes consuming much
more energy than others.

To see the gain of our method with respect to methodologies that are based
on a single cut-off distance, we simulate the formation of such networks from
a minimum to a maximum value of the parameter R. This cut-off distance is
used as a constraint in our problem, so the higher it is, the greater number of
possible solutions are feasible.

Figure 4.3.9 shows the gain of our method with respect to the formation
of an RGG graph using different cut-off distances and for different values of
the path loss exponent γ . For high values of γ , the gain is increased, since
establishing a link longer than necessary results in a much higher energy
consumption. Similarly, from certain value of R, increasing more its value
only worsens the energy consumption, since the links start to be too long
(depending on γ). In our method, from certain value of R, the solution to the
problem remains the same because the new possible solutions are worse and
are discarded as a consequence. This means that, in general, relatively small
values of power transmission are preferred, giving the minimum values of
total energy consumption.

78



Chapter 4. Topology Optimization

40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

R

lif
e
ti
m

e
 g

a
in

 

 

γ=2

γ=3

γ=4

(a) lifetime gain

40 60 80 100 120 140 160 180 200
1

2

3

4

5

R

to
ta

l 
e
n
e
rg

y
 g

a
in

 

 

γ=2

γ=3

γ=4

(b) total energy gain

Figure 4.3.9: Comparison in terms of total energy consumption and network lifetime be-
tween the existing methodology for the creation of a RGG and the one proposed in this
work. Different values of γ are compared. Our methodology has been applied with κ = 1/2
in both graphs.
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4.4 Applications of Topology Optimization

In this section, we show how to apply the topology optimization described
in P0 with different expressions of f (·), which are aimed at solving several
real problems corresponding to different signal processing tasks. Then, rather
than considering the consensus itself, we show how to use consensus as a tool
to perform in a distributed manner two basic tasks in signal processing such
as distributed signal detection and parameter estimation. In the first case, we
focus on the energy efficiency of the process in order to extend the time that
the network presents full detection capabilities, such that all the nodes are
able to detect and perform their own actuation. In the second we focus on the
distributed estimation problem where we need to ensure a minimum estima-
tion quality, since the number of active nodes affect the estimation accuracy.
Both problems, besides motivating the use of consensus algorithms, serve
also to illustrate how the topology optimization can be utilized for different
purposes by slightly varying the formulation of the problem. For simplicity,
in this section, we assume homogeneous and broadcast WSNs.

4.4.1 Distributed and Energy Efficient Detection

Let us consider a network of N sensor nodes deployed over a certain area of
interest with the objective of detecting a known4 event s. This problem can
be formulated as [57]:

H0 : y = w

H1 : y = s+w (4.4.1)

where y is the vector with the N node observations and w is the vector repre-
senting the white noise with zero mean and variance σ2

w. The problem defined
by (4.4.1) can be solved by applying the well-known Neyman-Pearson detec-
tor T (y), i.e., matched filter, where the filter impulse response is matched to
the signal to be detected:

T (y) =
yT s
σ2

w
≥Ψ (4.4.2)

4If the signal is not known, a previous estimation step can be applied.
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where Ψ is a predefined threshold that controls the detection probability [57].

It follows very easily that, in order to implement (4.4.2) in a distributed
manner, it is enough to perform the consensus process in (3.1.1) with the
following initial values:

xi(0) =
Nyisi

σ2
w

, i = 1 . . .N

where 1
σ2

w
∑

N
i=1 yisi is the value that should be reached by all the nodes in the

network.

The result of the distributed detection, which is common to all nodes, can
be exploited by each of them (e.g. to perform their own actuation). Thus,
we are interested in maintaining the detection capability at every individual
node. Then, since the heterogenous nodes performing the distributed detec-
tion process may have a different remaining energy budget Ci, it is crucial to
consider the following parameter:

Lmin = min
i∈V

{
Ci ·λ2(L)

∑ j∈V pi j · [A]i j

}
(4.4.3)

which defines the minimum number of consensus processes executed while
full detection capabilities are maintained. In order to maximize this mini-
mum lifetime Lmin, we propose to introduce this parameter as the objective
function of the problem P1. Thus, the relaxed version of P1 particularized to
the detection problem (κ = 1, A = 11T ) can be formulated as follows (P1a):

min.{s,A} s
s. t. p1(A)−µ ·C1 ·λ2(L(A))≤ s

...
pN(A)−µ ·CN ·λ2(L(A))≤ s
ξ ≤ λ2(L(A))

[A]i j = [A] ji ∀i, j ∈ V

0≤ [A]i j ≤ 1 if ri j ≤ Rmax ∀i, j ∈ V

[A]i j = 0 if ri j > Rmax ∀i, j ∈ V

[A]i j ≥ [A]il if ri j ≤ ril ∀i ∈ V ,∀ j, l ∈Ni

which is a convex parametric problem, whose solution is a function of the
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Figure 4.4.1: Lifetime gain to operate with (a) full detection capabilities and (b) ensuring a
minimum quality of the estimation when our methodology is applied. This figure illustrates
the gap (normalized by ath = 0) between the relaxed solution A∗ and the projected ones Â.
The optimal solution lies within this gap.

parameter µ .

Algorithm 2 finds the entries [A]i j of the adjacency matrix, which defines
the relaxed network topology. As stated before, for a given relaxed solution,
the choice of ath determines the final real topology. The solution Â that results
from the projection procedure is feasible for the original problem, which it
turns to be a lower bound in the lifetime gain to operate with full detection
capabilities.The difference between the upper and the lower bounds is called
the gap, see Figure 4.4.1. For example, for the particular setting used in
Figure 4.4.1 (a), we can state that the optimal solution would lead to a gain
from 2.9 to 4.4 times in the operational time of the network.

4.4.2 Distributed Parameter Estimation with Ensured Quality

Let us consider a random deployment of N nodes, each of which gets a noisy
observation of an unknown parameter. Given this set of observations, the
maximum likelihood estimator (MLE) of the parameter is simply the average
of the N observations5. In particular, we assume the general linear observa-

5Provided that the noise is additive zero-mean Gaussian, with the same variance at each node,
and spatially uncorrelated.
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tion model:
x = θ +w

where θ is the scalar parameter to be estimated, x is the vector with the N
observations and w is the white gaussian noise of zero mean and variance
σ2

w. It is well known that the MLE of θ given the observations [56] is:

θ̂ML =
(
1T

σ
−2
w IN1

)−1 1T INσ
−2
w x =

1
N

1T x

where we recognize easily the average of the observations:

xavg ,
1
N

N

∑
i=1

xi =
1
N

1T x

Furthermore, for this simple setting, the variance of the estimator is:

σ
2
θ =

(
1T

σ
−2
w INI

)−1
=

1
N

σ
2
w (4.4.4)

Therefore, by computing the average of the initial observations x, the error
variance is reduced by a factor of N.

Performing average consensus to solve this problem in a distributed man-
ner implies that after Li processes have been performed, node i eventually
runs out of battery, increasing the variance of the estimator in (4.4.4) as a
consequence. In order to maintain a certain quality of the distributed estima-
tor, such that its variance is kept below a specific threshold σ2

θ
≤ σ2

th ≤ σ2
w,

there is a maximum number of nodes that can run out of battery, which will
be given by:

m = N− σw

σth
(4.4.5)

which implies that we have N−m survivor nodes still executing consensus.
The objective here is to obtain an optimal topology matrix A, such that

the lifetime of the m most energy demanding nodes that are executing the
iterative consensus is maximized. If the variance of the observation noise
remains constant over time, the minimum estimation quality based on subse-
quent consensus based estimations is ensured by the same value of m. Then,
our goal is to perform a topology optimization that leads to maximizing the
number of distributed estimations that can be performed with a certain guar-
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anteed quality (error variance).

Let us arrange the elements of vector p = (p1,p2, . . . ,pN) in decreasing
order and store them in the vector O(p), such that O1(p) ≥ O2(p) ≥ . . . ≥
ON(p), then the sum corresponding to the power consumption of the m more
demanding nodes can be expressed as follows6:

Sm(p) =
m

∑
i=1

Oi(p) (4.4.6)

It can be shown [63] that (4.4.6) is equivalent to:

Sm(p) =
1
N

(
m

N

∑
i=1

pi +g(`)

)
(4.4.7)

where (z)+ is defined as (z)+ = max(z,0) and g(`) is:

g(`) = min
`∈R

N

∑
i=1

[m(`−pi)++(N−m)(pi− `)+]

whose optimal solution is `∗ = Om(p), making g(`∗) = N ·Sm(p)−m∑
N
i=1 pi.

By defining p+i −p−i = pi− `, with p+i ,p
−
i ≥ 0, we can express (4.4.7) as

follows:

min
`∈R

1
N

(
N

∑
i=1

[mp−i +(N−m)p+i +mpi]

)
where we have exploited the fact that (`−pi)+ and (pi−`)+ are complemen-
tary in the sense that for a given value ` only one of the two terms is greater
than zero.

Finally, if we make p−i = p+i −pi+ `, the expression in (4.4.6) is the solu-
tion of the following linear program:

min.{`} m`+∑
N
i=1 p+i

s. t. p+i ≥ pi− `, i = 1, . . . ,N
p+i ≥ 0, i = 1, . . . ,N

Accordingly, the problem consisting on optimizing the network topology

6In order to include the energy budget Ci available at every node i, it is enough to redefine the
vector p as p′ =

(
p1
C1
,

p2
C2
, . . . ,

pN
CN

)
.
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to minimize the equivalent amount of energy can be cast as follows:

min.{`,A}
(m`+∑

N
i=1 p+i )

λ2(L(A))

s. t. p+i ≥ pi(A)− `, i = 1, . . . ,N
p+i ≥ 0, i = 1, . . . ,N
ξ ≤ λ2(L(A))

[A]i j = [A] ji ∀i, j ∈ V

0≤ [A]kl ≤ 1 if rkl ≤ Rmax ∀k, l ∈ V

[A]kl = 0 if rkl > Rmax ∀k, l ∈ V

[A]kl ≥ [A]k j if rkl ≤ rk j ∀i ∈ V ,∀ j, l ∈Ni

Similarly to what is done to solve the problem P1, we introduce the fol-
lowing function:

h(µ,A) = min
`,A

{(
m`+

N

∑
i=1

p+i

)
−µλ2(L(A))

}

where µ is a real positive parameter that controls the trade-off between Sm(p)
and the convergence time determined by λ2(L(A)). Again, the values of A
and ` that minimize h(µ,A) are the same ones that minimize our objective
function. Furthermore, the value of µ that makes h(µ,A) = 0 is also the
minimum of the cost function of the previous problem. Consequently, this
previous optimization problem is equivalent to P1b:

min.{`,A}
(
m`+∑

N
i=1 p+i

)
−µλ2(L(A))

s. t. p+i ≥ pi(A)− `, i = 1, . . . ,N
p+i ≥ 0, i = 1, . . . ,N
ξ ≤ λ2(L(A))

[A]i j = [A] ji ∀i, j ∈ V

0≤ [A]kl ≤ 1 if rkl ≤ Rmax ∀k, l ∈ V

[A]kl = 0 if rkl > Rmax ∀k, l ∈ V

[A]kl ≥ [A]k j if rkl ≤ rk j ∀i ∈ V ,∀ j, l ∈Ni

which is a convex parametric problem, and whose solution is a function of
the parameter µ . To solve that, we perform successive iterations as shown in
Algorithm 4, which involves two different steps. In the first step, we obtain
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a value of µ by computing our cost function for any valid matrix A and `.
In the second step, we solve the problem P1b for the value of µ obtained
in the first step. We start the algorithm with any feasible solution and we
iterate until a certain degree of accuracy is obtained, that is, the solution of
problem P1b is close enough to the original one. The result of the algorithm
are the entries [A]i j of the adjacency matrix, which define the relaxed network
topology. As stated before, for a given solution, the choice of ath determines
the final topology and this choice affects the energy consumption of nodes.

Algorithm 4
Require: ε , m
Ensure:

(
m`+∑

N
i=1 p+i

)
−µλ2(L(A))≤ ε

Set A, ` as a feasible solution to P1b

while
(
m`+∑

N
i=1 p+i

)
−µλ2(L(A))> ε do

set µ =
(m`+∑

N
i=1 p+i )

λ2(L(A))

Solve P1b with the current µ , obtaining A∗ and `∗

set A = A∗ and `= `∗

end while

4.4.3 Numerical Results

First, we evaluate the energy efficiency of a network of N = 100 nodes repeat-
edly executing a detection process based on consensus. Figure 4.4.2 shows
the averaged results of applying Algorithm 2 to 100 different random graphs.
The x-axis represents the applied threshold ath and the y-axis represents the
corresponding magnitude of energy (expressed in µJules) needed to perform
the detection process. The red solid lines (maximal connectivity) refer to the
particular case ath = 0, which is a common scenario in WSNs, in which ev-
ery node uses the maximum transmission range R1 = R2 = . . .= RN = Rmax.
Additionally, we have also compared with the optimal radius Ropt (common
to all nodes), that is, R1 = R2 = . . .= RN = Ropt, which can be approximated
by using the results in [76].

In particular, in Figure 4.4.2 (a), the total energy consumption for differ-
ent values of the parameter κ is compared. As expected, the minimum value
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is obtained for κ = 0, while the worst performance is obtained for κ = 1. The
rest of Pareto solutions lie between these two curves. It is interesting to point
out that the value κ = 1/2, represented by the dashed curve, yields competi-
tive maximum energy consumption values per node and quasi minimum total
energy consumption. Similar results are obtained for the maximum energy
consumption per node, as can be observed in Figure 4.4.2 (b). Both mag-
nitudes can be reduced between the 33% and the 50% as compared to the
maximal connectivity. This means that the distributed detection can be per-
formed during longer periods of time before the batteries of one or several
nodes should be changed.

Although the trade-off between the two previous magnitudes may charac-
terize the energy efficiency of most tasks based on consensus, these provide
no information about the power allocation among the different nodes of the
network. In other words, we cannot conclude whether the energy can be re-
duced by saving power at one or several nodes, or by globally reducing the
convergence time at the cost of extra power expenses. The power distribution
of the nodes determines how homogeneous their lifetime is, which is crucial
for maintaining a certain number of them alive. In particular, the variance of
a distributed estimator based on consensus depends on the number of nodes
executing this latter process. Thus, the power distribution of nodes is an ad-
ditional parameter to evaluate.

The effect of this power distribution can be better observed in Figure 4.3.5
for the specific case of N = 30, where the transmission ranges of all nodes
are depicted. While the size of the circles is clearly determined by the pa-
rameter γ , it can be seen that the ratio between the maximum (red circle) and
minimum (green circle) transmission ranges is affected by the choice of the
number m of nodes involved in the optimization. More precisely, for m = 1
all transmission ranges have a similar length, so that every node has approx-
imately the same power consumption per time step, while the convergence
time is kept small. On the contrary, for m = N the power consumption is
very different for every node, and the total consumed power is significantly
smaller than in the previous case.

Figure 4.4.3 (a) compares the function Sm for three different values of
m = 25,50,75. This graph shows that similar curves can be obtained when
different number of nodes are considered in the optimization criteria. The

87



Efficient Consensus in Sensor Networks

ratio between the maximum and the minimum transmission range is crucial
for the nodes lifetime. Small ratios imply similar power consumption for
all nodes, so that most of them run out of battery after executing a similar
number of estimation processes. The opposite occurs for large ratios, which
implies that after one or several nodes run out of battery, the rest can still
execute several processes. Additionally, for small ratios it takes longer to
the first nodes to run out of battery than for larger ratios. This effect can
be observed in Figure 4.4.3 (b), where we use the parameter m to rule the
aforementioned ratio. This figure shows the number of remaining operative
nodes in the network, as a function of the number of performed estimation
processes and for different values of the parameter m. Note that in order to
maximize the time until the first node run out of batteries, we must use m = 1
instead of m = 30 as intuition may suggest. This is because m = 1 ensures
that the energy consumption of the most consuming node is minimum among
all the possible values of m. The equivalent figure that shows the variance of
the estimator as a function of the number of estimation processes executed is
shown with the previous one.
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Figure 4.4.2: Total energy consumption and maximum energy consumption per node in a
continuous system after the execution of a detection process based on consensus. The effect
of different threshold values ath and the trade-off parameter κ are compared. A common
transmission range to all nodes with the values of Rmax and Ropt are also shown in the graph.
The value of Rmax is obtained applying ath = 0 to the solution topology (no optimization
applied). The value of Ropt can be approximated using the result in [76].
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4.5 Conclusions of the Chapter

In this chapter, we have presented a new methodology to optimize the net-
work topology in terms of several energy related functions. We first apply
this methodology to three different settings that usually arise in industrial en-
vironments where extra situation awareness is needed. We also identify the
constraints that impose each of these settings and relate them with the graph
models that provide the best results in general. Thus, as opposite to previous
works, which introduce unrealistic parameters to reproduce the formation of
the different graph models, we identify several real parameters that affect the
formation of these graphs. In particular, the formation of small word graphs
(SWG), scale free graphs (SFG) and random geometric graphs (RGG) have
been found to characterize the topology under certain real conditions. More-
over, motivated by two well known tasks in the field of signal processing, we
also apply this methodology to improve their performance. In the particular
case of the distributed detection problem, our optimization results on sys-
tems running full detection capabilities for longer periods of time. In the case
of the distributed estimation problem, our optimization results on ensuring
a minimum quality of the estimations for longer periods of time. Extensive
numerical results have been presented to show the efficiency of our method-
ology in terms of the considered energy functions.
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Chapter 5

Topology Optimization: Discrete
Systems

5.1 Introduction

In the previous chapter, we have presented a new methodology for continu-
ous systems to reach consensus in an energy efficient manner. This is based
on a centralized method that performs an a priori design of the topology to
minimize a set of cost functions that are based on convex combinations of the
power vector defined in (2.4.1) multiplied by the convergence time in (3.1.2).

However, the sensor systems in practice are usually discrete. A discrete
system, as opposite to a continuous system, involves digital components work-
ing with digital signals and having a countable number of states. For that rea-
son, discrete systems have a direct relation to real sensor networks, since
these networks are generally composed by digital devices (although inte-
grated sensors may be analogic). In such systems, the moments in which
the updates are performed are discrete time instants. In the particular case
of a system executing consensus, these updates are performed whenever the
nodes communicate with their neighbors and calculate their own new state
with the data collected from them.

In addition, in the previous chapter, it is implicitly assumed the existence
of a central entity in charge of obtaining the optimal topology. Once obtained,
the solution is given to the deployed nodes, which communicate accordingly
to reach consensus. However, since one of the main advantages of consen-
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sus algorithms is that they operate without relying in such central entities,
it is also of great interest to find new methods that can be implemented in a
distributed manner, so that the network topology optimization can be collabo-
ratively performed by the sensor nodes as the consensus algorithm itself. For
this purpose, new low complexity methods to improve both the convergence
time and the power consumption of consensus algorithms are necessary.

Another important issue to deal with is that the sensor network to be opti-
mized may be already executing a consensus based application over an exist-
ing topology. This implies that a posteriori optimization methodologies, to be
executed over the existing configuration, may be needed for such scenarios.

Although most of the results derived in Chapter 4 can be easily extended
to discrete systems when a small step-size is considered, this is not always
possible due to the time constraints that are present in the consensus-based
applications. The main reason is that a small step-size can be far from effi-
cient, since the convergence time is reduced by increasing the value of this
parameter. Although the methodologies to be applied in a discrete system
with a large step size are different from the ones for continuous systems, the
energy parameters to be optimized are still determined by the convergence
time and the power consumption of the nodes.

In this chapter, besides showing how to adapt the a priori topology de-
sign presented in Chapter 4, we also consider consensus algorithms executed
over already formed topologies. The network topologies to be optimized are
composed by computationally constrained discrete devices that run on batter-
ies. This scenario makes the results of this chapter closer to reality than the
previous one, which is generally theory-driven.

For simplicity and in order to not extend unnecessarily this chapter, we
only consider homogeneous networks and unicast communications. Simi-
lar results can be obtained for the different network settings presented in the
previous chapter. Thus, we firstly show how to adapt the topology optimiza-
tion methodology proposed in Chapter 4 to discrete systems when a small
enough step size is considered. We also identify the problems appeared when
continuous and discrete systems are decoupled, finding, in this case, an al-
ternative optimization method to improve the network topology. Finally, two
distributed methodologies with different computational cost aimed to opti-
mize the topology are proposed.

94



Chapter 5. Topology Optimization

5.2 Topology Optimization: α ≈ ∆t

As we have introduced in Chapter 4, if the value of the step-size α ≈ ∆t is
small enough, the system evolution x(k+1) = (I−αL)x(k) is equivalent to
the continuous system described by the differential equation in (3.1.1). Given
this equivalence, from expression (3.1.7), the energy consumption of node i
for a broadcast scenario can be expressed as:

Ei(A,W) = t(A,W)pi(A)

= K
α(A)pi(A)

1−λ2(W)

= K
max
j∈V
{pi j ·α(A)[A]i j}

1−λ2(W)

= K
max
j∈V
{pi j · [W]i j}

1−λ2(W)

= K
pi(W)

1−λ2(W)
(5.2.1)

where we have utilized the relation between the off-diagonal entries of ma-
trices A and W. Thus, the energy Ei(A,W) = Ei(W) is totally characterized
by the weight matrix W.

For a unicast scenario, we can argue in the same terms with the particu-
larity that pi(W) = ∑

j∈V
pi j · [W]i j.

Similarly, the lifetime of node i is given by:

Li(W) =

⌊
Cnode

Ei(W)

⌋
(5.2.2)

where, again, Ei(W) can be substituted by the corresponding expression in
both broadcast and unicast scenarios.
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Thus, for a discrete system with small enough values of α , the problem
of obtaining the optimal weight matrix that minimizes any energy related
function can be cast as follows (P0’):

min.{W}
f (p(W))

1−λ2(W)

s. t. W1 = 1
1T W = 1T

W = WT

0≤ [W]i j ≤ 1 if condition1
[W]i j = 0 if condition2

which is again a convex-concave fractional problem that can be solved by
using the same methodology proposed for the continuous case. The result
of problem P0’ is the optimal weight matrix for each function considered in
Table 1.

condition1: The entries of the weight matrix W should be between zero or
one. Each entry is the weight that a node gives to the information coming
from the corresponding neighbor. This condition is generally necessary to
satisfy the doubly-stochasticity of this matrix.

condition2: Depending on the maximum power transmission of nodes pmax,
some links cannot be established. Accordingly, some entries of the matrix
A and consequently the corresponding entries of matrix W are set to zero,
reducing considerably the number of variables present in the optimization
problem.

Note that there exists a one-to-one correspondence between the solutions
given by the relaxed version of the problem P0 and the problem P0’. Once
we have obtained the optimal matrix A from P0 with all its entries between 0
and 1, we can always find a constant value of α to obtain the corresponding
optimal matrix W.
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5.3 Topology Optimization: α >> ∆t

The problem in P0’ aims to minimize the same magnitudes than P0, but in-
volving the weight matrix W instead of the topology matrix A. This is only
possible when the parameter α is maintained small enough. When this is no
longer possible, we need to analyze the energy consumption of the discrete
system in different terms.

Given the convergence time in (3.1.10) for a discrete system, we can re-
define the energy consumption of any node i as follows:

Ei(A,W) =
−pi(A)

log(λ2(W))

which is the product between the power consumption and the convergence
time. However, the denominator is no longer concave on A, preventing us
from formulating the energy-related problem as a convex-concave fractional
one. Another important difference is that, given a broadcast transmission, the
no-establishment of certain links under this transmission range may improve
λ2(W) [12], reducing the convergence time as a consequence. Thus, the
introduction of the step-size has two main implications:

• It prevents us from using the methodology utilized in the continuous
case, since the cost function is no longer a fraction of convex and con-
cave functions [11].

• A sparser network topology may lead to faster convergence times [12],
since the dominant eigenvalue of the Laplacian may also be involved.
This does not occur in the continuous case, where only the algebraic
connectivity is needed to characterize the convergence time.

To solve the problem in a discrete system with a non-small step-size, we
first introduce the following upper bound:

Ei(A) =
pi(A)

+∞

∑
q=1

(αλ2(L))q

q!

≤ pi(A)λN(L)
2λ2(L)

(5.3.1)

where we have used the Maclaurin serie of the function log(1−αλ2(L))
(with |αλ2(L))|< 1), which is clearly lower bounded by 2λ2(L)

λN(L)
.
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5.3.1 Solution Based on Convex Optimization

Given the upper bound in (5.3.1) and due to the strong relation between the
continuous and discrete problems, what we propose is to apply the problem
P1 introduced in Chapter 4 with two major modifications: i) the value of
the largest eigenvalue λN(L) of the Laplacian matrix is limited to a maxi-
mum value, which is determined by the maximum degree of the network1

and ii) the entries of the matrix A are no longer sorted by distance. These two
changes open the possibility of reaching sparse network topologies that main-
tain good values of pi(A)

λ2(L(A)) , while limiting the value of λN(L). The complete
methodology is summarized in Algorithm 5, which is based on solving the
following problem P1’ for different values of α:

min.{A} f (p(A))−µλ2(L(A))

s. t. ξ ≤ λ2(L(A))

[A]i j = [A] ji ∀i, j ∈ V

0≤ [A]i j ≤ 1 if ri j ≤ Rmax ∀i ∈ V

[A]i j = 0 if ri j > Rmax ∀i ∈ V

∑
N
j=1[A]i j ≤ α−1 ∀i ∈ V

where Rmax denotes the maximum transmission range of nodes.

In the problem P1’, we have introduced the function h(µ,A) = p(A))−
µλ2(L(A) and the parameter α = 1

dmax
. The formulation of P1’ can be easily

adapted to solve the energy-related problems proposed for the continuous
case, providing reasonable good results.

Although this centralized approach provides an important benchmark for
comparison, unfortunately, computing all of this in a centralized fashion is
not always satisfactory, since distributed and computationally constrained
settings are commonly found in practice. It is natural to ask whether the
design of the topology can also be performed in a decentralized fashion.

In the following sections, we consider two decentralized approaches with
different computational requirements for improving both the convergence
time and the power consumption based on redesigning the original network.

1It is well known that λN(L) ≤ dmax. Accordingly we are applying a step-size of the form
α = 1

dmax
.
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Algorithm 5
Require: dmax

dth = dmax
while dth ≥ 1 AND λ2(L(A))> ξ do

α = 1/dth
Set matrix A as a feasible solution
while f (p(A))−µλ2(L(A))> ε do

set µ as − f (p(A))
λ2(L(A))

Solve P1’ with the current (µ ,α), obtaining A∗
set A = A∗

end while
dth = dth−1

end while
choose A(ath,dth) that minimizes − f (p(A))

log(λ2(W))
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Figure 5.3.1: Average results over 1000 different network topologies composed by 100
nodes that are randomly deployed. These graphs have been generated by using the solution
based on the spectrum of Laplacian matrix proposed in this chapter. The different param-
eters {λ2(L),λN(L),λ2(W)} as a function of the percentage of added shortcuts are shown
from left to right.
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5.3.2 Solution Based on the Spectrum of Laplacian Matrix

In this section, we describe a method for improving the convergence of the av-
erage consensus algorithm based on the dominant eigenvector and the Fiedler
eigenvector [46]. Our main idea consists of adding n links2, one in each it-
eration of the algorithm, and removing in total m links, but in this case, a
different number at each iteration. The number m of removed links depends
on the energy associated to the additional links. Since, in this paper, we are
interested in an energy efficient method, the number of removed links should
be large enough to compensate the extra power consumption that results from
adding the n links. Note that the added links require more power than the ex-
isting ones, which means that m≥ n. This implies that the resulting network
is sparser than the original one.

If we use the weight structure defined in (3.1.5) and the optimal value of α

defined in (3.1.9), the minimum convergence time is achieved when λ2(L)
λN(L)

is
maximum. This criterion is given by the existing relation between the eigen-
values of L and W, that is, λi(W) = 1−αλi(L). The only way to reduce this
quotient is by changing the underlaying topology. Moreover, it is also well
known that the eigenvalues of the Laplacian matrix cannot decrease when a
link is added and they cannot increase when a link is removed [48]. Then, this
motivates the idea of finding the group of existing links such that removing
them, λN(L) is reduced as much as possible and the group of shortcuts that
can be added to the original network in order to increase λ2(L) as much as
possible. These two simultaneous effects lead to reduce λ2(W).

If v2 is an eigenvector with unit norm corresponding to λ2(L), then v2v2
T

is a supergradient of λ2(L). If λ2(L) is isolated, then λ2(L) is an analytic
function of L and the supergradient is the gradient. Therefore, when λ2(L) is
isolated, ([v2]i− [v2] j)

2 gives the first order approximation of the increase in
λ2(L), when the links ei j,e ji /∈ E are added to the graph. A similar reasoning
can be applied to the dominant eigenvalue λN(L) and its corresponding eigen-

vector. Then, we add links based on maximizing the quotient ([v2]i−[v2] j)
2

([vN]i−[vN] j)
2 .

However, since we are interested in a power efficient method, we also take
into account the power required to create the new shortcut, that is, pi j = rγ

i j.

2We call these links shortcuts because of its similarity to the concept introduced in Chapter 4 for
Small World Networks
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Then, the final decision for adding a link, at each step of the process, is based
on maximizing the following quotient:

ζ1 =
([v2]i− [v2] j)

2

([vN]i− [vN] j)
2 pi j

(5.3.2)

In a similar way, before executing a new iteration of the algorithm, we
remove enough links to not increase the total power consumption. In this
case, it is based on maximizing:

ζ2 =
([vN]i− [vN] j)

2

([v2]i− [v2] j)
2 pi j

(5.3.3)

Note that in this second case the power consumption associated to the link
removed is included within the denominator. This means that to reduce this
second quotient, the shorter links are removed first. Then the total number of
links is more decreased, which results in a sparser network topology.

Our perturbation method requires only computing two eigenvectors, which
is much less computational demanding than solving the optimization problem
proposed in the previous section. The whole procedure is summarized in Al-
gorithm 6.
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Figure 5.3.2: Average results over 1000 different topologies that are randomly deployed
and each of them are composed by 100 nodes. These graphs have been generated by al-
ways removing the links of the nodes with maximum degree. The different parameters{

1
dmax

,λ2(L), λ2(L)
dmax

}
as a function of the percentage of removed links are shown from left to

right.

5.3.3 Solution Based on Degree of Nodes

As explained before, removing links from high degree nodes can actually give
rise to a neat positive effect in the convergence time. Figure 5.3.2 shows that
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Algorithm 6 Spectrum-based algorithm
Require: ptotal
Ensure: di = di−1,d j = d j−1 || active_ f lag = f alse

pbefore = ptotal
while energy is reduced do

Obtain ζ1
Add link ei j based on ζ1
pnow = pbefore +2pi j
while pnow > pbefore do

Obtain ζ2
Remove link elm based on ζ2
pnow = pnow−2plm

end while
pbefore = pnow

end while

the parameter λ2(W) can be reduced by removing approximately 35% of the
links in a random geometric network where connectivity is ensured with high
probability [50]. In Figure 5.3.2, it is assumed that the entire set of nodes
with maximum degree is known at each iteration step, which implies that
some global information is being used. Our goal in this section is to obtain
similar results, but only using local information and distributed computations.

Assuming a Random Geometric Graph, the degree distribution for a ran-
domly deployed network can be approximated by a binomial distribution, or
in the limit for large scale networks, by a Poisson distribution. Then, the

probability of any node having degree k is p(k) =
e−davgdk

avg
k! and the degree

distribution is simply given by N p(k).

The main idea behind this distributed approach is to find a degree dth

such that all the nodes with degree greater than or equal to this parameter
are chosen for losing links between them. This is done by combining the
information given by Figure 5.3.2 and the degree distribution. In order to
remove a percentage c of the total number of links M, if we assume that each
node i having a degree di ≥ dth loses (di−dth) links, we can approximate the
parameter dth by using the following expression:

N

[
dmax

∑
i=dth

p(i)(i−dth)

]
= cM
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where davg can be approximated asymptotically by M
N . Then, if we divide the

summation in two terms, we have:

dmax

∑
i=dth

p(i)i−dth

(
dmax

∑
i=dth

p(i)

)
= cdavg

The first summation is the expression for the expectation of a Poisson dis-
tribution where the first dth terms have been removed. Therefore, this summa-
tion is always lower or equal than davg resulting in the following inequality:

dth

(
dmax

∑
i=dth

p(i)

)
≤ (1− c)davg (5.3.4)

We are looking for the minimum value of c that ensures prob(di < cdavg)≤
0.05 and allow us to simplify the left hand side of (5.3.4) by using ∑

dmax
i=dth

p(i)≈ 1.
Since the Poisson distribution has almost all the probability accumulated
around the parameter davg, the range of values that allow us to make this ap-
proximation in a dense deployed network is obtained for values of c ≥ 0.35.
In other words, in this range of values, both the number of nodes having low
degree and the associated probability are small. Moreover, since the result-
ing expression for the parameter dth is proportional to the average degree of
the network, it can be calculated in a distributed way before executing one or
several realizations of the consensus algorithm because its inherent simplic-
ity. Then, each node can use Algorithm 7, at each iteration step, to achieve
a proper solution. Figure 5.3.2 shows that using this parameter dth, we can
achieve the best convergence when dth ≈ 0.65davg, that is, by removing ap-
proximately 35% of the total number of links in the network.

In conclusion, this distributed approach consists in removing links from
nodes having high degree. These nodes are chosen by using the parameter
dth, which can be obtained in a distributed way.

5.4 Numerical Results

In this section, we compare the results of the methods proposed in this chap-
ter for the optimization of the network topology. We test our algorithms using
1000 different randomly deployed networks of N = 100 nodes, where con-
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Algorithm 7 Degree-based approach
Require: d1, ...,dM
Ensure: di = di−1,d j = d j−1 || active_ f lag = f alse

if di > dth then
j = index(max(d1,d2, ...,dM))
if d j > dth then

[A]i j = 0, [A] ji = 0
di = di−1,d j = d j−1

else
active_ f lag = f alse

else
active_ f lag = f alse

nectivity is ensured with high probability.
Figure 5.4.1 shows that our spectrum-based method reduces λ2(W) by

maximizing λ2(L)
λN(L)

. The resulting networks are sparser than the original ones
due to the reduction in the connectivity of the network. Figure 5.4.1 also
shows that there exists an optimal topology for a given power consumption
that minimizes λ2(W), beyond which, it is not possible to improve this pa-
rameter.

Figure 5.4.1 shows the behavior of two of the main parameters presented
in this paper, the convergence time, the power consumption and the total
energy consumption, as a function of the percentage of shortcuts included in
the network, that is, the number of links added by our method divided by the
total number of links. These graphs show clearly the benefits of using our
approach in terms of the parameters considered in the study.

Figure 5.4.2 shows the chosen value of c giving, on average, the fastest
convergence time when applying our distributed method and saving, at the
same time, a large amount of power by reducing the connectivity of the net-
work.

Finally, Figure 5.4.3 shows a comparison in terms of the maximum de-
viation from the average. Here, we compare the evolution of the topology
that results from applying the methods proposed in this chapter. It is easy
to see that our distributed methods obtain good results when compared with
the centralized benchmark in terms of convergence time, while keeping a low
power consumption.
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Figure 5.4.1: Convergence time, total power consumption and total energy consumption
of the topologies resulted from applying the spectrum-based method as a function of the
percentage of shortcuts. The red solid line represents the value of the parameters using the
original graph.
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Figure 5.4.2: Convergence time, total power consumption and total energy consumption of
the topologies resulted from applying the degree-based method as a function of the percent-
age of removed links. The different parameters values are shown as a function of c and
generated by removing links from nodes with degree greater or equal than γ = (1− c)λ .
The red line is the value of the parameters when no links are removed.
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5.5 Conclusions of the Chapter

In this chapter, we have proposed several methodologies to optimize the net-
work topology, where the step size determines which to use. When the step
size is small enough or independent of the topology, the optimization prob-
lem proposed in the previous chapter may be used here by applying a simple
reformulation involving the weight matrix. However, when the step-size is
not small enough or it is dependent of the topology, we have presented a to-
tally different methodology to optimize the power consumption of the nodes
and the convergence time needed to achieve consensus. In particular, we
have proposed a centralized and two distributed approaches to reduce the pa-
rameters considered, which present different computational cost and can be
utilized in different network configurations.
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Consensus in Time-variying Graphs
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Chapter 6

Random Directed Graphs:
Asymmetric Gossip

6.1 Introduction

In the presence of random communications, since every instantaneous topol-
ogy is randomly generated, the optimization methodologies proposed in the
two previous chapters are no longer valid. In practice, random communica-
tions imply that the power vector p(k) in each iteration k and the convergence
time t(W) are both random1. If the number of iterations needed to reach
convergence is random, then the number of instantaneous topologies gener-
ated during the consensus process is also random. Thus, in order to obtain
the energy consumption of node i, we should calculate Ei = ∑

t(W)
k=1 pi(k). Any

method seen in previous chapters to optimize the topology requires a priori
knowledge of how the communications are performed. Then, in this random
setting, the value of Ei cannot be properly optimized, since we do not know
neither the number nor the structure of the instantaneous topologies A(k) that
are generated. Finally, the conditions used in the previous chapters to ensure
convergence are not either valid here. This means that new conditions are re-
quired for time-varying graphs and new consensus schemes must be derived
consequently.

1Note that for continuous systems despite essential progress in consensus over time-varying
graphs, some issues in this area remains open. This partly pertains to a gap between necessary and
sufficient conditions for consensus in the part concerned with random interaction topology. Since
for discrete systems this gap was recently filled, when in this work it is referred to consensus in
(random) time-varying topologies, this is always consensus in discrete systems.
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In the presence of random communications, the simplest scheme that en-
sures average consensus almost surely is the gossip algorithm presented in
Boyd et al. [31], which focuses in a low complexity implementation. In this
scheme, the non-zero entries of W(k) are generated by randomly activating,
at each time instant k, an undirected edge, which determines the nodes that
pairwise exchange and mix information at that iteration. The information is
mixed according to a fix real number α ∈ (0,1), which is again the step size
of the process. This scheme leads to the nodes i and j to produce a new state
according to the equations:

xi(k+1) = (1−α)xi(k)+αx j(k)

x j(k+1) = αxi(k)+(1−α)x j(k) (6.1.1)

The state of the rest of nodes remains unaltered. Note that this scheme is im-
plicitly using instantaneous weight matrices of the form W(k) = I−αL(k).

In order to provide almost sure convergence to the average value, this
protocol is forcing to ensure the following:

• A strongly connected undirected graph G = (V ,E ) in which all the
instantaneous random subgraphs G (k) are included G (k)⊂ G .

• Every instantaneous weight matrix is doubly-stochastic, that is, W(k)1=
1 and 1T W(k) = 1T .

The first condition is ensured by having a sufficiently large power trans-
mission at the nodes, while the second one is satisfied by ensuring that every
matrix W(k) is a N×N symmetric matrix of the form W(k) = I−αL(k).
Accordingly, the symmetric gossip algorithm defined by equation (6.1.1) pro-
vides, by only using local communications, almost sure convergence to the
average:

x(k)→ xavg, almost surely (6.1.2)

where xavg is a vector that contains N entries equal to the average µ of the
initial data of nodes, that is, xavg = µ1.
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As explained in Chapter 1, the linear iteration given by (6.1.1) generally
takes many iterations to converge. Several alternative schemes of communi-
cations have been proposed in order to accelerate consensus. Some important
examples are the works of [41], [26] and [22]. In particular, the work in [41]
makes use of geographic information to accelerate the gossip process, which
requires to establish long routes, making it difficult to ensure instantaneous
symmetric communications. This work was improved in [26], by allowing
path averaging. Finally, the work in [22] proposes the use of asymmetric
broadcast communications, which provides fast convergence to some partic-
ular value, but it significantly differs from the average.

In practice, ensuring symmetric communications is difficult due to the
existence of wireless interferences and other environmental factors. The ma-
jority of the existing related works assume symmetric exchanges of data to
reach average consensus almost surely, with the notable exceptions of [25]
and [53], which focus on asymmetric unicast and asymmetric broadcast com-
munications respectively.

The main problem of using asymmetric communications is that the sum-
mation of the initial data is not preserved along the iterations. When an
asymmetric packet is sent, the receiving node updates its state producing a
deviation from the target state (average consensus in our case). We call the
difference between two consecutive states the residual. The intuition behind
our approach is to exploit this residual generated in each asymmetric data ex-
change, to preserve the summation of the system and accelerate the consensus
process.

Our methodology has two important advantages over previous methods
[25] and [53]. Firstly, the matrices used during the process are row-stochastic
instead of column-stochastic, facilitating the analysis of the protocol. In ad-
dition, the use of the residuals allows to use local information to the nodes to
guide the communications so that the convergence is faster. This means that
although the activations of the nodes that perform a transmission are random,
the receivers are chosen using local knowledge.
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6.2 Residual gossip

We propose an asymmetric gossip algorithm that ensures average consensus
almost sure under unicast and broadcast communications. In this asymmetric
scenario, the instantaneous graphs G (k) ⊂ G are generally directed. The
weight matrix W(k) at each iteration k is asymmetric and only the condition
W(k)1 = 1 is fulfilled. Finally, the data is still mixed according to a fix real
number α ∈ (0,1). Let us consider first the following gossip scheme:

x j(k+1) = αxi(k)+(1−α)x j(k), ∀ j ∈Ni(k) (6.2.1)

where the remaining nodes in the network, including the transmitter node i,
do not update their state value, that is:

x`(k+1) = x`(k), ∀` /∈Ni(k) (6.2.2)

This is the simplest asymmetric gossip scheme, which is studied in [45].
It ensures convergence to a common state value almost surely, but this state
is not necessarily the average (see Figure 6.2.1). In other words, there exists
a random variable a such that ∀i ∈ V it is accomplished that lim

k→∞
xi(k) =

a, almost surely.

0 100 200 300 400 500
5

5.5

6

6.5

7

7.5

8

iteration k

x
i(k

)

Figure 6.2.1: Example of the convergence of N = 20 nodes with an asymmetric gossip
algorithm. The process converges to a certain value that clearly differs from the initial
average. This initial target value is represented by the red dashed line in the figure.
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At each step of the asymmetric process, a residual component is ignored.
Disregarding it is what causes the final deviation from the average. In partic-
ular, the following information is ignored:

∆ j = x j(k)− (αxi(k)+(1−α)x j(k)), ∀ j ∈Ni(k) (6.2.3)

which coincides with the current variation of node j.
What we propose in our residual gossip algorithm is to include in the

packet transmitted through each link ei j, together with the current state of the
transmitter node i, its residual ri(k) accumulated until iteration k. Accord-
ingly, the system evolves following the new equation:

x j(k+1) = αxi(k)+(1−α)(x j(k)+ ri(k)), ∀ j ∈Ni(k) (6.2.4)

Note that in order to evaluate the state of each node i, we require to calcu-
late xi(k)+ ri(k). Then, consensus is reached whenever lim

k→∞
(xi(k)+ ri(k)) =

a, almost surely. Later in this chapter, we restrict the residuals to be ri(k)= 0,
∀i∈V , so that the convergence condition is the usual one, that is, lim

k→∞
xi(k) =

a, almost surely.
Lemma 6.1: Given the system evolution in (6.2.4) and in order to ensure

the summation of the process is preserved along the iterations, the residual of
any receiver j must evolve as follows:

r j(k+1) = r j(k)+ x j(k)− x j(k+1)+ ri(k), ∀ j ∈Ni(k) (6.2.5)

while the residual of any transmitter i is set to zero ri(k+ 1) = 0 and rest of
residuals remain unaltered.

Proof. In order to preserve the summation of the process in this new scheme,
it must be accomplished that the summation of the state of the nodes and its
residual at both iterations k and k+ 1 are the same, that is, xi(k)+ x j(k)+
ri(k)+ r j(k) = xi(k+ 1)+ x j(k+ 1)+ ri(k+ 1)+ r j(k+ 1), ∀ j ∈Ni(k). By
substituting ri(k+1) = 0 and r j(k+1) = r j(k)+ x j(k)− x j(k+1)+ ri(k) in
the right hand side of the previous equality, it can be easily seen that both
terms are exactly the same.

This alternative asymmetric scheme defined by (6.2.4) and (6.2.5) pre-
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serves the summation of the initial data along iterations (states plus residu-
als). Then, if this scheme is still able to converge to a common state, it is
surely that this is the average of the initial data.

Equation in (6.2.4) can be expressed in matrix form as follows:

x(k+1) = W(k)(x(k)+ s(k)) (6.2.6)

where the the residual vector s is given by:

[s(k)] j =

{
ri(k) if j ∈Ni(k)
0 otherwise

and the weight matrix W(k) is given by:

[W(k)]` j =


1−α if j = `, ` ∈Ni(k)
α if j 6= `, j = i, ` ∈Ni(k)
1 if j = `, ` /∈Ni(k)
0 otherwise

where node i is chosen to send data in the current iteration k.

The weight matrix and the residual vector allow us to express (6.2.4) as
follows:

x(1) = W(0)(x(0)+ s(0))

= W(0)x(0)+W(0)s(0)

x(2) = W(1)(x(1)+ s(1))

= W(1)W(0)(x(0)+ s(0))+W(1)s(1)
...

x(k+1) = W(k)(x(k)+ s(k))

= W(k)W(k−1) . . .W(1)W(0)x(0)+

+W(k)W(k−1) . . .W(1)W(0)s(0)+

+W(k)W(k−1) . . .W(1)s(1)+
...

+W(k)s(k)
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where s(0) is a vector with all of its entries equal to zero. This system evolu-
tion can be expressed as follows:

x(k+1) =
k

∏
i=0

(W(i)x(0))+
k

∑
j=0

(
k

∏
`= j

(W(`)s( j))

)
(6.2.7)

Proposition 6.1: The system defined by (6.2.7) reaches average consen-
sus almost surely lim

k→∞
x(k) = xavg, provided that lim

k→∞
ri(k) = 0 ∀i ∈ V .

Proof. The first term of (6.2.7), given by ∏
k
i=0 (W(i)x(0)), defines an asym-

metric consensus as the one studied in [45]. Since every W(k) is row stochas-
tic, the product of these matrices and the initial vector x(0) leads to consensus
to a scalar random variable a almost surely. The second term can be seen as
the summation of several asymmetric consensus. Let us denote k = C the
first iteration in which ri(k) ≤ ξ ∀i ∈ V , for an arbitrarily small value of ξ .
When this consensus iteration k =C is reached, we can continue the process
∆ iterations more, that is, ∑

C+∆

j=0

(
∏

C+∆

`= j (W(`)s( j))
)

. If ∆ is large enough, all
the products, started before the iteration k =C, are able to achieve consensus
to a scalar random variable ai almost surely. Formally, our system provides:

lim
k→∞

x(k) = a1+
C

∑
i=0

ai1+
C+∆

∑
i=C+1

ai1, almost surely

where ai ≤ ξ if i >C.
Therefore, since we are ensuring that the summation (states plus residu-

als) is preserved along the iterations, our scheme provides average consensus

lim
k→∞

x(k) = a1+
C

∑
i=0

ai1 = xavg almost surely.

As stated at the beginning of this section, the process defined by (6.2.7) is
suitable for both unicast and broadcast communications. The only difference
between these two schemes is the number of nodes that receive the informa-
tion and the way in which the residuals are disseminated.

Our overall algorithm is described as follows: When a new iteration is
started, a node i is randomly chosen. This node wakes up and sends a unicast
or a broadcasts packet containing its own state value and the residual divided
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by certain quantity 1≤ β ≤ di. The packet is received by the destination node
or the whole neighborhood. Once it is received, the corresponding nodes
update their information according to (6.2.4). Therefore at each iteration k,
we have the following:

• Node i sends a packet containing xi(k) and ri(k)
β

and sets ri(k) = 0. How
to choose β is explained later.

• The packet is successfully received by the destination node in the uni-
cast scheme, or by every node j ∈Ni(k) in the broadcast scheme.

• The nodes receiving the packet from node i update its own state accord-
ing to (6.2.4), which generates an update of its own residual by using
(6.2.5). The state of the rest of the nodes remains unaltered.

This algorithm reaches average consensus almost surely, if lim
k→∞

ri(k) =

0 ∀i ∈ V , as shown in Proposition 6.1.

6.2.1 Condition for the residuals to vanish

A general condition for the residuals to vanish is that after certain number of
exchanges2 κ , any extra transmission from any node i to any node j at any
time instant k > κ satisfies the following:

N

∑
n=1
|rn(k)| ≥

N

∑
n=1
|rn(k+1)|+ ε (6.2.8)

where ε is an arbitrarily small real number, which determines how fast the

residuals vanish. The condition (6.2.8) clearly implies that lim
k→∞

N

∑
n=1
|rn(k)| =

0, that is, all the residuals tend to zero.
For simplicity let us assume that in each iteration only one node i com-

municates with only one node j. In this particular case, condition (6.2.8)
becomes:

|ri(k)|+ |r j(k)|> |r j(k+1)| (6.2.9)

2Note that residuals can be initialized to zero, so they first need to grow in absolute value. Once
these have a value different from zero, these can be used to guide the process to average consensus. In
following sections we explain efficient methodologies to initialize the residuals with suitable values.
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where we have noted that it is always accomplished that |ri(k+1)|= 0.
Proposition 6.2: A transmission from node i to node j at time instant k

satisfies condition (6.2.8) if |x j(k)− xi(k)|< 1−α−ε

α
|ri(k)|.

Proof. Lets first develop the expression of r j(k+1):

r j(k+1) = ri(k)+ r j(k)+ x j(k)− x j(k+1)

= ri(k)+ r j(k)+ x j(k)− (αxi(k)+(1−α)(x j(k)+ ri(k)))

= r j(k)+α(ri(k)+ x j(k)− xi(k))

then, it is accomplished that:

|r j(k+1)| = |r j(k)+α(ri(k)+ x j(k)− xi(k))|
≤ |r j(k)|+ |α(ri(k)+ x j(k)− xi(k))|

which allows to express the condition in (6.2.8) as follows:

|α(ri(k)+ x j(k)− xi(k))|+ ε < |ri(k)|

which is accomplished if:

α|ri(k)|+α|(x j(k)− xi(k))|+ ε < |ri(k)|

and noting that 0≤ α ≤ 1, we can express the previous inequality as:

|x j(k)− xi(k)|<
1−α− ε

α
|ri(k)|

which concludes the proof.

Thus, if the residual of a node i sending the information is equal to zero
ri(k), the exchange cannot take place without violating Proposition 6.2. How-
ever, convergence to the average is still possible, whenever the variation pro-
duced by these transmissions is equal to zero.

Corollary: The difference |r j(k+ 1)|− |r j(k)| between two consecutive
residuals in a receiving node j, produced by the transmission of a transmit-
ting node i with residual ri(k) = 0, tends to vanish, that is, lim

k→∞
(|r j(k+1)|−
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|r j(k)|) = 0.

Proof. Given a node i with residual ri(k) = 0, its transmission to node j does
not affect the resulting residual r j(k+1), if consensus has been reached. To
prove this, note that r j(k+1) = r j(k)+ (x j(k)− x j(k+1))+ ri(k), since we
are considering here any transmitter node i with ri(k) = 0 and noting that
limk→∞(x j(k)− x j(k+1)) = 0, we have the following:

lim
k→∞

(|r j(k+1)|− |r j(k)|) = 0

Thus, it is important to differentiate the following two cases:

• The residual of the node that is sending the information is zero. This
means that there is no extra information to guide the process towards
consensus. In this case, we assume that the nodes are in a state equiva-
lent to the original state and can exchange information normally, gener-
ating a residual in the receiver. Note that the summation of the process
is preserved and the difference between two consecutive residuals tends
to vanish.

• The residual of the node that is sending the information is not zero.
In this case, the transmission always occurs and the receiving node de-
cides what to do with the information in order to satisfy Proposition 6.1.
These transmissions tend to reduce the value of the residuals, making
them to vanish.

In the following sections, we show different heuristics to make our resid-
ual gossip efficient forth both unicast and broadcast schemes of communica-
tion.

6.2.2 Unicast scheme of communications

When a unicast scheme of communications is considered, only one node re-
ceives the information from the origin node i. We want to minimize the
value of the residual along the iterations, which intuitively leads to ensure
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lim
k→∞

ri(k) = 0 ∀i ∈ V . There are two ways to operate in this scenario: i) the

origin node i randomly chooses a neighbor j from Ni, which updates its
state if Proposition 6.2 is fulfilled, or node j directly updates its residual
with ri otherwise or ii) the origin node decides to which node is best to send
the information according to some local criteria. We focus on the second
methodology, which leads us to the following heuristic:

Min-max approach (h1): This heuristic chooses the neighbor with mini-
mum state value if the current residual of the origin node i is positive and it
chooses the neighbor with maximum state value if the current residual of the
origin node i is negative. This local information can be estimated during the
process, updating the minimum and the maximum when the neighbors send
their own information.

This approach ensures that the residual ri(k) and the difference between
states x j(k)− xi(k) are of opposite sign. As a consequence, we can upper
bound |α(ri(k)+ x j(k)− xi(k))| by max(α|ri(k)|,α|x j(k)− xi(k)|), leading
to the condition:

|x j(k)− xi(k)|<
1
α
|ri(k)| (6.2.10)

which is less conservative than the one stated in Proposition 6.2 for a general
case.

Notice that both processes, namely, the nodes reaching consensus and the
residuals approaching to zero, are closely related. In fact, if the residual sent
from the transmitter to the receiver makes their difference among states to
remain equal or to become smaller, the difference among states and the re-
sulting residual are both decreased. This reduction is explained by the manner
in which the state of the nodes and the residuals are updated.

6.2.3 Broadcast scheme of communications

When a broadcast scheme of communications is considered, every node j ∈
Ni(k) receives the information from the origin node i. The proposed heuris-
tics in this scheme are:

Equitable approach (h2): This first method is based on equally distribut-
ing the residuals. For this purpose, the origin node i sends (xi(k),

ri(k)
di

) to
every node j ∈Ni(k), that computes its new state (6.2.4) and residual (6.2.5)
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if the condition stated in Proposition 6.2 is fulfilled.
Large-small approach (h3): This heuristic updates the neighbors with

smaller state value than node i if its current residual is positive or it updates
the state of the neighbors with larger state value otherwise. The value of β

is obtained accordingly to the resulting Ni(k). The rest of neighboring nodes
only update their residual. Similarly to the unicast case, the condition in
Proposition 6.2 can be also relaxed here.

6.2.4 Toy example

Let us define a network example composed by N = 5 nodes, where, after
k iterations, the state of the nodes is x(k) = [6 4 2 8 5]T and the residuals
r(k) = [−3 −1 2 2 0]T . Now imagine that node i = 1 has been chosen to
broadcast its value to its neighbors 2, 3 and 4, which only 2 and 4 satisfy
Proposition 6.2. In this case, if we use α = 1/2, then the entries of the matrix
W are W21 =W31 =W41 = 1/2, W11 =W55 = 1, W22 =W33 =W44 = 1/2 and
the rest are zero. Finally, if we consider the equitable approach (h3), the
residual is spread as ri(k)/di =−3/3, thus vector s is s = [0 −1 −1 −1 0]T .

The result is x(k+1) = [6 9
2 2 13

2 5]T and r(k+1) = [0 − 5
2 1 5

2 0]T . Note
that the summation of the process ∑

5
i=1(xi(k)+ ri(k)) = 25 is preserved.

6.3 Numerical results

For the experiments conducted in this chapter, we have used a randomly de-
ployed WSN of N = 50 nodes inside a 2D unit square area. The information
is mixed as described in (6.2.4) where the instantaneous topology determines
which data is mixed. We average our results over 100 different topologies.
The size of the network do not affect the convergence results and our method
is totally scalable with the network size in terms of computational resources.

Figure 6.3.1 shows that our residual gossip algorithm converges to the
average faster than some existing methods in the related literature. In partic-
ular, we evaluate the convergence in terms of the deviation from the average
of the initial data. In the unicast scheme of communications, we compare
our heuristic h1 with the existing methods of [45] and [25]. In the broadcast
scheme of communications, we compare our two heuristics h2 and h3 with
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the existing methods of [22] and [53]. Note that the broadcast scheme takes
less iterations to converge with similar error. Note that since the convergence
time is improved and the exact same links are activated per communication
step, the energy is consequently improved with our methodology.

Figure 6.3.2 shows the evolution of the residuals originated by our three
heuristics. The norm of the vector r(k) is evaluated along the iterations. Since
the vector r(0) has all of its entries equal to zero, the norm of this vector
grows along the first iterations, until a maximum is reached and from which
it starts to rapidly decrease. It is interesting to notice that the method that
provides the faster convergence is the one that produces the largest residuals
at the beginning of the process. As expected, all the residuals vanish as the
iteration number k increases.

Finally, in order to reduce more the convergence time, we could add or
subtract some suitable value δi to each node state and initialize the residuals
with it, such that xi = xi−δi and ri(0) = δi.
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Figure 6.3.1: Convergence of N = 50 nodes in several randomly deployed networks. (a)
Comparison between our unicast residual gossip and the works of [45] and [25]. (b) Com-
parison between our broadcast residual gossip and the works of [22] and [53].
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Figure 6.3.2: Evolution of the residuals with the iteration number k for the three heuristics
proposed in this chapter. The broadcast heuristic (h3) that provides, in general, the faster
convergence is the one that produces the largest residuals at the beginning of the process.
As expected, all the residuals vanish as the iteration number k increases.
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6.4 Conclusions of the Chapter

In this chapter, we have proposed a new asymmetric gossip algorithm for ob-
taining almost sure average consensus with fast convergence speed. We have
shown that our protocol ensures that the average is preserved along the itera-
tions. Then, we have derived the conditions for our protocol to reach consen-
sus. Both results ensure that our protocol ensures average consensus almost
surely. Finally, we have compared the convergence results of our new al-
gorithm with several existing approaches, showing the superior performance
of our asymmetric algorithm in both the unicast and broadcast schemes of
communication.
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Random Directed Graphs: MSE
consensus

7.1 Introduction

Gossip algorithms are a clear example of the inherent capacity for distributed
processing that Wireless Sensor Networks (WSNs) possess. As explained in
the previous chapter, in these algorithms [31][41], nodes randomly cooperate
with each other by means of communications that are generally assumed to
be symmetric in order to reach a global common solution. This cooperative
technique becomes specially important when the implementation of estima-
tion [81][5] and detection [80][4] tasks must be tackled in a distributed man-
ner under real communications. These are tasks that require a fast response
time in order to ensure the correct operation of the upper layer application,
which implies, among other requirements, an efficient use of the wireless
channel through multiple concurrent transmissions. However, an overuse of
the channel might lead to interferences, collisions and other undesired effects,
which affect negatively the convergence of the gossip algorithm. In this set-
ting, ensuring bidirectional communications implies that any node j, after a
transmission of data to any other node i, should wait until the acknowledg-
ment, including the data from i, is received. In addition, this latter node i
should also wait for the acknowledgment from j. Then, every node waiting
for an acknowledgment cannot mix information with any other node until the
current data exchange is finished. Thus, while a node is waiting, the data re-
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ceived from other nodes, must be stored and processed after the current one.
This procedure requires a control mechanism that introduces both a commu-
nications overhead and an uncontrolled delay in gossip algorithms, which is
prohibitive in many real applications.

As explained in the previous chapter, executing gossip algorithms under
asymmetric communications ensures, almost surely, consensus to a common
(random) value, but this may significantly diverge from the average value.
Solutions such as the residual gossip algorithm proposed in the previous
chapter can be used to partially solve this problem. However, if the asymme-
try in the communications occurs due to uncontrolled collisions and packet
losses, certain deviation may still be present. Some conditions for an asym-
metric gossip algorithm to reach consensus almost surely have been derived
in [82] and an upper-bound on the mean squared error (MSE) has been pro-
posed in [71]. Depending on both the deviation from the average and the error
tolerance of the gossip-based application, the response of the whole system
may be compromised. Thus, gossip schemes with a satisfactory statistical
response under the presence of random collisions and packet losses are also
necessary.

Independently of the gossip algorithm proposed [22][45], the order and
the frequency of the data exchanges are determined by the chosen Medium
Access Control (MAC) protocol. In the context of WSNs, two types of MAC
protocols have been widely utilized to control the channel access and deal
with the interference. When nodes decide whether to transmit or not based
on the presence or absence of certain amount of energy in the channel, the
protocol can be classified as a Carrier Sense Multiple Access (CSMA) proto-
col [47][39][7][37]. Alternatively, when nodes transmit according to certain
time-division multiplexing approach, the protocol can be classified as a Time
Division Multiple Access (TDMA) protocol [44][23][40][28]. Schemes com-
bining the two previous approaches have recently appeared in the related lit-
erature [54][62][73]. These hybrid protocols are aimed at incorporating the
main advantages of both traditional schemes, namely, the distributed nature
of CSMA protocols, where nodes only use local information, and the time-
division methodology proposed by link scheduling protocols, where colli-
sions are completely avoided.

Although the previous MAC alternatives [54][62][73] present good per-
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formance in terms of throughput and collision avoidance, if no other control
mechanism is considered, the resulting connectivity patterns are asymmetric
and random, and the agreement value reached by a gossip algorithm executed
over them is a random variable. To the best of our knowledge, the only works
considering a MAC protocol for satisfying certain consensus requirements at
the application level have been proposed in [85] and [84]. However, these are
based on applying the MAC protocol and the gossip algorithm in two differ-
entiated phases, which makes them unsuitable for many real applications.

When designing a new MAC protocol, using accurate radio signal prop-
agation and interference models is fundamental to ensure that collisions are
minimized. The interference model is directly related to the complexity of
the protocol, being important the distinction between considering only pri-
mary interference and taking also into account secondary interference. On
the one hand, considering only primary interference implies that two links
interfere with each other if and only if they share the receiver. On the other
hand, considering also secondary interference implies that every link can af-
fect each other even if they do not share a receiver, which is a much more
realistic model. In the first case, the scheduling can be solved in polynomial
time [51], while in the second case, it becomes NP-hard [49].

In this chapter, we consider a cross-layer scheme for distributed schedul-
ing based on a carrier sense strategy, that allows an asymmetric gossip al-
gorithm to reach unbiased average consensus in the presence of secondary
interference. Based only on local information, such as the sensed power in
the channel, nodes are able to self-organize in a time division basis, in such
a way that, under the assumption of continuous time, free-collision patterns
with a probabilistic symmetric structure are generated. More specifically, ev-
ery iteration of the gossip algorithm involves several scheduling steps, each
of which implies the activation of a link and, following a specific criteria,
the inhibition of several other links around it. This criteria, which is the key
aspect of the proposed MAC protocol, is designed in a cross-layer basis by
considering the performance of the random consensus.

The remainder of this chapter is structured as follows: some necessary
background on graph theory and on consensus problems is presented in Sec-
tion 7.2. In Section 7.3, we present a cross-layer link scheduling protocol
based on carrier sense that ensures unbiased average consensus. We then
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present, in Section 7.4, some numerical results about the performance of our
approach. Finally, the conclusions of the chapter are summarized in Section
7.5.

7.2 Problem definition and background

Previous works [31][41] in gossip algorithms aimed at computing the aver-
age of the initial values of the nodes assume that the underlying graph is undi-
rected, namely, the communications between every pair of nodes are symmet-
ric. However, in a realistic scenario, subject to interference, path loss, fading
and packet losses, the arising instantaneous topologies are totally random,
hence the final consensus value is actually a random variable. In this chap-
ter, we propose a setting where the gossip algorithm is executed over a new
cross-layer MAC protocol specially designed to keep the random consensus
value unbiased, namely its expectation matches the average of the initial val-
ues of the nodes. In order to ensure this property, an appropriate connectivity
pattern is created by our MAC protocol before each iteration of the gossip
algorithm takes place. As much of the previous work in the related literature
[54][62][73], we assume continuous time, such that two transmissions can
not start exactly at the same time.

In this section we first introduce the interference model, which provides
the framework that rules the design of our proposed MAC protocol. Then,
we show the importance of the average consensus in the distributed design
of global statistical inference tasks, and present the conditions under which
random consensus is unbiased.

7.2.1 Interference model

We consider a network composed of N nodes, each one equipped with an
omni-directional antenna, and arbitrary deployed in a square area of L square
meters following a uniform distribution. The nodes perform half-duplex com-
munication using a common transmission power Pt . Each pair of nodes is
linked by a single user channel affected by the corresponding fading. The
work in [7] shows that, in practice, a simplified path loss model is usually
enough to capture the essence of the fading effect. The channel gain between
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a transmitter node j and a receiver node i is approximated by 1
dγ

i j
, where γ ≥ 2

is the path-loss exponent and d ji = di j is the distance that separates nodes i
and j.

Additionally, we assume the SINR interference model according to which
the successful reception of a packet sent by node j to node i depends on the
SINR at node i, that is, a packet between j and i is correctly received if and
only if:

Pt
dγ

ji

∑
v∈V ,v6= j

Pt

dγ

iv
+N0

≥ β (7.2.1)

where N0 is the background noise and β is a constant threshold. In practice,
β is chosen to guarantee a certain quality in the communications. If inequal-
ity in (7.2.1) is satisfied for every scheduled link, it is said that a feasible
transmission pattern has been formed. In this model, all the simultaneous
transmissions are considered when evaluating whether a single transmission
is valid or not.

In the sequel, we introduce some definitions concerning the different areas
that are associated to a transmission.

Definition 1. The transmission range Rmax is the maximum distance up to
which a packet can be correctly received in absence of interference.

Taking into account (7.2.1) and in the absence of interference, the maxi-
mum transmission radius Rmax can be expressed as:

Rmax =

(
Pt

N0β

) 1
γ

(7.2.2)

Since a transmission to a node at distance equal to Rmax implies that no
other link can be simultaneously scheduled without collision, we assume that
the length of the links to be scheduled should be shorter than Rmax. Accord-
ingly, as in [7] and [37], we define also a circular area of radius Rρ < Rmax:

Definition 2. The intended transmission range Rρ of a node j defines the
circular area containing all the neighbors that node j aims at communicating
with.
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Therefore, this intended transmission range can be expressed as:

Rρ = ρRmax = ρ

(
Pt

N0β

) 1
γ

(7.2.3)

with 0 < ρ < 1. The value of ρ must be large enough for the network to be
connected, namely, in order to guarantee a multi-hop path between every pair
of nodes with high probability. It has been shown [50] that the critical radius

for connectivity is L
√

logN
πN , so we have that L

√
logN

πNR2
max

< ρ < 1.

Definition 3. The collision area associated to a specific link between trans-
mitter node j and receiver node i is the circular area of radius ϒ ji and cen-
tered at i, inside which, no other node can transmit without corrupting the
transmission from j to i.

From (7.2.1), and considering that a collision occurs at node i if SINR <

β , the following expression can be readily obtained:

ϒ ji =

 Pt
Pt

βdγ

ji
−N0

 1
γ

(7.2.4)

All the areas and radii described before (Rmax, Rρ , ϒ ji) are shown in Fig-
ure 7.2.1.

Finally, when a node j performs a transmission, and in order to protect the
corresponding link, other nodes around it might decide not to transmit. This
concept leads us to the following definition:

Definition 4. The inhibition area S j
inh of a transmitter node j is defined as the

area that includes all nodes that are inhibited due to its transmission.

The main objective of this area, generally defined as a circle centered at
a transmitter node j, is to protect the transmission from node j to any neigh-
bor i, by inhibiting as many nodes from the collision area ϒ ji as possible.
However, since each area is, in general, centered at a different point, this ob-
jective entails a balance between the number of interfering nodes that are not
inhibited (hidden terminal), and the number of non-interfering nodes that are
inhibited (exposed terminal). As opposed to ϒ ji, whose value is completely
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determined by the wireless medium and the node transceiver sensibility, the
inhibition area S j

inh is a design parameter of the protocol, and its exact de-
termination is a key point in the design of any CSMA policy. This issue is
tackled in 7.3.2 for our specific protocol design.

7.2.2 Graph Theory

The sequence of instantaneous connectivity patterns that result from applying
a MAC protocol can be modeled as a time-varying graph G (k) = (V ,E (k)),
consisting of a constant set V of N nodes and a set E (k) ⊂ E of directed
links that changes at each iteration k. We denote a directed link from node j
to node i as e ji, which indicates that there exists a directed information flow
from node j to node i. The set E = {e ji‖d ji ≤ Rρ} denotes all the links that
are susceptible to be scheduled, that is, the links between pairs of nodes that
are at distance lower or equal than Rρ . While the set E must include enough
links to ensure that the underlaying graph results in a strongly connected
graph, as we will explain later, each subset of links E (k) may correspond to
a disconnected one.

Given a time-varying graph G (k), we can assign an N×N adjacency ma-
trix A(k) where an entry [A(k)] ji is equal to 1 if e ji ∈ E (k) and 0 otherwise.
The set of neighbors of a node i is defined as N j(k) = {i ∈ V : e ji ∈ E (k)}
and the degree matrix D(k) is a diagonal matrix whose entries are given by
[D(k)] j j = |N j(k)|. Then, the Laplacian of a graph G (k) is a matrix defined
as L(k) = D(k)−A(k), whose second smallest eigenvalue1 λ2(L(k)) is the
so-called algebraic connectivity. In general, and specifically for asymmetric
gossip schemes, instantaneous matrices A(k) and L(k) are non symmetric.
Besides, if we denote by [P] ji the probability of establishing a link from node
j to node i, we have that E[A(k)] = Ā = P, where P is the connection prob-
ability matrix. The main objective of this chapter is to obtain, despite the
asymmetry of instantaneous matrices A(k), a symmetric matrix P. As it is
explained in the next subsection, this condition guarantees that the consensus
process is unbiased, i.e., it converges in expectation.

1We are assuming that the eigenvalues of a instantaneous Laplacian matrix are arranged in in-
creasing order, i.e., 0 = λ1(L(k))≤ λ2(L(k))≤ ...≤ λN(L(k)).

133



Efficient Consensus in Sensor Networks

ij
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Rmax
Υji

eji

Figure 7.2.1: Relation between the different areas and radii presented in this chapter. In this
example, it is assumed that the link between the transmitting node j and the receiving node
i is chosen to be activated.

7.2.3 Distributed computation and average consensus

As stated in the previous chapter, at each iteration k of the gossip algorithm,
some nodes send their values to randomly chosen neighbors. Thus, every
node i that receives a packet from a neighbor j updates its current value ac-
cording to the expression:

xi(k+1) = (1−α)xi(k)+αx j(k) (7.2.5)

where α is the step size of the algorithm chosen to ensure convergence. The
other nodes remain unchanged.

By using matrix notation, we can write (7.2.5) in a more compact form
as:

x(k+1) = W(k)x(k) (7.2.6)

where:
W(k) = I−αL(k) (7.2.7)

is the instantaneous weight matrix at the k-th iteration. Therefore, if we form
the vector x(0) = [x1(0) . . .xN(0)] with the initial values of the nodes, at each
iteration k of the gossip algorithm we have that:

x(k) = W(k) . . .W(0)x(0)
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The final objective of this gossip algorithm is that all nodes of the network
asymptotically compute the average of the initial values of the nodes. In
this way, if we define xavg =

1
N ∑

N
i=1 xi(0), the goal of the process is that the

following holds:
lim
k→∞

x(k) = xavg1 (7.2.8)

At each iteration k of the algorithm, the deviation is given by the mean
square error (MSE), defined as:

MSE(k) =
1
N
E
[∥∥x(k)− xavg1

∥∥2
2

]
(7.2.9)

where the expectation is computed over all the realizations of the gossip al-
gorithm.

The matrices W(k) are random and independent at each iteration. By con-
sidering (7.2.7), it becomes clear that W(k) and L(k) have the same eigen-
vectors, and that their eigenvalues are related as: λi(W) = 1−αλN−i+1(L).
Therefore, the largest eigenvalue of W(k) is equal to 1, and the associated
right eigenvector is the all-one vector 1. However, and due to the random
nature of W(k), nothing can be stated about the associated left eigenvector,
which becomes a random vector and is different, in general, for each W(k).
Therefore, and provided that the graph is connected on average, namely
λ2
(
L
)
6= 0, where L = E[L(k)], we have that [82]:

lim
k→∞

W(k) . . .W(0) = 1mT

where m is a random vector with ∑
N
i=1 mi = 1 and 0 ≤ mi ≤ 1. It means that

the product of the weight matrices asymptotically converges to a rank-one
matrix with equal rows, and (7.2.8) becomes:

lim
k→∞

x(k) = 1mT x(0)

which implies that the nodes reach consensus in the common random value:

x̂avg = mT x(0) =
N

∑
i=1

mixi(0) (7.2.10)
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Then, by performing the dynamics in (7.2.5), each node is able to compute
an estimator x̂avg of xavg, whose value depends on the left eigenvectors asso-
ciated to eigenvalue 1 of the weight matrices applied during the process. The
performance of the estimator is given by the asymptotic value of the MSE in
(7.2.9):

MSE(x̂avg) = lim
k→∞

MSE(k) = E
[(

xavg− x̂avg
)2
]

(7.2.11)

which can be decomposed as follows:

MSE(x̂avg) =
(
E
[
xavg− x̂avg

])2
+E

[(
x̂avg−E

[
x̂avg
])2
]

where the first term on the right side denotes the bias of the estimator, and the
second term represents its variance. The estimator converges in expectation
if the following holds:

E
[
xavg− x̂avg

]
= 0

that is, its bias is equal to zero. In this case, we say that the estimator is
unbiased.

Lemma 7.1 The estimator x̂avg is unbiased if and only if P1 = 1PT , that
is, the sum of the columns of the probability matrix P is the same as the sum
of its rows.

Proof. If we compute the expectation of the value of x(k) in the limit, we
have the following:

E[x̂avg1] = E[ lim
k→∞

W(k) . . .W(0)x(0)] = lim
k→∞

Wkx(0)

where we have applied the independence between the matrices W(k) and also
from vector x(0). By applying the Perron-Frobenius Theorem, and consider-
ing that 1 is the right eigenvector of W associated to eigenvalue 1, we have
that:

lim
k→∞

Wk
=

1mT

mT 1
(7.2.12)

where m is the left eigenvector of W associated to the eigenvalue 1. If we
express L = D−P, and by considering that 1 is the right eigenvector of L
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associated to eigenvalue 0, we have that:

P1 = D1 (7.2.13)

Moreover, since W and L have the same eigenvectors, the following holds:

mT P = mT D (7.2.14)

From (7.2.13) and (7.2.14), we have that if the sum of the rows of P is
equal to the sum of the columns, then 1PT = P1 = D1 = 1DT . Therefore, m
is the all-one vector, which from (7.2.12) implies that:

E[x̂avg1] =
1
N

11T x(0) = xavg1

which means that the estimator is unbiased.
On the other hand, if the estimator is unbiased, then m must be the all-

one vector, which implies that 1PT = 1DT
= D1 = P1, and the sum of the

columns of P is the same as the sum of its rows.

Corollary 7.1 If the probability matrix P is symmetric, the estimator x̂avg

is unbiased.
Additionally, from the results in [82], it can be easily proven that the vari-

ance of the estimator x̂avg does not depend on the symmetry of the matrix P.
Thus, since a symmetric probability matrix P guarantees a bias equal to zero,
it always results in a smaller value of the MSE.

By considering all the above, the purpose of the present chapter is the
design of a MAC protocol that guarantees a symmetric probability connection
matrix P, so that the final consensus value computed by the gossip algorithm
is an unbiased estimator of the average of the initial values.

7.3 Description of the protocol

This section is devoted to a detailed description of the proposed MAC proto-
col. After outlining the main features of the scheduling procedure, we present
the design rule that guarantees symmetric connection probabilities. Then, we
explain how the inhibition area of the nodes can be tuned in such a way that
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this design rule is fulfilled. Finally, we show how to compute a closed form
expression for the maximum number of simultaneous links that are scheduled
at each iteration.

Our proposed scheme involves the simultaneous execution of the link
scheduling protocol and the average gossip algorithm. At every iteration k
of the gossip algorithm, all the links in E are initially labeled as unclassified,
defining the link demand2. At each scheduling step n, a randomly chosen
node j sends a packet with its current value to a randomly chosen neighbor
i, who mixes both values by using (7.2.5). Accordingly, link e ji is marked as
activated, which causes all the unclassified links inside the inhibition area S j

inh

of transmitter node j to be marked as inhibited. The subsequent repetition of
this activation-transmission-inhibition step leads to the following concept:

Definition 5. The length of a particular feasible transmission pattern, de-
noted by η , is the number of simultaneous links that has been scheduled in a
particular realization while satisfying the feasibility condition (7.2.1) for all
of them.

Therefore, an iteration of the gossip algorithm involves η transmissions
that are the result of the scheduled activation of the corresponding η links,
such that |E (k)|= η .

Accordingly, at each step n of the scheduling protocol, 0 ≤ n ≤ η , every
e ji ∈ E is classified into one of the following sets:

• ACTIVATED A (n): contains all links marked as activated up to the n-
th step of the link scheduling protocol. Initially, A (0) = /0. Then, only
a new link is marked as activated at each step n, so that, |A (n)| = n.
After the η scheduling steps, we have that E (k) = A (η).

• INHIBITED I (n): contains all links marked as inhibited up to the n-
th step of the link scheduling protocol. At the initial step, we have that
I (n) = /0. After the η scheduling steps, we have that I (η) = E \E (k).

• UNCLASSIFIED U (n): contains the links not belonging to any of the
previous sets. The initial set is given by U (0) = E = {e ji|d ji ≤ Rρ}.

2The link demand at iteration k+ 1 is reestablished after a subset E (k) of links is activated at
iteration k. This means that this demand is the same for every gossip iteration and not all of the links
included in this demand has to be satisfied by the scheduling protocol.
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From (7.2.5) and according to the previous classification of links, it fol-
lows that only the receiving nodes of the links that have been activated after
the last η scheduling steps update their values in the k iteration of the gossip
algorithm, that is:

xi(k+1) =

{
(1−α)xi(k)+αx j(k) if e ji ∈A (η)

xi(k) otherwise

Given this scheduling procedure, in the next subsection, we derive the
condition under which symmetric connection probabilities are obtained.

7.3.1 Symmetric connection probabilities

Given a link e ji, if we denote by S ji(n) the set of unclassified links at step n
whose activation imply its inhibition, and based on the previous description
of the link scheduling protocol, we have the following result:

Lemma 7.2 If the number of unclassified links that can inhibit link e ji is
the same as the number of those that can inhibit link ei j at every schedul-
ing step l, then we have symmetric probabilities of communication. In other
words, if

∣∣S ji(l)
∣∣= ∣∣Si j(l)

∣∣ ∀l = 1 . . .η , then matrix P is symmetric.

Proof. The probability PA
ji(n) of activating a link e ji at the n-th step of the

link scheduling is the combination of two events:

• The link e ji remains unclassified after n−1 scheduling steps.

• The link e ji is chosen for activation at step n.

Therefore, we can write the following:

PA
ji(n) = p

{
e ji ∈U (n−1)

}
p
{

e ji ∈A (n)|e ji ∈U (n−1)
}

The link e ji belongs to U (n−1) if it does belong neither to A (n−1) nor
to I (n−1):

p
{

e ji ∈U (n−1)
}
=

=
(
1− p

{
e ji ∈A (n−1)

})(
1− p

{
e ji ∈I (n−1)

})
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The link e ji does not belong to A (n−1) if it has not been activated in any
of the previous n−1 steps:

(
1− p

{
e ji ∈A (n−1)

})
=

n−1

∏
l=1

(
1−PA

ji(l)
)

Similarly, the link e ji does not belong to I (n− 1) if it has not been in-
hibited in any previous step. Furthermore, the link e ji is inhibited at step l
if a link from S ji(l), among all candidates contained in U (l), is chosen for
activation. Since both

∣∣S ji(l)
∣∣ and |U (l)| are random variables, we have the

following: (
1− p

{
e ji ∈I (n−1)

})
=

=
n−1

∏
l=1

(
1−∑

τ,υ

τ

υ
p
{∣∣S ji(l)

∣∣= τ, |U (l)|= υ
})

=

=
n−1

∏
l=1

(
1−E

[∣∣S ji(l)
∣∣

|U (l)|

])

The probability that link e ji is chosen for activation at scheduling step n,
provided that it has remained unclassified during the previous n−1 steps, can
be expressed as:

p
{

e ji ∈A (n)|e ji ∈ |U (n)|
}
=

= ∑
υ

1
υ

p{|U (n)|= υ}=

= E
[

1
|U (n)|

]
Accordingly, the probability of activation of a specific link e ji at the n-th

step of the scheduling process is given by the following recursive expression:

PA
ji(n) = E

[
1

|U (n)|

]
·

n−1

∏
l=1

(
1−E

[∣∣S ji(l)
∣∣

|U (l)|

])(
1−PA

ji(l)
)

Thus, it follows that if
∣∣S ji(l)

∣∣ = ∣∣Si j(l)
∣∣ for l = 1 . . .η , then PA

ji(n) =
PA

i j(n) for n = 1 . . .η . Then, since [P]i j = ∑
η

n=1 PA
i j(n), it is accomplished that

[P]i j = [P] ji, which concludes the proof.
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v
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Sj
inh

u

Figure 7.3.1: Inhibition area S j
inh of node j, as it is defined in Proposition 7.1. S j

inh covers
every link with an endpoint inside the circle of radius Rinh centered at j. Consequently, any
node u located at a distance d ju shorter than Rinh from node j is inhibited for both sending
and receiving.

j i

Rinh

Sji

eji

Figure 7.3.2: Set of nodes S ji whose activation would cause the inhibition of the transmis-
sion from node j to i. Clearly, this set is the same as the one that includes the nodes whose
activation would inhibit the transmission from i to j.

7.3.2 Design of the inhibition area

The inhibition area S j
inh of a node j, namely the nodes that are inhibited for

transmitting while this node j is performing a transmission, is a key design
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aspect in any CSMA protocol, since it entails a trade-off between the hidden
and the exposed terminal problems. As explained in Section 7.3, in order
to completely avoid collisions and generate feasible transmission patterns,
the inhibition area S j

inh of a node j should cover the collision area ϒ ji of
node i, inhibiting the transmission of any neighbor of node i. However, in
our specific setting, the inhibition area takes an additional role: it must be
designed in such a way that Lemma 7.2 holds, so that a symmetric probability
matrix P is ensured. Accordingly, and assuming continuous time so that two
nodes cannot transmit exactly at the same time, we propose the following
result:

Proposition 7.1 Given any active link e ji, if every other link with an end-
point at a distance from the transmitter j shorter than the inhibition radius
Rinh given by:

Rinh =

(
(η−1)Pt

N0
ργ −N0

) 1
γ

+Rρ (7.3.1)

is inhibited, then feasible transmission patterns with an associated symmetric
probability matrix P are generated.

Proof. We first show that symmetric probabilities of connection are gener-
ated. From what is stated in Proposition 7.1, link e ji is inhibited if either
node j or node i are located at a distance shorter than (7.3.1) from an active
transmitter u. Therefore, the set of links S ji(n), whose activation implies the
inhibition of link e ji, becomes:

S ji(n) =
{

euv : min
{

du j,dui
}
≤ Rinh

}
(7.3.2)

Since the inhibition radius in (7.3.1) is a common value to all links, then
S ji(n) = Si j(n), which, by Lemma 7.2, implies that PA

ji(n) = PA
i j(n), for

n = 1 . . .η .
Now, we prove that, with the defined strategy, collision free patterns are

obtained. Since the maximum number of simultaneous active links is η , the
collision area for a link between j and i defined by (7.2.4) must be redefined
for the case of η − 1 interferers. Besides, since the distance between those
η − 1 interferers and the receiver i cannot be predicted, we must assume
the worst case scenario, that is, the η − 1 interferers are located at the same
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distance, and as close as possible to node i. By considering this worst case
scenario, the radius for this new collision area can be computed from (7.2.1)
as:

ϒ
η

ji =

β (η−1)Pt
Pt
dγ

ji
−N0β

 1
γ

(7.3.3)

This collision area is protected if the transmission from node j to node
i inhibits the transmission of any other node in a circular area centered at j
with radius ϒ

η

ji + d ji. As explained before, a condition to ensure symmetric
probabilities of communication is that the inhibition radius Rinh is common
to every node j, hence the associated inhibition area S j

inh should cover the
collision area of the longest link in the network. Since Rρ ≥ max

e ji∈E
{d ji}, the

expression for Rinh in (7.3.1) implies that Rinh ≥ max
e ji∈E
{ϒ ji + d ji}, and a fea-

sible pattern is generated as a consequence, while symmetric probabilities of
communication are ensured.

Remark 1. In the proposed strategy, the concept of inhibition area is refor-
mulated, based on the inhibition of links instead of nodes. Figure 7.3.1 shows
the inhibition area S j

inh of node j based on the radius Rinh. Node l is inhibited
to transmit to u, but it is still able to transmit to node v.

Remark 2. Based on this strategy, a transmission from node j to node i is in-
hibited not only by the activation of any node inside a circular area of radius
Rinh centered at j, but also by the activation of any node inside the same area
centered at the intended receiver i (Figure 7.3.2). It is straightforward to see
that the previous set of nodes is the same one that inhibits the transmission
from node i to node j.

Our algorithms works as follows, the sets A (0) and I (0) are initialized
with no links on them, while the set U (0) is initialized with every link in
E . At each scheduling step, a link between a transmitting node j and a re-
ceiving node i is randomly chosen from the set U (n) and this unique link is
added to the set of active links A (n) at scheduling step n. Then, the acti-
vation of this new link implies that no other transmission is simultaneously
scheduled in the inhibition area around the receiving node i. Hence, these
links are added to the set I (n) and are removed from the set U (n). Given a
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feasible set of links, let us denote ηmax the maximum value of η that ensures
that no other link could be additionally scheduled. Since the parameter η is
estimated, there are two scenarios for finishing the link scheduling: 1) if the
estimated value η̂ is larger than the maximum one ηmax, the algorithm stops
when the set U (n) is empty and 2) if the estimated value η̂ is smaller than
the maximum one ηmax, the link scheduling protocol is finalized when η̂ si-
multaneous links are obtained. Both stoping conditions satisfy the feasibility
of the transmission pattern.

Algorithm 8 Link scheduling described in terms of A , I , U

Require: A (0), I (0), U (0), η̂

Ensure: U (n) is empty OR n = η̂

n = 0
while U (n) is not empty AND n≤ η̂ do

e ji = choose uniformly at random a link from U (n)
add e ji to A (n)
remove e ji from U (n)
for u = 1 to N do

for v = 1 to N do
if du j ≤ Rinh OR dv j ≤ Rinh then

add euv to I (n)
remove euv from U (n)

n = n+1
end while

7.3.3 Computation of the length of the scheduling

Having a good approximation of the maximum number of simultaneous links
is needed for an optimal operation of our link scheduling protocol. If the
number of simultaneous links η̂ estimated by our protocol is too large, the
inhibition radius becomes longer than necessary and the resulting number of
simultaneous links is reduced as a consequence. Oppositely, if this number η̂

is too small, the protocol stops after η̂ links are scheduled, so that, it is still
able to ensure that collisions are avoided.

In this section, we propose an iterative method for obtaining an approxi-
mation to both the number of simultaneous links η and the inhibition radius
Rinh. For this purpose, we assume the densest packing of interferers, which
corresponds to the hexagon packing [47], as shown in Figure 7.3.3. This
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Rinh

{

h

Figure 7.3.3: The densest packing of interferers around a particular transmitter (white cir-
cle). We differentiate between odd levels (red circles) and even levels (yellow circles). We
argue in terms of the equilateral triangles created, where Rinh is their side and h denotes
their height.

packing leads to multiple interferers located in odd and even levels around
the receiver. The maximum number of levels, denoted by lMAX, depends of
the value of Rinh and can be obtained as lMAX =

√
2L/Rinh, where L is the

side of the deployment area. The objective is to obtain the number of virtual
transmitters located at distance Rinh that would produce the equivalent inter-
ference to the transmitters appeared in all levels l = 1,2, . . . , lMAX (see Figure
7.3.3).

Proposition 7.2 For a given value of lMAX and considering the hexagon
packing, the maximum value of η is given by:

η = 6
lMAX

∑
`=1

b`/2c
∑

m=0

(
(`/2−b`/2c+m)2 +(`h)2

)− γ

2
+

b`/2c
∑

m=2

(
(`/2−b`/2c+m−1)2 +(`h)2

)− γ

2
+
(
(1/4)+(`h)2)− γ

2 (7.3.4)

Proof. According to Proposition 7.2, we need to calculate the maximum
number of interferers that can be placed at distance Rinh from a particular
transmitter without producing a collision. However, since these interferers
must be placed in such a way that they do not produce collisions to each
other, these are placed in levels that are at distance proportional to Rinh, as
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shown in Figure 7.3.3. In order to express everything as a function of Rinh,
we make the calculations for odd and even levels separately. All the equa-
tions are expressed as a function of the squared triangles of side lengthRinh.

First, the interference produced by the dotted nodes that belong to odd
levels in Figure 7.3.3 is determined by the following expression:

b`/2c
∑

m=0

6((1
2 +m

)2
+(`h)2

) γ

2
(7.3.5)

where m gives the relative position of the current node in terms of trian-
gles, ` denotes the level being considered and h =

√
3/4. Note that we have

omitted the dependence of all terms on Rinh, e.g., the value of h would be
h =

√
3/4Rinh. The equivalent expression for the even level is:

`/2

∑
m=0

6(
m2 +(`h)2

) γ

2
(7.3.6)

Combining equations (7.3.5) and (7.3.6), we obtain:

b`/2c
∑

m=0

6(
(`/2−b`/2c+m)2 +(`h)2

) γ

2
(7.3.7)

We also have to consider the nodes that appear in the odd levels drawn
with a solid line in Figure 7.3.3. The expression that relates the distance of
these nodes with Rinh is the following:

b`/2c
∑

m=1

6((
m− 1

2

)2
+(`h)2

) γ

2
(7.3.8)

The equivalent expression for the even level is:

`/2

∑
m=2

6(
(m−1)2 +(`h)2

) γ

2
(7.3.9)
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Combining equations (7.3.8) and (7.3.9), we obtain:

b`/2c
∑

m=2

6(
(`/2−b`/2c+m−1)2 +(`h)2

) γ

2
+

6

((1/2)2 +(`h)2)
γ

2
(7.3.10)

Combining equations (7.3.7) and (7.3.10), we obtain the final equation for
the parameter η given by (7.3.4).

Since lMAX depends on Rinh, which is also unknown, we propose Algo-
rithm 2 to iteratively calculate the values of Rinh and η̂ .

Algorithm 9 η̂ and Rinh calculation
Require: γ

Ensure: Rinh and η̂ are valid in the hexagon packing
η̂ = 1
while η̂ changes its value do

obtain Rinh using expression (7.3.1)
lMAX =

√
2L/Rinh

update η̂ using expression (7.3.4)
end while

Algorithm 2 iteratively obtains an approximation of the parameters η and
Rinh by successively refining both estimations. For example, if we initialize
the value of η̂ = 1, the corresponding value of Rinh is also small because a
small number of simultaneous transmitters is expected. Consequently, a large
value of lMAX is obtained because several level fit in the deployment area with
the packing shown in Figure 7.3.3. Then, applying (7.3.4), we obtain a larger
value of η̂ , which is then used again to obtain Rinh and so on.

7.4 Numerical results

In this section, we numerically evaluate the performance of the asymmetric
gossip algorithm under the cross-layer link scheduling protocol presented in
this chapter. Our main goal is to evaluate the MSE and the convergence
rate for different parameters: Pt , η , α and ρ , showing, in addition, that an
unbiased consensus value reduces the MSE.
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Figure 7.4.1: Bias, variance and MSE of the cross-layer scheme proposed in this chapter
when both nodes and links are inhibited. The network setting used is: Pt =−2 dBm, ρ = 0.5
and α = 0.005.
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7.4.1 Simulation Scenario

We model a WSN as a uniformly random deployed network of N = 1000
nodes inside a 2D unit square area. The information is mixed as described
in (7.2.5), where the instantaneous topology at the k-th iteration determines
which data is mixed. Additionally, channel gains are computed based on node
positions, and on the radio propagation model. Radio signal propagation is
assumed to follow log-normal shadowing, with path loss exponent γ = 3.
For a given background noise N0 = 10−9mW per meter and a given value
of β = 10, we choose a combination of the values Pt and ρ that ensures
connectivity on average, that is, the set of edges E contains enough links to
ensure the existence of a multi-hop path between every pair of nodes. Finally,
since the value α plays a crucial role, we analyze the consensus performance
for different values of this parameter.

7.4.2 Numerical Results

Figure 7.4.1 shows the bias, the variance and the MSE for the cross-layer
methodology proposed in this chapter. In order to illustrate the importance of
obtaining a symmetric matrix P, we have compared two different settings that
lead to different values of the MSE. In the first one, we have used the tradi-
tional approach of inhibiting nodes (under the inhibition radius Rinh), leading
to an asymmetric matrix P. In the second one, we have used, the results of
Proposition 7.1, inhibiting links and ensuring a symmetric matrix P. When
the matrix P is ensured to be symmetric, the asymmetric gossip converges
in expectation, namely, the term of the bias tends to zero. Accordingly, the
MSE converge to the value of the variance. Notice that the variance depends
on several factors, such as the variance of the initial data. Oppositely, when
the matrix P is asymmetric, the bias does not vanishes and it dominates the
value of the MSE, since it present much larger values than the variance.

Figure 7.4.2 shows that the convergence speed and the final MSE value
are slightly influenced by ρ and Pt . This is explained by the fact that our link
scheduling protocol produces denser connectivity patterns when the average
length of links is decreased by a reduction on the values of Pt or ρ and vice
versa. It means that, in both cases, the information is mixed at similar rates,
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Figure 7.4.2: Evolution of the MSE value for different combinations of the parameters: α ,
Pt and ρ .
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namely, when denser patterns are generated, there are more data exchanges
between nodes, but these exchanges are more locally done than in the case of
having less but larger links. As a consequence, the consensus performance
in terms of convergence speed and accuracy is almost independent of the
parameters ρ and Pt . Note that for a given value of these parameters Pt and
ρ , as larger the resulting value of η is, the faster convergence we obtain.
Therefore, for a fixed average link size, the value of η is a measure about
how good the link scheduling is for the convergence rate of the consensus
process. Figure 7.4.2 also shows the influence of α in the existing trade-off
between the convergence rate and the accuracy of the consensus process. It is
clear from this figure that larger values of α lead to faster convergence speed
but also to smaller precision reflected in larger values of the MSE, and vice
versa.

Figure 7.4.3 shows that the convergence speed clearly depends on the
number of simultaneous links scheduled. Note that we are ensuring to have
the same average link length in all the curves plotted, that is, the different
number of simultaneous links is not altered by Pt or ρ , but it depends on the
medium access protocol being used. Accordingly, faster convergence rate is
obtained when the medium access protocol is able to schedule more links at
each iteration k of the consensus process. Moreover, the resulting MSE is the
same for the three average values of η , which ensures that we are not having
any side effect that worsens the accuracy of the gossip algorithm.

Finally, Figure 7.4.4 shows the influence of the medium access control
protocol in the convergence rate and the accuracy of the consensus process.
We execute two versions of our protocol, one ensuring collision avoidance
and symmetric probabilities of communication and another ensuring only
collision avoidance. We also compare these two approaches with a constant
threshold technique, which is widely used in the hardware of real motes,
where a node is allowed to transmit as long as the measured signal strength
RSSI ≤ −90 dBm. It is clear from Figure 7.4.4 that ensuring an unbiased
consensus value tend to reduce the MSE.

151



Efficient Consensus in Sensor Networks

7.4.3 Toy example

In this section, we show a complete example of the operation of our protocol.
In this example, Lemma 7.2 is fulfilled by applying the result in Proposition
7.1, so that a symmetric matrix P is obtained.. For the sake of simplicity, we
consider a ring of N = 1000 nodes inside a square area of side L = 1000 m.
The nodes are equally spaced and transmit with a power of Pt = −10dBm.
We assume the path loss exponent γ = 3, the background noise N0 = 10−9

and ρ = 0.2.

In this setting, the maximum distance to which a node can transmit a
message is ρRmax = 43m. Algorithm 2 gives in the first iteration Rinh =

136m and η = 65. In the second iteration, Rinh = 417m and η = 18. After
a few more iterations, we reach the final values of Rinh = 317m and η =

25. Accordingly, the perimeter of the ring is 31416m, which means that the
distance that separates two consecutive nodes is 3.1416m.

These values mean that each node can communicate with 26 neighbors,
so that, there are M = 26000 links that can be scheduled at each iteration k
of the consensus algorithm. This implies that U (1) and Si j(1) contain 26000
and 399 links respectively. The probability of activation of any link in the
first scheduling step is:

PA
i j(1) = E

[
1

|U (1)|

]
=

1
26000

In the second scheduling step, the number of links in U (2) is 26000−
399− 1 = 25600 (399 inhibited and 1 activated) with probability equal to
one. Thus, the activation probability of any ink in the network in the second
scheduling step is:

PA
i j(2) = E

[
1

|U (2)|

](
1−E

[ |Si j(1)|
|U (1)|

])
(1−PA

i j(1))

=
1

25600

(
1− 399

26000

)(
1− 1

26000

)

Similar calculations can be made for n = 1 . . .η .
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Figure 7.4.3: Evolution of the MSE value for different values of the parameter η .

0 2000 4000 6000 8000 10000 12000
−10

−5

0

5

10

15

iteration number (k)

1
0

lo
g

1
0
(M

S
E

(k
))

 

 

CSMA protocol (threshold=−90dBm)

Our link scheduling with symmetry

Our link scheduling without symmetry
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7.5 Conclusions of the Chapter

In this chapter, we have considered the problem of average consensus in
WSNs under an accurate interference model, in which correct packet recep-
tion at a receiving node depends on the SINR. We propose a decentralized
link scheduling that leads to connectivity patterns that are free of collisions.
Since these are randomly generated and the interferences constrain the set of
simultaneous links, the resulting connectivity patterns at each iteration are
asymmetric. We have analyzed the performance of the consensus algorithm
under a probabilistic point of view and we have devised a probabilistic model
where connection between any pair of nodes is symmetric on average, en-
suring unbiased average consensus. Moreover, we numerically show how the
network parameters affect the convergence rate and the error of the consensus
algorithms.
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Conclusions and open problems
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Chapter 8

Conclusions and Open Problems

The work of this dissertation was set out to make several consensus-based
tasks efficient in terms of several parameters and under different communic-
ation and network settings. The main performance parameters considered
are the convergence time1, the associated power consumption of the nodes
and the deviation from the target average value. These parameters are cru-
cial since they determine the energy consumption and the accuracy of the al-
gorithm. On the one hand, the energy consumption is important for the energy
constrained sensor networks widely found in practice. On the other hand, the
accuracy of the algorithm is crucial for the operation of the consensus-based
tasks, since a large error may compromise the response of the whole system.

In the presence of static networks, where convergence is easily ensured,
we have devised several methodologies to optimize the underlying network
topology in terms of several energy related functions that are relevant in the
area of sensor networks. Alternatively, when the connectivity of the network
varies over time, since the convergence conditions for the previous case does
not longer apply, we design new methodologies that affect the instantaneous
network topologies to reach certain accuracy and performance.

Although the methodologies in static and random scenarios are different,
both are mainly based on designing how the communications between neigh-
boring nodes are performed.

1The value of convergence can be the deterministic average value or a random value.
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8.1 Conclusions

This dissertation focuses on ensuring certain energy efficiency when tasks
based on consensus are executed over static sensor networks. While most of
the related work focuses on the convergence time of consensus algorithms,
we also improve the power consumption of individual nodes to improve sev-
eral energy related functions that maximize the lifetime of the network when
consensus-based tasks are executed. There are many practical advantages of
improving consensus algorithms. First, a reduced convergence time allows
to obtain the estimation of needed data with certain accuracy before it may
be required by certain time-constrained applications, such as target tracking
applications. Second, energy efficiency may reduce the maintenance cost,
since it reduces the battery changes per unit time. The devices may be loc-
ated in spots of difficult access and the cost of mobilizing personal to replace
the batteries may be high. Finally, the consensus-based application may run
for longer periods of time with the required accuracy. We also apply these
new optimization methodologies to different network settings, showing that
depending on certain parameters, several well-known complex networks may
appear as the best energy efficient solutions for consensus-based applications.
In particular, the parameters that lead to the appearance of Random Geomet-
ric Networks, Small World Networks and Scale Free Networks have been
studied in this dissertation. While most of the existing results about complex
networks are structural, we have investigated the spatial characterisation of
these networks filling in part this existing gap.

When the communications are random and the network topology varies
over time, we mainly focus on ensuring that the average consensus algorithm
converges with certain degree of accuracy to the average value. This altern-
ative case, also known as the gossip algorithm, reaches a random value that
may differ from the average when symmetric communications cannot be sat-
isfied in every instantaneous topology. To solve this issue, we propose a
new algorithm that ensures to reach the average value almost surely. Certain
amount of accuracy is important since the consensus-based task may need
it to operate normally. Moreover, we show that our algorithm is faster than
existing works in the related literature, reducing the energy consumption of
this process and ensuring a longer lifetime of sensor networks that are energy
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constrained.

Finally, in the presence of random interferences, where collisions must
be avoided while ensuring consensus with certain degree of accuracy, we
propose a new cross-layer MAC protocol to satisfy both requirements. In this
setting,we propose a new distributed link scheduling protocol that ensures
convergence to the average in the mean square sense. This last scenario is
commonly found in sensor networks, where complex control mechanisms
are not always possible and probabilistic solutions must be chosen instead.
In order to improve the convergence time in this setting, we also focus on
maximizing the spatial reuse of the channel. This increases the number of
correct communications per time step, which intuitively tends to reduce the
energy consumption of the process. As stated before, fast and energy efficient
networks are desired for reducing the maintenance cost and increasing the
operation time.

8.2 Future Work

In this work, we have proposed several methodologies to improve the per-
formance of consensus and gossip algorithms in terms of different paramet-
ers, under different scenarios and different communication settings. While
for static network graphs most of the open problems about energy efficiency
of consensus-based tasks have been tackled in this work, for random network
graphs there is still much work to do. In particular, the definition of the ex-
pected energy consumption and a well defined methodology for optimizing
this parameter is still to be investigated. Besides the randomness of every
instantaneous topology, the major difficulty behind this research line is that
the total number of these topologies is also random because the convergence
time becomes a random variable.

In the case of static graphs an immediate extension of this work is to apply
our methodology to the Sensor Selection problem, such that not only the best
link candidates are selected, but also the nodes that contribute the most to the
consensus-based task being executed. Similarly, it can be also considered the
setting in which multiple tasks are simultaneously executed over the network,
having to design a new optimization criteria to minimize the summation of the
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energy functions related to the multiple tasks, which are executed by subsets
of nodes. For this purpose, packet aggregation and node clustering can be
applied in order to reduce the energy consumption of the overall process.

Finally, Graph Signal Processing has recently attracted a great amount of
research work as a promising technique to extract information from a static
signal on a static, weighted, undirected graph. An interesting extension to
our work is to study how to apply our methodologies to the case of Graph
Signal Processing in order to make this methodology fast and energy effi-
cient. In the case, of time-varying graphs, the theoretical framework must be
derived first and then several methodologies to understand the effect of real
communication would be necessary.
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