A Dual-Mode Adaptive MAC Protocol
for Process Control in

Industrial Wireless Sensor Networks

A. Ajith Kumar S.

A Dual-Mode Adaptive MAC Protocol
for Process Control in

Industrial Wireless Sensor Networks

Doctoral Dissertation for the Degree Philosophiae Doctor (PhD) at
the Faculty of Engineering and Science, Specialisation in

Information and Communication Technology

University of Agder

Faculty of Engineering and Science
2017

1

Doctoral Dissertation at the University of Agder 149
ISSN: 1504-9272
ISBN: 978-82-7117-843-7

©A. Ajith Kumar S., 2017

Printed by Wittusen & Jensen
Oslo

v

Preface

This thesis is a result of a PhD project undertaken as a collaborative effort be-
tween the department of computing and the department of electrical engineer-
ing at Bergen University College, Norway. The PhD position is registered
at the Faculty of Engineering and Science, University of Agder, Norway.
The PhD project was funded via the ICT Engineering research programme at
Bergen University College.

The research undertaken in this thesis concentrates on the domain of In-
dustrial Wireless Sensor Networks. In the course of the PhD project, several
papers have been published in peer-reviewed workshops and conference pro-
ceedings presenting the research contributions that have been achieved.

The thesis is organised into two main parts. The first part contains an
overview of the work done, summarising the results obtained and putting
them into the context of related work. The second part consist of a collection

of already published papers.

Acknowledgements

An integral part of a doctoral dissertation is the acknowledgement of the fact
that it is a collective process. A process that is influenced by multiple people
in separate phases in diverse ways. Here, I would like to acknowledge their
part by thanking them for their time, effort and support. Firstly, I would
like to thank my supervisors Lars Michael Kristensen, Knut @vsthus, and
Rune Werner Fensli for their invaluable support and guidance throughout the
doctoral study. I am particularly thankful to the diverse guidance obtained
from them due to their diverse backgrounds. Each of them brought out their
own strengths, resulting in an overall development. I appreciate the freedom
I had throughout my dissertation in terms of the research path taken, and
work environment. Support was always there for any aspirations and plan |
had. Whenever I needed any hardware or other equipments, they were readily
available. Their door has always been open for me. Our discussions have
always been interesting with constant support, realization of boundaries, and
separate perspectives.

I also would like to thank Bergen University College for the position pro-
vided, and the University of Agder for the registration as a doctoral student.
I am thankful to the staff at the department of electrical engineering and the
department of computing for their support. In particular, I would like to men-
tion Per Eilif Thorvaldsen for his support. He always made sure I was doing
well and had everything I needed. Also, Carsten Helgesen from the comput-
ing department, I always felt like I was a part of both the departments equally.
All my administrative requirements were smoothly taken care of by them. |
would like to extend special thanks to Emil Cimpan, who has helped me un-
derstand the requirements that led to the idea of the central protocol in this
thesis. Also, to Farzan Jouleh for the hardware support.

During my doctoral study, I had one project linked directly to my the-
sis with a fellow student at the time and now a PhD, Kent Inge Fagerland
Simonsen. I am grateful to him for the work done together, the support pro-
vided on site and online, distantly at times. I would also thank my fellow
PhD students Florian Mantz and Xiaoliang Wang who convinced me this is
a position I would like to take also for the work environment apart from the

research interest in itself. This included a trip to Flgyen when I was in Bergen

i

for the interview, which further was extended with many fun trips including
ski trips. I also would like to thank my fellow PhD students, Piotr Kazmier-
czak, and Erik Eikland who together with Florian Mantz, Xiaoliang Wang,
and Kent Inge Fagerland Simonsen formed a fun group in the PhD room in
the old building. The old building since has been a benchmark to compare
with all facilities provided in the new building, and the time we had previ-
ously. I would like to thank them for making me feel welcome in a new city
and helping me integrate into it. The mentions in the PhD room are incom-
plete without the newly appointed PhD students who I have spent the time
since the old PhD students had completed, particularly, Fernando Macias and
Rui Wang. Also, Roberto who has been visiting Bergen University College
last two summers.

The year of 2014, has been special in terms of the work done and also
about the Forsker Grandprix that I took part in. This has helped me train in
skills that would otherwise not be a direct part of the doctoral study. I had
the opportunity to get into the competition and obtain guidance in presenta-
tion skills. This gave me a unique experience in putting forward my work in
simple terms. I would like to thank Silje Vik Pedersen, Marthe Berg-Olsen,
my supervisors and all the staff part of the Forsker Grandprix for this op-
portunity and the training provided. It has been an experience of a lifetime.
I would also like to thank my dear friends; Linnea, Nils, Silje, Elizabeth,
Gjermund, my department head Per Eilif Thorvaldsen, my supervisors Lars
Michael Kristensen and Knut @vsthus for their presence and support.

The doctoral study in the new city of Bergen would have been hard if not
for the support of the people in my personal life. My Eindhoven gang as |
would like to say have always been including and supportive throughout the
period. Initially, I had many trips to Eindhoven to cope with stay change
alone for the first time through my life. I had not felt for quite a while that I
had moved from Eindhoven. It is still my most visited destination and my go
to place for any help I need, professionally or even personally. Among them,
I would like to thank Amit and Abhinav for going through my work, my
reports, reviewing, and helping me with my writing. 1 am grateful to Menzi
for all the printout support whenever needed, including this thesis. The visit
to Eindhoven would not be as much fun and fulfilling if not for the rest of

the gang who I am forever thankful for. The idea of a PhD would not be

1ii

as compelling to me without my fellow PhD friends, Shreya and Alok, who
inspired me.

Also, it has been an experience to create a social life apart from the work
life in Bergen. The void of the Eindhoven gang after I moved here has been
filled by my salsa gang, in the Norwegian side. I would like to extend special
thanks to Nhat Bgrnes for welcoming me into the salsa environment upon
which my entire social circle in Bergen outside work is built upon. Apart,
from being a friend he has been a guide to me in more than one ways. Their
family including Nhat, Ingrid and My-Li have helped me integrate into the
society here along with private Norwegian tuitions. I have been exposed
to Norwegian culture and traditions through many friends in the circle, and
particularly Iril. I am thankful to Iril for her effort on my Norwegian language
and providing me an understanding of the local culture along with exposure
to the food, also for the summary in Norwegian. 1 am also thankful to my
gaming gang, Phoung, Erik, Shashi and Cathrine, who have instilled a new
kind of gaming craze in me and make the weekends fun. I thank Linnea for
all the good times, and Alejandro for taking me to all the good parties. Also,
special mention of Daniel Schmidt for his immense interest in providing free
salsa lessons in Fantoft which led me into this salsa circle.

Final part is dedicated to all my friends and family. In particular I am
deeply grateful to my parents who have forever been supportive, guiding and

understanding. I would not have come this far even, if not for them.

v

Summary

Wireless Sensor Networks (WSN5s) consist of sensors and actuators operating
together to provide monitoring and control services. These services are used
in versatile applications ranging from environmental monitoring to industrial
automation applications. Industrial Wireless Sensor Network (IWSN) is a
sub domain of the WSN domain, focussing the industrial monitoring and
automation applications. The IWSN domain differs from the generic WSN
domains in terms of its requirements. General IWSN requirements include:
energy efficiency and quality of service, and strict requirements are imposed
on the quality of service expected by IWSN applications. Quality of service
in particular relates to reliability, robustness, and predictability.

Medium Access Control (MAC) protocols in an IWSN solution are re-
sponsible for managing radio communications, the main consumer of power
in every IWSN element. With proper measures, MAC protocols can provide
energy efficient solutions along with required quality of service for process
control applications. The first goal of the thesis was to assess the possibility
of creating a MAC protocol exploiting properties of the application domain,
the process control domain. This resulted in the creation of the Dual-Mode
Adaptive Medium Access Control Protocol (DMAMAC) which constitutes
the main contribution of this thesis. The DMAMAC protocol is energy effi-
cient, while preserving real-time requirements, and is robust to packet failure.
This has been guaranteed by the thorough evaluation of the protocol via sim-

ulation, verification, and implementation with deployment testing.

In parallel, we also investigated the possibility of using an alternative de-
velopment approach for MAC protocols. Specifically, we have proposed a
development approach based on MAC protocol model in CPN tools. The
development approach consists of automatic code generation for the MiXiM
simulation tool and the TinyOS platform.. We used the related GinMAC pro-
tocol as a running example for the development approach. The generated
code for MiXiM simulation platform and the TinyOS implementation plat-
form are evaluated via simulation and deployment respectively. This results
in a faster design to implementation time, and closely related protocol arti-

facts, improving on the traditional approach.

v

Oppsummering

Wireless Sensor Network (WSN) bestar av sensorer og aktuatorer som op-
ererer sammen for a gi overvaknings og kontrolltjenester. Disse tjenestene
er brukt i allsidige applikasjoner med et spenn fra miljgovervakning til in-
dustrielle overvaknings og automasjons applikasjoner. Industrial Wireless
Sensor Network (IWSN) er et subdomene av WSN domene, med et fokus pa
overvakning og automasjonsapplikasjonene. IWSN domene skiller seg fra de
generiske WSN domene i form av sine krav. Generelt omfatter IWSN sine
krav: energieffektivitet, kvaliteten pa tjenesten som blir forventet av IWSN
applikasjonene. Kvaliteten pa tjenestene relateres spesielt til palitelighet, ro-
busthet og forutsigbarhet av de foreslatte lgsningene.

Medium Acess Control (MAC) protokoller i en IWSN Igsning er ansvarlig
for a administrere radiokommunikasjon som er den viktigste hovedforbruk-
eren av kraft i hvert av IWSN elementene. Med en riktig styring kan MAC
protokoller gi energieffektive lgsninger sammen med gnsket effekt av kvalitet
for tjenesten av prosesskontrollapplikasjonen. Det fgrste med denne opp-
gaven var a vurdere muligheten for a skape en MAC protokoll til & utnytte
egenskapene til prosesskontroll domenet. Dette resulterte i en etablering av
Dual Mode Adaptive Medium Acess Controll (DMAMAC), som er utgjgr
hovedbidraget til denne avhandlingen. DMAMAC protokollen er energief-
fektiv, samtidig som den bevarer sanntidskravet samtidig som den er robust
mot pakkefeil. Dette har blitt garantert via en grundig evaluering av pro-
tokollen gjennom simulering, verifisering og gjennomfgring testing.

Parallelt har vi ogsa undersgkt muligheten fir bruken av en alternativ
utviklet tilnerming for MAC protokollen. NtilnASrmingrmere bestemt har
vi foreslatt en utviklet tilneerming basert pA MAC - protokollens modell i
CPN verktgyet. Denne utviklede tilnermingen bestar av automatiske kode-
genereringer for MiXiM simuleringsvertgyet og TinyOS plattformen. Vi
brukte den relaterte GinMAC protokollen som en lgpede eksempel for den
utviklede tiln@rmingen. Den genererte koden for MiXiM simuleringsplat-
tformen og TinyOS gjennomfgringsplattformen evalueres via en simulering
og en henholdsvis distribusjon. Dette resulterte i en raskere design til imple-
menteringstiden, en n@rmere gjenstands protokoll og gav en bedring pa den

tradisjonelle tilneemingen.

vi

Contents

L Overview 1
[L__Introduction| 3

2.3 DMAMAC-Hybrid and DMAMAC-TDMA| 24
[2.4 Related Work and Perspectives| 27
3__Protocol Evaluationl 31
3.1 Smmulation| 32
B.1.1 OMNel++ MiXiM Simulator 32

3.1.2 MiXaMmodell. 00000 33

[3.1.3 Experiment Setup and Performance Analysis| 34

3.2 Venfication| 35
(3.2.1 UppaalTool 37

e ppaal Model| 39

3.2.3 Validation and Verificationl 40

[3.2.4 Extensibility| 41

[3.2.5 Validation using Sequence Diagrams|. 42

(3.3 Contributions and Perspectives| 42

4 Implementation and Deployment] 45
4.1 Background on TinyOS| 45
4.2 DMAMAC Implementation Goals| 46
4.3 The DMAMAC nesC Implementation| 47
“4.3.1 Time Synchronization| 49

4.4 Deployment Setup| 51
4.5 Deployment Analysis|, 52
4.6 Contributions and Perspectives| 54

15 Towards A Model Based Approach for MAC Protocol Develop- |
[_ment 57
5.1 Backgroundon MDSE| 58
5.2 An MDSE Approach for MAC Protocols| 61

62

5.3 GinMAC CPN model 64

66

66

BAZ TIYOS| . .« o o o oo 67

[5.5 Contributions and Perspectives| 69
6__Conclusion and Future Workl 71
(6.1 Summary of Contributions| 71
(6.2 Re-visiting Research Questions| 74
6.3 Beyond IWSN Process Controll 74
6.4 Future Work| oo 76

UL Articles 85

(7 Towards a Dual-mode Adaptive MAC Protocol (DMA-MAC) |
[for Feedback-based Networked Control Systems| 87

8 Simulation-based Evaluation of DMAMAC: A Dual-mode Adap- [
[_tive MAC Protocol for Process Control 95

9 Model-based Specification and Validation of the Dual-Mode Adap- |
[_tive MAC Protocol 107

(10 Implementation and Deployment Evaluation of the DMAMAC [
L__Protocol for Wireless Sensor Actuator Networks| 139

(11 Towards a Model-Based Development Approach for Wireless |
nsor-A r rk Pr 1 149

(12 Model-based Development for MAC Protocols in Industrial Wire- |
L__less Sensor Networks 155

X

Part I

Overview

Chapter 1
Introduction

A Wireless Sensor Network (WSN) is a network comprised of sensor devices
operating to monitor an environment of interest. The devices have three main
responsibilities: sensing, processing of the obtained data; and communica-
tion with other devices. In some cases, the main processing of data happens
at a sink node, which is a designated node in the network. A sink node is typ-
ically a computationally powerful wire-powered device in a WSN. A typical
sensor device consists of a micro-controller, a sensor, and a radio transceiver.
Application requirements for the WSN domain require these devices to be
physically portable to assist in the calibration process, which is a part of the
system setup. The portability requirement requires the devices to be small,
and to be able to operate on batteries. The small size and battery-based oper-
ation results in limited energy and computing power. Initially, such devices
were extensively used in military applications [1]. With the advancement in
technology and extensive research in the domain of WSN, new opportunities
and application domains have opened up [2, 3]. One of emerging domains
of research is the Wireless Sensor Actuator Networks (WSAN) domain. A
WSAN generally employs sensors and actuators to perform monitoring and
control in an environment, across diverse operating elements. Actuators are
devices responsible for controlling a physical quantity such as temperature,
pressure, and flow. WSAN assists in building smart environments that em-
ploy automatic control systems for many application domains including smart
homes, transportation, industrial automation, and healthcare.

In this thesis, we focus on industrial applications and Industrial Wire-
less Sensor Networks (IWSN) [4, |5, 6] which constitutes a sub-domain of

3

DMAMAC Protocol for Process Control in INSN

, o o ®
- s O T
‘%} >%j ° ° @ O
! @) @)
d © o — O
© o © /O%J °
o o © to @ o
O I
] o @] o
@] -
- @)
& s
O @) O O
© Sensor o
& Actuator
—z— Radio Link \
——2> Node to Actuator g‘.
——> Actuator to Actuator >
LT

Management Console Sink/Network Manager

Figure 1.1.1: Wireless Sensor Actuators Networks

WSAN. IWSN applications have a set of requirements specific to the indus-
trial setting [6} 7, 18]. Traditionally, industrial control automation applications
have used wired communication. Major industrial players are now invest-
ing in research activities for IWSN, including the creation of standard solu-
tions for process control automation applications, such as wirelessHART [9]],
ISA100.11a [10]. Lowering the cost while addressing the original require-
ments for quality of service is one of the main challenges when moving from

wired to wireless networks.

1.1 Industrial Wireless Sensor Networks

An IWSN typically consists of sensors, actuators, a sink/network manager,
and a management console to control the network as shown in Fig. [I.1.1]
The sensor nodes are responsible for data collection and relay of packets to-
wards the sink (network manager). The actuators obtain the processed data
from the sink via multi-hop communication and routing. Alternatively, the
sensors may also communicate (information) directly to the actuators as il-
lustrated by the dashed arrows in Fig. [[.I.1] The network manager is also
responsible for scheduling and managing the network, and the management
console is used to control the network manager. A typical sensor/actuator

node for the industrial domain implements four important functions of IWSN

4

Chapter 1. Introduction

[7]: Routing, Medium Access Control (MAC), Transport, and Security. Mul-
tiple standards have been developed to provide solutions for IWSN applica-
tions. The most important ones are: Zigbee [11], ISA100.11a [10], WIA-PA
[12], and wirelessHART [9]. Below we provide a broad classification of in-
dustrial applications, requirements specific to use in the industrial domain,
and current standardization efforts to provide efficient IWSN solutions.

1.1.1 Applications of IWSN

WSNs are applied in a wide range of industrial applications and is not only
replacing existing wired solutions, but also creating new and effective solu-
tions. Industrial applications include operation in harsh environments such as
having high temperature apparatus close to the sensor devices and actuators.
Eliminating the requirement of manual intervention and reducing the size and

cost of the devices is a main focus points of emerging wireless solutions.

Monitoring systems Initially, WSNs were used in military applications for
monitoring purposes, and later expanded to additional applications ar-
eas. These new applications involve two types [8]]: environmental mon-
itoring and condition monitoring. Environment monitoring includes
monitoring of physical quantities in a given environment and collecting
this information over a period of time. Condition monitoring includes
monitoring of equipments in the industrial setup for noise and vibration.
An application example for condition monitoring on a smart grid can be
found in [13]] which is concerned with monitoring of components crit-
ical for operation of a smart grid. The monitoring process looks for
failures or erroneous behaviours. An example of remote monitoring in

the oil and gas industry can be found in [14] for pipeline monitoring.

Safety systems While working in harsh industrial environments, safety is
an important concern. Fire detection [15] systems, methane gas leak
detection systems [16] are examples of WSN applications. These sys-
tems continuously monitor a given environment for events that threaten
safety and when an event occurs, authorities are notified for further han-
dling. Another gas leak detection example involving hazardous gases

can be found in [17]. Depending on the seriousness of the threat, the

5

DMAMAC Protocol for Process Control in INSN

requirements for the safety system applications vary. Real-time require-
ments, including low-delay, high-reliability, and robustness constitute a

general set of requirements for these systems.

Control systems An important part of process automation applications are
control systems. Control systems can be broadly classified [10] into:
open loop and closed loop systems. The open loop system consists of
a human in the loop that manages and controls the process. The closed
loop is a completely automated system, which could have a human as
a supervisory controller. Process control systems generally have strict
real-time requirements typically in the order of milliseconds for delay.
They also have high reliability requirements which is essential to keep
the process being controlled stable and operational. The set of require-
ments imposed by the control systems in general pose a challenge to the
wireless solutions. A wireless temperature control network is presented

in [18]], and [19] discusses a water pump control system.

In this thesis, we focus specifically on applications of IWSN in control

systems [20].

1.1.2 IWSN Requirements

The IWSN domain is a subset of the WSAN domain and has requirements
specific to the industrial domain [6, 7, [8]. Below we discuss the requirements,

specifically focussing on the control system applications.

Energy efficiency IWSN devices are generally battery powered, and due to
their limited size, the battery capacity is also limited. Energy consump-
tion can be viewed in two dimensions as mentioned in [7]: low energy
consumption and efficient energy consumption. Low energy consump-
tion solutions focus on keeping the energy consumption at every single
node low. Efficient energy consumption solutions focus on balancing
the energy consumption throughout the network to extend the network

lifetime.

Quality of Service (QoS) Every application defines a set of performance met-

rics based on its requirements. These metrics are used to assess if the

6

Chapter 1. Introduction

proposed solutions meet the application requirements. For example,
real-time process control in industrial applications has strict require-
ments on delay (low), reliability (low packet loss), dependability, ro-
bustness, and predictability. A protocol solution attempts to obtain an

optimal trade-off between energy efficiency and providing the required

QoS.

Wireless channel conditions are dynamic and vary with time. This 1s par-
ticularly true given the influx of multiple types of wireless services used in
an environment in general and also within the particular application domain.
For example, WiFi, mobile services and other electromagnetic noise creates
interference with the operation of the IWSN. Thus, protocols need to employ
techniques to be robust under potentially deteriorating channel conditions.
Predictability allows the application users to create definitive models for the
operation of IWSN solution and is one of the important IWSN application
requirements [21}, 22]].

1.1.3 Industrial Standards

The IEEE 802.15.4 [23] is an IEEE standard to support low-power, low-data
rate radio applications with a short coverage area. It was developed as a stan-
dard by the Personal Area Network (PAN) working group. This standard has
been widely used for WSN solutions proposed by industrial working groups
such as WirelessHART [9]] and ISA100.11a [10]. It mainly specifies the MAC
and the physical layer. IEEE 802.15.4 uses Carrier Sense Multiple Access
(CSMA) with Collision Avoidance (CA) and Guaranteed Time Slots (GTS).
The 802.15.4 PHY (Physical layer) is embedded into transceivers such as
the CC2420 [24]. Later, given the industrial requirements of predictability,
reliability, and real-time aspects, the IETF working group on Wireless Per-
sonal Area Networks (WPAN) proposed a new version called IEEE 802.15.4e
[25, 26]. The new standard aims at addressing co-existence issues using
Time Slotted Frequency Hopping (TSFH). Additionally, other features for
e.g., dedicated and shared slots, multi-channels, were proposed [26, 27] to
improve the MAC performance.

WirelessHART [9] is the wireless standard developed by the HART Com-

munication Foundation (HCF) for process automation applications. The net-

7

DMAMAC Protocol for Process Control in INSN

work architecture proposed by HCF consists of multiple components includ-
ing: field device, adapter, handheld device, gateway, network manager, and
security manager. The field device is a field instrument, either a sensor or an
actuator device. A handheld device is a portable device to collect data, con-
figure, and diagnose field devices. The gateway connects the plant automa-
tion network to the network manager, and the security manager. The architec-
ture relies on centralized control with a dedicated device called the network
manager for control and management. The security manager is responsible
for the security in the network. The physical layer in wirelessHART is based
on 802.15.4 PHY, but the MAC in WirelessHART is significantly different
and is based on the Time Synchronization Mesh Protocol (TSMP). TSMP
is a Time Division Multiple Access (TDMA) protocol developed by Dust
Networks [28]]. It uses TDMA and applicable features from IEEE 802.15.4
MAC. TDMA is reliable in comparison to random access techniques, and
reliability is one of the important requirements in process automation ap-
plications. To overcome radio frequency interference [29, 30], the standard
employs channel blacklisting, where poor frequency channels among the 16
available channels are blacklisted based on observed performance.

The International Society of Automation (ISA) [31] set out to develop
its own standard for wireless networks in process automation, similar to the
standardization process by HCF. The standard created is ISA100.11a [10].
ISA is based on the IEEE 802.15.4 standard similar to wirelessHART and
shares some common features in the MAC layer, like employing TDMA
techniques. In addition, it also uses the CSMA-CA techniques similar to the
base IEEE 802.15.4 MAC. CSMA-CA is used to obtain higher utilization.
ISA100.11a also uses channel hopping techniques to address interference is-
sues. ISA100.11a supports the IPv6 standard, enabling support for the new
domain referred to as Internet of Things (IoT) [32]]. The ISA100.11a standard
uses a wired backbone network along with a gateway, system manager (net-
work) and security manager similar to wirelessHART to manage the network.
It also has support for integrating legacy protocols into the ISA solution, e.g.,
wired HART and interoperability with networks based on wirelessHART.

It is important to note that all these standards constitute more of a frame-
work than a complete solution. The frameworks provide flexibility for devel-

opers to include their own software by modifying an existing framework to

8

Chapter 1. Introduction

C, Pump
Server/Sink Heat
‘ Exchanger
N @ Actuator
/s \
7 (¢ ",\f‘) Sensor
| |
Sensors
F - Flow

T - Temperature

L (P @ (P L P- Pressure

L- Level

¢

N

Reaction Vessel =—Qut=-p»
Control valve

Figure 1.2.1: An example process control scenario

match specific requirements. As an example, existing MAC protocols in the
framework can be extended to include additional features addressing appli-
cation specific requirements. For a more detailed comparison between differ-
ent wireless standards, including wirelessHART and ISA100.11a, we refer to
[33].

1.2 Process Control Application

In this thesis, we focus on the use of IWSN for the process control applica-
tions. An example of a representative process control system is shown in Fig.
This is similar to the example process control system used in the case
study for the GinMAC protocol [34]. It shows a chemical process plant with
sensors and actuators installed to control the chemical process. The example
includes two storage tanks (Tank 1 and 2) to store chemicals to be mixed, in
the reaction vessel. The actuators control the flow of chemicals from the stor-
age tanks to the reaction vessel based on the actuation commands from the
sink/network manager. The sink makes control decisions based on the sen-
sor readings it obtains and the requirements of the process being controlled.
Multiple types of sensor units are used in the scenario including: flow, tem-

perature, pressure, and level sensors. Three types of actuators are used: pump

9

DMAMAC Protocol for Process Control in INSN

—Response —Upper bound Lower bound —Target Value
50 Transient Steady Switch
T <>
45
e AN A
m 3¢ [N\ AN ~\ AN
30
€ 25
r 20
a 15
t 10
u s
ro
e 0 5 10 15 20 25 30
Time

Figure 1.2.2: Chart representing of process control variables

controller (for flow/level), heat exchanger (for temperature), and a control
valve (for pressure/level). With the assistance of these sensors, actuators,
and the underlying process model, the sink performs monitoring and control.
Process models are models representing the process in operation and the con-
trol procedure. In other words, the process models provide the decision logic
used by the sink to process the incoming sensor data. The processed data is

then relayed to the actuators as actuation commands for required operation.

A typical process control operation could result in a graph similar to the
one shown in Fig. [[.2.2] It shows a measured physical quantity, e.g., temper-
ature monitored and controlled over time. Process control normally consists
of the two states steady and transient and the process control alternates be-
tween these two operational states. The transient state is a state in which
there is rapid change in a measured physical quantity (temperature) as indi-
cated in the first section of the graph. An IWSN solution has to communicate
large amounts of data in the transient state in order to control the process
without disruptions. The steady state in contrast to the transient state has a
small rate of change. The measured value (in this case temperature) generally
lies within a bounded interval for the steady state as shown in the second part
of the graph. This allows for the IWSN to reduce the data traffic towards the
sink from the sensors.

10

Chapter 1. Introduction

1.3 Functions

An IWSN solution for process control applications is made up of a suite of
protocols that provide the different functions required. The suite of proto-
cols implement four important functions: Transport, Routing, Medium Access
Control (MAC) and Security. These in addition to an application layer make
up a complete solution for a given industrial application. Below we discuss

Transport, Routing, MAC and security functions.

Transport. In the context of this thesis, reliability is an important require-
ment for the design of industrial solutions. Reliability here refers to the re-
liable delivery of data from source to destination, thus reducing packet loss
at the same time as addressing real-time delay requirements. Packet loss can
be caused either by congestion or interference that exists in wireless chan-
nels. Transport protocols are generally responsible for reliable communica-
tion in an IWSN in conjunction with the MAC protocols. Transport protocols
achieve this goal by congestion control/avoidance and implementing features
to reduce interference effects. The application requirements can further spec-
ify the reliability requirements at a finer granularity based on the goals it
needs to achieve as described in [7]. Example transport protocols applicable
in the IWSN domain include the Asymmetric and Reliable Transport Mech-
anism (ART) [35]], the real-Time and reliable transport protocol (RT?) [36],
and the Reliable Bursty Convergecast (RBC) [37] protocol.

Routing. In a typical multi-hop network, multiple paths exists between a
given source and destination. The routing layer in an IWSN solution is re-
sponsible for efficiently routing data within the network by finding the best
path suitable for the application requirements. Important design requirements
for routing protocols include: fault tolerance, energy efficiency, load bal-
ancing, service differentiation, and Expected Transmission count(ETX) [1]].
Apart from the general design requirements, the planned topology of the
network imposes additional requirements to the design. Example protocols
applicable in the domain are: the Multipath Multi-SPEED protocol (MM-
SPEED) [38]], the Threshold Sensitive Energy Efficient Sensor Network pro-
tocol (TEEN) [39], and the Routing Protocol over Low-power and Lossy

11

DMAMAC Protocol for Process Control in INSN

Networks (RPL) [40].

Medium Access Control (MAC). MAC protocols are mainly responsible
for controlling the medium access in the network. Thus, it is directly respon-
sible for controlling the radio, which is the largest consumer of energy in
a sensor-actuator device [41), 42]. The MAC protocol decides the required
schedule for the network operation based on the application requirements.
Two important types of approaches used in MAC protocols are Time Divi-
sion Multiple Access (TDMA) and Carrier Sense Multiple Access (CSMA).
Protocols implementing the TDMA approach divide the available time be-
tween the nodes in the network. Nodes operating as part of a CSMA-based
protocol first sense the channel whenever they have data to be sent. If the
channel is found to be clear with no communication in the vicinity, the nodes
go ahead with data communication. Some protocols use both TDMA and
CSMA concepts to realise a hybrid operation [43]. This allows the protocol
designers to exploit the advantages of the two approaches. Some example
MAC protocols that could be applicable in the IWSN domain are the Gin-
MAC protocol [44], QoS aware MAC [435], Power Efficient and Delay Aware
MAC for Sensor Networks (PEDAMACS) [46], and Emergency Response
MAC (ER-MAC) [47].

Security. Wireless networks are inherently susceptible to security attacks
due to the lack of physical connections. Additionally, given the substan-
tial difference in the requirements of the IWSN applications from traditional
wired networks, the security techniques applied to wired networks are not
directly applicable [48]]. Given the limited capability of the devices included
in the network, developing a lightweight but strong security procedure is a
challenge in itself. The wireless standards wirelessHART and ISA100.11a

use dedicated devices as security managers.

1.4 Research Questions

Given our focus on specific industrial requirements, and the fact that MAC

protocols control most of the energy expenditure, including its ability to af-

12

Chapter 1. Introduction

fect other requirements (e.g. delay), we further narrow our focus on MAC
protocols for the IWSN domain. The research questions that this thesis ad-

dresses are listed below:

e Can MAC protocols for wireless process control be made energy effi-

cient by exploiting intrinsic properties of the process control domain?

e What guarantees can be provided with respect to real-time operation

and reliability?

e How can model-driven engineering techniques be used for MAC proto-

col development?

1.5 Goals and Contributions

The main contribution of the thesis is the proposed Dual-Mode Adaptive
Medium Access Control Protocol (DMAMAC). The DMAMAC protocol is
proposed for process control application with real-time requirements. The
proposed protocol is then thoroughly analyzed and refined to arrive at ro-
bust, energy efficient protocol with two variants (Hybrid and TDMA). The
analysis process included validation, verification, simulation and deployment
test. Prior to the protocol proposal, to get an idea about the state-of-the-art in
the domain, we investigated state of the art as a first step towards answering
the research questions. This investigation resulted in identifying the MAC
protocols applicable to the domain of research, the process control domain in
particular. Further, we studied the identified protocols thoroughly to be able
to extend them in order to exploit the domain properties to result in design
that performs better than the existing solutions. We identified the GinMAC
protocol [44] as a base and proposed the DMAMAC protocol. In parallel,
we also studied state-of-the-art model-driven techniques for the design of
communication protocols. We used one of the existing tools, the PetriCode
tool [49], and proposed a design and development approach on model-driven
principles.

We proposed an initial version of the DMAMAC protocol in the article
"Towards a dual mode adaptive MAC protocol (DMA-MAC) for feedback-

based networked control systems" [S0]. The paper mainly discussed the

13

DMAMAC Protocol for Process Control in INSN

DMAMAC-Hybrid variant. Additionally, we evaluated the energy consump-
tion of the DMAMAC protocol against the related GinMAC [44] protocol
analytically, and showed that it provides substantial reduction in energy con-
sumption for target configurations.

The DMAMAC protocol was then evaluated via simulation and was pre-
sented in the article [S1]]. Based on the initial simulation evaluation, a fully-
TDMA version was derived from the DMAMAC protocol to obtain a DMA-
MAC variant with improved reliability and predictability. Both variants of the
DMAMAC-protocol were compared for several metrics including energy ef-
ficiency, network lifetime, and switch failure probability (notification packet
failure).

The contribution of the article "Model-based Specification and Validation
of the DMAMAC Protocol" [52]] is to describe the validation and verification
of the DMAMAC protocol via model checking. We describe the modeling for
both DMAMAC protocol variants using the Uppaal tool [53]]. Models created
are validated and verified using queries. The queries include: configuration-
specific, configuration-independent and real-time queries.

The DMAMAC protocol is implemented and evaluated via deployment
in the article "Implementation and Deployment Evaluation of the DMAMAC
Protocol for Wireless Sensor Actuator Networks" [54]. We, mainly focus
on the goals drawn out for the implementation evaluation of the DMAMAC
protocol. The DMAMAC protocol nesC implementation code is deployed
using a hardware platform (Zolertia), and evaluated in a realistic industrial
application scenario.

The contribution of the article "Towards a model-based development ap-
proach for wireless sensor-actuator network protocols" [S3]] is to present an
initial idea of a Model-Driven Software Engineering (MDSE) [56] approach
for MAC protocols. We present the MDSE approach based software code
generation architecture. The entire process uses: a modeling tool, PetriCode
for code generation based on platform specific code templates (simulation
and deployment). An extended version is presented in "Model-based De-
velopment for MAC Protocols in Industrial Wireless Sensor Networks" [57]].
The simulation platform source code generated is simulated in the MiXiM
platform and analyzed for performance. The implemented code for deploy-

ment is deployed using a hardware platform and evaluated for link quality.

14

Chapter 1. Introduction

We use the GinMAC protocol as a running example to present the MDSE
approach.

1.6 Outline

This thesis is divided into two main parts: Part [provides an introduction and
overview of the dissertation, and Part[[l}is comprised of a collection of articles
(505151} 152, 154, 155, 157] that make up the dissertation. Partin addition to the

current chapter, is divided into the following:

Chapter 2| provides an introduction to the DMAMAC protocol and the ar-
ticles concentrating on the design of DMAMAC. We discuss the work
related to the DMAMAC protocol, followed by a detailed overview of
the features of the DMAMAC protocol. We also discuss the two vari-
ants of the DMAMAC protocol, DMAMAC-Hybrid and DMAMAC-
TDMA along with their differences and applications.

Chapter 3] discusses the evaluation of the DMAMAC protocol. The per-
formance evaluation of the DMAMAC protocol is done via a network
simulator platform focussing on energy efficiency and network lifetime.
The verification of the design of the DMAMAC protocol is discussed

as a second part of the evaluation.

Chapter [d] discusses the prototype implementation and deployment of the
DMAMALC protocol. In addition to providing an overview of the im-
plementation article, we add the details related to the implementation

setup missing in the article itself.

Chapter 5 In the chapters and 4] a traditional design and development
methodology is followed. In chapter [5| we provide an overview of the
alternative development methodology that we have suggested. The al-
ternative development methodology provides a model-based approach
for design and development of MAC protocols. As a running example,
the GinMAC protocol is used.

Chapter [6] We discuss conclusions and possible future directions in the last

chapter. Additionally, a summary of the overview part, and applicability

15

DMAMAC Protocol for Process Control in INSN

of the DMAMAC protocol beyond the IWSN domain is discussed.

In addition to summarising the contribution of each article, we also put

the limitation of the work into perspective.

Part|ll| is comprised of the following published/submitted articles:

[50] A. Ajith Kumar S., Knut @vsthus, and Lars Michael Kristensen, "To-

wards a Dual Mode Adaptive MAC protocol (DMA-MAC) for Feedback-
based Networked Control Systems", in Proceedings of the 2nd Interna-
tional Workshop on Communications and Sensor Networks, Procedia
Computer Science, 34, 505 -510, 2014.

[51] A. Ajith Kumar S., Lars M. Kristensen, and Knut @vsthus, "Simulation-

based evaluation of DMAMAC: A Dual-Mode Adaptive MAC protocol
for process control”, in Proceedings of the 8th International Conference
on Simulation Tools and Techniques, pages 218 —227, 2015.

[52] A. Ajith Kumar S., Andreas Prinz, and Lars M. Kristensen, "Model-

based verification of the DMAMAC protocol for real-time process con-
trol", in Proceedings of the 9th International Workshop on Verification

and Evaluation of Computer and Communication Systems, 1431:81
-96, 2015.

[54] A. Ajith Kumar S., Knut @vsthus, and Lars M. Kristensen, "Implemen-

tation and Deployment Evaluation of the DMAMAC Protocol for Wire-
less Sensor Actuator Networks", in Proceedings of the 7th International

Conference on Ambient Systems, Networks and Technologies, Proce-
dia Computer Science, 83, 329 —336, 2016.

[S5] A. Ajith Kumar S. and K. I. F. Simonsen, Towards a model-based de-

velopment approach for wireless sensor-actuator network protocols, in
Proceedings of the 4th ACM SIGBED International Workshop on De-
sign, Modeling, and Evaluation of Cyber Physical Systems, pp. 35 -39,
ACM, 2014.

[57] A. Ajith Kumar S. and K. I. F. Simonsen, Model-based Development for

MAC Protocols in Industrial Wireless Sensor Networks, in Proceedings
of the International Workshop on Petri Nets and Software Engineering
(Accepted), 2016.

16

Chapter 1. The DMAMAC protocol

The reader of this thesis is assumed to have knowledge about communi-
cation systems and the use of wireless technologies in general. The artifacts

for simulation code and verification models (+code) can be found in [38]].

17

Chapter 2

The DMAMAC Protocol

This chapter is based on the article article "Towards a dual mode adaptive
MAC protocol (DMA-MAC) for feedback-based networked control systems"
[50]. The article mainly provides an initial specification of the Dual-Mode
Adaptive MAC (DMAMAC) protocol, along with underlying assumptions.
The article gives an introduction to the process control application for which
the DMAMAC protocol was proposed. Further, it proposes the dual-mode
mechanism in the DMAMAC protocol, a detailed description of each slot
and its function in the two types of superframes (steady and transient). Also,
an introduction to the idea of the alert message mechanism to facilitate the
mode-switch. The article mainly discussed the DMAMAC-Hybrid variant.
Additionally, we evaluated the energy consumption of the DMAMAC proto-
col against the related GinMAC [44] protocol analytically, and showed that it
provides a substantial reduction in energy consumption for target configura-
tions.

The DMAMAC protocol was first proposed in [50] targeted at process
control applications. After simulation analysis of the initial version, an im-
proved variant was proposed and analyzed in [S1]. The two variants use
Time Division Multiple Access(TDMA) and Carrier Sense Multiple Access
(CSMA) methods for channel access. The two variants are called DMAMAC-
Hybrid (TDMA+CSMA) and DMAMAC-TDMA Protocol. In addition to
providing an overview of the DMAMAC protocol along with its variants, we
also discuss the differences between the two, their pros and cons. It should
be mentioned that the DMAMAC protocol can be used within the framework
of the industrial standard solutions presented in[I.1.3]

19

DMAMAC Protocol for Process Control in INSN

ConﬂguranonD Sleep
commands
Sensor Data D Retransmission O Actuator Data
|
[

D]_ D ______ [I] _________ ‘ _ D

Upstream Data ! Unused/Sleep ! Downstream Data !

Figure 2.1.1: A generic GinMAC superframe

2.1 MAC Protocols for Process Control

The GinMAC protocol [44] was proposed for the GINGSENG [39] project
aimed at performance monitoring and control in Industrial Wireless Sensor
Networks (IWSN). The design of the GinMAC protocol aims at satisfying
real-time requirements of industrial applications. GinMAC is a TDMA-based
protocol with features that include: offfine dimensioning, exclusive TDMA,
and delay conformed reliability control. Offline dimensioning means that the
scheduling of the superframe for the network using the GinMAC protocol is
calculated offline prior-deployment. Exclusive TDMA means that the slots
used by the nodes are exclusive and cannot be re-used by other nodes. Gin-
MAC also assumes data transmission of maximum packet length and associ-
ated acknowledgement within the same slot. The GinMAC authors propose
pre-deployment assessment of the channel conditions in the deployment en-
vironment. Based on results obtained from the conducted experiments, and
delay requirements of the application, delay conformed reliability control is

employed to decide the number of re-transmissions slots.

A typical GinMAC superframe is shown in Fig. 2.1.1] Apart from the
essential sensor and actuator data slots, the GinMAC superframe incorpo-
rates re-transmission for both types of data slots, sleep slots, and a configura-
tion command slot. The configuration command slot is used for transmitting
management information by the sink, such as time synchronization messages.
The network topology for the GinMAC protocol is a tree topology as shown
in Fig. GinMAC protocol is an important background and related

work, which will be used extensively in the rest of the thesis.

20

Chapter 2. The DMAMAC protocol

ﬁ Sink node

L Sensor node

w Actuator node /

— — Can listen

— Communicate

Figure 2.1.2: The network topology for GinMAC

ﬁ! Sink node — — Can listen

(¢
L. Sensor node — Communicate

Figure 2.2.1: An example node topology for the DMAMAC protocol

2.2 The DMAMAC Protocol

The DMAMAC protocol is designed for a tree topology network similar to
GinMAC. The network consists of sensors, actuators, and a sink. Both the
sensors and the actuators are equipped with wireless communication capable
transceivers. The sensors measure a given physical quantity (e.g., tempera-
ture) over a certain geographical area. The actuators act on incoming com-
mands influencing a certain physical quantity, e.g., influencing temperature
by heating up or cooling down. The sink is a computationally powerful wire
powered device, it performs data processing on the sensed data and commu-
nicates processed data to the actuators. The sensors and actuators are battery

powered, and have relatively lower computational power.

21

DMAMAC Protocol for Process Control in INSN

The network is organized into levels, where each level is associated with
a rank Rn where n = 1,2,3.. as shown in the Fig. The only difference
between the topology presented previously in Fig. is the indication of
levels associated with a rank required by the DMAMAC protocol. R1 and R2
in the case of Fig. [2.2.1] The rank is used in the alert message mechanism
of the DMAMAC-Hybrid variant of the protocol. The DMAMAC protocol
serves the dual-states of the process control via two separate operating modes
in the protocol. The transient state of the process control is served by the
transient mode in the DMAMAC protocol, and the steady state is served by
the steady mode of the protocol.

Transient Superframe The transient superframe is designed for the tran-
sient mode of the DMAMAC protocol, and is based on the GinMAC [44]
protocol superframe. The design of the transient superframe was first pro-
posed in [50] and has remained unchanged. This is unlike the structure of the
steady superframe. The main goal of the transient superframe is to support
a high data rate in order to support the transient state of the process control.
Additionally, it provides reliability measures by providing additional slots.
When the packets fail due to poor channel conditions, they are sent again
in the additional slots. The structure of the transient superframe is shown in
Fig. [2.2.2] The number of re-transmission slots is a configurable parameter in
the DMAMAC protocol design, and can be set based on application require-
ments. For an industrial environment with high packet loss, the application
could benefit from providing more than one re-transmission slot. Also, this
can be configured separately for sensor data and actuator data. The transient
superframe is the same for both variants of DMAMAC (hybrid and TDMA).

The length of a transient superframe is denoted as Nt.

Steady Superframe The steady superframe is designed for the steady mode
of the DMAMAC protocol. The steady mode is designed to support the
steady state of a process control application which has low-data rate require-
ments. This allows for incorporating a larger number of sleep slots than in
the transient superframe. The steady superframe is designed such that its
length (denoted as Ns) is a multiple of Nt, i.e, Ns = n x Nt where n > 1 is

a configurable parameter that can be set based on application requirements.

22

Chapter 2. The DMAMAC protocol

U Notification [] Sleep D Sink Processing

[] Sensor Data U Retransmission [j Actuator Data

Nt

M0 M0 04

Sensor Data Actuator Data Sleep

Figure 2.2.2: Transient mode superframe [50]

Essentially, the higher the value of n, the larger is the energy savings in the
steady state. The energy saving is also dependent on the occurrence of the
steady superframe during the operation. Also, Ns being a multiple of Nt al-
lows seamless synchronization for nodes between the operating modes. For
example, if a node misses a notification packet with mode switch command
(steady to transient), it still will receive all the forthcoming notification pack-
ets and can switch to the transient mode at the beginning of the next transient
part (in the steady superframe).

The steady mode superframe was first proposed in [S0] and further mod-
ified in [S1] based on performance analysis results. The first modification
included moving the notification slot from the beginning of the second Nt
part of the steady superframe to the end, and also including it for each Nt
parts that follows. Moving the notification to the end, after the alert slots,
ensured quick state change after an alert is received. In [54], we restored
the notification slot to the beginning of each Nt slot to improve robustness
against packet failures. This is explained in detail in [54]. Thus, the final ver-
sion of the steady superframe shown in Fig. includes two notification
slots in each Nt part as opposed to one in the initial version. Additionally, the
steady superframe has two configurable parameters. One is the number of
re-transmission slots per transmission slots; the other is the number of alerts

slots.

Alert messages An important part of the dual-mode DMAMAC protocol

is the mode switch procedure. The switch between the transient and steady

23

DMAMAC Protocol for Process Control in INSN

[] Notification D Sleep [] Sink Processing

D Sensor Data [:] Retransmission D Actuator Data D Alert Message

Ns

’, ’Dlll]Ul[][lly[lﬂml ______ D;][D[UI

|1 [| | |
Sensor Data Actuator Data Sleep Sleep Alert Sleep Alert

|
|
| Nt | | Nt I

Figure 2.2.3: Steady mode superframe

modes are facilitated by different actors (sink or sensors) depending on the
nature of the switch. The switch from transient to steady is facilitated by the
sink based on an assessment of the process control state. This could be auto-
matic statistical analysis or manual setting based on deployment experience.
This switch 1s less critical compared to the switch from steady to transient.
The switch from steady to transient is initiated by the nodes and implemented
network-wide by the sink. This is a critical switch since the transient state re-
quires transient mode support from the protocol in order to accommodate a
high data-rate. This switch is decided based on a threshold interval set by
the sink. When the measured physical quantity breaches the aforementioned
threshold, the sensor nodes notify the sink of this breach via alert messages.
The alert messages are sent in the alert slot (see Fig. [2.2.3). The schedul-
ing of the alert slots is the main difference between the two variants of the
DMAMAC protocol (hybrid and TDMA) and is discussed in the following

section.

2.3 DMAMAC-Hybrid and DMAMAC-TDMA

The first proposed variant of the DMAMAC protocol was the DMAMAC-
Hybrid protocol. The term hybrid comes from the fact that it combines
CSMA and TDMA within the steady superframe. The transient superframe
uses entirely TDMA and the steady superframe uses CSMA for the alert mes-

sage slots. The use of CSMA for alert message slots results in a scalable

24

Chapter 2. The DMAMAC protocol

[[:] Notification [j Sleep [:] Alert Message . Alert Re-transmissioD

| |

@ @

| | R(N-1) .o | | (N-1) i |

! Sleep | Alert ! Sleep | Alert !
DMAMAC-Hybrid DMAMAC-TDMA

Figure 2.3.1: Alert message mechanism in the DMAMAC protocol, DMAMAC-Hybrid (a)
and DMAMAC-TDMA (b)

steady superframe and energy conservation. The slot distribution is based on
the rank in the tree topology as discussed in [52]. Each rank has two spe-
cific slots assigned: one for reception (RX) and one for transmission (TX).
The alert mechanism for DMAMAC-Hybrid is shown in Fig. [2.3.1(a). The
slot identification with Rn indicates slot per rank for the DMAMAC-Hybrid
variant and re-transmission slots (if any) follow the main transmission slot.
The actual alert sending mechanism was modified in [51]] from the initial ver-
sion proposed in [S0] based on the simulation performance analysis done in
[S1]. Initially, we chose to send two alert messages in the same alert slot.

Duplication was used to prevent loss of alert messages due to collision.

Further, we tried alternative configurations which proved to perform better
based on simulation analysis, resulting in the change to initially proposed
model. In the final version of the protocol, a node performs the following
steps when an alert has to be sent and the node is in the alert transmission
slot. Firstly, a random delay is chosen by the respective sensor node, and
it waits for this duration in its alert slot. At the end of the delay, the node
performs carrier sense to check if there is any other alert transmission taking
place in the vicinity. In the absence of other alert transmissions, the sensor

node transmits its alert message to its parent in the tree topology.

The DMAMAC-TDMA has a simpler alert message approach than the
hybrid version. The alert mechanism for DMAMAC-TDMA is shown in Fig.

2.3.1(b). As the name suggests, each sensor node has its own alert message

25

DMAMAC Protocol for Process Control in INSN

transmission slot. It forwards its alert message to its parent, which in turn
forwards it towards the sink. Note that only one alert message is required
to make the switch, and thus the parent nodes only send one alert message,
which could be either an alert to be forwarded or their own alert message.
No separate alert message forward slots are used. The slot identification with
node identifier (n,n — 1....) is for the DMAMAC-TDMA variant with subse-
quent re-transmission slots as shown in the Fig. 2.3.1(b).

As a configurable parameter, the re-transmission slots could be used for
alert messages too, to make the protocol more robust in poor channel con-
ditions. This is true for both DMAMAC-Hybrid (per-level re-transmission
slots) and DMAMAC-TDMA (per node re-transmission slots). The alert
message slots are shown in Fig. [2.3.1] for both DMAMAC-Hybrid (left) and
DMAMAC-Hybrid (right) with optional re-transmission slots. The number
of re-transmission slots (black) may vary depending on the requirements.

The two variants of the DMAMAC protocol have their own advantages

and disadvantages in the following aspects:

Energy efficiency In certain cases the DMAMAC-TDMA protocol could
consume more energy than the hybrid variant. This is specifically true
due to alert messaging. As an example, consider a case where a large
number of nodes exist in the network and each parent node has three
child nodes. The parent node has to have a separate receive slot for
each child node. In the case of hybrid, the parent would only have one
alert receive slot, but the same node in the TDMA variant would have
three alert receive slots. This means that the energy consumption for its
alert slot is three times that of the hybrid variant alert slot.

Packet failure DMAMAC-Hybrid may suffer from packet collisions in its
CSMA part for alert messaging. This affects the performance of the
critical switch from steady to transient. DMAMAC-TDMA has an ad-
vantage over the hybrid variant in this case, but could still be affected
by packet failure due to poor channel conditions (which affects both

variants equally).

Switch delay The relatively low number of alert slots in the hybrid variant
facilitates low-switch delay compared to the TDMA variant. This could

26

Chapter 2. The DMAMAC protocol

be used as an advantage while designing smaller superframes facilitat-
ing low-delay.

Predictability The TDMA variant has a higher level of predictability due
to the use of entirely TDMA. The hybrid variant suffers from the non-

determinism introduced in its alert message slots and due to collision.

As discussed above, both variants of the DMAMAC protocol can be use-
ful depending on application requirements. Thus, it is up to the application
designer to use the appropriate variant based on the application requirements.
Additionally, the configurable parameters provide flexibility to adapt the per-
formance of the protocol to the application requirements. In the end, the
choice of the protocol to be used depends on the type of trade off that the
application can have, essentially, the trade-off between energy efficiency and
predictability.

2.4 Related Work and Perspectives

The Breath [60] protocol suite was proposed as a complete protocol stack
with routing, MAC, and radio controlling mechanisms included. Breath is
also aimed at industrial control applications using WSN similar to the DMA-
MAC protocol. The main focus of the Breath protocol stack at the MAC layer
is to have a CSMA/CA based solution with clustering techniques. The key
assumption underlying the protocol is that the application has a high amount
of randomly occurring events. The protocol aims to adapt to these random
events while being energy efficient at the same time. In contrast, we on the
other hand focus on applications that require predictability, energy efficiency
along with satisfaction of real-time requirements.

The Priority enhanced Medium Access Control (PriorityMAC) [61] is a
protocol designed for IWSN. The focus of the protocol is to facilitate critical
traffic by separating data into different traffic classes. The main classes are:
critical, secondary and low priority. It successfully achieves low-latency for
the critical priority traffic (critical) by higher bandwidth allocation. The au-
thors have analyzed the performance of the protocol via simulation in MAT-
LAB and further implemented the protocol on TinyOS and deployed it on a

27

DMAMAC Protocol for Process Control in INSN

testbed for further analysis. With respect to the DMAMAC protocol, the fo-
cus of PriorityMAC is entirely different. The focus of the PriorityMAC pro-
tocol is to classify data into different traffic classes, with critical data being
assigned higher priority to provide reliable service. It could be possible that
these two protocols could co-exist, i.e., the DMAMAC protocol data could
benefit from priority classifications and usage of PriorityMAC features.

Z-MAC [43] is a hybrid protocol using both CSMA and TDMA. Z-MAC
is a distributed protocol (for slot selection) and also a dual mode protocol sim-
ilar to the DMAMAC protocol with two modes of operation: low-contention
level and high contention level. Contention here refers to contention for chan-
nel resources, i.e., number of nodes competing for using the channel at a
given time. The nodes running on Z-MAC list their two-hop neighbors and
locally perform scheduling in a distributed manner such that no two nodes
select the same slot. CSMA is used for low-contention level duration and
TDMA for high contention level to obtain high bandwidth utilization. The
scheduling in Z-MAC is dynamic, whereas in the DMAMAC protocol, we
use offline scheduling, where the node slots are calculated pre-deployment
similar to the GinMAC protocol. The offline scheduling in combination
with TDMA increases the predictability of the DMAMAC protocol opera-
tion, which is an important requirement of IWSN.

The GinMAC [44]] protocol, used as a basis for the DMAMAC protocol is
also used for monitoring and control. The DMAMAC protocol is energy ef-
ficient compared to the GinMAC protocol for process control scenarios with
dominant steady state as presented in the analytical evaluation in [S1]]. Also,
the longer the length of the steady superframe the more is the energy savings.

This chapter mainly provided an overview to the DMAMAC protocol de-
sign based on details and excerpts from [S0] and [S1]. Apart from these, the
steady superframe modification made in [54]] is also mentioned, which led to
the final version of the steady superframe. Below, we place the article [50] in
perspective based on the current standing of the DMAMAC protocol.

The DMAMAC protocol is aimed at a section of process control applica-
tions, where the steady state dominates the time of execution duration. Thus,
the protocol is assumed to operate in steady mode for most of the execu-
tion duration, consuming lesser energy relative to the GinMAC protocol. For

configurations with higher transient state occurrence in the process control

28

Chapter 2. The DMAMAC Protocol Evaluation

operation, users can benefit from using the GinMAC protocol. The DMA-
MAC protocol has an increased operation and implementation complexity
compared to the GinMAC protocol. We would like to also stress on the fact
that, the DMAMAC protocol has been successfully improved since its first
proposal in [50].

29

Chapter 3
Protocol Evaluation

The DMAMAC protocol was thoroughly simulated and also verified to ob-
tain higher confidence on the specification of the DMAMAC protocol. In this
chapter, we discuss the simulation and verification of the DMAMAC proto-
col, based on articles [51] and [52].

The contribution of the article [51] is mainly the simulation evaluation of
the DMAMAC protocol. Multiple simulation runs for different configura-
tions provided better insight into the performance of the protocol. In partic-
ular, the alert message mechanism of the protocol (DMAMAC-Hybrid) was
improved for better performance. Also, a fully-TDMA version was carved
off the DMAMAC protocol to obtain a DMAMAC variant with improved
reliability and predictability of the protocol. Both variants of the DMAMAC-
protocol were compared for several metrics including energy efficiency, net-
work lifetime based on first node death, and switch failure probability. The
simulation modeling and analysis was done on the MiXiM simulator based
on the OMNeT++ platform. Both variants have their own advantages and
disadvantages and are applicable in different settings as explained in Chapter
2l

The contribution of the article "Model-based Specification and Validation
of the DMAMAC Protocol" [[52] was to describe the verification of the DMA -
MAC protocol via model checking. The article describes the modeling of
both DMAMAC protocol variants Hybrid and TDMA using timed automata
and the Uppaal tool [S3]]. The modeling approach and the models are dis-
cussed in detail along with initial validation using Message Sequence Charts

(MSC). The representative network topology used for exhaustive verifica-

31

DMAMAC Protocol for Process Control in INSN

tion queries is discussed along with the configurations used for verification
and validation. Models created are validated also via queries and thoroughly
verified using queries independent of configurations, configuration-specific
queries, and real-time queries. The real-time queries had separate versions
of the models created. The performance of the queries along with the system
configuration used are listed for getting a better idea of the analysis. Fur-
ther, the sequence diagrams from the Uppaal model simulation were used
to validate the sequence diagrams from the simulation evaluation [51] and
implementation evaluation of the DMAMAC protocol [54]].

3.1 Simulation

Plethora of tools have been proposed over the years to perform wireless net-
work simulation [62, 63]. In the recent years, many of the proposed network
simulators have focussed particularly on Wireless Sensor Networks and Body
Area Networks. OMNeT++ [64] is one of these simulator frameworks which
performs better [65, 66] compared to other popular wireless simulators like
ns-2 [67]. The OMNeT++ simulator has advantages over ns-2 in terms of
customization and GUI features. OMNeT++ has also certain performance ad-
vantages [65] over ns-2. In this thesis, we used the MiXiM simulator based
on the OMNeT++ platform to evaluate the performance of the DMAMAC
protocol.

3.1.1 OMNeT++ MiXiM Simulator

OMNeT++ [64] 1s an open source simulation framework, that supports con-
struction of simulators. The framework is modular and component based,
where multiple submodules can be combined together to obtain a required
solution, e.g. a network node with multiple protocols. The modularity al-
lows modellers to replace existing modules with their own and analyze them
for performance. The modularity also allows for re-use of existing modules
and components. OMNeT++ is a discrete event simulator, thus the simula-
tion procedure goes through a set of events occurring during the simulation
timeline. Definition of a network over an OMNeT++ framework includes
multiple types of files: Network Descriptor files (NED), INI or configura-

32

Chapter 3. The DMAMAC Protocol Evaluation

tion files, the C++ files, message files, and XML files. The C++ files mainly
describe the protocol modules under consideration. The NED files describe
the physical characteristics of the nodes and the network, along with the C++
modules used by them. The XML files are for specifying configuration of
the channel conditions, the topology and other configurational requirements.
The message files are used to specify the packet types, and includes a detailed
description of each field in the packets.

Over the years multiple network simulators have been built based on the
OMNeT++ framework which now includes multiple C++ libraries supporting
network simulations. MiXiM [68]] and Castalia [[69] are two network simula-
tors used for WSN and Body Area Networks (BAN) respectively. OMNeT++
provides support for programming protocols spanning multiple layers to con-
struct a virtual WSN with multiple nodes and simulate it over varying param-
eters. The modular architecture along with existing C++ libraries provided,
lets users build their own protocols for performance analysis and testing.

In this thesis, we mainly refer to the MiXiM platform based on OM-
NeT++. MiXiM is a mixed simulator made with the combination of multiple
simulation frameworks developed for mobile and wireless networks. It pro-
vides a rich C++ library with protocol models, and infrastructure required for
a full network simulation. The MiXiM paltform consists of an Integrated De-
velopment Environment (IDE). The Eclipse-based simulation IDE provides a
platform for development, simulation, debugging and analysis via a Graphi-
cal User Interface. The simulation support also provides support for running
multiple simulations as batches, collecting required data, and analyzing this
data via additional tools.

3.1.2 MiXiM model

The DMAMAC protocol model in MiXiM is created based on the specifica-
tion of the protocol from [50]. A MiXiM node model is made up of multiple
layers of protocol, each responsible for separate functions. MiXiM uses a
modular approach, each of these layers constitute a simple module. Addition-
ally, network descriptor (NED) files are used to describe a compound module
made up of multiple simple modules. The compound modules can also be

used to create a network based on the simple modules. The simple modules

33

DMAMAC Protocol for Process Control in INSN

NED Package \ - XML Files \
C++ Files \

DMAMAC.ned config.xml
Network.ned topology.xml
Node.ned decider.xml
NodeNic.ned .

. . DMAMAC.cc)
SinkNic.ned

DMAMACSink.h

S'”kNOde'”e‘l DMAMACSink.cc Packets |

MACpacket.msg
Input Parameters file Sinkpacket.msg
Alert.msg

Figure 3.1.1: MiXiM DMAMAC model [51]

in this case include application, network, and radio modules connected to the
DMAMAC protocol module.

The simulation architecture as shown in Fig. [3.1.1]is made of simple mod-
ules consisting of C++ files, network description with NED files, XML files
for some user based input, packet types as message files, and input parame-
ters file. Separate MAC modules are created for the nodes and the sink along
with their own network descriptor files (NED files). Also, separate MAC
modules are created for DMAMAC-Hybrid and DMAMAC-TDMA. Multi-
ple configuration files are created, two of which are used to specify the super-
frame structure with one file for each superframe. The main packet types are:
generic MAC packet, sink MAC packet, and alert packets. The configuration
for execution is specified in the input parameters file. The configuration pa-
rameters also include the time duration for execution and the position of each
node in the network. For application and radio layer modules, the existing

modules from MiXiM were used.

3.1.3 Experiment Setup and Performance Analysis

The simulation setup consisted of 25 nodes at three levels in the tree topology
excluding the sink. The nodes were comprised of 19 sensors and 6 actua-
tors. We compared the DMAMAC-Hybrid and DMAMAC-TDMA with the
GinMAC protocol. The comparison was done based on two important met-
rics: energy consumption and network lifetime in terms of first node death.
The DMAMAC-TDMA protocol outperforms the other two protocols in most
configurations. Also, we analyzed the state-switch failure possibilities in the

DMAMAC-Hybrid variant, induced due to its alert message mechanism. The

34

Chapter 3. The DMAMAC Protocol Evaluation

T T
DMAMAC-Hybrid mmm |
DMAMAC-TDMA

GinMAC ——

[ury
B
I

[y
N

[y
o
I
1

Energy spent [J]

P-10-2x P-10-3x P-10-4x P-50-2x P-50-3x P-50-4x

Configurations

Figure 3.1.2: Energy consumption comparison in MiXiM [51]]

DMAMAC-Hybrid variant performs decently in terms of the switch failure
conditions.

The comparisons are mostly presented graphically, with additional tables
for getting better insight. Among the results, we present the comparison of
the two DMAMAC variants (TDMA and Hybrid) with GinMAC in Fig. [3.1.2]
(a) and Fig. [3.1.3](b). The GinMAC is presented as a black line as a bench-
mark and the DMAMAC variants with separate colours. Multiple configura-
tions are used, mainly varying the ratio of transient and steady superframes in
the execution, and varying the length of steady superframes. The "P-10-2x",
is to be read such that 10 is the ratio of transient superframes in the entire
execution (as 10% of the execution time) and 2x as steady superframe being
twice the length of the transient superframe. All configurations were simu-
lated using 100 repetitions each with varying execution sequences. Further,
we briefly discussed the protocol performance for metrics including packet

transmission delay, reliability and scalability.

3.2 Verification

The DMAMAC protocol is designed for process control applications with
strict real-time requirements. The design of the DMAMAC protocol could

benefit from formal verification to ensure behavioural correctness and con-

35

DMAMAC Protocol for Process Control in INSN

T

DMAMAC-Hybrid I

DMAMAC-TDMA
GinMAC ——

Relative time to death

P-10-2x P-10-3x P-10-4x

Configurations

Figure 3.1.3: Node lifetime comparison in MiXiM [51]]

formity to requirements. Existing formal verification tools like Uppaal [S3]],
Prism [70] provide model-checking or model-based verification facilities based
on exhaustive verification of a given input model. These verification tools
consist of a verification engine equipped with query language that facilitate
the verification process. The verification engine also provides counter ex-
amples to pin point faults in the design when a given query is not satisfied.
In this thesis, we used timed automata and the Uppaal tool [53] to perform
model-based verification of the DMAMAC protocol.

Uppaal has been previously used for verification of communication proto-
cols [[71, 72, [73]. The modeling and verification of the Lightweight Medium
Access Control (LMAC) protocol is the most closely related work to the ver-
ification article [52]. The focus of the LMAC protocol modeling is to verify
the slot selection and the collision detection module. For the DMAMAC pro-
tocol slot selection is done offline and no collision detection is included, also,
the main focus is to verify the dual mode operation with switching. It requires
a different model to represent the DMAMAC protocol than the ones used in
the LMAC protocol verification article.

For the model-based verification of the DMAMAC protocol, we designed
a generic MAC protocol model with DM AMAC protocol specific extensions.
This extensibility feature of the designed Uppaal model is discussed later in
this chapter. This generic design allows the re-use of the Uppaal model to
obtain other Uppaal models of MAC protocols. The Uppaal model of the

36

Chapter 3. The DMAMAC Protocol Evaluation

DMAMAC protocol is also further used to validate the simulation and the
implementation model of the DMAMAC protocol. This is done via sequence
diagrams to verify specific functions/operations and is explained later in this

chapter.

3.2.1 Uppaal Tool

Uppaal [53] is a formal verification tool providing features including model-
ing, simulation, verification, and performance analysis of real-time systems.
The systems under consideration are designed as a network of timed automata
[74]. The designed system is then validated and verified using simulation
and query engine features provided by the tool suite. Each automata is used
to define a process or an entity (e.g. a sensor node) and the network then
makes the complete system. Each automata is defined using locations, transi-
tions, and synchronization variables. The synchronization variables are used
to synchronize multiple processes, each defined in it its own template. The
programming syntax of Uppaal is C-like. Each template consists of declara-
tions local to the template, and an automata descriptor. The network of timed
automata is composed using a system declaration template. Uppaal has a
graphical user interface to assist the users in creating, editing, simulating and
verifying the input models. The description of the parts of the graphical user

interface and its features are discussed below.

The graphical editor. Users can build a network of timed automata using
the Uppaal graphical editor. It provides locations of different types, includ-
ing: initial, urgent, committed and regular. Each editor template consists of a
local declaration page where all the declarations and functions are defined.

The simulator. The Uppaal tool also provides a simulator in addition to the
verification engine. Users can simulate their models step-by-step to perform
state changes in detail. This enables the users to simulate particular scenarios
to investigate the behaviour of the model.

Message sequence charts. Message Sequence Charts (MSC) can be ob-

tained from the simulator, and can be used to validate the Uppaal model.

37

DMAMAC Protocol for Process Control in INSN

MSC provides a detailed step by step overview of the Uppaal model opera-

tion.

The verification engine. The verification engine takes query inputs to ver-
ify particular properties against model execution. The queries are defined
in the query language based on a timed temporal logic [75] supported by
Uppaal. Multiple queries in combination are used to validate and verify the
model. Uppaal also provides the possibility to obtain simulation path for cer-
tain queries. For example, when a query that is expected to be satisfied is
unsatisfied, the verification engine provides a counter example in the form a

sequence of simulation steps.

Querry Language

For verification of the models in Uppaal the query language is used. The

query language in Uppaal consists of state formulae and path formulae.

State formulae State formulae are logical statements with unary or binary
operators used to check a particular state in the model execution. This is
done using the model elements or data structures of the models. An example,
is Sink.Collision, which specifies a boolean variable Collision in the process
template of Sink. The query is satisfied if the Collision variable has the value

true in a given state.

Path formulae Path formulae in general are used to verify properties like
safety, liveness and reachability. They are used in combination with a state
formula. The path formulae are used for exhaustive verification of all possible
executions of the model, or in some cases to find one execution path where a
query is satisfied.

The two path formulae used in Uppaal are:
e Al]¢ (Always globally) - The state formula ¢ holds or is true in all
states, along all paths.

e A<> ¢ (Always eventually) - For all execution paths ¢ eventually

holds (in the starting state itself or in one of the future states).

38

Chapter 3. The DMAMAC Protocol Evaluation

x==(currentSlot*10)+1
&& change == changeSuperframe
&& transient

x'==1 && x<=(currentSlot*10)+1
Notification

Start
regNotify[change]!
sinkReset(),
ch?\fce“! checkChange(i) startup!
notify() initialize()

x ==(currentSlot*10)+1t&& steady
&& change == changeSup&

sinkReset() x'==1 && x<=currentMaxSlots*10

x<=currentSlot*10 && x'==1 StateController

isSleep() choice!

Sleep calculateWakeup() R

x==(currentSlot+1)*10
currentSlot++,

x==(currentSlot*10) checkCollision()

offcurrentSlot]==sinkld choice!

ACK? DATA! rxSlot[currentSigt]==myLevel[sinkld]

currentSlot+y
ALERTI[i]?
canListen(i)
alertCounter++

rxSlot[currentSl|ot]==sinkld ACK!
DATA? x==(currentSlot*10)+2
currentSlot++

Received
x'==1 && x<=(currentSlot*10)+2

ReceiveAlert
x'==1 && x<=(currentSlot+1)*10

Figure 3.2.1: The DMAMAC sink model in Uppaal [52]

e E[]¢ - There exists one execution path from the starting state where ¢
holds (or is true) in all states along at least one path.

e E<> ¢ - There exists one execution path from the starting state where

¢ eventually holds (or is true).

More details about modeling and verification in Uppaal can be found in
[75]].

3.2.2 The DMAMAC Uppaal Model

The DMAMAC Uppaal model consists of two IWSN elements, the sink and
the node, each defined in a separate template. The Uppaal model of the sink
operating on the DMAMAC protocol is shown in Fig. 3.2.1] and the node
model is shown in Fig. [3.2.2] The Uppaal model is designed based on the pro-
tocol entity states in the DMAMAC protocol operation including: sleep, data
send/receive, notification send/receive, and alert send/receive. Each state is
represented as a location in Uppaal. The sink only receives alerts, thus the
sink model does not have the alert send location. The nodes (sensor and

actuators) only receives notification, and the sink sends them.

39

DMAMAC Protocol for Process Control in INSN

y'==1

Notification © - start 90 currentSlot++

Feg Notrfy[chrange]’? . ___

nodeReset(change)

txSlot[currentSlot] == myLevel[id]

&& lalertReceived && !savedAlert
choice!

choice!

notify() 10

can L\ste?\(\)
&& y==((currentSlot*10)+alertDelay)
ALERTIi]? currentSlot++

alertDelay = i

,
<=curpéntMaxSlots*10
’

Sta/béControIIer
/

y<=(currentSlot*10) && y'==1
Sleep

isSleep() choice!

y==((currentSlot*10)+alertDelay)
ALERTI[id]! updateRecord(),
currentSlot++,
entAlert = true

calculateWakeup() SendAlert

y<=((currentSlot*10)+alertDelay)
y == (currentSlot*10)

ACK?
currentSlot++

UrrentSlot]==id
DATA!

alertDelay=i
(alertReceived || savedAlert)
y==(currentSlot+1)*10 && txSlot[currentSlot] == myLevel[id]
currentSlot++,

checkCollision()

rxSlot[currs = myLevel[id]

rxSlot[currentSlot]==id
DATA?

y==(currentSlot*10)+2
currentSlot++

can L\ste?w(\‘)
ALERTI[i]?

++
Received ReceiveAlert alertCounter:

y'==1 && y<=(currentSlot*10)+2 y'==1 && y<=(currentSlot+1)*10

Figure 3.2.2: The DMAMAC node model in Uppaal [52]

Sink Node(1) Node(2) Node(3) Node(4) Node(5) Node(6) Node(7)

StateControl StateController

DATA|

FEmm)

(ACH

StateControl StateController

@
@
=
e
o
5
a
w
o
@
=
w
o
@
=
w
o
@
=
w
o
@
=
e}
o
@
=

Figure 3.2.3: Message sequence chart for data transfer towards sink

3.2.3 Validation and Verification

We validated the Uppaal model of a network operating on the DMAMAC
protocol using Message Sequence Charts (MSC). An example MSC for data
transmission from a node towards the sink is shown in Fig. 3.2.3] Node 2
sends data towards the sink, and the sink acknowledges with an ACK mes-
sage.

We also used the Uppaal query language and the verification engine to
perform further validation. An example of validating the data transmission
between the nodes, and between the nodes and the sink in the network was
done using the following formulas. The formulae check for data transmis-
sion between all parent-child combination of sensor nodes in the network.

nodeid_t is an identifier used to represent node numbers

Node data communication V i,j € nodeid_t:

40

Chapter 3. The DMAMAC Protocol Evaluation

Other Protocol

Generic Part Specific Extensions
PP PP PO PP PP PP . - (Possible)
Notification (CSMA) Backoff
: - Start : (CSMA)

notification sent Cll channelSense
: a8 | (Contention Period)

notificaction slof startup : X
Busy/Timeout Start Backoff ackoff done

Sleep slot

5
: T r—

StateController

Busy/Timeout:
Clear To Send:
Request To Send
Sleep done

receiveA{'/ / sendeCk [_ - T T T/ N

send Alert |
receive data (data xSlot) | | end of slot
aIertRxSIot alen (alertTxSlol |
end Data (dataTxSlot) \\

DMAMAC Extensions |

Figure 3.2.4: Generic FSM [52]

such that parent[j]==i: A> (Node(i).Sent A Node(j).Received)

Sink data communication
Vi € nodeid_t such that parent[i]==sinkId: A< (Node(i).Sent A Sink.Received)

Further, the DMAMAC protocol was also verified for functional and real-
time properties. One of the important examples include the verification that
the network is properly synchronized with respect to the operating modes. We
verify that at all times both the nodes and the sink are in the same operational

mode, i.e., in either transient or steady.

Consistent node mode Vi € nodeid_t:
AO (Node(i).transient == Sink.transient || Node(i).steady == Sink.steady)

These queries show selected examples from the article [52]].

3.2.4 Extensibility

The finite state machine (FSM) based Uppaal model created for the DMA-
MAC protocol is designed in a generic MAC protocol context extended with
protocol specific parts. The generic protocol operations included sending/re-
ceiving of data, ack and notification packets, and sleep operation. The generic
FSM for MAC protocols and possible extensions are shown in Fig. [3.2.4, We

41

DMAMAC Protocol for Process Control in INSN

have indicated the different parts: the generic part, the DMAMAC specific
extension for alert message services, and other possible extensions. Some
common MAC extended operations could include Carrier Sense Multiple Ac-
cess (CSMA) operations. Some important CSMA operations included car-
rier sense, backoff, and link. Carrier sense is essentially used to make sure
that the channel is clear. If the channel is busy the node performs backoff op-
eration. In an event where the channel is clear, a link is established between
the sender and the receiver using the /ink operation. Thus, the Uppaal model
created for the DMAMAC protocol is re-usable and can be extended to model
other MAC protocols.

3.2.5 Validation using Sequence Diagrams

The verification model created for Uppaal is used to also validate the simula-
tion and implementation model (chapter). We present an example sequence
diagram for data transmission in Uppaal (Fig. [3.2.5), which is used to validate
the sequence diagrams generated for the same operation in the simulation and
the implementation models. The detailed sequences could in general vary be-
tween the platforms, but the resulting behaviour is the same. Thus, we have
validated the DMAMAC protocol operation across all platforms using the

Uppaal sequence diagram as the base.

3.3 Contributions and Perspectives

The DMAMAC protocol in [51] was proposed as two variants: TDMA and
Hybrid. The article presents a simulation on selected configurations and met-
rics. The assumption of ideal channel conditions is unrealistic, but does not
affect the results of the simulation analysis. Although, we did study packet
failure due to collision with respect to switch failure. The study of the effect
of channel conditions with possible inclusion of Bit Error Rate (BER) could
add into the existing analysis. BER is a channel configuration input to specify
the error rate in received packets in terms of Bits. Similarly, it could add into
the study of switch failures of the hybrid, and TDMA variant.

The article [52] presents an abstract timed Uppaal model of the DMA-
MAC protocol. Initially, the Hybrid variant of the DMAMAC protocol was

42

Chapter 3. Implementation and Deployment Evaluation

‘I\ -

o — Move to StateController Switch To TX

Move to Receive

DATA Packet Move to Send

ACK Packet Move to StateController

Move to StateController

Move to Receive Move to Sleep

DATA Packet Move to Send

ACK Packet Move To StateController

Move to StateController

Move to Sleep

Figure 3.2.5: Data transmission sequence diagram in Uppaal [52]]

created. Further, we created the TDMA variant for assessment. The current
assessment of the DMAMAC protocol is qualitative. Uppaal further pro-
vides possibilities of quantitative and stochastic assessments [76], which has
not been done as a part of the current work. Also, the modeling is based
on assumptions and representative behaviour of collision and Carrier Sense
Multiple Access (CSMA) operation.

43

Chapter 4
Implementation and Deployment

The last step in the design and development process is the implementation
of the DMAMAC protocol on a hardware platform and deployment in a real
world setting. We present an overview of this deployment and analysis phase
for the DMAMAC protocol in this chapter based on the article [54].

The contribution of the article "Implementation and Deployment Eval-
uation of the DMAMAC Protocol for Wireless Sensor Actuator Networks"
[54] is to provide the nesC implementation of the DMAMAC protocol and
deployment experiences. We mainly focus on the goals set out for the im-
plementation evaluation of the DMAMAC protocol. The DMAMAC nesC
implementation model along with the used off the shelf TinyOS components
are described to present the entire implementation. Further, the implementa-
tion code 1s deployed using the Zolertia hardware platform, and analyzed in a
realistic industrial application scenario. Link quality assessment is conducted
along with an observation of notification packet failures. The notification
packets are responsible for performing the network wide switch ensuring that

all nodes are performing in the same operating mode.

4.1 Background on TinyOS

TinyOS [77] is an event-based operating system developed to be used in re-
source constrained sensor/actuator hardware. The generic sensor network
hardware is resource constrained in terms of processing power and memory

usage. TinyOS uses the nesC programming language [78] for development of

45

DMAMAC Protocol for Process Control in INSN

applications. The nesC programming model includes of components, which
can be classified as modules and configurations. A configuration provides
the details about how the components of the application/MAC is wired (con-
nected) to other components. Components in general represent the software
architecture. Modules provide the implementation related to an underlying
component. Components provide services to other components, and also use
services from other components. This is done via a set of interfaces defined
as part of the signature of each component. This connection of interfaces
across components is known as wiring. A given component uses one or more
interfaces provided by other components included in TinyOS and provides
interfaces through which other components can access the functions of the
component under consideration.

Modules define the operations of the component. For the DMAMAC pro-
tocol this includes sending, receiving and forwarding packets, switch proce-
dure, and network synchronization. Commands, events, and tasks are used
in implementation of the components. Commands in the nesC programming
language are used to define operations that can be used by external compo-
nents or by other operations within the same component. Events are similar
to interrupts and are handled by the module implementation of the compo-
nent, e.g., reception of a packet either from the application/network or from

the radio. Tasks are deferred procedure calls that run to completion.

4.2 DMAMAC Implementation Goals

The implementation step in the design and development process of the DMA-
MAC protocol was the final stage in validating its proper functioning. It in-
cludes deployment on a hardware with performance analysis in a real-world

setting. The goals of implementation as mentioned in [54] are:
1. To validate the operation of the radio states via current consumption
measurements.
2. To validate the implementability of the mode-switch procedure.

3. To study the impact of real conditions on the DMAMAC protocol op-

eration, particularly the switch procedure of the protocol.

46

Chapter 4. Implementation and Deployment Evaluation

StdControl TestAppC

/ Init ‘ ‘ Macheceive Timer<TMilli>
MainC MacPowerControl
| FrameConfiguration
T 3 MacSend /
Init r— - 1
v B?Ot ‘ | r— 7N |

| TimerMilliC |

DMAMAC I
TimeSyncC LL - T

Figure 4.3.1: The nesC component diagram of the application to test DMAMAC

A MAC protocol has three radio Radio state | Current measured
states of operation: Sleep, Transmit Sleep 0.5 mA - 0.6 mA
(TX) and Receive (RX). The energy effi- Tx 21 mA -22 mA
ciency is one of the important features of Rx 23 mA -23.5 mA

the DMAMAC protocol, which depends Table 4.2.1: Measured current in radio
on sleep slots in operation. This is use- states.
ful if the sleep state has a very low current consumption, we test the current
consumption for each radio state to validate this. For measurement of the
current and to validate the change of Radio states (Tx, Rx and Sleep) we
used a small circuit. The measurements were made with a 3V power source
placed along with a node and a 10 Q resistor in series. The obtained values
are shown in Tab. [.2.T and is in the expected range as shown in the data
sheets for CC2420 [24].

The full version of the DMAMAC protocol was implemented along with
packet transmission-reception, fully functional switch procedure, and quality
assessment features. Thus, the second goal was fulfilled, and the implemen-

tation details follow.

4.3 The DMAMAC nesC Implementation

An application in TinyOS is described as a collection of interdependent com-

ponents connected via their interfaces. An example TinyOS application used

to implement and deploy the DMAMAC protocol is shown in Fig.
The application used for deployment testing of the DMAMAC applica-

47

DMAMAC Protocol for Process Control in INSN

tion is called TestAppC and consists of the configuration file of the application
component. TestAppP is the underlying module implementation provided for
the test application and is included in TestAppC. The test application mainly
uses the interfaces provided by the DMAMAC component to provide a run-
ning application. In the current configuration the interfaces used in relation
to the DMAMAC protocol component are:

e The Init interface to initialize the DMAMAC component.

e The MacPowerControl interface is used to switch the DMAMAC com-
ponent ON or OFF.

e The MacSend and MacReceive interface is for sending application pack-
ets to, and receiving packets from the MAC layer (DMAMACQ).

e The Frame Configuration interface is used to alter the length of steady

and transient frames if required, directly from the application.

Other important components that the application is connected to are MainC,
TimeSyncC, and TimerMilliC. MainC is a component that is the first one to be
executed in a TinyOS application. It is a part of the application configura-
tion by default. We also boot the TimeSyncC component used by the DMA-
MAC protocol for time synchronization operation, which is explained later
in this chapter. The test application also uses a timer component TimerMilliC
for sending packets at a given interval in order to emulate a typical sensor
application. MilliC indicates that the unit of time is milliseconds. The imple-
mentation uses three packet types:

Notification The DMAMAC protocol notification packets contain 3 main
data fields: currentMode, sinkSlot, and change. currentMode is used
to convey the current mode of operation for the sink. sinkSlot provides
the current sink slot information required for time synchronization (dis-
cussed below) which is essentially the slot number at which the sink
sends the notification message. For changing the operating modes, the
data field change is used. The notification packet used in the implemen-
tation is 7 bytes long.

Data The data packet is mainly designed for data transfer within the network.

For implementation and analysis purposes, we use the data packet for

48

Chapter 4. Implementation and Deployment Evaluation

collecting data from each sensor node. Important data fields are no-
tifyRssi, notfiyLqi, nbNotificationSlots, and nbNotificationPkts. noti-
JyRssi and notfiyLgi are used for assessing the link quality and de-
ployment performance of notification packets. notifyRssi records the
Received Signal Strength Indicator (RSSI) and notfiyLgi records the
Link Quality Indicator (LQI) data for notification packets received from
the sink. The RSSI and LQI data for each node is obtained using the
TinyOS off the shelf component CC2420Packet. nbNotificationSlots and
nbNotificationPkts are used to keep track of notification packet failure.
The data packet is 17 bytes long.

Alert The alert packet is a short message to alert the sink about the change
in process states. This alert results in change of operating modes. The
switch from steady to transient is initiated by the nodes in the network.
It contains only two fields nodeld and alertSeqNo, and is thus 4 bytes
long.

We define constant numbers for the packet types. Apart from the packet
types discussed previously, the operating modes transient and steady are im-
plemented as integers for identifying the current mode in operation while

switching between them.

4.3.1 Time Synchronization

Time Synchronization is a basic requirement of Time Division Multiple Ac-
cess (TDMA) protocols like the DMAMAC protocol. Given the slot based
execution procedure, every node should have the same notion of time. We
use an off the shelf protocol, the Flooding Time Synchronization Protocol
(FTSP) [79] as explained in [54]]. In this overview, we further explain how
the actual procedure is carried out for implementation and deployment on
TinyOS. FTSP is provided as a part of the TinyOS protocol suite. In FTSP,
initially we are required to designate a root node (sink node in our case).
This root node serves as a global time reference to the rest of the nodes in the
network. All other nodes in the network have their own notion of local time
(LocalTime) and also the global time (GlobalTime) in the network. On startup,
the GlobalTime and the LocalTime of any node is the same. Using the FTSP

49

DMAMAC Protocol for Process Control in INSN

[1] GlobalTime (Update 0 GlobalTime

based on Sink) FTSP Protocol
LocalTime (Root Node)
FTSP Protocol TimeSyncMéessage TimeSyncinterval = 3 seconds
1 I ‘ / TimeSyncMessage
| ‘TimeSyncMessage
|) 2
w Sink node TimeSyncMessage

L Sensor node

e

Actuator node 3

Figure 4.3.2: Global time synchronization process

messages obtained from the sink as shown in Fig. the nodes update
their global time. The sink sends FTSP update messages every n time units,
based on a preset time synchronization interval (The sink as assumed is able
to reach all nodes in the network). This is important to keep the nodes time
synchronized over the duration of execution to overcome the known effect
of clock drift on devices. Clock drift is an issue in the crystals used by the

devices, which drifts out of synchronization from the rest of the network.

We execute the FTSP time synchronization protocol as a background pro-
cess in the implementation of the DMAMAC protocol. The time synchro-
nization algorithm is shown in the Pseudo code 4.I] Based on initial ex-
periments with multiple nodes, we found that within the time the maximum
number of table entries (8 for FTSP) in the local time synchronization table,
the nodes get synchronized to the time of the sink. Thus, we use this as a
condition to startup the scheduler in the node. In our implementation, we
do this on the notification slot, where the sink node sends out its current slot
information, which is used by the nodes to synchronize as they startup their
local scheduler. Once synchronized, the nodes are in the same slot as the
sink. Further, depending on the mode of operation of the network, the nodes

switch between transient and steady mode on notification from the sink.

Listing 4.1: Time Synchronization Pseudo Code executed by all non-sink nodes

50

Chapter 4. Implementation and Deployment Evaluation

function Notification.Receive(NotificationPacket* notificationPkt)
source <- notificationPkt.sourceld
sinkSlot <- notificationPkt.slot
//From time synchronization protocol
number0fTableEntries <- call TimeSyncInfo.getTableEnties ()

// Runs only once for startup, until scheduler is initialized

if (source == sinkId
&& numberofTableEntries == maximumTableEntries
&% schedulerInitizlied == FALSE)

then // Startup the scheduler
Scheduler.start ()
// Synchronize to the sink’s slot
SchedulerControl.synchronize (sinkSlot);
/1l Scheduler Initialized

endif

end function

4.4 Deployment Setup

The network setup used for implementation and deployment is shown in
Fig. [54]. We use zolertia Z1 [80] motes for the setup. The zoler-
tia nodes used for the experiment are powered by MSP430F2617 low power
micro-controller with 16-bit RISC CPU at 16 MHz clock speed. It includes
8KB RAM and 92KB flash memory, and has an IEEE compliant CC2420
transceiver. The transceiver operates at 2.4GHz with a data rate of 250Kbps.
The regular Z1 motes used for sensor and actuator devices have an integrated
ceramic antenna. The sink on the other hand is based on the Z1 starter plat-
form mote with an external +5dBm antenna to have a larger range than other
nodes. The motes can be powered by either batteries or via a Universal Se-
rial Bus (USB) power. We use the tree topology with the sink as a wire
powered device, and the rest of the motes as battery powered devices. The
battery powered devices are powered by 2 AA batteries. In the notification
slot, the sink sends out the notification packet to the entire network. With the

increased range of the +5dBm antenna, the sink is able to reach all nodes in

51

DMAMAC Protocol for Process Control in INSN

Sink node

Sensor node

Actuator node

/

Figure 4.4.1: The network setup for deployment test

the network in one hop.

For our experiment, we collect the data from the motes using the serial
communication port of the sink. Each mote sends out a packet with collected
data relating to the previously received notification packet. Either directly to
the sink (in case of node 1 and node 2) or via an intermediate hop (in case of
node 3 and node 4). The packets enclose RSSI and LQI data for the notifi-
cation packets received from the sink, and the number of notification packets
that failed i.e., packets that were not received in the considered notification
slot. The RSSI data presents a link quality picture based on the received sig-
nal strength for each notification packet received. The LQI indicator records
link quality based on correctly received packets, for errors in received pack-
ets lower LQI value is recorded. This data collected in the sink is stored in a
text file, and is used to create a graphical representation of the collected data

using python scripts and the gnuplot tool.

4.5 Deployment Analysis

We performed four experiments using a combination of two particular sce-
narios. All the experiments were conducted in a lab shown in Fig[4.5.1] The
scenarios were aimed at getting a trial run closer to what an industrial appli-
cation would look like. To emulate an industry like environment with opera-
tional appliances, we used multiple high wattage (3kW) asynchronous motors
operating at a voltage of 325 V. This is essential to test if any interference is
created in the operation of the deployed IWSN due to these appliances. The

two scenarios are: with motors on, and with motors off. Further, we also var-

52

Chapter 4. Implementation and Deployment Evaluation

Figure 4.5.1: The lab environment for experimentation

ied the position of the wireless sensor nodes, particularly with line of sight
placements and non-line of sight placements. In line of sight placements,
all nodes are placed in direct line of sight of the nodes they communicate
directly with. All these scenarios, including the considered metrics for link
quality analysis are presented in [54]]. Additionally, we collected notifica-
tion packet failure statistics. Both, the link quality analysis and packet failure
analysis were aimed at notification packets. The third goal for the implemen-
tation deals with switch procedure for the operating modes of the DMAMAC
protocol. The notification packet is responsible for implementing the network

wide switch which is thus critical to the switch procedure.

The results obtained in terms of RSSI and LQI for one of the non line of
sight placement scenario is shown in Fig. 4.5.2] The RSSI results in particular
indicate large variation in received signal strength over the duration of the
experiment indicating some effect on it. The LQI results on the other hand,
are within a limited interval during the entire duration, with some outliers.
This indicates the link quality was not affected severely from the variations
in the RSSI. The LQI and RSSI in combination give a picture of the link
quality. Further, we recorded notification packet failure statistics. Each node

reports the notification packets not received in its notification slots. Since

53

DMAMAC Protocol for Process Control in INSN

rssi Scatter Plot

-100

90

-80 |-

RSSI (dBm)

-60 |-

-50

I
Nodel +
Node2 X
Node3

Figure 4.5.2: Experimental results for motor room scenario - arbitrary node placement. [54]]

Rounds

LQI (50-110)

130

LQI Scatter Plot

120

110

100

90 -

80 -

70 =

60 -

50 :

I
Nodel
Node2

Node3

| 1

100 150

Rounds

Scenario | Open room Open room Motor room | Motor room
non-LOS LOS non-LOS LOS

Node 1 | 0/300 0/300 1/300 3/300

Node 2 | 1/300 1/300 3/300 3/300

Node 3 | 6/300 2/300 6/300 4/300

200

Table 4.5.1: Notification packet failures on nodes 1-3 line of sight (LOS) and non-line of
sight (non-LOS). [54]

notification is a broadcast packet, no acknowledgement is used and the failure
is tracked at the nodes. The failure statistics for the sensor nodes is presented
in Table 4.5.1] The results are presented as number of notification packets
failed in 300 notification slots during the experiment. For initial assessment,
this indicates a low failure, which as a consequence of a limited effect on the
performance of the DMAMAC protocol. The results for the other scenarios
can be found in the article [54].

4.6 Contributions and Perspectives

An implementation of the DMAMAC protocol was created using the nesC
programming language developed for TinyOS. The implementation was tested
for change of radio states via current consumption measurements. The switch
procedure was verified to operate correctly as per requirement. Finally, we

conducted experiments to analyze link quality in varying channel conditions

54

Chapter 4. A Model Based Approach Towards Protocol Development

with nodes operating on the DMAMAC protocol.

The DMAMAC protocol implemented in TinyOS can also be configured
to operate in co-operation [81] with IWSN operating on other operating sys-
tems, ContikiOS [82] is an example. Also, the DMAMAC protocol imple-
mentation can be ported easily to ContikiOS. TinyOS and ContikiOS have
similarities in the programming paradigm, which can be exploited to easily
port TinyOS code into ContikiOS code. This allows for the testing of the
DMAMAC protocol in other hardware platforms. CC2560 [83] is an exam-
ple hardware that supports ContikiOS implementation.

The article [54] is an initial investigation of the deployment performance
of the DMAMAC protocol. We mostly present preliminary results in varying
configurations and scenarios. The packet loss and link quality assessment
could be further consolidated with extensive experimentation for longer du-
ration. Currently, based on the goals, a small topology is used for testing. A
larger topology with higher number of nodes could present a new perspec-
tive to the protocol operation. The testing of the protocol in a real process
control setting would give a further idea of its operating performance. Also,
the inter-operation of the protocol within the existing framework of wireless
standards could be an interesting investigation, since in these experiments we

tested it only as standalone.

55

Chapter 5

Towards A Model Based Approach
for MAC Protocol Development

As presented in earlier chapters, the DMAMAC protocol is designed using
the traditional approach. We initially identified the application domain as
the process control domain. After which, the requirements for a Medium
Access Control (MAC) protocol (narrowed focus) is drawn out based on the
requirements of applications in the process control domain. Mainly, the dual
process states result in the two operating modes of the DMAMAC protocol
[50]. The DMAMAC protocol design [50] is based on the design of the Gin-
MAC [44]] protocol having similar requirements. The designed protocol was
implemented in the network simulator MiXiM for performance analysis and
verification of requirements. This step was discussed in [S1] and in Chapter
Bl The DMAMAC protocol was also verified for consistency in design and
behaviour using formal verification tool Uppaal [S3], as presented in [52]
and in Chapter 3] The protocol was implemented using nesC on the TinyOS
platform, and deployed using the hardware platform Zolertia Z1 [80]. The
implementation was used to perform link quality analysis and validate the
working of the DMAMAC protocol. The implementation step is discussed in
[54] and Chapter [4]

Given the traditional approach taken in the design and development of
the DMAMAC protocol, we investigate alternative methods that could im-
prove the design and development. The Model-Driven Software Engineer-
ing (MDSE) approach proposed in [55] is a step further in this investigation,

which was further extended in [S7]]. In this chapter, we discuss this alternative

57

DMAMAC Protocol for Process Control in INSN

development approach by providing an overview of the articles [55,157]:
The contribution of the article "Towards a model-based development ap-
proach for wireless sensor-actuator network protocols” is to present the ini-
tial idea of an MDSE approach for MAC protocols. The article outlines the
MDSE approach based software code generation architecture. The entire pro-
cess mainly uses: a modeling tool, the PetriCode tool for code generation
based on platform specific code templates, and platform specific tools for
evaluation of the generated MAC protocol artifacts. The position paper was
extended in the article "Model-based Development for MAC Protocols in In-
dustrial Wireless Sensor Networks" [35]. We present the completed MDSE
approach for MAC protocol design in CPN tools, discussing the PetriCode
templates for simulation and deployment platform. The simulation platform
source code generated is simulated on the MiXiM platform and analyzed for
performance of the protocol. The implemented code for deployment is de-
ployed using a hardware platform and tested for link quality. We use the
GinMAC protocol as the running example to present the MDSE approach.
Specific parts of the model, the slotter function in particular is presented as a
CPN model. The code templates for conversion of this model to MiXiM and

TinyOS code are also presented.

5.1 Background on MDSE

Model-Driven Software Engineering (MDSE) [56]] is an approach in the soft-
ware development and engineering domain. The MDSE approach is used to
produce high-quality software with higher confidence and trust in the inher-
ent design. This is achieved using model-driven techniques. MDSE is an ap-
proach which uses an architecture similar to the Model-Driven Architecture
(MDA) (184, 185] proposed by the Object Management Group (OMG). MDA
is mainly based on Unified Modeling Language (UML) models and code
generation from UML models. In our MDSE approach, we use alternative
modeling languages as a starting point. Advantages of an MDSE approach

are similar to the MDA advantages [85] and include:

Productivity The shift of focus from the development of Platform Specific
Models (PSMs) to Platform Independent Models (PIMs) results in pro-

58

Chapter 5. A Model Based Approach Towards Protocol Development

ductivity advantages. Firstly, PIMs are abstract models and less com-
plex than the PSMs, thus less coding/development effort is required.
Secondly, there is a reduction in time from design to implementation

with automatic code generation in place to transform PIM to PSM.

Portability PSMs are created using code templates based on design patterns.
With the use and focus on PIMs, additional PSMs can be obtained from
a single PIM using a different set of code templates. Developers can
also re-use existing code generation tools for popular platforms, thereby

reducing development time for the implementation (from PIM to PSM).

Flexibility Easier to modify requirements, if and when required. After the
performance analysis phase, the PIM can be modified to change the
design, re-run code generation and obtain the required performance.

Further, PSMs are generated using automated tool chains.

The MDSE approach begins with an abstract and a platform independent
representation of the software to be developed, MAC protocol software in our
example. The abstract modeling focuses on modeling of the behaviour of the
protocol. The abstract models are validated against the requirements specifi-
cation and verified against the behavioural requirements. Further, these ab-
stract platform independent models are converted into implementation code
for multiple platforms serving different purposes. The primary purposes in
our case consists of: software verification, simulation-based analysis, and
deployment based analysis. The deployment based analysis can also be per-
formed using multiple platforms to ensure the applicability of the software
across the domain of application. The application of the MDSE approach has
been described in [86, [87, 188, 189, 90, 91, 92]. Perspectives on related work
are presented later in the chapter.

Traditionally, in the IWSN domain, the development of protocols goes

through a sequence of steps, similar to the steps in the thesis, also shown in

Fig. B.LT;

Requirement specification Based on the application (in our case process
control) we capture the requirements, mainly operational performance

requirements.

59

DMAMAC Protocol for Process Control in INSN

== -

Protocol formal Fplrmall
> model > Verification

tool
\/\

™ Hardware) Hardware l
Re-iteration > Implementation :

code
Q
Analysis

Figure 5.1.1: Development framework used for the DMAMAC protocol

Protocol design

Requirement
Specification

Design Based on the requirements collected the DMAMAC protocol was
proposed, and presented in simple language as set of statements. Later,
a design in terms of a superframe schedule was designed.

Analysis The designed protocol is analyzed for completeness, correctness,
and performance. In this thesis, important performance requirements
are: energy efficiency and real-time requirements (low-delay, robust-
ness). We analyzed the DMAMAC protocol using a network simulator
for performance, and using a model-checking tool for correctness and
completeness. Alternatively, the protocol design can be mathematically
analyzed similar to [43), 44,146,161, 93,94, 95]]. Other protocols consid-
ering the simulation analysis are [47, 61, 96]]. We have also performed
an initial analytical evaluation of the DMAMAC protocol in the article
[S0].

Implementation The final step in the development of the protocols is imple-
mentation, where protocols are implemented on a hardware platform
and tested in real-world environment. Some examples are [43, 44, 45,
47,161,,195,196]]. The implementation step lets the developers analyze the
real-world performance of the protocols, where the channel conditions

can vary.

Each of these steps uses a separate representation of the considered pro-
tocol, the DMAMAC protocol in our case. Also, all these representations

(or models) are converted manually from one representation to another. The

60

Chapter 5. A Model Based Approach Towards Protocol Development

Initial Modeling

I |§Z‘
@ ©

CPN Moda—u{ CPNTools | » o™
@ ©

Simulation, Verification and
State-space analysis

Refined CP
. J Model C:> Working part
Refinement and

. Future extension
Code Generation

PetnCode
Timed Automata 0 COde nesC
Verification , é}:} j % Implementation
Model code
C++
' Slmulatlon ﬂ

code l

Probabilistic

Model-Checker Emulator
‘ Simulator

Figure 5.2.1: The proposed MDSE approach architecture [S7]]

conversions as shown in the design framework in Fig. [5.1.1]from protocol de-
sign to multiple PSMs for network simulators, formal verification tools, and
hardware platforms are made manually. The manual conversion is generally
error-prone and time consuming. To overcome this, in the software engineer-
ing domain Model-Driven Software Engineering approach is used along with

tools to assist with automatic/semi-automatic code generation.

5.2 An MDSE Approach for MAC Protocols

The proposed code generation approach for the MAC protocols for IWSN
was initially published in [S3] and extended in [57]. The working part of the
proposed MDSE approach software architecture is shown in Fig. [5.2.1] For
the abstract representation we use CPN tools, based on the Coloured Petri
Nets (CPN). The initial CPN model created in CPN tools is analysed for
performance using simulation and behaviour using state-space analysis [97].
Using the obtained analysis, the CPN model is refined in multiple steps. The

61

DMAMAC Protocol for Process Control in INSN

refined CPN model is the input the code generation tool PetriCode [49], dis-
cussed in the next subsection. We obtained multi-platform code generation
from the CPN model to the platforms MiXiM and TinyOS. MiXiM [68] is
a wireless network simulator platform. TinyOS [77] is an event-driven op-
erating system for resource constrained hardware. Further, analysis of the
generated protocol performance (GinMAC) was performed in the integrated
tools of MiXiM, and on the Zolertia Z1 [80] platform with TinyOS imple-
mentation code. The MDSE approach can be extended to perform further
formal verification. Example tools for formal verification of real-time sys-
tems like IWSN nodes are Uppaal [33] and PRISM [70]. These tools allow
for thorough verification of protocol behaviour, also of real-time behaviour

and probabilistic behaviour.

5.2.1 PetriCode

The PetriCode tool [49] is used for the code generation step in the MDSE
approach. The tool is built upon the following concepts. Pragmatics are the
annotations used to identify the model artifacts important for the code gen-
eration. PA-CPN. Pragmatic Annotated Coloured Petri Nets (PA-CPN), is
a subclass of CPN models used for the code generation process. The PA-
CPN model is platform independent and corresponds to PIM in the MDSE
approach. Abstract Tree Template (ATT), is a part of the code generation
process. The PA-CPN is first converted to an ATT before the final code gen-
eration. Code Generation Templates are template definitions provided to as-
sist in the code generation. Each pragmatic is associated with a template
definition for each platform (TinyOS and MiXiM in this case). In our ex-
ample, each pragmatic has two code generation templates associated with it,
one for MiXiM and one for TinyOS. The pragmatics are converted to a given
platform code using the code generation templates. The Template bindings
is the map, which maps the pragmatics to the corresponding code generation
template.

The PetriCode architecture is shown in Fig. [5.2.2l The PetriCode tool
already included templates for Java and Clojure as shown in the Fig. [5.2.2]
for communication protocols. Each platform defines a bindings file and a

set of code generation templates, one for each related pragmatic included in

62

Chapter 5. A Model Based Approach Towards Protocol Development

CPN Model
Annotated wit
Pragmatics

Initial CPN

Model

Bindings PelfColE Templates
Java Java
C++ (— (ﬂ] Q) C++

Clojure é"h‘ Code Closure
nesC nesC
‘;(g) Java nesC
— Tiqys

C++ (@ Clojure

Figure 5.2.2: PetriCode MDSE approach

the CPN model. The PetriCode tool, based on the PA-CPN input creates an
ATT. Further, using the template bindings and the code generation template,
the resultant code is generated. An abstract PA-CPN model in PetriCode is

designed hierarchically [49]. Three important levels in the hierarchy include:

Protocol System Level The top level module of the PA-CPN model which
contains all the essential elements for the protocol execution, along with
a channel (wireless channel in this case). It mainly describes each prin-
cipal element in the PA-CPN model and their connection to a channel.

An example for principal element is a MAC protocol.

Principal Level Each principal element consists of a collection of services
that make up the principal level. The collection of services are typically

the functions provided by the MAC protocol.

Service Level Each service is detailed in its own separate modeling file, con-
stituting the service level. An example function is packet transmission

function.

63

DMAMAC Protocol for Process Control in INSN

Application and Network
<<Principal()>>

AppNetwork
AppReceive AppSend
packetType UNIT
GinMAC

GinMAC
<<Principal()>>

packefType radioftate
N CED D
radioftate packefType

Radio
<<Principal()>>

Radio

packefType

Com>

packetType

Wireless Channel
<<Channel()>>

WirelessChannel

Figure 5.3.1: The Protocol System level of the GinMAC CPN model

5.3 GinMAC CPN model

An example for the protocol system level using the GinMAC PA-CPN model
is presented in Fig. [5.3.1] The Protocol System level consists of other func-
tions/layers required for a complete sensor/actuator execution, along with the
wireless channel. The application and radio modules are required for the
complete setup. The CPN model of the GinMAC layer in the principal level
is shown in Fig. [5.3.2] The principal level represents services in the GinMAC
protocol. For example, HandleRadioPacket, HandleUpperPacket, for handling
packets from radio module and the application module respectively. The Slot-
ter function is for the Time Division Multiple Access implementation, to cy-
cle through each slot. The HandleRadioControl function is used to handle con-
trol messages received from the radio module. The Sender function handles
the sending of the packets with appropriate markings (data,ack,notification).
The service level model for the Sender function is shown in Fig. [5.3.3]

64

Chapter 5. A Model Based Approach Towards Protocol Development

packetType

10
AppReceive @
UNIT
[pt=DATA] UNIT
SendToApp
pt

AppSend

UNIT

HandleUpperPacket
<<service(Packet,OUT)>>

HandleUpperPacket

. Slotter SingleSlotBuffer
<<service(slot,IN,scheduler)>> @ <<state(INT)>>
packetType STotter macState packetType
HandleRadioPacket HandleRadioControl

HandleRadioPacket
<<service(Packet,IN)>>

HandleRadioControl

Sender
<<service(msg,IN)>>

<<service(msg)>>
TransmitPacket

RadioSend

|

RadioControl
packetType radioState radioState packetType

Set
dioControl

Figure 5.3.2: The Principal level of the GinMAC CPN model

l‘‘ '_'t‘ mState Send Packet
ransmi <<service(msg)»>
T macState
mState
— F T
— dist I
- <<Id(cond: "(eq msq data data) (eq msg ack ack)(eq msg notification notification))>> >
— <<branch>> -

— — T macState

mState

[mState=gendMNotification
mState

mState
notification
< <send(NOTIFICATION) > >

J’pt

data pt //To Radlo IRRNCEY) ack

[mState=sendData] [mState=sendack]

EEEE—
<<send(DATA)>> < <send(ACK)> =
Outh— packetType
0
pt

/f_____h'\ mergeTransmlt
SlngleSIotBuffer <<ld>>

<<merge>>
— packetType —— UNIT

end > mlshTransnm
<<returnz: <<Id>>/
UNIT

Figure 5.3.3: Service level example for packet transmission in the GinMAC protocol

65

DMAMAC Protocol for Process Control in INSN

GinMAC MiXiM PSM

r—-———"F~F~®""™"~"™"" 777" >/ Y/ = 0
I XML Files \ I
| |NED Package | ﬁ |
C++ Files config.xml
|| GinMAC.ned decider.xml |
Network.ned
: Nideor:ege GINMAC.h :
N GinMAC.cc
| NodeNic.ned Packets |
| ‘ [E— MACpacket.msg |
l Input Parameters file] ACKpacket.msg |
configuration.ini
I |
- - - - ____ J

Results !

Simulator Scalar files Analysis [H I:
(OMNeT) Vector Files (OMNeT)
Statistics

Figure 5.4.1: PSM and simulation flow for GinMAC in MiXiM [57]

5.4 Platform Specific Models

In the presented articles [S3,157], we describe the MDSE approach along with
a created platform independent PA-CPN model of the GinMAC protocol, the
running example for the MDSE approach. We have added in the template
bindings and code generation templates for the MiXiM platform as C++, and
TinyOS platform as nesC. Essentially, a common abstract model is mapped
to two separate platforms with separate execution models. The obtained im-

plementation code and their analysis is discussed below.

54.1 MiXiM

A PSM for MiXiM [68], a wireless network simulator platform is obtained
using code the code generation templates added to PetriCode. The obtained
PSM model, along with the simulation flow is shown in Fig. The
obtained MiXiM PSM is simulated on the MiXiM OMNEeT platform for a
specific duration of time and statistics are collected during the simulation.
Using the analysis support provided by the MiXiM tool, the collected statis-
tics are analyzed via graphical representations. A specific network topology

is used for the simulation. We recorded packet transmission and reception

66

Chapter 5. A Model Based Approach Towards Protocol Development

Packet Transmission
m nbPacketRx = nbPackeiTx
35004 +3500

30004 3000

2500+ 2500

2000+ 2000

1500+ F1500
1000+ 1000
- I I I I II II -

Node 0 Node 1 Node 2 Node 3 Node4 Node5 Node6 Node7

o
[4,]

o
o

Figure 5.4.2: The packet reception and transmission statistics for the GinMAC protocol

statistics and network lifetime based on first node death. Graphs represent-
ing the recorded data are shown in Fig. [5.4.2] and Fig. [5.4.3] The packet
reception and transmission graph shows number of packets transmitted and
received by each node during the simulation. Node 4 and Node 5 are two leaf
sensor nodes, thus they do not receive data. The network lifetime shows the
death of node 2 to be the first among the nodes in the network. Further, the
analysis feature of the OMNeT++ MiXiM platform can be used to analyze

the protocol based on other metrics.

5.4.2 TinyOS

Similar to the MiXiM PSM generation, a PSM for the TinyOS platform is
generated. Both PSMs are generated from the same input PA-CPN model
of the GinMAC protocol. The generated implementation code in nesC for
TinyOS is deployed on a hardware platform, Zolertia Z1 [80]. We conducted
experiments based on a network topology. The results were logged on a
computer and analyzed using generated graphical representations. For the
hardware implementation we obtain link quality measurements. Based on the
values provided by TinyOS off the shelf components, we obtain Link Quality

67

DMAMAC Protocol for Process Control in INSN

Network Life Time

-=nesCmacNetwork.node[1].batteryStais capacity -<nesCmacNetwork.node[2].batieryStats capacity
nesCmacNetwork.node[3].batteryStats capacity

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

14000 14000
12000+ 12000
10000+ 10000
8000- 8000
6000- 6000
4000 4000
2000+ 2000

o

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Figure 5.4.3: Network life time in terms node deaths ([57]]

GINMAC TinyOS PSM

r 0
: Others \ Main Files Using \
Makefile (different for - CC2420ActiveMessageC.nc
l each node) g:2m2€g:§ »| TimeSyncC.nc
| nodeSchedule.h GInMAC h GenericSlotterC.nc
| : QueueC.nc
I LedsC.nc
L

Loa(]i_into Results \ !

Zolertia Z1 : LOG Files
nodes 4>{ Experimental Run }—»

Figure 5.4.4: The PSM and implementation-deployment flow for GinMAC in MiXiM [57]

Python scripts

Statistics

68

Chapter 5. A Model Based Approach Towards Protocol Development

-100 R‘SSI Sc?tter Pl?t ‘ 130 ‘ LQ} ScattFr PIot‘
nodel - Nodel
node2 - Node2 -~
-90 - node3 B 120 - Node3 7
node4 node4

&
1)

2 110 - , 2

eemn | 91 100 .-

RSSI (dBm)
-

90 - - B -

[o)]
o
]
|

n
o
T
|

80 - , .

\ \ \ \ \ \ I \ \ \ L
70
50 100 150 200 250 300 0 50 100 150 200 250 300 350

Rounds Rounds

A
S
o

Figure 5.4.5: Link quality based on RSSI (a) and LQI (b)[57]

Indicator (LQI) and Received Signal Strength Indicator (RSSI). The LQI and
RSSI collectively gives a picture of the link quality between the nodes in the
network. For reading, LQI is measured between 50 to 110 with 110 being
the best measure, and RSSI is measured between -45 dBm to -95 dBm with
measures towards -45 indicating good quality. The measured values for the

deployment test done in the electrical lab facility is shown in Fig. [5.4.5]

5.5 Contributions and Perspectives

The chapter summarizes alternative development methodology to develop
MAC protocols. The main aim of this chapter is to give a detailed motivation
for the proposed MDSE approach, in terms of the design and development of
the DMAMAC protocol.

Model-based development approaches have been previously applied in
WSN domain [86, 187, 188, 189,90, 91,92, 98]]. The approaches focus on rapid
prototyping of a development model and are based on either domain specific
tools [88, 90] or Unified Modeling Language (UML) [99, 1100, 101]]. UML
is also used to create Domain Specific Languages (DSL) [86, 187,189,191, 92].
DSLs are created with a domain specific focus, wireless sensor network in
this case. Our MDSE approach uses a formal verification tool (CPN tool) as
the modeling tool for the protocols. This allows for an additional step of veri-

fication and simulation obtaining platform specific models. One other similar

69

DMAMAC Protocol for Process Control in INSN

approach [102] performs code generation using CPN tools, which creates a
dedicated tool for code generation. In our approach, we use the existing Pet-
riCode [49] tool for model transformations and code generation for platform
specific models for MiXiM and TinyOS. PetriCode allows for code gener-
ation for multiple platforms using platform specific plugins as templates.
Additionally, we can also exploit common features of multiple simulation
platforms like MiXiM and Castalia [69] or multiple hardware platforms like
TinyOS and ContikiOS [82]. This allows us to extend the MDSE approach
for multiple platforms with minimal effort.

The code generation approach is semi-automatic. The executable solution
at the platform end needs to be suitably modified to suit user configuration re-
quirements, only default configurations can be provided. The code generation
templates created for one MAC protocol can be re-used to create other MAC
protocols, but would need modification to make up the difference between the
protocols. The handling of a particular operation, say sleep, would differ in
different MAC protocols. The creator of specific code generation templates
needs a sufficient understanding of the platform and a generic understanding
of the CPN models.

70

Chapter 6
Conclusion and Future Work

In this chapter, we summarize the contributions of the thesis, provide the
main conclusions, and outline directions for future work. In addition, we
discuss how the results of the thesis can be generalized beyond the domain of
Industrial Wireless Sensor Networks (IWSN).

6.1 Summary of Contributions

We proposed a Dual-Mode Adaptive Medium Access Control (DMAMAC)
protocol for process control applications in IWSN. IWSN solutions are used
to automate the process control operations. The novelty of the DMAMAC
protocol is to exploit the process control feature of steady and transient states,
and integrating it into the protocol operation as dual-mode of operation (tran-
sient and steady mode). The transient mode supports the data intensive tran-
sient state, and the steady mode exploits the relatively less data intense steady
state to provide an energy efficient solution. In particular, this makes it pos-
sible to provide a feasible energy efficient solution to the process control ap-
plication, while at the same time satisfying stringent real-time requirements
imposed by the application domain. The typical real-time requirements are
low-delay, reliable and predictable communication. We assume process con-
trol scenarios with a dominant steady state. We thoroughly analyzed the pro-
posed DMAMAC protocol to obtain a validated, verified, and performance
analyzed design. Protocol evaluation was performed in separate steps as de-

scribed in the individual chapters in the thesis and briefly summarised below.

71

DMAMAC Protocol for Process Control in INSN

Initial analytical evaluation In the initial article [S0] proposing the DMA-
MAC protocol, we presented a first analytical evaluation, in order to
demonstrate that the DM AMAC protocol is potentially energy efficient.
This constituted an initial evaluation of the protocol design before pro-
ceeding to further evaluation. The DMAMAC protocol gains in en-
ergy efficiency compared to the GinMAC protocol was based on the
length of the steady superframe. The longer the steady superframe is,

the higher are the energy savings.

Simulation Simulation is a general approach for performance analysis of
protocol designs in the network domain. A simulation model of the
DMAMAC protocol was created in MiXiM, a tool based on the OM-
NeT++ framework. The model created was used in a network simu-
lation to evaluate the performance of the DMAMAC protocol, with a
configuration of 25 nodes. Two variants of the DMAMAC protocol,
hybrid and TDMA were obtained as a result of the lessons learned from
the performance evaluation study. The two DMAMAC variants have
distinct advantages and disadvantages, and are hence applicable in dif-

ferent scenarios.

Verification Formal verification is a process of ensuring the proper function-
ing of the protocol, and that the protocol adheres to its requirements.
We verified the DMAMAC protocol design and functioning using timed
automata models created using the Uppaal tool. Also, real-time prop-
erties were verified using several variants of models of the DMAMAC
protocol. This increased our confidence in the design of the DMAMAC
protocol. Also, we used the verification model to validate the models

used for simulation and deployment.

Implementation and Deployment The DMAMAC protocol was implemented
using the TinyOS operating system. The DMAMAC protocol along
with other off the shelf components for time-synchronization, radio
module, and an application module was implemented using the nesC
programming language. The implementation was deployed on the Zol-
ertia Z1 hardware platform to perform experiments in two separate sce-

narios. The scenarios included testing of the network operating on the

72

Chapter 6. Conclusion and Future Work

DMAMAC protocol in a motor room with running motors. The key
point was to study interference similar to what can be found in typical
process control scenarios. The experiments resulted in positive results
for the DMAMAC protocol operation in a scenario similar to indus-
trial process control. In particular, the notification packet failure was
low leading to low-switch failure. The DMAMAC protocol includes
reliability features such as, re-transmission, repetition of notification
packets, and robust superframe design. The robust superframe design
allows nodes that are in the wrong mode with respect to the rest of the
network, to synchronize back to the correct mode.

It follows from the above that we have performed a comprehensive design
and evaluation of the developed DMAMAC protocol.

Lastly, we re-visited the development approach used for the DMAMAC
protocol. The DMAMAC protocol artifacts (simulation model, verification
model, and implementation model) created for multiple platforms were largely
disconnected. The protocol specification is used to create a platform specific
model, which is then used to create the final code. We proposed a model-
based development approach with the aim of creating closely linked software
artifacts, and reducing the development time by automating the code gen-
eration process for the different platforms. The model-based development
approach uses a formal verification tool, CPN tools as a starting platform. A
MAC protocol model was created in CPN tools, and verified. Initial simu-
lations are performed, resulting in an improved protocol design. The refined
CPN model is then used as an input to the PetriCode tool, which is used
to generate platform specific implementation code. In our implemented ap-
proach, we generate implementation code for the MiXiM platform and the
TinyOS platform. We created code generation templates which are used as
plugins to the PetriCode tool. The generated code is used via simulation
for the MiXiM code and via deployment for the TinyOS code. We used the
GinMAC protocol as an example to present the working of the model-based
approach, and successfully generated implementation code for both target

platforms and analyzed the protocol performance.

73

DMAMAC Protocol for Process Control in INSN

6.2 Re-visiting Research Questions

e Can MAC protocols for wireless process control be made energy effi-

cient by exploiting intrinsic properties of the process control domain?

e What guarantees can be provided with respect to real-time operation

and reliability?

e How can model-driven engineering techniques be used for MAC proto-

col development?

We created the energy efficient DMAMAC protocol for process control
applications by exploiting the property of alternating between the states, steady
and transient. The DMAMAC protocol consists of the dual-modes to serve
the process control states. We simulated, verified, and implemented the DMA-
MAC protocol on a real hardware platform to assess the protocol perfor-
mance. We evaluated energy efficiency, network lifetime, reliability (via noti-
fication packet failure), while also keeping the real-time operation at par with
the related GinMAC protocol. The simulation evaluation shows a switch fail-
ure of < (.23 for target configurations, which is a tolerable value. We pro-
posed a model-driven development approach for the development of MAC
protocols. This was also implemented with platform specific code generation
for multiple platforms, simulation in MiXiM, and implementation in TinyOS.

The research questions have been successfully addressed in the thesis.

6.3 Beyond IWSN Process Control

The DMAMAC protocol is an application specific protocol designed for pro-
cess control applications. The design of the dual-mode in the DMAMAC
protocol is inherently based on the steady and transient operation of a pro-
cess control application. This idea could be generalized and applied in other
domains such as health care and home/building automation. The health care
domain has stringent application requirements similar to the IWSN domain
[103]. Wireless Body Area Networks [104, 105, [106] (WBANSs) are appli-
cable in scenarios similar to IWSN: monitoring, and monitoring with control
[104].

74

Chapter 6. Conclusion and Future Work

An example is glucose monitoring and control [107]. Here, a sensor tracks
the glucose levels of a patient and an insulin actuator injects insulin whenever
required. This scenario is similar to the temperature tracking and control ex-
ample of the process control scenario. Emergency alert systems are related
to health care monitoring. The DMAMAC protocol has its own alert mes-
sage mechanism, which is applicable also in a health care monitoring setting.
Given that the DMAMAC protocol, apart from being energy efficient also sat-
isfies stringent real-time requirements, it is a relevant candidate for a protocol
in the health care domain.

The home and building automation consists of temperature monitoring
and control, air monitoring and control. These are also similar scenarios,
where a physical quantity is tracked and controlled. Thus, the features of the
DMAMAC protocol can be applied to also home and building automation.

The model-based verification model created in Uppaal [52] for the qual-
itative verification of the DMAMAC protocol is generic in its design. The
model design builds on a generic representation of Medium Access Control
(MAC) protocols with locations (states) common to most MAC protocols
(sleep, send data, receive data). The additional operations of the DMAMAC
protocol are modelled as separate locations (states), for the alert message op-
eration. The basic model can be extended to provide other MAC operations,
including Carrier Sense Multiple Access operations such as backoff, request
to send, and clear to send. Thus, in general, the Uppaal model created for the

DMAMAC protocol is generic, re-usable, and extendable.

The model-based development approach proposed in this thesis, is an alter-
native development approach for MAC protocols in IWSN. The development
approach is currently targeted at MAC protocols, but can be extended to pro-
tocols at other layers including the application and the network layer. The
programming structure of the application protocols, and the network proto-
cols, in the target platforms MiXiM and TinyOS are largely similar to the
MAC protocols. This similarity can be exploited to re-use code generation
templates created for the MAC protocol code generation. This makes the
underlying idea and approach applicable to a wider set of communication

protocols.

75

DMAMAC Protocol for Process Control in INSN

6.4 Future Work

One direction of future work is related to the protocol design for Industrial
Wireless Sensor Networks (IWSN). The second direction is related to model-
based development approaches for protocols. Also, during the work on this
thesis, we have successfully realized the future work proposed in [S0, 51} 152,
S3].

The DMAMAC protocol contains features that are applicable towards
other domains, as discussed in the previous section. It is therefore an inter-
esting direction to study the performance and deployment of the DMAMAC
protocol in other domains, and making suitable adjustments to the design to
make it applicable to either the health care and the home/building automation
domain.

One other interesting direction of future work is to analyze the perfor-
mance of existing wireless standards with the DMAMAC protocol substi-
tuting the current MAC protocol (in the wireless standard). The existing
wireless standards, wirelessHART [9]] and ISA100.11a [10] are more of a
framework than a complete solution. The wireless standards are particularly
proposed for the process automation domain. These wireless standards con-
tain Medium Access Control (MAC) protocols embedded in the framework.
The MAC protocol can either be replaced by the DMAMAC protocol, or the
features of the DMAMAC protocol can be embedded into the existing MAC.
These alternative solutions can be compared with existing MAC solutions
proposed for these frameworks.

The design and performance of the DMAMAC protocol were analyzed
for energy efficiency, network life time, and switch failure. The protocol
can be further analyzed for requirements including scalability and security.
Industrial installations are likely to consist of networks larger than the ones
used for the DMAMAC protocol testing. Investigating the scalability limits
of the DMAMAC protocol could provide useful insights. Industrial network
is susceptible to security attacks both passive and active. Different wireless
standards like wirelessHART and ISA100.11a have dedicated devices to han-
dle security. The DM AMAC protocol could benefit from such external dedi-
cated security infrastructure, or alternatively, security can be embedded in the

MAC protocol operation. A direction of future work can include embedding

76

security measures within the DMAMAC protocol operation.

We evaluated the deployment of a network operating on the DMAMAC
protocol. The deployment test was conducted in a motor lab with a process
control like scenario. One important direction is deployment testing in a
real process control scenario in industry. This would provide us information
on the DMAMAC protocol performance on wireless channel conditions in a
process control industry. Also, the effect of switch failures on the operation
of the process would be interesting to investigate further in such a setting.

The verification model created in the Uppaal tool is currently non-stochastic.
The Uppaal tool allows for stochastic verification of models. This can be
used for evaluating MAC protocols like the DMAMAC protocol for stochas-
tic properties. Uncertainties like packet error, number of switches that hap-
pen in a given duration, and switch failures can be assessed using a stochastic
model of the DMAMAC protocol. Also, the effect of these parameters on the
energy efficiency of the protocol can be investigated.

The model-based development approach proposed in this thesis is de-
signed using the GinMAC protocol as a running example. The DMAMAC
protocol design is built upon the GinMAC protocol features. A direction of
future work is to test the model-based development approach applied directly
on the DMAMAC protocol. This would also allow us to compare the gener-
ated code for the MiXiM-OMNeT++ platform with the simulation model cre-
ated manually based on requirements. Similarly, comparison of the TinyOS
code generation with the manually created version of the DM AMAC protocol
would provide insights to the advantages of using the model based approach.
Further, the PetriCode tool takes a CPN model and a plugin code template
as an input to generate platform specific code. Additional code templates
can be added to generate implementation code for platforms like the Castalia

simulator platform and the ContikiOS deployment platform.

77

Bibliography

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]
[12]

[13]

[14]

[15]

(16]

(17]

1. Khemapech, I. Duncan, and A. Miller. A survey of Wireless Sensor Networks technology. In Proceed-
ings of the 6th Annual Postgraduate Symposium on the Convergence of Telecommunications, Networking
and Broadcasting, 2005.

K. Romer and F. Mattern. The design space of Wireless Sensor Networks. IEEE Wireless Communica-
tions, 11(6):54-61, 2004. ISSN 1536-1284.

LF. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor Networks: A survey.
Computer Networks, 38(4):393-422, 2002. ISSN 1389-1286.

Xingfa Shen, Zhi Wang, and Youxian Sun. Wireless Sensor Networks for Industrial Applications. In
Proceedings of the 5th World Congress on Intelligent Control and Automation, volume 4, pages 3636—
3640, 2004.

V Cagn Giingor and Gerhard P Hancke. Industrial Wireless Sensor Networks: Applications, Protocols,
and Standards. CRC Press, 2013.

V.C. Gungor and G.P. Hancke. Industrial Wireless Sensor Networks: Challenges, Design Principles, and
Technical Approaches. IEEE Transactions on Industrial Electronics, 56(10):4258-4265, 2009. ISSN
0278-0046.

A. Ajith Kumar S., K. @vsthus, and L.M. Kristensen. An Industrial Perspective on Wireless Sensor Net-
works: A survey of Requirements, Protocols, and Challenges. IEEE Communications Surveys Tutorials,
16(3):1391-1412, 2014. ISSN 1553-877X.

Xiaomin Li, Di Li, Jiafu Wan, Athanasios V. Vasilakos, Chin-Feng Lai, and Shiyong Wang. A review of
Industrial Wireless Networks in the context of Industry 4.0. Wireless Networks, pages 1-19, 2015. ISSN
1572-8196.

Deji Chen, Mark Nixon, and Aloysius Mok. WirelessHART: Real-Time Mesh Network for Industrial
Automation. Springer, 1st edition, 2010.

ISA100 Wireless Working Group. Draft standard ISA100. 11a. In Internal working draft. International
Society of Automation, May 2008.

Zigbee Alliance. Zigbee specification. In Zigbee Document 053474r13. Zigbee Alliance, May 2008.

Industrial Communication Networks —Fieldbus Specifications —-WIA —PA Communication Network and
Communication Profile, 2009.

V.C. Gungor, Bin Lu, and G.P. Hancke. Opportunities and Challenges of Wireless Sensor Networks in
Smart Grid. IEEE Transactions on Industrial Electronics, 57(10):3557-3564, 2010. ISSN 0278-0046.
M.R. Akhondi, A. Talevski, S. Carlsen, and S. Petersen. Applications of Wireless Sensor Networks in
the Oil, Gas and Resources Industries. In 24th IEEE International Conference on Advanced Information
Networking and Applications (AINA), pages 941-948, April 2010.

Kewei Sha, Weisong Shi, and O. Watkins. Using Wireless Sensor Networks for Fire Rescue Applica-
tions: Requirements and Challenges. In IEEE International Conference on Electro/information Tech-
nology, pages 239-244, 2006.

Andrey Somov, Alexander Baranov, Denis Spirjakin, Andrey Spirjakin, Vladimir Sleptsov, and Roberto
Passerone. Deployment and Evaluation of a Wireless Sensor Network for methane leak detection. Sen-
sors and Actuators A: Physical, 202:217-225, 2013. ISSN 0924-4247.

Andrey Somov, Alexander Baranov, and Denis Spirjakin. A Wireless Sensor Actuator system for haz-
ardous gases detection and control. Sensors and Actuators A: Physical, 210:157-164, 2014. ISSN
0924-4247.

79

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

A. Flammini, D. Marioli, E. Sisinni, A. Taroni, and M. Pezzotti. A Wireless Thermocouples Network for
temperature control in plastic machinery. In IEEE International Workshop on Factory Communication
Systems, pages 219-222, 2006.

Ramazan Bayindir and Yucel Cetinceviz. A water pumping control system with a Programmable Logic
Controller (PLC) and Industrial Wireless Modules for Industrial Plants: An Experimental Setup. ISA
Transactions, 50(2):321-328, 2011. ISSN 0019-0578.

Brendan Galloway and Gerhard P Hancke. Introduction to Industrial Control Networks. /EEE Commu-
nications Surveys & Tutorials, 15(2):860-880, 2013. ISSN 1553-877X.

A. Willig, K. Matheus, and A. Wolisz. Wireless technology in industrial networks. Proceedings of the
IEEE, 93(6):1130-1151, June 2005. ISSN 0018-9219.

G. Anastasi, M. Conti, and M. Di Francesco. A Comprehensive Analysis of the MAC Unreliability
Problem in IEEE 802.15.4 Wireless Sensor Networks. IEEE Transactions on Industrial Informatics, 7
(1):52-65, 2011. ISSN 1551-3203.

Andreas F Molisch, Kannan Balakrishnan, Dajana Cassioli, Chia-Chin Chong, Shahriar Emami, Andrew
Fort, Johan Karedal, Juergen Kunisch, Hans Schantz, Ulrich Schuster, et al. IEEE 802.15. 4a channel
model-final report. IEEE P802, 15(04), 2004.

CC2420 Datasheet. 2.4 ghz ieee 802.15. 4 zigbee-ready rf transceiver. Chipcon products from Texas
Instruments, 2006.

IETF. IEEE 802.15.4e. https://standards.ieee.org/findstds/standard/802.15.4e-2012.html, 2012.
Domenico De Guglielmo, Giuseppe Anastasi, and Alessio Seghetti. From IEEE 802.15.4 to IEEE
802.15. 4e: A step towards the Internet of Things. In Advances onto the Internet of Things, pages
135-152. Springer, 2014.

Feng Chen, R. German, and F. Dressler. Towards IEEE 802.15.4e: A study of performance aspects. In
Proceedings of the 8th IEEE International Conference on Pervasive Computing and Communications
Workshops, pages 6873, 2010.

K Pister and Lance Doherty. Tsmp: Time Synchronized Mesh Protocol. In Proceedings of the IASTED
International Symposium Distributed Sensor Networks, pages 391-398, 2008.

I. Howitt and J.A. Gutierrez. IEEE 802.15.4 low rate - Wireless Personal Area Network coexistence
issues. In IEEE Wireless Communications and Networking, volume 3, pages 1481-1486, 2003.

L. Lo Bello and E. Toscano. Coexistence Issues of Multiple Co-located IEEE 802.15.4/zigbee Networks
Running on Adjacent Radio Channels in Industrial Environments. [EEE Transactions on Industrial
Informatics, 5(2):157-167, 2009. ISSN 1551-3203.

The international society of automation, 2016.

Li Da Xu, Wu He, and Shancang Li. Internet of Things in Industries: A Survey. IEEE Transactions on
Industrial Informatics, 10(4):2233-2243, 2014. ISSN 1551-3203.

S. Petersen and S. Carlsen. WirelessHART Versus ISA100.11a: The Format War Hits the Factory Floor.
1IEEE Industrial Electronics Magazine, 5(4):23-34, 2011. ISSN 1932-4529.

Felix Biisching, Wolf-Bastian Péttner, Dieter Brokelmann, Georg von Zengen, Robert Hartung, Karsten
Hinz, and Lars Wolf. A demonstrator of the GINSENG-approach to performance and closed loop control
in WSNs. In Networked Sensing Systems (INSS), 2012 Ninth International Conference on, pages 1-2,
2012.

Nurcan Tezcan and Wenye Wang. ART; An Asymmetric and Reliable Transport Mechanism for Wireless
Sensor Networks. International Journal of Sensor Networks, 2(3/4):188-200, 2007. ISSN 1748-1279.
Vehbi Cagri Gungor, Ozgiir B. Akan, and Ian F. Akyildiz. A Real-Time and Reliable Transport (RT)2
Protocol for Wireless Sensor and Actor Networks. IEEE/ACM Transactions in Networks, 16(2):359—
370, 2008. ISSN 1063-6692.

Hongwei Zhang, Anish Arora, Young-Ri Choi, and Mohamed G. Gouda. Reliable Bursty Convergecast
in Wireless Sensor Networks. Computer Communications, 30(13):2560-2576, 2007. ISSN 0140-3664.
E. Felemban, Chang-Gun Lee, and E. Ekici. MMSPEED: Multipath Multi-SPEED protocol for QoS
guarantee of reliability and timeliness in Wireless Sensor Networks. IEEE Transactions on Mobile
Computing, 5(6):738-754, 2006. ISSN 1536-1233.

A. Manjeshwar and D.P. Agrawal. TEEN: A routing protocol for enhanced efficiency in Wireless Sensor
Networks. In Proceedings of the 15th International Parallel and Distributed Processing Symposium,
IPDPS, 2001.

80

(40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Stuik, JP. Vasseur, and
R. Alexander. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. Internet Draft, 2012.
ISSN 2080-1721.

A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung. MAC Essentials for Wireless Sensor Networks.
IEEE Communications Surveys Tutorials, 12(2):222-248, 2010. ISSN 1553-877X.

V Sachan, S Imam, and M Beg. Energy-efficient communication methods in Wireless Sensor Networks:
A critical review. International Journal of Computer Applications, 39(17), 2012.

Injong Rhee, Ajit Warrier, Mahesh Aia, Jeongki Min, and Mihail L. Sichitiu. Z-MAC: A Hybrid MAC
for Wireless Sensor Networks. [IEEE/ACM Transactions on Networks, 16(3):511-524, 2008. ISSN
1063-6692.

Petcharat Suriyachai, James Brown, and Utz Roedig. Time-Critical Data Delivery in Wireless Sensor
Networks. In Proceedings of the International Conference on Distributed Computing in Sensor Systems,
volume 6131, pages 216-229. Springer, 2010. ISBN 978-3-642-13650-4.

P. Suriyachai, U. Roedig, and A. Scott. Implementation of a MAC protocol for QoS support in Wireless
Sensor Networks. In Proceedings of the IEEE Conference on Pervasive Computing and Communica-
tions, pages 1-6, march 2009.

S.C. Ergen and P. Varaiya. PEDAMACS: Power Efficient and Delay Aware Medium Access Protocol
for Sensor Networks. Mobile Computing, IEEE Transactions on, 5(7):920-930, 2006. ISSN 1536-1233.
L. Sitanayah, C.J. Sreenan, and K.N. Brown. ER-MAC: A Hybrid MAC Protocol for Emergency Re-
sponse Wireless Sensor Networks. In Proceedings of the Fourth International Conference on Sensor
Technologies and Applications (SENSORCOMM), pages 244-249, 2010.

Adrian Perrig, John Stankovic, and David Wagner. Security in Wireless Sensor Networks. ACM Com-
munications, 47(6):53-57, 2004. ISSN 0001-0782.

Kent Inge Fagerland Simonsen. Petricode: a tool for template-based code generation from CPN models.
In Software Engineering and Formal Methods, pages 151-163. Springer, 2013.

A. Ajith Kumar S., Knut @vsthus, and Lars M. Kristensen. Towards a Dual-Mode Adaptive MAC Pro-
tocol (DMA-MAC) for Feedback-based Networked Control Systems. Procedia Computer Science, 34:
505-510, 2014. ISSN 1877-0509. The 9th International Conference on Future Networks and Com-
munications (FNC’14)/The 11th International Conference on Mobile Systems and Pervasive Computing
(MobiSPC’ 14)/Affiliated Workshops.

A. Ajith Kumar S., Lars M. Kristensen, and Knut @vsthus. Simulation-based Evaluation of DMA-
MAC: A Dual-mode adaptive MAC Protocol for Process Control. In Proceedings of the 8th Interna-
tional Conference on Simulation Tools and Techniques, SIMUTools 15, pages 218-227. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2015. ISBN 978-1-
63190-079-2.

A. Ajith Kumar S., Andreas Prinz, and Lars M Kristensen. Model-based Specification and Validation of
the DMAMAC Protocol. International Journal of Critical Computer Based System, x:0-0, 2017. ISSN
(Submitted).

Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International Journal on Software
Tools for Technology Transfer (STTT), 1(1):134-152, 1997.

A. Ajith Kumar S., Knut @vsthus, and Lars M. Kristensen. Implementation and Deployment Evaluation
of the DMAMAC Protocol for Wireless Sensor Actuator Networks. In Proceedings of the The 7th
International Conference on Ambient Systems, Networks and Technologies, volume 83 of ANT 2016,
pages 329-336, 2016.

A. Ajith Kumar S. and Kent I. F. Simonsen. Towards a Model-based Development Approach for Wireless
Sensor-Actuator Network Protocols. In Proceedings of the 4th ACM SIGBED International Workshop
on Design, Modeling, and Evaluation of Cyber-Physical Systems, CyPhy, pages 35-39, 2014. ISBN
978-1-4503-2871-5.

Markus Volter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon Helsen. Model-driven Software
Development: Technology, Engineering, Management. John Wiley & Sons, 2013.

A. Ajith Kumar S. and Kent I. F. Simonsen. Model-based Development for MAC Protocols in Industrial
Wireless Sensor Networks. In Proceedings of the International Workshop on Petri Nets and Software
Engineering, PNSE. CEUR Workshop Proceedings, 2016.

A. Ajith Kumar S. Artifacts for simulation code and implementation code. http://home.hib.no/
ansatte/aaks/, 2016. Last Accessed: 31-05-2016.

81

http://home.hib.no/ansatte/aaks/
http://home.hib.no/ansatte/aaks/

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

T. O Donovan, J. Brown, U. Roedig, C.J. Sreenan, J. do O, A. Dunkels, A. Klein, J.S. Silva, V. Vassiliou,
and L. Wolf. GINSENG: Performance Control in Wireless Sensor Networks. In Proceedings of the 7th
Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc Communications and
Networks, pages 1-3, 2010.

Pangun Park, C. Fischione, A. Bonivento, K.H. Johansson, and A. Sangiovanni-Vincent. Breath: An
Adaptive Protocol for Industrial Control Applications using Wireless Sensor Networks. IEEE Transac-
tions on Mobile Computing, 10(6):821-838, 2011. ISSN 1536-1233.

Wei Shen, Tingting Zhang, F. Barac, and M. Gidlund. PriorityMAC: A Priority-Enhanced MAC Pro-
tocol for Critical Traffic in Industrial Wireless Sensor and Actuator Networks. IEEE Transactions on
Industrial Informatics, 10(1):824-835, 2014. ISSN 1551-3203.

E. Weingartner, H. vom Lehn, and K. Wehrle. A performance comparison of recent Network Simulators.
In IEEE International Conference on Communications, pages 1-5, 2009.

Harsh Sundani, Haoyue Li, Vijay Devabhaktuni, Mansoor Alam, and Prabir Bhattacharya. Wireless
Sensor Network simulators a survey and comparisons. International Journal of Computer Networks, 2
(5):249-265, 2011.

Andras Varga. OMNeT++. In Modeling and Tools for Network Simulation, pages 35-59. Springer, 2010.
Xiaodong Xian, Weiren Shi, and He Huang. Comparison of OMNeT++ and other simulator for WSN
simulation. In 3rd IEEE Conference on Industrial Electronics and Applications, pages 1439-1443, 2008.
Z.Zhang, Z. Lu, Q. Chen, X. Yan, and L. R. Zheng. COSMO: Co-simulation with MATLAB and OM-
NeT++ for Indoor Wireless Networks. In IEEE Global Telecommunications Conference (GLOBECOM),
pages 1-6, 2010.

Teerawat Issariyakul and Ekram Hossain. Introduction to network simulator NS2. Springer, 2011.

A. Kopke, M. Swigulski, K. Wessel, D. Willkomm, P. T. Klein Haneveld, T. E. V. Parker, O. W. Visser,
H. S. Lichte, and S. Valentin. Simulating Wireless and Mobile Networks in OMNeT++ the MiXiM
vision. In Proceedings of the 1st international conference on Simulation tools and techniques for com-
munications, networks and systems & workshops, pages 71:1-71:8, 2008.

Athanassios Boulis. Castalia user manual. Online: http://castalia. npc. nicta. com. au/pdfs/Castalia-
User Manual. pdf, 2009.

Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic Symbolic Model
Checker. In Computer performance evaluation: modelling techniques and tools, pages 200-204.
Springer, 2002.

Ansgar Fehnker, Rob Van Glabbeek, Peter Hofner, Annabelle Mclver, Marius Portmann, and Wee Lum
Tan. Automated analysis of AODV using Uppaal. In Tools and Algorithms for the Construction and
Analysis of Systems, volume 7214 of Lecture Notes in Computer Science, pages 173—187. Springer,
2012. ISBN 978-3-642-28755-8.

Simon Tschirner, Liang Xuedong, and Wang Yi. Model-based Validation of QoS properties of Biomed-
ical Sensor Networks. In Proceedings of the 8th ACM International Conference on Embedded Software,
pages 69-78. ACM, 2008. ISBN 978-1-60558-468-3.

Ansgar Fehnker, Lodewijk van Hoesel, and Angelika Mader. Modelling and Verification of the LMAC
protocol for Wireless Ssensor Networks. In Integrated Formal Methods, volume 4591 of Lecture Notes
in Computer Science, pages 253-272. Springer, 2007. ISBN 978-3-540-73209-9.

Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science, 126(2):
183-235, 1994.

Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on Uppaal. In Formal methods for the
design of real-time systems, pages 200-236. Springer, 2004.

Alexandre David, Kim G Larsen, Axel Legay, Marius Mikucionis, and Danny Bggsted Poulsen. Uppaal
SMC tutorial. International Journal on Software Tools for Technology Transfer, 17(4):397-415, 2015.
P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. Tinyos: An operating system for sensor networks. In Werner Weber, JanM.
Rabaey, and Emile Aarts, editors, Ambient Intelligence, pages 115-148. Springer, 2005.

David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. The nesc
language: A holistic approach to networked embedded systems. SIGPLAN, 38(5):1-11, May 2003.
ISSN 0362-1340.

Miklés Mardti, Branislav Kusy, Gyula Simon, and Akos Lédeczi. The flooding time synchronization
protocol. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems,
SenSys 04, pages 39-49, 2004.

82

(80]
[81]

(82]

(83]

[84]
(85]

[86]

(87]

(88]

[89]

(90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

Z1 datasheet, zolertia. http://www.zolertia.io//} 2016. Accessed: 25-01-2016.

JeongGil Ko, Nicolas Tsiftes, Adam Dunkels, and Andreas Terzis. Pragmatic low-power interoperabil-
ity: Contikimac vs tinyos lpl. In Sensor, mesh and ad hoc communications and networks (SECON), 2012
9th annual IEEE communications society conference on, pages 94-96. IEEE, 2012.

Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki-a lightweight and flexible operating system
for tiny networked sensors. In Proceedings of the 29th Annual IEEE International Conference on Local
Computer Networks, pages 455-462. IEEE, 2004.

CC2560 Datasheet. Simplelink multi-standard 2.4 ghz ultra-low power wireless mcu. Chipcon products
from Texas Instruments, 2006.

Richard Soley et al. Model Driven Architecture. OMG white paper, 308(308):5, 2000.

Anneke G Kleppe, Jos B Warmer, and Wim Bast. MDA explained: the Model Driven Architecture:
practice and promise. Addison-Wesley Professional, 2003.

Fernando Losilla, Cristina V Chicote, Barbara Alvarez, Andres Iborra, and Pedro Sanchez. Wireless
Sensor Network Application Development: An Architecture-Centric MDE approach. In Software Ar-
chitecture, volume 4758 of Lecture Notes in Computer Science, pages 179—194. Springer, 2007. ISBN
978-3-540-75131-1.

Cristina Vicente-Chicote, Fernando Losilla, Barbara Alvarez, Andres Iborra, and Pedro Sanchez. Apply-
ing MDE to the development of flexible and reusable Wireless Sensor Networks. International Journal
of Cooperative Information Systems, 16(3-4):393-412, 2007.

M. M R Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, and S. Olivieri. A Framework for Modeling,
Simulation and Automatic Code Generation of Sensor Network Application. In Proceedings of the 5th
Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks, pages 515-522, 2008.

T. Rodrigues, T. Batista, F.C. Delicato, PF. Pires, and A.Y. Zomaya. Model-driven approach for build-
ing efficient Wireless Sensor and Actuator Network Applications. In Proceedings of the International
Workshop on Software Engineering for Sensor Network Applications (SESENA), pages 43-48, 2013.
Pruet Boonma and Junichi Suzuki. Model-driven Performance Engineering for Wireless Sensor Net-
works with Feature Modeling and Event Calculus. In Proceedings of the 3rd Workshop on Biologically
inspired Algorithms for Distributed Systems (BADS), pages 17-24. ACM, 2011.

K. Doddapaneni, E. Ever, O. Gemikonakli, I. Malavolta, L. Mostarda, and H. Muccini. A model-driven
engineering framework for architecting and analysing wireless sensor networks. In Proceedings of the
International Workshop on Software Engineering for Sensor Network Applications (SESENA), pages
1-7, 2012.

Ryo Shimizu, Kenji Tei, Yoshiaki Fukazawa, and Shinichi Honiden. Model driven development for
rapid prototyping and optimization of wireless sensor network applications. In Proceedings of the Inter-
national Workshop on Software Engineering for Sensor Network Applications (SESENA), pages 31-36,
2011.

Wei Ye, J. Heidemann, and D. Estrin. Medium Access Control with coordinated adaptive sleeping for
Wireless Sensor Networks. IEEE/ACM Transactions on Networking, 12(3):493-506, 2004. ISSN 1063-
6692.

Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access for wireless sensor
networks. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems,
pages 95-107. ACM, 2004. ISBN 1-58113-879-2.

Michael Buettner, Gary V. Yee, Eric Anderson, and Richard Han. X-MAC: A Short Preamble MAC
Protocol for Duty-cycled Wireless Sensor Networks. In Proceedings of the 4th International Conference
on Embedded Networked Sensor Systems, pages 307-320. ACM, 2006. ISBN 1-59593-343-3.

Tijs van Dam and Koen Langendoen. An Adaptive Energy-efficient MAC Protocol for Wireless Sensor
Networks. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems,
pages 171-180. ACM, 2003. ISBN 1-58113-707-9.

Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured Petri Nets and CPN Tools for Modelling
and Validation of Concurrent Systems. International Journal on Software Tools for Technology Transfer,
9(3-4):213-254, 2007.

Nguyen Xuan Thang, Michael Zapf, and Kurt Geihs. Model driven development for data-centric sen-
sor network applications. In Proceedings of the 9th International Conference on Advances in Mobile
Computing and Multimedia, pages 194-197. ACM, 2011.

83

http://www.zolertia.io//

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Gerhard Fuchs and Reinhard German. UML2 Activity Diagram based Programming of Wireless Sensor
Networks. In Proceedings of the International Workshop on Software Engineering for Sensor Network
pplications, pages 8—13. ACM, 2010. ISBN 978-1-60558-969-5.

M. Mura and M. G. Sami. Code Generation from Statecharts: Simulation of Wireless Sensor Networks.
In Proceedings of the 11th EUROMICRO Conference on Digital System Design Architectures, Methods
and Tools, pages 525-532, 2008.

Hiroshi Wada, Pruet Boonma, Junichi Suzuki, and Katsuya Oba. Modeling and executing Adaptive Sen-
sor Network applications with the Matilda UML virtual machine. In Proceedings of the 11th IASTED In-
ternational Conference on Software Engineering and Applications, pages 216-225. ACTA Press, 2007.

Vegard Veiset and Lars Michael Kristensen. Transforming platform independent cpn models into code
for the tinyos platform: A case study of the rpl protocol. In PNSE+ ModPE, pages 259-260. Citeseer,
2013.

Maulin Patel and Jianfeng Wang. Applications, Challenges, and Prospective in Emerging Body Area
Networking Technologies. IEEE Wireless Communications Magazine, 17(1):80-88, 2010.

Hande Alemdar and Cem Ersoy. Wireless Sensor Networks for healthcare: A survey. Computer Net-
works, 54(15):2688-2710, 2010. ISSN 1389-1286.

Benoit Latré, Bart Braem, Ingrid Moerman, Chris Blondia, and Piet Demeester. A survey on wireless
body area networks. Wireless Networks, 17(1):1-18, January 2011. ISSN 1022-0038.

Min Chen, Sergio Gonzalez, Athanasios Vasilakos, Huasong Cao, and Victor C. M. Leung. Body Area
Networks: A Survey. Mobile Networks and Applications, 16(2):171-193, 2011. ISSN 1572-8153.

D. M. Barakah and M. Ammad-uddin. A Survey of Challenges and Applications of Wireless Body Area
network (WBAN) and Role of a Virtual Doctor Server in Existing Architecture. In Third International
Conference on Intelligent Systems Modelling and Simulation, pages 214-219, 2012.

84

Part 11

Articles

85

Chapter 7

Towards a Dual-mode Adaptive
MAC Protocol (DMA-MAC) for
Feedback-based Networked Control

Systems

87

Available online at www.sciencedirect.com

SciVerse ScienceDirect Proced iCI

Computer Science

R D PN
ELSEVIER Procedia Computer Science 00 (2014) 000-000

www.elsevier.com/locate/procedia

The 2nd International Workshop on Communications and Sensor Networks (ComSense-2014)

Towards a Dual-Mode Adaptive MAC Protocol (DMA-MAC) for
Feedback-based Networked Control Systems

Admar Ajith Kumar Somappa*a’b, Knut @vsthus?, Lars Michael Kristensen®

4 Faculty of Engineering and Business Administration, Bergen University College, Norway
b Faculty of Engineering and Science, University of Agder, Norway

Abstract

Automated control systems play an important part in many industrial domains and the medium used for communication between
devices in these systems is in transition from wired to wireless for cost reasons. Control systems have strict requirements on delay,
throughput, and reliability, that vary with time during operation. Addressing these requirements requires predictable and robust
protocols to be employed, and they must be adaptive to the varying states of the controlled process. In this article, we propose a
dual-mode adaptive medium access control protocol that caters for two main operation modes in control systems: the steady mode
operation, and the transient mode operation. We present initial performance analysis results focusing on energy consumption,
including a comparison with a related single-mode industrial monitoring and control protocol.

© 2014 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Program Chairs of FNC-2014.

Keywords: Wireless Sensor Actuator Networks, Process Control, Automation, Industrial Application.

1. Introduction

. . Ref A
A Wireless Sensor Actuator Network (WSAN)' consists of ~ ~C. " Ctua"l)r
sensors and actuators that use radios to send, relay, and receive —_ e w

information. WSANSs are applied across several domains including

process and factory automation. The use of WSANs in these Sensor L\ V% L
application domains has had a significant effect on the process Measurements ;Eé: Gateway
industry, by reducing operating costs and increasing automation.

With actuators being part of the system, feedback-based control-loop Fig. 1: Feedback based control loop

automation is one of the main applications. Feedback-based control systems that use wired or wireless solutions for
data transfer are known as Networked Control Systems (NCSs)2. A general control system consists of a reference
input, plant output, control input, sensors, actuators, and a controller and a typical feedback-based control loop is
shown in figure 1. Traditionally, wired communication has been used in NCSs to achieve high reliability, low delay,
and high bandwidth. With the advancement in WSAN technology, industry has started utilizing wireless solutions for
NCSs. There are several challenges that are to be addressed when implementing wireless solutions for process control
applications®. The primary issues that arise as a result of switching from a wired to wireless medium are packet loss,

* Corresponding author. Tel.: +47 55 58 75 88
E-mail address: aaks @hib.no

1877-0509 © 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Program Chairs of FNC-2014.

2 Kumar Somappa et al. / Procedia Computer Science 00 (2014) 000-000

reduced bandwidth, and increased latency. Considering the fact that nodes in WSAN are generally battery powered,
energy efficiency is also an important factor in addition to satisfying real-time requirements.

In this article, we focus on process control systems based on wireless communication. Process control generally
has two states: steady and transient. In the transient state, data values vary rapidly with time, generating large
amounts of traffic. Once the data values start stabilizing, the process is said to be in steady state, and the amount
of data traffic required is then low. Thus, we propose a medium access control (MAC) protocol designed to have
two operational modes to cater for varying process control states. The protocol is called the Dual-Mode Adaptive
MAC protocol (DMA-MAC) which defines operation modes based on the two process states. A transient mode that
supports the transient state and a steady mode to support steady state. The sensors communicate less frequently during
the steady mode thus saving energy and reducing interference to other operations in the vicinity. In a wireless sensor
node, the transceiver consumes far more energy than the micro-controller*. Thus, by reducing the communication of
information during steady state, energy consumption can be reduced. The network architecture considered, consists of
a sink node, sensor nodes, and actuator nodes in a tree topology. With sensor/actuator nodes at the lowest level known
as leaf nodes, and the parent/child nodes at organized higher levels. The sink node is assumed to be wire powered and
is powerful relative to the sensors and actuators. In DMA-MAC operation, the switch between the operational modes
is important. In case the measurement crosses a certain threshold (steady state error interval), sensors will notify the
sink of this change, and the sink will take the necessary steps to initiate transient mode operation. The switch from
transient to steady mode is decided by the sink, and the sensors are notified. The switch decision is made based on the
underlying process model, which captures the characteristic features of the process. The main advantage of having
a dual-mode adaptive protocol over single-mode protocols is for the case with process models that spends less time
in transient state than in the steady state. For such a case the DMA-MAC protocol consumes far less energy than a
single-mode protocol. Key design considerations and assumptions used for the design of DMA-MAC are as follows:
The setting of thresholds for the sensors to detect the switch is assumed to be based on the process model. For multi-
variable input models, we design the transient mode operation to continue until the slowest of the input reaches steady
state.

1.1. Important features of DMA-MAC

The aim of our protocol in comparison to existing protocols is to preserve the key performance metrics such as
reliability, throughput, low delay, and at the same time improve energy efficiency. The main features that the proposed
protocol focuses on, and the overhead caused due to the design are as follows: Predictability: process control system
procedures have predictable performance since they are pre-calculated to ensure smooth operation. Simulations are
performed based on the given process model, to ensure proper design, and to test for predictable performance. From
the communication part, with the usage of TDMA based superframes, DMA-MAC has highly predictable performance
for the wireless communication. Reliability: with the use of reliability mechanisms similar to GinMAC? (a single-
mode protocol), reliability is maintained. Energy conservation: in the steady mode DMA-MAC protocol has lower
data transmission. We propose this protocol for process control scenario where the steady state is dominant compared
to the transient state, and hence we have lower energy consumption compared to protocols having single-mode of
operation. This is due to the fact that protocols with single-mode of operation should be adhering to transient mode
operation at all times to have the required response in transient state. Overhead: DMA-MAC protocl has a complex
protocol structure due to the dual-mode operation, which results in larger code space, and hence affects hardware
performance. Also, the need to ensure efficient state switch detection, and relay within a given duration, is especially
critical for state switch from steady to transient.

2. Related Work

GinMAC? is a protocol proposed in the GINSENG® project for process monitoring systems. The main features
of this protocol are Offline dimensioning, Exclusive TDMA (Time Division Multiple Access) and Delay Conform
Reliability Control. The design of GinMAC was aimed at satisfying real-time constraints for sensors and actuators.
The TDMA structure and offline dimensioning makes the protocol predictable. We use GinMAC protocol as a basis
for our protocol design and then also for comparison. Breath” is a protocol aimed at reducing energy consumption
and providing delay guarantees. Breath is based on Carrier Sense Multiple Access (CSMA) mechanisms and uses
clustering techniques. The Breath protocol was designed for control applications. But with the use of CSMA and in the
attempt to be adaptive to random conditions, the protocol is aimed at applications that has random possibilities or has

Kumar Somappa et al. / Procedia Computer Science 00 (2014) 000-000 3

L Cc; Pump ——Response —Upper bound Lower bound —Target Value
Heat 50 Transient Steady Switch
lE>«:hanger T s € > witc
@Actuamr e a0 /\ A
L Sensor m 35 / \ / \\/
| P 30 /
c @ € 25
Sensors r 2
F - Flow a
(((g))) T - Temperature 15
L P- Pressure t 10
| L- Level u s
s X
Reaction Vessel %—Out—» e 0 5 10 15 20 25 30

Time
Control valve

(a) Chemical plant with process control automation (b) Process control graph

Fig. 2: Scenario description and chart representation of process control variables

continuously varying sampling intervals (time duration between each sensor reading). For process control applications
which are known to have precise process models that define transient and steady states along with steady state error,
could benefit from the use of schedule based protocols, increasing predictability, and also energy efficiency. In’, the
authors also assume that requirements for TDMA such as having a network manager, are complex requirements. This
is in contrast to our protocol, where we assume that these are a common part of the network solution. Thus the two
protocols aim at solving different problems. Generic wireless solutions proposed as industrial standards generally have
an architecture that consists of a network manager and other powerful middleware. Two popular wireless standards
are wirelessHART® and ISA100.11a°. Our proposed DMA-MAC protocol can be used in combination with both
wirelessHART and ISA100.11a, which are based on the 802.15.4 standard.

3. Networked Control System Example

We define an example scenario of a chemical processing plant, employing NCSs for automating a chemical process
using sensors and actuators. The example deals with different kinds of sensors including temperature, pressure, and
level. The scenario is similar to the one used in one of the case studies for the GinMAC !° protocol. Figure 2a
shows a schematic diagram of the process. We assume that two chemicals A and B are stored in two different tanks
(Tank 1 and Tank 2) and then mixed in the reaction vessel. The reaction is continuously monitored and controlled
for temperature, pressure, and level using a feedback-based control system. The goal of the system is to supervise
the mixing operation. This is done by continuously measuring all parameters (temperature, pressure, and level) via
sensors and making necessary control decisions. The mixing procedure starts with letting the chemicals flow to the
reaction vessel. During this process, the flow measurement and management is very important. After the flow is
completed and the chemical reactions take place, it is important to continuously manage pressure and temperature.
The temperature is controlled via heat exchangers in the reaction vessel. Initially, when the chemicals flow and the
reaction starts, there is possibly a high rate of change of temperature and pressure in the reaction vessel (assuming
flow is constant). This indicates a transient state. After a while, when the flow is completed, and a given temperature is
reached, the rate of change in temperature and pressure will be small. This indicates a steady state. For the example in
figure 2a, a typical process control graph is illustrated in figure 2b. The graph is plotted for temperature varying with
time, continuously monitored and controlled. Similar behaviour is exhibited by the remaining parameters (pressure
and level). We have a target value for temperature (set point or reference), and two bounds (upper and lower) between
which the temperature may vary, while the system is still considered to be in the steady state.

4. The DMA-MAC Protocol

The DMA-MAC is proposed based on the dual-mode operation of process control as introduced above. It has one
mode for the transient state, and one mode for the steady state. This allows for service differentiation, thus facilitating
support for the faster data rate in the transient mode, and saving energy by reducing the data rate in the steady mode.
We define two separate superframes to represent slot distribution in the two different operation modes. DMA-MAC is
entirely based on a TDMA slot mechanism in both superframes except for alert messages. Alert messages handling is
explained below. One important part of DMA-MAC operation is the decision of switching the mode of operation. The
transient to steady mode switch is done by the sink based on preset characteristics, i.e, when system is continuously in

4 Kumar Somappa et al. / Procedia Computer Science 00 (2014) 000-000

steady mode operation for the past 10s (sensor reading is within steady state intervals). The steady to transient switch
is more critical than the former, and is detected and notified by sensors to the sink. We use thresholds to identify the
switch from steady to transient. As represented in the process control graph in figure 2b, the lower bound and upper
bound define the threshold. When in steady mode operation, the sensors constantly monitor for measurements that go
beyond the threshold, and when such an event occurs, the sink is notified. The sink then sends a signal indicating the
switch of operational mode. Below, we discuss in detail the two operational modes of DMA-MAC.

Transient mode operation. The process changes rapidly during transient state, generating large volume of data
sampled at high frequency, to trace the rapidly changing process variables (such as temperature). The sensors transmit
this data to the sink. Actuators continuously act on this data. We have a short superframe with Nt (t for transient) slots
and smaller sleep duration compared to steady mode operation, to increase data reliability. In general, transient mode
operation is data-intensive and hence also energy intensive. The transient mode operation superframe is based on the
GinMAC? superframe with similar structure except for the placement of actuator slots. The superframe structure for
transient mode operation is illustrated in figure 3a and consists of:

¢ 1 notification slot for information dissemination from the sink to all sensors and actuators. This includes time
synchronization, switching of operational mode, change of thresholds, and other control data. With the switch
notification, all nodes are notified to switch in the next superframe.

e S slots for sensor data transmission towards the sink.

e § xRy re-transmission slots for increased reliability. Here Ry is the number of re-transmissions per sensor data.
By setting the number of re-transmissions for transient and steady mode operation, we can have further control
the tradeoff between energy conservation and reliability.

o 1 slot for information processing at the sink.

e Ac slots for actuator data transmission from the sink.

e The remaining slots out of the Nt slots are used as sleep slots.

Steady mode operation. The steady mode operation in DMA-MAC is defined to operate during the steady state
of the process. During the steady state, the data-rate requirement of the controller is low, and thus we also keep the
communication of the sensed data low to save energy. The superframe structure for steady mode operation has Ns (S
for steady) slots and is designed to be a multiple of Nt (number of slots in transient mode). This is to ensure that the
maximum delay between the detection of a threshold violation and change of superframes is two transient superframe
in length. The superframe structure is shown in figure 3b, and consists of:

e Ns/Nt notification slots for information dissemination, similar to transient mode operation. With the switch
notification, all nodes are notified to switch in the next Nt part of the steady mode superframe.

e S slots for sensor data transmission towards the sink.

e S xRy re-transmission slots, here Ry is based on the link conditions, similar to re-transmission slots in GinMAC.
Also, here Ry is the number of re-transmissions per sensor data set for steady mode operation.

o 1 slot for information processing at the sink.

e Ac slots for actuator data transmission from the sink.

o Alx(Ns/Nt) slots for alerting the sink of a need for switch of operational modes from steady to transient. After
every Nt slots in the steady mode superframe, we repeat the notification slots, and alert slots.

e The remaining slots out of the Ns slots are used as sleep slots.

Alert slots are used to indicate the switch of process state from steady to transient state. The switch is detected by
the sensors based on thresholds determined from the process model. The sending procedure for alert messages does

| Ns |
| Nt [Nt | Nt - Nt |
I*Notification ‘Sink Processing ! I*Notification * Sink Processing I‘ Notification ! I* Notification !
| I o | ———| — —
Sensor + Retransmission Actuator Sleep Sensor + Retransmission Actuator Sleep Alert (Al) Sleep Alert (Al) Sleep Alert (Al)
S+(S*Ry) data (Ac) S +(S*Ry) data (Ac)
(a) Transient mode superframe (b) Steady mode superframe

Fig. 3: Superframes for the two modes of the DMA-MAC protocol

Kumar Somappa et al. / Procedia Computer Science 00 (2014) 000-000 5

not adhere to TDMA, but is based on a special procedure. During the alert message sending slots, mainly the parent
nodes are awake to relay any information coming from their children. All leaf nodes are at sleep, unless they have
alert messages to be sent. Alert messages are usually short messages and two (one duplicate) of these messages are
sent in the same slot to increase the probability of receiving the alert message. Any of the child nodes could send an
alert message to its parent in alert slots. Thus we could have a possibility where two child nodes of the same parent
have alert messages created and need to send them in the same slot. To solve the possible collision at the relay node,
we introduce a random delay in the interval [0..slotDuration/n] before sending the first alert message, and then again
a random delay within the same range [0..slotDuration/n] as the previous one before sending the next alert message.
We use n > 3, to ensure that the two alert messages can be accommodated in the same slot. Thus, we attempt to
increase the probability of at least one of the alert messages reaching the sink, and the operational mode switch being
triggered. An implicit ACK mechanism is used, where the node that generated alert message listens to the channel in
the next slot to make sure that the alert message is relayed towards the sink by the parent node. We can also consider
the addition of CSMA for alert message transmission, to further reduce collision.

The Sink sets the threshold depending on the process model given as input by the process model designers. The sink
is also responsible for detecting the change in states from transient to steady, make the necessary switch in operational
modes, and inform all sensors and actuators under its management. Timing synchronization is handled by the sink,
which is a basic requirement for having TDMA operation. Time Synchronization information is sent in the information
notification slot every A frames. It is sent in the beginning of the frame for transient mode operation. For steady mode
operation it is sent in the beginning of the superframe and then after every Nt slots. We assume a powerful sink and
that the message sent by the sink is received by all nodes in the network. We use acknowledgements (ACK) for all
packets sent by the sensors. For packets sent by sink, no ACK is used. The ACK packets are sent within the same
time slot after the data packets. On failure of the data or ACK packets, re-transmission slots are used.

5. Initial Evaluation of Energy consumption

In this section, we describe the energy model for both GinMAC and DMA-MAC, and provide a first comparison
between them. We assume that the transient mode superframe and the GinMAC superframe are of the same length to
have similar performance for transient state. We use ¢ to denote the slot duration (e.g. 10ms). The main radio states
being TX - Transmission, RX - Receiving, and SLEEP - Sleeping. We define Prugios e s the power consumed by the
radio in the defined radio state. We denote energy consumed in a given radio state by E,ugiossate- EProtocor 1 the total

energy spent in a single superframe by a given protocol (having one type of superframe structure). E;"Lp;g;mmﬂy ¢ s

used to describe the total sleep energy spent in one superframe of a given superframe type. Similarly, E;‘;‘Z f;i?“mTy pe
is used to describe the total energy spent in one superframe of a given superframe type of the respective protocol. We
define a as the total number of transient superframes for a given time duration 7. E,,,o,c0/(@) denotes the total energy
spent for a superframes using the given protocol. p defines the probability of transient superframes appearing and
(1 — p) defines the probability of steady superframes appearing. We present this analysis for one hop networks, and
we assume in the case of alerting, that the switch always happens in the last alert duration of the superframe. We
assume worst case for re-transmissions, i.e., that all retransmissions are used. A more detailed calculation of energy
consumption would also take into account the switching power and time. For simplicity, we neglect these, and the

computation of energy spent by sink which is wire powered is omitted. Based on the assumptions, we have:
Erx = Prx %0, Erx = Prx * 0, Esr pep = Psppep * 0, for worst-case analysis we assume that the entire slot is used.
Egggg’;"’ =Esigep* (Nt —1—-8 — (S = Ry) — Ac), subtraction of 1 is for notification slot.

Alert is considered only once in a steady superframe, after which transient superframe starts and hence:

EgtL‘g?P =Egippp* (Ns — (1 %« (Nt/Ns)) =S — (S = Rg) — Ac — Al), (1« (Nt/Ns) is for notification slots (D)

Eginmac(@) = ax (Egx * 1 + Erx S + Epx (S * Ry) + Egy * Ac + Eg;‘g’giﬁn’) for a superframes in time T. @)

ELine = Ecinmac

ESe o= Erx % (Nt/Ns) + Erx # S + Erx + (S * Rg) + Egx * Ac + Erx * Al + Eyred, 3)
sien @ eaqay

Epma-mac(@) = pxax EFSGH -+ (1 = p) * * Eth/éMAC)

Ns/Nt

6 Kumar Somappa et al. | Procedia Computer Science 00 (2014) 000—000

Table 1 summarizes the relative energy consumption of DMA- Condition Energy consumption
MAC and GinMAC. For conditions where we have high number
of steady state superframes with p < 0.1 for transient superframe p<0.1 | Epya-mac(@) << Eginmac(@)
to appear during operation, the DMA-MAC has far better energy p <05 Epyia—mac(@) < Eginprac(@)
performance than GinMAC. For other possibilities when the process p=1 Epma-mac(@) = Eginpac(@)
state has p < 0.5 for the next frame to be transient frame, DMA-MAC
has still lower consumption of energy. For process models where Table I: Results summary

transient state dominates through the process duration it is advisable
to use single-mode protocols like GinMAC especially to prevent the overhead, and this is represented by the p = 1
case.

On a simpler note, the main advantage of energy saving is in the steady state T A
of DMA-MAC as shown for a small comparison in Figure 4. Here we show the ! DMA-MAC A
superframe of normal steady mode (S F'), and the steady mode superframe (S F*) SF I SF][SF* I

where a switch happens once for a time duration T. Assuming that energy spent
on sleep and alert are negligible for a given time T (with @ superframes), the
energy consumed by DMA-MAC steady state is approximately equal to the energy HEEBEBEEEE

GinMAC

consumed by GinMAC divided by the multiple (Ns/Nt), we have: Fig. 4: Steady state
ESteady ~ a E £ 2): ESteady - EGinMAC(a') 5
DyA-mac(@) = Ns/Nt * Egnmac or fromeqn.(2): Ep 7 (@) = “Ns/Ni Q)

6. Conclusion

In this article, we have proposed a WSAN protocol DMA-MAC that is specifically designed for process control
applications and requirements. Also, we consider the system dynamics for the process control applications. The
system dynamics for process control include two prominent states: steady state and transient state. We have based the
protocol design on reflecting the system dynamics states with dual-mode operation. With dual-mode operation, we
aim to obtain a better energy efficiency preserving the required reliability and delay requirements. By construction
and initial performance analysis, we see that DMA-MAC is energy efficient for certain process conditions that we
discussed in the energy consumption evaluation section. An important part of future work is to conduct a more
elaborate performance analysis based on other important metrics for process control applications including delay,
packet error rate, throughput, and reliability. Furthermore, we will extend the energy evaluation to consider multi-hop
communication. A practical evaluation of the proposed design is also planned both in terms of validating that the
new protocol is better in practice, and also in terms of figuring out whether there are elements of the design which, in
practice is difficult to implement.

References

1. L. E Akyildiz, I. H. Kasimoglu, Wireless sensor and actor networks: research challenges, Ad Hoc Networks 2 (4) (2004) 351-367.
J. P. Hespanha, P. Naghshtabrizi, Y. Xu, A survey of recent results in networked control systems, Vol. 95, 2007, pp. 138-162.
G. Zhao, Wireless sensor networks for industrial process monitoring and control: A survey., Network Protocols & Algorithms 3 (1) (2011)
806-838.
4. A. Bachir, M. Dohler, T. Watteyne, K. Leung, MAC essentials for wireless sensor networks, [IEEE Communications Surveys Tutorials 12 (2)
(2010) 222-248.
5. P. Suriyachai, J. Brown, U. Roedig, Time-critical data delivery in wireless sensor networks, in: Proceedings of DCOSS, 2010, pp. 216-229.
6. T. O Donovan, J. Brown, U. Roedig, C. J. Sreenan, J. do O, A. Dunkels, A. Klein, J. Silva, V. Vassiliou, L. Wolf, GINSENG: Performance
control in wireless sensor networks, in: SECON, 2010, pp. 1-3.
7. P. Park, C. Fischione, A. Bonivento, K. Johansson, A. Sangiovanni-Vincent, Breath: An adaptive protocol for industrial control applications
using wireless sensor networks, IEEE Transactions on Mobile Computing 10 (6) (2011) 821-838.
8. J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, Wirelesshart: Applying wireless technology in real-time industrial process control,
in: IEEE Real-Time and Embedded Technology and Applications Symposium, 2008, 2008, pp. 377-386.
9. Draft standard ISA100. 11a, in: Internal working draft, International Society of Automation, 2008.
10. F. Busching, W. Pottner, D. Brokelmann, G. Von Zengen, R. Hartung, K. Hinz, L. Wolf, A demonstrator of the ginseng-approach to
performance and closed loop control in wsns, in: Ninth International Conference on Networked Sensing Systems (INSS), 2012, pp. 1-2.

w

Chapter 8

Simulation-based Evaluation of
DMAMAC: A Dual-mode Adaptive
MAC Protocol for Process Control

95

Simulation-based Evaluation of DMAMAC - A Dual-Mode
Adaptive MAC Protocol for Process Control

A. Ajith Kumar S.
Bergen University College,
Norway
University of Agder, Norway
aaks@hib.no

ABSTRACT

Control systems automation is widely used in many
industrial domains and have strong requirements on delay,
throughput, robustness, and reliability. In the domain of
networked control systems, the medium of communication
is increasingly involving wireless communication along-side
conventional wired communication. Issues ranging from
energy efficiency and reliability to low-bandwidth have to be
addressed to enable the transition to increased use of wireless
communication. In earlier work, we have proposed the
Dual-Mode Adaptive MAC (DMAMAC) protocol relying on
a combination of Time Division Multiple Access (TDMA)
and Carrier Sense Multiple Access (CSMA). The DMAMAC
protocol is able to dynamically adapt to the two main states
found in process control: the steady state and the transient
state. Key requirements to the DMAMAC protocol are
energy efficiency, low probability of state-switch failures, and
a low state-switch delay.

The contribution of this paper is a comprehensive
simulation-based evaluation of the original DMAMAC
protocol along with the evaluation of a new pure TDMA-
based variant of the DMAMAC protocol. Our results
show that for processes where the steady state dominates,
both variants of the DMAMAC protocol can reduce energy
consumption by up to 45% in comparison to the closely
related single-mode GinMAC protocol. Among the two
variants of DMAMAC, the pure TDMA-based variant has
the better energy efficiency and higher reliability. The
simulation results also show that the hybrid TDMA-CSMA
variant of the DMAMAC protocol has a probability of
less than 0.3% for a state-switch failure in a given MAC
superframe. The simulation study has impacted the design
of the DMAMAC protocol by providing insights that have
led to design changes in the originally proposed DMAMAC
protocol in order to further reduce the state-switch delay
between the steady and the transient state.

Lars M. Kristensen
Bergen University College
Bergen, Norway
Imkr@hib.no

Knut Ovsthus
Bergen University College
Bergen, Norway
kovs@hib.no

Keywords

Wireless Sensor Actuator Networks, Process Automation,
Process Monitoring and Control, Medium Access Control,
MAC protocols, Energy efficiency, Reliability

1. INTRODUCTION

A Wireless Sensor Actuator Network (WSAN) [1]
consists of sensors and actuators that use radios to
send, relay, and receive information. WSANs are used
across multiple application domains, including process and
factory automation. The advantage of WSANs lies in
reducing operating costs, the size of the devices used,
and in increasing automation. Feedback-based control-loop
automation is one of the main applications, and control
systems that use wired or wireless solutions for data transfer
are known as Networked Control Systems (NCSs) [4]. A
general control system consists of a reference input, plant
output, sensors, actuators, and a controller providing control
input as shown in Fig. 1. Previously, NCSs used only
wired communication due to the high reliability, low delay,
and high bandwidth. Now, NCSs are adopting wireless
communication co-existing with wired solutions. Given the
fact that nodes in WSAN are generally battery powered,
energy efficiency is an important requirement in addition to
the real-time requirements.

In this paper, we focus on NCS based on wireless
communication designed for process control applications.
Processes are generally modelled using mathematical
process models, which represent the characteristic features
of the process. The process model also describes the change
in physical quantities (e.g. temperature, pressure, and level)
over time. In process control, the process being controlled
could be in one of two states at a given time: steady and
transient. In the transient state, the process changes rapidly,
i.e., the physical quantities change rapidly. For the process
control to operate properly, the sensors need to communicate
the rapidly changing dynamics of the process (in transient
state) to the sink (gateway), which then aggregates this data

Reference Actuator
+
— Controller w Output

Sensor\’l': \ & } L
Measurements Gateway

Figure 1: Control loop with wireless communication

and forwards processed control data to the actuators to act
on this data. With time, the process starts stabilizing and
the rate of change decreases. The process is then said to
be in steady state. In steady state, the physical quantity
is either constant or has minimal change within a given
threshold interval. This threshold interval is also used to
detect the need for a switch from steady to transient state.
When the sensors measure values outside of the threshold
interval, it notifies the sink to initiate a state-switch. This
switch from steady to transient can be critical depending on
the application requirements.

In [13], we proposed the Dual-Mode Adaptive Medium
Access Control protocol (DMAMAC), designed to have two
operational modes to cater for the two process control
states. The protocol has a transient mode that supports the
transient state, and a steady mode to support the steady
state. The transient mode has data communication at
a higher rate relative to the steady state. We designed
DMAMAC for applications where steady state dominates
the process operation. Generally, wireless sensor nodes are
battery powered and the transceiver consumes more energy
than the micro-controller and other parts [3]. Thus, the
reduced communication in the steady mode results in energy
savings. The transient mode still has energy consumption
similar to single mode protocols. A further benefit of the
DMAMAC protocol is that it has reduced interference to
other operations in the vicinity due to a low duty cycle
in the steady state. Previously, in [13] we proposed a
hybrid protocol based on a combination of Time Division
Multiple Access (TDMA) and Carrier Sense Multiple Access
(CSMA). In this article, we simulate this protocol to study
the performance in comparison to the GinMAC protocol
[15] which is a well-established protocol for industrial
monitoring and control. In addition, we develop and
evaluate the performance of a new pure TDMA-based
variant of DMAMAC (DMAMAC-TDMA) and compare
it to the original DMAMAC protocol (DMAMAC-Hybrid)
from [13].

The rest of the paper is organized as follows. Section
2 briefly introduces the design of the DMAMAC protocol
and the related GinMAC protocol [15] which will serve as
a baseline for comparison and design. The simulation setup
based on the scenario in [13] is discussed in Sect. 3, along
with the MiXiM [6] simulation model used. Both variants
of the DMAMAC protocol are evaluated and compared with
the GiInMAC [15] protocol in Sect. 4. In Sect. 5, we sum up
the conclusions and discuss future work. In the rest of the
paper we use DMAMAC to refer to our protocol in general
and append either Hybrid or TDMA to designate the specific
variant of the protocol in question. We assume that the
reader is familiar with the basic concepts of MAC protocols.

2. RELATED WORK AND DMAMAC

In this section we briefly discuss related work, and
describe the DMAMAC protocol with focus on the changes
made to the previous version [13]. In related work, we
focus specifically on the TDMA-based GinMAC protocol
[15] as the design of DMAMAC is rooted in this protocol.
In addition to GinMAC, there are several other related
MAC protocols. Z-MAC [11] is a hybrid protocol using
both CSMA and TDMA. Z-MAC is a distributed protocol
with two-phase operation. In the setup phase the nodes
make a list of their two-hop neighbors and then locally

decide on a time slot such that no two nodes select the
same time slot. Z-MAC uses CSMA for low-contention
and TDMA for high contention periods. The DMAMAC
protocol is based on offline scheduling similar to GinMAC.
This means that the entire time-slot is pre-planned and
thus differs in operation from Z-MAC. WirelessHART [14]
is the wireless successor of HART proposed for process
monitoring applications. WirelessHART is a framework,
with a combination of protocols for different functions.
TSMP [10] is the MAC protocol proposed for wirelessHART,
but it mainly handles time synchronization. The routing
and slot allocation is handled by a separate unit called the
network manager. The DMAMAC protocol can be used
within the wirelessHART framework as a MAC protocol.

2.1 The GinMAC Protocol

GinMAC [15] was developed as part of the GINSENG
[7] project with requirements including reliable and timely
delivery of data. The GinMAC protocol design is based on a
network having a tree topology. Along with satisfying real-
time requirements, GinMAC also addresses energy efficiency
via efficient duty cycling. The GinMAC superframe forms
the basis of the transient mode superframe in the DMAMAC
protocol. The GinMAC protocol has the following main
characteristic features.

Off-line Dimensioning. The network deployment is pre-
planned based on application requirements, and scheduling
decisions are made offline. A TDMA schedule is created
with a given superframe length. This frame is then divided
into three types of slots: basic, additional, and wunused.
The basic slots are for regular sensor data transfer, the
additional slots are used to increase reliability, and the
unused slots (or sleep slots) are used to achieve a low duty
cycle. Basic slots are defined for both sensor and actuator
data. Configuration commands include control data such
as time synchronization. The sensor data is sent from the
sensors to the sink, and the actuator data is sent from sink
to the actuators. Given the tree topology, nodes having
children need to have basic and additional slots allocated
for its children as well.

Ezclusive-TDMA. GinMAC is designed such that data
transmission of maximum length and acknowledgement
is accommodated within the same slot. GinMAC uses
exclusive TDMA with no slot re-use across nodes. The
GinMAC protocol has been designed for a sink that can
manage a maximum of 25 nodes [15].

Delay Conform Reliability Control. Additional slots are
used to ensure packet delivery thus increasing reliability.
Prior to deployment, measurements are to be performed in
the deployment area to assess the channel characteristics
and calculate the worst-case link reliability. The number of
additional slots used is based on the calculated worst-case
link reliability.

2.2 The DMAMAC Protocol

The hybrid variant of the DMAMAC protocol was initially
proposed in [13], and has been further refined in the context
of this paper to suit the goals of the protocol design
and for improvements in performance. In addition, we
propose a pure TDMA-based variant of the protocol. The
detailed description of the DMAMAC-Hybrid protocol can
be found in [13]. In this paper, we discuss in brief the
two operational modes of DMAMAC, the changes made

with respect to the original Hybrid variant, and the pure
TDMA-variant. Also, the delay from the time instance
the state-switch is identified until the sink is notified is
discussed. We rely on a tree topology similar to that
of GinMAC [15], and DMAMAC also follows the offline
scheduling and reliability mechanisms of GinMAC. The
network architecture, for which the DMAMAC protocol is
designed, consists of a sink node, sensor nodes, and actuator
nodes. The sensor/actuator nodes are ranked according to
their position in the tree topology, with nodes closest to the
sink having the lowest rank. The sink node is responsible
for managing the entire network, and is assumed to be wire
powered and computationally powerful. Below, we list the
key design considerations and assumptions related to the
design of the DMAMAC protocol:

1. The protocol is designed for applications where the
steady state is dominant.

2. For multi-variable process models, we design the
transient mode operation to continue until the slowest
of the inputs reaches its steady state.

3. The setting of thresholds for the sensors to detect the
state-switch is assumed to be based on the underlying
process model.

4. The sink is assumed to be able to reach all nodes in
one hop. Notification messages from the sink are sent
in one-way communication without ACK in one slot to
all nodes in the network, and include control data such
as state-switch data. Since the sink is wire powered,
it is reasonable to assume that it can afford to have
longer radio range.

5. A small amount of packet failure is tolerated by the
control system. Model Predictive Control (MPC)
[8] or network-aware control systems can be used to
compensate for the possible packet losses.

6. Static network topology: no addition or removal of
nodes during operation. In case of a topology change,
schedules are recomputed accordingly.

7. A single slot accommodates both DATA and ACK
packets.

2.2.1 Transient mode

The process changes rapidly during the transient state,
and the transient mode is designed to meet the data
requirements of this state. The transient superframe of
DMAMAC is shown in Fig. 2. It is similar to the
GinMAC superframe, but differs in the actuator data slot
positions. The transient superframe is of length N; (t for
transient) slots and has smaller sleep duration compared to
steady mode operation to increase data reliability. Both
DMAMAC-Hybrid and DMAMAC-TDMA have the same
transient superframe structure.

D Notification [:] Sleep D Sink Processing

[:] Sensor Data D Retransmission [] Actuator Data

Nt |

[N I
Actuator Data Sleep

Sensor Data

Figure 2: Transient mode superframe

D Notification []Sleep D Sink Processing

DSensor Data D Retransmission D Actuator Data [] Alert Message

Ns

[D:]DI]DHDDDU: q:]m U [D[D

| | | |
[I I I | I I
Sensor Data Actuator Data Sleep Sleep Alert Sleep Alert

Figure 3: Steady mode superframe

2.2.2 Steady mode

During the steady state, the data-rate requirements of the
controller is low, thus we also keep the communication of the
sensed data low to save energy. The superframe structure
shown in Fig. 3 for steady mode operation has Ns (s for
steady) slots and is designed to be a multiple of N; (number
of slots in transient mode). Both DMAMAC-Hybrid
and DMAMAC-TDMA have the same steady superframe
structure, except for their alert slot scheduling which is
discussed later with alert messages.

2.2.3 State-switch delay

The state-switch delay is the time interval between
identification of a threshold breach by the sensor and the
state-switch happening in the network, i.e., a change from
the use of steady mode superframe to transient mode
superframe. The steady superframe considered in this paper
has been changed with respect to our previous proposal
[13]. In the previous version of the Hybrid variant of the
protocol, the alert slots were placed towards the end of the
data communication part or the N; long sleep parts. The
notification slots were placed in the beginning of each N
long part of the steady state superframe. Thus when an
alert is detected, a notification is sent to the entire network
in the next N; part, the one after the N; part where the
alert is detected by a sensor, and is notified to the sink
first. However, the change of superframe would happen in
the N; part that follows the N; part with notification. This
effectively implies a minimum state-switch delay of 2x N; in
the earlier version. With the current version, the minimum
state-switch delay is reduced to N;. Based on the current
superframe structure, the state-switch delay is either two

D Notification [:]Sleep D Sink Processing

D Sensor Data D Retransmission D Actuator Data D Alert Message

}—Data Communication pan—|7 Sleep and alert part4|

Ns

[DJHDDI[I'DUIDU [:D[D D [:D[D

| | | | | |
1T I I I 1 I
Sensor Data Actuator Data Sleep Sleep Alert Sleep Alert

'7 Case 1: Switch Delay—————

Case 2: Switch Delay

Figure 4: The two state-switch delay cases

transient superframes (case 1) or one transient superframe
(case 2) as illustrated in Fig. 4. The two cases are:

e Case 1: occurs if the alert is generated in the first part
of the steady superframe (the data communication
part). In this case, the state-switch happens after the
second N; part. Since the data is sent already in the
first part, the real delay between two consecutive data
communication part is still one transient superframe

length.
e Case 2: is when the alert is generated in one of the

sleep parts of the steady superframe, which will then
have a state-switch delay of one transient superframe
length.

Case 1 can be eliminated by adding alert and notification
slots at the end of the data communication part. For
case 2, we can further decompose the second part of
steady superframe into a half or a quarter of the transient
superframe length each ending with alert and notification
slots. It should be noted that these two cases represent
the state-switch delay when there is no packet loss. The
packet loss conditions where the state-switch attempt fails
are discussed in Sect. 4.

2.2.4 Alert Messages

With respect to the previous design [13] we have updated
the alert message part for the DMAMAC protocol. Now we
have two methods to cater for alert messages. The first one is
the existing alert message sending method proposed earlier
for DMAMAC-Hybrid. The second is a method for the
TDMA-variant of the protocol with alert message handling,
where each node has a separate alert transmit slot in the
alert period. The two methods are described below.

DMAMAC-Hybrid alert method. As mentioned above, in
[13] we proposed sending two alert messages in one slot
to increase the probability of the alert messages reaching
the next hop. The design consisted of one alert slot per
rank in the network topology. Our initial simulation results
showed that sending one alert message along with a Clear
Channel Assessment (CCA) has a better performance than
the former method. The main idea here is to have minimal
number of alert slots whilst maintaining low probability
(< 1%) of state-switch failures. Given the network topology,
we have one alert slot for each rank (level in the tree
topology). We still maintain a random delay before sending
the alert message but now with a duration within the
interval [0..(slotDuration — (Mazimum time required to send
alert message))]. The random delay along with CCA reduces
the collisions (within the network), and thus reduces state-
switch failures. Given the superframe structure collision is
only possible in alert slots. Thus, collision is known to be
a result of two nodes (at least) transmitting alert packets
simultaneously.

DMAMAC-TDMA alert method. In DMAMAC-TDMA,
each node has its own alert slot. This ensures no collision
and reduces the possibility of switch failures. Switch failure
is still possible due to packet loss on the wireless channel.
The parent nodes send one alert based on either its own
alert, or forwarding of an alert received from one of its
children. Thus, the total number of alert slots is equal to
the number of sensor nodes in the network. This method
provides better reliability for alert messages to facilitate the
state-switch from steady to transient which can be critical
under consideration for the application.

2.3 Parameters and Design Alternatives

The DMAMAC protocol has several parameters that can
be adjusted in accordance to the various trade-offs. These
are listed below along with design alternatives:

1. The length of the sleep parts (currently N;) in the
steady superframe can be varied, which determines
the maximum delay in state-switch, and also impacts

energy savings.

2. The number of transient superframe length (N;) parts
to be used in the steady superframe, impacting energy
savings.

3. The re-transmission count can be varied, impacting
reliability. Re-transmission can be added into the alert
slots as well.

4. Aggregation of data packets at the parent nodes. The

order of the slots would then be: first the slots for the
parent data packets and then slots for aggregated data

from child nodes.
5. The number of alert slots could be increased to two

slots for each rank for the Hybrid variant. This would
increase the reliability of alert.

3. SIMULATION MODEL AND SETUP

For the evaluation of the DMAMAC protocol, we perform
simulation-based analysis. Based on the scenario considered
in [13], a topology is designed for the simulation and is shown
in Fig. 5. The topology has a total of 26 nodes including
the sink. The numbers in Fig. 5 refer to node numbers, and
numbers prefixed with "R” refer to rank in the tree topology.
The topology can be configured in different ways. We use
this representative topology to explore the key aspects of the
DMAMAC protocol which are data communication, alert
messages, multiple hops, and the possibility of collision (the
latter only for the Hybrid variant). Different configurations
of each protocol variant (TDMA and Hybrid) are used for
evaluating the protocol, and the performance of the protocol
on the considered topology is discussed later. The topology
consists of 19 sensor nodes, 6 actuator nodes, and 1 sink
node. The tree topology has 3 ranks of node placements,
with the most distant leaf node being 3 hops away from
the sink. The nodes closest to the sink have the highest
load in the network. Based on the setup, node 3 will
have the highest data load among the three nodes with the
highest rank. Given this load distribution and equal initial
battery level on all nodes, node 3 is expected to run out of
energy before any other node in the network. Thus for our
experiment, we calculate network lifetime based on time to
first node death.

Simulation is done using MiXiM [6] which is an
OMNeT++ [16] based modeling framework designed for
simulating wireless networks. We simulate DMAMAC in
different configurations mainly with different probabilities
of transient superframes appearing. We compare DMAMAC
with the performance of GinMAC in a similar configuration.
The simulation parameters are listed in Table 1. We use the
radio parameters from the CC2420 datasheet [5], a radio
unit frequently used in sensor and actuator nodes. The
current consumed by the radio in different states Receive
(RX), Sleep (Sleep), Transmit (TX), setup currents, and
switch currents is defined using the data obtained from the
C(C2420 datasheets. The time used to switch between radio
states is also obtained from the CC2420 datasheets. We
evaluate the protocol under ideal channel conditions.

Sink node

Sensor node

Actuator node

Figure 5: The logical topology for the simulation analysis

Parameter Values
Number of Nodes 25 Nodes
Network dimensions(metres) | 160 * 160

Simulation duration 1350 seconds
Transient Superframe length | 1.5 seconds
Distance between nodes 15 to 25 meters
Number of rounds 900
DMAMAC-Hybrid
DMAMAC-TDMA

MAC Protocols

GinMAC
Radio Module CC2420
Simulation repetition 100
State switch probability 10, 50
Superframe Ratio 2x, 3x, 4x
Data Packet size 44 bytes
Sink Packet size 11 bytes
ACK, Alert Packet size 11 bytes

Table 1: Simulation parameters

An overview of the MiXiM simulation model used is shown
in Fig. 6. In the MiXiM platform, we have created a project
that contains C++ files, a NED package, XML files, packet
description files, and a input parameters file. The C++
files are used to describe the MAC protocol for both the
regular nodes and the sink node. The NED language in
OMNeT++ is used to describe the topology, the connection
between different modules, and the hardware characteristics.
Using NED files, we describe the regular nodes and the
sink node along with their network interface cards (NIC).
XML files are used as input files in the C++ files. The
config XML file is for defining the path loss model used.

The decider XML file describes the decider characteristics
for the simulation. In this case we use the CC2420 decider
for signal evaluation and demodulation [6]. Topology XML
files gives the overall topology of the network describing
the interconnection between different nodes. The different
packets are: the regular MAC packet, Sink MAC packet,
and the MAC packet used for Alert messages. These are all
defined in separate files. The input parameters file defines
values for the DMAMAC protocol parameters that can be
varied to obtain different configurations. We refer to [6]
and [16] for detailed information about designing simulation
models in MiXiM.

— MAC
Application \

SensorAppLayer

Base MAC Layer

slotDuration:double = 0.01

trafficType:Int = 0

...... MAC Packet
...... hanldeSelfMsg(Message):void Phy interface \

t

|
Applicatign Packet

Network

\ Network Packet

node DMAMAC

alertProbability = 0.07

MacToPhylInterface

radioStates:enum{TX,RX,..}

BaseNetwLayer

t

headerLength:Long = 32 Bit

Sink DMAMAC

sinkID:INT=0

NED Package \ - XML Files \
C++ Files \
DMAMAC .ned config.xml
Network.ned topology.xml
Node.ned decider.xml
N_odeNlc.ned DMAMAC.h steac!ysuperframexml
Sink.ned DMAMA transientSueprframe.xml
- C.cc
SinkNic.ned " _—
SinkNode.ned DMAMACSink.h
: DMAMACSink.cc Packets
MACpacket.msg
Input Parameters file Sinkpacket.msg

Alert.ms

Figure 6: Overall structure of the MiXiM model

Figure 7: Overall architecture of the DMAMAC
implementation

The overall architecture of the DMAMAC protocol
implementation in C+4 is shown in Fig. 7. We
implemented the DMAMAC protocol for the nodes based
on the inheritance from the BaseMacLayer from the MiXiM
library. This is further inherited by the DMAMAC protocol
for the sink (differs from nodes). We rely on the application
and network layer from the MiXiM library defined in the
input parameters file. The MAC protocol accesses the
radio/physical layer via the interface provided in MiXiM,
and is used to switch between different radio states, mainly
transmit (TX), receive (RX), and sleep (SLEEP).

The scheduling is done offline, and is given as input XML

L Nt

4 6 6 6 1 1 1 1

013 15 16 4

13 15 16 13

4

R3 R10

6
R1
4 6 6 1 1 1 1 1 0 0 0 O 1 5 2 7 R2 0

Figure 8: Slot schedule

files separately for transient and steady superframe. A
fragment of this is illustrated in Fig. 8. TX represents the
transmitting node number and RX represents the receiving
node number. The numbers prefixed with R represent the
alert slot for a given rank in the tree topology, with leaf node
rank represented by R3, and the lowest rank represented
by R1. The sink has node identification 0. Notification
messages are received by all nodes and hence there is no
representation for the notification slot in RX. The second
row of the numbers below the TX slots represents the child
node, the data of which the parent transmits in the given
slot. The sink node initiates the network wide state-switch,
by sending a notification message to all nodes. The nodes
then change the superframe upon receiving the state-switch
notification using the appropriate XML input file describing
the slot allocation schedule for the new state.
Configurations. We use three main configurations for
the simulation study. They differ from each other on
the probability of the transient state appearing in a given
duration of time. The main configurations have transient
state probability 10%, 50% and 100%. The state probability
with 100% represents the GinMAC protocol and the other
two represent the DMAMAC protocol. The 10% transient
superframes configuration represents processes that are
stable through most of the process execution, 50% transient
superframes appear in relatively less stable processes.
These are further evaluated for multiple configurations of
superframe length ratio (transient to steady superframe).
Configurations with 2x represent a steady superframe which
is twice the length of transient superframe, 3x three times,
and 4x four times. The ratio depends on the data rate
required by the application in the steady state, the lower
the data rate requirement, the higher the ratio can be used.
All the considered configurations are listed in Table 2. The
alert probability is the probability with which each sensor
(not actuator) node generates an alert message. The alert
probability was obtained using preliminary simulations in
order to obtain frame distributions that correspond to state

probability of 10% and 50%.

4. PERFORMANCE EVALUATION

We begin with the discussion of frame distribution,
which is the ratio of transient superframes to steady
superframes. This ratio in turn determines the ratio betwen
transient states and steady states of the network within the
simulation. Then, we discuss the energy performance of
the two variants of the DMAMAC protocol in comparison
with GinMAC protocol via total energy consumption and
network lifetime metrics. Further, given the random nature
of state-switch requests in DMAMAC-Hybrid, and the
CSMA-based method of transmission, alert messages could
suffer collision resulting in state-switch failures, which is
critical to the operation of the control system. Thus, state-
switch failure is discussed in detail.

4.1 Frame Distribution

We investigate the reduction in energy consumption when
the fraction of transient superframe is below 10% and also
at 50% to give a broader evaluation. In Table 3, we detail
the frame distributions considered. For the given simulation
time, we have set the alert probability and the transient state
probability such that it yields a transient state percentage
corresponding to our desired configuration. Table 3 lists
the obtained frame distribution across 100 runs. GinMAC
has a total of 900 superframes for the simulation duration,
and the transient superframes in DMAMAC are measured
relative to 900 possible transient superframes for the same
duration. The Average column gives the average number of
superframes across the 100 runs. The alert probability of
each node is independent to that of the other nodes. It was
therefore required to estimate the correct alert probability
and state probability combination in order to obtain the
desired frame distribution. We conducted several simulation
runs to obtain proper alert probability. Note that the
transient state probability and the alert probability are two
different probabilities. Transient state probability applies

Table 2: Parameter configurations considered for
the evaluation

[%] Alert Probability only for the state-switch from transient to steady which is

Config. Transient DMAMAC Superframe
Probability | Hybrid | TDMA | Multiplier Transient Superframes
P-10-2x 10 1.00 1.20 2x DMAMAC-Hybrid DMAMAC-TDMA
P-10-3x 10 0.80 1.00 3x Config. | Average | [%] of total | Average | [%)] of total
P-10-4x 10 0.70 0.70 4x P-10-2x | 87.94 9.77 88.37 9.82
P-50-2x 50 11.80 11.00 2x P-10-3x 88.36 9.82 88.28 9.81
P-50-3x 50 9.10 10.50 3x P-10-4x | 88.28 9.81 88.43 9.83
P-50-4x 50 8.20 10.00 4x P-50-2x | 441.41 49.05 441.61 48.96
GinMAC 100 0 0 1x P-50-3x | 446.26 49.58 446.04 49.56
P-50-4x | 449.03 49.89 448.33 49.81

Table 3: Frame distribution across 100 runs

Total Energy (DMAMAC-Hybrid)

12000 12000
10000 10000
8000 8000

6000

Energy spent [mJ]

4000

2000

(=]

P-50-2 P-50-3
X X X X X
Configurations

Figure 9: Energy consumption DM AMAC-Hybrid
done by the sink.

4.2 Energy Consumption

The DMAMAC protocol is designed for a tree topology
which means that the energy consumption is not uniform
across all nodes as discussed in Sect. 3. Thus, we consider
total energy as the metric to measure and compare total
energy consumption of the DMAMAC protocol and the
GinMAC protocol. Total energy is the energy spent by all
the nodes in the network (except the sink which is assumed
to be wire powered) during the entire simulation. We
compare all configurations, and variations of the DMAMAC
protocol (Hybrid and TDMA) with GinMAC. Firstly,
we present the total energy consumption across various
configurations of the two variants DMAMAC-Hybrid and
DMAMAC-TDMA. Graphs depicting the results are shown
in Fig. 9 and Fig. 10. Note that, in these figures,
the colors across each configuration represent different
nodes. This is to highlight the difference in energy
consumption among the nodes. Also, Table 4 lists the
numbers for energy consumption for both the variants of the
DMAMAC protocol. The comparison column (Relative) in
the table represents energy spent using DMAMAC protocol
(Epmamac) in percentage of energy spent using GinMAC
protocol (Eginmac). The total energy consumption in
the network using the GinMAC protocol is Eginvac =
11,950mJ or 11.95J. The average value of the energy
consumed over 100 runs is used for the comparison.

The graph in Fig. 11 shows the comparison for total
energy consumption. The energy consumption of the
network using the GinMAC protocol is represented as a
black line in the graph. The energy consumption for the
GinMAC protocol is obtained for a single configuration
and a single run. Given the static nature of the GinMAC
superframe (no random elements like alert message) running
multiple simulations does not yield any difference. Also, the

DMAMAC-Hybrid DMAMAC-TDMA
Config. | Avg.[J] | Relative [%] | Avg.[J] | Relative [%]
P-10-2x 8.90 74.48 7.39 61.84
P-10-3x 7.99 66.86 6.00 50.20
P-10-4x 7.54 63.10 5.32 44.52
P-50-2x | 10.25 85.77 9.65 80.75
P-50-3x | 10.11 84.60 9.53 79.75
P-50-4x | 10.06 84.18 9.5 79.50

Table 4: Comparing total energy consumption

Total Energy (DMAMAC-TDMA)

12000

10000

8000

6000

Energy spent [mJ]

4000

2000

P-50-3 P-50-4
X X X X X X
Configurations

Figure 10: Energy consumption DMAMAC-TDMA

T T
14l DMAMAC-Hybrid
DMAMAC-TDMA il

GinMAC ——
12

Energy spent [1]

P-10-2x P-10-3x P-10-4x P-50-2x P-50-3x P-50-4x

Configurations

Figure 11: Comparing both variants of DMAMAC
with GinMAC for total energy consumption

GinMAC superframe is fixed for a given network, and cannot
be extended/modified as in the case of the DMAMAC
transient superframe. Thus only one configuration is
possible with GinMAC. We can observe that DMAMAC-
TDMA is the most energy-efficient of all protocols compared
across all configurations tested for the DMAMAC protocol.
This is due to energy consumption on nodes that have to
be awake for the entire alert slot duration in DMAMAC-
Hybrid. Given the different configurations, it is possible
to adapt the protocol design based on the application
requirement. The length of the steady superframe can be
varied to obtain higher energy efficiency or higher data rate
(smaller steady superframe). Also, note that the results of
50% transient operation is primarily shown to get a wider
perspective on results obtained. In general DMAMAC is
aimed at serving applications where steady state is dominant
(> 90%).

4.3 Network Lifetime

The network lifetime is a measure of the survivability
of the network on a single battery charge. This can be
viewed in several different ways, one of which is time to
first node death. Using this approach, we have evaluated
GinMAC and DMAMAC. The graphs in Fig. 12 and Fig.
13 show the time to first node death for the two variants of
the DMAMAC protocol across different configurations. The
x-axis gives the relative time since the evaluation is based
on the initial battery capacity which may vary depending
on the particular battery used on the nodes. Node 3 (see

GINMAC —=—
P-10-2x ——
P-10-3x —o—

0.8 - P-10-4x —&— -
Z
=3
8
S 06
>
g
S
=}
L 04-
8
&

02+

0 = S

Relative time

Figure 12: Network Life Time (DMAMAC-Hybrid)

Fig. 5), is the node that dies first due to its position in the
tree topology which causes it to have the highest number
of ancestors in the network. The simulation was conducted
with a fixed initial battery capacity, and run until node 3
had depleted all its battery. Given the focus on the 10%
transient configuration, we have skipped 50% configurations
in these graphs.

A comparison between the two variants of the DMAMAC
protocol and GinMAC is shown in Fig. 14. It shows
the relative time to death for node 3 across different
configurations. The time to death for node 3 with GinMAC
is represented with a black line on the graph. In Table
5, we list all simulation configurations and the energy
consumption for node 3 obtained from the simulation. The
average energy consumption of the node is presented in
the table. Among all the explored configurations, the 4x
configuration of the TDMA-variant of DMAMAC is the
most energy efficient. Also, overall the TDMA-variant fares
well in comparison with GinMAC and the Hybrid-variant.
It is also important to note that the time from an alert being
generated and the state-switch happening is the same in all
these configurations as discussed in Sect. 2.

4.4 State-switch Failures

The switch of operational modes is an integral part of the
DMAMAC protocol, and particularly the switch from steady
to transient mode is critical. The aim of an ideal MAC
protocol is to ensure that this switch happens whenever alert
messages are generated or basically when the process moves
to the transient state.

44.1 DMAMAC-Hybrid
In the DMAMAC-Hybrid variant, collision is inevitable

Energy spent by Node 3 on GinMAC = 2.16 J

GinMAC —=—
P-10-2x —o—
P-10-3x —&—

0.8 - P-10-4x —&— |
Z
Q
2
S 06 -
>
g
=
=]
2 04-
©
&

02 -

0 = >

Relative time

Figure 13: Network Life Time (DMAMAC-TDMA)

T

DMAMAC-Hybrid

DMAMAC-TDMA

GINMAC ——
F=
5
©
2
QJ
£
[
2
5
&

P-10-2x P-10-3x P-10-4x
Configurations
Figure 14: Time to death comparison between

different protocols

with the use of CSMA in the alert slots. These collisions
could result in state-switch failures when the alert packet
is lost due to collision, and the sink is hence not notified
of alerts. Alert messages exhibit random behavior, i.e., it
is possible that several sensors detect the change of process
states. Further, when two or more sensors send the data
towards the sink, collision could occur if their parent node
is the same, and both have comparably the same random
delay. This results in the alert message being lost.

In Table 6, we present the results for state-switch failures
for different configurations. Also, a graph representation of
the switch-attempt failure in comparison to the collisions
and the total number of switches is shown in Fig. 15. The
aim of our DMAMAC protocol is to keep the state-switch
failure within [0-1]%, mainly for the configurations of P-
10 (2x,3x and 4x). From the results presented, considering

DMAMAC-Hybrid DMAMAC-TDMA
Config. | Avg. [J] | Relative [%] | Avg. [J] | Relative [%)]
P-10-2x 1.40 64.94 1.30 60.30
P-10-3x 1.18 54.73 1.04 48.24
P-10-4x 1.06 49.17 0.91 42.21
P-50-2x 1.73 80.24 1.74 80.71
P-50-3x 1.70 78.85 1.72 79.78
P-50-4x 1.69 78.39 1.71 79.31

Failed Successful
Config. | Switches (avg) | Switches (avg) | Relative [%)]
P-10-2x 0.23 76.13 0.30
P-10-3x 0.15 76.17 0.12
P-10-4x 0.07 76.62 0.10
P-50-2x 6.73 199.14 3.38
P-50-3x 22.20 199.52 11.18
P-50-4x 21.77 196.17 11.10

Table 5: Node 3 energy consumption

Table 6: State-switch attempt failures

T T
1000 ¢ Failed switches(avg.) B
r Total collisions(avg.) M. -
Total switches(avg.) B -

—~
g

5] - -
? 100 - o

=3

S

=

12}

4]

<

[}

=

=

a

H*

-

o
T
1

1 1 1
P-10-2x ~ P-10-3x P-10-4x P-50-2x P-50-3x P-50-4x

Configurations

Figure 15: Switch failure for 25 nodes

the configurations P-10-2x, P-10-3x and P-10-4x, the state-
switch failure is at most 0.23 % (i.e., within [0-1]%) or 2.3
failures in 1000 state-switches (on average). An alternative
method to prevent state-switch failures could be proper
identification of collisions, as collision of actual alert packets
and not random noise, and considering them as alert.

Even if a state-switch attempt fails, the state-switch would
eventually happen since nodes can store the information
about a threshold being violated, and then notify the
sink in the next alert. But this goes through the same
process, and has the same probability of state-switch failure.
Given the low probability of state-switch failure obtained,
the expected state-switch delay is low. Assuming that
the probability of failure is independent, the number of
expected alert messages before switch can happen equals
5557 = 1.0023 (based on the 0.23% of 10-2x configuration).
Hence we would expect that the state-switch happens in
the immediate next alert at worst. The configurations with
50% transient state have a much higher failed number of
switches, and are presented here for a broader view of the
performance.

4.4.2 DMAMAC-TDMA

The TDMA-variant of the DMAMAC protocol eliminates
the collision possibility. Thus in ideal conditions, switch
failure does not exist. But for packet failure conditions in
a real wireless channel, alert messages must be used along
with re-transmission similar to data transmission part in
the DMAMAC protocol. This introduces an extra energy
expenditure into the existing energy consumption, but can
be used for increasing reliability of switches.

4.5 Packet Transmission Delay

The end-to-end (sensor-to-actuator) transmission delay
depends on the superframe structure, since it is of static
nature. For the considered topology, shown in Fig. 5
consisting of 25 nodes with 1 re-transmission slot for
each sensor/actuator data slot, the maximum end-to-end
transmission delay is 1200ms (1.2s). This is the time interval
between the first sensor sending the data until the last
actuator receives the data. We have a lower delay compared
to the GinMAC superframe where the actuator slots are
placed towards the end of the superframe [15]. But this is a
design choice and can be appropriately modified in GinMAC
as well. Alternatively, the delay can be reduced or increased
by changing the number of re-transmission slots used in

transient and steady mode.

4.6 Maintaining Reliability on lossy links

In the DMAMAC protocol, the re-transmission slots in
general are based on the re-transmission slots in GinMAC.
But given that we have a dual-mode protocol, we can vary
the re-transmission slots in transient and steady mode such
that they are different. This could in general be done
to further increase energy efficiency, i.e. relatively lower
number of re-transmission slots in steady than in transient
mode. Alternatively, a larger number of re-transmission
slots in the steady state could be considered to make sure
the data reaches the actuator with a higher probability, but
at a higher energy cost. In the current study, we used
the same number of re-transmission slots for both GinMAC
and DMAMAC protocol, and the same number for both
operational modes of the DMAMAC protocol. The re-
transmission slots are used in the simulation to give an idea
of possible delay caused due to the usage of re-transmission
slots. There is no difference between the performance of
the two protocols in terms of reliability. Concerning the
sink’s single notification slot used, the loss of a notification
packet can cause a difference in operational modes between
different nodes and sink. In general this can be prevented by
using dedicated repeaters to assist sink signals in reaching
the nodes correctly.

4.7 Scalability

Scalability of MAC protocols is a general challenge in
WSN and WSAN. For the DMAMAC protocol, we suggest
a maximum of 25 nodes similar to GinMAC for a single sink
to keep the delay low for process monitoring and control
applications. In case a larger number of nodes are required,
a backbone connecting multiple sub-networks of 25-nodes
each managed by a separate sink is suggested. The backbone
may use powerful high-rate data transfer (wired or wireless).
This can address the scalability issue to some extent. In
principle, larger networks can be managed in case the delay
requirements permit it. More the energy spent in transient
state, the better is the relative energy efficiency of the
DMAMAC protocol (both variants) than that of GinMAC.
This indicates that the increase in packet size and/or the
number of nodes in the network, could result in large energy
savings with the use of the DMAMAC protocol. From this
perspective, the DMAMAC protocol can be considered as
scalable.

4.8 Hybrid and TDMA

On an ending note of the performance evaluation, we
can observe that DMAMAC-TDMA has better energy
efficiency among the two variants proposed. We preserve
the representation of the DMAMAC-Hybrid to encourage
future investigations to use its hybrid nature effectively.
In particular for larger networks where the topology is
horizontal and the alerts are less frequent, the hybrid variant
may have better energy efficiency than TDMA. But it is still
prone to collisions, and switch delay issues resulting from
collision.

5. CONCLUSIONS AND FUTURE WORK

The DMAMAC protocol is aimed at satisfying real-time
requirements of process control systems while preserving
energy to prolong network lifetime. The DMAMAC

protocol design has been improved in comparison to the
previous version based on initial simulation results and
analysis. We simulated both variants of the DMAMAC
protocol using the OMNeT++ platform in conjunction
with MiXiM libraries for wireless networks to evaluate the
performance of the protocol. The DMAMAC protocol shows
considerable reduction in energy consumptions compared
to the GinMAC protocol for process control systems with
dominating steady state. In particular, the DMAMAC-
TDMA exhibits the lowest energy consumption among all.
We mainly compared the DMAMAC-Hybrid, DMAMAC-
TDMA, and the GinMAC protocols based on metrics of
total energy and network lifetime. For network lifetime,
we considered time to first node death. Given the random
nature of alert messages in DMAMAC-Hybrid, we have also
evaluated this protocol variant for state-switch failures to
give a better idea of directions for further study. The
state-switch failures are < 0.23% for configurations of
10% transient superframes which is tolerable. The study
of varying re-transmission slots in steady and transient
superframes could add on to the simulation results.

The DMAMAC protocol is an application specific protocol
proposed for process monitoring and control applications.
The idea can be applied across domains for similar
monitoring and control applications that have event-based
traffic conditions. Two possible application domains are
monitoring and control in healthcare and home automation.
Given the nature of applications in these domains and
the number of nodes used, the requirements match the
design constraints of the DMAMAC protocol. Given the
requirements and challenges existing in Wireless Body Area
Networks (WBAN) [9], DMAMAC protocol could be used
to address some of the challenges along with prime focus
on energy efficiency. In WBAN, mainly two types of
data are handled: periodic monitoring data and emergency
event based data [2]. The dual mode operation allows
for facilitating high data rate communication for priority
traffic during emergencies and otherwise using low data
rate to facilitate energy efficiency prolonging the lifetime
and reducing the cost. The applications in the healthcare
domain could particularly benefit from the reliability and
energy efficiency provided by the TDMA-variant. One
such application is the sensor-actuator implementation to
maintain glucose level in a diabetes patient, which consists
of glucose sensors and insulin actuators. Adaptation for
non-critical parts of home automation would be easier
considering that the application is far less critical, and thus
switch delay requirements would not be as stringent. Such
applications could benefit from the use of either variants of
the DMAMAC protocol. This could include temperature
management systems. But critical or emergency systems
including fire-safety and theft-safety in home automation
could benefit from the TDMA-variant. Thus in general,
the dual-mode operation and other features of DMAMAC
protocol can be applicable across domains in internet
of things [12], but would require adaptation based on
requirements.

Near future work in the development of DMAMAC is
to create an implementation of DMAMAC and perform
deployment testing. This would further validate the
applicability of the protocol in real process control systems
and also, provide insights on the differences between the
results obtained from simulation and implementation.

6. REFERENCES

[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor
and actor networks: research challenges. Ad Hoc
Networks, 2(4):351-367, 2004.

[2] H. Alemdar and C. Ersoy. Wireless sensor networks
for healthcare: A survey. Computer Networks,
54(15):2688 — 2710, 2010.

[3] A. Bachir, M. Dohler, T. Watteyne, and K. Leung.
MAC essentials for wireless sensor networks. IEEFE
Comm. Surveys & Tutorials, 12(2):222-248, 2010.

[4] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. A
survey of recent results in networked control systems.
IEEE Proceedings, 95(1):138-162, 2007.

[5] T. Instruments. Chipcon CC2420 datasheet. 2007.

[6] A. Kopke, M. Swigulski, K. Wessel, D. Willkomm,

P. T. K. Haneveld, T. E. V. Parker, O. W. Visser,

H. S. Lichte, and S. Valentin. Simulating wireless and
mobile networks in OMNeT++ the MiXiM vision. In
Proc. of SIMUTOOLS, pages 1-8, 2008.

[7] T. O Donovan, J. Brown, U. Roedig, C. J. Sreenan,
J. do O, A. Dunkels, A. Klein, J. Silva, V. Vassiliou,
and L. Wolf. GINSENG: Performance control in
wireless sensor networks. In Proc. of SECON, 2010.

[8] A. Onat, T. Naskali, E. Parlakay, and O. Mutluer.
Control over imperfect networks: Model-based
predictive networked control systems. IEEE
Transactions on Industrial Electronics, 2011.

[9] M. Patel and J. Wang. Applications, challenges, and
prospective in emerging body area networking
technologies. IEEE Wireless Communications,
17(1):80-88, February 2010.

[10] K. Pister and L. Doherty. Tsmp: Time synchronized
mesh protocol. JASTED Distributed Sensor Networks,
pages 391-398, 2008.

[11] I. Rhee, A. Warrier, M. Aia, J. Min, and M. L.
Sichitiu. Z-mac: A hybrid mac for wireless sensor
networks. IEEE/ACM Transactions on Networking,
16(3):511-524, June 2008.

[12] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. McCann,
and K. Leung. A survey on the ietf protocol suite for
the internet of things: standards, challenges, and
opportunities. IEEE Wireless Communications,
20(6):91-98, December 2013.

[13] A. A. K. Somappa, K. @vsthus, and L. M. Kristensen.
Towards a dual-mode adaptive MAC protocol
(DMA-MAC) for feedback-based networked control
systems. Procedia Computer Science, 34(0):505-510,
2014. ComSense 2014.

[14] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, and
M. Nixon. Wirelesshart: Applying wireless technology
in real-time industrial process control. In I[EEE
Real-Time and Embedded Technology and Applications
Symposium, 2008, pages 377-386, April 2008.

[15] P. Suriyachai, J. Brown, and U. Roedig. Time-critical
data delivery in wireless sensor networks. In Proc. of
DCOSS, pages 216-229, 2010.

[16] A. Varga and R. Hornig. An overview of the
OMNeT++ simulation environment. In Proc. of
SIMUTOOLS, pages 1-10, 2008.

Chapter 9

Model-based Specification and
Validation of the Dual-Mode
Adaptive MAC Protocol

107

Model-based Specification and Validation of the
Dual-Mode Adaptive MAC Protocol

Abstract:

Wireless Sensor and Actuator Networks (WSANSs) rely on MAC protocols
to coordinate access to the wireless medium access and for managing the radio
unit on each device. The Dual-Mode Adaptive MAC (DMAMAC) protocol is
a recently proposed protocol designed to reduce the energy consumption of the
radio communication in WSANs. The DMAMAC protocol targets the industrial
WSANS used for real-time process control. At its core, DMAMAC exploits
the distinction between transient and steady of the controlled plant process to
dynamically adapt the MAC superframe structure and thereby conserve energy.
The switch between steady and transient mode of operation is a safety-critical part
of the protocol. The contribution of this paper is to develop a rigorous specification
of the DMAMAC protocol using timed automata and the supporting Uppaal
software tool. The Uppaal tool is also used to verify key functional and real-time
properties of the protocol. Finally, we have used execution sequences from the
formal specification model to validate an OMNET simulation model used for
performance evaluation of DMAMAC, and to validate a nesC implementation of
the protocol on the TinyOS platform.

Keywords: Verification, Validation, Simulation, Deployment, Industrial Wireless
Sensor Network, MAC protocol, Uppaal

Biographical notes:

This paper is a revised and expanded version of a paper entitled "Model-
Based Verification of the DMAMAC Protocol for Real-time Process Control"
presented at the 9th Int. Workshop on Verification and Evaluation of Computer
and Communication Systems, Bucharest, September 2015.

»(,

1 Introduction

A Wireless Sensor Actuator Network (WSAN) [1] consists of sensors and actuators that
use radio communication to send, relay, and receive information. WSANSs are used in a
wide range of domains including process- and factory automation, smart home automation,
and health-care. Feedback-based control loops that use wired or wireless solutions are
collectively known as Networked Control Systems (NCS) [2]. NCS mainly use wired
communication systems, but are increasingly adopting wireless communication. The salient
feature of wireless solutions is the reduction in cost and size compared to the use of wired

Copyright © 2009 Inderscience Enterprises Ltd.

2 Kumar Somappa et.al.

networks. The use of wireless communication, however, also has challenges and it has
not yet become the de-facto replacement for wired solutions. The challenges of wireless
solutions include low-bandwidth, energy efficiency, signal interference, and packet-loss.
Energy efficiency in particular is an important concern when devices are battery powered.

Wireless solutions are made up of a collection of protocols that cater for different services.
Medium Access Control (MAC) is one of the functions that are critical to the proper
operation of the entire WSAN. MAC protocols govern the communication and control the
use of the radio module on each node in the network which is the dominant consumer of
energy in wireless nodes. The Dual-Mode Adaptive MAC (DMAMAC) protocol [3] is a
recently proposed MAC protocol for process control applications. The protocol is aimed
to support an energy efficient wireless solution. The DMAMAC protocol was proposed for
NCSs with real-time and energy efficiency requirements. In particular, it targets process
control applications that differentiate between two states of operation: steady and transient.
Fig. 1 shows a typical process control with two states. The transient state corresponds to
the process state with large and frequent change in measurements of physical quantities,
resulting in a high data transfer rate. The steady state refers to the process state with
measurements contained within a controlled range of values, and thus requiring less data
transfer. An example is process control for chemical reactors where the measure physical
quantities typically include temperature and pressure measured by sensors. These physical
quantities can be controlled by means of actuators that controls the inflow of chemicals
and coolant to the chemical reactor. Initially, the DMAMAC protocol was designed using a
combination of Carrier Sense Multiple Access (CSMA) and Time Division Multiple Access
(TDMA). Based on simulation studies [4] a full TDMA version (DMAMAC-TDMA) has
been designed. The advantage of the full TDMA version is that it is more predictable and
robust towards packet failure which is highly relevant for safety-critical applications. The
hybrid CSMA-TDMA variant on the other hand supports a smaller state-switch delay and
is in some scenarios more energy efficient.

It follows from the above that the
DMAMAC protocol is to be used for
safety-critical applications. In particular, X
the state-switch is a safety critical feature qua‘['t'ty
of the DMAMALC protocol that can benefit
from formal verification to ensure proper
functioning. This has motivated us to apply
formal modelling and model-checking
which constitute a well-known technique M —
for verification of protocol designs. Model- Steady Transient Steady
checking allows for exhaustive verification -
and has been widely used on related
protocols (see, e.g., [, 6, 7]). Verification in Figure 1: Process control states

the early design phase can be used to ensure

the behavioural correctness of protocols.

Model-checking assists in discovering design faults by exhaustively traversing all possible
execution traces of a given model. Furthermore, model-checking tools can provide traces
to failure states, thus assisting in resolving any discovered design issues. Uppaal [8] is a
modelling and verification tool-suite that supports model checking of real-time systems. In

Measured

Time

Model-based Specification and Validation of the DMAMAC Protocol 3

addition to model-checking and verification, Uppaal also supports simulation which can be
used to provide useful insights into the operation of a protocol.

In this article, we apply the Uppaal tool to analyse qualitative features of the DMAMAC
protocol. We present a formal specification of the DMAMAC protocol in the form of a
network of timed automata and verify safety properties related to the absence of faulty
states. We verify real-time properties including switch delay and maximum data delay.
The timed modelling of the DMAMAC protocol is based on a Finite State Machine
(FSM) representation of the sensors, actuators, and the sink node in the WSAN network
configuration under consideration. We consider both the hybrid and the TDMA-version
of the DMAMAC protocol. Furthermore, we use the constructed Uppaal models to
validate a OMNeT++-MiXiM [9] simulation model of DMAMAC and our [10] prototype
implementation of DMAMAC. The OMNeT++-MiXiM simulation model has been used to
study the performance of the DMAMAC protocol [4]. The validation of the simulation model
and the implementation is done via the comparison of sequence diagrams extracted from
executions of the Uppaal model, the OMNET++ model, and the TinyOS implementation.

Uppaal has been widely used to model and verify communication protocols (see, e.g.,
[5, 7, 6]). The Lightweight Medium Access Control (LMAC) [6] protocol is the closest
MAC protocol modelling related to the work presented in this article. The LMAC and the
DMAMALC protocols are two distinct protocols with distinct goals, and differ significantly
in their base features. The LMAC protocol is a self-organising protocol with nodes selecting
their own slots i.e., time duration allocated for data transfer. The focus in the LM AC protocol
verification is on efficient slot selection and collision detection. In the DMAMAC protocol,
the slot scheduling is done statically and offline prior to deployment. The focus of the
DMAMAC protocol is to provide an energy efficient solution along with efficient switching
between the two operational modes. It requires a different model to represent the features
of the DMAMALC protocol than the one used for the LMAC protocol. In [7], the authors
have focused mainly on modelling the Chipcon CC2420 transceiver. This work is related
in terms of their use of a packet collision model and how collisions are observed. We use a
collision model similar to [7, 6]. With the extension of Statistical Model-Checking (SMC)
features, Uppaal can also be used to assess performance related queries as shown in the
case study [8] of the Lightweight Medium Access Control (LMAC) protocol.

The rest of the article is organised as follows. In Sect. 2 we briefly introduce the DMAMAC
protocol. For extensive details, we refer to [3]. Section 3 describes in detail the constructed
Uppaal model of the DMAMAC protocol. As part of this, we briefly introduce the constructs
of timed automata as supported by Uppaal, and perform some initial validation of the
protocol model. In Sect. 4 we complete the validation of the constructed model. The
verification of the protocol for different deployment configurations is discussed in Sect. 5.
In Sect. 6 we use execution sequences from the Uppaal model to validate an OMNET++
simulation model of DMAMAC and an implementation of DMAMAC. Finally, in Sect. 7
we sum up the conclusions and discuss future work. The reader is assumed to be familiar
with the basic concepts and operation of MAC protocols, including superframes and slots,
and the principles of TDMA and CSMA. The current article is an extension of the work
presented in [11].

i

4 Kumar Somappa et.al.

2 The DMAMAC Protocol

The DMAMAC protocol [3] has two operational modes catering for the two states of
process control applications: transient mode and steady mode. The hybrid variant of the
protocol is based on Time-Division Multiple Access (TDMA) for data communication and
a combination of Carrier Sense Multiple Access (CSMA) and TDMA for alert message
communication. The TDMA variant uses TDMA slots for both data communication for
alert message communication. The basic functioning of the DMAMAC protocol is based
on the GinMAC protocol [12] proposed for industrial monitoring and control. The network
topology of the DMAMAC protocol consists of sensor nodes, actuator nodes, and a sink.
The sensor nodes are wireless nodes with sensing capability which sense a given area and
update the sink by sending the sensed data. The actuator nodes are wireless nodes equipped
with actuators, which act on the data performing a physical operation. It is also possible to
have wireless nodes with both sensors and actuators. The sink is a computationally powerful
(relative to the nodes) wire-powered node which collects the sensed data, performs data
processing on it, and then sends the results and commands to the actuators.

| .
ﬁ Sink node — - Can listen

L Sensor node — Communicate

Actuator node

Figure 2: The network topology for DMAMAC protocol

Similar to the GinMAC protocol, the network deployment for the DMAMAC protocol is
based on a tree topology as shown in Fig. 2. The solid lines between nodes represent data
communication. The dashed lines represent nodes that are within transmission range of each
other, but which have no direct data communication in the network. Each level in the tree
topology is ranked (marked with “R#", where # is either 1 or 2), with the sink having the
lowest rank number and the most distant nodes from the sink have the highest rank number.
This ranking is exploited in the alert message sending procedure.

Model-based Specification and Validation of the DMAMAC Protocol 5
The design of the DMAMAC protocol has been based on the following assumptions:

* The nodes are assumed to be time synchronised via an existing time synchronisation
protocol.

* The sink is assumed to be powerful, and it can reach all nodes in one hop.
* A pre-configured static network topology with no mobility is assumed.

* Asingle slot accommodates both a data packet and a corresponding acknowledgement.

Time synchronisation is a vital part in TDMA-based WSANSs and the first assumption makes
DMAMAC independent of the particular protocol used for time synchronisation.

Below we briefly explain the working of the two operational modes and the respective
superframes they use. Both of the DMAMAC variants rely on the same transient mode
superframe structure, but differ in the steady mode superframe structure.

2.1 Transient Mode

The transient mode is designed to imitate the transient state operation in process control.
In the transient state, the controlled process changes rapidly generating data at a faster rate
relative to the steady mode. During the transient mode operation, the DMAMAC protocol
uses the transient superframe shown in Fig. 3. The superframe includes a data part for data
transfer from the sensors to the sink, followed by a data part with data being sent from
the sink to the actuators, and then a sleep part. The data part also includes a notification
message slot from the sink to all nodes, and a sink processing slot. A typical transient mode
operation cycle consists of:

D Notification D Sleep D Sink Processing

D Sensor Data [:] Retransmission [:] Actuator Data

| Nt |
[|
U:DU:DU [H][H]U[D [H]

I Sensor Data I I Actuator Data I Sleep I

Figure 3: The transient superframe of the DMAMAC protocol

1. A notification message is being sent from the sink to all the nodes.

2. The data part is executed with data transmission from the sensors to the sink and then
to actuators.

3. The sleep part is executed where all sensors and actuators enter sleep mode in order to
improve energy efficiency.

The notification message in item 1 includes control data like state-switch message and time-
synchronisation. This sleep part in item 3 represents the situation where all nodes are in

6 Kumar Somappa et.al.

[] Notification [:]Sleep D Sink Processing

[]Sensor Data [] Retransmission [] Actuator Data D Alert Message

| Ns |
| |
Nt	Nt [Nt									
		[
[SensorData | I Actuator Data | Sleepl Alert| ' Sleep T alert | [Sleep TAlert |

Figure 4: The steady superframe of the DMAMAC protocol

sleep mode. Individually, the nodes are in sleep mode when they are not performing other
tasks.

2.2 Steady Mode

The steady mode operation is designed to operate during the steady state of the controlled
process. The steady superframe used in the steady mode operation is shown in Fig. 4.
In addition to the parts that also exist in the transient superframe, the steady superframe
contains an alert part. The alert part is used to ensure that the state-switch from steady to
transient mode occurs whenever a sensor detects a threshold interval breach. This threshold
is set by the sink when the switch from transient to steady is made. It should be noted that in
comparison to [3], a slightly modified steady mode superframe is used in that the notification
slots placed at the end of each transient (Nt) part. This is done to facilitate immediate
application of alert, and making a state-switch. In the alert part, one slot is allocated to each
node with the same rank. All the nodes in the same rank have the possibility to send an alert
message in this slot. A typical steady mode operation cycle is as follows:

1. A notification message is followed by the data and the sleep part. This is similar to the
working in transient mode operation.

2. Sensor nodes that have alert messages to be communicated use appropriate slots
provided for each rank to notify parents about the alert.

The alert messages in item 2 is relayed towards the sink which then makes the switch to the
transient state. In an absence of alert, sensor nodes still wake up on their alert receive slot
and then enter sleep mode until the next notification slot. In the alert part, the notification
slot is placed at the end. This is done to ensure a quick transition between the two states.
All regular nodes wake up in this slot, and receive a notification message from the sink.
Alert notification to change superframes is also sent here.

2.3 Dynamic Change of Superframes

The distinct feature of DMAMAC compared to other MAC protocols for WSANSs is the
ability to dynamically switch the MAC superframe being used depending on the state of
the controlled process. There are two switches possible: transient to steady and steady to

Model-based Specification and Validation of the DMAMAC Protocol 7

[[] Notification [:] Sleep O Alert Messaga

I Nt | I Nt |
[] | |
oM 0 o0 o
| | R(N-1) vorviviiie | | | (N-1) o |
I Sleep I Alert | I Sleep I Alert I

Figure 5: The alert part for DMAMAC-Hybrid (left) and DMAMAC-TDMA (right)

transient. The latter is a safety-critical switch since the data rate in transient is higher and it
is important to accommodate the higher data rate in the transient state in order to control the
process. The switch from transient to steady is decided by the sink, which determines if the
process is in steady state based on received sensor readings. When the sink decides to make
the switch, it informs all the nodes in the network to change their mode of operation. The
message is sent via a notification message from the sink. When the sink node switches from
transient to steady, it defines a threshold interval within which the sensor readings should
lie, and informs the sensors about this threshold interval. During the entire steady mode
operation, the sensors constantly monitor for a threshold breach. When there is a breach,
the sensor node waits until its alert slot, then notifies its parent, which in turn forwards the
alert towards the sink. The sink then informs the nodes in the network to switch to transient
in its immediate next notification message.

2.3.1 DMAMAC-Hybrid versus DMAMAC-TDMA

The alert message is the message created by the sensor nodes to notify the sink that a state-
switch is required. After the simulation studies conducted in [4] of the hybrid DMAMAC
protocol, a pure TDMA-based variant of DMAMAC-TDMA was also developed that has
more predictable behaviour in terms of ensuring that the state-switch takes places. The
predictability comes at the expense of being less energy efficient than the hybrid variant.
The difference between the hybrid variant (DMAMAC-Hybrid) and the pure TDMA-based
variant (DMAMAC-TDMA) is the way alert messages are handled.

In DMAMAC-Hybrid, the sensor nodes choose a random delay in the slot before
transmitting the alert message. At the completion of the time duration of the random delay,
the nodes sense the channel to prevent collision. If a node during channel assessment detects
another node sending an alert message, then it just drops its alert message. Collisions are
still possible, e.g., when two nodes choose the same random delay or when two senders
cannot listen to each other but the receiver can listen to both. The nodes check for a change
of operational mode following the sending of the alert. If no change occurs (because of
collision) the nodes save the alert and send the alert again in the next alert slot. The structure
of the alert part for DMAMAC-Hybrid is shown in Fig. 5 (left) for the network topology
presented earlier in Fig. 2. The alerts slots are divided based on the levels (R#) of the network
topology which means that all nodes in a given rank have the same alert slot.

8 Kumar Somappa et.al.

DMAMAC-TDMA uses time divided slots also for alert messages. Thus, all nodes have their
own alert slots removing the possibility of interference or collision within the same network
elements. The rest of the superframe structure is the same as for DMAMAC-Hybrid. The
alert message slots for the DMAMAC-TDMA variant is shown in Fig. 5 (right) where each
node 1...7n now has its own alert slot. This structure reduces the non-determinism in the
protocol and provides more predictable performance. It should be noted that there could
still be interference or collision due to parallel networks operating in the vicinity and it is
still possible to loose packets in transmission.

3 The DMAMAC Uppaal Model

Uppaal [8] is an integrated tool-set based on timed automata for model-checking of real-time
systems and supporting modelling, simulation, validation, and verification [13]. An abstract
representation of a real-time system in the form of a model is structured as a network of
timed automata. The query language of Uppaal allows for verification of safety, reachability,
liveness, and time-bounded properties. In Uppaal, models are constructed as a network of
templates based on timed automata. Templates are used to represent independent entities
(e.g. asensor node). Uppaal consists of two simulators: a symbolic and a concrete simulator.
The symbolic simulator is used to inspect the execution of the model step by step. For
certain queries, Uppaal outputs traces which can be viewed in the symbolic simulator. This
is useful for pin-pointing error locations and sequences of events that lead to errors/faults.
The symbolic simulator also shows all the templates in the model, and message sequence
charts (MSCs) can be used to visualise communication between different processes. The
symbolic simulator also allows interactive step-wise simulation of the model. Along with
features similar to the symbolic simulator, the concrete simulator has the added advantages
of firing transitions at a specified time.

We have developed Uppaal models for both variations of DMAMAC, i.e., DMAMAC-
TDMA and DMAMAC-Hybrid. The hybrid variant has three source of non-determinism:
triggering of alerts from sensor nodes, alert sending delay, and collisions. In the Uppaal
model of DMAMAC-TDMA, the only source of non-determinism is the triggering of an
alert in a node. Collision are not possible as per TDMA scheduling. The Uppaal models for
these two variants only differ in the alert handling part. Thus, we only discuss the variation
introduced in the alert part for DMAMAC-TDMA.

3.1 Modelling Decisions and Assumptions

‘We use a non-deterministic timed automata model to verify the properties of the DMAMAC
protocol. The constructed model has several sources of non-determinism including the delay
for sending alert messages in nodes, and the decision made by the sink to change from
the transient mode to the steady mode. Given the design of alert messages, collisions are
possible when sending alert messages. We use a simplified collision model, detailed later
in this section. The sink and sensor/actuator nodes have separate timed automata models.
Local clocks are used for each automaton. The main aim of the verification of the DMAMAC
protocol model is to check that the two modes of operations are working correctly given

Model-based Specification and Validation of the DMAMAC Protocol 9

the presence of non-deterministic choices (like collision) during execution and the delays
that may occur.

The main assumptions and design decisions made during the construction of the Uppaal
model for the DMAMAC protocol (both variants) are as follows:

* Packets are abstractly modelled without payload. The messages or packets exchange
mechanism is represented by channel synchronisation in the Uppaal model.

* A global clock is used for a common network time reflecting the assumption on time
synchronisation between the nodes. This can be considered as a way of abstractly
implementing the time synchronisation between nodes assumed by the DMAMAC
protocol.

For the hybrid variant of DMAMAC we additionally made the following modelling
decisions:

* An exact model of CSMA results in a rather complex model. Instead, we use a
representative CSMA procedure, which imitates the service and effects of actual CSMA
on the working of the protocol. The effects include skipping packet transmission
on detection of ongoing transmission and also collision. This makes our model and
verification independent of the particular CSMA procedure that may be employed.

* The collision caused due to the use of CSMA has effects on the state-switch procedure.
A simple collision model is used, where we record collision when two or more nodes
send packets at the same time. Collision results in failure of the packets, thus affecting
the state-switch procedure.

A channel synchronisation variable choice is used to force enabled transmissions. This is a
modelling artefact and is not part of the protocol as such. In Uppaal, execution of models
can remain in a location indefinitely even after outgoing edges are enabled. To force the
model execution to continue via enabled outgoing edges, an urgent channel synchronisation
is required.

3.2 Sink Model

The sink model is shown in Fig. 6. We have used colours in the automaton locations
to differentiate between states. Both the sink and the node automata begin in an initial
location Start. The sink initiates the startup procedure of the network using a broadcast
synchronisation channel startup on the edge towards the StateController location. The
function initialize() is used to set proper values to local and global variables. The sink
reaches the StateController location upon having executed the startup procedure of the
network. The node automata synchronise with the channel variable startup, and reach the
StateController location.

The StateController location represents an event handler for handling transition between
different states in the state-machine. The sink model uses a local clock variable x, which is
active in all states indicated by 2’ == 1. The expression ' == 0 can be used to pause the
clock counter. This is used as an invariant on all states to represent continuously running
time. It also includes an invariant < currentMaxzSlots * 10 to prevent it from being in
the state beyond the maximum timeframe of the active superframe (transient or steady). A

10 Kumar Somappa et.al.

typical slot time in WSANSs is 10 milliseconds, and we therefore use the unit ms for time
in our model. Given the time unit of ms, the variable currentMaxSlots is multiplied by 10
to obtain the slot-time. The use of the StateController location is also similar to the self-
message handler in the commonly used OMNeT++ [14] framework for MAC protocols.
The purpose of this particular handler is to check the self-message that it receives, and to
act on the message by choosing an appropriate next state. Also, it determines the next state
which is then sent as a self-message. The automaton changes between the different locations
(states) in the model based on the local variable currentSlot, and the local clock variable x.

The Notification location is reached when the sink is due to send a notification message.
The notification message is sent by the sink, and received by other nodes in the network.
This is represented by the broadcast channel regNotify[change], where change carries a
message of the status of the Boolean variable changeSuperframe. The changeSuperframe
variable is true when the sink needs to indicate to the nodes a change in superframes to
switch the mode of operation. For both the steady to transient switch and the transient
to steady switch, the sink uses changeSuperframe. An MSC generated from Uppaal for
validating that notifications are correctly being sent and received in the model is shown in
Fig. 7.

x==(currentSlot*10)+1

'==1 && x<= tSlot*10)+1
% x<=(currentSlo) && change == changeSuperframe

Notification
&& transient Start
regNotify[change]!
sinkReset(),
choice! checkChange(i) startup!
notify() initialize()

==(currentSlot*10)+t&& steady
&& change == changeSupe
regNotify[changelt
sinkReset()

x'==1 && x<=currentMaxSlots*10

x<=currentSlot*10 && x'==1 StateController

isSleep() choice!

Sleep calculateWakeup()

x==(currentSlot+1)*10
currentSlot++,

x==(currentSlot*10) checkCollision()

choice!
rxSlot[currentS

offturrentSlot]==sinkld

ACK? DATA!

currentSlot+

ot]==myLevel[sinkld]

ALERTIi]?
canListen(i)
alertCounter++

o— |

ReceiveAlert
x'==1 && x<=(currentSlot+1)*10

ACK!
x==(currentSlot*10)+2
currentSlot++

rxSlot[currentSlot]==sinkld
DATA?

Received
x'==1 && x<=(currentSlot*10)+2

Figure 6: Uppaal timed automata model of the sink node

Sink Node{1) Node(2) Node3) Node(4) Node{5) Nodei6) Hode{7)
I I i I i I I i
[Notification] [notification] [notfication| [notification] [notfication | [notification] [motfication] [notiication |

lregpicsitzensngs) \ | |

[statecontrolier| [stateControlier| [stateControlier | [stateController] [stateController| [stateController| [stateContralier | |[stateControlier |
I I

Figure 7: Message sequence chart for sending and receiving a notification

Model-based Specification and Validation of the DMAMAC Protocol 11

The switch from transient to steady is decided by the sink. There are two separate notification
edges for transient mode and steady mode. In the transient mode, the sink decides if it has
to switch to steady mode based on the random selection statement (3 : int[1, 10]) and the
obtained change value is sent over the channel. In the absence of real inputs, a random
selection is used. The edge with the select statements ¢ : int[1, 10] and change : int[0, 1]
is used in transient mode. The second select statement (change : int[0, 1]) is a modelling
artefact used to be able the sending of the value of changeSuperframe over the channel via the
synchronisation variable regNotify[change]. The guard change == changeSuper frame
makes sure that the select statement selects the same value as the changeSuperframe variable.

In the steady mode, a switch is based on alert from nodes. The notification for the steady
mode is done via the edge with only one select statement (change : int[0, 1]). As a symbolic
representation, we have used a guard z == (currentSlot x 10) + 1 on these edges, and
an invariant « < (currentSlot = 10) + 1 on location Notification to indicate a delay of
1 ms for message transmission. Both these edges use a function sinkReset(), which resets
the sink variables at the beginning of a new superframe, and implements the changing of
superframes.

The Sleep location is reached when the sink or nodes do not have any active operations
to be conducted in the current slot. The edge to Sleep is guarded by a Boolean function
isSleep() which checks if the current slot is a sleep slot. We use the urgent broadcast channel
choice to force this transition whenever isSleep() evaluates to true. In the absence of this
channel variable, the model can continue to be in the location StateController forever even
when isSleep() is true. The location Sleep has an invariant z <= currentSlot * 10 which
indicates that during execution, the control can be in the location as long as the time does
not exceed the value currentSlot, which holds the value of the slot at which the sink should
wake up for its next event. This is set by the function calculateWakeup() when Sleep is
reached.

The location Sent is reached when the sink sends data in its data slot. The Received location
is reached when the sink receives any sensor data, and then sends an ACK via channel
synchronisation. Location Received has the invariant z < (currentSlot * 10) + 2 whichis
used to add a delay of 2 ms as a representation for the time required for data communication.
A follow up guard on the ACK sending edge x == (currentSlot * 10) + 2 makes sure that
the delay is applied. Upon sending or receiving of ACK synchronisation, the local variable
currentSlot is incremented.

Lastly, the location ReceiveAlert is reached when it is the sink’s turn to receive an alert.
This is determined by the alert levels defined in the myLevel array variable represented by
the guard raSlot[currentSlot] == myLevel[sinkId). The sink stays in the location for
an entire slot duration (10 ms), and waits for any alerts from nodes it can listen to. The
canListen(i) function is used as a guard to make sure that the sink listens to alerts from only
those nodes that are in its listening range (same function used for nodes). The variable ¢
given as input to the function is the result of a select statement ¢ : nodeid_t, which allows
the node to listen to any node that is transmitting. The guard makes sure that the sink can
listen to that particular node. At the completion of the alert slot, the sink checks if any
collision has occurred via the function checkCollision(), and gives back the control to the
StateController.

12 Kumar Somappa et.al.
3.3 Sensor and Actuator Node Model

The sensor/actuator node model is shown in Fig. 8. The node model is similar to the sink
model except for the notification handling procedure. Also, the node template consists of an
extra location for sending alert messages. The notification part of the node model is simpler,
since nodes only receive notifications. Location Netification is reached when the node is
in its notification slot (receive) in either of the two types of superframes. The nodes then
synchronize on the channel variable regNotify[change] from the sink, and reset the node
variables using the function nodeReset() based on the value of the variable change.

The node model works similar to the sink model for sleep, sent (data), received (data), and
alert receive. This means that in locations Sleep, Sent, Received, and ReceiveAlert the
node and the sink model have the same modelling elements. An example of an MSC for
validating the behaviour of the model for data transmission between nodes is shown in Fig.
9, and an MSC for data transmission towards sink is shown in Fig. 10.

y'==1
Notification

change:int[0, 1 Start
regNotify[change]? . _ __9_0 _________________ Eu_r[e_nis_[zzti—t ___________

nodeReset(change)

txSlot[currentSlot] == myLevel[id]
&& lalertReceived && !savedAlert
choice!

choice!
notify()

o t

canlListen(i)

&& y==((currentSlot*10)+alertDelay)
ALERTI[i]? currentSlot++

/
<=curiéntMaxSlots*10 alertDelay = i
’

I
I
I
i
|
110
|
|
I
}
SteitéController i
|
;

y<=(currentSlot*10) && y'==1
Sleep

isSleep() choice!

y==((currentSlot*10)+alertDelay)
ALERTI[id]! updateRecord(),

currentSlot++,
entAlert = true

calculateWakeup() SendAlert

y<=((currentSlot*10}+alertDelay)
y == (currentSlot*10)

ACK?
currentSlot++

GrrentSlot]==id
DATA!

choice!
rxSlot[currey

alertDelay=i
(alertReceived || savedAlert)
y==(currentSlot+1)*10 && txSlot[currentSlot] == myLevel[id]
currentSlot++,

checkCollision()

= myLevel[id]

rxSlot[currentSiot]==id
ATA?

ACK!
==(currentSlot*10)+2
currentSlot++

nodeid_{
canListen(i)
ALERTIi]?
alertCounter++

Received ReceiveAlert
y'==1 && y<=(currentSIot*10)+2 y'==1 && y<=(currentSlot+1)*10

Figure 8: Uppaal timed automata model of a regular sensor/actuator node

Sink Node(1) Node(2) Node(3) Node{4) Node(5) Node(6) Node(7)
StateController StateController
DATA|
Receive
Ak

[steen) StateController

Figure 9: Message sequence chart for data transfer between nodes

Model-based Specification and Validation of the DMAMAC Protocol

13

ALERT[8]

lrece‘rvemert]

[receivem ert]

[StateCuntro]]er] [StateConto]]er]

Sink Node(1) Node(2) Node(3) Node(4) Hode(5) Hode(6) Hode(7)
DATA

ACK

StateControl StateController
Figure 10: Message sequence chart for data transfer towards sink
Sink Node(1) Node(2) Node(3) Node(4) Node(5) Node(6) Node(7)
I I I I
[receivemtert] [receiveAlert] [receiedlert] [Sendalen] (Sendatert [sendarert

chdice

StateController

—

Figure 11: Message sequence chart for alert forwarding

The location SendAlert which handles the crucial part of alert message sending is required
by the protocol for the switch of operational mode from steady to transient. Based on the
protocol specification, a node can send an alert message when the sensed data crosses the
threshold interval. This threshold interval is set by the sink depending on the particular
process being controlled. We imitate this event using a probability weight-based selection
for sending alert messages as reflected in the edge towards SendAlert (shown with dashed
lines). The edge with probability weight 90 represents no alert to be sent. The one with
probability weight 10 represents the choice to send an alert. The guards on the edge make
sure it is the alert slot of the node, and that the node does not already have an alert to be sent.
When the node chooses to send an alert, a delay is chosen within the interval [0, 8] via the
select statement ¢ : int[0, 8]. The chosen value is assigned to the alertDelay variable. The
node then waits in the location SendAlert for the duration of the delay and performs carrier
sense prior to sending the alert message. This is represented by the edge with the guard
function canListen(i), where the node synchronises to the broadcast channel ALERT]i] used
by other nodes in the vicinity (listening range) to skip sending a message. An MSC showing
the alert message transmission is shown in Fig. 11.

We use a representative carrier sense mechanism in the model. Nodes skip sending an alert
when another node within their listening range is sending with the same delay. In reality,
carrier sense would involve listening to the channel for a small duration before sending the
packets. Also, in a case where two nodes start carrier sense at the same instant, their packets
would collide since they would start sending at the same instant after the carrier sense delay.
In the carrier sense mechanism presented here, we represent the situation in which two
nodes can hear each other and have the same delay by one of the two nodes skipping the
sending the alert message. When the nodes do not hear each other and the receiver can hear
both, the packets collide at the receiver. An example message sequence of carrier sense
is shown in Fig. 12. In this example, Node(5) and Node(6) are trying to send alert with
the same delay (3ms) as detailed in the execution trace shown in List. 1. In the listing, the

14 Kumar Somappa et.al.

Sink Node(1) Node(2) Node(3) Node(4) Node(5) Node(6) Node(7)

[recei\‘fle»&lerl] [rece\\lt‘eAIert] m
| | ALERTIS]|ALERTS]
|
[receiveﬁden] [receiveAlert] l stateController] [stateConh'oJJer]

sléep [receiveAIen] [receweAIerl] [receive»‘\lerl] sléep
T T T

Figure 12: Message sequence chart for carrier sense during alert

Listing 1: Carrier sense execution trace

(Sleep, receiveAlert,ReceiveAlert,ReceiveAlert, Sleep,
StateController, StateController, Sleep)
choice: Node(5)[][3]—> // Delay of 3 ms chosen by node 5
(Sleep,ReceiveAlert,ReceiveAlert, ReceiveAlert, Sleep,
SendAlert, StateController, Sleep)
choice: Node(6)[][3]—> // Delay of 3 ms chosen by node 6
(Sleep,ReceiveAlert,ReceiveAlert, ReceiveAlert,
Sleep, SendAlert, SendAlert, Sleep)
ALERT[5]: Node(5)—> Node(1)[5]Node(2)[5]Node(6)[5]
/1 Alert send by node 5 is heard by node 2 and node 6
(Sleep,ReceiveAlert,ReceiveAlert, ReceiveAlert,
Sleep, StateController, StateController, Sleep)

eight-tuples indicate the states of the nodes starting with the sink followed by nodes 1-7 for
the execution related node topology shown later in Fig. 16. We have added comments with
prefix “//" to add more detail. When Node(5) begins to send the alert, Node(6) senses the
sending and skips sending alert via the edge guarded by canListen(i) function.

In a case where the channel is free, the nodes send an alert at the time instant after the chosen
delay. The sending is represented using the send part of the broadcast channel variable
ALERT(id]!. The local variable currentSlot is updated, along with the variable sentAlert,
and function updateRecord(). The variable sentAlert is used by the node to remember that
it has sent an alert. In a case where no superframe change occurs after an alert was sent, a
node updates its local variable savedAlert. The updateRecord() function updates a global
array variable alertTimeRecord[] which stores the delay chosen by each node in the given
round. This is used to check if a collision has occurred. In certain cases when the alert
messages fail to reach the sink due to collision, the savedAlert variable is used to save the
alert, that is sent again in the next round. During this, the probability edge is not used.
Instead, the nodes directly move to the location SendAlert via the edge (solid line) with the
guard (alert Received||saved Alert). The variable alertReceived represents the case when
nodes have to forward an alert received from other nodes towards the sink. The nodes then
choose a new delay value from the interval [0, 8] for sending the alert message again.

Model-based Specification and Validation of the DMAMAC Protocol 15

Sink Node{1) Node(2) Node(3) Node(4) Node(5) Node(6) Node(T)

T I

[receiveAIerl] [sendAIert]
ALERT[1]

[receiventert| [stateController | sendAlert

| | ‘ ALERT[3]

| I
[receiveAlert] [stateControIIer]

stateController

chdice

receiveAIert] [nntiﬂcatinn] [nntiﬁcatmn] [noﬁﬁcaﬁon] slgep sléep slgep s\éep
T T T T

Figure 13: Message sequence chart for collision at the sink

3.4 Collision Modelling

We use a simple collision model similar to the one used in [7] and [6]. In the LMAC [6]
protocol, when two nodes send a packet in the same slot, it is considered as a collision. In
the DMAMALC protocol model, collision is counted when a node receives at least two alert
messages with the same delay in the same alert slot. In our model, we assume that apart
from its child nodes, the parents can also listen to nodes in the vicinity which is similar to
real networks. We define statically which other nodes a given node can listen to. Based on
the representative carrier sense model, the collision occurs at a node only when it receives
two alert messages from nodes of the same rank that cannot listen to each other, and had
chosen the same delay within the alert slot. A message sequence chart showing a collision
occurrence at the sink is shown in Fig. 13.

The execution trace corresponding to the MSC in Fig. 13 is shown in List. 2. In the considered
scenario, Node(1) and Node(3) independently choose the same delay of 7 (ms). Since they
cannot listen to each other their alert packets end up colliding at the sink. This prevents a
change of the superframe (mode of operation). Node(1) and Node(3) detect this and save the
alert. The saved alert is used to resend the alert in the next round (with a new delay) to make
sure the superframe changes. Note that there could be a situation where collision occurs
at lower levels (and even at the sink), but still the change of superframe occurs because of
another alert message reaching the sink. For our model, we have created the topology in
such a way that both cases exist in different configurations as discussed in Sect. 5. In reality,
the receiver nodes do not detect collision: in certain cases nodes receive parts of packets
that collide (difficult to decode them) and in other cases they receive nothing at all. In that
respect, we rely on a representative model of collision detection designed to be consistent
with the effects of collision on the change of superframe.

3.5 DMAMAC-TDMA Node Model

The difference between the Uppaal model for DMAMAC-Hybrid and DMAMAC-TDMA
is the alert message mechanism for the nodes. Fig. 14 shows the node model for the TDMA
variant of DMAMAC which has a modified alert message mechanism. The model differs
from the DMAMAC-Hybrid model in that the alert delay and the listening edge for CSMA

16 Kumar Somappa et.al.

Listing 2: Collision execution trace

(ReceiveAlert, StateController, Notification , StateController,
Sleep, Sleep, Sleep, Sleep)

choice: Node(1)[][7]—> // Delay of 7 ms chosen by node 1

(ReceiveAlert,SendAlert, Notification , StateController, Sleep,
Sleep, Sleep,Sleep)

choice: Node(3)[][7]—> // Delay of 7 ms chosen by node 3

(ReceiveAlert, SendAlert, Notification ,SendAlert, Sleep,
Sleep, Sleep, Sleep)

ALFRT[1]: Node(1)—> Sink[1] // Alert sent by node 1 to the sink

(ReceiveAlert, StateController , Notification ,SendAlert, Sleep,
Sleep, Sleep,Sleep)

ALFRT[3]: Node(3)—> Sink[3] // Alert sent by node 3 to the sink

(ReceiveAlert, StateController, Notification , StateController, Sleep,
Sleep, Sleep, Sleep)

(when other nodes send alert at the same time) are eliminated. The +1 on the edge from
SendAlert is a representative delay for alert communication. The outgoing edge from
ReceiveAlert now has a new update function checkAlertReceived() which replaces the
earlier function used to check for collision and update on alerts received. This is also true
for the sink model in the TDMA variant, but since this is the only difference between the
sink model for DMAMAC-Hybrid and TDMA variant, we do not present the sink model
for DMAMAC-TDMA in detail.

The TDMA model has less non-determinism as it does not contain any alert delay, and
every node is assigned an exclusive alert slot. Thus, no collision is possible in the network
under consideration. In relation to validation and verification, all queries except the queries
concerning collision are used to validate and verify also the DMAMAC-TDMA model. An
MSC used to validate the proper operation of the TDMA alert procedure is shown in Fig.
15. Note that unlike in DMAMAC-Hybrid alert shown in Fig. 11, all other nodes are in
sleep state here. In the DMAMAC-Hybrid variant, nodes send and receive alerts based on
their rank in the tree topology.

3.6 Network Topology

The node topology used for the verification of the models is shown in Fig. 16. We use 5 sensor
nodes, 2 sensor-actuator nodes, and a sink in the tree topology considered. We consider a
small topology to keep the state-space small which is needed in order to conduct exhaustive
verification. The current node topology has 3 ranks but since the sink only listens (and
does not send alerts), we have 2 alert slots in the DMAMAC protocol. This representative
topology allows for both carrier sense and collision, has both sensors and actuators with
data communication for both types of nodes, and also has multiple hops. A topology based
assumption for listening range is that a lower rank node is listening to all of its children
nodes, and also sometimes to other nodes in the vicinity. A real node has a listening range
based on its receiver sensitivity, and distance with other nodes in the vicinity that varies

Model-based Specification and Validation of the DMAMAC Protocol 17

y'== .
Notification change_,mt[o,ﬂ Start
regNotify[change]?
nodeReset(change) .
startup? currentSlot++
p? e ____. o
.
choice! S 90 choice! |
notify() s txSlot[currentstst] == id + alertTxOffset
/ .
ya=1 && y<=curreftMaxSlots*10 && !glertReceived && !savefiAlert
7 |
St; teCor}h"oIIer currentSlot++, |
y<=(currentSlot*10) && y'== 4 sentAlert = true ‘
Sleep o ALERT(id]! SenfiAlert

choice! isSleep() y==(currentSlot*10)+1

calculateWakeup()

y'==1 && y<=(currentSlof)*10+1

y == (currentSlot*10) (alerfRecgived || savedAlert)

&& txSlot[curremtQlot] == id + alertTxPffset
ACK? choice!

currentSlot++ bxslotl

DATA!

rentSlot]==id hoice!
choice: y==(currentSlot+1)*10
currentSlot++,

heckAlertReceived()

rxSlot[currentSlot]==id ACK! rxSlot[c \tSlot] == myLevel[id]
DATA?)

, y==(currentSlot*10)+2 i:nodeid_t

Send currentSlot++ N canListen(i)

y'== ALERTI[i]?

Receive . alertCounter++
receiveAlert
y'==1 && y<=(currentSlot*10)+2 y'==1 && y<=(currentSlot+1)*10

Figure 14: Timed automata model for DMAMAC-TDMA nodes

Sink Node{1) Node(2) Node(3) Node(4) Node(5) Node(6) Node(7)

receiveAlert

Sléep

receiveAlert

StateControl

S\;ep Sléep S\éep Sléep S\sjep

Figure 15: Message sequence chart illustrating alert messaging in DMAMAC-TDMA

18 Kumar Somappa et.al.

a Sink node

L Sensor node

— - Can listen

— Communicate

Actuator node

Figure 16: Node topology scenario used for verification

with topology. Given that our main aim is to check the working of the protocol, we define
the listening range in the topology manually instead of calculating it dynamically based on
multiple factors like node position, path-loss, and receiver sensitivity as is typically done
in network simulators for quantitative analysis.

In the topology used for the evaluation of the DMAMAC protocol, the functionalities that
need to be verified are covered. The DMAMAC protocol is used for applications with offline
scheduling. This means that scheduling is done prior to deployment and all slot allocations
are known prior to deployment. The topology in general is pre-planned, and no random
deployment is used. A real topology would be much larger than the one considered here. In
the current topology, we have 3 levels and a maximum of 2 hops. For a qualitative analysis
this covers the error scenarios that could potentially exist with multiple-hops.

The schedule for the considered node topology and for execution of DMAMAC-Hybrid is
shown in Fig. 17. The schedule for DMAMAC-TDMA is shown in Fig. 18. These schedules
show both sender/receiver identification (node/sink). The sending part is marked by TX and
receiving part is marked by RX. For notification messages, only the sender identification
(sink) is marked. The schedule only represents the steady superframe. In the transient
superframe only the first Nt part is used with the alert parts replaced by sleep. The alert
parts for DMAMAC-Hybrid are marked with levels/ranks (R#) and for DMAMAC-TDMA
with the node identity. Note that we use 10 milliseconds (“ms") as slot duration similar to
slot sizes used in general practise.

3.7 Configurations

Multiple configurations of the DMAMAC protocol can be analysed based on values that
can be varied in the model. Firstly, the Uppaal model can start in either steady or transient
mode and this could have an effect on some of the verification properties (as discussed in

Model-based Specification and Validation of the DMAMAC Protocol 19

E[[[[[[[[[[U]E.]D EI]

041562730203

[IID]]]I[[U]E!]O E!J

10220302637

Figure 17: Superframe structure for DMAMAC-Hybrid protocol execution

Nt Nt
| | | |
| | [|
ORI - CHORNRED () CHNOGNERD
041562730203 4156273 4156273
=N (HSNHNED O (CHBMRHIND
10220302637 1022030 1022030

Figure 18: Superframe structure for DMAMAC-TDMA protocol execution

Sect. 5). Another important factor affecting the configurations for DMAMAC-Hybrid is the
range of values for the variable alertDelay. In the protocol, we have used the range [0,8] to
reduce collision. Due to state-space explosion, we use only alert Delay[1, 1] for exhaustive
queries, e.g., deadlock query. The alert Delay|[1, 1] initself covers all possibilities including
possibility of state-switch, collision and CSMA, and hence all the qualitative aspects of the
protocol. For other non-exhaustive queries, we use up to alertDelay[1, 4] configurations
to further verify the protocol. The only difference between alert Delay(1, 1] and the other
considered configurations is the applicability of property sink mode and consistent node
mode of the verification properties and is further discussed in Sect. 5. Also, the select
statement interval [1,10] used to decide the switch from transient to steady mode by the
sink is reduced to [1, 2] to keep the state-space small for all the queries. The reduction of
the interval only means that in transient mode there is a 50% probability to switch to steady
mode, and thus does not affect the qualitative results. The DMAMAC-TDMA model in
general does not require any configuration changes similar to DMAMAC-Hybrid to prevent
state-space explosion.

4 Model Validation

We first validate the constructed Uppaal models of the DMAMAC protocol by checking
some basic behavioural properties related to the operation of the model. The purpose is to
obtain a high degree of confidence in the constructed model prior to verifying key properties
of the protocol in the next section. During construction of the DMAMAC protocol, we
validated the operation of the model via MSCs obtained from step-by-step execution of the

20 Kumar Somappa et.al.

model in the Uppaal simulator as illustrated in the previous section. These properties were
related to data transmission between nodes, data transmission between the nodes and the
sink, sending/receiving of alert message, possibility of collision, and carrier sense when
sending alert messages.

Below we validate properties of the model related to data communication and collisions
using the verification engine of Uppaal. For this, we express the properties to be validated
in the form of Uppaal queries. Queries in Uppaal are written in a restricted variant of
Computation Tree Logic (CTL) in which path formulas cannot be nested. Specifically,
the following path formulae are supported by Uppaal: AO (always globally), A (always
eventually), EO (reachable), and EO (exists globally).

For validation purposes, we first check the operation of the model with respect to data
communication between neighbouring nodes and between the sink and its neighbouring
nodes. We check that if two nodes ¢ and j are such that the parent node of node j is 4, then
these will eventually communicate. Furthermore, it should be such that any child node of
the sink node should eventually communicate with the sink. Formally, these two properties
can be expressed as the set of queries below. Here, nodeid_t is the type used to represent
node identifiers in the model, parent[i] is used to obtain the parent node of node 4, and
sinklId denotes the identity of the sink. The property is expressed by reference to the
location Sent and location Received which are reached by the communicating nodes upon
synchronization over the channel DATA.

Node data communication
V i,j € nodeid_t such that parent[j]==i: A (Node(i).Sent A Node(j).Received)

Sink data communication
Vi € nodeid_t such that parent[i]==sinkld: A< (Node(i).Sent A Sink.Received)

It should be noted that we do not check the property that two neighbouring nodes always
have the possibility to communicate. This is due to the fact that Uppaal does not support
nesting of CTL path formulae.

The second property that we validate is related to collisions which play an important role in
the DMAMAC protocol in relation to the sending of alert messages. In this case, we check
that it is possible to have collision happening on all nodes and on the sink. Collision cannot
be guaranteed to happen and hence we verify only the possibility of collision occurring.
Formally, these two properties are expressed as the following set of queries:

Node collisions Vi € nodeid_t : E& Node(i).collision
Sink collisions E< Sink.collision

Finally, we also validate that there are no deadlocks in the model. In Uppaal, this can be
expressed via the query below where deadlock is a built-in state property in Uppaal.

No deadlock AO !deadlock

The above queries related to data communication, collision, and deadlocks were all
satifsied on both the transient and the steady variant of the DMAMAC-Hybrid model. The
DMAMAC-TDMA model is validated against queries for data communication and deadlock
as collision is not a possibility for DMAMAC-TDMA model.

Model-based Specification and Validation of the DMAMAC Protocol 21

5 Protocol Verification

‘We now consider verification of the key functional properties of the DMAMAC protocol. As
explained earlier, the constructed model comes in two variants: one variant with the protocol
starting in the transient mode and one variant with the protocol starting in the steady mode.
We first consider common properties that are independent of whether the protocol starts in
the transient or in the steady mode. Then we consider properties specific for the transient
mode case followed by properties specific for the steady mode case. Finally, we verify two
real-time properties of the protocol related to upper bounds on mode switch delay and data
transmission delay.

5.1 Common Properties

Given the dual-mode operation of the DMAMAC protocol, the important properties relate
to the nodes operating in different modes, and switching between them. Firstly, we check
the operating mode properties. We make sure that the sink is exclusively either in the steady
mode or in the transient mode at all times. Following this, we check that all nodes follow
the operating mode of the sink consistently. Formally, these properties are expressed as
follows:

Sink mode AO (Sink.steady A !Sink.transient) || (!Sink.Steady A Sink.transient)

Consistent node mode Vi € nodeid_t:
AO (Node(i).transient == Sink.transient || Node(i).steady == Sink.steady)

Next, we investigate properties of the protocol related to collision and its effect on the change
of operational modes. The queries refer to the changeSuperframe variable which indicates
whether the network should change mode in the next superframe. Collisions may have
different effects depending on the configuration under consideration. For configurations
with alertDelay[1, 1] where all the nodes will pick the same delay, collision at the sink
should not result in a change of superframe or operational modes. For configuration with
alertDelay[1, 2], we may have both collision and change of superframe since, e.g., two
nodes may pick a delay of 1 (which will result in a collision) while a single third node picks
a delay of 2. The latter choice will result in the sink being notified of a required change
of mode. Formally, properties related to collisions and change of mode are specified as
follows:

Collision and mode switch E<O(Sink.collision A Sink.changeSuperframe)
Collision and no mode switch E<O(Sink.collision A !Sink.changeSuperframe)

Following the discussion above, we expect that the first property is false in configurations
where all nodes must choose the same delay while it is true in configurations where different
alert delays can be chosen. This implies that the protocol design ensures that the DMAMAC
protocol can change mode even in the presence of collisions. The second property is expected
to be true as we may (in all configurations) have the situation that the choice of delay (alert)
causes collisions such that the sink may not be notified of the required change of mode in
the current superframe. Of course, the sink may be notified via retransmission of the alert
in a later superframe, eventually causing a mode switch (see below).

22 Kumar Somappa et.al.

Listing 3: Simultaneous collision and change of superframe

(ReceiveAlert, StateController, StateController, StateController,
Sleep, Sleep, Sleep, Sleep)
choice: Node(1)[][1]—> // Node 1 chose delay of 1 ms
(ReceiveAlert,SendAlert, StateController , StateController, Sleep,
Sleep,Sleep, Sleep)
choice: Node(3)[][1]—> // Node 3 chose delay of 1 ms
(ReceiveAlert,SendAlert, StateController, SendAlert, Sleep,
Sleep, Sleep, Sleep)
choice: Node(2)[][2]—> // Node 2 chose delay of 2 ms
(ReceiveAlert, SendAlert, SendAlert, SendAlert, Sleep,
Sleep,Sleep, Sleep)
ALERT[3]: Node(3)—>Sink[3] // Node 3 sends alert
(ReceiveAlert,SendAlert, SendAlert, StateController , Sleep,
Sleep,Sleep, Sleep)
ALFRT[1]: Node(1)—>Sink[1] // Node 1 sends alert
(ReceiveAlert, StateController ,SendAlert, StateController, Sleep,
Sleep, Sleep, Sleep)
ALFRT[2]: Node(2)—>Sink[2] // Node 2 sends alert with a higher delay (2 ms)
(ReceiveAlert, StateController, StateController , StateController, Sleep,
Sleep,Sleep, Sleep)

An example trace demonstrating co-existence of collisions and change of superframe is
shown in List. 3. In this example, the nodes 1 and 3 choose the same delay (1 ms) and
cannot listen to each other. The transmissions therefore collide at the sink. But node
2 which has chosen a different delay (2 ms) successfully alerts the sink thus inducing
change of superframe. This delay choice is done when the model changes location from
StateController to SendAlert.

Finally, we verify a property related to the critical change of state in the protocol from steady
to transient. When the data requirement is higher, the protocol should be able to detect and
switch accordingly. Also, when a switch fails due to collisions, there should be a possibility
to re-use the failed alert to induce change of operational modes. The failed alert is used as a
saved alert in the next alert round. We use the query which searches for one example where
this occurs.

Critical change of state 31 € nodeid_t:
E<{ Node(i).savedAlert A Sink.steady A Sink.changeSuperframe

It should be noted that given the nature of the model, the collisions could occur forever
preventing the change of superframe. This means that we cannot show that a state-switch
will eventually happen.

5.2 Transient Model Variant

We now consider properties specific for the variant of the model where the sink and nodes
starts in transient mode. In the model, transient and steady are boolean variables. In the case

Model-based Specification and Validation of the DMAMAC Protocol 23

where the controller process stays in the transient state permanently, the protocol needs to
stay in transient mode of operation to suit the application needs. The query below checks
if there is a path where the system invariantly is in the transient mode.

Remain transient EO transient

The second property represents the reachability of steady mode from the starting state, i.e.,
that it is possible for the system to change mode from transient to steady.

Steady switch E<C steady

5.3 Steady Model Variant

For the variant of the model that starts in the steady mode, we verify the dual properties of
the variant that starts in the transient mode. These two properties are listed below:

Remain steady EO steady
Transient switch E< transient

The two properties check that it is possible to remain in steady mode and that it is possible
to switch to transient mode.

5.4 Real-time Properties

We now consider real-time properties related to mode switch delay and data communication
delay. In order to verify these properties, we use a modified version of the Uppaal model
where we have included the use of two watch templates (Watch1 and Watch?2) in order to
record elapsed time.

5.4.1 Switch Delay

The first real-time property that we consider is the switch delay, i.e., the time difference
between a detection of threshold breach and the mode switch happening. This switch is
required to happen within the duration of a superframe (transient superframe length). This
property is specified as follow:

Switch delay AO Watchl.switchDelay < superframeLength

We verified the switch delay property by considering a single node farthest from the sink.
By symmetry, the property applies to other nodes at the same rank, and also to the parent
nodes which (by the tree topology) will have a smaller maximum switch delay.

Model Extension for Verifying Switch Delay.

For verification of switch delay an extension to the existing Uppaal model is required. Firstly,
we have created an extra template to measure the switch delay from a given node which
is required in order to verify the switch delay of DMAMAC. The timer has two locations
mainly tracking the change of states based on the synchronisation channels START and
STOP as shown in Fig. 19.

24

Kumar Somappa et.al.

y'==1

Nofif cafion regNotify[change]?
‘ nodeReset(change)
choice!
notify ()
Y'A=1 &
St

IsendAlert &&

y<=(currentSlot*10) && y'==1
lalertReceived

Start

IsendAlert && lalerfReceived
&& IsavedAlert && Inotify ()
&&id == 4 && lisSleep() &&
xSlot[currentSlof] '= myLevel[id]

txSlof[currentSlot] == my Level[id]
&& IsendAlert && lalertReceived
&& rxSlot{currentSiot] 1= myLevellid] gg 1savedAlert && Inotify ()

START!
sendAlert = ifue

startup? urrentSlot++
choicg! R
y<=£urrenifiayBlots™10 canListen(i) &&

teChnirota y==((currentSlot*10)+alertDelay)

ALERTIi]?
ALERTT] cunems‘OtHSendA\ert

y==((currentSlot*10)+alertDelay)

Sleep N
&& IsavedAlert choice! isSleep()
8&id==4 calculateW akeup()
START!

sendAlert = frue y == (currentSlot*10)

UrrentSlof]==id
ACK?

currentSlot++

DATAI!

rxSlof{currentSlot]==id
DATA?

y==(cur
currentSlof++

Send
y'==1

y'==1 && y<=(currentSlot*10)+2

ALERT[id]! updateRecord(),
currentSlot++,
entAlert = true

y<=((currentSlot*10)+aleftDelay)

8(tSlot] == myLevellid]

(currentSlot+1)*10
currentSlof++,
checkCollision()

—,<

receiveAlert
y'==1 && y<=(currentSlot+1)*10

alertDelay =i choice!
(sendAlert|| alertReceived || savedAlert)
&& txSlot[currentSlof] == myLevel[id]

efitSlot*10)+2
canListen(i)
ALERTIi]?

Receive alertCounter++

Figure 20: Node model used in the switch delay verification

The change of state in consideration is
steady to transient based on an alert
message. Also, the existing node model
is modified to measure possible switch
delays or worst case switch delay per
node basis using the query language of
Uppaal. The sink model is only extended to
incorporate a stop timer. The initiation of
an alert message occurs when the measured
readings from the sensor exceeds a given
threshold level [3]. This can happen at
any given time. Thus, we consider mainly
the possibility of alert message generation
when the radio is in sleep mode or is
intermediate state for state transitions. If in

==z
switchDelay =i

START?
switchDelay = 0,
z=0

Figure 19: Switch delay timer

the data mode, the sensory readings are sent directly, which is measured by the sink directly
and can implement a superframe change if a threshold breach is detected. The alternative
node model for the switch delay verification is shown in Fig. 20.

The stop channel synchroniser is placed in the sink model. The model checks for a change
of superframe from steady to transient. As shown in Fig. 21, an edge is placed in the
Notification location to check for superframe change. This can only occur due to a generated
alert. In the background, it is verified that it has been generated from the same node in

consideration (for proper per node delay result). We statically design node with Id ==

generate alert at random time and induce a

4to
state switch. Network wide synchronisation in

a real case scenario might vary depending on packet loss effecting the notification packets
sent by the sink. In our case we do not consider packet loss. The current switch delay

Model-based Specification and Validation of the DMAMAC Protocol 25

x'==1 && x<=(currentSlot*10)+1 x==(currentSlot*10)+1

Notification 8&& change == changeSuperframe Start
&4& transient
regNotify[change]!
sinkReset(),
checkChange(i)

STOP!

steady &&
changeSuperframe &&
X == (currentSlot*10)

startup!

initialize()
x ==(currentSlot*10)+1
notify() && change == changeSuperframs

choice! | && steady regNotify[change]!

StateControl

sinkReset() x'==1 && x<=currentMaxSlots*10

choice! isSleep()
calculateWakeup()

Sleep

x==(currentSlot+1)*10
currentSlot++,

checkCollision()

x<=currentSlot*10 8& x'==

choice!
rxSlot[cwgentSlot]==myLevel[sink|d]

x==(currentSlot*10)

ptSlot]==sinkld
DATA!

ACK?
? ?
currentSlot++ D_A_TA ACK! ALERTM)
rxSlot[currentSlot]==sinkld = (o tSlot*10)+2 canListen(i)
currgnlgForlH alertCounter++

ReceiveAlert
x'==1 && x<=(currentSlot*10)+2 x'==1 && x<=(currentSlot+1)*10

Figure 21: Sink model used for switch delay verification

model was designed for DMAMAC-Hybrid. A similar extended model was designed for
DMAMAC-TDMA.

5.4.2 Data delay

The second real-time property concerns the data communication delay. It is the time elapsed
between the first data sent in the superframe until the last data received. This is required to
be within the same superframe. The property is expressed as follows:

Data delay A0 Watch2.dataDelay < superframeLength
Model Extension for Verifying Data Delay

In other words data communication delay it is the time required for all data transmission
within one superframe. Similar to the switch delay a model extension is made to the existing
Uppaal model. An extra template is used to measure the data delay when conducting
verification. The template is shown in Fig. 22 and contains 3 locations, an extra location
(urgent) is used due to constraints imposed by the Uppaal model in terms of modelling.

Otherwise, the data delay timer functions similar to the switch delay timer using channel
synchronisation variables STARTER and STOPPER.

The Uppaal node model was extended
to include the channel synchronisation
variables at Send and Receive locations STOPPER?

as shown in Fig. 23. Based on static

scheduling shown in Fig. 17, the first node i==22

to send data is node 4, and the last node to dataDelay = i

receive data is node 7. Given the absence of A2 .

packet failure and re-transmission we can ==
STARTER?
dataDelay = 0,
z22=0

Figure 22: Data delay timer

26 Kumar Somappa et.al.

txSlot[currentSlot] == myLevel[id]
&& IsendAlert && lalertReceived

y'==1 && !savedAlert && !notify()
Notification . Start
regNotify[change]? .

nodeReset(change)
startup?

currentSlot++

choice!

choice!
notify()

canListen(i) &&

<= MaxSlogs*1
yrseurmenaes y==((currentSlot*10)+alertDelay)

StateContreffer

ALERTIi]? currentSlot++ y<=((currentSlot*10)+alertDelay)

y<=(currentSlot*10) && y'==
SendAlert

Sleep

.
choice! isSleep() ((currentSlot*10)+alertDelay)

LERTI[id]! updateRecord(),
currentSlot++,
sentAlert = true

rrentSlot] == myLevel[id]

calculateWakeup()

y == (currentSlot*10)

ACK?
currentSlot++

#htSlot]==id y==(currentSlot+1)*10

currentSlot++,
checkCollision()

alertDelay=i
(sendAlert|| alertReceived || savedAlert)
&& txSlot[currentSlot] == myLevel[id]

rxSlot[currentSlot]==id
DATA?

Send

ACK!
cyrrentSlot*10)+2

id==4 y==
STARTER! currentSlot++ canListen(i)
id==7 ALERTI[i]?
STOPPER! Receive alertCounter++

receiveAlert
y'==1 8&& y<=(currentSlot*10)+2 y'==1 && y<=(currentSlot+1)*10

Figure 23: Node model used for for data delay verification

assume that the data received by node 7
is the last data packet in the superframe.
The current data delay model was designed
for DMAMAC-Hybrid. A similar model
extension was also developed for the
DMAMAC-TDMA variant.

5.5 Discussion

All properties listed above evaluate to the expected results. The properties related to
collisions were only considered on for hybrid variant of DMAMAC since collisions are not
possible in DMAMAC-TDMA. Details on the execution time for the queries on different
configurations of the model are shown in table 1 for the hybrid version and in table 2
for DMAMAC. The verification was conducted on a PC with 4 GB RAM, 2.30 GHz
2-core processor. The query Collision and mode switch could be verified only on the
configuration with alert Delay[1, 1] and resulted in memory exhaust in other configurations.
Other queries were verified also on configuration alertDelay(1, 2], and alertDelay|1, 4]
with i : int[1, 2].

6 Validation of DMAMAC Simulation Model and Implementation

In earlier work [4] we have developed a simulation model of DMAMAC on the
OMNeT++-MiXiM [9] platform. The purpose of this simulation model was to assess the

Model-based Specification and Validation of the DMAMAC Protocol 27

Property / Query

Result

| CPU Time (s) | Resident Mem. (KB) | Virtual Mem. (KB)

Configuration : alertDelay[1,1], i:[1,2]

Common queries

Sink mode Not Satisfied 718.837 1,795,596 3,595,148
Consistent node mode Satisfied 876.586 1,772,436 3,573,820
Collision and mode switch Not Satisfied 711.287 1,797,488 3,599,136
Collision and no mode switch Satisfied 3.214 21,044 49,512
Critical change of state Satisfied 33.868 113,084 238,116
Transient specific queries

Remain transient Satisfied 0.015 13,820 56,924
Steady switch Satisfied 0.64 13,888 40,168
Steady specific queries

Remain steady Satisfied 0.032 17,424 58,892
Transient switch Satisfied 1.965 19,308 48,796
Real-time queries

Switch delay Satisfied 273.048 440,676 891,152
Data delay Satisfied 231.302 450,664 905,284

Configuration: alertDelay[1,2], i:[1,2]

Common queries

Sink mode N/A N/A Memory exhausted | Memory exhausted
Consistent node mode N/A N/A Memory exhausted | Memory exhausted
Collision and mode switch Satisfied 8.331 62,292 128,008
Collision and no mode switch Satisfied 8.346 61,616 129,064
Critical change of state N/A N/A Memory exhausted | Memory exhausted
Transient specific queries

Remain transient Satisfied 0.02 13,836 40,092
Steady switch Satisfied 0.562 13,848 57,012
Steady specific queries

Remain steady Satisfied 0.046 36,596 82,700
Transient switch Satisfied 16.708 66,116 137,096
Real-time queries

Switch delay Satisfied 1200.225 1,799,596 3,601,164
Data delay Satisfied 1068.014 1,799,624 3,622,604

Table 1 Verification results for DMAMAC-Hybrid

performance of the protocol on larger network configuration taking into account additional
network parameters such as packet transmission failures. Recently, we have also made an
implementation of DMAMAC for the TinyOS operating system [10] running on Zolertia
71 platform [15]. The primary purpose of the prototype implementation was to check
implementability of the protocol and perform a deployment testing in a real physical
environment. In particular to check that the underlying assumptions of the protocol design
are sound from the perspective of practical use.

The simulation model and the implementation was developed manually with reference to
the specification of the protocol presented in the earlier version [11] of the present paper.
In order to further validate that the simulation model and the implementation conforms to
the formal specification presented in this paper, we compare execution sequences from the

28 Kumar Somappa et.al.
| Property / Query | Result | CPUTime(s) | Resident Mem. (KB) | Virtual Mem. (KB) |
Configuration : i:[1,2]

Common queries
Sink mode Not Satisfied 587.079 616,520 1,231,784
Consistent node mode Satisfied 618.902 611,156 1,218,792
Critical change of state Satisfied 33.868 113,084 238,116
Transient specific queries
Remain transient Satisfied 0.016 15,036 59,036
Steady switch Satisfied 0.843 15,012 59,036
Steady specific queries
Remain steady Satisfied 8.783 16,056 60,508
Transient switch Satisfied 12.015 28,572 68,324
Real-time queries
Switch delay Satisfied 1,934.927 1,958,796 3,923,496
Data delay Satisfied 2.278 14,536 39,756

Table 2 Verification results for DMAMAC-TDMA

Uppaal model with the simulation model execution, and the deployed model execution.
The considered execution sequences conforms to the superframe structure and requirements
specification of the DMAMAC protocol. The details of the sequences varies from platform to
platform but when we abstract from the platform specific detail we can check that execution
performed by the simulation model and the implementation is also allowed by the Uppaal
model, i.e., conforms to the specification. Furthermore, this approach does not require a an
exhaustive state-space search which allow us to investigate larger configurations.

An example of a sequence diagram obtained from Uppaal is shown in Fig. 24, an example of
a sequence diagram from MiXiM simulation is shown in Fig. 25, and the sequence diagram
obtained from TinyOS is shown in Fig. 26. In this case, we have extracted sequence diagram
from data forwarding towards sink from Node 3 via Node 1. The sequence diagrams for
MiXiM and TinyOS are obtained from the log files created during the executions. When
we abstract away the platform-specific details from the sequence diagrams obtained from
MiXiM and from TinyOS implementation, it can be seen that the three diagram represents
the same exchange of messages and hence for the considered scenario, the simulation model
and the implementation conforms to the protocol as specified by the Uppaal model.

7 Conclusion and Perspectives

In this article, we have detailed the modelling, validation, and verification process of the
DMAMALC protocol. The DMAMAC protocol is designed for process control applications
and we have used the Uppaal model-checking tool for modelling and verification. The
model consists of a network of timed automata with multiple nodes and a sink operating
according to the DMAMAC protocol. The Uppaal models serves as a formal specification
for both the hybrid and TDMA variant of DMAMAC. We have explained the model in
Uppaal including its modelling elements and templates in detail. The constructed timed
automata model includes generic MAC slot operations including data sending and receiving,

Model-based Specification and Validation of the DMAMAC Protocol 29

|
™) ~— | Move to StateController Switch To TX
Move to Receive
DATA Packet Move to Send
ACK Packet Move to StateController
Move to StateController
Move to Receive T Move to Sieep
DATA Packet Move to Send
ACK Packet Move To StateController

Move to StateController

| Move to Sleep

' |

Figure 24: Data transmission sequence diagram from Uppaal model

. |switchToRx Switch To TX

DATA Packet

Switch To TX Switch To RX

ACK Packet

Switch To TX | Switch to SLEEP

DATA Packet

Switch To TX Switch To RX

ACK Packet

| Switch to SLEEP

Figure 25: Data transmission sequence diagram for OMNeT simulation model

30 Kumar Somappa et.al.

H = =

‘ Switch on Radio
Switch on Radio

Send DATA Packet to Radio
PhyLock = True

DATA Packet

Send ACK Packet to Radio

PhyLock = True PhyLock = FALSE

ACK Packet
‘ PhyLock = FALSE

Switch off Radio
Send DATA Packet to Radio

DATA Packet

Send ACK Packet to Radio
PhyLock = True PhyLock = FALSE

ACK Packet

PhyLock = FALSE

‘ Switch off Radio

Figure 26: Data transmission sequence diagram from TinyOS implementation

notification, and sleep. This means that the model can be extended to represent other MAC
protocols with similar (and extra) slotting within their superframe.

We have validated the basic operation of the constructed model using message sequence
charts highlighting the most important features, and operations of the protocol including
data transfer, alert message functioning, carrier sense, and possibility of collision. Further,
we validated the proper operation of the model using the verification engine of Uppaal. The
validated model was then verified for the switch procedure and safety properties, including
absence of deadlock and other faulty states. The key real-time properties in the form of
upper bounds on switch delay and data delay were also verified. Two variants of the model
were used for verification and validation, one starting with the transient mode of operation
and the other starting with steady mode. Different configurations of the model with varying
alert delay were used as a basis for the verification for DMAMAC-Hybrid in particular. For
verification, we used a representative node topology that covers all important features of
the protocol including existence of sensors and actuators, multi-hop, alert messages, and
possibility of collision. Furthermore, we have used execution sequence from the constructed
Uppaal models to validate the simulation model of DMAMAC that we have developed
for performance analysis of the protocol, and we have used execution sequences from the
Uppaal model to validate our prototype implementation of DMAMAC. This in turn increases
the confidence in the simulation model and in the DMAMAC implementation.

As a proposed future work, a stochastic model of the DMAMAC protocol to verify the
quantitative properties including collision probability, expected switch delay, and energy
consumption could provide further insights to the working of the protocol.

Model-based Specification and Validation of the DMAMAC Protocol 31

References

[1] Ian F. Akyildiz and Ismail H. Kasimoglu. Wireless Sensor and Actor Networks: Research
challenges. Ad Hoc Networks, 2(4):351-367, 2004.
[2] Joao P Hespanha, Payam Naghshtabrizi, and Yonggang Xu. A survey of recent results in
Networked Control Systems. In Proceedings of the IEEE, volume 95, pages 138-162, 2007.
[3] Admar Ajith Kumar Somappa, Knut @vsthus, and Lars Michael Kristensen. Towards a dual-
mode adaptive MAC protocol (DMA-MAC) for feedback-based networked control systems.
Procedia Computer Science, 34:505-510, 2014. The 9th International Conference on Future
Networks and Communications (FNC’14)/The 11th International Conference on Mobile
Systems and Pervasive Computing (MobiSPC’ 14)/Affiliated Workshops.
A. Ajith Kumar Somappa, Lars M. Kristensen, and Knut Ovsthus. Simulation-based evaluation
of DMAMAC: A dual-mode adaptive mac protocol for process control. In Proceedings of
the 8th International Conference on Simulation Tools and Techniques, SIMUTools *15, pages
218-227. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2015.
Ansgar Fehnker, Rob Van Glabbeek, Peter Hofner, Annabelle Mclver, Marius Portmann, and
Wee Lum Tan. Automated analysis of AODV using Uppaal. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 7214 of Lecture Notes in Computer Science,
pages 173-187. Springer Berlin Heidelberg, 2012.
Ansgar Fehnker, Lodewijk van Hoesel, and Angelika Mader. Modelling and Verification of the
LMAC protocol for Wireless Ssensor Networks. In Integrated Formal Methods, volume 4591
of Lecture Notes in Computer Science, pages 253-272. Springer Berlin Heidelberg, 2007.

4

—

[5

—

[6

—_

[7] Simon Tschirner, Liang Xuedong, and Wang Yi. Model-based Validation of QoS properties
of Biomedical Sensor Networks. In Proceedings of the 8th ACM International Conference on
Embedded Software, EMSOFT 08, pages 69-78, New York, NY, USA, 2008. ACM.

[8] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikucionis, Danny Bggsted Poulsen,
Jonas Van Vliet, and Zheng Wang. Statistical Model Checking for networks of Priced Timed
Automata. In Proceedings of the 9th International Conference on Formal Modeling and Analysis
of Timed Systems (FORMATS), volume 6919 of LNCS, pages 80-96. Springer Berlin Heidelberg,
2011.

[9] A. Kopke, M. Swigulski, K. Wessel, D. Willkomm, P. T. Klein Haneveld, T. E. V. Parker, O. W.
Visser, H. S. Lichte, and S. Valentin. Simulating wireless and mobile networks in OMNeT++
the MiXiM vision. In SIMUTOOLS, pages 71:1-71:8, 2008.

[10] P.Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. Tinyos: An operating system for sensor networks. In Ambient
Intelligence, pages 115-148. Springer, 2005.

[11] Admar Ajith Kumar Somappa, Andreas Prinz, and Lars M Kristensen. Model-based verification
of the DMAMAC protocol for real-time process control. VECoS 2015 Verification and
Evaluation of Computer and Communication Systems, 1431:81-96, 2015.

[12] Petcharat Suriyachai, James Brown, and Utz Roedig. Time-critical data delivery in Wireless
Sensor Networks. In Proceedings of 6th IEEE International Conference on Distributed
Computing in Sensor Systems, volume 6131, pages 216-229, 2010.

[13] Gerd Behrmann, Alexandre David, and KimG. Larsen. A tutorial on Uppaal. In Formal Methods
for the Design of Real-Time Systems, volume 3185 of Lecture Notes in Computer Science, pages
200-236. Springer Berlin Heidelberg, 2004.

[14] Andrds Varga and Rudolf Hornig. An overview of the OMNeT++ simulation environment. In
SIMUTOOLS, pages 60:1-60:10, 2008.

[15] Z1 datasheet, zolertia. http://www.zolertia.io//. Accessed: 25-01-2016.

Chapter 10

Implementation and Deployment
Evaluation of the DMAMAC
Protocol for Wireless Sensor

Actuator Networks

139

Available online at www.sciencedirect.com

SciVerse ScienceDirect PrOCEd i(]

Computer Science

i

-‘n, oeies
ELSEVIER Procedia Computer Science 00 (2016) 000-000
www.elsevier.com/locate/procedia

The 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016)

Implementation and Deployment Evaluation of the DMAMAC
Protocol for Wireless Sensor Actuator Networks

Admar Ajith Kumar Somappa*a’b, Knut @vsthus?, Lars Michael Kristensen®

4 Faculty of Engineering and Business Administration, Bergen University College, Norway
bFaculty of Engineering and Science, University of Agder, Norway

Abstract

The increased application of wireless technologies including Wireless Sensor Actuator Networks (WSAN) in industry has given
rise to a plethora of protocol designs. These designs target metrics ranging from energy efficiency to real-time constraints. Protocol
design typically starts with a requirements specification, and continues with analytic and model-based simulation analysis. State-
of-the-art network simulators provide extensive physical environment emulation, but still has limitations due to model abstractions.
Deployment testing on actual hardware is therefore vital in order to validate implementability and usability in the real environment.
The contribution of this article is a deployment testing of the DMAMAC protocol. DMAMAC is an energy efficient protocol
recently proposed for real-time process control applications and is based on Time Division Multiple Access (TDMA) in conjunction
with dual-mode operation. A main challenge in implementing DMAMALC is the use of a dynamic superframe structure. We have
successfully implemented the protocol on the Zolertia Z1 platform using TinyOS (2x). Our scenario-based evaluation shows
minimal packet loss and smooth mode-switch operation, thus indicating a reliable implementation of the DMAMAC protocol.
© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Wireless sensor networks and applications, Network architecture and design, Communication protocols.

1. Introduction

Wireless Sensor and Actuator Networks (WSANs)! consist of interconnected sensors and actuators collaborating
to perform monitoring and control. The sensors measure physical quantities and report it to the actuators which act
on them. WSANSs generally use a powerful central sink to collect and process the collected data and send commands
to the actuators. The sink also handles network functions such as routing and scheduling of medium access. WSANs
are applied across multiple domains including factory and process automation, healthcare, smart homes, and smart
buildings. Energy efficiency and real-time constraints constitute key requirement for WSAN protocol designs.

* Corresponding author. Tel.: +47 55 58 75 88
E-mail address: aaks @hib.no

1877-0509 © 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 Kumar Somappa et al. / Procedia Computer Science 00 (2016) 000-000

Medium Access Control (MAC) protocols control the network wide medium access for the sensor and actuator
nodes. MAC protocols directly control the communication and is thus accessing the radio which in turn is the largest
consumer of energy. The Dual-Mode Adaptive MAC (DMAMAC) protocol? is an energy efficient MAC protocol
proposed for real-time process control. Process control applications in the context of DMAMAC have two important
states of operation: steady and transient state. The steady state corresponds to periods with minimal change in
measured physical quantities. The transient state corresponds to periods with substantial change in measured data.
The process control alternates between these two states throughout the operation of the system. The dual-mode
operation of DMAMAC reflects the dual states in process control applications. The transient mode of DMAMAC
has high data rates for transient state operations. The steady mode offers lower data rate and energy conservation for
steady state operation. This makes the protocol energy efficient while still being able to satisfy real-time requirements.

The related single-mode GinMAC? protocol has been proposed for process monitoring and control applications.
The design of the DMAMAC transient superframe is based on the GinMAC protocol features. An implementation
of the GinMAC protocol on TinyOS was tested with a network of 15 nodes in a tree topology*. The implementation
was used to evaluate the performance of the GinMAC protocol via deployment testing. The TKN15.4 package is one
of the important MAC implementations on TinyOS> developed by Technical University of Berlin. Prime features of
TKN15.4 include platform-independence and modularity based on an adaptation of the IEEE 802.15.4-2006 standard.
MAC implementations are also provided via the alternate MAC Layer Architecture®.

The main contribution of this article is to demonstrate the practical implementability of the newly proposed
DMAMAC protocol on the Zolertia Z17 platform with CC2420 transceivers (IEEE 802.15.4) running TinyOS?®. Also,
we deploy the implementation in a factory automation context. TinyOS is a component-based operating system
for WSANs using the nesC language to implement applications. A fundamental difference between the related
MAC implementations discussed above and the DMAMAC implementation is the realisation of a dynamic MAC
superframe. The use of a dynamic superframe entails a network-wide mode-switch procedure, which is the central
aspect of the DMAMAC protocol. Furthermore, we also show that DMAMAC can be implemented by relying on
off-the shelf components for implementation as plugins, thus increasing re-usability. In particular, this holds for the
time synchronisation which is another essential part of the DMAMAC protocol used for the TDMA implementation.
Another important contribution is that our implementation serves as a benchmark to analyse the actual performance of
DMAMAC on hardware. In particular, it enable us to analyse the effect of packet failure on the mode-switch procedure
and identify steps to further reduce the effect. We conduct this analysis using multiple deployment scenarios which
including inference with noise produced by motors. This provides important knowledge on the effect of external
machines as encountered in process control industries which is one intended application domain for DMAMAC.

Outline. The rest of the paper is organised as follows. Section 2 briefly introduces the DMAMAC protocol. In
section 3 we discuss the implementation model on TinyOS of the DMAMAC protocol and its integration with the
existing TinyOS infrastructure. In section 4 we present the deployment experiments done and analyse the performance
results that were obtained. Finally, in section 5 we sum up the conclusions and discuss future work.

2. The DMAMAC Protocol

DMAMAC-TDMA?® is a Time Division Multiple Access (TDMA) protocol proposed for real-time process
monitoring and control applications. It was designed based on the simulation analysis® of the initially proposed
DMAMAC-Hybrid?. Henceforth all references made to DMAMAC in this article refers to DMAMAC-TDMA.
DMAMAC is a dual-mode protocol incorporating two operational modes: transient mode and steady mode. The
transient mode corresponds to the operational specification of transient state in process control? in which there is
typically a large amount of traffic between sensor and actuators in order to control the process. The steady mode of
operation corresponds to the steady state of process control in which only a small amount of data traffic is required
between nodes in order to monitor the process. The tree network topology used for the DMAMAC protocol consists
of sensors, actuators, and a sink. The sink is a powerful central node used for global management and control of
the network. The sensors measure physical entities and report the measurements to the sink. The sink processes this
data and transmits commands and processed data to the actuators, which act on it. The main features of the protocol
including transient mode, steady mode, and alert message handling and are outlined below.

Kumar Somappa et al. / Procedia Computer Science 00 (2016) 000-000 3

Transient mode. The MAC superframe used by the protocol depends on the current mode of operation. The transient
mode superframe and operation is used when the process being controlled is in the transient state. This type
of superframe is comprised of six types of slots: notification slots, sensor data transmission slots, actuator data
transmission slots, re-transmission slots (to cover for packet loss), sink processing slots, and inactive (sleep) slots.
A detailed description of the superframe structure can be found in?.

Steady mode. The steady mode superframe is used during the steady mode of operation. The design of the steady
mode superframe relies on an extension of the transient superframe in that it is a multiple of the transient superframe
with an added alert message slot. The additional alert message slots are present in order to support the switch
to transient mode when required by the controlled process. The length of the steady mode superframe is flexible
and can vary from 2 X the transient superframe length to more depending on the specific application requirements.
In particular, the energy consumption of the protocol can be reduced by increasing the length of the steady mode
superframe.

Alert messages. An alert message is used by the sensors to trigger a change in the mode of operation. The sensors
make this decision based on a steady state threshold interval set by the sink. When the protocol is operating in steady
mode and a sensor reading breaches the current threshold, an alert message is generated and sent to the sink using
the alert message slots. The DMAMAC (TDMA) protocol® that we implement in this paper has a complete TDMA
structure. This means that every sensor has its own alert message slot within the steady superframe which is used to
send the alert message towards the sink. The sink acts on the alert message by indicating a change in the mode of
operation (steady to transient) for the next superframe. This is done using the notification message slot that follows
the alert message slots. The superframe change is implemented in the next superframe throughout the network in
order to preserve operational mode synchronisation.

Mode-switching and packet failure. Mode-switch is a safety critical part of the DMAMAC protocol due to its dual
mode nature. The mode-switch from steady to transient is initiated by the sensor nodes via alert messages based on
a detected threshold breach. The mode-switch from the transient to steady is decided and enforced by the sink based
on the obtained sensor data which enables the sink to identify a steady threshold interval and initiate the necessary
superframe change. The identified threshold interval is communicated to all the sensor nodes which update their local
information on the threshold interval. The mode-switch from steady to transient initiated by the sensor nodes is a
critical mode-switch operation as a failure to switch to transient mode will effect the control of the process.

The switch from steady to transient can be affected by packet failures in two ways: (1) The alert packets could be
lost resulting in a delay in alerting the sink of the threshold breach; and (2) the notification packet requesting the entire
network to switch operational mode could fail to reach certain nodes, resulting in some nodes continuing in the steady
mode operation. Concerning (2), then the protocol has been designed such that the steady superframe is a multiple of
the transient superframe. This means that the protocol can tolerate a delayed switch of operation model for some nodes
as it allows the nodes to later synchronise to the operational mode in a case where they miss notification messages
for a mode-switch due to packet loss. Also, within each notification message, the sink includes the information of the
mode the network is currently operating in. In case the node is not in the same mode as the sink, it can synchronise
immediately when such a message is received.

3. TinyOS and nesC Protocol Implementation

TinyOS is an operating system designed for low-power embedded systems devices as used in WSANs. TinyOS
applications and protocols are implemented in nesC !° (a dialect of the C programming language). The architecture of
an application in TinyOS is organised as a graph consisting of components connected via interfaces. The components
are entities that provide and use interfaces. An interface is typically used to define a type of service and the signature
of a component lists the interfaces it uses and provides. Below we discuss the implementation model including
integration of the DMAMAC protocol into the TinyOS platform. The DMAMAC protocol mainly require interfaces
connecting to the low-level hardware and radio communication, a time-synchronisation service, and an application to
demonstrate the use of the DMAMAC protocol. In addition, we use interfaces that facilitate receiving packets from
the higher levels, i.e., application and network.

4 Kumar Somappa et al. | Procedia Computer Science 00 (2016) 000—000

MacPowerControl FrameConfiguration

GlobalTime<TMilli>
TimeSynclnfo——p ‘

‘ GenericSlotterC ‘ l—— DMAMAC

CC2420Packet

FrameConfiguration RadioPowerControl Packet AmSend
AMPacket Queue <dmamac_data_t *>
PacketAcknowledgements + e
Receive r B
| QueueC |
CC2420ActiveMessageC L 3

Fig. 1: Component graph for the DMAMAC protocol implementation

Component software architecture. The architecture component graph for the DMAMAC nesC implementation is
shown in Fig. 1. A module is indicated by a box with a single line, and boxes with a double line specifies configuration
of a component. The box with a dashed line denotes a generic module. The grey ovals are interfaces being provided.
Generic modules of components similar to TIMERs can be instantiated multiple times as per application requirement.
We rely on several existing components provided by TinyOS 2.1.2 and re-use the MAC Layer Architecture® services
including FrRaME CoNriGURATION and SLoTTER ConTROL in the implementation of the DMAMAC protocol. These
services are provided by the GENERICSLOTTERC component and are part of the TinyOS distribution (contributions).

Interfaces. The DMAMAC component (Fig. 1) uses several components via their provided interfaces to implement
the functions as per the protocol specification. We re-use most of the components rather than implementing new ones.
The most important components that are used via their provided interfaces are:

GEeNERICSLOTTERC providing slotting functionality for the TDMA in steady and transient super frames.
CC2420ActiveMEssaGEC is the radio component and provides all the radio packets related interfaces.
TmmMeSYNCC providing the time synchronisation required to keep all the nodes in the network synchronized.
QueueC for packet buffer queues to store incoming and outgoing packets until handled.

The FrRaME CONFIGURATION service from the GENERICSLOTTERC component is used to define the parameters of the
transient and steady superframe. The parameters defined include slotsize and superframe length. We use a slotsize of
10 ms, a superframe length of 100 slots for transient mode and 200 slots for steady mode. The FRAME CONFIGURATION is
also used to switch superframe’s dynamically between steady and transient superframes. For TDMA slot scheduling
and control, the SLorTeER CoNTROL service is used. For packet handling we use the CC2420ActivEMEssaGeC interfaces
provided by the radio module of the Z1 hardware. The packet sending and receiving interfaces are AMSEND
and REeceive, respectively. The PacKETACKNOWLEDGEMENTs interface is used for obtaining acknowledgements for
transmitted packets and the AMPackEeT interface is used to for packet data access. The CC2420PackeT component
provides link data including Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) used for the
analysis (see Sect. 4). RapioPowerCoNTROL is an interface used to switch radio on or off.

The interfaces provided by the DMAMAC component are: SenD, Recerve, MacPowerConTroL, INIT and
FraMECoNFIGURATION. The SEND and REeCEIVE interfaces are provided for packet handling in both directions: incoming
and outgoing. The [nit interface is used for initialising the module, after which MacPowerConTroL is used for
switching the component on and off. The FrameConfiguration is provided for modifying the transient and steady
superframe length if required by the application.

Time Synchronisation. Time synchronisation is a key element of any TDMA-based MAC protocol as all nodes
must start start on every slot simultaneously. Given the clock drift and varying local time on each nodes, time
synchronisation is necessary. We use the Flooding Time Synchronisation Protocol (FTSP)!! provided with the TinyOS

Kumar Somappa et al. / Procedia Computer Science 00 (2016) 000-000 5

suite to obtain time synchronisation for DMAMAC. A root node is selected (the sink in our case) and the time of the
root node is used as global time by the rest of the nodes. The root node sends out a time-synchronisation message at
a user defined interval and all nodes update their local clock based on the values received from the root node. The
TmEeSyncC component provides the time synchronisation required and the the timing information of each node can be
obtained via the TMeSyncINFo interface. Alternatively, we could have used the CC2420TmMES YNCMESSAGE component
to send time synchronisation information in the notification slot of the sink. But, this would require integrating the
time synchronisation implementation into our MAC level implementation. In order to obtain a modular design and
demonstrate that DMAMAC can be implemented with a standard time synchronisation component, we directly use the
FTSP time synchronisation as a background process. We use a synchronisation rate of 3s, i.e., a time synchronisation
message is sent from the root node to all nodes every 3s.

Mode-switch implementation. The FRAMECONFIGURATION interface is used to implement the mode-switch which can
occur in two ways: (1) Transient to steady which is a non-critical switch implemented by the sink based on the readings
of the sensors and signalled via notification to all the nodes; and (2) Steady to transient which is a safety-critical switch
decided by the sink based on the alert messages transmitted by one or more sensor.

When a node receives a notification message from the sink about change of mode, it uses the FRAMECONFIGURATION
interface to change the type of superframe used. The loss of a notification packet can affect the mode-switch procedure
and thus the process control adversely. This is mainly important for the critical steady-to-transient switch. We
therefore implement the notification messages from the sink such that they repeat the current mode in every round.
The design of the superframes is such that steady mode superframe is
a multiple of the transient mode superframe which means that even in
a case where some nodes are not in the same mode (due to notification @ Notfeaion (] seep [J wer Message)
loss), they can easily synchronise in the next notification message. In Nt Nt
addition, the reliability of the protocol can be further enhanced by I o I I
ensuring that if a node detects that it misses a notification slot, then [U """""" [U[D --------- [:D """""" [I][I]
it switches into transient mode as a safety precaution. In case where
the network is still in steady mode, the node will re-synchronise back Steep Sleep Alert
to steady mode as soon as it correctly receives payload in a notification
slot. In the implemented version of the DMAMAC protocol, we Fig. 2: Modified sleep part in the steady
included an additional notification slot in the beginning of the sleep superframe
parts of transient length (Nt) in the steady superframe as shown in
Fig. 2. This is a modification to the original superframe structure’ to
improve robustness and reduced switch delay.

4. Deployment and Experimental Evaluation

The zolertia nodes used for the experiment have a MSP430F2617 low power micro-controller with a 16-bit 16-MHz
RISC CPU, 8KB RAM and 92KB of flash memory, and a CC2420 IEEE 802.15.4 complaint transceiver operating
at 2.4GHz with a data rate of 250Kbps. The multi-hop network topology used for the experiments is shown in
Fig. 3(left). It consists of 3 sensor nodes, 1 actuator node, and a sink node. The senors relay sensor information
to the sink and receive notification and data packets (to forward) from the sink. The actuator node only receives
data and notification packets. The configuration of the testing application which uses the DMAMAC protocol for
communication in the experiments is shown in Fig 3(right). The application mainly uses the DMAMAC protocol to
send and receive packets, and also to modify frame configuration (i.e., length of steady and transient) as required. The
application uses the generic module TMERMILLIC to produce packets at a preset interval. It also initialises (boots) the
TmmMESYNCC component for use by the DMAMAC component.

The DMAMAC protocol has been designed for process control application which means that it will typically be
deployed in a factory automation setting where there would be numerous machines present creating noise that would
effect the operation of the protocol. The noise could be a result of the variation in temperature, vibrations, and
electromagnetic noise '2. To emulate a real process automation environment, we have used an electrical laboratory
containing multiple running motors. This allows us to setup a controlled environment in which we can conduct

6 Kumar Somappa et al. | Procedia Computer Science 00 (2016) 000—000

TestAppC

StdControl
/ MacPowerControl

] 0-Sink " MacReceive Timer<TMilli>
MainC
e |

FrameConfiguration

ﬁJ Sink node

() T [) MacSend
N I Init Boot
L Sensor node 2 r————-—- Q3
| |
TimeSyncC DMAMAC l | TimerMillic | |
&%) Actuator node . le____Jl
& 4 L______ J

Fig. 3: Experimental setup: network topology (left) and application structure (right)

experiments in different scenarios to study the effect of external factors like motor noise on the performance of the
protocol.
Our first goal was to validate that the implementation correctly sets the

radio states. For this, we measured the current to validate the change of Radio state | Current measured
radio states (TX, RX and SLEEP). The values obtained are shown in Tab. 1. Sleep 05 mA — 0.6 mA
The measurements were made using an oscilloscope with a 3V power source TX 71 mA — 22 mA
placed with node and a 10 Q resistor coupled in series. The measured current RX 73 mA — 23.5 mA
are in the expected range as per the data sheets for the radio hardware.

Our second goal is to study the impact of noise on packet failures and Table 1: Measured current in radio
how it affects the mode switch procedure of the protocol. We consider two states.

separate scenarios: a motor room scenario and open room scenario. We

measure three metrics: Received Signal Strength Indicator (RSSI), Link

Quality Indicator (LQI), and failure of notification packets. We mainly focus on notification packets and parameters
measuring its quality because they are directly responsible for the network wide mode-switch. For the open room
scenario, we perform two experiments with varying setup, one with line of sight placement and one non-line of sight
or arbitrary placement (both with 5 nodes) of nodes. For the motor room scenario we used the same setup, but with
additional running motors. The two scenarios are further discussed below. RSSI values range from -50 dBm to
-95 dBm (maximum receiver sensitivity), where values towards -50 dBm are considered to be better. RSSI is the
measurement of the power in the received signal and thus gives some indication of pathloss for the signal. LQI values
range from 50 to 110 for the CC2420, where values towards 110 are the good ones. LQI is calculated for each packet
in TinyOS and indicates link quality based on packet reception.

Scenario 1: Motor room. These experiments were conducted in a laboratory with multiple asynchronous induction
motors with high wattage (3kW and generating a voltage of 325 V). The idea is to test DMAMAC in an industry-like
scenario where motors are running and generating noise including electromagnetic noise. This scenario also includes
frequency controllers, and current converters (Direct to Alternating) operating at varying frequencies. During the
experiment, we also had students that walked around these motors performing tests. The laboratory in addition
includes standard Wi-Fi access points. We considered two placement of the nodes: line of sight placement and
(arbitrary) non line of sight placement. The line of sight placement has the nodes places such that they are visible to
each other. The arbitrary placement is around the motors with no direct line of sight.

The graphs from the obtained RSSI and LQI measurements from the line of sight placement scenario experiment
are shown in Fig. 4(left) and Fig. 4(right). Rounds define the number of notifications received. It can be seen that
the link quality and the received signal strength are quite stable. But in a general industrial environmental setup, line
of sight placement is not always possible. This is why we also also consider node placement in order to get a more
accurate picture of the performance of the hardware. The graphs for the obtained RSSI and LQI measurements from
the non line of sight (arbitrary) placement scenario are shown in Fig. 5(left) and Fig. 5(right). Observing these figures,
we can see that the link quality is relatively stable, but the RSSI has a large variation through the experiment. Given
the collective picture of LQI and RSSI and packet loss, it can be concluded that the arbitrary placement does affect
the link quality for the used hardware based on the obstacles and the generated noise.

Scenario 2: Open room. The open room scenario uses the same laboratory as the motor room scenario but without
any running motors or students around, but Wi-Fi was active in both scenarios. The RSSI values obtained in the open

RSSI (dBm)

Kumar Somappa et al. / Procedia Computer Science 00 (2016) 000-000

rssi Scatter Plot

T T
Nodel

Node2

Node3

X

Rounds

LQI (50-110)

130

120

=
o
[S]

90

80

70

60

50

LQI Scatter Plot

T T
Nodel
Node2 x -

Node3

50 100
Rounds

150

200

Fig. 4: Experimental results for motor room scenario - line of sight placement.

Fig

RSSI (dBm)

RSSI (dBm)

rssi Scatter Plot

T
L Nodel +
Node2 x
Node3
L 5 : il
X
L x % il
. XX \ ﬁ
. %, X >§y R X
L X X s R
X;ix, R Y % %4 Séf‘§?§§§§é
e B
oSt ﬁ-*w,r&&wwiJrﬁﬂHﬁwﬂt
[+ H it -
L 1 |
0 50 100 150 200
Rounds

LQI (50-110)

130

120

90

80

70

60

50

LQI Scatter Plot

T
Nodel
Node2

Node3

+

50 100

Rounds

150

200

. 5: Experimental results for motor room scenario - arbitrary node placement.

rssi Scatter Plot

T
Nodel

t
-100 Node2 x
Node3
90 | B
-80
70 b 4
R
60 R x4
VTR T /%\%Wﬁ
50 B
| | |
0 50 100 150 200
Rounds

LQI (50-110)

130

120

100

90

80

70

60

50

LQI Scatter Plot

T T
Nodel

Node2
Node3

50 100

Rounds

Fig. 6: Experimental results for the open room scenario.

150

200

room scenario is shown in 6(left) and the LQI is shown in 6(right). In this scenario, we investigated both line of
sight and (arbitrary) non-line of sight placements. The results obtained for both placements are fairly similar and we
therefore only include the line of sight experiment due to space limitation. It can be seen that in comparison with the
motor room scenario, the RSSI values are fairly stable over the time, and so are also the the LQI values.

8 Kumar Somappa et al. / Procedia Computer Science 00 (2016) 000-000

| Scenario | Open room non-LOS | Open room LOS | Motor room non-LOS | Motor room LOS |

Node 1 0/300 0/300 1/300 3/300
Node 2 1/300 1/300 3/300 3/300
Node 3 6/300 2/300 6/300 4/300

Table 2: Notification packet failures on nodes 1-3 line of sight (LOS) and non-line of sight (non-LOS).

The results obtained in both the motor room and the open room scenario show two main things. The notification
packet failure is small and is similar across the scenarios and experiments as summarised in Table 2. Thus, the protocol
runs across these scenarios with little packet failure. The LQI values shows minimum variation in link quality in all
experiments. Primarily, we can infer that the environment conditions effects the performance of the protocol, and that
the steps taken to make the protocol robust indeed help in these situations. The RSSI measure on the motor room
scenario shows large variations which could be an effect of multi-path fading in the non-line of sight scenario. Also,
in the line of sight scenario the noise could be a factor. Continuously operating Wi-Fi in the area could also create
interference, but has similar effect on both scenarios. However, additional experiments are needed to get definite
conclusions on the multi-path effects.

5. Conclusions and Future Work

We have demonstrated the practical implementability of the dual-mode DMAMAC protocol for process control.
In particular, we have shown how to implement the mode-switch which is a distinct feature of DMAMAC not found
in other MAC protocols for process automation. Also, we have shown that DMAMAC can be implemented based
on a standard time synchronisation protocol. Our implementation work has also resulted in two improvements to the
robustness of the DMAMAC protocol in tolerating packet loss. We have evaluated the DMAMAC implementation in
a representative process control automation environment which included sources of noise that interfered with the radio
communication and hence affect the protocol operation. These results demonstrated the capability of the DMAMAC
protocol to operate in a satisfactory manner in the presence of packet failures, in particular that the critical steady to
transient mode switch was performed properly.

The result presented in this paper combined with our earlier work® on design and simulation-based evaluation of
DMAMAC can be seen as the final step in the development of DMAMAC. A natural extension of the present work
would be a large-scale deployment testing of the protocol in order to investigate scalability. Investigating the use of
DMAMAC in less safety-critical contexts such as home automation is also a possible direction of future work.

References

1. L. E Akyildiz, I. H. Kasimoglu, Wireless Sensor and Actor Networks: Research challenges, Ad Hoc Networks 2 (4) (2004) 351-367.
A. A. Kumar S., K. @vsthus, L. M. Kristensen, Towards a Dual-Mode Adaptive Mac Protocol (DMA-MAC) for feedback-based Networked
Control Systems, in: The 2nd International Workshop on Communications and Sensor Networks, 2014, pp. 138-162.
P. Suriyachai, J. Brown, U. Roedig, Time-critical data delivery in Wireless Sensor Networks, in: DCOSS, Vol. 6131, 2010, pp. 216-229.
4. P. Suriyachai, U. Roedig, A. Scott, Implementation of a MAC protocol for QoS support in Wireless Sensor Networks, in: IEEE International
Conference on Pervasive Computing and Communications, 2009, pp. 1-6.
5. J.-H. Hauer, TKN15. 4: An IEEE 802.15. 4 MAC implementation for TinyOS.
6. K. Klues, G. Hackmann, O. Chipara, C. Lu, A component-based architecture for power-efficient media access control in wireless sensor
networks, in: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems, SenSys 07, 2007, pp. 59-72.
7. Z1 datasheet, zolertia, http://www.zolertia.io//, accessed: 25-01-2016.
8. P.Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, D. Culler, Tinyos: An operating
system for sensor networks, in: W. Weber, J. Rabaey, E. Aarts (Eds.), Ambient Intelligence, Springer, 2005, pp. 115-148.
9. A. A. Kumar Somappa, L. M. Kristensen, K. Ovsthus, Simulation-based evaluation of DMAMAC: A dual-mode adaptive MAC protocol for
process control, in: SIMUTools, 2015, pp. 218-227.
10. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, The nesc language: A holistic approach to networked embedded systems,
in: Proceedings of the Conference on Programming Language Design and Implementation, PLDI °03, 2003, pp. 1-11.
11. M. Maréti, B. Kusy, G. Simon, A. Lédeczi, The flooding time synchronization protocol, in: Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems, SenSys *04, 2004, pp. 39-49.
12. K. S. Low, W. Win, M. J. Er, Wireless sensor networks for industrial environments, in: International Conference on Computational
Intelligence for Modelling, Control and Automation, Vol. 2, 2005, pp. 271-276.

N

hed

Chapter 11

Towards a Model-Based
Development Approach for Wireless

Sensor-Actuator Network Protocols

149

Towards a Model-Based Development Approach for
Wireless Sensor-Actuator Network Protocols

Position paper

A. Ajith Kumar S.
Bergen University College, Norway
University of Agder, Norway
aaks@hib.no

ABSTRACT

Model-Driven Software Engineering (MDSE) is a promising
approach for the development of applications, and has
been well adopted in the embedded applications domain
in recent years. Wireless Sensor Actuator Networks
consisting of resource constrained hardware and platform-
specific operating system is one application area where the
advantages of MDSE can be exploited. Code-generation is
an integral part of MDSE, and using a multi-platform code
generator as a part of the approach has several advantages.
Due to the automated code-generation, it is possible to
obtain time reduction and prevent errors induced due to
manual translations. With the use of formal semantics in the
modeling approach, we can further ensure the correctness
of the source model by means of verification. Also, with
the use of network simulators and formal modeling tools, we
obtain a verified and validated model to be used as a basis for
code-generation. The aim is to build protocols with shorter
design to implementation time and efforts, along with higher
confidence in the protocol designed.

Keywords

Model-Driven Software Engineering (MDSE), Wireless
Sensor-Actuator Networks (WSAN), Code Generation,
Validation, Verification, Simulation, Embedded Software

1. INTRODUCTION

Wireless Sensor-Actuator Networks (WSANSs) consists
of a network-connected sensors and actuators working
towards a specific mission. It is a branch of the
existing Wireless Sensor Network (WSN) systems. Sensors
and actuators in WSAN are resource constrained small
devices usually powered by batteries. WSAN has several
application domains such as process automation and factory
automation, and is thus widely applicable in an industrial
setting. One important setting in which WSAN is applicable
is the control-loop of automation processes. Systems
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

CyPhy 14, April 14-17 2014, Berlin, Germany

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2871-5/14/04 ...$15.00.
http://dx.doi.org/10.1145/2593458.2593465

Kent I. F. Simonsen
Bergen University College, Norway
Danish Technical University, Denmark

kifs@hib.no

with control-loops have stringent requirements, and these
applications are often safety-critical. This implies that
it is important to have a sound design methodology
for developing software solutions to be deployed on the
sensors and actuators. Quite often the design methodology
includes modeling of the protocols. Later these models
are manually converted to simulation code and further
analyzed. Some development approaches also includes
model-checking to check for correctness. As the last step,
models are transformed to the implementation platform
code. This approach towards design of WSAN solutions can
be combined with existing software engineering approaches,
to strengthen the reliability of the software generated and
to reduce the time for development.

Model-Driven Software Engineering (MDSE) is one such
approach that has long been seen as a prominent approach
for software engineering. MDSE uses models as primary
artifacts. MDSE is an extensively used methodology
across several domains for development of applications.
Advantages of MDSE approach include shorter time from
design to implementation, verified and validated models
used for automatic code generation. In an industrial setting,
continuous work is done in reducing the cost of developing
software and the time required, and MDSE works towards
this. In MDSE approaches, the initial model is an abstract
and platform independent representation of the protocol.
This abstraction allows the designers to focus on creating a
model with proper functioning. Combining this abstraction
step with formal approaches allows further improving the
verification and validation process. The abstract models
can be model-checked for verification and can be further
simulated to obtain initial performance assessment results.
This minimizes the possibility of errors in the code generated
to a further extent.

One tool that allows model-checking and simulation is
Coloured Petri Nets (CPN) Tools [5]. It is based on the
expressive language CPN combined with the Standard ML
programming language. CPN has been previously used for
modeling and verification of network protocols [1]. This
combined with the PetriCode [14] tool, forms a complete
MDSE approach for development of network protocols
and can be applied to develop WSAN protocols as well.
PetriCode is a code generation tool that takes platform-
independent CPN models as input and produces platform-
specific code for various platforms like Java, Clojure and
Groovy. The aim of this work is to extend PetriCode to
support platform-specific code generation for sensor network

platform such as the TinyOS [9] and for sensor network
simulators. Using a CPN model as a starting point allows
us to base our implementations on verified and functionally
correct model, giving confidence in the correctness of the
generated code. In this article, we mainly focus on providing
an MDSE approach for protocol development for WSAN
using CPN models and the PetriCode tool. Generation for
disparate platforms (MiXiM [6],TinyOS) is still challenging
because the model must then support several programming
models in the implementations. For the model, however
this can be seen as an advantage as it forces the model
to focus on the logical operation of the protocol and not
include implementations details. As a case study we use the
GinMAC [15] protocol specification. GinMAC protocol was
designed for WSAN, with strict packet delay requirements.

2. RELATED WORK

Model-driven software engineering has been used in the
WSN domain for a while now [10, 18]. There have
been several work proposing various frameworks for rapid
development of WSN protocols, dominantly based on
Doman Specific Modeling Languages (DSML) [2, 4] or the
Unified Modeling Language (UML) [10, 18, 13]. In [11],
a design framework is proposed which facilitates behavior
simulation, and multi-platform code-generation. It requires
multiple steps for platform-specific code generation and the
simulation done is very basic. In [12], an architectural
framework, Architecture for Wireless Sensor and Actuator
Network (ArchWiSeN) is proposed. This architecture is
based on UML diagrams as platform independent high level
models and consider TinyOS platform for code generation
and simulation was performed on TOSSIM. Moppet [2] is
an MDSE based method that uses feature modeling, in-tool
performance estimator and code generation for TinyOS. In
[4] the authors concentrated mainly on the modeling aspects
proposing an architecture consisting of separate modeling
languages for environment, software architecture and node
modeling. Mapping is used to create relation between these
modeling languages. They also propose code generation
as possible future work based on existing model to text
generators. In [16], a model-driven development approach is
proposed based on a Domain Specific Language (DSL) for
WSN. They perform a model-to-model transformation from
the initial platform independent model to a platform specific
model. This platform specific model (TinyOS) is then used
for code generation. In [17] a code-generation technique for
nesC was provided. The article [17], focussed only on the
code-generation part and specifically the TinyOS platform,
thus creating platform-specific code generation software.
The key differences between the existing and our MDSE
approach are: firstly we provide a formal platform to begin
modeling with, which also provides simulation and state-
space analysis possibilities, secondly we provide conversion
possibility to event-based network simulator (MiXiM [6])
that has been used in WSN research. These features are
provided along with code-generation for a sensor specific
platform like TinyOS.

3. OVERVIEW OF APPROACH

In this section, we provide an overview of our proposed
MDSE approach for protocol design and implementation.
The approach is illustrated in figure 1. The starting point

of the approach is an abstract model of the given protocol.
For modeling purposes, we use CPN Tools [5]. Along
with modeling and verification, CPN Tools allows for initial
simulation. Using CPN Tools, developers can create a
formal executable model of a protocol. Developers can also
perform behavioral and functional verification, state-space
analysis, and initial simulation. Based on the analysis,
developers can verify and validate the given model, based
on its requirements specification. In the next step, the
refined CPN model is converted to code models using the
PetriCode tool [14]. PetriCode is a code generation tool that
is designed to automatically generate implementations of
network protocols for various platforms. PetriCode requires
the models to be annotated with code generation pragmatics.
These pragmatics are structural annotations on CPN models
that are bound to code-generation templates via template
bindings. In PetriCode the pragmatics and the template
bindings as well as the structure of the CPN model is used
to guide code generation without needing to translate or
interpret the ML code of any given CPN model. Using
the PetriCode tool, developers can automatically generate
code for model-checkers, network simulators, and hardware
platforms. The implementation generated for the simulation
and model checking platforms are used to perform further
analysis. This can further strengthen the developer’s
confidence in the correctness of the final implementation.

Initial Modeling

ulll g
oNo

CPN Tools %—' O ®
® &

Simulation, Verification and
State-space analysis

:> Work in progress
- Future extension

i

[Refined CI
Model

Refinement and
Code Generation

4

PetriCode

Timed Automata (’ Code
Verification , {5:)(}
Model
Probabilistic

Model-Checker

' Simulator

Figure 1: Model-based Development Approach

nesC

% Implementation
code
++

Simulation ﬂ ﬂ
code l

<;:'

o

{@

For the initial work, we have selected certain tools namely,
Uppaal [3] /PRISM [7] for model-checking, Omnet-Mixim
[6] for network simulation, and TinyOS [9] for platform-
specific simulation and implementation. All these have been
successfully used in a number of application case studies.
Using this approach, before the final implementation, the
model can be further tested using the tools listed above.
Uppaal/PRISM are powerful probabilistic model-checkers
that allow for further exhaustive behavioral and functional
analysis. Given the stochastic nature of the wireless channel
used for communication in WSAN] it is essential to perform
a probabilistic study for the model-checking procedure.
Omnet-Mixim is a discrete event simulator that allows
for network simulations using pre-defined wireless channel
models and also has rich protocol library thus provides
necessary infrastructure. From the results obtained by

CPN Model
— Annotated wi
Pragmati

Initial CPN
Model

Bindings Templates
Java Java
C++ C++

nesC nesC
Clojure Clojure

I Platform-Specific code
for Multiple Platforms

Figure 2: Code generation architecture

model-checking and simulating the model, the CPN model
can be further refined to eliminate possible design flaws and
to provide high quality software for the implementation.
The event based sensor network platform TinyOS is used
for hardware implementation code generation. TOSSIM [8]
is the emulator for TinyOS platform, thus nesC code can be
simulated.

The flexibility of PetriCode tool that makes it possible
to generate code for different platforms is an important
advantage over most other existing tools. Developers can
create their own templates and bindings for a platform based
on the pragmatics defined by the tool. For the design,
analysis, and implementation of protocols, platform specific
codes in C++ for simulation, Timed Automata for model
checking, nesC for TinyOS and TOSSIM is required. The
challenge in the current work is to be able to extract multi-
platform representations out of a single CPN model. Given
that different platforms such as TinyOS which has a event-
based code structure, Java and C++ have object-oriented
structure, it is essential to exploit the similarity in them to
be able to generate code from a single model.

4. MODELS AND CODE GENERATION

An important part of MDSE is code-generation. It
is essential towards reducing the errors in the coding
process and reducing time required to generate code from
design. In our framework, we use PetriCode tool [14] to be
able to generate platform-specific code and simulation tool
code. Our aim is to extend the PetriCode tool to provide
implementation and simulation code. The code generation
framework is shown in figure 2. The code generation is
carried out in four steps, detailed below.

1. Create a CPN model of the protocol for which an
implementation is to be obtained.

2. Annotate modeling elements with pragmatics to
facilitate code generation. PetriCode models have an
explicit control-flow path that is defined by <<Id>>
pragmatics. This allows PetriCode to use the CPN
model structure to generate code for programming
languages of several paradigms

3. Create bindings and templates for the platform to
which the resulting code has to be generated.

4. Use PetriCode to generate code using proper bindings.

Multiple steps are involved in going from CPN model to a
platform-specific code for which [14] can be referred. In this
article, we use PetriCode tool and extend its functionalities
to support WSAN protocol development. The bindings and
the templates required for the code-generation for every

platform has to be specified. These templates and bindings
use the pragmatics to interpret the CPN model and create
the corresponding implementation code. The PetriCode
tool already has predefined bindings for Java, Clojure and
Groovy. A sample CPN model for a sensor looks like the
one in figure 3. This is the top most level of the layered
CPN model, defining a sensor node and is annotated with
pragmatics <<Principal()>> and <<Channel()>>. The
top most level depicts the layered sensor model with a radio
component at the lowest layer (OSI layering), connecting
the sensor with the communication channel. Above it, is
the Medium Access Control (MAC) layer which handles
all the communication through and to the sensor. The
application and network part are combined in this model
which represents application support and routing decision
support protocols. A level lower where the module is defined
in detail, inside the Medium Access Control (MAC) module
we can see <<Service()>> pragmatic as shown in figure
4. The figure depicts two services being handled in the
MAC module: radio packet handler and upper layer packet
handler. The module also consists of a variable declaration
SingleSlotBuffer used by the upper layer packet handler
service.

Similar to relating programming concepts between
different platforms it is a challenge to relate pragmatics
to different code structures across languages. A view of
the differences in concepts between the initial pragmatics
annotations and platform-specific languages is shown in
figure 5. The nesC code structure consists of components,
configurations, modules and interfaces. @~ Whereas C+-+
consists of objects, classes, methods and abstract classes.
Initially, we map <<Principal()>> pragmatic to objects
in C++ and components in nesC. At the lower level,
nesC contains of commands and events (synchronous and
asynchronous) and C++ consists of methods. We map
the <<Service()>> pragmatic to commands and events
in nesC, and to methods in C++. PetriCode already
consists of Java templates and bindings. We need to create
new bindings and templates for C+4 and nesC, adhering
to their implementation rules. An example C++ code
generated from the CPN model defined in figure 3 is shown
in listing 1. For this generation, the binding used is shown
in listing 2 and the template example for ”Declaration”
is shown in listing 3. An example nesC code (skeleton)
generated for the same CPN model is shown in listing

Application and Network
<<Principal()>>

AppNetwork

AppReceive AppSend

NIT INIT

\\

NIT

MAC
<<Principal()>>

MAC

MReceive
NIT

Radio
<<Principal()>>

Radio

CReceive

NIT NIT

Wflo{le-
e

<<Channel()>>
WirelessChannel

“ Wireless Channel H

Figure 3: CPN model of a Sensor

AppReceive

AppSend
UNIT UNIT
HandleRadioPacket

HandleRadioPacket SingleSlotBuffer HandleUpperPacket
<<Service()>> <<State>> <<Service()>>
Packet

UNIT HandleUpperPacl
UNIT

Figure 4: CPN model of the Medium Access Layer

UNIT

4. The "Declaration” binding is used to generate code for
the pragmatic <<State>> which can be seen in figure 4.
To obtain the nesC code, we plan to use asynchronous
commands and events. An important constituent of a
program code block is its control flow. Given the CPN’s
lack of enforcing a structure particularly to enforce control
flow, PetriCode defines certain pragmatics and control flow
structure for the <<Service()>> level [14]. Thus at the
service level, we need to follow a particular structure that
defines the control-flow while transforming the model from
an initial CPN model to an annotated PetriCode CPN
model. In the current work, we are in the process of creating
code-generation for simulation and hardware platforms.
Currently an abstract model of the protocol has been created
and a C++ conversion (skeleton code) is generated as an
example.

nesC Pragmatics C++

Components “ <<Principal()>> “ Classes
Coni "

<<Channel()>> Objects
Modules <<Service()>> Methods
<<D i D

Figure 5: Concept mapping from Pragmatics to
nesC and C++

Listing 1: C++4 source code file
//Mac c++ file
#include <BaseMacLayer.cc>
#include "MAC.h"

Object SingleSlotBuffer;

void MAC::HandleUpperPacket () {
/x[1x/ /x[1x/
/*vars: [__TOKEN__:]1%*/
Object __TOKEN__ = null;

¥

void MAC::HandleRadioPacket () {
/x[1x/ /x[1x/
/*vars: [__TOKEN__:]1x/
Object __TOKEN__ = null;

Listing 2: Template Bindings file
//C++.bindings
principal (pragmatic: ’principal’,
template: "./cTmpl/mainClass.tmpl")
service (pragmatic: ’service’,
template: "./cTmpl/externalMethod.tmpl")
DECLARATIONS (pragmatic: °’_-DECLARATIONS-_’,
template: ’>./cTmpl/__DECLARATIONS__.tmpl’)
Listing 3: Template file for declarations binding
// __DECLARATIONS__.tmpl
/*vars: ${vars}tx/
<%vars.each{%>
<hif C it 1= °[]1’ && it != ’msg’){%>0bject ${it} = null;
<h}}%>

Listing 4: nesC implementation code
//MAC Component
module MAC{}
implementation {
Object SingleSlotBuffer;

event void HandleUpperPacket () {
/*[1x/ /*[1*/ /*vars: [__TOKEN__J]x*/
Object __TOKEN__ = null;

}

event void HandleRadioPacket () {
/*x[1x/ /*[1x/ /*vars: [__TOKEN__]1x*/
Object __TOKEN__ = null;
}

4.1 Current Challenges

The important challenges in the current project using
PetriCode for code-generation for multiple platforms are
listed below:

1. Finding proper abstractions and abstraction level for
the platform-independent models.

2. PetriCode assumes a certain control-flow model in
the models. Even though PetriCode has been used
to generate code for languages representing different
programming paradigms, it may not be entirely trivial
to adapt to target platforms and simulators for the
embedded domain.

3. Making code-generation as complete as possible with
regards to being able to generate most or any protocol
with little or no need to create new pragmatics and
templates for various target platforms.

5. OUTLOOK

In this article, we have proposed an MDSE approach
for designing protocols for WSN and WSAN applications.
We carry out high-level abstract modeling in feature
rich CPN Tools which also allows for initial verification
and simulation unlike other existing tools. We further
provide the opportunity to also perform simulation on
full-fledged network simulators that focus specifically on
network simulations and have been developed over the years
to incorporate various wireless features. Thus, initially
we extend PetriCode to provide code generation for the
network simulator MiXiM and sensor network platform
TinyOS in nesC language. The extensions have been
partly completed and the work is in progress. We have
generated initial skeleton code for C++ and nesC. Given
the model of the PetriCode tool, it can also be extended
towards providing conversions to other platforms as well
as model-checking tools for further verification, essentially
probabilistic verification considering the complex nature of
wireless channels involved. We can also easily extend to
obtain possible code generation to other prominent sensor
network platforms namely ContikiOS as well, which is based
on the C language. As a case study, we plan to design
the GinMAC protocol according to its specifications and
generate implementation code.

6. REFERENCES

[1] J. Billington, G. Gallasch, and B. Han. A coloured
petri net approach to protocol verification. In Lectures
on Concurrency and Petri Nets, volume 3098 of
Lecture Notes in Computer Science, pages 210-290.
Springer Berlin Heidelberg, 2004.

[2] P. Boonma and J. Suzuki. Model-driven performance
engineering for wireless sensor networks with feature
modeling and event calculus. In Proceedings of the 3rd
Workshop on Biologically inspired Algorithms for

[11]

[12]

Distributed Systems (BADS), pages 17-24. ACM,
2011.

A. David, K. G. Larsen, A. Legay, M. Mikucionis,

D. B. Poulsen, J. Vliet, and Z. Wang. Statistical
model checking for networks of priced timed
automata. In Proceedings of the 9th International
Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS), volume 6919 of LNCS,
pages 80-96. Springer Berlin Heidelberg, 2011.

K. Doddapaneni, E. Ever, O. Gemikonakli,

I. Malavolta, L. Mostarda, and H. Muccini. A
model-driven engineering framework for architecting
and analysing wireless sensor networks. In Proceedings
of the 3rd International Workshop on Software
Engineering for Sensor Network Applications
(SESENA), pages 1-7, 2012.

K. Jensen, L. Kristensen, and L. Wells. Coloured petri
nets and cpn tools for modelling and validation of
concurrent systems. International Journal on Software
Tools for Technology Transfer, 9:213-254, 2007.

A. Kopke, M. Swigulski, K. Wessel, D. Willkomm,

P. T. K. Haneveld, T. E. V. Parker, O. W. Visser,

H. S. Lichte, and S. Valentin. Simulating wireless and
mobile networks in omnet++ the mixim vision. In
Proceedings of the 1st international conference on
Simulation tools and techniques for communications,
networks and systems € workshops (Simutools),
number 71, pages 1-8, 2008.

M. Kwiatkowska, G. Norman, and D. Parker. Prism
4.0: Verification of probabilistic real-time systems. In
Proceedings of the 23rd International Conference on
Computer Aided Verification (CAV), volume 6806 of
Lecture Notes in Computer Science, pages 585—591.
Springer Berlin Heidelberg, 2011.

P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim:
Accurate and scalable simulation of entire tinyos
applications. In Proceedings of the 1st International
Conference on Embedded networked sensor systems
(ACM SenSys), pages 126-137. ACM, 2003.

P. Levis, S. Madden, J. Polastre, R. Szewczyk,

K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. Tinyos: An operating
system for sensor networks. In Ambient Intelligence,
pages 115-148. Springer Berlin Heidelberg, 2005.

F. Losilla, C. V Chicote, B. Alvarez, A. Iborra, and
P. Sanchez. Wireless sensor network application
development: An architecture-centric MDE approach.
In Software Architecture, Lecture Notes in Computer
Science, pages 179-194. Springer Berlin Heidelberg,
2007.

M. M. R. Mozumdar, F. Gregoretti, L. Lavagno,

L. Vanzago, and S. Olivieri. A framework for
modeling, simulation and automatic code generation
of sensor network application. In Proceedings of the
5th Annual IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON), pages 515-522, 2008.

T. Rodrigues, T. Batista, F. Delicato, P. Pires, and
A. Zomaya. Model-driven approach for building
efficient wireless sensor and actuator network
applications. In Proceedings of the 4th International
Workshop on Software Engineering for Sensor

(13]

(15]

(16]

(18]

Network Applications(SESENA), pages 43-48, 2013.
R. Shimizu, K. Tei, Y. Fukazawa, and S. Honiden.
Model driven development for rapid prototyping and
optimization of wireless sensor network applications.
In Proceedings of the 2nd International Workshop on
Software Engineering for Sensor Network Applications
(SESENA), pages 31-36, 2011.

K. I. F. Simonsen, L. Kristensen, and E. Kindler.
Generating protocol software from cpn models
annotated with pragmatics. In Formal Methods:
Foundations and Applications, volume 8195 of Lecture
Notes in Computer Science, pages 227-242. Springer
Berlin Heidelberg, 2013.

P. Suriyachai, J. Brown, and U. Roedig. Time-critical
data delivery in wireless sensor networks. In
Proceedings of Distributed Computing in Sensor
Systems (DCOSS), pages 216—-229. Springer Berlin
Heidelberg, 2010.

N. X. Thang, M. Zapf, and K. Geihs. Model driven
development for data-centric sensor network
applications. In Proceedings of the 9th International
Conference on Advances in Mobile Computing and
Multimedia, MoMM ’11, pages 194-197. ACM, 2011.
V. Veiset and L. M. Kristensen. Transforming
platform independent cpn models into code for the
tinyos platform: A case study of the RPL protocol. In
Proceedings of the International Workshop on Petri
Nets and Software Engineering (PNSE), volume 989,
pages 259-260. CEUR, workshop proceedings, June
2013.

C. Vicente-Chicote, F. Losilla, B. Alvarez, A. Iborra,
and P. Sanchez. Applying MDE to the development of
flexible and reusable wireless sensor networks.
International Journal of Cooperative Information
Systems, 16:393—412, 2007.

Chapter 12

Model-based Development for MAC
Protocols in Industrial Wireless

Sensor Networks

155

Model-based Development for MAC Protocols in
Industrial Wireless Sensor Networks

Admar Ajith Kumar Somappa'? and Kent Inge Fagerland Simonsen'

! Bergen University College, Bergen, Norway
2 University of Agder, Grimstad, Norway
{aaks, kifs}hib.no

Abstract. Model-Driven Software Engineering (MDSE) is an
approach for design and implementation of software applications, that
can be applied across multiple domains. The advantages include rapid
prototyping and implementation, along with reduction in errors
induced by humans in the process, via automation. Wireless Sensor
Actuator Networks (WSANSs) rely on resource-constrained hardware
and have platform-specific implementations. Medium Access Control
(MAC) protocols in particular are mainly responsible for radio
communication, the biggest consumer of energy, and are also
responsible for Quality of Service (QoS). The design and development
of protocols for WSAN could benefit from the use of MDSE. In this
article, we use Coloured Petri Nets (CPN) for platform independent
modeling of protocols, initial verification, and simulation. The
PetriCode tool is used to generate platform-specific implementations
for multiple platforms, including MiXiM for simulation and TinyOS for
deployment. Further the generated code is analyzed via network
simulations and real-world deployment test. Through the process of
MDSE-based code generation and analysis, the protocol design is
validated, verified and analyzed. We use the GinMAC protocol as a
running example to illustrate the design and development life cycle.

Keywords: Model-Based Development, Code-generation, Medium
Access Control Protocols, Colored Petri Nets, Simulation,
Implementation, Wireless Sensor Actuator Networks (WSAN)

1 Introduction

A wireless network of connected sensors and actuators operating to fulfill a
specific collective goal constitutes a Wireless Sensor-Actuator Network
(WSAN). The sensors and actuators are resource-constrained devices operating
on batteries. Among several application domains, process automation and
factory automation are important application areas in the industrial domain.
Specifically, the application of a WSAN in control-loop automation is an
important research area. These applications have strict real-time requirements
and are in many cases safety critical (e.g., nuclear power plants). Thus, the
design of solutions that include software for the network nodes is required to

have sound design and development methodology to result in a verified and
validated design that also satisfies the real time requirements. The classical
design methodology is to: (1) outline the requirements to the solution; (2)
design a solution based on the requirements; (3) carry an analytical evaluation
of the performance of the solution; and (4) do a manual conversion of the
design into simulation code for further performance analysis, and (5) convert
the design into implementation code and perform deployment test on hardware.

The Dual-Mode Adaptive MAC protocol (DMAMAC) [10] is a Medium
Access Control (MAC) protocol for process control applications. The
traditional design methodology was employed for DMAMAC protocol design
[10] based on application requirements and further evaluated analytically. The
DMAMAC protocol was simulated and evaluated for performance [9]. Further,
was evaluated with real-world deployment [11] (these steps correspond to
1,2,3,4 & 5). Three important issues that can arise in the general design
methodology are: human induced errors in manual conversion, time consuming
manual conversion, and the requirement to make manual changes at each step
when changes are required to the design or the requirements. With the use of
emerging software engineering practices, one can improve the design and
development process. This could help in further strengthening the reliability of
the software part of the solution, while additionally reducing the time from
design to development, thus reducing the cost. Model-Driven Software
Engineering (MDSE) [3] is one such approach that has long been seen as a
prominent approach for software engineering. MDSE is currently used in
several industrial application domains [6]. In this article, we attempt to create
a MDSE approach with MAC protocols in focus. The DMAMAC protocol is
rather complex compared to the GinMAC protocol upon which the DMAMAC
protocol design is based. Thus, we use the GinMAC protocol as a basis to build
the MDSE approach and then proceed towards applying the principle to the
DMAMAC protocol as well.

In the MDSE approach, we start with an abstract platform independent
representation of the solution, protocols for example. Abstraction allows for
focusing on behaviour of the protocol. Using formal approaches on the abstract
models allows for verification of the behaviour of the protocol via model
checking or theorem proving. This abstract model can further be simulated to
obtain an initial performance assessment. Thus, the protocol can be validated
for performance requirements, and verified for software requirements. One tool
that allows both model-checking and simulation is CPN Tools [7]. CPN Tools
is based on the expressive Colored Petri Nets (CPN) language combined with
the Standard ML programming language. Previously, CPN has been used for
modeling and verification of network protocols [1]. Further, we use Petricode
[20] tool for the semi-automatic code generation part. This forms the MDSE
approach proposed previously in [12]. In this article, we extend this work to
complete the code generation for the simulation platform and hardware
platform. The generated code is used to analyze the protocol performance via
network simulations on MiXiM, and via deployment in a real-world setting of

the TinyOS code. We also discuss the methodology used to design the CPN
model. We use GinMAC [21] protocol as a running example to present our
MDSE approach.

Related Work. A model-based development approach has been applied in the
WSAN domain [15,22,19]. Multiple works have proposed frameworks for rapid
prototyping of the development model, mostly based on either, Domain
Specific Modeling Languages (DSML) [2,4] or the Unified Modelling Language
(UML) [15,22,19]. In [16], the authors propose a design framework to convert
models created in Simulink to platform specific code for the platforms TinyOS
and MANTIS operating system. They also provide simulation and behavioural
analysis. An Architectural framework for Wireless Sensor Actuator Networks
(ArchWiSeN) was proposed in [18]. This is based on the generic modeling
platform, UML, for abstract and platform independent representation of the
models. Platform specific code generation is performed to obtain code for
TinyOS, and simulated using the Micaz platform provided in the TOSSIM [14]
simulator by TinyOS.

In this article, we choose to create the platform-independent abstraction of
the model in CPN Tools. CPN tools allows state-space based verification, and
simulation. We specifically focus on behavioural modeling of the protocol design.
A typical WSN node implements an application protocol, a routing protocol, a
MAC protocol, and a link layer protocol. Thus, the solution in its entirety is made
up of multiple protocols, making up a complex solution. In [16, 18], the authors
view the solution as multiple nodes depicting common WSN behaviour. Further,
in this article, we provide platform specific code generation for MiXiM, a network
simulator specifically built for wireless networks. Also, the deployment specific
code generation targets the TinyOS platform and is tested via deployment on
Zolertia Z1 [23] motes.

The rest of the paper is divided into five sections. We revisit our
model-based development approach and PetriCode [20] in Section 2. Also, the
GinMAC protocol [21] which is used as an example is introduced. In Section 3,
we describe the CPN model of the GinMAC protocol. The code generation
templates, pragmatics used, and the generated code for MiXiM-OMNeT are
discussed in Section 4. Code generation for TinyOS is discussed in Section 5.
Finally, in Section 6, we sum up conclusions and discuss future work. The
article assumes prior knowledge of Petri nets. The MDSE approach and
Model-based Development approach are used interchangeably, and means the
same in this context.

2 MDSE and PetriCode

The MDSE approach is shown in Fig. 1. Compared to the MDSE approach
presented in the previous article [12], we have realized the work in progress
(now the working part), and have implemented and analyzed the generated
code via simulation and deployment. This includes the design of an example

MAC protocol, code generation for the simulation platform MiXiM [8] based
on OMNeT, and for the operating system TinyOS [13] for hardware platforms.
The GinMAC [21] protocol is used as a running example for the code
generation case study and is introduced later in this section. Following the
MDSE approach the GinMAC protocol is first designed using CPN Tools.
Initial design verification, validation, state-space analysis, and simulation are
performed using CPN Tools. Further, platform dependent code generation is
performed to obtain code for MiXiM and TinyOS. The code generation is done
using the PetriCode tool as described below.

Initial Modeling

1 |F

& ¢
CPNTools | » O<E®
@ @
@ Simulation, Verification and
State-space analysis
[Refined ;
Working part
M [:) g p

Refinement and .
. . Future extension
Code Generation @

PetriCode

Timed Automata nesC

Verficaion| € d}t} N (Tpementaton
Model code
C++
‘ Simulation ﬂ ﬂ
Probabilistic code |
Model-Checker Emulator Q
' Simulator

Fig. 1. MDSE approach for protocol design [12]

Code

C:"

(&)

PetriCode. We use the PetriCode [20] tool for the code generation. PetriCode
is a template based code generation tool designed to transform a subclass of
CPN models called Pragmatic Annotated-CPNs (PA-CPN) to implementations.
PA-CPN models enforce a hierarchical structure on the models with three levels.
The top level module in a PA-CPN model is called the Protocol System Module
(PSM). The PSM contains the principal agents of the protocol and the channels
between them. Each principal in the PSM contains sub-modules that are on
the principal level. The principal level modules (PLMs) contain the services
that are provided by the principal as well as places that are common among
the services of the principal, and life-cycle variables that control when services
can be invoked. Each service in the PLMs has sub-modules on the service level.
Service level modules (SLMs) contain the actual behaviour of each service. SLMs
are further decomposable into control-flow blocks that represent structures such
as loops and conditionals. In addition to enforcing a hierarchical structure, PA-

CPNs allow model elements to be annotated with code generation pragmatics.
The pragmatics allow the code generator to identify the elements of the PA-
CPN model and to find appropriate templates for the code generation. The code
generation process in PetriCode starts by reading and parsing a PA-CPN model.
Then the PA-CPN model is transformed into an intermediary representation
called an Abstract Template Tree (ATT). The ATT mirrors the hierarchical
structure of a PA-CPN model. PetriCode exploits the pragmatics, to decide
what templates to execute at each node in the ATT. The generator executes
templates for each of the nodes in the ATT. Finally, the code generated for
the ATT nodes are combined to obtain the complete code for each principal.
In this article, we design and develop separate templates for the MiXiM and
TinyOS platforms. Based on these templates the final platform dependent code
is obtained.

Code Generation Goals. The code generation phase assists in reducing errors
induced by humans in programming and streamlines the implementation
approach based on a modular implementation approach. Also, the conversion
to simulation platform assists in analyzing the design of the protocol in the
simulated world to assess the performance. Network simulators specialized in
wireless simulations offer emulated environments of wireless channels, energy
consumption, data transmission, and other services. The conversion to MiXiM
code for simulation has two advantages: firstly, performance analysis of the
designed protocol; secondly, comparison of the protocol with existing protocols
based on selected performance metrics. The conversion to TinyOS supporting
Network Embedded Software C (nesC) code allows the protocol to run across
multiple hardware components that support the TinyOS platform. This also
allows the users to validate the operation of their protocol on existing
hardware, and provides opportunities for further testing in a real environment.

2.1 The GinMAC Protocol

GinMAC is a Time Division Multiple Access (TDMA) protocol, proposed in
the GINSENG project [17]. GinMAC was developed to address the real-time
requirements for industrial monitoring and control applications. A typical
GinMAC superframe is shown in Fig. 2(b). A Finite State-Machine (FSM)
representation of a node working on the GinMAC protocol is shown in Fig.
2(a). The main features of the protocol are: Offfine Dimensioning, Fzclusive
TDMA, and Delay Conform Reliability Control. Offline Dimensioning means
that deployment and delay requirements are planned before deployment, and
all scheduling decisions are made offline prior to deployment. Ezclusive TDMA
means that all TDMA slots are exclusive and are not re-used. Delay Conform
Reliability Control means that GinMAC uses reliability control mechanisms in
the form of additional re-transmission slots to increase reliability. The number
of additional slots required are calculated based on the wireless channel
conditions in the area of deployment. The GinMAC protocol is designed for
networks having a tree topology. It has three types of slots: basic, additional,

and wnused. Basic slots are for regular sensor and actuator data. The
Additional slots feature is intended to increase robustness in poor channel

conditions. Unused

conservation.

Conflguratlon[:] Sleep
commands

[] Sensor Data D Retransmission [] Actuator Data

N

Dm0 D _(0m

Upstream Data

Unused/Sleep ! Downstream Data

slots are sleep slots for duty cycling and energy

ACK Received
next slot sleep
next slot transmit

next slot réceive ACK received

next slot slex ! !

P ACK timeout
unicast
data received

next slot transmit/
~

next slot receive

next slot sleep
next slot receive

G

t slot t

Fig. 2. The GinMAC superframe (a) and the GinMAC Finite State Machine (b)

3 CPN Model

As a first step we create a CPN model
for the GinMAC protocol. The top
level module (Protocol System Mod-
ule) of a sensor/actuator node within
the GinMAC protocol is shown in Fig.
3. The platform independent CPN
model includes an application/net-
work module, the GinMAC module, a
radio module, and a wireless channel
module for data exchange. The prag-
matics assisting in the code genera-
tion are by convention written inside
<<>>.

3.1 The GinMAC Module

We use a modular modeling approach
for design. Different MAC protocols
share common features that can be
designed as basic re-usable compo-
nents which further increases the re-
usability of protocol design and also
the code generation approach. The
abstract model in CPN is platform
independent, hence the model can be

Application and Network
<<Principal()>>

AppNetwork
AppReceive AppSend
packetType UNIT
GinMAC

[

GinMAC
<<Principal()>>

4

packefType radioftate

MReceive ControlOUT ControlIN

radioftate packefType

Radio H

packefType

<<Principal()>>

Radio
packefType

CReceive

Wireless Channel
<<Channel()>>

WirelessChannel

Fig. 3. Top-level CPN module

used to generate code-specific to different platforms as well. The re-usability

packetType

AppReceive

pt

AppSend

UNIT

HandleUpperPacket
<<service(Packet,OUT)>>

HandleUpperPacket

SingleSlotBuffer
<<state(INT)>>
macState

packetType

[pt=DATA]

SendToApp

pt

packetType Slotter

Slotter
<<service(slot,IN,scheduler)>>

HandleRadioPacket HandleRadioControl

HandleRadioPacket HandleRadioControl
<<service(Packet,IN)>> <<service(msg,IN)>> <<service(msg)>>
: " : Set ;
RadioControl RadioSend
packetType radioState radioState packetType

Fig. 4. CPN model of a MAC protocol

allows different MAC protocols to be modeled and code to be generated for the
same platform. The detailed GinMAC layer in the principal (second) level is
shown in Fig. 4. This model contains the GinMAC functions including: send /re-
ceive data packets, slot scheduler, and control packets handler. The send/receive
of data packets facilitates the data transfer for the application through the entire
network and is handled by two services: Sender and HandleRadioPacket. The
radio control packet handling is local to the node and is handled by the service
HandleRadioControl. The slot scheduler manages the operation to be performed
at the node at each instant of time based on the superframe. The slot scheduler
service is handled by Slotter. The main set of operations in GinMAC also called
as MAC states includes: send, wait (receive), and sleep as depicted in the FSM
in Fig 2(a). These operations of the GinMAC protocol are grouped as services
which are defined in more detail in the service level of the PetriCode approach.
The operations defined here are also basic MAC operations for other protocols
including the DMAMAC protocol, and hence can be re-used.

3.2 The Slotter Function

Fig. 5 shows the slotter function of the protocol used to implement different
slots based on the timer. These slots represent one of the operations to be
performed. Since GinMAC is a TDMA-based protocol, a timer is used to run
through the slots. The slotter function calls services based on the operations:
send (SEND_DATA/ACK), receive (WAIT DATA/ACK), and sleep,
appropriately depending on the time. Based on the slot type, an appropriate
service is called to handle the operation: Receive, Transmit, or Sleep. In Fig. 5,
we have omitted send and wait for notifications to keep the figure simple and
small, but the design of notification slot is included in the complete model and

in the code generation templates. Notifications are an alternative
representation of the configuration commands used by GinMAC protocol, a
generic concept used by MAC protocols to send network wide updates.

UNIT

) Switch States
. <<service(slot,IN)>>
[In}

UNIT

mState

1" (sendAck)

Y

dist
<<Id(cond: '(eq slot sleep sleep)(eq slot waitData waitData)(eq slot waitAck waitAck)(eq slot sendData sendData)(eq slot sendAck sendAck)')>>
<<branch>>

macState

mState

mState
[mState=waitData]

mState
[mState=waitAck] Y [mState=sendAck]

macState

waitData waitAck sendAck
<<macState(WAIT_DATA)>> <<macState(WAIT_ACK)>> <<macState(SEND_ACK)> >

mState

[mState=sleep] 1° (SLEEP) [mState=sendData]

next
<<Id>>
<<merge>>

ndData
< <<macState(SEND_DATA)>>

FinishSlotter
<<Id>>
UNIT

Fig. 5. Slotter function of the MAC protocol

sleep
<<macState(SLEEP)>> 0]

One of the services used by Slotter, the Sender service for transmitting packets
is shown in Figure. 6. The service handles all outgoing packet types including
data, ack, and notification packets. It sends the packet to the radio service for
further handling of the physical transmission.

4 MiXiM Code Generation

OMNeT++ is graphical modeling framework along with discrete event-based
simulation and analysis extensions with graphical user interface support.
MiXiM [8] is a modeling framework, which is a result of integrating several
OMNeT++ frameworks, designed specifically for simulating mobile and fixed
wireless networks. MiXiM is a modular framework consisting of pre-installed
implementation code for radio modules, and base modules for application,
network (routing), and the MAC layer. The workflow for simulation-analysis
including the node software architecture in MiXiM is shown in Fig. 7.

MiXiM simulations are specified using a combination of source files, NED
files (Network Descriptors), configuration.ini (configuration file), and other XML
files describing the physical attributes of the network. The source C++ files are
mainly used describe the protocols at each layer. The NED files are used to

mState

Send Packet
<<service(msg)>>

macState

mState
A 4

dist

<<Id(cond: '(eq msg data data) (eq msg ack ack)(eq msg notification notification)')>>

<<branch>>

mState

[mState=sendNotification
A 4

notification

<<send(NOTIFICATION)>>

[mState=sendData]

data
<<send(DATA)>>

SingleSlotBuffer

packetType

To Radio

mergeTransmit
<<Id>>
<<merge>>

0
A 4

packetType

end
<<return>>

macState

[mState=sendAck]

1" (ACK) ack

<<send(ACK)>>

UNIT

00

Fig. 6. Transmit Packet function of the GinMAC protocol

MiXiM
r———~>F~F~~""™"™""™"~"™"~"7" Y7~~~/ T =)
| XML Files I
| | NED Package \ - |

- C++ Files config.xml
| | GinMAC.ned decider.xml |
: migto:;ged GinMAC.h :
| | NodeNic.ned GInMAC.cc Packets |
| L MACpacketmsg |
| Input Parameters file ACKpacket.msg |
| (configuration.ini) |
I |

Simulator
(OMNeT)

Scalar files
Vector Files

Analysis
(OMNeT)

UNIT

Fig. 7. MiXiM node software architecture with simulation and analysis flow

describe each type of physical node in the network, the network configuration
defining how these nodes connect with each other, and the user defined module
to be used in these nodes. The configuration.ini file allows the user to define
explicitly various parameters concerning each layer (physical, MAC, application
and network). It also includes position data for nodes (if required) and multiple
configurations for simulation. Further, XML files are used to define the path-
loss models, packet loss, signal to noise ratio (SNR), and decider configurations.
These features are specific to the MiXiM simulation platform and are generated
for basic configuration using the code generation templates, and are not a part
of the CPN model. Apart from the generation of the MAC source files, NED
files for basic network layer configuration, basic configuration files, and network
configuration XML files are also generated.

4.1 MiXiM MAC model

Application \
i MAC

SensorAppLayer Base MAC Layer Phy interface \
trafficType:Int =0 slotDuration:double = 0.01
"""""" MacToPhylInterface
hanldeSelfMsg(Message):void hanldeSelfMsg(Message):void radioStates:enum{TX,RX,..}

I T getRadioState():const=0
Application Packet civac . 1] e
W_\ Network Packet superframeLength = 100
— MAC Packet
BaseNetwLayer HandleRadioPacket():void e

headerLength:Long = 32 Bit
I Network (Virtual)
hanldeSelfMsg(Message):void

Fig. 8. An abstract UML view of the source code for a node

The focus is to generate the MAC layer implementation code, and hence we
use the existing modules of the MiXiM framework to construct the complete
implementation. Creating a new module in MiXiM includes implementing the
base functions for that module (BaseMaclLayer) and extending it with the
protocol specific functions. We use the code templates to generate the protocol
with methods extended from the BaseMaclLayer. The generated MiXiM source
code from the protocol model is then used as the MAC protocol, and other
modules (application/routing) are used to complete the node software
architecture to make it simulation ready. An abstract UML representation of
the generated source code (GinMAC) put in context along with the existing

modules is shown in Fig 8. The GinMAC source code generated for MiXiM
inherits from the BaseMaclayer, and extends it with its functions and
characteristics. The functional view of the GinMAC protocol is shown in Fig.
9. The functional view corresponds to the principal level of the CPN model
shown in Fig. 4. The MAC protocol handles application/network packets and
incoming packets from other nodes, and sends them over the radio channel to a
corresponding node based on a pre-decided schedule determined by the
GinMAC superframe structure shown in Fig. 2(b).

Application Layer

Packet GINMAC Layer Control Packet

= -

lPacket Radio Control TCDerI Packet
4

MAC Packet
Buffer

[Radio Layer]

- Functions [I:I] Buffer

Fig. 9. A graphical representation of the functions in the MiXiM MAC protocol

4.2 PetriCode

The MAC protocol designed in CPN is used to generate a MiXiM equivalent.
We use the PetriCode tool [20] for the code generation. The PetriCode tool,
based on the code generation templates developed for the MiXiM platform,
generates the required C-++ source code. An example template for the
GinMAC states SEND DATA, WAIT _DATA, and SLEEP are presented in List.
1.1. The main GIinMAC states are: SEND DATA, SEND_ACK,
SEND _NOTIFICATION, WAIT DATA, WAIT ACK, WAIT NOTIFICATION
and SLEEP. A MAC state represents the type of operation being performed at
a given time. Each of the MAC states have an associated code template for
generation. Based on these code templates, we obtain the main source code.
The code template example for MAC states is shown in List. 1.1. The params
variable in the template checks for the parameters within the keyword
(macState) for the associated template, then generates the code for it. The
generated C++ source code for the Slotter function shown in Fig. 5 is

presented in Listing 1.2. Three of the MAC states SEND DATA, WAIT _DATA
and SLEEP have been presented along with the generated code. In the full
version implemented, all the MAC states have their respective code templates
as opposed to only three shown here.

Listing 1.1. PetriCode C++ code generation template

Pragmatic : <macState (SLEEP) >

Template code for MiXiM:

<%if (params[0] .toString() == "SLEEP")

{%> currentMacState = SLEEP;
debugEV << "Going to Sleep" <<endl;
phy—->setRadioState (MiximRadio: : SLEEP) ;
/+ @brief Finds the next slot after getting up */
findDsitantNextSlot () ;

<%}

Pragmatic : <macState (WAIT_DATA) >

Template code for MiXiM:

<%if (params[0].toString() == "WAIT DATA")

{%> currentMacState = WAIT_DATA;
debugEV << "My receive slot" <<endl;
phy->setRadioState (MiximRadio: :RX) ;
debugEV << "Switching Radio to receive mode" << endl;
/% @brief Procedure for finding nextSlot =/
findImmediateNextSlot (currentSlot, slotDuration);
currentSlot++;
currentSlot %= numSlots;

<%}

Pragmatic : <macState (SEND_DATA) >
Template code for MiXiM:
<%if (params[0].toString() == "SEND_ DATA")
{%> currentMacState = SEND_DATA;
if (mySlot == transmitSlot[currentSlot]) {
if (macPktQueue.empty ()) {
debugEV << "No Packet to Send exiting" << endl;
findNextSlot (currentSlot, slotDuration);
}else{
phy->setRadioState (MiximRadio: : TX) ;
debugEV << "Waking up in my slot.
Radio switch to TX command Sent" << endl;
findImmediateNextSlot (currentSlot, slotDuration);
}
currentSlot++;
currentSlot %= numSlots;

Listing 1.2. C++ source code

//GnMAC G+ file

void GinMAC::Slotter (message_t msg) {

if (msg == sleep) {
currentMacState = SLEEP;
debugEV << "Going to Sleep" <<endl;
phy->setRadioState (MiximRadio: : SLEEP) ;
/x @brief Finds the next slot after getting up =/
findDsitantNextSlot () ;

}

else if (msg == waitData) {
currentMacState = WAIT_DATA;
debugEV << "My receive slot" <<endl;
phy->setRadioState (MiximRadio: :RX) ;
debugEV << "Switching Radio to receive mode" << endl;
/% @brief Procedure for finding nextSlot =/
findNextSlot (currentSlot, slotDuration);

currentSlot++;

o

currentSlot %= numSlots;

}

else if (msg == sendData) {
currentMacState = SEND_DATA;
if (mySlot == transmitSlot[currentSlot]) {

if (macPktQueue.empty ()) {
debugEV << "No Packet to Send exiting" << endl;
findNextSlot (currentSlot, slotDuration);
}else{
phy->setRadioState (MiximRadio: : TX) ;
debugEV << "Waking up in my slot.
Radio switch to TX command Sent" << endl;
findImmediateNextSlot (currentSlot, slotDuration);
}
currentSlot++;
currentSlot %= numSlots;

1

4.3 MiXiM Simulation

The MiXiM simulation engine allows for simulation, and statistics collection,
which can be further used to generate graphs. The graphs support the assessment
of the performance of the protocol. Statistics can be collected in either scalar or
vector form. For our simulation test we used the scalar forms. We performed test
simulation on a small network with 7 nodes and 1 sink. The node configuration
used for the study is shown in Fig. 10. We used the CC2420 radio decider module,
the CC2420 radio power consumption values, and switch times to obtain accurate
results.

QJ Sink node .
ol — — Canlisten

L Sensor node

@ Actuator node

— Communicate

Fig. 10. The network topology used for simulation

The resulting graph from counting the number of packets transmitted and
received for each node is given in Fig. 11. Also, a graph with network lifetime
based on a given initial battery capacity is shown in Fig. 11. The lifetime is

Network Life Time
= nesCmacNetwork fy ~nesCmacNetwork iy
‘nesCmacNetwork.node[3] batteryStats capacity
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Packet Transmission
= nbPacketRx = nbPacketTx

3500 3500 14000- 14000
B 3000 12000 12000

2500 2500 10000-

2000 2000 8000

1500 1500 6000-

1000 1000 4000-
o — T 0

NodeO Nodel Node2 Node3 Node4 Node5 Node6 Node?7 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

10000
8000
6000
4000

.

2000

Fig. 11. The packet reception and transmission statistics for the GinMAC protocol (a)
and Network life time in terms node deaths (b)

related to the starting capacity. Given the load, it is evident that node 2 depletes
its energy first among all the nodes in the network and thus is the first to die
as shown in Fig. 11. The data transmission graph shows the amount of data
transmission being handled for a given simulation duration, 1500 seconds for
our case. In the process two nodes die, node 2 and node 3.

5 TinyOS nesC Code Generation

TinyOS is one of the commonly used operating systems for resource limited
WSAN hardware implementations. nesC is a component-based programming
language for the TinyOS platform. It mainly consists of components which are
represented using modules and configurations. These components generally
provide services to other components and use functions provided by other
components via a set of interfaces. The implementation part uses commands

TinyOS node module

r—— - - -—_-—_-—-—- = 0
: Others Main Files :
Makefile (different for X CC2420ActiveMessageC.nc
l each node) g::mﬁgg:cc TimeSyncC.nc |
| nodeSchedule.h GINMAC. h GenericSlotterC.nc |
| h QueueC.nc |
| LedsC.nc |
- - J
Load into i
'

Python scripts

Zolertia Z1 . LOG Fies
‘ nodes Experimental Run }-;

Fig. 12. nesC implementation, deployment and analysis flow

» Statistics

and events which are called or signaled, respectively. Commands are used to
define operations that can be triggered. Fuvents represent hardware events that
is similar to an interrupt to indicate an event occurring, e.g. reception of a
packet. Tasks are also a part of the programming language which can be called
from both events and commands. The workflow for implementation on TinyOS
using the generated nesC source code, and further performing deployment and
analysis is shown in Fig. 12. For evaluation of the generated nesC code the
presented workflow is used. The generated source code along with an
application is compiled for the platform hardware Zolertia Z1 [23].
Furthermore, based on pre-decided topology, schedule, and location, we
conducted an experiment. The collected results are placed in a log file, which is
used by python scripts to generate graphs and statistics. The generated
GinMAC source code uses multiple off the shelf components to complete the
solution, e.g., the CC2420ActiveMessageC radio module provided by TinyOS.

5.1 MAC nesC Model

The component graph of the GinMAC nesC module is shown in Fig. 13. The
GinMAC protocol uses the radio functions provided by the existing component
in TinyOS, the CC2420ActiveMessageC component. For time synchronization, an
essential function required for Time Division Multiple Access (TDMA) protocols
like GinMAC, we use the TimeSyncC component. The TimeSyncC provides the
Flooding Time Synchronization Protocol (FTSP). As a scheduler, the GinMAC
component uses the GenericSlotterC component. The scheduler goes through the
superframe structure and executes the corresponding slot for the given instance.
The component QueueC is used to create a packet buffer for incoming packets
to be forwarded. The incoming arrows to the GinMAC module are the features
that are provided by the GinMAC module to the application or the network
modules that use GinMAC. In the current version, we generate code that uses
the radio layer in an abstract form. Whereas a more detailed and explicit control
of radio can be implemented similar to the MiXiM code. This is detailed in the
implementation of MAC layers in TinyOS 2 [5]. With such explicit control, a
MAC protocol can control the transmission power at which each packet is sent.

5.2 PetriCode

Similar to the MiXiM code generation, the GinMAC protocol designed in CPN
is used for nesC code generation targeting TinyOS. PetriCode, based on the
templates defined for nesC code generation, generates the nesC code. We
present the same three GinMAC states and the template for code generation as
in MiXiM. The GinMAC states SLEEP, WAIT DATA and SEND _DATA are
presented along with the employed code generation templates as shown in List.
1.3. The generated nesC source code for the Slotter function shown in Fig. 5 is
presented in List. 1.4.

GlobalTime<TMilli>
GinMAC ———TimeSyncinfo— | TimeSyncC

GenericSlotterC

FrameConfigurafion RadioPowerControl
Packet
Queue <ginmac_data_t *>

AMPacket AMSend
PacketAcknowledgements + / S
r———"777"

] Receive | QueueC [
CC2420ActiveMessageC L J

CC2420Packet

Fig. 13. GinMAC protocol nesC component model

Listing 1.3. PetriCode nesC Template

Pragmatic: macState<SLEEP>
Template code for nesC:

if (params[0] .toString() == "SLEEP")
{%> currentMacState == "SLEEP";

if ('radioOff) {
printfzl("Calling radio sleep");
call RadioPowerControl.stop();
call Leds.led0Off();
}<%}%>

Pragmatic: macState<WAIT_DATA>
Template code for nesC:
if (params[0].toString () "WAIT_DATA")
{%> currentMacState == "WAIT_DATA";
printfzl ("Waiting for Data");
/+ @brief Switching on Radio if OFF, there should be an event if packet is arrived =/
if (radioOff) {
call RadioPowerControl.start();
call Leds.led0On();

Pragmatic: macState<SEND_DATA>
Template code for nesC:

else if (params[0].toString() == "SEND_DATA™")

{%> currentMacState == "SEND_DATA";
/* @brief Checking if the slot is the node’s transmit slot x/
data = (data_tx*) call Packet.getPayload(&dataPkt, sizeof (data_t));

data->nodeId = TOS_NODE_ID;
data->destinationId = sinkId;
data->dataSegNo = dataSegCount;
if (phyLock == FALSE) {
if (radioOff) {
/* @brief Switching on the Radio =/
printfzl ("Waking up");
call RadioPowerControl.start();
call Leds.led0On();
}
call ACK.requestAck (&dataPkt);
/* @brief Sending Data via radio/phy interface x*/
if (call PhySend.send (parentId[TOS_NODE_ID],
s&dataPkt, sizeof (data_t)) == SUCCESS) {
atomic phyLock = true;
post taskPrint (data);

P1<%}

Listing 1.4. nesC source code

//necC code generated for slotter service
event void Slotter.fire(uint8_t slot)
{
if (slot == sleep){
currentMacState == "SLEEP";

if ('radioOff)

{ printfzl("Calling radio sleep");
call RadioPowerControl.stop();
call Leds.led0Off();

I

else if (slot == waitData) {
currentMacState == "WAIT_DATA";
printfzl ("Waiting for Data");
if (radioOff) {

call RadioPowerControl.start();

call Leds.ledOOn();
b}
else if (slot == sendData) {
currentMacState == "SEND_DATA";

/% @brief Checking if the slot is the node’s transmit slot %/
data = (data_t*)call Packet.getPayload(&dataPkt, sizeof (data_t));

data->nodeId = TOS_NODE_ID;
data->destinationId = sinkId;
data->dataSegNo = dataSegCount;
if (phyLock == FALSE) {

if (radioOff) {

/% @brief Switching on the Radio =/

printfzl ("Waking up");

call RadioPowerControl.start();

call Leds.led0On();

}
call ACK.requestAck (&dataPkt);

/* @brief Sending Data via radio/phy interface */
if (call PhySend.send (parentId[TOS_NODE_ID],

sdataPkt, sizeof (data_t)) == SUCCESS) {
atomic phyLock = true;
post taskPrint (data);
b1}

5.3 Implementation Evaluation

We evaluated the generated nesC source
code on a hardware platform (Zolertia Z1
[23]) as mentioned in the nesC work flow
shown in Fig. 12. Zolertia nodes are pow-
ered by an MSP430F2617 low power micro-
controller with 16-bit RISC CPU operating at
16 MHz clock speed. It also packs in 92KB
flash memory and 8KB RAM. The node is
IEEE 802.15.4 compliant and uses a CC2420
transceiver operating at 2.4GHz with a data
rate of 250 Kbps. Contrary to the simulation
experiments, we performed certain link qual-
ity measurements using the hardware plat-
form. We use a smaller topology than the one

Fig.14. The network topology
used for the deployment analysis

used in MiXiM shown in Fig. 14 to keep the

experiment simple. We deployed these nodes in a corridor with each node placed
at a distance of 5m from its parent. Thus, farthest nodes are 10m away from the
sink. The corridor also had constant movement of humans. For implementation
based evaluation we focused on two new metrics and mainly performed link
quality assessment for presentation of basic results. Two metrics used for the
assessment are Received Signal Strength Indicator (RSSI) and Link Quality
Indicator (LQI). The RSSI measured for the nodes in the network is shown
in Fig 15 (left) and the link quality is shown in Fig. 15 (right). RSSI indicates
the strength at which the receiver receives the signal (range -45dBm to -95 dbm
(lowest possible)). The LQI is a calculated assessment of the link quality based
on lost bits in received packets given by TinyOS, the value ranges from 50 to 110,
with values towards 110 considered to be optimal. These values were obtained
from the built in TinyOS functions provided by the interface CC2420PACKET.
The obtained RSSI graph shows varying levels of RSSI for the nodes, which is
generally based on the distance between the sender and the receiver. RSSI is also
affected by interference, mainly from people moving through the corridor time
to time and also, the WiFi service operating in the vicinity. LQI levels mostly lie
in between 95-110 indicating the link quality is good between the nodes despite
of the RSSI differences. The LQI also falls very low for one of the nodes between
rounds 50 and 100 (node 4), this might be caused by continuous packet failure
during a period. Further reasons for this are not provided in the basic analysis
provided here since it is beyond the scope of this article. However, this is an
important result since it shows the possible variation in a real environment. The
LQI and RSSI values combined give a collective picture of link quality between
two nodes. If both RSST and LQI values are considered for node 4 that is affected
between rounds 50 and 100 in LQI, the RSSI graph also has correspondingly low
readings for those same rounds.

6 Conclusions and Future Work

Model-driven software engineering is a popular approach for design and
development of general computing applications. We have used MDSE principles
and applied it to protocol design and development in the WSN domain. In this
article, we have used model-based development techniques to generate code for
two different platforms: simulation and deployment, from a CPN model of the
GinMAC protocol. We have used the PetriCode tool for code generation. We
developed templates for MiXiM, a wireless network simulator platform, and
TinyOS, an operating system for hardware platforms. We have also analyzed
the generated program code to present some performance evaluations that can
be obtained based on the generated code. We performed separate analyses on
these two: energy consumption and lifetime on the MiXiM simulator platform,
and link quality assessment using Zolertia nodes operating on TinyOS code.
One important comparison between the classical methodology used for the
DMAMAC protocol to the MDSE methodology used here is that the generated
platform specific models are closely linked to the CPN model, thus provide a

RSSI Scatter Plot LQI Scatter Plot

-100 ‘ ‘ ‘ ‘ 130 T T T
nodel - Nodel
node2 - Node2 -
90 - node3 7 120 |- Node3 7
node4 node4
5
<] —
S - (o4
— i)
(%]
[%]
&
-60 = 90 B
-50 - 80 f
_40 | | | | | 70 | | | 1 L
0 50 100 150 200 250 300 0 50 100 150 200 250 300 350
Rounds Rounds

Fig. 15. Link quality based on RSSI (a) and LQI (b)

higher confidence in the generated code. The models in each step of the
classical methodology on the other hand, are entirely based on requirement
specification and no direct conversions are made.

In terms of future work and extension, we would like to mainly extend the
code generation to specialized formal analysis tools like Uppaal or PRISM, which
allows for further validation, and verification of real-time requirements of the
protocols. Also, to extend the code generation to multiple platforms by exploiting
their similarity with the existing code generation templates. Importantly, this
applies to Castalia for simulation and Contiki OS for deployment. Castalia, is
another wireless network simulation framework based on OMNeT++ and shares
similarities with MiXiM. Contiki OS, an event-based operating system similar to
TinyOS is an emerging operating system for low power sensor hardware, and is
gaining market share rapidly. Apart from this, we would like to apply the MDSE
approach to the DMAMAC protocol requirements to validate its usability.

References

1. Billington, J., Gallasch, G., Han, B.: A Coloured Petri Net Approach to Protocol
Verification. In: Lect. on Concurrency and Petri Nets, pp. 210-290. Springer (2004)

2. Boonma, P., Suzuki, J.: Model-driven performance engineering for Wireless Sensor
Networks with feature modeling and event calculus. In: Proceedings of the 3rd
BADS Workshop. pp. 17-24 (2011)

3. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in
practice. Synthesis Lectures on Software Engineering 1(1), 1-182 (2012)

4. Doddapaneni, K., Ever, E., Gemikonakli, O., Malavolta, I., Mostarda, L., Muccini,
H.: A model-driven engineering framework for architecting and analysing Wireless
Sensor Networks. In: Proceedings of the 3rd SESENA Workshop. pp. 1-7 (2012)

5. Hauer, J.H.: Tknl5. 4: An ieee 802.15. 4 mac implementation for tinyos. TKN
Technical Reports Series (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices
in industry. In: Proceedings of the ICSE. pp. 633-642 (May 2011)

Jensen, K., Kristensen, L.M.; Wells, L.: Coloured Petri Nets and CPN tools for
modelling and validation of concurrent systems. International Journal of Software
Tools for Technology Transfer 9, 213-254 (2007)

Kopke, A., Swigulski, M., Wessel, K., Willkomm, D., Haneveld, P.T.K., Parker,
T.E.V., Visser, O.W., Lichte, H.S., Valentin, S.: Simulating wireless and mobile
networks in OMNeT++ the MiXiM vision. In: Proceedings of SIMUTools (2008)
Kumar S., A.A., Kristensen, L.M., @Qvsthus, K.: Simulation-based Evaluation
of DMAMAC: A Dual-mode adaptive MAC Protocol for Process Control. In:
Proceedings of the 8th SIMUTools Conference. pp. 218-227 (2015)

Kumar S., A.A., @vsthus, K., Kristensen, L.M.: Towards a dual-mode adaptive
MAC protocol (DMA-MAC) for feedback-based networked control systems. Pro-
cedia Computer Science 34, 505-510 (2014)

Kumar S., A A., Qvsthus, K., Kristensen, L.M.: Implementation and Deployment
Evaluation of the DMAMAC Protocol for Wireless Sensor Actuator Networks. In:
Proceedings of the 7th ANT Conference. vol. 83, pp. 329-336 (2016)

Kumar S.,; A.A., Simonsen, K.I.F.: Towards a model-based development approach
for Wireless Sensor-Actuator Network Protocols. In: Proceedings of CyPhy. pp.
35-39 (2014)

Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay,
D., Hill, J., Welsh, M., Brewer, E., Culler, D.: TinyOS: An operating system for
sensor networks. In: Ambient Intelligence, pp. 115-148. Springer (2005)

Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and scalable simulation
of entire TinyOS applications. In: Proceedings of the 1st International Conference
on Embedded networked sensor systems. pp. 126-137. ACM (2003)

Losilla, F.; V Chicote, C., Alvarez, B., Iborra, A., Sanchez, P.: Wireless Sensor
Network application development: An architecture-centric MDE approach. In:
Software Architecture, LNCS, vol. 4758, pp. 179-194. Springer (2007)
Mozumdar, M.M.R., Gregoretti, F., Lavagno, L., Vanzago, L., Olivieri, S.: A
framework for modeling, simulation and automatic code generation of Sensor
Network Application. In: Proceedings of SECON. pp. 515-522 (2008)

O Donovan, T., Brown, J., Roedig, U., Sreenan, C., do O, J., Dunkels, A., Klein,
A, Silva, J., Vassiliou, V., Wolf, L.: GINSENG: Performance control in Wireless
Sensor Networks. In: Proceedings of the 7th SECON Conference. pp. 1-3 (2010)
Rodrigues, T., Batista, T., Delicato, F., Pires, P., Zomaya, A.: Model-driven
approach for building efficient Wireless Sensor and Actuator Network applications.
In: Proceedings of the 4th SESENA Workshop. pp. 43—48 (2013)

Shimizu, R., Tei, K., Fukazawa, Y., Honiden, S.: Model driven development for
rapid prototyping and optimization of Wireless Sensor Network applications. In:
Proceedings of the 2nd SESENA Workshop. pp. 31-36. ACM (2011)

Simonsen, K.I.LF., Kristensen, L., Kindler, E.: Generating protocol software from
cpn models annotated with pragmatics. In: Formal Methods: Foundations and
Applications, LNCS, vol. 8195, pp. 227-242. Springer (2013)

Suriyachai, P., Brown, J., Roedig, U.: Time-critical data delivery in Wireless Sensor
Networks. In: Proceedings of DCOSS. vol. 6131, pp. 216-229 (2010)
Vicente-Chicote, C., Losilla, F., Alvarez, B., Iborra, A., Sanchez, P.: Applying MDE
to the development of flexible and reusable Wireless Sensor Networks. International
Journal of Cooperative Information Systems 16(3-4), 393-412 (2007)

Zolertia: Z1 datasheet. http://www.zolertia.io//, accessed: 03-10-2015

List of Figures

(LI.T Wireless Sensor Actuators Networksl 4
(1.2.1 ~ An example process control scenario] 9
(1.2.2 Chart representing of process control variables| 10
2.1.1 A generic GinMAC superframe| 20
[2.1.2 'The network topology for GimnMAC| 21
[2.2.1 An example node topology for the DMAMAC protocoll . 21
[2.2.2 Transient mode superframe [S0] 23
[2.2.3 Steady mode superframe|. L. 24
[2.3.1 Alert message mechanism in the DMAMAC protocol, DMAMAC-
| Hybrid (a) and DMAMAC-TDMA (b), 25
1X1 model [SIff 34
(3.1.2 Energy consumption comparison in MiXaiM [S1] 35
[3.1.3 Node lifetime comparison in MiXaM [S1]]. 36
(3.2.1 The DMAMAC sink model in Uppaal [52] 39
[3.2.2 The DMAMAC node model in Uppaal [52]]. 40
[3.2.3 Message sequence chart for data transfer towards sinkl . . 40
B24 Genefic FSMIS2] « « « « v oo 41
[3.2.5 Data transmission sequence diagram in Uppaal [52] . .. 43

“.3.1 The nesC component diagram of the application to test |

I DMAMAC 47
“4.3.2 Global time synchronization process| 50
“.4.1 The network setup for deploymenttest, 52
“.5.1 The lab environment for experimentation| 53

“4.5.2 Experimental results for motor room scenario - arbitrary [
| node placement. [54]. 54

D.1.1 Development framework used for the DMAMAC protocol| 60

176

177

[5.2.1 The proposed MDSE approach architecture [S7] 61
5.2.2 PetriCode MDSE approach| 63
[5.3.1 The Protocol System level of the GinMAC CPN model| 64
[5.3.2 The Principal level of the GinMAC CPN model| 65
[5.3.3 Service level example for packet transmission in the Gin- [
| MACprotocol|, 65
[5.4.1 PSM and simulation flow for GinMAC in MiXiM [57] . . 66
[5.4.2 The packet reception and transmission statistics for the [
| GinMAC protocol| 67
[5.4.3 Network life time 1n terms node deaths ([S7] 68
[5.4.4 The PSM and implementation-deployment flow for Gin- |
[MAC I MiXIM [57). 68
[5.4.5 Link quality based on RSSI (a) and LQI (b)[S7] 69
List of Tables
21 M I rrent in radio states.) 47
“4.5.1 Notification packet failures on nodes 1-3 line of sight (LOS) |
and non-line of sight (non-LOS). [54]] 54

	I Overview
	Introduction
	Industrial Wireless Sensor Networks
	Applications of IWSN
	IWSN Requirements
	Industrial Standards

	Process Control Application
	Functions
	Research Questions
	Goals and Contributions
	Outline

	The DMAMAC Protocol
	MAC Protocols for Process Control
	The DMAMAC Protocol
	DMAMAC-Hybrid and DMAMAC-TDMA
	Related Work and Perspectives

	Protocol Evaluation
	Simulation
	OMNeT++ MiXiM Simulator
	MiXiM model
	Experiment Setup and Performance Analysis

	 Verification
	Uppaal Tool
	The DMAMAC Uppaal Model
	Validation and Verification
	Extensibility
	Validation using Sequence Diagrams

	Contributions and Perspectives

	Implementation and Deployment
	Background on TinyOS
	DMAMAC Implementation Goals
	The DMAMAC nesC Implementation
	Time Synchronization

	Deployment Setup
	Deployment Analysis
	Contributions and Perspectives

	Towards A Model Based Approach for MAC Protocol Development
	Background on MDSE
	An MDSE Approach for MAC Protocols
	PetriCode

	GinMAC CPN model
	Platform Specific Models
	MiXiM
	TinyOS

	Contributions and Perspectives

	Conclusion and Future Work
	Summary of Contributions
	Re-visiting Research Questions
	Beyond IWSN Process Control
	Future Work

	II Articles
	Towards a Dual-mode Adaptive MAC Protocol (DMA-MAC) for Feedback-based Networked Control Systems
	Simulation-based Evaluation of DMAMAC: A Dual-mode Adaptive MAC Protocol for Process Control
	Model-based Specification and Validation of the Dual-Mode Adaptive MAC Protocol
	Implementation and Deployment Evaluation of the DMAMAC Protocol for Wireless Sensor Actuator Networks
	Towards a Model-Based Development Approach for Wireless Sensor-Actuator Network Protocols
	Model-based Development for MAC Protocols in Industrial Wireless Sensor Networks

