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Abstract.
Demand peaks in electrical power consumptions pose serious challenges for energy companies as these are typically unfore-

seen and require the net to support abnormally high consumption levels. Such peaks can be regulated in smart energy grids with
the introduction of relatively simple techniques such as load balancing and smart pricing strategies. This is, however, difficult in
practice because it requires prediction of peaks prior to their actual occurrence.

While most studies formulate the problem as an estimation problem, we take a radically different approach and formulate it as
a classical pattern recognition problem. Further, the paper applies classification methods to solve the problem and applies these
with real-life data from a Norwegian smart grid pilot project. Some of the key findings are that the algorithms can accurately
detect 80% of energy consumption peaks up to one week ahead of time. Furthermore, we introduce a novel Learning Automata
based approaches for selecting the optimal prediction model from a pool of models in an online fashion.
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1. Introduction

Electricity consumption peaks appear seemingly
random in the consumption data as a consequence of
collective behaviour of several customers, and which
in turn is influenced by many external factors. A simple
example is the aggregate behavior of many consumers
turning on their home heaters simultaneously, within
a short time span, as a consequence of a cold weather
wave. This aggregate behavior is natural since a drop
in temperature affects a large population which might

1A preliminary version of this paper that does not include the
meta-learning algorithm (as well as the theory of learning automata)
introduced in this journal paper was presented at AIAI’14, the 2014
IFIP WG 12.5 International Conference on Artificial Intelligence
Applications and Innovations, Rhodes, Greece, in September 2014.
We are very grateful to the anonymous Referees of the previous ver-
sion of the paper, whose suggestions greatly improved the quality of
this version.

*Corresponding author. E-mail: morten.goodwin@uia.no.

cause a peak in the overall electrical consumption.
However, there are many factors other than merely
temperature that are susceptible of influencing a user’s
electrical consumption: thus, it is not straightforward
to foresee what the consumption level and in turn pre-
dict high loads.

Both consumption peaks and supply peaks cause
serious challenges for electrical service providers be-
cause they need to over-dimension their grid in order to
support the maximum potential load. Supporting these
peaks is almost vital for energy companies since en-
ergy scarcity can leade to severe consequences such as
power outages. An alternative approach to circumvent
these peaks and reduce the over-dimensioning cost and
magnitude is to balance them out with the introduction
of intelligent methods for controlling them. Control-
ling the peaks can be done in several ways, such as per-
forming load balancing and developing dynamic and
intelligent pricing strategies. The later helps to reduce
the peak magnitude and duration since consumers are
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sensitive to changes in electrical prices and, generally,
try to generally reduce the “unnecessary" part of their
electrical consumption whenever the electricity price
is high. In addition, smart grid systems allow appli-
ances to access the electricity price and consequently
can issue autonomous decision for turning on “non-
critical load" as a consequence of price increase.

Despite the fact that the later intelligent control
strategies are appealing, their success in reducing the
magnitude and duration of the consumption peaks is
entirely dependent on the ability to accurately predict
their occurrence in advance, which is a particularly dif-
ficult as peaks are influenced by complex behaviour
and typically occur in abnormal situations.

This paper addresses predicting electrical power
consumption peaks in small communities by relying
solely on historical consumption and without resorting
to external data sources such as weather predictions.

The output peak prediction algorithms presented in
this paper are intended to be used in a pilot smart grid
installation in order to achieve the following automatic
behavior at the customer side: (1) automatically turn-
ing off and on smart electrical appliances, (2) and car-
rying out local level load balancing.

This article presents two fold contribution. First, we
map peak detection into a two-labelled classification
problem. Second, we propose a meta-learning algo-
rithm based on the theory of Learning Automata that
combines many underlying classifiers for predicting
the peak. The Learning Automata algorithm is a mod-
ification of the Fast Learning Automata algorithm re-
ported in [28] and is shown to outperform it in the ex-
perimental results.

We, further, test our algorithm out with data from a
real Norwegian pilot smart grid project, and are able
to obtain results in line with state-of-the-art with rela-
tively simple classification algorithms.

This paper is organised as follows. Section 2 for-
mally maps the problem to be solved as a two-labelled
classification problem. A meta-learning algorithm is
then devised as to choose the optimal prediction model
from a pool of models in an online manner. Section 3.2
gives first an overview of the data used in these experi-
ments and then continues with the results and findings
from these methods.

Section 4 states the most relevant development
in the area from two research areas: peak predic-
tion/detection and rare item classification.

Finally, conclusions and future work is outlined in
section 5.

2. Proposed Solution

In this section, we shall present our solution to the
peak detection problem which consists of two main
components:

– Mapping the problem to two-label classification
problem which is described in section 2.1. In or-
der to achieve this goal, we will present different
relatively simple classifiers that fit this purpose.

– A meta-learning algorithm based on theory of
Learning Automata for selecting the best predic-
tion classifier in an online manner. The meta-
learning algorithm is presented in section 2.2.

2.1. Problem setting and modelling

The goal of this research is to predict load peaks
prior to their occurrence. Formally, given a time se-
quence t, let p(ti, n) be a statistical function asserting
whether ti is a peak where ti ∈ t and n tells the ex-
tremity of the peak as follows:

p(ti, n) =


peak if p(ti, n) > µ+ n ∗ σ

not peak otherwise (1)

where µ and σ are the arithmetic average and stan-
dard deviation of t, and n is a number defined as the
extremity of the peak. Thus, a value is defined as a
peak if it overpasses the the mean value with more than
n times the standard deviation. The main question we
deal with here is predicting the output from p(ti, n)
using only part of the sequence occurring prior to ti
(t<i ∈ t). Hence, the peak detection problem is re-
duced to a standard two-labelled classification prob-
lem. This is less trivial than most two-labelled classi-
fication problems because the peaks are rare and “ab-
normal”.

In layman’s terms: Is it possible to predict future
load peaks using only past data on electrical consump-
tions?1

This sections presents approaches for to predict-
ing p(ti, n). The first approach is a straightforward
solution introduced for comparison purposes. This is
continued with standard classification techniques in-

1Note that it is very different from the seemingly similar peak de-
tection (positive outlier detection). For outlier detection it is possible
to calculate whether ti is an outlier using ti itself.[12]
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spired by similar work on load forecasting [10,23,19,
6]. Lastly, we present hierarchical classification solu-
tions inspired by techniques presented in the literature
on rare item classification [17,35,45]. All classifiers
aim at predicting p′(t<i, n) as close to p(ti, n) as pos-
sible.

Majority voting(cm):Firstly, a simple majority vot-
ing classifier was implemented that counts the number
of peaks in the training data and checks whether there
are more peaks than the previous day than could be
expected based on simple statistics was implemented.

Consistent peaks(cc):Secondly, another classifier
was implemented that always predict the peak equal to
the previous peak value as following:

cc(t<i, d, n) = p′(t<i, n) = p(ti−d, n). (2)

where ti is the data to predict and d indicates how
many hours in advance ti is.

SVM(cl,cp):The purpose of the Support Vector Ma-
chines SVM is to create a function, linear(cl) or
polynomial(cp), that separates data that results in peaks
from the data that does not. Upon predicting p(ti, n)
the vector space consists of a defined number of points
prior to ti ∈ t, namely t<i. Each individual point in
t<i is then a separate dimension. Two variants of SVM
are implemented; the linear SVM approach is defined
as cl(t<i, d, n), while the polynomial is defined as
cp(t<i, d, n).

GMM(cg):The The Gaussian Mixture Model Clas-
sifier (GMM) is a classifier known for handling out-
liers well [16]. It has, to the best of our knowledge,
not been used for load or peak prediction previously.
It has however been used for many other classification
applications with success, and is specially suited for
rare item classification. Similarly to the SVM classi-
fiers, when we perform classification of the load at ti
with GMM, we populate the vector space with points
prior to ti (t<i). This classifier is defined as cg(t<i, n).

Two variants of hierarchical classifiers are pre-
sented: Hierarchical and Hierarchical with Consistent
Peaks. They both use a flat approach similar to vari-
ants in the literature [45] — namely straightforward
combinations of the other classifiers.

Hierarchical (ch1): The hierarchical classifier is
simply a combination of the linear SVM and GMM
similar to the common practice in the literature as

follows:[41,14].2

ch1(t<i, d, n) = cl(t<id, , n) | cg(t<id, n) (3)

Hierarchical with Consistent Peaks (ch2):An ad-
ditional classifier was created utilizing the data from
the consistent peaks (see equation 2). This extends
equation 3 as follows:

ch2(t<i, d, n) = cl(t<i, d, n) | cg(t<i, d, n) | cc(t<i, d, n)

(4)

2.2. Meta-Learning algorithm based on Learning
Automata

The fundamental tool which we shall use in this sec-
tion involves Learning Automata. Learning Automata
(LA) have been used in systems that have incomplete
knowledge of the environment in which they oper-
ate [1,18,25,26,27,32,39]. The learning mechanism at-
tempts to learn from a stochastic Teacher which mod-
els the Environment. In his pioneering work, Tsetlin
[40] attempted to use LA to model biological learn-
ing. In general, a random action is selected based on
a probability vector, and these action probabilities are
updated based on the observation of the Environment’s
response, after which the procedure is repeated.

The term “Learning Automata” was first publicized
and rendered popular in the survey paper by Narendra
and Thathachar. The goal of LA is to “determine the
optimal action out of a set of allowable actions” [1].
The distinguishing characteristic of automata-based
learning is that the search for the optimizing parameter
vector is conducted in the space of probability distri-
butions defined over the parameter space, rather than
in the parameter space itself [38].

In this section, we adopt the Fast Learning Automata
(FLA) algorithm proposed in [28] because of its low
complexity. In addition, we propose a variant of the
FLA which we call “unbalanced FLA” and show its
superior performance when compared to the FLA in
our experimental settings.

2.2.1. Balanced FLA Algorithm Applied to Peak
Prediction

We shall formally define the FLA algorithm and
explain how it is linked to our problem [28]. In the
rest of this paper, we will refer to the original FLA

2Note that the decision rule is simpler than most other setups.
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as “balanced FLA” due to Obaidat et al. [28]. Let
A = {α1, α2, . . . , αr} be the set of outputs or actions
that the LA must choose from, and α(ti) is the action
chosen by the automaton at any instant ti.

We suppose that each action αk corresponds to a
prediction model in our settings.

We denote by S = (a1(ti), a2(ti), . . . , ar(ti)) the
set of non-normalized probability vector [28]. For k ∈
{1, 2, . . . , r}, and ∀ ti, we suppose that ak(ti) takesN
integer values from the set ∈ {1, 2, . . . , N}. The later
condition is guaranteed owing to the update form of
the FLA which we shall describe later in this section.
P denotes the normalized probability vector P =

(p1(ti), p2(ti), . . . , pr(ti)) constructed using S in the
following manner: at time instant ti, an action k ∈
{1, 2, . . . , r}, is chosen according to the normalized
probability: pk(ti) =

ak(ti)∑r
j=1 aj(ti)

.
When an action k is chosen, the Environment gives

out a response β(ti) at a time “ti”. The automaton is
either penalized or rewarded. On the basis of the re-
sponse βk(ti), we update ak for the next time instant
according to:

– ak(ti+1) = ak(ti+1) + 1 if βk(ti) = 1 and
ak(ti+1) < N .

– ak(ti+1) = ak(ti+1) − 1 if βk(ti) = 0 and
ak(ti+1) > 1.

It is worth emphasizing that, based on the above up-
date form, the smallest possible value for ak(ti) is 1,
which is different from the classical FLA proposed by
Obaidat and his colleagues [28], since in the later work
the lowest value corresponds to 0 . Therefore the cur-
rent FLA, is ergodic, which allows the scheme to cope
with dynamic environments where the optimal action
changes over time. Please note that the original FLA
falls into the family of absorbing Learning Automata.

Note that the highest value for pk(.) is achieved
whenever aj = 1 for j 6= k while ak = N , which
corresponds to pk(.) equal to N

(r−1)+N .
Let ek(ti) denote the prediction error of model k at

time ti as following:

ek(ti) = |p′(t<i, n)− p(ti, n)| (5)

where p′(t<i, n) depends on the model k used. p′(t<i, n)
is the predicted value at the next time instant ti,
p(ti, n) is the ground truth that we can only observe at
the next time instant, and n is the extremity of the peak
(see equation 1).

Now let us define the feedback βk(ti) for a chosen
action k.

βk(ti) = 1, i.e, reward, if the chosen action k, corre-
sponding to the prediction model k, achieves the lower
prediction error than the predictions models associated
to the other r − 1 actions αj where j 6= k. Similarly,
βk(ti) = 0 i.e, penalty, if the chosen action k does not
correspond to the lowest prediction error.

In formal terms:

– βk(ti) = 1 if ek(ti) = min(e1(ti), e2(ti) . . . er(ti))
– βk(ti) = 0 if ek(ti) 6= min(e1(ti), e2(ti) . . . er(ti))

Where min(.) denotes the minimum.

2.2.2. Unbalanced FLA Applied to Peak Prediction
We propose the so-called “unbalanced FLA” where

we give different weights to reward an penalty.
When an action k is chosen, the environment gives

out a response β(ti) at a time “ti”. The automaton is
either penalized or rewarded in an "unbalanced man-
ner". On the basis of the response βk(ti), we update ak
for the next time instant according to:

– ak(ti+1) = max(ak(ti+1)+R,N) if βk(ti) = 1.
– ak(ti+1) = ak(ti+1) − 1 if βk(ti) = 0 and
ak(ti+1) > 1.

Philosophically, the FLA is akin to the "Reward
Penalty" LA since Reward and Penalty are given the
same update weight, i.e, incrementing or decrementing
the non-normalized probability with 1 state. In fact, the
FLA increases or decreases the state by 1 upon receiv-
ing a reward or a penalty. On the other hand, the “un-
balanced FLA” is akin to "Reward ε Penalty" Learning
Automata, as we give more weight to the reward by in-
crementing the non-normalized probability component
at most by R states instead of 1 state.

3. Experimental Results

3.1. Data with electrical consumption peaks

The data used in this project was collected during
six weeks in mid 2012 from a summer cabin area in
Hvaler, Norway [34]. In total, there are more than 7900
installations with varying degree of activity — intro-
ducing fluctuations into the data collected. From each
installation, accumulated hourly energy consumptions
(kWh) was collected throughout the six weeks. The
network operator extracted and quality-assured the
metering data, and made it available in GS2 ver. 1.2
format — a standard format for exchange of metering
data in Norway and Sweden [33]. A script was cre-
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Fig. 1. Example of peak in the consumption data with n set to 2
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Fig. 2. Consumption averaged per 7 days

ated to reformat the data from GS2 to Python struc-
ture to make it easy to train and verify the classification
schemes.

An example of electrical consumption for one in-
stallation is presented in Figure 3.1. This shows aver-
aged values of 7 days — displaying some clear trends:
a rise and fall of the consumption with its highest mag-
nitude takes place around 17:00 at Norwegian dinner

time and with it lowest magnitude at night. The pattern
is repeated with a daily frequency.

Figure 1 shows an example of consumption with
peaks for a specific 24 hour period. The threshold
level, n, for the peak data in Figure 1 is set to 2 yield-
ing two peaks: around 05-03 22:00 and 05-04 16:00.
Figure 3.1 consumption averaged over 7 days showing
an interesting cyclic behvaoir in the data. Overall, by
varying n in the equation 1, the percentage of peaks
varies from 15% for n = 1 down to 0.8% for n = 3.

3.2. Experiments

This section presents empirical results from running
the predictive algorithms introduced in section 2. In
line with common practice in the field [47], we present
predictions starting from one hour into the future and
up to 7 days (168 hours).

Section 3.2.1 present comparative experiments where
n set to 1 — predicting moderate peaks. Addition-
ally, section 3.2.2 shows the behavior of the algorithms
when n increases — making the peaks to detect more
extreme.

All results presented in this chapter use a vector size
of 24.3

Further, several metrics exist to evaluate informa-
tion retrieval approaches. This paper promotes classi-
fication methods that favour false positives over false
negatives. This is because a false positive, predicting a
peak that is not present, has significantly fewer conse-
quences than not predicting peaks which are present.
Thus, high recall is much more favored than high pre-
cision.

3.2.1. Predicting small consumption peaks
This section presents peak predictions with n in

equation in p(ti, n) (equation 1) set to 1. This is the
most straightforward approach where peaks are de-
fined as simple values larger than the standard devia-
tion.

Figure 3 and 4 show the recall and precision of the
applied algorithms. All these figures show predictions
1 to 168 (7 days) into the future with n set to 1. This
means that at each time instance, the algorithms try
to predict from 1 to 168 hours ahead of time and the
average is shown in the graph.

We observe that all pattern recognition algorithms,
SVM, GMM and Hierarchical have a decrease in recall

3Several experiments were carried out with various vector sizes
concluding with a vector size of 24 units. These results are not cru-
cial to the understanding of the approach and, therefore, omitted.
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Fig. 3. Recall for predicting 1 to 168 hours into the future with n set
to 1
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Fig. 4. Precision for predicting 1 to 168 hours into the future with n
set to 1
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Fig. 5. Recall predicting 1 to 168 hours into the future, n set to 2
yielding 35 732 peaks.
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as the t increases. This means that, intuitively, the dif-
ficulty increases whenever the algorithm tries to pre-
dict further into the future. However, when t reaches
24, the quality of the measurement increases. Hence,
it is easier to predict 24 hours into the future than it is
to predict other values. This suggests that people fol-
low roughly the same patterns in 24 hour cyclic in-
tervals (cook dinner, eat, sleep at roughly the same
intervals). This is supported by “Consistent peaks”-
classifier which is surprisingly accurate.

The figure shows that the hierarchical classifiers
have an excellent recall (Figure 3). Thus, these algo-
rithms are able to detect about 80% of the peaks in the
data. Further, the recall decreases as t increases for all
algorithms. Hence, prediction difficulty arises when-
ever the algorithms look further into the future. This
is, however, less true for hierarchical classifiers and
GMM than for comparative algorithms.

On the other hand, the hierarchical classifiers have
a low precision (Figure 4). The algorithms have many
false positives (close to 80%). We can say that an hier-
archical classifier is able to predict 80% of the peaks.
Moreover, whenever it predicts a peak there is a 20%
chance that it is an actual peak. It is crucial to em-
phasize that the objective of the algorithms is to fa-
vor false positives over false negatives false negatives,
which have less impact in electrical power grids.

3.2.2. Predicting larger consumption peaks
This section presents experimental results in which

we vary n in p(ti, n) (equation 1). By increasing n, the
peaks become more extreme and (presumably) more
difficult to predict.

Figures 5 and 6 depict recall over time when n is
fixed to 2 and 3 respectively. This is the same setup as
shown in figure 3 with n set to 1, but the behaviour
is notably different. First and foremost, all classifiers
have a decreased recall. Most notably, the SVM clas-
sifiers drop fast to a recall close to 0. In this sce-
nario, SVM is only able to predict close to 24 hours
into the future with a poor performance. Consequently,
the hierarchical classifiers are only slightly better than
GMM — which means that SVM does not contribute
significantly to an increased recall in the hierarchical
classifiers.

The trend in Figure 3 (n=1) and Figure 5 (n=2) is
continued in Figure 6 (n=3), but is more extreme. The
SVM classifier drops more quickly to 0, and the differ-
ence between the hierarchical and GMM classifiers is

considerably smaller. Nonetheless, the best algorithms
are able to reach a recall of more than 70%. 4

Another trend which is visible as n increases is that
the results become more chaotic (from Figure 3 (n=1),
to Figure 5 (n=2), and Figure 6 (n=3)). A possible rea-
son for this could be that when n increases and the
peaks become more extreme, the peaks become more
difficult to predict — and in turn the results appear
more chaotic.

A conclusion worth drawing is that an increase in
the extremities of the peaks makes the classification
more difficult. However, GMM and corresponding hi-
erarchical classifiers are still able to detect more than
70% of the peaks while all the other classifiers prove
insufficient with a recall close to 0.

Table 1 show the corresponding ROC curve. It
shows that when the SVM classifiers and consistent
peaks have high false positive rate, with a high n, they
have a low true positive rate. The hierarchical classi-
fiers are more linear.5

3.3. Experiments Under Different Prediction Models:
Meta-Learning Algorithm

In the previous section, we have shown that it is pos-
sible to predict future load peaks using only past data
on electrical consumptions.

However, the question that we are trying to answer
here by resorting to LA is: how to choose the "ideal"
prediction model from a set of regression models in an
online and adaptive manner. We achieve this by creat-
ing a "competition" between the different models us-
ing the theory of LA. The rationale for resorting to LA
is that: the model that achieves the highest reward will
be chosen more often, thus, the prediction error of the
LA will decrease and will approach the prediction of
the most accurate model.

This idea is similar to the well-known research re-
search on Weighted Majority Voting. However, the
LA prediction is not based on weighted combination
of the available prediction models, but on the predic-
tion model that is selected by the LA at each time in-
stant. The LA attempts to learn over time the predic-
tion model that achieves the highest reward. The mod-
els included in the study are SVM (Linear Support

4The trend continues when increasing n even further. However,
this has been deliberately excluded from of the paper since this does
not contribute to further insight into algorithms.

5A ROC curve is often plotted. However, due to the low data it
communicated better in a table.
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Peak Size GMM Hierarchical Hirarchical with Consistent Peaks Linear SVM Polynomial SVM Consistent Peaks
FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

1 0.63 0.60 0.62 0.60 0.63 0.61 0.98 0.91 0.99 0.91 0.99 0.91
2 0.30 0.28 0.30 0.28 0.30 0.28 0.94 0.67 0.97 0.69 0.96 0.69
3 0.09 0.08 0.08 0.08 0.08 0.08 0.76 0.34 0.80 0.34 0.79 0.35

Table 1
ROC for algorithms varying n with False Positive Rates (FPR) and
True Positive Rates (TPR)

Vector Machine with kernel parameter 0.1, regulariza-
tion parameter 1.0, tolerance for testing KKT condi-
tions 0.001, and convergence parameter 0.001), Lars
(Least Angle Regression), Ridge (Ridge Regression),
and OLS (Ordinary Linear Least Square Regression
with regularization parameter 1.0). The LA aims at se-
lecting the most suitable among those four models. 6

All results presented in this section use a vector size
of 24. The aim is to to predict the consumption. We re-
port the error for different values of prediction horizon.
The error is computed for all the data set and is calcu-
lated as a time average. In addition, we use N = 100
as the number of states per action.

In Figure 7, we report the average prediction er-
ror for the “balanced FLA” for a time horizon vary-
ing from 1 hour to 24 hour ahead of time. We observe
that for all the prediction models, including the “bal-
anced FLA”, the error increases as the time horizon in-
creases. The explanation of the results is intuitive. In
fact, the more ahead of in time a model aspires to pre-
dict the electricity consumption, the more error we ob-
serve. In addition, we observe that the “balanced FLA”
performance approaches the SVM performance, where
the latter is the best prediction model in this experi-
ment. The reason why the“balanced FLA” model does
not yield a performance identical to the SVM is that
the fact that it was made "artificially" ergodic, which
means that it does not get locked into choosing one
action after some iterations.

In Figure 8, we observe the prediction error for dif-
ferent values of time horizon varying from 1 hour to
7 days. Again, we observe that the performance of all
the approaches degrade as the prediction horizon in-
creases.

Furthermore, we present the results of the “unbal-
anced FLA” with a parameterR = 10. We observe that
the “unbalanced FLA” depicted in Figure 9 and Figure

6Note that the model can easily be extended with including dif-
ferent models. The purpose here is to show that the LA is adaptively
use the “best" among the available models.
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Fig. 7. Performance of “balanced FLA” based algorithm for predict-
ing consumption is based on regression models which predict con-
sumption 1 to 24 hours into the future.

10 achieves a higher performance than its counterpart
“balanced FLA” depicted in Figure 7 and Figure 8.

3.4. Experiments Under Different Parameterized
SVM Models

In this experiment, instead of choosing different pre-
diction algorithms as actions for the LA, we choose
different SVM prediction models parameterized with
different vector sizes as our prediction models.

It is worth noting that the expriments from section
3.2 show that the SVM prediction exhibits good per-
formance for a vector size of 24 hours (equivalently
history of 24 hours).

In Figure 11, the same observation is made again
through the use of LA. In fact, in Figure 11, we com-
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Fig. 8. Performance of “balanced FLA” based algorithm for predict-
ing consumption based on regression models predicting consump-
tion 1 to 168 hours (7 days) into the future.
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Fig. 9. Performance of “unbalanced FLA” based algorithm predict-
ing consumption is based on regression models which predict con-
sumption 1 to 24 hours into the future.
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Fig. 10. Performance of “unbalanced FLA” based algorithm predict-
ing consumption is based on regression models which predict con-
sumption 1 to 168 hours (7 days) into the future.

pare our LA equipped with the following 4 actions:
SVM model with vector size 6, 12, 18, and 24, ap-
proaches over time the performance of the best pre-
diction model which is the SVM with a vector size
of 24 hours. Again, since the LA is ergodic, it will
not converge to get locked to choosing the best pre-
diction model which achieves the lowest error, namely,
the SVM model with vector size 24.

Furthermore, in Figure 12, we present the results for
the “unbalanced FLA” with a parameter R = 10 for
a time horizon of 24 hours. We observe that the “un-
balanced FLA” outperforms all the the 4 predictions
models: SVM model with vector size 6, 12, 18, 24.

4. Related Work

This section presents the most relevant research
in the area of peak prediction. We have organized
the related work into different categories. Section 4.1
presents the research on electrical loads prediction, and
section 4.2 presents research on rare item classifica-
tions when there is a skewed division of labelled data
— i.e. a classification when there are so few positive
labels that leads to a significant negative impact on the
classification results.
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Fig. 11. Performance of the “balanced FLA” based algorithm pre-
dicting consumption is based on training history which predicts 1 to
24 hours into the future.
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Fig. 12. Performance of the “unbalanced FLA” based algorithm pre-
dicting consumption is based on training history predicting 1 to 24
hours into the future.

4.1. Electrical consumption prediction

A significant amount of research has addressed load
forecasting [9,4,44,24]. These studies have two com-
mon characteristics. First, they rely on certain third-
party data for predictions. Second, they try to predict
the actual power load. Despite the fact that peak pre-
diction and load forecasting bear much similarity, their
respective objectives are notably different.

In general, the techniques introduced in 4.1.1 and
4.1.2 use some third party data so as that to correlate it
to the load and in turn predict the future consumptions,
while the techniques shown in section 4.1.4 and 4.1.3
focus on predicting the actual load without identifying
the peaks.

4.1.1. Regression models
The most common method used for peak predic-

tion is regression. Regression aims to establish a sta-
tistical model for the load consumption that integrates
many factors, such as customer profile, weather data
etc. Based on the correlation between the energy load
and the third party data, regression models are used to
predict future peaks.

The most common and simple model for regression
is the linear model, which is usually used in combi-
nation with other factors such as heat data. Linear re-
gression model proves to be very useful for predicting
short-term peak loads [10,29] and annual loads[43].
The later research uses support vector regression and
various functional linear regression models for the ac-
tual prediction. It then clusters the data and assigns one
regression model per cluster. The problem addressed
in these studies is similar to the problem we addressed
here. However, the the major difference between them
is the reliance of regression models method on heat
maps and the introduction of clustering phase.

Research on forecasting annual loads in combina-
tion with differential evaluation and support vector re-
gression was reported in [43]. The authors of [43] re-
sorted to differential evaluations so as that to choose
parameters from an available predefined set of param-
eters while the regression is used for the actual fore-
casting.

4.1.2. Daily correlation based methods
A very common and intuitive approach of to load

forecasting is to merely find a similar day based on
the available data, such as weather reports, and assume
that similar days have similar loads. A representative
study that falls into this category is [15]. The later
study uses a hierarchical two-step classifiers for short-
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term load forecasting which first predicts the “type of
day” then performs an hourly forecast from this output.

4.1.3. Internal structure
There is a vast amount of work that does not rely on

a third party data but rather works under the premise
that the consumption data exhibits some internal struc-
ture that can be learnt.7 Some of the important stud-
ies that fall into this category include [47] which com-
bines evolutionary algorithms and fuzzy logic for pre-
dicting hourly peaks from one to seven days ahead
in time[47], wavelet transformation techniques to ac-
curately forecast power consumptions about 4 hours
ahead of time [2] and short-term predictions using ex-
ponential smoothing methods[37]. Further, other ma-
chine learning techniques have been applied such as
non-linear curve-fitting [48,36] and Support Vector
Machines (SVM) [23,19]. It should be noted here that
the load forecasting is significantly different from peak
prediction [30] [37].

4.1.4. Other Machine learning techniques
Additionally, several other machine learning tech-

niques has been used for load forecasting.
Using neural networks which combine weather data

and historical loads with non-linear curve-fitting has
been popular [30,48,36]. Curve fitting was also used
with fuzzy logic techniques [22,4] which avoids ad-
vanced mathematical models. The support vector ma-
chines (SVM) method is also a common methods for
load forecasting [23,19], including daily load demands
[6]. For this, the data is mapped in a multi-dimensional
space and the problem is reduced to defining a kernel
that discriminated the data classes from each other.

Other machine learning techniques that are common
for load prediction include Kalman filters [20], recur-
rent neural networks [49], hidden Markov models [11],
parallel classifiers [5] and firefly colony algorithm [8].

The advantage of using machine learning for load
prediction in general is its simplicity as it does not re-
quires advanced mathematical modelling. In addition,
it can give relatively precise outputs.

It is worth mentioning that machine learning has
been applied to solve other problems within the field
of smart grid such as biding in electricity markets [31]
and energy efficient routing [21].

7This is the same assumption we present in this paper.

4.2. Rare item classification

Rare item classification is a field within pattern
recognition where the majority of the data is imper-
tinent and consequently the interesting data appears
much more rarely. In many situations, even the labels
to be classified are not known in advance. Further,
there is an imbalance in the data available for train-
ing (a priori). Exhaustive labelling is commonly re-
quired to develop up a proper training database. Both
labelling and corresponding classification is inevitably
costly. There is a significant amount of research that
covers this topic; however, to the best of our knowl-
edge, none of these directly address the peak predic-
tion problem.

An effective technique when dealing with rare item
classification is to combine different methods, such
as hierarchical classifiers with more than one classi-
fication technique [17,35]. Generally, this reduces the
problem into to organising local classifiers in an hierar-
chical structure and defining rules for issuing a global
consensus. Based on techniques such as majority vot-
ing, the hierarchical classifier yields significantly bet-
ter results for rare item classification than comparable
algorithms, even with a flat structure [45]. Other meth-
ods use clever re-sampling, such as random under- and
over-sampling [17] or stratified sampling [42].

There are many variants of rare item classification
methods [35] which include, among others, hierarchi-
cal structures of SVM classifiers where each classifier
has a different sampling scheme [46].

4.2.1. Classify with an unknown prior
Some of the existing work focuses on classifica-

tion with non-parametric prior, i.e, the classes are not
known [13,41,14].

The main methodology for solving this problem is
composed of two main steps:

1. Discover and label classes based on unsupervised
learning approaches such as clustering [13,41] or
examining the variation of the data [14].

2. Train and classify using standard pattern recog-
nition approaches, such as SVM and Gaussian
Mixture Models (GMM).

Others techniques use an active learning approach
where the supervision is minimized through a stream
based active learning [7]. In this way, the authors are
able to utilize reinforcement learning techniques for
rare item classes avoiding separate training and classi-
fication phases. Similarly, in the active learning phases,
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Dirichlet processes are used to calculate whether a
sample is part of an unknown Dirichlet distribution.

4.3. Outlier detection

Much work has been carried out on outlier detec-
tion [12,3]. This research field resembles peak predic-
tion in many ways. The most apparent similarity is
that both problem focus on finding abnormalities in the
data. However, the major difference between the two
problems is that outlier detection has the complete data
set available, which is not the case for peak prediction.
SVM and GMM have successfully been applied to out-
lier detection [12], rare item classification (see section
4.2) and consumption prediction (see section 4.1).

5. Conclusion and future work

This paper addresses the issue of predicting elec-
trical consumption peaks as input into load balanc-
ing and/or smart pricing strategies. This is done in
a novel manner by mapping the prediction activities
into a two-labelled classification problem. Further, in
contrast to most existing approaches, the features are
based solely on previous consumptions, avoiding re-
liance on third party data for the predictions.

Several classification algorithms are implemented
and successfully applied to real-life data from a Nor-
wegian smart-grid pilot project. The most promising
results are produced by applying a simple hierarchical
classifier with the combinations of linear support vec-
tor machines, Gaussian mixture models and determin-
istic assumption of consistent peaks. In fact, this solu-
tion is capable of to predicting 80% of the peaks, and
whenever it predicts a peak it is a 20% chance that it
is an actual peak. It is essential to remember that the
objective of the algorithms is to favor false positives
over false negatives, the latter, having less impact on
electrical power grids. This is because a false positive,
predicting a peak that is not present, has significantly
fewer consequences than not predicting peaks which
are present. Thus, high recall is much more favored af-
ter than high precision.

In addition, we present a meta-learning algorithm
based on the theory of LA for selecting the optimal
prediction model from a pool of models in an on-
line fashion. Our LA algorithm is a modification of
the fast LA algorithm reported in [28] where we give
more weight to updates upon receiving reward and less
weight to updates upon receiving penalty. This simple

modification of the original balanced FLA is inspired
by ideas for "Reward ε Penalty" LA which operates
probability update under both reward and penalty re-
sponse; however it gives more weight to the reward.

The properties of the LA approach is appealing
since it does not require a priori knowledge of the best
model, but rather explores the models space in search
of the model that achieves the best performance.
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