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Abstract 

This thesis paper examines the forecast accuracy and explanatory power of volatility models over 

multiple forecast horizon for three asset classes. Forecast horizon ranging from 1 month up to 12 

subsequent months are investigated using Naïve, EWMA, GARCH, EGARCH, GJR-GARCH and 

APARCH model for S&P 500, DJIA, CBOE(^TNX ), CBOE(^FVX), USD/CHF and GBP/CHF. 

MSE and Predictive Power (𝑃) are used to evaluate the forecast accuracy and predictive ability of 

the model over increasing horizon. Different distribution assumptions are also included with non-

linear GARCH models in an attempt to improve forecast accuracy of the models. The in-sample 

estimation results revealed increased model fit for all assets considering the non-normal innovation 

but correspondingly didn’t always comply with out-of-sample forecast accuracy. Non-normal 

distribution provided best forecast accuracy at short forecast horizons for all asset classes except 

exchange rates. The result common to asset classes was that forecast accuracy and predictive 

power of the model are best at short horizon which gradually decreased with increasing forecast 

horizon. The predictive power suggested the longest forecastable horizon for Stock Indices, 

Interest Rates and Exchange rates are 4 months, 12 months and 2 months respectively. The results 

showed EGARCH model performed relatively well compared to other models and was able to 

increase the forecastable horizon.  Further, it was concluded there is no best model for all asset 

classes over all horizons. The best model is largely dependent upon the type of asset and the 

horizon of interest. 
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1. Introduction 

Volatility which we define as a measure for variation of the price of a financial instrument over 

time (Chen and Leonard, 1996) is not new to finance and economic literature. The discussion can 

be traced back to 1900 where Bachelier (1900) first used the term “coefficient of nervousness” or 

“coefficient of instability” to discuss the same thing.  

Gerlach, Ramaswamy and Scatigna (2006) states financial volatility has varied considerably over 

time and has been generally high across the world since the early 1970s. Since then and especially 

after the stock market crash in 1987 volatility modeling and forecasting has been an indispensable 

topic of interest and research which has led to the introduction and practice of several volatility 

models over time. Figlewski (1997) states high volatility means high risk. In general, high 

volatility with its associated risk would be undesirable as it is seen as a symptom of market 

disruption, securities unfairly priced and malfunctioning of the market as the whole (Huq, Rehman, 

Rehman and Shahin, 2013). Thus, accurately modeling and forecasting volatility is necessitated 

which provides a key input to assess the investment risk associated and achieve a level of risk that 

market participants are willing to take. 

Volatility and its predictability has been given due importance in several areas of finance. 

Markowitz (1952) on portfolio selection considered volatility as one of the fundamental variable 

in modern financial theory along with expected returns. Similarly, volatility has a key role in 

derivative pricing which can be noted from the option pricing model developed by Black and 

Scholes (1973) where among all other inputs, volatility is the only parameter which is unknown 

and needs to be forecasted from start date of the option till the expiry date in order to calculate 

option price. Other derivative products such as variance swaps and forward variance swaps offers 

direct exposure to volatility as an investment. This all makes volatility central to finance where 

accurate prediction are often sought by market participants to make more direct profits (Warren, 

2012). 

The enormous interest is reflected by the increasing number of researches and literatures regarding 

embedded dynamics of volatility on financial assets returns and its predictability. Many empirical 
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literature including that of Andersen and Bollerslev (1998) suggests volatility of assets return is 

time varying and predictable. Although “researchers agree that volatility is predictable in many 

asset markets, they differ on how this volatility predictability should be modeled” (Engle and Ng 

1993; p.1749).  Thus, over past few decades immense effort has been seen in literatures regarding 

modeling and forecasting time varying volatility (conditional heteroscedasticity).  As a result, 

varied models have been developed and practiced to confirm its efficiency. 

The first ever attempt was the introduction of autoregressive conditional heteroscedasticity 

(ARCH) model with normal innovation by Engle (1982) to model conditional heteroscedasticity 

in volatility. ARCH model performed particularly well when high ARCH order was selected but 

required many parameters to be estimated. Later, Bollerslev (1986) extended the ARCH model to 

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) which emerged as the 

solution to the problem regarding high ARCH orders which required rather large number of 

parameters to catch the dynamic of the conditional variance.  Brooks (1996), thus states GARCH 

model as infinite order ARCH model. 

 Financial assets exhibited some of the stylized statistical characteristics such as volatility 

clustering, heavy tails, leptokurtic distribution, absence of autocorrelations and leverage effect 

(Cont, 2001). Both ARCH and GARCH models successfully captured volatility 

clustering/persistence feature of the financial time series but omitted to look after the asymmetry 

of innovation to capture the leverage effect. To overcome this drawback different extension to the 

GARCH model have been proposed, some of which are deduced from pure theory and the others 

through simple trial and error suggestions (Tooma, 2000). The most popular extensions are 

Exponential GARCH (EGARCH) by Nelson (1991), Glosten-Jagannathan-Runkle GARCH (GJR-

GARCH) by Glosten, Jagannathan and Runkel (1993) and Asymmetric Power ARCH (APARCH) 

by Ding, Granger and Engle (1993).  Also the failure to capture the leptokurtic distribution of 

financial time series (i.e. fat tail property) by ARCH/GARCH models has led to the use of non-

normal distributions within many non-linear extensions of the GARCH models including the ones 

discussed above (Thorlie, Song, Wang and Amin, 2014). 

The primary purpose of this thesis is to investigate how the forecast accuracy and predictive ability 

of different models differs over long term horizons. Forecast horizons ranging from 1 month up to 
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12 months are investigated. Volatility predictability over forecast horizons are assessed through 

the use of seven different volatility models. The performance of these models out-of-sample 

forecast accuracy and predictive power against increasing horizon will be examined in order to 

fulfill the purpose. This thesis is expected to contribute to the existing knowledge base and 

literature in many ways. Firstly, unlike many papers, this thesis takes into consideration three asset 

classes; stock indices, interest rate and exchange rate data. Most of the existing researches are 

focused on pure assets market. The second contribution of this thesis is to analyze the performance 

of chosen models for subsequent months until 1 year. For many practical purposes, study on 

volatility forecast ability at longer horizons are interesting, but there are only few researches on 

the forecast accuracy of volatility models beyond the very short term (maximum 3 months).  

Thirdly, I use the method proposed by Blair, Poon, and Taylor (2001) to measure the explanatory 

power of the model which is also unique to existing literatures.  

There are a lot of volatility forecasting models and it is not possible to cover all models. So, this 

thesis limits itself to use only seven models which are most used in empirical finance. However, it 

should be noted that there might exist other superior model for the selected assets return that could 

perform better against multiple horizons than that I have taken in consideration. 

The rest of the thesis is structured as follows. The literature review is presented in Section 2 where 

I present some of the exiting researches that are focused on volatility predictability over multiple 

horizons. Section 3 includes presentation of the data which are further examined through 

descriptive statistics and different tests to reveal some of its properties. Section 4 will present the 

adopted econometric methodology where forecasting procedure, models, error distribution along 

with evaluation criterion are introduced.  In Section 5, in-sample estimation and the forecast 

performance comparison results are presented and interpreted. The findings are compared and 

contrasted with existing relevant literatures in Section 6. Finally, in Section 7, main findings along 

with applied approach in this thesis is summarized and presented as conclusion.  
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2. Literature Review 

Since the seminal paper of Engle (1982), a lot of empirical work has been carried out with non-

linear ARCH-family model, especially in finance, in several practical situation. Yet, studying the 

predictability of different simple and ARCH-family models on multiple, especially long 

forecasting horizons have been considered only in limited papers. 

Briefly, we find that, while different markets are different, throughout time financial market prices, 

prices of stock, bonds and exchange rates has shown striking changes in volatility. Thus, predicting 

volatility has been a growing concern and now is a proven fact that financial volatility are 

predictable as noted in Section 1. But the success of predicting volatility/forecast accuracy depends 

largely upon the defined horizon and the choice of horizon depends upon the application. One-day 

risk management approach is often used by risk managers for trading purposes (Smithson and 

Minton, 1996), while Falloon (1999) argues, approximately a year horizon is essential for investors 

and it may take as long up to ten years for pension fund. 

Christoffersen and Diebold (2000), reviewing widespread empirical literatures, states 

academicians and researchers have often discussed on the importance of forecasting at varying 

horizon and argued upon the relevant horizon. But most notable was the emerging concern 

regarding forecasting at fairly long horizon which are relevant for several applications. Taking into 

consideration to this emerging concern in existing literature, they marked “ ….Interestingly, 

however, much less is known about volatility forecastability at longer horizons, and more 

generally, the pattern and speed of decay in volatility forecastability as we move from short to 

long horizons” (Pg;12). Decade later, still, we find very few literatures that studies volatility over 

longer horizons despite its emerging relevance in several applications. Existing empirical 

literatures have used multiple horizon for comparative study but are limited to very short horizon. 

In this thesis I use multiple horizon up to 1 year and compute the forecast accuracy for each 

subsequent month, using simple models and ARCH-family models taking into consideration the 

error distributions. Plus, rather than using a data from one specific sector as done in many 

literature, I chose three data from stock, interest rate and exchange rate market as it is obvious one 
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is concerned to know what works with one type of data will  work correspondingly well with other 

type of data or not. Below are some relevant literatures. 

Cao and Tsay (1992), using daily stock return derived a benchmark measure for the monthly 

volatility and compared the models for different forecasting horizon (1-30months). Evaluating 

means squared error (MSE) and mean absolute error (MAE), they concluded Threshold 

autoregressive (TAR) model outperforms ARMA (1,1), GARCH (1,1) and EGARCH (1,0) for 

large stocks while EGARCH (1,0) provides best long-horizon forecast for small stock. Viewing 

the post-sample forecast comparison of the paper it is also observable that over the forecasting 

horizon (1 to 30 months) forecast accuracy of the models gradually decreases. 

Bluhm and Yu(2001) investigates over different horizon taking into account the practical 

application of volatility forecast in Value-at-Risk (VaR) (1 day and 10day) and option pricing (45 

calendar days and 180 trading days).  German DAX stock index and the DAX volatility index 

(VDAX) returns are used to model volatility using univariate time series approach and implied 

volatility approach. Mean absolute percent error (MAPE), boundary violation and LINEX are used 

as error measurement for different horizon. Not mentioning the clear winner they suggest 

stochastic volatility (SV) model and Implied Volatility should be used when option pricing and 

long horizon is of interest while the ARCH-type models works well when VaR is the objective. 

ARCH-type models predictive ability got worse when forecast horizon was extended. The other 

models used in this comparative study are historical mean model and EWMA model. 

West and Cho (1994), using five bilateral weekly data for the dollar versus the currencies of 

France, Germany , United Kingdom, Canada and Japan, compared the forecasting performance 

using Homoscedastic, GARCH, Autoregressive and Nonparametric models  for 1 week, 12 weeks 

and 24 weeks horizon. Models were evaluated using mean square prediction error (MSPE). Their 

study concluded that for a very short horizon of one week, GARCH type models (IGARCH 

especially) predictability was better than other models while it was difficult to find grounds to 

choose comparatively better model for longer horizons as models failed to perform well in the 

forecast efficiency test. 
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Li (2002) managed to apply the Autoregressive Fractionally Integrated Moving Average 

(ARFIMA) and Implied Volatility model for forecasting of currency volatility from 1 to 6 

consecutive months. Coupled with the use of 5-minute data and daily returns with forward options 

on German deutschemark, the Japanese yen, and the British pound vs the US dollar, they found 

ARFIMA performed well on longer forecasting horizon while Implied Volatility suited well for 

short forecasting horizon. 

Pong, Shackleton, Taylor and Xu (2002) compares the performance of the ARFIMA, ARMA 

(2, 1), GARCH (1, 1) model and option implied volatilities for forecast horizons ranging from 1 

day to 3 months. Intraday rates are used to compute the realized volatility of the pound, mark and 

yen exchange rates against the dollar. Using MSE criterion, they find ARMA model performed 

better than implied volatilities for short forecast horizons while implied volatilities dominates 

when long forecast horizon is considered. 

Heynen and Kat (1994) examined 7 stock indices and 5 exchange rates using SV, EGARCH (1, 

1), GARCH (1, 1) and random walk (RW) model over non- overlapping 5,10,15,20,25,50,75 and 

100 days horizon. Evaluating the model performance over horizons using median squared error 

(MedSE) they infer that volatility model forecasting performance depends on type of assets and 

SV outweighs other models however SV error is 10 times larger than GARCH models in exchange 

rate. 

Figlewski (1997), puts together several line of research carried out over time to explore some of 

the major ways of forecasting volatility. Using the monthly and daily data the author provides 

insight on the problem of forecasting volatility over longer horizons. Historical volatility (HV) and 

GARCH (1, 1) model is used to model volatility while root mean square error (RMSE) is used to 

evaluate the forecast accuracy over multiple horizon (1, 3,6,12 and 24 months). GARCH (1, 1) 

model performed particularly well for S&P 500 index volatility at every horizon and RMSEs was 

increasing sharply over horizon reflecting decay of volatility predictability. However, for rest of 

the time series for bond and exchange rate HV has an edge over GARCH (1, 1) model. 

Greeen and Figlewski (1999)  forecasts volality for the S&P 500 stock index, 3-month LIBOR 

(short-term interest rate), 10-year T-Bond yield (long-term interest rate) and DM exchange rate 
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using daily data. HV and Exponential Smoothing (ES) are applied for asset classes over horizon 

form 1 to 12 month.  Evaluating the models under RMSE, ES performed best for S&P 500 (1-

3months) and 3-month LIBOR (all horizons). In contrast, HV provided the best prediction for bond 

yield, exchange rate and S&P 500 (12 months). When monthly data was applied, HV outperformed 

ES for all asset classes. 

Ederington and Guan (2005), introducing a new models named absolute restricted least squares 

(ARLS) and GEN model compares its forecasting ability with historical standard deviation (HSD), 

EWMA, GARCH (1,1) , EGARCH (1,1) and AGARCH (1,1) model. Their analysis using RMSE 

and MAE in wide variety of market shows there is no clear choice between GARCH (1, 1) and 

EGARCH (1, 1). Both reflects better forecasting ability than HSD and EWMA. But when all 

models are considered, ARLS dominates every model in all forecasting horizons (10-120days). 

Ederington and Guan (2010), taking in consideration the Ederington and Guan (2005) model 

named ARLS compares among the GARCH (1, 1), GJR GARCH (1, 1), EGARCH (1, 1) and 

modified versions of these GARCH models. The modified GARCH models allowed for the 

parameters to vary with the forecasting horizon. Using RMSE and MAE across the forecasting 

horizon (10-80 days), they concluded that no one models predicts best in all markets at all forecast 

horizon. However, ARLS and modified EGARCH model provides better forecast over multiple 

horizons compared with other models across wide variety of market considered. 

Apart from these empirical papers, there are few authors who have tried to answer the volatility 

predictability at multiple horizons using model free test procedures. The intuition behind model 

free test procedures was to study specifically on the pattern and speed of decay of predictability as 

we move form short horizon to longer horizon regardless of impact of volatility models on multiple 

horizons.  Thus, to evaluate predictability of volatility per se, Christoffersen and Diebold (1998) 

developed a model free test procedure where they evaluate data from stock, bond and foreign 

exchange market. Their results reflected that depending on the asset classes, over increasing 

horizon predictability decays quickly and becomes largely unpredictable. They found that 

volatility is more forecastable in bond market compared to stock and exchange rate market. Later, 

Raunig (2006) introduced a new model free test procedure which was more powerful in monte-

carlo experiment to evaluate the predictability of DAX index volatility. Using this new test, Raunig 
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(2006) found volatility decayed rather slowly and DAX index was predictable to 40 trading days 

ahead which was predictable to only about 15 trading days before. Raunig (2008) used the 

simulation version of same test he developed in Raunig (2006) to study the predictability of 

exchange rate volatility where he finds predictability declines rather quickly and exchange rate 

volatility is hard to predict for more than 1 month ahead. 

 For the financial time series volatility clustering, leptokurtosis and leverage effect are common 

phenomenon (Mandelbrot, 1963 and Black, 1976). GARCH models in its standard form assumes 

that the conditional distribution of asset returns is Gaussian. However, when high frequency time 

series data are used GARCH models do not fully embrace the thick tail property (Curto et al., 

2009). To overcome this drawback different non-normal alternative distributions has been 

proposed. Bollerslev (1987) used and recommends using Student-t distribution. Nelson (1991) 

suggests using the generalized error distribution (GED). This thesis limits itself to use only three 

distributional model of innovation; Normal, Student-t and GED taking in consideration the finding 

of Wilhelmsson (2006) where allowing for skewness didn’t lead to any improvement over normal 

distribution. Below I present two researches which considers both multiple horizon and 

distribution assumptions. It is to be noted that horizon considered is no more than a month as none 

of the paper were found to have longer horizon which also considered distribution assumption. 

Marcucci (2005) explored GARCH (1, 1), EGARCH (1, 1), GJR-GARCH (1, 1) and Markov 

Regime-Switching GARCH (MRS-GARCH) models taking into consideration normal, student-t 

and GED distribution. Using the S&P 100 daily closing price the author aims to compare between 

the models considering varying horizon (1 day, 1 week, 2 week and 1month). The empirical 

analysis reveals that over a longer horizon, standard asymmetric GARCH model with non-normal 

innovation performed well while MRS-GARCH outweigh other models at shorter horizons. 

Wilhelmsson (2006) employed intra-daily returns from S&P 500 index future to investigate the 

forecasting ability of the GARCH (1, 1) model when estimated with nine different error 

distribution. The MAE and HMAE (Heteroscedasticity adjusted MAE) reveals GARCH (1, 1) 

model estimated with student-t is the best performing model for 1 and 5 days forecast. For the 20 

days forecast, this model has the lowest `MAE but is close second on HMAE loss function. This 

result partially agrees with Hamilton and Samuel (1994), who showed GARCH (1, 1) model with 
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t-distribution to perform best when logarithm loss criteria is used. The out of sample analysis in 

Wilhelmsson (2006) further shows allowing for kurtosis/leptokurtic error distribution improves 

forecasts while allowing for skewness doesn’t lead to any improvement over normal distribution. 

On the basis of empirical papers reviewed it can be inferred that there is no generally accepted 

model or method for all assets. The performance of the volatility models seems to be dependent 

upon researcher’s preferences in terms of assets under study, sampling period, data frequency, 

forecast methods, evaluation criteria, forecast horizon etc. In addition, over the increasing forecast 

horizon the gradual decrease in forecasting ability of the models are also dictated. The non-normal 

distribution is attributed to improve the forecast accuracy over normal distribution. When 

considering the three asset classes in relevant papers the common finding was that volatility is 

more forecastable in bond market compared to stock market and exchange rate market. The 

predictability of exchange rates was found to decay rather quick which usually becomes hard to 

predict after 1 month.  

Further, Implied volatility as an alternative source of volatility forecast are shown to be powerful 

in many studies discussed above but Ederington and Guan (2010), states time series models still 

remain a major source of volatility forecasting as implied volatility as an alternative source must 

reflect much information including time series information. In addition, they argue except for 

limited set of assets and for specific time horizons, implied volatility cannot be simultaneously be 

used to price the derivative from whose price they are calculated. Thus, in this thesis I use time 

series models to forecast volatility which are introduced in Section 4. 
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3. Data Analysis 

3.1 Raw Data and Pretreatment 

Two sets of data each for stock index, interest rate and exchange rate are used in this thesis for 

empirical study. In particular, the data set to be investigated consist of following assets 

Table 1:  Selected assets for each asset class to be used in forecasting application and the first and last 

date of the full sample, in-sample and out-of-sample period. 

Under Stock Indices, S&P 500 and DJIA are chosen for analysis purpose. The S&P 500 is a market 

value weighted index of 500 most extensively traded stocks in United States (U.S). This index is 

regarded as a better representation of U.S. marketplace as it contains about 70% of the total value 

of overall U.S. stock market. DJIA, on the other hand is a price weighted index of 30 most largest 

and influential companies of U.S and represents about quarter of the total value of overall U.S. 

stock market (www.investopedia.com). 

For interest rates, CBOE (^TNX) and CBOE (^FVX) are chosen. Both of them are closely watched 

long term and medium term U.S. Treasury securities which can represent the general economic 

condition, monetary and fiscal policies, value of U.S. dollar etc. CBOE (^TNX) and CBOE 

(^FVX) are based on yield-to-maturity of the most recently auctioned 10-year and 5-year Treasury 

notes respectively (www.cboe.com). 

Asset class Assets Full sample In-Sample Out-Of-Sample 

Stock 
Indices 

Standard & Poor's 500 (S&P 500) 
and 
Dow Jones Industrial Average 
(DJIA) 

01/02/1990-
12/31/2015 

01/02/1990-  
12/31/1995 

01/01/1996-
12/31/2015 

Interest 
Rates 

Chicago Board Option Exchange 
(CBOE) Interest rate 10-yr T Note 
(^TNX) and 
CBOE interest rate  5-yr T Note 
(^FVX) 

01/02/1990-  
12/31/2015 

01/02/1990-  
12/31/1995 

01/01/1996- 
12/31/2015 

Exchange 
Rates 

United States Dollar (USD) / 
Swiss Franc (CHF)  and 
Great Britain Pound (GBP) / CHF 

01/03/1991 -
12/31/2015 

01/03/1991 
12/31/1996 

01/01/1997 
12/31/2015 
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For exchange rates, CHF being the common currency, USD against CHF and GBP against CHF 

are chosen.  

Two sets of representative assets in each asset class are used as it is comprehended that different 

assets although being the same kind doesn’t always seem to move in tandem. So, by analyzing the 

assets from the same asset class it would be easier to make deductions on their similarities and 

differences. Further, different asset classes are taken in consideration to see if what works with 

one type of asset class will work correspondingly well with other type of asset class or not.  

The data sets are built considering the daily closing price of each assets for the given time period. 

The daily historical closing prices for stock indices and interest rates are gathered from Yahoo 

Finance (www.finance.yahoo.com) while for exchange rates the data are gathered from Oanda 

(www.oanda.com). The full sample consist of twenty five years of data for stock indices and 

interest rates, and twenty four years of data for exchange rates due to the unavailability of data 

from 1990. The full sample period is broken into in-sample period of five years and remaining 

period as out-of-sample forecasting period for all assets. 

Daily closing price of assets are used to calculate the daily returns for the whole sample. The return 

series so obtained are often preferred over raw price series when the interest of study is related to 

financial time series.  Campbell, Lo and MacKinlay (1997) states return series are easier to handle 

and is a more complete, scale free summary of particular investment opportunity.  Assuming 𝑝𝑡, 

as the daily closing prices for the given assets, daily logarithm return, 𝑟𝑡, for the time series in this 

thesis is calculated as: 

𝑟𝑡 = 𝑙𝑜𝑔(𝑝𝑡) − 𝑙𝑜𝑔(𝑝𝑡−1) = 𝑙𝑜𝑔 (
𝑝𝑡

𝑝𝑡−1
)                                    (1)                                                                                                                                                               

On the basis of so obtained daily return time series for representative assets relevant graphical and 

numerical descriptive statistics are discussed below to investigate the distribution and dependence 

properties of daily assets returns. Exploratory data analysis of such kind will assist to see if the 

time series are well suited to apply ARCH-family models with different error distributions for 

forecasting.  
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3.2 Plots of the Data 

Time plots are the most convinient way to quickly visualize the time series data with time index 

set to x-axis and time series data set to y-axis. Below I plot daily closing prices and retruns for all 

asset classes and jot down few phenomena that are explicit from the figures. 

Figure 1:  End-of-day closing prices for Stock Indices 

Figure 2:  End-of-day closing prices for Interest Rates  
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Figure 3:  End-of-day closing prices for Exchange Rates 

The given Figure 1, 2 and 3 represents the daily closing prices for different asset classes. 

Visualizing the time plots, the movement of price can be seen for all assets from 1990 to 2015. 

The movement shows upward trend for stock indices while for interest rates and exchange rates 

downward trend can be visualized. Overall the price series appears to be non-stationary and exhibit 

random walk like behavior.  For all assets, it can be seen there is no tendency to return around time 

independent mean. 

However, the time plots for return series displays that the returns oscillates around the mean value 

which is depicted in Figure 4, 5 and 6. 
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Figure 4: Daily returns and absolute returns for Stock Indices. 

 

Figure 5: Daily returns and absolute returns for Interest Rates. 
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Figure 6: Daily returns and absolute returns for Exchange Rates. 

 Different phase (periods) of volatility for assets return are evident from Figure 4, 5 and 6 for all 

assets where low periods of volatility is likely to be followed by periods of low volatility and high 

periods of volatility is likely to be followed by period of high volatility. This feature that is often 

pronounced as stylized fact in financial time series data is known as volatility clustering as noted 

by Mandelbrot (1963), and is a necessary condition for the application of ARCH model. Zivot 

(2015) corresponds this type of behavior to conclude volatility of assets return exhibit some time 

dependence. 

3.3 Shape Measures and Descriptive Statistics  

The shape measures for the return distribution reflects the measure for center, spread, asymmetry 

and tail thickness. The corresponding shape measure of return distribution of data sample are 

represented by the sample summary statistics in the Table 2. 

 Mean, 𝜇̂𝑥, is the measure of center of histogram.The spread of the data from the calculated mean 

is measured by sample variance, 𝜎̂𝑥
2, and  sample standard deviation,𝜎̂𝑥. Sample skewness, 𝑆𝑘𝑒𝑤̂𝑥, 

and sample kurtosis, 𝑘𝑢𝑟𝑡̂𝑥, is a measure of asymmetry and tail thickness of the histogram 

respectively (Zivot, 2015). The formula for calculating the discussed sample statistics of return 

are: 



19 

 

𝜇̂𝑥 = 𝑥̅ =
1

𝑇
∑ 𝑥𝑡

𝑇
𝑡=1                                                                                             (2) 

 𝜎̂𝑥
2 =

1

𝑇−1
∑ (𝑥𝑡 − 𝑥̅)2𝑇

𝑡=1                                                                                     (3) 

 𝜎̂𝑥 = √𝜎̂𝑥
2                                                                                                           (4) 

𝑆𝑘𝑒𝑤𝑥
̂ =

1

𝑇−1
∑ (𝑥𝑡−𝑥̅)3𝑇

𝑡=1

𝜎̂𝑥
3                                                                                        (5) 

𝐾𝑢𝑟𝑡̂ =
1

𝑇−1
∑ (𝑥𝑡−𝑥̅)4𝑇

𝑡=1

𝜎̂𝑥
4                                                                                          (6) 

Where,  

 T is the sample size and 

 𝑥𝑡 is the observation at time period t. 

 

Asset Class Stock Indices Interest Rates Exchange Rates 

Assets S&P500 DJIA CBOE(^TNX) CBOE(^FVX) USD/CHF GBP/CHF 

No of observation 6552 6540 6524 6524 7118 8953 

Minimum -0.0947 -0.080 -0.1702 -0.2641 -0.1761 -0.1796 

Median 0.0005 0.0005 -0.0004 0.0000 0.0000 0.0000 

Arithmetic Mean 0.0003 0.0003 -0.0002 -0.0002 0.0000 -0.0001 

Geometric Mean 0.0002 0.0002 -0.0003 -0.0005 -0.0001 -0.0001 

Maximum 0.1096 0.1051 0.0922 0.1772 0.0924 0.0829 

Variance 0.0001 0.0001 0.0003 0.0006 0.0000 0.0000 

Std 0.0114 0.0109 0.0160 0.0238 0.0065 0.0052 

Skewness -0.2399 -0.1353 0.0190 0.0172 -2.4785 -4.4469 

Excess Kurtosis 8.65 8.2244 5.5457 7.7424 87.7252 184.8697 

Table 2: Summary statistics of return 

The number of observation for the data sets varies due to the different number of trading days. For 

the exchange rates the sample date starts one years after as depicted in Table 1. 
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Mean and median for the return series are very close to 0. Standard deviation for exchange rates 

are quite low compared to stock indices and interest rates. The percent difference between the 

maximum and minimum return shows the price variability. CBOE (^FVX) has the highest price 

variability with 44.13 percent difference which corresponds to the higher value of standard 

deviation compared among all other assets. 

The sample skewness for interest rates are 0.0190 and 0.0172 for CBOE (^TNX) and CBOE 

(^FVX) reflecting approximate symmetry. The negative skewness values of stock indices and 

exchange rates reflects that the distributions are skewed left. The skewedness for exchange rates 

is significant compared to rest of the asset classes. The excess kurtosis (kurtosis - 3) indicate that 

the distribution have much fatter tails. Brooks and Hinich (1998) notes that the exchange rates are 

highly leptokurtic which is in line with our excess kurtosis values of 87.72 and 184.87 for 

USD/CHF and GBP/CHF respectively. The values so obtained from skewness and kurtosis 

proposes that the distribution of returns may be not normally distributed which we will confirm 

below using various means. 

3.4 Distribution  

Distribution of returns rather than prices are focused in this study as prices tends to be non-

stationary. (Zivot, 2015) argues for sample descriptive statistics to be meaningful only for 

covariance stationary and ergodic time series.   

The distribution is of particular interest in this thesis, thus, we explore it through various graphical 

and numerical presentations. Firstly, we review the histograms which graphically summarizes the 

distribution of the time series data. 
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Figure 7: Histogram for Stock Indices 

 

Figure 8: Histogram for Interest Rates  
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Figure 9: Histogram for Exchange Rates 

The figures depicted above provides the graphical representation of data with normal curve 

superimposed. The superimposed normal curve is given by the bell shaped blue line in all figures. 

The histograms in Figure 7,8 and 9 instantly gives us the idea that the distribution of data are tall 

and skinny (peaked) relative to standard bell curve. This is a property knowns as leptokurtic/fat 

tail distribution and true for all financial time series data. This leptokurtic property is parallel for 

the positive kurtosis generated for all assets. 

Thus, the histogram does provide us with the visual measure of shape to infer whether the data are 

normally distributed or not but it is not considered effective way of looking at systematic departure 

from normality. However, a normal Q-Q plot quite effectively shows the level of normality. 
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Figure 10: Normal Q-Q plots of Stock Indices. 

 

Figure 11: Normal Q-Q plots of Interest Rates. 
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Figure 12: Normal Q-Q plots of Exchange Rates. 

In Figure 10, 11 and 12 the blue dots represents the actual data. These actual data are placed against 

the horizontal black line (standard normal distribution). If the dots adheres to the horizontal line, 

the distribution of data is considered to be normal while the deviation from horizontal line 

represents non-normality. Normal Q-Q plots presents the plots curving away quickly from the line 

at each end in opposite directions due to the presence of leptokurtic property which was also 

evident in histogram with peaked distribution. 

In addition to these visual representations for normality, calculation in numeric terms is considered 

equally important since the look at the patterns through plots and bars are sometimes inconclusive. 

So, Jarque-Bera (JB) test is carried out to test if assets returns follow normal probability 

distribution. The JB test statistics is calculated as: 

𝐽𝐵 = 𝑛 [
𝑆2

6
+

(𝐾 − 3)2

24
]                                                             (7) 
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Where, 

 𝑛 - Sample size 

𝑆  - Skewness and 

𝐾- Kurtosis 

The test statics of JB test is chi-squared distributed with 2 degrees of freedom under the null 

hypothesis.  The null hypothesis for JB test is a joint hypothesis of skewness and kurtosis being 0 

and 3 respectively. Rejection of null hypothesis at 5% significance level suggests that the 

distribution of data is not normal (Gujarati, 2003). 

Asset Class Stock Indices Interest Rates Exchange Rates 

Assets S&P500 DJIA CBOE(^TNX) CBOE(^FVX) USD/CHF GBP/CHF 

Test Statistic 20492 18452 8361 16295 2289708 1277880 

P Value 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 

Table 3:  Jarque-Bera Test statistics for Stock Indices, Interest Rates and Exchange Rates.  

For all the assets, JB test statistics is quite high and P value is less than the critical value of 0.05. 

So, the null hypothesis is rejected to conclude that the series is clearly not normally distributed 

confirming to what is shown by histograms and Q-Q normal plot. 

3.5 Test for Stationarity 

A time series is assumed to be stationary if its mean, variance and autocovariances for each given 

lag is constant over time (Brooks, 2008). A unit root test is applied to examine the stationarity or 

non-stationarity of the time series. A simple and obvious method would be to examine 

autocorrelation function of the return series but Brooks (2008) criticizes this method being 

misleading and not suitable to conclude whether a series is characterized by unit root or not. Rather 

he proposes to use augmented dickey- fuller test (ADF) test. Under ADF test, null hypothesis that 

the time series is non-stationary is compared against the alternative hypothesis of stationarity.  The 

ADF test specification is constructed as: 
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∆𝑦𝑡 = 𝛼 + 𝛽𝑦𝑡−1 + ∑ 𝛾𝑗

𝑝

𝑗=1

∆𝑦𝑡−𝑗 + 𝜀𝑡                                              (8) 

Where, 𝑦 is the time series to be tested, 𝛼 is the intercept term, 𝛽 is the coefficient of interest to 

test the unit root; 𝛽 = 0 represents the null hypothesis while 𝛽 < 1 represents the alternative,  𝛾𝑗 

represents the parameter of the augmented lagged first difference of time series to represent  the 

Pth - order auto regressive process, and 𝜀𝑡 denotes the white noise error term (Agrawal, 2010). 

Asset Class Stock Indices Interest Rates Exchange Rates 

Assets S&P500 DJIA CBOE(^TNX) CBOE(^FVX) USD/CHF GBP/CHF 

Test Statistic -19.07 -19.33 -16.97 -17.37 -18.99 -22.19 

P Value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Table 4: Augmented Dickey Fuller Test for stock indices, Interest Rates and Exchange rates 

Table 4 shows ADF test statistics for the assets return. The negative values for test statistics and 

P-value less than 0.01 suggests null hypothesis is rejected at 1% significance level, inferring that 

all the return series are stationary. 

3.6 Test for ARCH effects 

Zivot and Wang (2006) recommends to test for the presence of ARCH effect in the residuals before 

estimating a full ARCH model for the return series. Among many methods available, Lagrange 

Multiplier (LM) test (ENGLE, 1982) is chosen which has been widely used to test the presence of 

conditional heteroscedasticity and ARCH effects. 

Given, conditional variance, 𝜎𝑡
2, ARCH model which is represented by Equation 19 (see Section 

4), the AR (p) process for the squared residuals is constructed as: 

 𝜀𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + ⋯ + 𝛼𝑝𝜀𝑡−𝑝
2 + 𝜇𝑡                                           (9) 

Where,  𝜇𝑡 is a zero mean white noise process. 
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ARCH-LM test statistics is calculated as: 

𝐿𝑀 = 𝑇. 𝑅2~𝑋2(𝑝)                                                               (10) 

 Where, T represent the sample size and 𝑅2 is computed from the regression of Equation 9 and p 

denotes the number of lags placed on the model. Under ARCH-LM test, null hypothesis suggests 

there is no ARCH effect. That is 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑝 = 0 (Zivot and Wang, 2006) 

Table 5: ARCH-LM test for Stock Indices, Interest Rates and Exchange Rates 

ARCH-LM test presented in the Table 5 suggest that all assets exhibit ARCH effect as the P values 

are essentially zero. The null hypothesis is rejected even at 1% significance level. Hsieh (1989) 

argues that return series that shows the presence of ARCH effect implies that nonlinearities must 

enter through the variance of the processes. Such behavior can be essentially captured by 

considering ARCH-family structures in the model. Lee and king (1993) argues that the test can 

also be used as a general specification for GARCH effect even though it is derived from the ARCH 

model. 

Thus, the presence of the established stylized facts and ARCH effect gives credence to the use of 

ARCH-family models for estimation with different error distribution. 

 

 

 

Asset 
Class 

Stock Indices Interest Rates Exchange Rates 

Assets S&P500 DJIA CBOE(^TNX) CBOE(^FVX) USD/CHF GBP/CHF 

Test 
Statistic 

1420 1280 583.9 606.8 136.3 179.8 

P Value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 
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4. Methodology 

4.1 Forecasting Procedure 

Time series forecasting is essentially an attempt to predict the future values of series given its 

historical values. Brooks (2008) discusses two methods to generate a series of forecasted values 

for the given step size. The first method is using a recursive forecasting model that exercises 

expanding window where initial estimation date is fixed and additional observations are 

consecutively added depending on the step size to the estimation period. In contrast, the second 

method is using a rolling window where fixed in-sample length coupled with defined step size is 

used. Start date and end date is set to successively increase by assigned value of observations/steps. 

In this thesis forecasting procedure uses the rolling window which closely follows to earlier 

empirical studies (see Brooks (1998) or Akgiray (1989)). 

Under rolling window, return series is divided into two parts where the volatility in out-of- sample 

period (testing sample) is forecasted using the in-sample period (estimation sample). The sum of 

testing sample and estimation sample presents the total sample size.  In this thesis, assuming 21 

trading days in a month we have in average 6300 daily observations for the return series. In-sample 

period of 5 years is used which gives us 1260 observations to estimate the parameter of the model 

and create the first forecast of volatility for assigned step size/n-days. For successive forecast, the 

estimation sample is rolled forward by dropping the initial assigned step size/n-days observations 

and adding in the new observations. This process of out-of-sampling forecasting allows for the 

modification of model parameter over time and until the conditional variance for the forecast are 

sought. 

This mechanism is used for all the return series. Once we get the conditional variance through the 

given scheme, forecast of the volatility for time period t is calculated which is given by: 

𝜎̂𝑡 = √∑ 𝜎̂𝑖
2

𝑁

𝑖=1

                                                                       (11) 
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Where, 

𝜎̂𝑡 is the standard deviation for time period t 

𝜎̂𝑖
2 is the sum of squared daily variance and 

𝑁 is the number of days for time period t 

 

To investigate the performance of various models once volatilities (𝜎̂𝑡 ) are forecasted, it has to be 

compared against actual volatilities. But actual volatility is unobservable. So, it is obvious to rely 

on proxy for realized volatility. Andersen and Bollerslev (1998) argues for the need of intraday 

return to correctly estimate the actual volatility. But since the intraday returns are not readily 

available the common accepted method is to use the squared daily returns as the unbiased estimator 

of realized volatility.  Awartani and Corradi (2005) suggests using (𝑟𝑖 − 𝑟̅)2 as a proxy for latent 

volatility when the true underlying volatility process is not observable.  So, the proxy used for 

realized volatility at time period t is calculated using the given formula. 

𝜎𝑡 = √∑(𝑟𝑖 − 𝑟̅)2

𝑁

𝑖=1

= √∑ 𝑟𝑖
2

𝑁

𝑖=1

                                                   (12) 

Where, 𝑟𝑖 is the daily return and  

            𝑁  is the number of trading days for a chosen period. 

 

4.2 Forecasting Models 

4.2.1 Naïve Forecasting Model 

This is one of the most straightforward and simplest historical price model to forecast volatility of 

time series data. This model gives importance to the most current observation assuming that all 

other past observations doesn’t provide any information for the future. That is, all the forecast are 

simply set to be the value of the last observation (Hyndman and Athanasopoulos, 2013). In other 
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words, the optimal forecast for the next period volatility (𝜎 ̂t+1) is simply the realized volatility of 

current period i.e. (σt). This can be expressed as: 

𝜎̂𝑡+1 = 𝜎𝑡                                                                                     (13) 

This method of forecasting is considered to work quite well for many economical and financial 

time series and is considered to be a convenient benchmark as the values of 𝜎𝑡 are readily available. 

However, it is argued that the model cannot be used in long run forecasting and is criticized for 

being too persistent (Zakamulin, 2014). This model is used as a benchmark model in this thesis. 

4.2.2 EWMA 

Essentially exponentially weighted moving average (EWMA) model is a simple extension to 

historical average volatility measure. EWMA specifications allow the most recent observation to 

carry more weight to have stronger influence on volatility forecasting while the weights on old 

observations will decline exponentially with time (Brooks, 2008). EWMA estimates of the 

volatility can be expressed as: 

σ̂𝑡 
2  =  (1 −  λ) ∑ λ𝑗 

𝑛

𝑘=0

(rt−j −  r)                                                  (14) 

Where, 

 σ̂𝑡 
2  is the estimate of the variance. 

r is the average return of observations and 

λ is the decay factor 

The forecasting from EWMA over different horizons is the most recent weighted average estimate 

and λ controls the estimation of daily volatility. It is important to note that most of the academic 

studies set r  to zero (Brooks, 2008).  Most often the value of λ lies in between 0.94 to 0.97 (0.96 

in this thesis) aiming to maximize the forecast accuracy. The model deems to be unsuitable for 

long run forecasting (Zakamulin, 2014). 
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4.2.3 Basic Structure 

Jondeau, Poon and Rockinger (2007) states as high frequency time series data are not readily 

available using lower frequency data such as daily returns are most often practiced by 

academicians and researchers. In such a condition of using daily data they propose for the use of 

ARCH/GARCH models which intuitively describes time variation in conditional volatility. 

The use of ARCH/GARCH models reflect to some extent the fat tails phenomena present in the 

return series. However, to capture the leverage effect present in return series effectively different 

asymmetric GARCH models have been developed and practiced. 

The basic structure of volatility model is presented as: 

𝑥𝑡 = 𝜇𝑡(𝜃) + 𝜀𝑡                                                             (15) 

 

𝜀𝑡 = 𝜎𝑡(𝜃)𝑍𝑡                                                                 (16) 

 

Where, 

               𝜇𝑡(𝜃) = 𝐸[𝑥𝑡 ∣ 𝐹𝑡−1] 

               𝜎𝑡
2(𝜃) = 𝐸[(𝑥𝑡 − 𝜇𝑡(𝜃))

2
ǀ 𝐹𝑡−1 

Where in Equation 1 return xt is decomposed into conditional mean µ and a residual term or past 

innovation ɛt. Conditional mean (µt (Ɵ)) may consider ARMA (p, q) process or consist of the 

seasonality features. Ft is the information set available at the time period t and Ɵ is the vector of 

unknown parameter. Zt in Equation 16 is assumed to follow some distribution with mean 0 and 

variance 1. 

ARCH-family and Stochastic volatility models are two variety of volatility models that describes 

the evolution of 𝝈2 (Ɵ). ARCH-family model describes volatility as an exact function of a given 

set of variable while stochastic model describes volatility as a stochastic function. (Jondeau et al, 

2007).  In this thesis I use ARCH-family model to describe the dynamics of volatility. 
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4.2.4 ARCH  

First introduced by Engle (1982), Autoregressive conditional heteroscedasticity (ARCH) model 

addresses and models the conditional heteroscedasticity in volatility. The ARCH process leaving 

the unconditional variance constant allows the conditional variance to vary over time as a function 

of past innovation (Bollerslev, 1986). 

A univariate ARCH models basically consist of conditional mean equation and conditional 

variance equation to model the first and second moment of return respectively (Brooks, 2008). 

Thus, the structure of ARCH (p) volatility model is presented by mean equation and conditional 

variance equation which is stated below in Equation 17 and Equation 19 respectively. 

𝑥𝑡 =  𝜇 + 𝜀𝑡                                                                    (17)       

 

𝜀𝑡 = 𝜎𝑡𝑍𝑡                                                                         (18) 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜀(𝑡−1)

2 + ⋯ + 𝛼𝑝𝜀𝑡−𝑝
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑝

𝑖=1

                             (19) 

Where, ⍵, 𝛼 and 𝑝 denotes intercept, arch parameters and number of lags respectively.  The 

constraints of parameters 𝜔 ≥ 0 and 𝛼𝑖 ≥ 0 (i = 1… p) ensures that the conditional variance 𝜎2 is 

positive and the model is well defined. 𝜀𝑡
2, is the square error obtained from the mean equation 

(Jondeau et.al, 2007).   

Despite the ARCH model ability to model volatility clustering, excess kurtosis and mean reverting 

characteristics this model has been severely criticized for not considering the asymmetric effect 

and requiring large value of   𝑝 to successfully capture all of the dependence in the conditional 

variance. Similarly, non-negativity constraints might be violated as one or more of the parameters 

may have negative estimated values with increasing parameters in conditional variance equation 

(Brooks, 2008). Due to these problems ARCH model has been hardly been used over last decade. 
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This model will not be used in this thesis but is defined here as this model provided a framework 

for the analysis and development of other volatility models which are discussed below. 

4.2.5 GARCH 

Bollerslev (1986) proposed extension to the ARCH model which is empirically considered more 

parsimonious, as ARCH model required large number of p to successfully model the large 

persistence of volatility. 

Brooks (2008) states under GARCH model the conditional variance is modeled as an ARMA 

process which allows the conditional variance to be dependent on its previous own lags. This 

means that the conditional variance in GARCH model is a weighted average of past squared 

residuals and these residuals are assumed to decline geometrically. The Equation 17 along with 

the conditional variance equation given in Equation 20 represents the basic GARCH (p, q) model. 

𝜎𝑡 
2 = 𝜔 + 𝑖 ∑ 𝛼𝑖

𝑝

𝑖=0

𝜀𝑡−𝑖
2 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2

𝑞

𝑗=0

                                                 (20) 

Under GARCH specification, conditional variance changes over time while unconditional 

variance of 𝜀𝑡  is finite and is expressed as: 

𝜎2 = 𝑣𝑎𝑟(𝜀𝑡) =
𝜔

1 − (∑ 𝛼𝑖 + ∑ 𝛽𝑗)𝑞
𝑗=1

𝑝
𝑖=1

                                         (21) 

Under the equations above, the constraints of parameters 𝜔 ≥ 0 , 𝛼𝑖 ≥ 0 ( i = 1,…..,p)  ,  𝛽j ≥ 0 

(j=1,…..,q) ensures that the conditional variance σ2
t is non-negative  and   ∑ 𝛼𝑖 + ∑ 𝛽𝑗

𝑞
𝑗=1

𝑝
𝑖=1 < 1  

ensures that the process 𝜀𝑡  is covariance stationary.  If q =0, the model reduces to ARCH (p) model 

(Jondeau et.al, 2007).  . 

Along with the beauty of requiring far less parameters, Brooks (2008) considers GARCH model 

to be parsimonious as it avoids overfitting of data and the probability that non-negativity 

constraints will be breached is lower. However, Greeen and Figlewski (1999) argues against 
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GARCH model as it required large data set for reliable estimation and its potential gain from the 

approach are quickly moderated when estimates must be made over longer horizons. GARCH 

model are further criticized for its inabalility to model assymetric effect 

4.2.6 EGARCH 

EGARCH model as an extension to GARCH model was proposed by Nelson (1991) to overcome 

the drawbacks inherent in symmetric GARCH model. Basically it addressed two issues; the first 

regarding the need that parameters 𝛼 and 𝛽 have to be constrained to ensure non-negativity in 

conditional variance, 𝜎𝑡
2, and the second regarding the ability to incorporate asymmetric response 

of volatility to positive and negative shocks (Jondeau et.al., 2007).  The log of conditional variance 

equation below represents the basic EGARCH (p, q) model. 

log(𝜎𝑡
2) =  𝜔 + ∑ 𝛼𝑖𝑔(𝑧𝑡−𝑖) + ∑ 𝛽𝑗 log(𝜎𝑡−𝑗

2 )

𝑞

𝑗=1

𝑝

𝑖=1

                               (22) 

Where, 

 𝑧𝑡 =
𝜀𝑡

ℎ𝑡
 is the normalized residual 

𝑔(𝑧𝑡) = [𝛾(|zt| − E[|zt|]) + 𝜓𝑧𝑡] ; represents  𝑔(𝑧𝑡)  as the function of both sign (𝜓𝑧𝑡 ) and the 

magnitude ([𝛾(|zt| − E[|zt|]) of  𝑧𝑡. The value of  E[|zt|]  changes under different assumed 

density distribution. 

Under EGARCH specification, the conditional volatility is always positive, so, the parameters are 

not restricted to be non-negative. But  ∑ 𝛽 < 1𝑞
𝑗=1   is necessary condition for the process to be 

covariance stationary (Jondeau et.al. 2007). 

4.2.7 GJR-GARCH 

Glosten et.al (1993) proposed an alternative method to model the asymmetric response of volatility 

to positive and negative shocks known as GJR-GARCH model. Including an additional term they 
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simply extended the GARCH model to capture the possible asymmetries.  With 𝜀𝑡 assumed to be 

same structure as before (Equation 18), the conditional variance for GJR-GARCH (p, q) is 

represented by: 

𝜎𝑡
2 = 𝜔 + ∑ [𝛼𝑖𝜀𝑡−𝑖

2 + 𝛾𝑖
𝑝
𝑖−1 𝐼𝑡−𝑖𝜀𝑡−𝑖

2 ] + ∑ 𝛽𝑗𝜎𝑡−𝑗
2𝑞

𝑗=1                              (23) 

Where, the indicator 𝐼𝑡−𝑖 takes the value of one if 𝜀𝑡−1 < 0 which is otherwise 0. The parameter  

𝛾𝑖  is the leverage term which is usually impacted by positive shocks while negative shocks 

impacts 𝛼𝑖.  Depending on the positive or negative value of 𝜀𝑡 the impact of 𝜀𝑖
2 on conditional 

variance 𝜎𝑡
2 varies (Laurent and Peters, 2002). 

The constraints of parameters 𝜔 > 0, 𝛼𝑖 ≥ 0, 𝛼𝑖 + 𝛾𝑖 ≥ 0 and 𝛽𝑗 ≥ 0, for 𝑖 = 1, … , 𝑝 and 𝑗 =

1, … , 𝑞  ensures that the conditional volatility is non-negative. However, for the process to be 

covariance stationary the necessary condition is    ∑ (𝛼𝑖 + 𝛾𝑖/2) + ∑ 𝛽𝑗 < 1 𝑞
𝑗=1  𝑝

𝑖=1  (Hentschel, 

1995). 

4.2.8 APARCH 

(Ding et.al., 1993) introduced a new model to capture the information asymmetry and leverage 

effect known as asymmetric power GARCH (APARCH) model. The model includes flexibility of 

varying exponent coupled with asymmetric coefficient to take into consideration the leverage 

effect (Laurent and Peters, 2002). With 𝜀𝑡 assumed to be same structure as before (Equation 18), 

the conditional variance for APARCH (p, q) is represented by: 

𝜎𝑡
2 = {𝜔 + ∑ 𝛼𝑖(

𝑝

𝑖=1

|εt−i| − γi𝜀𝑡−𝑖)^𝛿 + ∑ 𝛽𝑗𝜎𝑡−𝑗
𝛿

𝑞

𝑗=1

}

𝛿
2

                                 (24) 

 Where, The constraints of the parameters  𝛼𝑖 ≥ 0 ( i = 1,…..,p)  ,  𝛽j ≥ 0 (j = 1,…..,q) ensures that 

the conditional volatility is strictly non-negative. The parameter 𝛾𝑖 (-1 < 𝛾𝑖< 1) captures the 

leverage effect and 𝛿 (𝛿 > 0) is a power term that captures the volatility spillover effect. 𝛼𝑖 and 
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𝛽𝑗 are the weights assigned to lagged squared returns and lagged variances that provide past 

period’s volatility information in order to have explanatory powers on current volatility of market 

prices (Thorlie et al., 2014). 

Ding et.al, 1993, argues APARCH model nests many ARCH-family models as special cases 

including some models discussed above, such as: 

 ARCH when 𝛿 = 2, 𝛾𝑖 = 0 (𝑖 = 1, … , 𝑝), 𝛽𝑗 = 0 (𝑗 = 1, … , 𝑞) 

 GARCH when 𝛿 = 2, 𝛾𝑖 = 0 (𝑖 = 1, … , 𝑝) 

 GJR-GARCH when 𝛿 = 2 

 

4.3 Distribution Assumptions 

The return series used in the thesis clearly presents that the daily returns are highly non-normal 

which is also evident in other empirical studies of same kind. Thorlie et al. (2014) argues that non-

normality pattern such as excess kurtosis and skewness exhibited by the residuals of conditional 

heteroscedasticity models will be diminished with the use of more suitable distribution for the 

innovations. 

Evident from the descriptive statistics, histogram and Q-Q plots are excess kurtosis and fat tails 

than normal distribution. So, apart from standard normal distribution I use student-t distribution 

and GED which are defined below in terms of their probability density functions. 

4.3.1 The Normal Distribution (Gaussian) 

A spherical distribution that has zero skewness and zero kurtosis and is defined utterly by first two 

moments is a Normal Distribution (Ghalanos, 2013).  The standard normal density function is 

structured as: 
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𝑓 (
𝑥 − 𝜇

𝜎
) =

1

𝜎
𝑓(𝑧) =

1

𝜎
(

𝑒−0.5𝑥2

√2𝜋
)                                                (25) 

Where, 𝜇 and 𝜎 represents the mean and deviation from mean respectively. 

4.3.2 The Student-t distribution 

For the non-normality exhibited by return series it may be more logical to use student-t distribution. 

Bollerslev (1987) first combined the GARCH models with student-t distribution for the 

standardized error to better accommodate the observed fat tails in the return series. The standard 

student-t density function is structured as: 

𝑓 (
𝑥 − 𝜇

𝜎
) =

1

𝜎
𝑓(𝑧) =

1

𝜎

𝜏 (
𝜈 + 1

2 )

√(𝜈 − 2)𝜋𝜏 (
𝜈
2)

(1 +
𝑧2

(𝜈 − 2)
)

−(
𝜈+1

2
)

                    (26) 

Where, 𝜈 and 𝜏 are the number of degrees of freedom and gamma function respectively. 

Student-t Distribution is symmetric around the mean 0 and has zero skewness and excess kurtosis 

equal to 
6

(𝜈−4)
  for 𝜈 > 4.  As the degree of freedom increases, student-t distribution converges to 

the normal distribution (Ghalanos, 2013).   

4.3.3 The Generalized Error Distribution 

Ghalanos (2013) defines GED as a symmetrical distribution that belongs to the exponential family. 

The standard GED density function is structured as: 

𝑓 (
𝑥 − 𝜇

𝜎
) =

1

𝜎
𝑓(𝑧) =

1

𝜎
 
  𝑘 − 0.5 ∣ √2−

2
𝑘   

𝜏(𝑘−1)
𝜏(3𝑘−1)

𝑧 ∣𝑘

√2−
2
𝑘   

𝜏(𝑘−1)
𝜏(3𝑘−1)

2(1+𝑘−1)𝜏(𝑘−1)

                        (27) 
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Where, 𝑘 is the shape parameter and reduces to normal distribution when 𝑘 = 2. Tails are fatter 

than normal distribution when 𝑘 < 2 and thinner when 𝑘 > 2 (Ghalanos, 2013). 

4.4 Forecast Evaluation 

The forecasting models have to be evaluated in order to conclude which of the model outperforms 

and how the forecast accuracy behaves over several horizons. To accomplish this several 

alternative methods of error measurement are available. Among these alternative methods, 

Winkler and Murphy (1992) states there is no one single method that can be considered best from 

the theoretical stand point but if we look from the practical side the best method are carefully 

considered and depends upon “purpose of forecasting, its value for improving decision making, 

and specific needs and concerns of the person or situation using the forecasts” (Hibon and 

Makridakia, 1995; pg. 1). This thesis confines itself to use MSE as suggested by Hibon and 

Makridakia, (1995) for MSE’s appropriateness when alternative models have to be evaluated and 

ranked. 

MSE as an error measurement is defined as: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝜎𝑖 − 𝜎̂𝑖)2

𝑛

𝑖=1

=  
1

𝑛
∑ 𝑒𝑖

2

𝑛

𝑖=1

                                                (28) 

Where; 

𝑛 is the number of observation 

𝜎𝑖 is the proxy realized volatility for ith observation 

𝜎̂𝑖 is the forecast for ith observation 

𝑒𝑖 is the forecast error for ith observation 

 

From Equation 28, MSE can be defined as the average of squared forecast error at time period t. 

Forecast error represent the deviation of the forecast from the proxy realized volatility as actual 

volatility is not observable. MSE provides a quadratic loss function as it squares and then averages 



39 

 

for forecast errors. Such squaring accounts for disproportionate weight where much more weight 

is assigned to large errors than smaller ones (Hibon and Makridakia, 1995). 

Lower value of the MSE is preferred over the higher ones which suggest the better forecasting 

ability of the model. 

4.5 Predictive Power 

While MSE is used as a method to evaluate the forecast accuracy of the models at different horizon, 

Predictive Power (𝑃) is employed in this paper to examine how much a predicted volatility can 

explain the actual volatility. This procedure further also allows to investigate how well the models 

complement for predicting volatility over subsequent horizons for the return data rather than just 

measuring and comparing among the forecast models. 

The method proposed by Blair, Poon, and Taylor (2001) is used in this thesis where they define, 

𝑃 to measure explanatory power. 𝑃 is given as: 

𝑃 = 1 −
∑ (𝜎𝑖 − 𝜎̂𝑖)

2𝑛
𝑖=1

∑ (𝜎𝑖 − 𝜎)2𝑛
𝑖=1

                                                           (29) 

Where, 

𝑛 is the number of out-of-sample observations 

𝜎𝑖 is the proxy realized volatility for ith observation 

𝜎̂𝑖 is the forecasted volatility for ith observation 

𝜎  is the mean value of volatility 

𝑃 is the comparison between the sum of squared prediction errors and the sum of squared variations 

of 𝜎𝑖. The value of 𝑃 can be both negative and positive. Relatively small value for 𝑃, closer to 1 

(multiplied by 100 in this paper) is desirable for a forecast model indicating that the prediction 

error are relatively small which represents forecast errors have lesser variation than the actual 

volatility. The negative value is undesirable since it reflects greater variation of forecast errors than 

actual volatility (Poon and Granger, 2003). 
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5. Empirical Results 

The first-order GARCH model (𝑝 = 1 and 𝑞 = 1) is chosen for the study as it is evident from 

many researches (see Hsieh (1991), Zivot (2008) and Hansen and Lunda (2004)) that it has been 

proven adequate to model and forecast financial time series. However, it is hard to find researches 

that emphasize on appropriate error distribution assumption to model the financial time series. Klar 

et al. (2012) states that application of inappropriate error distribution assumption could lead to 

substantial loss of efficiency of the corresponding estimators. Thus, three different (Normal, 

Student-t and GED) most used distribution assumptions are correspondingly used with first order 

GARCH models for all asset classes. Each asset class consist of two time series data which makes 

our analysis comparable within and among the asset classes. The in-sample parameter estimation 

and out-of-sample forecast comparison is presented and discussed below.  The notations follows 

Section 3. 

5.1 In-Sample Estimation  

The full in-sample parameters estimates for Stock Indices (S&P500 and DJIA), Interest rates 

(CBOE (^TNX), CBOE (^FVX)) and Exchange rates (USD/CHF and GBP/CHF) are presented in 

Table 6 to Table 11. The parameters 𝜇, 𝛼, 𝛽, 𝛾, 𝛿 and 𝑣 are discussed considering traditional 

significance level, 5%. It is important to note that 𝛿 is unique to only APARCH model while 

GARCH model excludes two parameters 𝛾 and 𝛿. Akaike's information criterion (AIC), Schwarz’s 

Bayesian information criterion (BIC), and the Hannan and Quinn information criterion (HQIC) are 

presented to evaluate the model fit. ARCH-LM test statistics is presented to see if ARCH effect 

still exists after modeling for volatility or not. 

Tables for in-sample estimation results are provided in Appendix 1. 
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5.1.1 Stock Indices 

S&P500 

From Table 6, for S&P500, the intercept shown by 𝜔 for all models are close to zero as expected. 

The 𝜔 is statistically significant at 5% level only for EGARCH and GJR-GARCH model under all 

distribution. 

 Table 6 shows parameter 𝛼 is statistically significant at 5% level for GARCH, EGARCH and 

APARCH models for all distribution but not statistically significant for GJR-GARCH model under 

all distributions. This signifies the presence of volatility clustering in GARCH, EGARCH and 

APARCH models. For these models conditional volatility tends to rise when the absolute value of 

standardized residuals is large and vice versa. 

The coefficient of 𝛽 for all the models are statistically significant. There exists covariance 

stationary and strong volatility persistence for all models as (𝛼 + 𝛽) for GARCH model, 𝛽 for 

EGARCH model and (𝛼 + 𝛽 + (𝛾/2))  for GJR-GARCH and APARCH model are very close to 

one. But the persistent of volatility can be considered inconclusive for GJR-GARCH model as 𝛼 

was found to be statistically insignificant. Such high persistence closer to one also indicates slow 

decay of volatility shocks. 

The asymmetry and leverage effect shown by 𝛾 is positive and statistically significant at 5% level 

for all the models. However, for the existence of leverage effect it is important to note that 𝛾 >

0 for GJR-GARCH and APARCH models and 𝛾 < 0 for egarch model. In view of the statistically 

significant positive 𝛾, the hypothesis for leverage effect is accepted for GJR-GARCH and 

APARCH models but not EGARCH model for all distribution. Asymmetry effect however exists 

for all models as 𝛾 ≠ 0. 

The values for AIC, BIC and HQIC have lowered for all models as we move from normal 

distribution to student-t or from normal distribution to GED. This shows the improvement in model 

fit of non-normal distribution over normal distribution. The ARCH-LM test for all models reveal 

the absence of ARCH effect. 
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DJIA 

From Table 7, the 𝜔 for all the models are close to zero and statistically significant at 5% level 

except for GARCH and APARCH model under all three distribution. Similar to S&P500, there is 

the presence of volatility clustering only in GARCH, EGARCH and APARCH model for all 

distribution as they are all statistically significant for 𝛼. The  𝛽 for all models are statistically 

significant. The persistence for all models are again close to one showing slow decay of volatility 

shocks. However, the results are inconclusive for GJR-GARCH model under all distribution as its 

𝛼 is not significantly different from zero. The 𝛾 for all the models are positive and statistically 

significant. Thus, it can be inferred that leverage effect exists for GJR-GARCH and APARCH 

models but not EGARCH model. However,  𝛾 ≠ 0  represents presence of asymmetry effect in 

EGARCH, GJR-GARCH and APARCH models. 

Similar to S&P 500, AIC, BIC and HQIC reflects improvement in model fit of normal distribution 

over non-normal distributions for all models. The ARCH-LM test reveals the absence of ARCH 

effect. 

5.1.2 Interest Rates 

CBOE (^TNX) 

From Table 8, The 𝜔 for all the models are closer to zero and are statistically significant at 5% 

level only for EGARCH model under all three distribution. The 𝛼 is statistically significant for all 

models showing the presence of volatility clustering in all models. The 𝛽 for all models are also 

statistically significant. There exists covariance stationary and strong volatility persistence as the 

persistence values for all models are very close to one reflecting slow decay of volatility shocks. 

The coefficient for 𝛾 are all positive and statistically significant representing the existence of 

leverage effect for GJR-GARCH and APARCH model under all three distribution. However, 

asymmetry effect is true for all models as 𝛾 ≠ 0. 

AIC, BIC and HQIC reflects improvement in model fit of normal distribution over non-normal 

distribution for all models. The ARCH-LM test reveals the absence of ARCH effect. 
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CBOE (^FVX) 

From Table 9, the 𝜔 for all the models are close to zero and are statistically significant at 5% level 

only for EGARCH model under all three distribution. The statistically significant 𝛼 for all models 

appears to show the presence of volatility clustering except for EGARCH model under all three 

distribution. The 𝛽 for all models are statistically significant. The persistence is very close to one 

for all models indicating very strong volatility persistence and slow decay of volatility shocks. The 

coefficient of 𝛾 are positive for all models but only EGARCH model under all three distribution 

is statistically significant. In view of the statistically significant positive 𝛾 for GARCH, GJR-

GARCH and APARCH model and negative 𝛾 for EGARCH model the hypothesis for leverage 

effect is rejected for all models. However, asymmetry effect is true for all models as 𝛾 ≠ 0. 

AIC, BIC and HQIC reflects improvement in model fit of normal distribution over non-normal 

distribution for all models. The ARCH-LM test reveals the absence of ARCH effect. 

5.1.3 Exchange Rates 

USD/CHF 

From Table 10, the  𝜔 for all the models are close to zero but only statistically significant at 5% 

level for EGARCH and APARCH model under all three distribution. Except for EGARCH model 

under student-t and GED distribution, all other models are statistically significant for 𝛼 showing 

the presence of volatility clustering. The 𝛽 for all models are statistically significant. The 

persistence for all models are very close to one representing strong volatility persistence with slow 

decay of volatility shocks. The coefficient for 𝛾 are all positive but statistically significant only for 

EGARCH model under all three distribution and GJR-GARCH and APARCH model only under 

GED distribution. This suggest that leverage effect exists only for GJR-GARCH and APARCH 

model under GED distribution. However, asymmetry effect is true for all models as 𝛾 ≠ 0. 

AIC, BIC and HQIC reflects improvement in model fit of normal distribution over student-t 

distribution for all models. However, the improvement in model fit from normal distribution to 

GED is only true for EGARCH model. The ARCH-LM test reveals the absence of ARCH effect. 
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GBP/CHF 

From Table 11, the  𝜔 for all the models are close to zero but only statistically significant at 5% 

level for GARCH under student-t distribution, EGARCH model under all distribution and 

APARCH model under GED distribution. . Except for EGARCH model under GED distribution 

and GJR-GARCH model under normal and student-t distribution, all other models are statistically 

significant for 𝛼 showing the presence of volatility clustering. The 𝛽 for all models are statistically 

significant. The persistence for all models are very close to one representing strong volatility 

persistence with slow decay of volatility shocks. However, the results are inconclusive for GJR-

GARCH model under normal and student-t distribution as its 𝛼 is not significantly different from 

zero. The coefficient for 𝛾 are all positive and statistically significant representing the existence of 

leverage effect for GJR-GARCH and APARCH model under all three distribution. However, 

asymmetry effect is true for all models as 𝛾 ≠ 0. 

AIC, BIC and HQIC reflects improvement in model fit of normal distribution over student-t 

distribution for all models. However, the improvement in model fit from normal distribution to 

GED is only true for EGARCH model. The ARCH-LM test reveals the absence of ARCH effect. 

5.2 Out-of-Sample Evaluation 

The out-of-sample volatility is forecasted for subsequent horizons ranging from 1 month up to 12 

months with methods introduced in Section 4. The evaluation is based on MSE criterion to examine 

the forecast accuracy of models over multiple horizons while predictive power (P) is further 

presented to investigate how well the models complement for predicting volatility over subsequent 

horizons.   

Tables for MSE and 𝑃 are presented in Appendix 1. Only the Figures for MSE and 𝑃 for best 

performing models are presented below. 
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5.2.1 Stock Indices 

S&P 500 

Table 12 shows the MSE of each model for horizons extending form 1 month until 12 months. It 

is evident from the Table that as the forecast horizon increases there is the gradual increment in 

MSE too. The forecast accuracy is best at 1 month horizon and each models performance ability 

has diminished along increasing horizon. Comparing among the models at 1 month horizon, our 

benchmark (Naïve) model performs worst followed by another simple model, EWMA. The 

GARCH models beats the simple models. The APARCH model under student-t distribution ranks 

the highest followed by its GED distribution. EGARCH model under normal distribution 

outperforms all other models from 4 month horizon. There is no improvement in MSE using non-

normal distributions for GARCH and GJR-GARCH model. However, improvement in MSE 

switching to non-normal distribution is evident in EGARCH and APARCH model. MSE for 

APARCH under student-t distribution as best performing model is presented graphically below in 

Figure 13. 

 

Figure 13: MSE of APARCH model under Student-t distribution for S&P500. 

The results of predictive power are shown in Table 13. It is evident form the Table that the 

predictive power is highest for all models at 1 month horizon. Overall, as the horizon increases 

from month to month the predictive power of each model has diminished. The presence of negative 

values for predictive power at and after 5 months for Naïve, EWMA and GARCH model under all 
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three distribution advocates that one cannot forecast volatility at these horizons.  The predictive 

power for EGARCH goes negative only at and after 7 month horizon.  The decay rate can be 

considered rather slow for EGARCH model which outperforms every other model after 3 months 

horizon. APARCH model under student-t distribution performs the best at 1 month horizon 

compared to all other models. Predictive power is graphically presented for APARCH model under 

student-t distribution in Figure 14 representing the gradual decay in predictive power of the model 

which goes unpredictable at 5 month and thereafter. 

 

 

 

 

 

 

Figure 14:  Predictive Power of APARCH model under Student-t distribution for S&P 500 

DJIA 

Table 14 shows the MSE of each model for horizons extending form 1 month until 12 months for 

DJIA. For both simple and GARCH models, MSE at 1 month horizon has the best forecast 

accuracy. However, the forecast accuracy is seen to be gradually diminishing month after month. 

Similar to S&P500, at 1 month horizon, our benchmark model is the worst performing model 

followed by EWMA. APARCH model under GED distribution ranks the highest followed by its 

student-t and normal distribution. Improvement in MSE can be seen using non-normal distribution 

for APARCH and EGARCH model under all distribution. GARCH model however performs best 

under normal distribution and improvement is seen in GJR-GARCH model only under GED 

distribution. MSE for APARCH model under GED distribution is presented graphically below in 

Figure 15. 
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Figure 15: MSE of APARCH model under GED distribution for DJIA. 

Table 15 shows that for all the models predictive power is highest at one month horizon. APARCH 

model outperform every other model but the predictive power is comparable to GJR-GARCH 

model at 1 month horizon. As the forecasting horizon increases all the models predictive power is 

seen to decay. The predictive power of our benchmark model decays rather quickly and becomes 

negative at 4 months horizon. EGARCH models predictive power extends until 7 month horizon 

while for most other models the predictive power is either close to zero or negative at and after 5 

months horizon. Predictive power for EGARCH model is rather well from 3 month horizon, even 

better than our best performing APARCH model. The predictive power of APARCH model under 

GED distribution is graphically presented in Figure 16 representing the gradual decay in predictive 

power of the model which goes essentially unpredictable at and from 6 months horizon. 
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Figure 16: Predictive Power of APARCH model under GED distribution for DJIA. 

5.2.2 Interest Rates 

CBOE (^TNX) 

Table 16 shows the MSE of each model for horizons extending form 1 month until 12 months. For 

both simple and GARCH models, MSE at 1 month horizon shows the best forecast accuracy. 

However, the MSE is seen to be gradually diminishing for longer horizon. Naïve model is the 

worst performing model followed by EWMA. EGARCH model under student-t distribution has 

an edge over all other models followed by its GED and normal distribution for all horizons.  

EGARCH and APARCH model both shows the improvement in forecast accuracy with the use of 

non-normal distribution. The MSE for best performing EGARCH model under student-t 

distribution is graphically presented in Figure 17 
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Figure 17: MSE of EGARCH model under Student-t distribution for CBOE (^TNX). 

The predictive power for all the models in Table 17 show they perform relatively well in 1 month 

horizon. As the forecasting horizon extends the explanatory power of each model is diminishing. 

EGARCH model under student-t has the highest predictive power and decays rather slowly in all 

horizons compared to all other models. APARCH model’s predictive power is comparable to 

EGARCH model at one month horizon as they have minimal difference in predictive power values. 

Overall, Table 17 represents that it not possible to predict volatility using Naïve model from 8 

months but for every other model up to 1 year horizon they do not contain negative 𝑃 values 

although predictive power for each model is decreasing for longer horizons. Predictive power is 

graphically presented for best performing EGARCH model under student-t in Figure 18 which 

shows predictive power decays up to 8 months and then tends to gain with minimal difference up 

to 12 months. 
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Figure 18: Predictive Power of EGARCH model under Student-t distribution for CBOE (^TNX). 

CBOE (^FVX) 

Table 18 shows the MSE of each model for horizons extending form 1 month until 12 months. 

EWMA model performs the best for the shortest horizon considered. However, for rest of the 

models the most accurate forecasting horizon is 2 months. After 2 months horizon forecast 

accuracy for all models are gradually decreasing. Naïve model performs the worst while EGARCH 

model under student-t distribution at 2 month horizon outperforms every other model. MSE of 

EGARCH model is comparable to EWMA model. Improvement is seen using non-normal 

distribution only in EGARCH and APARCH model. The MSE of EGARCH model under student-

t distribution is presented in Figure 19. 
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Figure 19: MSE of EGARCH model under Student-t distribution for CBOE (^FVX). 

Table 19 shows the predictive power for all the models. It is evident from the Table that 

explanatory power of Naïve and EWMA models are highest at 1 month horizon while explanatory 

power for GARCH type models are highest at 2 months horizon. However, it should be noted that 

the difference in predictive power is very minimal for 1 month and 2 months horizon. The 

predictive power after 2 months for all models shows visible but slow decay which never goes 

negative until 1 year horizon. EGARCH model under student-t distribution outperforms all other 

models from 2 month horizon and is graphically presented in Figure 20 representing slow 

declination in explanatory power. 

 

Figure 20: Predictive Power of EGARCH model under Student-t distribution for CBOE (^FVX). 
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5.2.3 Exchange rates 

USD/CHF 

Table 20 shows the MSE of each model for horizons extending form 1 month until 12 months. 

Overall, increment in MSE is seen with the increasing forecast horizon. The forecast accuracy is 

best at 1 month horizon and each models performance ability has diminished along increasing 

horizon. Comparing among the models at 1 month horizon, our benchmark model performs worst 

followed by APARCH model under GED distribution. The EGARCH model under normal 

distribution has an edge over all other models. Improvement in MSE is seen only from 2 months 

horizon moving from normal to student-t distribution but the forecast accuracy gets significantly 

worse with GED distribution. The MSE for EGARCH model under normal distribution is shown 

in Figure 21. 

 

 

Figure 21: MSE of EGARCH model under Normal distribution for USD/CHF. 

The results of predictive power are shown in Table 21. It is evident form the Table that only 

EGARCH model under normal and student-t distribution have some explanatory power at 1 month 

forecasting horizon. For all other models it is not viable to make volatility forecast even at 1 month 

horizon due to calculated negative 𝑃 values.  Positive 𝑃 values can be seen but are closer to zero 

at 4 months forecast horizon for EGARCH and APARCH model under student-t distribution. The 

predictive power of best performing EGARCH model under normal distribution is presented in 

figure 22.  
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Figure 22: Predictive Power of EGARCH model under Normal distribution for USD/CHF. 

GBP/CHF 

Table 22 shows the MSE of each model for horizons extending form 1 month until 12 months. The 

most accurate forecasting horizon is 2 month for all the models except for EGARCH model under 

GED distribution. The forecast accuracy of the models are gradually decreasing over longer 

horizon. Based on MSE criterion, EGARCH model under normal distribution performs best at 2 

months horizon. No improvement in the forecast accuracy is seen in any of the GARCH type 

models moving from normal to non-normal distribution. MSE for the EGARCH model under 

normal distribution is presented in Figure 24. 

 

Figure: 24 MSE of EGARCH model under Normal distribution for GBP/CHF. 
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The results of predictive power are shown in Table 23. EGARCH model under normal distribution 

at 2 months horizon outweigh every other models in terms of predictive power. The volatility can 

be predicted for EWMA and GARCH model under normal distribution up to 2 month horizon but 

still there is a greater variation of forecast errors than actual volatility as their values are closer to 

zero. EGARCH model under normal distribution have positive predictive power up to 4 months. 

For all other models it is not possible to predict volatility even at one month horizon. EGARCH 

model under normal distribution is presented below showing the diminishing predictive power of 

the model after 2 months. 

 

Figure 25: Predictive Power of EGARCH model under Normal distribution for GBP/CHF. 
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6. Discussion 

For most of the representative assets, the result shows Naïve model performs the worst and EWMA 

model always gets an edge over which is consistent with the finding of Yu (2002). Similarly, it is 

seen that asymmetric GARCH models outperform symmetric GARCH models which is in line 

with the study of review paper by Poon and Granger (2003). 

Taking in consideration the stock indices results, the first order GARCH model beats the simple 

volatility forecasting models which is very much in the spirit of Brooks (1998) and Akgiray (1989) 

but clashes with the studies of Tse (1991) and Tse and Tung (1992) who studied Tokyo and 

Singapore stock market and infers that EWMA model performs remarkably well than GARCH 

type models. Similarly, the results also complement with the work of Figlewski (1997) who puts 

several line of research and evaluate forecast accuracy over multiple horizons where he concludes 

for stock index first order GARCH model often outperforms Naïve model and forecast accuracy 

declines over time. It should however be noted that Figlewski (1997) has not considered 

asymmetry GARCH type models which I have extended in this thesis and actually does perform 

better than symmetrical GARCH and simple models. Models predictive ability getting worse for 

stock indices as forecast horizons gets longer are evident in the paper of Bluhm and Yu (2001). 

Further, the results also complements Cao and Tsay (1992) where EGARCH model gives best 

long-horizon volatility forecasts for stock return. It is already noted above that EGARCH model 

actually did extended the predictability period too. 

For interest rates the results vary a lot compared to other asset classes as volatility seems to be 

predictable up to the longest (12 month) horizon selected in this study. All the models seems to 

have strong predictive power compared to that of stock indices and exchange rates. Poon and 

Granger (2003) notes that dramatic improvement for interest rates are plausible as interest rates 

are different from other asset classes and exhibit “level” effect which means volatility for interest 

rates is dependent on the level of interest rates. Symmetric GARCH model performs worse than 

the simple EWMA model which is somewhat consistent with the result of Figlewski (1997) where 

he finds as for interest rates the results are similar with exchange rates where simple model 
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overpowers symmetric GARCH model. But as we considered a range of asymmetry GARCH 

models EGARCH model beats all other alternative models considered. 

Considering the results of exchange rates, I find that exchange rates are the most difficult to predict 

even at short time horizons and even if some GARCH type models does show some predictive 

power , it decays rather quick and becomes essentially unpredictable. These finding does 

complement with the work of West and Cho (1994) where they come up to conclusion that for 

short horizon GARCH models tend to make slightly better forecast but as horizon gets longer it is 

difficult to choose among models as they doesn’t perform up to the mark and becomes 

unpredictable. Figlewski (1997) for exchange rate forecasting over long horizon infers simple 

historical model to perform well than symmetric GARCH model. In this thesis EWMA as a simple 

historical based model does overpower symmetric GARCH model whereas EGARCH model 

overpowers all models which is not considered in his study. The performance of EGARCH model 

in favor for exchange rate has also been dictated in the work of Heynen and Kat (1994) and Lee 

(1991). 

Apart from these studies that mainly focused on models predictive ability some authors such as 

Christoffersen and Diebold (1998) studied model free procedures on stock indices, bond and 

exchange rates and found that depending on asset class over increasing horizon, predictability 

decays quickly and becomes largely unpredictable. They also inferred that volatility in bond 

market is more forecastable which are all consistent with our results although model based 

procedures are used in this thesis. Additionally, comparable to our results, Raunig (2006) using 

model free test procedure concluded predictability in exchange rates dies rather quickly and hard 

to predict for more than 1 month. 

Regarding the use of non-normal distribution the results show that moving from normal to non-

normal distribution the improvement in model fit is visible through AIC, BIC and HQIC criteria 

for all asset classes. However, the forecast evaluation shows that improvement in model fit doesn’t 

always necessarily mean the improvement in forecast accuracy and predictive power. For instance; 

improvement in model fit due to student-t have not improved the forecast accuracy and predictive 

power of GARCH model for stock indices but for all other asymmetry GARCH models the 

improvement is validated. 



57 

 

It is well known fact that volatility forecasts are pertinent to risk management only if volatility can 

be predicted at the horizon of interest. The results indicate that the most appropriate predictable 

horizon of interest depends upon asset class which is analogous to the findings of Heynen and Kat 

(1994) and Christoffersen and Diebold (1998). Overall, the longest forecastable horizon for stock 

indices is 4 months but using EGARCH model the forecastable horizon is extended to 6 months. 

The interest rates are forecastable up to 12 months but exchange rates are essentially unpredictable 

even at short horizon (1 month for USD/CHF and 2 months for GBP/CHF). However, the goodness 

of forecast are best at short horizons for all asset classes and declines as forecast horizons are 

extended. The best model are chosen based on horizon with highest forecast accuracy. If the best 

model had to be chosen given the whole forecast horizon it would be difficult to state a clear winner 

as model ranking are seen to be sensitive to forecast horizon for most of the assets. The model that 

is best at 1 month or 2 month horizon depending upon the asset is also not seen to be best over 

every horizons. Similar inference is made on the paper by Bluhm and Yu (2001). 

The exact match of the result is difficult to make against other studies as it was difficult to find the 

studies using the same type of models with non-normal distribution for this long horizon. However, 

In view of the primary purpose of this thesis the results suggests that volatility is predictable in a 

short run and the forecast accuracy and predictive power gradually ruins vis-a-vis longer forecast 

horizon and I find that not a single paper is against it. Hence, the results presented in this respect 

is in line with other research findings. 
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7. Conclusion 

The main purpose of the thesis is to investigate and evaluate how the accuracy of forecast and 

predictive power depends on the time horizon, month after month for stock indices, interest rates 

and exchange rates. For this I have used few existing models. I have added APARCH model apart 

from most commonly used GARCH, EGARCH and GJR-GARCH model with respect to different 

error distribution. The  Naïve model is used as a benchmark model while I have added EWMA 

model as another simple model that have showed to work as well or better than more complex 

models (see Tse (1991) and Tse and Tung (1992)). 

The skewness and excess kurtosis seen in all six return series exhibit the fact that the returns are 

not normally distributed. So, taking into account the Wilhelmsson (2006) finding on leptokurtic 

error distribution to improve forecast while allowing for skewness not leading to any improvement 

over normal distribution I have considered student-t and GED error distribution along with normal 

distribution. 

The in-sample estimation shows that all asset classes prefer non-normal error distribution. Stock 

indices clearly shows that the model fits well through the use of GED distribution while interest 

rates and exchange rates preferred student-t distribution. However, from out-of-sample evaluation 

it was noted that the best in-sample fit didn’t necessarily mean the best out-of-sample forecast. 

Also, the non-normal distribution that attributed for the best accuracy at 1 month horizon doesn’t 

confirm the accuracy over all horizon at same distribution exampled by stock indices at last month 

(4 month horizon) that can be predicted by all models where normal distribution provided the best 

accuracy. It was interesting to find normal distribution attributed for the best forecast accuracy for 

USD/CHF and GBP/CHF at 1 month and 2 months horizon respectively. 

Overall, the empirical results advocates that asymmetric GARCH models forecasts better than the 

symmetric GARCH model, EWMA and a benchmark model. For short horizon forecast it is seen 

that APARCH model under student-t and GED distribution is best for S&P 500 and DJIA. 

However, as the horizon gets longer EGARCH model seems to extend the forecastable horizon up 

to 6 months for both assets which would be 4 months otherwise for rest of the models considered. 
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For CBOE (^TNX), EGARCH model under student-t perform the best under short horizon and is 

true for all horizons considered while for CBOE (^FVX), EGARCH under student-t performs the 

best for short horizon but as horizon gets longer EWMA performs the best. Predictive power for 

both interest rate reflects the possibility to forecast up to the longest (12 month) horizon. EGARCH 

model under normal distribution performed the best for USD/CHF and GBP/CHF but they are 

essentially unpredictable after 1 month and 2 months horizons respectively.  

Whatever the asset classes the findings indicates that month after month over longer horizon both 

the forecast accuracy and predictive power of the model decreases. The decay rate of the predictive 

power is dependent upon the type of asset class. Predictive power for exchange rates decay rather 

quickly and becomes unpredictable even at short horizon while decay rate is rather slow for interest 

rates. Stock indices decays faster than interest rate but slower than exchange rates. Good model 

however can extend the predictability over forecast horizon which this study suggests to be 

EGARCH model. 

By and large, the findings indicates that there is no single model that is preferable across all asset 

classes and all horizon. Even in the same asset class the model that is best at short horizon may 

not be preferred over longer horizon. Regardless of the model used and when different horizon is 

considered the study concludes that volatility is predictable over a short run but as the forecast 

horizon extends both the forecast accuracy and predictive power declines gradually finally at a 

specific horizon making it essentially unpredictable. 
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Appendix 1: Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S&
P

5
00

 
G

A
R

C
H

 (
1

,1
) 

EG
A

R
C

H
(1

,1
) 

G
JR

-G
A

R
C

H
(1

,1
) 

A
P

A
R

C
H

(1
,1

) 

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 

 
  

0
.0

0
08

14
 

0
.0

0
10

36
 

0
.0

0
09

16
 

0
.0

0
0

2
8

2
 

0
.0

0
0

6
2

1
 

0
.0

0
0

5
8

6
 

0
.0

0
0

4
3

2
 

0
.0

0
0

7
2

8
 

0
.0

0
0

6
7

9
 

0
.0

0
0

4
6

7
 

0
.0

0
0

6
5

4
 

0
.0

0
0

6
9

3
 

p
-v

al
u

e 
0

.0
0

01
57

 
0 

0
.0

0
00

04
 

0
.1

1
8

9
8

 
4

.0
0

E-
06

 
0

.0
0

0
2

7
7

 
0

.0
2

9
0

1
4

 
0

.0
0

0
0

5
9

 
0

.0
0

0
1

3
6

 
0

.0
3

0
1

3
7

 
0

.0
0

1
5

7
2

 
0

.0
0

0
0

4
1

 

 
  

0
.0

0
00

03
 

0
.0

0
00

03
 

0
.0

0
00

03
 

-0
.5

0
4

0
8

5
 

-0
.4

8
3

4
9

8
 

-0
.5

0
6

9
4

 
0

.0
0

0
0

0
4

 
0

.0
0

0
0

0
4

 
0

.0
0

0
0

0
4

 
0

 
0

.0
0

0
4

6
9

 
0

 

p
-v

al
u

e 
0

.2
6

76
05

 
0

.1
1

01
5

 
0

.1
5

78
61

 
0 

0
.0

0
E+

0
0

 
0 

0 
0

 
0 

0
.8

5
4

7
2

 
0

.2
5

5
2

4
5

 
0

.8
7

5
0

3
4

 

 
  

0
.1

3
47

63
 

0
.1

4
51

65
 

0
.1

4
00

84
 

-0
.2

2
2

8
4

1
 

-0
.2

7
0

1
6

2
 

-0
.2

4
9

7
2

3
 

0 
0

 
0 

0
.0

4
7

4
3

4
 

0
.1

2
2

6
6

9
 

0
.0

5
2

1
0

6
 

p
-v

al
u

e 
0 

0 
0 

0 
0

.0
0

E+
0

0
 

0 
0

.9
9

9
9

6
 

0
.9

9
9

9
8

8
 

0
.9

9
9

9
9

8
 

0
.0

0
2

7
4

7
 

0
 

0
.0

0
6

0
5

8
 

 
  

0
.8

3
05

42
 

0
.8

2
83

53
 

0
.8

2
59

93
 

0
.9

4
6

4
0

1
 

0
.9

5
0

2
9

7
 

0
.9

4
7

8
1

2
 

0
.8

3
8

1
7

 
0

.8
2

1
5

5
5

 
0

.8
2

5
2

0
4

 
0

.8
2

5
2

1
6

 
0

.8
6

3
3

1
8

 
0

.8
0

2
7

8
4

 

p
-v

al
u

e
 

0 
0 

0 
0 

0
.0

0
E+

0
0

 
0 

0 
0

 
0 

0
 

0
 

0
 

 
  

 
 

 
0

.1
4

8
0

5
2

 
0

.1
3

1
2

2
9

 
0

.1
4

2
1

2
5

 
0

.2
4

2
8

8
6

 
0

.2
8

7
0

3
 

0
.2

6
7

7
6

5
 

0
.7

0
9

4
5

4
 

1
 

0
.7

7
2

5
6

9
 

p
-v

al
u

e 
 

 
 

0 
0

.0
0

E+
0

0
 

0 
0 

0
 

0 
0

.0
0

0
3

4
5

 
0

 
0

.0
0

0
4

9
3

 

 
  

 
 

 
 

 
 

 
 

 
2

.7
2

7
4

1
8

 
0

.9
7

5
0

7
7

 
2

.6
7

6
0

0
7

 

p
-v

al
u

e 
 

 
 

 
 

 
 

 
 

0
 

0
 

0
 

 
   

 
5

.2
1

59
66

 
1

.2
6

74
56

 
 

5
.7

6
2

3
5

 
1

.3
2

7
3

6
 

 
5

.7
8

2
8

8
1

 
1

.3
2

4
5

0
7

 
 

6
.0

9
1

9
7

6
 

1
.3

0
9

9
8

2
 

p
-v

al
u

e 
 

0 
0 

 
0

.0
0

E+
0

0
 

0 
 

0
 

0 
 

0
 

0
 

A
IC

  
-6

.6
5

4
2

 
-6

.6
9

6
3

 
-6

.7
0

5
5 

-6
.7

1
4

5
4

7
 

-6
.7

5
3

4
 

-6
.7

5
4

8 
-6

.7
0

5
7

6
3

 
-6

.7
4

1
3

 
-6

.7
4

6
1 

-6
.6

9
1

1
8

4
 

-6
.7

5
1

4
 

-6
.7

3
5

8 

B
IC

 
-6

.6
3

7
8

 
-6

.6
7

5
9

 
-6

.6
8

5
1 

-6
.6

9
4

1
55

 
-6

.7
2

8
9

 
-6

.7
3

0
4 

-6
.6

8
5

3
7 

-6
.7

1
6

8
 

-6
.7

2
1

7 
-6

.6
6

6
7

14
 

-6
.7

2
2

9
 

-6
.7

0
7

2 

H
Q

IC
 

-6
.6

4
8

 
-6

.6
8

8
7

 
-6

.6
9

7
8 

-6
.7

0
6

8
8

4
 

-6
.7

4
4

2
 

-6
.7

5
4

9 
-6

.6
9

8
0

9
9

 
-6

.7
3

2
1

 
-6

.7
3

7 
-6

.6
8

1
9

8
9

 
-6

.7
4

0
7

 
-6

.7
2

5 

LM
 t

e
st

 
0

.3
4

98
 

0
.4

1
34

 
0

.4
2

17
 

1
.4

7
0

4
 

1
.3

2
7

 
1

.4
0

9
8 

3
.0

7
8

 
3

.8
7

7
 

3
.5

8
6 

2
.9

1
9

 
1

.9
7

4
1

 
3

.6
8

6 

p
-v

al
u

e 
0

.9
2

67
 

0
.9

0
89

 
0

.9
0

65
 

0
.6

0
0

1
 

0
.6

3
8

9
1

 
0

.6
1

6
3 

0
.2

7
8

7
 

0
.1

8
5

4
 

0
.2

1
5

3 
0

.3
0

1
7

 
0

.4
7

7
 

0
.2

0
4

6 

P
er

si
st

e
n

ce
 

0
.9

6
53

05
 

0
.9

7
35

18
 

0
.9

6
60

77
 

0
.9

4
6

4
0

0
9

 
0

.9
5

0
2

9
7

 
0

.9
4

7
8

1
2

 
0

.9
5

9
6

1
3

5
 

0
.9

6
5

0
7

 
0

.9
5

9
0

8
6

5
 

0
.9

6
7

5
1

5
5

 
0

.9
5

3
7

6
2

 
0

.9
8

1
0

7
4

6
 

*
V

a
lu

es
 w

h
ic

h
 a

re
 n

o
t 

st
a
ti

st
ic

a
ll

y 
si

g
n
if

ic
a
n
t 

a
t 

5
%

 l
ev

el
 i

s 
h
ig

h
li

g
h
te

d
 i

n
 r

ed
. 

*
L

M
 t

es
t 

va
lu

es
 a

re
 b

a
se

d
 o

n
 L

a
g

 [
5
].

 

T
a
b
le

 6
: 

In
-s

a
m

p
le

 p
a
ra

m
et

er
 e

st
im

a
te

s,
 i

n
fo

rm
a
ti

o
n
 c

ri
te

ri
a
, 
L

M
 t

es
t 

va
lu

e 
a
n
d
 p

er
si

st
en

ce
 f

o
r 

S
&

P
5
0
0
. 

 



68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
JI

A
 

   
   

   
   

   
G

A
R

C
H

 (
1,

1
) 

EG
A

R
C

H
(1

,1
) 

G
JR

-G
A

R
C

H
(1

,1
) 

A
P

A
R

C
H

(1
,1

) 

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 

 
  

0
.0

0
07

5
 

0
.0

0
08

94
 

0
.0

0
08

04
 

0
.0

0
0

2
6

3
 

0
.0

0
0

5
7

3
 

0
.0

0
0

5
3

4
 

0
.0

0
0

3
5

6 
0

.0
0

0
6

2
 

0
.0

0
0

5
7

9
 

0
.0

0
0

4
2 

0
.0

0
0

6
5

 
0

.0
0

0
6

5
6

 

p
-v

al
u

e 
0

.0
0

01
71

 
0

.0
0

00
02

 
0

.0
0

00
02

 
0

.1
5

3
2

2
 

0
.0

0
1

0
4

2
 

7
.8

0
E-

05
 

0
.0

5
7

6
2

9 
0

.0
0

0
3

5
3

 
0

.0
0

1
0

6
9

 
0

.0
4

3
6

4
9 

0
.0

0
0

5
1

8
 

0
.0

0
0

2
3

3
 

 
  

0
.0

0
00

03
 

0
.0

0
00

03
 

0
.0

0
00

03
 

-0
.5

2
3

4
 

-0
.4

8
7

7
3

7
 

-0
.5

0
9

7
6

 
0

.0
0

0
0

0
3 

0
.0

0
0

0
0

3
 

0
.0

0
0

0
0

3
 

0
 

0 
0 

p
-v

al
u

e 
0

.1
6

02
0

1 
0

.1
0

72
9

4 
0

.1
5

03
7

9 
0 

0 
0

.0
0

E+
0

0
 

0 
0

.0
0

00
0

2 
0 

0
.8

9
5

2
5

2 
0

.9
0

66
5

6 
0

.9
1

37
3

8 

 
  

0
.1

4
14

71
 

0
.1

4
47

94
 

0
.1

4
18

49
 

-0
.2

0
5

2
4

 
-0

.2
3

7
1

8
1

 
-0

.2
2

2
9

9
8

 
0 

0
 

0
 

0
.0

4
6

2
6

7 
0

.0
5

7
4

3
3

 
0

.0
5

4
2

9
5

 

p
-v

al
u

e 
0 

0
.0

0
00

01
 

0 
0

 
0 

0
.0

0
E+

0
0

 
0

.9
9

9
9

9
7 

0
.9

9
9

9
8

2
 

0
.9

9
9

9
9

7
 

0
.0

0
1

0
9

8 
0

.0
0

5
4

1
5

 
0

.0
1

0
5

1
8

 

 
  

0
.8

2
26

77
 

0
.8

2
41

8
 

0
.8

2
32

6
 

0
.9

4
5

2
5

5
 

0
.9

5
0

4
9

5
 

0
.9

4
8

2
5

 
0

.8
3

6
6

7
8 

0
.8

2
4

7
8

7
 

0
.8

2
7

4
0

6
 

0
.8

2
6

3
5

3 
0

.8
1

0
5

1
8

 
0

.8
1

2
2

1
7

 

p
-v

al
u

e 
0 

0 
0 

0
 

0 
0

.0
0

E+
0

0
 

0 
0

 
0

 
0

 
0 

0 

 
  

 
 

 
0

.1
6

5
5

1
4

 
0

.1
6

0
2

0
5

 
0

.1
6

4
0

3
8

 
0

.2
4

5
6

1
7 

0
.2

7
4

8
0

1
 

0
.2

6
2

4
5

6
 

0
.7

2
0

4
0

6 
0

.6
6

1
9

8
1

 
0

.6
7

1
2

8
6

 

p
-v

al
u

e 
 

 
 

0
 

0 
0

.0
0

E+
0

0
 

0 
0

 
0

 
0

.0
0

0
9

7
3 

0
.0

0
0

0
8

 
0

.0
0

0
5

2
8

 

 
  

 
 

 
 

 
 

 
 

 
2

.7
1

0
3

9
8 

2
.7

2
8

4
1

 
2

.7
2

1
9

5
1

 

p
-v

al
u

e 
 

 
 

 
 

 
 

 
 

0
 

0 
0 

 
   

 
5

.5
2

91
98

 
1

.2
5

60
96

 
 

6
.1

7
8

7
9

7
 

1
.3

2
0

2
4

4
 

 
6

.3
6

3
3

6
6

 
1

.3
2

4
7

2
6

 
 

6
.0

5
7

2
0

7
 

1
.3

2
7

3
9

4
 

p
-v

al
u

e 
 

0 
0 

 
0 

0
.0

0
E+

0
0

 
 

0
 

0
 

 
0

.0
0

0
0

0
1

 
0 

A
IC

  
-6

.7
8

9
9

 
-6

.8
2

7
9

 
-6

.8
4

0
8

 
-6

.8
4

2
7

 
-6

.8
7

5
4

 
-6

.8
8

2
4

 
-6

.8
4

0
7

 
-6

.8
6

9
6

 
-6

.8
7

8
8

 
-6

.8
3

1
1

 
-6

.8
6

0
1

 
-6

.8
7

0
5

 

B
IC

 
-6

.7
7

3
6

 
-6

.8
0

7
5

 
-6

.8
2

0
4

 
-6

.8
2

2
3

 
-6

.8
5

0
9

 
-6

.8
5

7
9

 
-6

.8
2

0
3

 
-6

.8
4

5
1

 
-6

.8
5

4
3

 
-6

.8
0

6
6

 
-6

.8
3

1
6

 
-6

.8
4

1
9

 

H
Q

IC
 

-6
.7

8
3

8
 

-6
.8

2
0

2
 

-6
.8

3
3

1
 

-6
.8

3
5

 
-6

.8
6

6
2

 
-6

.8
7

3
2

 
-6

.8
3

3
 

-6
.8

6
0

4
 

-6
.8

6
9

6
 

-6
.8

2
1

9
 

-6
.8

4
9

4
 

-6
.8

5
9

7
 

LM
 t

e
st

 
0

.4
8

8
 

0
.4

3
14

 
0

.4
6

86
 

2
.1

0
7

 
1

.7
9

1
 

1
.8

6
 

3
.3

1
6

 
3

.6
8

5
 

3
.5

2
6

 
2

.9
3

6
 

3
.4

6
2

 
3

.3
2

2
 

p
-v

al
u

e 
0

.8
8

72
 

0
.9

0
37

 
0

.8
9

29
 

0
.4

4
8

 
0

.5
1

9
3

 
0

.5
0

3
 

0
.2

4
7

1
 

0
.2

0
4

7
 

0
.2

2
2

1
 

0
.2

9
9

1
 

0
.2

2
9

5
 

0
.2

4
6

4
 

P
er

si
st

e
n

ce
 

0
.9

6
41

48
 

0
.9

6
89

7
.6

 
0

.9
6

51
09

 
0

.9
4

5
2

5
5

 
0

.9
5

0
4

9
5

 
0

.9
4

8
2

4
9

 
0

.9
5

9
4

8
6 

0
.9

6
2

1
8

8
 

0
.9

5
8

6
3

4
 

0
.9

6
4

9
8

6 
0

.9
9

5
6

1
6

 
0

.9
8

0
4

6
 

*
V

a
lu

es
 w

h
ic

h
 a

re
 n

o
t 

st
a

ti
st

ic
a

ll
y 

si
g

n
if

ic
a

n
t 

a
t 

5
%

 l
ev

el
 i

s 
h
ig

h
li

g
h
te

d
 i

n
 r

ed
. 

*
L

M
 t

es
t 

va
lu

es
 a

re
 b

a
se

d
 o

n
 L

a
g
[5

].
 

T
a

b
le

 7
: 

In
-s

a
m

p
le

 p
a
ra

m
et

er
 e

st
im

a
te

s,
 i

n
fo

rm
a

ti
o
n
 c

ri
te

ri
a
, 

L
M

 t
es

t 
va

lu
e 

a
n
d
 p

er
si

st
en

ce
 f

o
r 

D
JI

A
. 

 



69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
B

O
E(

^T
N

X
) 

G
A

R
C

H
 (

1
,1

) 
EG

A
R

C
H

(1
,1

) 
G

JR
-G

A
R

C
H

(1
,1

) 
A

P
A

R
C

H
(1

,1
) 

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
e

n
t-

t 
G

ED
 

 
  

-0
.0

0
0

28
 

-0
.0

0
0

47
 

-0
.0

0
0

47
 

-0
.0

0
0

4
9

 
-0

.0
0

0
7

 
-0

.0
0

0
6

8
 

-0
.0

0
0

5
5

 
-0

.0
0

0
7

1
 

-0
.0

0
0

7
 

-0
.0

0
0

5
2

 
-0

.0
0

0
7

 
-0

.0
0

0
6

9
 

p
-v

al
u

e 
0

.6
0

58
7

 
0

.3
7

37
68

 
0

.3
8

34
6

 
0

.3
6

2
6

2
2

 
0

.1
7

8
9

0
6

 
0

.1
9

4
9

6
9

 
0

.3
1

5
1

0
5

 
0

.1
8

7
2

9
7

 
0

.1
9

6
4

3
7

 
0

.3
7

0
4

1
4

 
0

.1
9

3
7

5
4 

0
.2

0
5

4
2

3
 

 
  

0
.0

0
00

04
 

0
.0

0
00

04
 

0
.0

0
00

04
 

-0
.0

6
0

9
6

 
-0

.0
5

2
1

8
 

-0
.0

5
7

5
4

 
0

.0
0

0
0

0
3

 
0

.0
0

0
0

0
2

 
0

.0
0

0
0

0
3

 
0

.0
0

0
0

3
1

 
0

.0
0

0
0

2
4 

0
.0

0
0

0
2

6
 

p
-v

al
u

e 
0

.1
9

19
2

 
0

.3
1

52
65

 
0

.2
7

17
15

 
0 

0 
0

 
0

.3
4

5
8

1
4

 
0

.4
7

3
8

3
3

 
0

.4
3

1
6

6
8

 
0

.6
5

4
6

6
5

 
0

.7
5

5
1

1
2 

0
.7

1
1

6
5

1
 

 
  

0
.0

5
26

42
 

0
.0

5
16

19
 

0
.0

5
21

35
 

-0
.0

3
6

1
2

 
-0

.0
3

8
7

8
 

-0
.0

3
7

3
3

 
0

.0
2

5
9

7
4

 
0

.0
2

3
2

8
8

 
0

.0
2

4
6

8
2

 
0

.0
4

8
9

0
2

 
0

.0
4

6
5

2
7 

0
.0

4
7

8
3

6
 

p
-v

al
u

e 
0 

0
.0

0
00

85
 

0
.0

0
00

17
 

0
.0

0
1

9
8

4
 

0
.0

0
2

9
1

5
 

0
.0

0
3

1
3

7
 

0
.0

2
3

5
1

 
0

.0
4

8
2

9
5

 
0

.0
4

3
6

7
5

 
0

.0
0

0
0

0
2

 
0

.0
0

0
7

8
5 

0
.0

0
0

0
7

1
 

 
  

0
.9

3
94

81
 

0
.9

4
16

68
 

0
.9

4
05

5
 

0
.9

9
1

9
3

4
 

0
.9

9
3

2
3

6
 

0
.9

9
2

5
4

2
 

0
.9

5
0

3
2

5
 

0
.9

5
3

0
1

9
 

0
.9

5
1

6
3

9
 

0
.9

5
2

4
1

5
 

0
.9

5
5

2
0

1 
0

.9
5

3
6

8
9

 

p
-v

al
u

e 
0 

0 
0 

0 
0 

0
 

0 
0 

0
 

0
 

0
 

0 

 
  

 
 

 
 

0
.0

9
7

9
6

3
 

0
.1

0
0

3
4

4
 

0
.0

4
0

1
2

1
 

0
.0

4
2

6
3

5
 

0
.0

4
1

3
5

9
 

0
.3

0
3

0
8

4
 

0
.3

3
3

6
9

6 
0

.3
1

4
6

8
4

 

p
-v

al
u

e 
 

 
 

 
0 

0
 

0
.0

0
2

2
4

7
 

0
.0

0
3

3
9

9
 

0
.0

0
3

4
9

 
0

.0
1

3
5

3
1

 
0

.0
1

7
4

5
8 

0
.0

1
6

8
2

8
 

 
  

 
 

 
 

 
 

 
 

 
1

.4
0

16
5

5 
1

.4
3

2
1

7
8 

1
.4

2
63

2
5 

p
-v

al
u

e 
 

 
 

 
 

 
 

 
 

0
.0

0
4

5
0

3
 

0
.0

3
7

0
8

5 
0

.0
1

4
8

6
3

 

 
  

 
1

2
.4

92
88

 
1

.6
9

01
62

 
 

1
2

.7
6

6
9

5
 

1
.6

9
9

8
8

 
 

1
2

.8
1

5
5

5
 

1
.7

0
1

9
6

9
 

 
1

3
.0

6
7

6
8 

1
.7

0
6

5
2

7
 

p
-v

al
u

e 
 

0
.0

0
22

59
 

0 
 

0
.0

0
0

9
4

4
 

0
 

 
0

.0
0

4
0

4
6

 
0

 
 

0
.0

0
3

1
9

6 
0 

A
IC

 
-4

.8
9

5
4

 
-4

.9
0

3
3

 
-4

.9
0

0
8

 
-4

.8
9

7
8

 
-4

.9
0

5
1

 
-4

.9
0

2
7

 
-4

.9
0

0
3

 
-4

.9
0

7
6

 
-4

.9
0

5
1

 
-4

.8
9

9
8

 
-4

.9
0

6
8

 
-4

.9
0

4
5

 

B
IC

 
-4

.8
7

9
1

 
-4

.8
8

2
9

 
-4

.8
8

0
4

 
-4

.8
7

7
4

 
-4

.8
8

0
7

 
-4

.8
7

8
2

 
-4

.8
7

9
9

 
-4

.8
8

3
1

 
-4

.8
8

0
7

 
-4

.8
7

5
3

 
-4

.8
7

8
3

 
-4

.8
7

5
9

 

H
Q

IC
 

-4
.8

8
9

2
 

-4
.8

9
5

6
 

-4
.8

9
3

1
 

-4
.8

9
0

1
 

-4
.8

9
5

9
 

-4
.8

9
3

5
 

-4
.8

9
2

6
 

-4
.8

9
8

4
 

-4
.8

9
6 

-4
.8

9
0

6
 

-4
.8

9
6

1
 

-4
.8

9
3

7
 

LM
 t

e
st

 
1

.3
2

02
7

 
1

.3
1

94
1

 
1

.2
9

83
1

 
1

.5
5

5
 

1
.5

7
0

2
 

1
.5

3
 

1
.6

0
9

9
 

1
.6

3
8

2
 

1
.5

9
9

4
 

1
.5

9
6

 
1

.6
2

1
6 

1
.5

8
0

1
 

p
-v

al
u

e 
0

.6
4

08
 

0
.6

4
11

 
0

.6
4

69
 

0
.5

7
8

 
0

.5
7

4
 

0
.5

8
4

4
 

0
.5

6
3

9
 

0
.5

5
6

7
 

0
.5

6
6

6
 

0
.5

6
7

4
 

0
.5

6
0

9 
0

.5
7

1
5

 

P
er

si
st

e
n

ce
 

0
.9

9
21

23
 

0
.9

9
32

9
 

0
.9

9
26

85
 

0
.9

9
1

9
3

4
 

0
.9

9
3

2
3

6
 

0
.9

9
2

5
4

2
 

0
.9

9
6

3
6

 
0

.9
9

7
6

2
4

 
0

.9
9

7
 

0
.9

9
4

6
5

3
 

0
.9

9
5

2
3

5 
0

.9
9

4
7

5
6

 

*
V

a
lu

es
 w

h
ic

h
 a

re
 n

o
t 

st
a
ti

st
ic

a
ll

y 
si

g
n
if

ic
a

n
t 

a
t 

5
%

 l
ev

el
 i

s 
h
ig

h
li

g
h
te

d
 i

n
 r

ed
. 

*
L

M
 t

es
t 

va
lu

es
 a

re
 b

a
se

d
 o

n
 L

a
g
 [

5
].

  

T
a
b
le

 8
 :

 I
n
-s

a
m

p
le

 p
a
ra

m
et

er
 e

st
im

a
te

s,
 i

n
fo

rm
a
ti

o
n
 c

ri
te

ri
a
, 
L

M
 t

es
t 

va
lu

e 
a
n
d
 p

er
si

st
en

ce
 f

o
r 

C
B

O
E

(^
T

N
X

).
 

 



70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
B

O
E(

^
FV

X
) 

G
A

R
C

H
 (

1
,1

) 
EG

A
R

C
H

(1
,1

) 
G

JR
-G

A
R

C
H

(1
,1

) 
A

P
A

R
C

H
(1

,1
) 

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 

 
  

-0
.0

0
0

35
 

-0
.0

0
0

59
 

-0
.0

0
0

57
 

-0
.0

0
0

2
2

 
-0

.0
0

0
6

3
 

-0
.0

0
0

5
5

 
-0

.0
0

0
4

7 
-0

.0
0

0
7

6
 

-0
.0

0
0

7
1

 
-0

.0
0

0
3

3
 

-0
.0

0
0

6
8

 
-0

.0
0

0
6

1
 

p
-v

al
u

e 
0

.6
9

72
69

 
0

.5
0

01
82

 
0

.5
2

11
36

 
0

.8
0

5
7

8
 

0
.4

7
6

1
1

 
0

.5
4

2
8

2
4

 
0

.6
0

6
3

2
8 

0
.3

9
3

2
7

8
 

0
.4

3
1

5
1

1
 

0
.7

1
4

6
9

 
0

.4
4

5
2

1
4

 
0

.5
0

1
2

7
2

 

 
  

0
.0

0
00

12
 

0
.0

0
00

11
 

0
.0

0
00

12
 

-0
.0

6
4

1
8

 
-0

.0
5

3
5

7
 

-0
.0

6
2

9
8

 
0

.0
0

0
0

1 
0

.0
0

0
0

0
9

 
0

.0
0

0
0

1
 

0
.0

0
0

0
7

8
 

0
.0

0
0

1
0

8
 

0
.0

0
0

0
9

4
 

p
-v

al
u

e 
0

.1
9

30
12

 
0

.1
4

50
58

 
0

.1
8

75
52

 
0 

0
.0

0
0

0
0

7
 

0
.0

0
0

0
0

3
 

0
.1

6
9

4
8

9 
0

.2
0

7
7

0
4

 
0

.1
9

1
2

3
8

 
0

.4
5

3
0

7
 

0
.5

5
8

9
4

1
 

0
.5

2
2

3
7

6
 

 
  

0
.0

6
02

04
 

0
.0

5
77

44
 

0
.0

5
83

79
 

-0
.0

1
1

0
8

 
-0

.0
1

9
2

2
 

-0
.0

1
5

5
7

 
0

.0
4

9
1

7
2 

0
.0

3
9

6
9

2
 

0
.0

4
3

4
7

7
 

0
.0

6
2

4
5

3
 

0
.0

5
6

2
8

9
 

0
.0

5
9

3
5

4
 

p
-v

al
u

e 
0

.0
0

00
35

 
0

.0
0

00
22

 
0

.0
0

01
37

 
0

.4
4

1
8

3
 

0
.2

1
1

7
3

1
 

0
.3

1
9

1
4

6
 

0
.0

0
0

5
7

2 
0

.0
0

6
5

7
7

 
0

.0
0

3
5

0
9

 
0

 
0

.0
0

0
0

0
1

 
0

.0
0

0
0

0
3

 

 
  

0
.9

3
28

47
 

0
.9

3
61

1
 

0
.9

3
44

6
 

0
.9

8
9

9
4

2
 

0
.9

9
1

9
8

2
 

0
.9

9
0

6
0

9
 

0
.9

3
7

1
0

2 
0

.9
4

3
4

2
5

 
0

.9
4

0
3

2
 

0
.9

4
1

5
0

1
 

0
.9

4
9

3
1

 
0

.9
4

5
0

2
3

 

p
-v

al
u

e 
0 

0 
0 

0 
0 

0 
0 

0
 

0 
0

 
0

 
0

 

 
  

 
 

 
0

.1
2

7
8

8
2

 
0

.1
1

7
3

3
4

 
0

.1
2

2
1

9
6

 
0

.0
1

6
3

3
2 

0
.0

2
6

1
6

9
 

0
.0

2
2

1
2

3
 

0
.0

8
5

2
7

 
0

.1
7

5
4

5
3

 
0

.1
2

8
7

7
6

 

p
-v

al
u

e 
 

 
 

0 
0

.0
0

3
7

4
3

 
0

.0
0

0
1

0
9

 
0

.3
5

2
6

3
2 

0
.1

6
3

4
7

9
 

0
.2

4
2

0
2

4
 

0
.4

3
0

7
7

 
0

.2
1

7
0

8
1

 
0

.3
2

3
6

6
4

 

 
  

 
 

 
 

 
 

 
 

 
1

.3
9

4
7

4
6

 
1

.2
3

8
6

9
1

 
1

.3
2

3
3

9
2

 

p
-v

al
u

e 
 

 
 

 
 

 
 

 
 

0
.0

0
0

1
3

 
0

.0
0

4
2

5
6

 
0

.0
0

1
4

5
9

 

 
   

 
9

.3
3

08
67

 
1

.5
6

30
19

 
 

8
.9

2
1

6
1

4
 

1
.5

5
4

4
9

6
 

 
9

.0
6

4
4

3
5

 
1

.5
5

9
0

2
1

 
 

9
.1

1
2

0
2

3
 

1
.5

6
2

1
2

4
 

p
-v

al
u

e 
 

0
.0

0
00

8
 

0 
 

0 
0 

 
0

.0
0

0
0

4
8

 
0 

 
0

.0
0

0
0

3
8

 
0

 

A
IC

  
-3

.8
5

8 
-3

.8
7

3
8

 
-3

.8
7

1
9

 
-3

.8
5

5
3

 
-3

.8
7

2
7

 
-3

.8
7

0
1

 
-3

.8
5

7
1

 
-3

.8
7

3
6

 
-3

.8
7

1
3

 
-3

.8
5

7
4 

-3
.8

7
3

9
 

-3
.8

7
1

5
 

B
IC

 
-3

.8
4

1
7

 
-3

.8
5

3
4

 
-3

.8
5

1
5

 
-3

.8
3

5
 

-3
.8

4
8

2
 

-3
.8

4
5

6
 

-3
.8

3
6

7
 

-3
.8

4
9

1
 

-3
.8

4
6

8
 

-3
.8

3
2

9 
-3

.8
4

5
4

 
-3

.8
4

2
9

 

H
Q

IC
 

-3
.8

5
1

9
 

-3
.8

6
6

2
 

-3
.8

6
4

3
 

-3
.8

4
7

7
 

-3
.8

6
3

5
 

-3
.8

6
0

9
 

-3
.8

4
9

4
 

-3
.8

6
4

4
 

-3
.8

6
2

1
 

-3
.8

4
8

2 
-3

.8
6

3
2

 
-3

.8
6

0
7

 

LM
 t

e
st

 
1

.7
0

61
 

1
.6

9
89

 
1

.6
8

79
 

1
.7

4
7

1
 

1
.5

8
3

6
 

1
.6

4
8

3
 

1
.6

3
2

9
 

1
.5

4
5

9
 

1
.5

7
0

1
 

1
.7

0
9

2 
1

.5
3

9
7

 
1

.6
1

4
7

 

p
-v

al
u

e 
0

.5
3

98
 

0
.5

4
16

 
0

.5
4

43
 

0
.5

2
9

9
 

0
.5

7
0

6
 

0
.5

5
4

2
 

0
.5

5
8

1
 

0
.5

8
0

3
 

0
.5

7
4

1
 

0
.5

3
9

1 
0

.5
8

1
9

 
0

.5
6

2
7

 

P
er

si
st

e
n

ce
 

0
.9

9
30

51
 

0
.9

9
38

54
2

 
0

.9
9

28
39

 
0

.9
8

9
9

4
2

 
0

.9
9

1
9

8
3

 
0

.9
9

0
6

0
9

 
0

.9
9

4
4

4 
0

.9
9

6
2

0
2

 
0

.9
9

4
8

5
8

 
0

.9
9

4
1

0
7

 
0

.9
9

4
0

4
5

 
0

.9
9

3
0

6
3

 

*
V

a
lu

es
 w

h
ic

h
 a

re
 n

o
t 

st
a
ti

st
ic

a
ll

y 
si

g
n
if

ic
a
n
t 

a
t 

5
%

 l
ev

el
 i

s 
h
ig

h
li

g
h
te

d
 i

n
 r

ed
. 

*
L

M
 t

es
t 

va
lu

es
 a

re
 b

a
se

d
 o

n
 L

a
g
 [

5
].

  

T
a
b
le

 9
: 

In
-s

a
m

p
le

 p
a
ra

m
et

er
 e

st
im

a
te

s,
 i

n
fo

rm
a
ti

o
n
 c

ri
te

ri
a
, 
L

M
 t

es
t 

va
lu

e 
a
n
d
 p

er
si

st
en

ce
 f

o
r 

C
B

O
E

 (
^F

V
X

).
 

 



71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U
SD

/C
H

F 
G

A
R

C
H

 (
1

,1
) 

EG
A

R
C

H
(1

,1
) 

G
JR

-G
A

R
C

H
(1

,1
) 

A
P

A
R

C
H

(1
,1

) 

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 

 

0
.0

0
00

81
 

-0
.0

0
0

03
 

-8
.3

0
E-

05
 

0
.0

0
0

1
6

1
 

0
.0

0
0

0
0

6
 

0
.0

0
0

0
2

3
 

0
.0

0
0

0
6

6
 

-0
.0

0
0

0
3

 
-8

.3
0

E-
05

 
0

.0
0

0
0

9
7

 
-0

.0
0

0
0

1
6

 
-8

.3
0

E-
05

 

p
-v

al
u

e 
0

.5
4

54
1

 
0

.7
9

43
2

 
0

.0
0

00
05

 
0

.0
2

8
8

5
1

 
0

.9
5

8
5

 
0

.0
3

6
5

7
5

 
0

.6
2

9
1

6
 

0
.7

8
8

7
1

 
0

 
0

.4
3

0
0

8
 

0
.8

9
0

5
1

4
 

0
 

 

0 
0 

0
.0

0
E+

0
0

 
0

.0
4

4
7

4
 

-0
.0

9
3

2
8

6
 

-0
.0

6
7

3
9

9
 

0
 

0 
0

.0
0

E+
0

0
 

0
.0

0
0

0
0

2
 

0
.0

0
0

0
0

3
 

0
.0

0
E+

0
0

 

p
-v

al
u

e 
0

.6
6

1
 

0
.7

6
39

9
 

0
.8

9
98

6
 

0 
0 

0 
0

.6
8

2
6

7
 

0
.7

6
6

3
4

 
0

.2
7

8
2

9
 

0
.0

2
9

0
7

 
0

.0
0

0
0

7
8

 
0

 

 

0
.0

5
19

99
 

0
.0

4
11

47
 

5
.0

0
E-

02
 

0
.1

2
4

0
8

8
 

0
.0

0
0

2
9

8
 

0
.0

1
7

0
1

8
 

0
.0

4
5

6
8

7
 

0
.0

4
1

9
6

9
 

5
.0

0
E-

02
 

0
.0

6
1

5
4

8
 

0
.0

5
6

2
4

2
 

5
.0

0
E-

02
 

p
-v

al
u

e 
0 

0 
0 

0 
0

.9
8

5
1

7
 

0
.2

3
3

6
8

 
0

.0
0

2
 

0 
0

 
0

 
0 

0
 

 

0
.9

4
47

65
 

0
.9

5
78

3
 

9
.0

0
E-

01
 

1 
0

.9
9

0
9

7
6

 
0

.9
9

3
2

5
 

0
.9

4
6

1
7

5
 

0
.9

5
7

8
8

7
 

9
.0

0
E-

01
 

0
.9

4
5

8
0

7
 

0
.9

5
2

7
4

8
 

9
.0

0
E-

01
 

p
-v

al
u

e 
0 

0 
0 

0 
0 

0 
0

 
0 

0
 

0
 

0 
0

 

 

 
 

 
0

.1
6

7
1

5
4

 
0

.1
1

3
4

3
8

 
0

.1
2

2
7

2
3

 
0

.0
0

9
0

4
3

 
-0

.0
0

1
7

1
6

 
5

.0
0

E-
02

 
0

.1
0

0
3

1
6

 
0

.0
1

3
7

3
9

 
5

.0
0

E-
02

 

p
-v

al
u

e 
 

 
 

0 
0

.0
0

4
6

3
 

0 
0

.7
3

0
5

1
 

0
.9

1
9

1
3

 
0

 
0

.5
9

1
7

1
 

0
.9

0
5

7
9

7
 

0
 

 

 
 

 
 

 
 

 
 

 
1

.5
0

4
6

0
1

 
1

.4
8

3
1

3
7

 
2

.0
0

E+
0

0
 

p
-v

al
u

e 
 

 
 

 
 

 
 

 
 

0
 

0 
0

 

 
   

 
3

.8
4

08
9

1 
2

.0
0

E+
0

0
 

 
3

.8
2

33
3

 
0

.8
9

23
7

5 
 

3
.8

3
97

5
1 

2
.0

0
E+

0
0

 
 

3
.8

7
91

7
6 

2
.0

0
E+

0
0

 

p
-v

al
u

e 
 

0 
0 

 
0 

0 
 

0 
0

 
 

0 
0

 

A
IC

  
-7

.5
5

1
2

 
-7

.7
3

1
7

 
-5

.6
4

5
6

 
-7

.0
6

6
5

 
-7

.7
3

8
6

 
-7

.6
8

4
9

 
-7

.5
4

9
9

 
-7

.7
3

0
1

 
-5

.4
6

8
 

-7
.5

5
3

 
-7

.7
3

1
9

 
-5

.6
3

6
1

 

B
IC

 
-7

.5
3

4
9

 
-7

.7
1

1
3

 
-5

.6
2

5
2

 
-7

.0
4

6
1

 
-7

.7
1

4
1

 
-7

.6
6

0
5

 
-7

.5
2

9
5

 
-7

.7
0

5
6

 
-5

.4
4

3
5

 
-7

.5
2

8
5

 
-7

.7
0

3
3

 
-5

.6
0

7
6

 

H
Q

IC
 

-7
.5

4
5

1
 

-7
.7

2
4

 
-5

.6
3

7
9

 
-7

.0
5

8
9

 
-7

.7
2

9
4

 
-7

.6
7

5
7

 
-7

.5
4

2
3

 
-7

.7
2

0
9

 
-5

.4
5

8
8

 
7

.5
4

3
8

 
-7

.7
2

1
2

 
-5

.6
2

5
4

 

LM
 t

e
st

 
0

.0
0

80
86

 
0

.0
0

80
11

 
0

.0
0

85
05

 
0

.0
1

1
9

0
5

 
0

.0
0

9
2

9
9

 
0

.0
0

9
9

2
2

 
0

.0
0

7
6

5
7

 
0

.0
0

8
0

9
4

 
0

.0
0

6
4

4
1

 
0

.0
0

7
1

0
9

 
0

.0
0

7
7

4
4

 
0

.0
0

7
9

7
1

 

p
-v

al
u

e 
0

.9
9

96
 

0
.9

9
96

 
1 

0
.9

9
9

4
 

0
.9

9
9

6
 

0
.9

9
9

5
 

0
.9

9
9

7
 

0
.9

9
9

6
 

0
.9

9
9

7
 

0
.9

9
9

7
 

0
.9

9
9

7
 

0
.9

9
9

6
 

P
er

si
st

e
n

ce
 

0
.9

9
67

63
4

 
0

.9
9

89
77

5
 

0
.9

5
 

0
.9

9
9

9
9

7
 

0
.9

9
0

9
7

5
7

 
0

.9
9

3
2

5
0

3
 

0
.9

9
6

3
8

3
 

0
.9

9
8

9
9

8
5

 
0

.9
7

5
 

0
.9

9
9

 
0

.9
9

6
0

5
9

 
0

.9
5

0
2

5
 

*V
al

u
es

 w
h

ic
h
 a

re
 n

o
t 

st
a
ti

st
ic

a
ll

y 
si

g
n
if

ic
a

n
t 

a
t 

5
%

 l
ev

el
 i

s 
h
ig

h
li

g
h
te

d
 i

n
 r

ed
. 

*
L

M
 t

es
t 

va
lu

es
 a

re
 b

a
se

d
 o

n
 L

a
g

 [
5
].

 

T
a

b
le

 1
0
: 

In
-s

a
m

p
le

 p
a

ra
m

et
er

 e
st

im
a
te

s,
 i

n
fo

rm
a
ti

o
n
 c

ri
te

ri
a
, 

L
M

 t
es

t 
va

lu
e 

a
n
d
 p

er
si

st
en

ce
 f

o
r 

U
S
D

/C
H

F
. 

  



72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G
B

P
/C

H
F 

G
A

R
C

H
 (

1
,1

) 
EG

A
R

C
H

(1
,1

) 
G

JR
-G

A
R

C
H

(1
,1

) 
A

P
A

R
C

H
(1

,1
) 

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 
N

o
rm

al
 

St
u

d
en

t-
t 

G
ED

 

 
  

0
.0

0
01

17
 

0
.0

0
00

37
 

2
.6

0
E-

05
 

0
 

-0
.0

0
0

0
1

5
 

0 
0 

-0
.0

0
0

0
0

7
 

2
.6

0
E-

05
 

0
.0

0
0

0
7

1
 

-0
.0

0
0

0
2

7
 

2
.6

0
E-

05
 

p
-v

al
u

e 
0

.2
4

34
1

 
0

.6
5

33
3

 
0

.0
0

05
99

 
1

 
0

.8
5

3
5

3
5

 
0

.9
9

9
9

9
6

 
0

.9
9

8
8

 
0

.9
2

7
7

7
4

 
0 

0
.4

8
1

4
1

7
 

0
.7

4
8

0
9

3
 

0
 

 
  

0
 

0
.0

0
00

06
 

0
.0

0
E+

0
0

 
-0

.0
4

5
4

1
3

 
-0

.2
1

1
4

7
4

 
-0

.6
0

5
5

4
5

 
0 

0
.0

0
0

0
0

1
 

0
.0

0
E+

0
0

 
0

 
0

 
0

.0
0

E+
0

0
 

p
-v

al
u

e 
0

.5
5

50
9

 
0 

0
.9

1
78

69
 

0
 

0
 

0 
0

.5
5

6
2

6
 

0
.4

9
6

9
3

3
 

0
.7

2
5

5
3

 
0

.9
1

3
6

3
8

 
0

.8
8

5
2

2
6

 
0

.0
4

6
3

7
9

 

 
  

0
.0

5
87

44
 

0
.2

8
04

47
 

5
.0

0
E-

02
 

-0
.0

4
8

2
6

8
 

-0
.0

3
7

7
4

5
 

-0
.0

5
5

2
9

9
 

0
.0

0
0

0
8

8
 

0
.0

0
4

1
3

8
 

5
.0

0
E-

02
 

0
.0

2
7

7
5

 
0

.0
1

8
4

1
6

 
5

.0
0

E-
02

 

p
-v

al
u

e 
0

 
0 

0 
0

 
0

.0
0

0
0

3
8

 
0

.6
2

0
8

2
7

 
0

.9
9

0
0

9
 

0
.7

5
9

4
9

 
0 

0
.0

0
0

0
1

3
 

0
 

0
 

 
  

0
.9

2
75

85
 

0
.6

4
13

72
 

9
.0

0
E-

01
 

0
.9

9
5

4
6

1
 

0
.9

8
0

0
1

5
 

0
.9

3
0

0
0

2
 

0
.9

4
0

8
5

4
 

0
.9

0
2

9
2

2
 

9
.0

0
E-

01
 

0
.9

2
9

7
3

9
 

0
.9

3
3

5
0

4
 

9
.0

0
E-

01
 

p
-v

al
u

e 
0

 
0 

0 
0

 
0 

0 
0 

0 
0 

0 
0 

0 

 
  

 
 

 
0

.0
5

4
5

6
2

 
0

.0
7

8
8

2
1

 
0

.1
9

7
6

3
2

 
0

.0
9

5
0

8
4

 
0

.1
6

4
6

7
5

 
5

.0
0

E-
02

 
0

.6
0

6
1

3
 

0
.6

3
2

1
9

1
 

5
.0

0
E-

02
 

p
-v

al
u

e 
 

 
 

0
 

0
.0

0
0

0
1

5
 

0
.0

1
3

4
3

7
 

0 
0

.0
1

1
3

3
8

 
0 

0
.0

0
0

0
3

 
0

.0
0

0
3

6
8

 
0

 

 
  

 
 

 
 

 
 

 
 

 
2

.3
7

4
9

2
2

 
2

.5
0

6
8

4
8

 
2

.0
0

E+
0

0
 

p
-v

al
u

e 
 

 
 

 
 

 
 

 
 

0
 

0
 

0
 

 
   

 
2

.6
0

36
61

 
2

.0
0

E+
0

0
 

 
2

.7
5

9
6

4
6

 
0

.2
4

7
3

6
3

 
 

2
.7

5
0

2
3

2
 

2
.0

0
E+

0
0

 
 

3
.2

7
8

1
4

7
 

2
.0

0
E+

0
0

 

p
-v

al
u

e 
 

0 
0 

 
0

 
0 

 
0 

0 
 

0
 

0
 

A
IC

  
-8

.0
4

2
8

 
-8

.2
6

3
1

 
-5

.8
0

7
2

 
-8

.0
5

4
5

 
-8

.2
6

3
2

 
-8

.3
9

9
5

 
-8

.0
7

7
4

 
-8

.2
6

4
4

 
-5

.7
1

4
 

-8
.0

6
7

5
 

-8
.2

5
3

9
 

-5
.8

0
7

8
 

B
IC

 
-8

.0
2

6
5

 
-8

.2
4

2
7

 
-5

.7
8

6
8

 
-8

.0
3

4
1

 
-8

.2
3

8
7

 
-8

.3
7

5
 

-8
.0

5
7

 
-8

.2
3

9
9

 
-5

.6
8

9
5

 
-8

.0
4

3
1

 
-8

.2
2

5
3

 
-5

.7
7

9
3

 

H
Q

IC
 

-8
.0

3
6

7
 

-8
.2

5
5

4
 

-5
.7

9
9

5
 

-8
.0

4
6

8
 

-8
.2

5
4

 
-8

.3
9

0
3

 
-8

.0
6

9
7

 
-8

.2
5

5
2

 
-5

.7
0

4
8

 
-8

.0
5

8
3

 
-8

.2
4

3
1

 
-5

.7
9

7
1

 

LM
 t

e
st

 
0

.0
0

67
38

 
0

.0
0

85
45

 
0

.0
0

65
72

 
0

.0
0

6
8

6
9

 
0

.0
0

7
0

9
6

 
0

.0
0

6
0

7
6

 
0

.0
0

5
5

8
 

0
.0

0
5

8
1

3
 

0
.0

0
5

7
3

6
 

0
.0

0
5

4
9

6
 

0
.0

0
6

0
3

7
 

0
.0

0
6

3
0

1
 

p
-v

al
u

e 
0

.9
9

97
 

0
.9

9
96

 
0

.9
9

97
 

0
.9

9
9

7
 

0
.9

9
9

7
 

0
.9

9
9

8
 

0
.9

9
9

8
 

0
.9

9
9

8
 

0
.9

9
9

8
 

0
.9

9
9

8
 

0
.9

9
9

8
 

0
.9

9
9

7
 

P
er

si
st

e
n

ce
 

0
.9

8
63

29
 

0
.9

5
18

18
6

 
0

.9
5

 
0

.9
9

5
4

6
0

6
 

0
.9

8
0

0
1

4
5

 
0

.9
3

0
0

0
2

 
0

.9
8

8
4

8
3

4
 

0
.9

8
9

3
9

8
1

 
0

.9
7

5
 

0
.9

8
1

2
9

3
9

 
0

.9
9

1
7

5
1

9
 

0
.9

5
0

1
2

5
 

 *
V

a
lu

es
 w

h
ic

h
 a

re
 n

o
t 

st
a
ti

st
ic

a
ll

y 
si

g
n
if

ic
a
n
t 

a
t 

5
%

 l
ev

el
 i

s 
h
ig

h
li

g
h

te
d

 i
n

 r
ed

. 

*
L

M
 t

es
t 

va
lu

es
 a

re
 b

a
se

d
 o

n
 L

a
g

 [
5
].

 

T
a

b
le

 1
1

: 
In

-s
a
m

p
le

 p
a
ra

m
et

er
 e

st
im

a
te

s,
 i

n
fo

rm
a
ti

o
n
 c

ri
te

ri
a
, 

L
M

 t
es

t 
va

lu
e 

a
n
d
 p

er
si

st
en

ce
 f

o
r 

G
B

P
/C

H
F

. 

 



73 

 

*MSE multiplied by 100 

Table 12 : MSE forecasting results for S&P500 over multiple horizon 

 

Horizon 
(Months) 

Distribution Naïve EWMA GARCH EGARCH GJR GARCH APARCH 

1 Normal 0.044437 0.040499 0.036985 0.036422 0.030403 0.034406 

 Student-t   0.038187 0.034573 0.030955 0.028827 

 GED   0.037779 0.035378 0.030437 0.029150 

2 Normal 0.058228 0.053585 0.051540 0.049725 0.047223 0.050461 

 Student-t   0.053822 0.049408 0.049567 0.048618 

 GED   0.053341 0.049585 0.048033 0.047393 

3 Normal 0.074101 0.068479 0.068068 0.061944 0.061802 0.064009 

 Student-t   0.071132 0.062683 0.065179 0.063521 

 GED   0.070573 0.062392 0.062988 0.061674 

4 Normal 0.079584 0.074818 0.073723 0.065960 0.067708 0.071351 

 Student-t   0.077301 0.067041 0.071423 0.069494 

 GED   0.076649 0.066552 0.068962 0.067760 

5 Normal 0.089902 0.083666 0.082885 0.072488 0.078026 0.082336 

 Student-t   0.086886 0.073887 0.082445 0.081251 

 GED   0.086050 0.073170 0.079480 0.079321 

6 Normal 0.098279 0.091056 0.089627 0.077447 0.084330 0.087402 

 Student-t   0.093974 0.079411 0.089236 0.087263 

 GED   0.092978 0.078344 0.085915 0.084688 

7 Normal 0.102090 0.094540 0.093044 0.080787 0.088132 0.091452 

 Student-t   0.097731 0.083441 0.093461 0.090761 

 GED   0.096656 0.082090 0.089925 0.087878 

8 Normal 0.108500 0.100237 0.098736 0.084834 0.093699 0.097586 

 Student-t   0.104124 0.088279 0.099821 0.096797 

 GED   0.102881 0.086584 0.095807 0.093152 

9 Normal 0.112177 0.102763 0.100101 0.086084 0.095644 0.098769 

 Student-t   0.105800 0.089583 0.101625 0.098484 

 GED   0.104490 0.087931 0.097650 0.094903 

10 Normal 0.118481 0.108649 0.104572 0.089265 0.099694 0.103043 

 Student-t   0.110677 0.092888 0.105950 0.103697 

 GED   0.109234 0.091205 0.101782 0.099985 

11 Normal 0.121307 0.110917 0.107947 0.091963 0.103689 0.107269 

 Student-t   0.114243 0.095688 0.110102 0.107895 

 GED   0.112780 0.093930 0.105720 0.103834 

12 Normal 0.123704 0.113272 0.110558 0.093521 0.106284 0.109761 

 Student-t   0.116842 0.097084 0.112672 0.110272 

 GED   0.115406 0.095335 0.108241 0.106004 
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*𝑃 values multiplied by 100 

Table 13: Predictive Power forecasting results for S&P500 over multiple horizon 

 

  

Horizon 
(Months) 

Distribution Naïve EWMA GARCH EGARCH GJR GARCH APARCH 

1 Normal 45.59 50.42 54.72 55.41 62.78 57.87 

 Student-t   53.25 57.67 62.10 64.71 

 GED   53.74 56.68 62.73 64.31 

2 Normal 27.89 33.63 36.17 38.42 41.52 37.50 

 Student-t   33.34 38.81 38.61 39.79 

 GED   33.94 38.59 40.51 41.30 

3 Normal 9.98 16.81 17.31 24.75 24.92 22.24 

 Student-t   13.58 23.85 20.82 22.83 

 GED   14.26 24.20 23.48 25.07 

4 Normal 1.35 7.26 8.62 18.24 16.07 11.56 

 Student-t   4.18 16.90 11.47 13.86 

 GED   4.99 17.51 14.52 16.01 

5 Normal -11.87 -4.11 -3.14 9.80 2.91 -2.46 

 Student-t   -8.12 8.06 -2.59 -1.11 

 GED   -7.08 8.95 1.10 1.30 

6 Normal -21.16 -12.25 -10.49 4.52 -3.96 -7.75 

 Student-t   -15.85 2.10 -10.01 -7.58 

 GED   -14.62 3.42 -5.91 -4.40 

7 Normal -27.50 -18.07 -16.20 -0.89 -10.07 -14.21 

 Student-t   -22.05 -4.21 -16.72 -13.35 

 GED   -20.71 -2.52 -12.31 -9.75 

8 Normal -34.45 -24.21 -22.35 -5.13 -16.11 -20.93 

 Student-t   -29.03 -9.39 -23.70 -19.95 

 GED   -27.49 -7.29 -18.72 -15.43 

9 Normal -40.56 -28.77 -25.43 -7.87 -19.85 -23.76 

 Student-t   -32.57 -12.25 -27.34 -23.40 

 GED   -30.93 -10.18 -22.36 -18.92 

10 Normal -44.80 -32.78 -27.80 -9.09 -21.84 -25.93 

 Student-t   -35.26 -13.52 -29.49 -26.73 

 GED   -33.50 -11.46 -24.39 -22.20 

11 Normal -51.44 -38.47 -34.76 -14.81 -29.44 -33.91 

 Student-t   -42.62 -19.46 -37.45 -34.70 

 GED   -40.79 -17.26 -31.98 -29.63 

12 Normal -54.92 -41.86 -38.46 -17.12 -33.11 -37.46 

 Student-t   -46.33 -21.58 -41.11 -38.10 

 GED   -44.53 -19.39 -35.56 -32.75 
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Horizon 
(Months) 

Distribution Naïve EWMA GARCH EGARCH GJR GARCH APARCH 

1 Normal 0.040493 0.038052 0.034421 0.032599 0.028657 0.027891 

 Student-t   0.034841 0.030804 0.028948 0.027351 

 GED   0.034700 0.031686 0.028585 0.026288 

2 Normal 0.055524 0.051121 0.050160 0.045944 0.044997 0.045171 

 Student-t   0.050993 0.045562 0.046746 0.044908 

 GED   0.051041 0.045687 0.045665 0.043719 

3 Normal 0.068720 0.063159 0.062750 0.054241 0.055946 0.058855 

 Student-t   0.064263 0.054849 0.058263 0.055708 

 GED   0.064274 0.054504 0.056830 0.054983 

4 Normal 0.073082 0.068392 0.067176 0.057650 0.060571 0.062062 

 Student-t   0.069133 0.058625 0.063087 0.059636 

 GED   0.069074 0.058089 0.061533 0.059198 

5 Normal 0.082488 0.075508 0.074562 0.063000 0.068579 0.069445 

 Student-t   0.076307 0.064059 0.071403 0.067933 

 GED   0.076348 0.063406 0.069635 0.067207 

6 Normal 0.090386 0.082449 0.081206 0.068205 0.074338 0.074893 

 Student-t   0.082783 0.069488 0.077529 0.073551 

 GED   0.082921 0.068639 0.075543 0.072658 

7 Normal 0.091323 0.083996 0.082363 0.069856 0.075508 0.075879 

 Student-t   0.084403 0.071726 0.079048 0.075042 

 GED   0.084431 0.070607 0.076912 0.074290 

8 Normal 0.095292 0.088517 0.086406 0.072816 0.079912 0.080158 

 Student-t   0.089197 0.075558 0.084076 0.079951 

 GED   0.088980 0.074034 0.081630 0.078890 

9 Normal 0.098887 0.091435 0.089044 0.075186 0.083175 0.082278 

 Student-t   0.092095 0.078158 0.087591 0.082690 

 GED   0.091806 0.076538 0.085040 0.081376 

10 Normal 0.106214 0.097653 0.093937 0.078727 0.087376 0.087985 

 Student-t   0.097451 0.082320 0.092445 0.087842 

 GED   0.097092 0.080430 0.089571 0.086431 

11 Normal 0.107690 0.099408 0.097347 0.081697 0.091394 0.091942 

 Student-t   0.100379 0.085165 0.096196 0.091683 

 GED   0.100251 0.083342 0.093440 0.090121 

12 Normal 0.109883 0.101282 0.100348 0.083997 0.094352 0.095481 

 Student-t   0.103017 0.087451 0.099046 0.094397 

 GED   0.103084 0.085662 0.096420 0.093178 

*MSE multiplied by 100 

Table 14: MSE forecasting results for DJIA over multiple horizon  
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Horizon 
(Months) 

Distribution Naïve EWMA GARCH EGARCH GJR GARCH APARCH 

1 Normal 42.37 45.84 51.01 53.60 59.21 60.30 

 Student-t   50.41 56.16 58.80 61.07 

 GED   50.61 54.90 59.32 62.58 

2 Normal 21.14 27.39 28.76 34.74 36.09 35.84 

 Student-t   27.57 35.29 33.61 36.22 

 GED   27.50 35.11 35.14 37.90 

3 Normal 2.67 10.54 11.12 23.17 20.76 16.64 

 Student-t   8.98 22.31 17.48 21.10 

 GED   8.96 22.80 19.51 22.12 

4 Normal -4.43 2.27 4.01 17.62 13.45 11.32 

 Student-t   1.22 16.23 9.85 14.79 

 GED   1.30 17.00 12.08 15.41 

5 Normal -19.26 -9.17 -7.80 8.92 0.85 -0.40 

 Student-t   -10.32 7.38 -3.23 1.78 

 GED   -10.38 8.33 -0.68 2.83 

6 Normal -27.67 -16.46 -14.71 3.66 -5.00 -5.79 

 Student-t   -16.93 1.85 -9.51 -3.89 

 GED   -17.13 3.05 -6.71 -2.63 

7 Normal -31.35 -20.82 -18.47 -0.48 -8.61 -9.14 

 Student-t   -21.40 -3.17 -13.70 -7.94 

 GED   -21.44 -1.56 -10.63 -6.85 

8 Normal -37.28 -27.52 -24.48 -4.90 -15.12 -15.48 

 Student-t   -28.50 -8.85 -21.12 -15.18 

 GED   -28.19 -6.65 -17.60 -13.65 

9 Normal -41.67 -31.00 -27.57 -7.72 -19.16 -17.88 

 Student-t   -31.94 -11.98 -25.49 -18.47 

 GED   -31.53 -9.66 -21.84 -16.59 

10 Normal -51.52 -39.30 -34.00 -12.30 -24.64 -25.51 

 Student-t   -39.01 -17.43 -31.87 -25.31 

 GED   -38.50 -14.74 -27.77 -23.29 

11 Normal -54.79 -42.89 -39.92 -17.43 -31.37 -32.15 

 Student-t   -44.28 -22.41 -38.27 -31.78 

 GED   -44.10 -19.79 -34.31 -29.54 

12 Normal -59.70 -47.20 -45.84 -22.07 -37.12 -38.77 

 Student-t   -49.72 -27.09 -43.95 -37.19 

 GED   -49.82 -24.49 -40.13 -35.42 

*𝑃 values multiplied by 100 

Table 15: Predictive Power forecasting results for DJIA over multiple horizon  
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Horizon 
(Months) 

Distribution Naïve EWMA GARCH EGARCH GJR GARCH APARCH 

1 Normal 0.052137 0.043523 0.044947 0.039779 0.042132 0.041084 

 Student-t   0.045424 0.038885 0.042669 0.040575 

 GED   0.045149 0.039113 0.042288 0.040835 

2 Normal 0.057851 0.051658 0.050818 0.045329 0.047661 0.046713 

 Student-t   0.051215 0.044409 0.048167 0.046171 

 GED   0.050953 0.044510 0.047725 0.046563 

3 Normal 0.063913 0.062890 0.061296 0.055529 0.056755 0.056167 

 Student-t   0.061649 0.054257 0.057344 0.055778 

 GED   0.061393 0.054481 0.056872 0.056324 

4 Normal 0.078321 0.075276 0.073038 0.065745 0.068149 0.067520 

 Student-t   0.073632 0.064557 0.069191 0.067105 

 GED   0.073315 0.064773 0.068554 0.067594 

5 Normal 0.099410 0.093480 0.092336 0.084047 0.086792 0.085964 

 Student-t   0.093089 0.082518 0.088058 0.085648 

 GED   0.092692 0.082822 0.087294 0.086414 

6 Normal 0.109810 0.104057 0.104314 0.095497 0.100558 0.099056 

 Student-t   0.105172 0.093859 0.101825 0.098215 

 GED   0.104757 0.094159 0.101064 0.099031 

7 Normal 0.123056 0.114305 0.114776 0.108152 0.113506 0.111948 

 Student-t   0.115706 0.106208 0.114388 0.110764 

 GED   0.115267 0.106628 0.113793 0.111401 

8 Normal 0.137198 0.122938 0.124984 0.118775 0.124694 0.123280 

 Student-t   0.126046 0.116818 0.125576 0.121731 

 GED   0.125574 0.117244 0.124979 0.122556 

9 Normal 0.142761 0.126118 0.130161 0.122922 0.129542 0.127952 

 Student-t   0.131063 0.120808 0.130535 0.126215 

 GED   0.130690 0.121328 0.129850 0.127401 

10 Normal 0.142387 0.125527 0.130693 0.123817 0.130817 0.129394 

 Student-t   0.131443 0.121423 0.131651 0.127481 

 GED   0.131150 0.122062 0.131059 0.128611 

11 Normal 0.141768 0.123835 0.128627 0.121608 0.128849 0.128811 

 Student-t   0.129306 0.119311 0.129718 0.126684 

 GED   0.129084 0.119968 0.129132 0.127537 

12 Normal 0.143956 0.126348 0.131117 0.124555 0.131695 0.131926 

 Student-t   0.131560 0.121812 0.132278 0.129617 

 GED   0.131462 0.122713 0.131822 0.130669 

*MSE multiplied by 100 

Table 16: MSE forecasting results for CBOE (^TNX) over multiple horizon. 
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*𝑃 values multiplied by 100 

Table 17: Predictive Power forecasting results for CBOE (^TNX) over multiple horizon  

 

 

Horizon 
(Months) 

Distribution Naïve EWMA GARCH EGARCH GJR GARCH APARCH 

1 Normal 61.01 67.46 66.39 70.26 68.50 69.28 

 Student-t   66.03 70.92 68.09 69.66 

 GED   66.24 70.75 68.38 69.47 

2 Normal 56.71 61.34 61.97 66.08 64.33 65.04 

 Student-t   61.67 66.77 63.95 65.45 

 GED   61.87 66.69 64.29 65.15 

3 Normal 52.54 53.30 54.48 58.76 57.85 58.29 

 Student-t   54.22 59.71 57.42 58.58 

 GED   54.41 59.54 57.77 58.17 

4 Normal 41.24 43.53 45.21 50.68 48.87 49.35 

 Student-t   44.76 51.57 48.09 49.66 

 GED   45.00 51.41 48.57 49.29 

5 Normal 27.40 31.74 32.57 38.62 36.62 37.22 

 Student-t   32.02 39.74 35.69 37.45 

 GED   32.31 39.52 36.25 36.90 

6 Normal 19.27 23.50 23.31 29.80 26.08 27.18 

 Student-t   22.68 31.00 25.14 27.80 

 GED   22.99 30.78 25.70 27.20 

7 Normal 9.76 16.18 15.83 20.69 16.76 17.91 

 Student-t   15.15 22.12 16.12 18.78 

 GED   15.47 21.81 16.55 18.31 

8 Normal -0.25 10.17 8.67 13.21 8.89 9.92 

 Student-t   7.90 14.64 8.24 11.05 

 GED   8.24 14.33 8.68 10.45 

9 Normal -4.57 7.62 4.66 9.96 5.11 6.27 

 Student-t   4.00 11.51 4.38 7.55 

 GED   4.27 11.13 4.88 6.68 

10 Normal -3.02 9.18 5.44 10.41 5.35 6.38 

 Student-t   4.90 12.15 4.75 7.76 

 GED   5.11 11.68 5.17 6.95 

11 Normal -4.05 9.11 5.59 10.74 5.43 5.46 

 Student-t   5.09 12.43 4.79 7.02 

 GED   5.25 11.95 5.22 6.39 

12 Normal -3.50 9.16 5.73 10.45 5.32 5.15 

 Student-t   5.42 12.42 4.90 6.81 

 GED   5.49 11.78 5.23 6.06 
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Horizon 
(Months) 

Distribution Naïve EWMA GARCH EGARCH GJR GARCH APARCH 

1 Normal 0.170628 0.133800 0.154946 0.138105 0.151364 0.158563 

 Student-t   0.159167 0.133511 0.156554 0.133573 

 GED   0.156656 0.133805 0.154090 0.133130 

2 Normal 0.170457 0.137408 0.153498 0.135264 0.147359 0.157531 

 Student-t   0.156522 0.131572 0.151965 0.134016 

 GED   0.154496 0.131594 0.149688 0.133712 

3 Normal 0.180112 0.160580 0.176881 0.159444 0.166107 0.174952 

 Student-t   0.178635 0.153814 0.170263 0.151221 

 GED   0.177054 0.154613 0.168307 0.152612 

4 Normal 0.188147 0.167724 0.180230 0.158304 0.168309 0.174171 

 Student-t   0.183042 0.153507 0.173331 0.154602 

 GED   0.181036 0.154079 0.171066 0.157099 

5 Normal 0.242362 0.214216 0.228672 0.203466 0.215569 0.222008 

 Student-t   0.232138 0.197102 0.221117 0.202535 

 GED   0.229741 0.198141 0.218546 0.204195 

6 Normal 0.256739 0.229305 0.252449 0.224718 0.242250 0.239518 

 Student-t   0.256463 0.217185 0.248453 0.221489 

 GED   0.253799 0.218599 0.245439 0.222981 

7 Normal 0.291861 0.254665 0.281756 0.262995 0.278228 0.272825 

 Student-t   0.285895 0.253832 0.283593 0.257866 

 GED   0.283342 0.255835 0.281103 0.261009 

8 Normal 0.321302 0.271288 0.300135 0.285432 0.301026 0.294131 

 Student-t   0.304533 0.275701 0.305683 0.280081 

 GED   0.301955 0.277921 0.303583 0.284009 

9 Normal 0.318254 0.270444 0.301474 0.287271 0.303606 0.295345 

 Student-t   0.306015 0.276467 0.309290 0.283429 

 GED   0.303291 0.279327 0.306556 0.286474 

10 Normal 0.315407 0.267406 0.303273 0.292830 0.308970 0.298721 

 Student-t   0.307261 0.280609 0.312926 0.287622 

 GED   0.304948 0.283953 0.310979 0.290204 

11 Normal 0.310460 0.260151 0.292152 0.276359 0.296839 0.289857 

 Student-t   0.295586 0.265037 0.299455 0.278106 

 GED   0.293617 0.268330 0.298058 0.280725 

12 Normal 0.328507 0.278574 0.304612 0.288985 0.308662 0.304803 

 Student-t   0.307026 0.276873 0.310199 0.292813 

 GED   0.305512 0.280689 0.309174 0.295349 

*MSE multiplied by 100 

Table 18: MSE forecasting results for CBOE (^FVX) over multiple horizon  
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Horizon 
(Months) 

Distribution Naïve EWMA GARCH EGARCH GJR GARCH APARCH 

1 Normal 60.41 68.96 64.05 67.96 64.88 63.21 

 Student-t   63.07 69.02 63.68 69.01 

 GED   63.65 68.96 64.25 69.11 

2 Normal 59.99 67.74 63.97 68.25 65.41 63.02 

 Student-t   63.26 69.12 64.33 68.54 

 GED   63.73 69.11 64.86 68.61 

3 Normal 58.22 62.75 58.97 63.01 61.47 59.42 

 Student-t   58.56 64.32 60.50 64.92 

 GED   58.93 64.13 60.96 64.60 

4 Normal 55.42 60.26 57.30 62.49 60.12 58.73 

 Student-t   56.63 63.63 58.93 63.37 

 GED   57.11 63.49 59.47 62.78 

5 Normal 44.30 50.77 47.45 53.24 50.46 48.98 

 Student-t   46.65 54.70 49.18 53.45 

 GED   47.20 54.46 49.77 53.07 

6 Normal 39.96 46.38 40.96 47.45 43.35 43.99 

 Student-t   40.02 49.21 41.90 48.20 

 GED   40.65 48.88 42.60 47.85 

7 Normal 32.41 41.03 34.75 39.10 35.57 36.82 

 Student-t   33.79 41.22 34.33 40.28 

 GED   34.38 40.75 34.90 39.56 

8 Normal 26.07 37.58 30.94 34.33 30.74 32.33 

 Student-t   29.93 36.57 29.67 35.56 

 GED   30.53 36.06 30.15 34.65 

9 Normal 25.90 37.03 29.81 33.11 29.31 31.23 

 Student-t   28.75 35.63 27.99 34.01 

 GED   29.38 34.96 28.62 33.30 

10 Normal 27.49 38.53 30.28 32.68 28.97 31.33 

 Student-t   29.37 35.49 28.06 33.88 

 GED   29.90 34.72 28.51 33.29 

11 Normal 26.85 38.70 31.16 34.89 30.06 31.70 

 Student-t   30.35 37.55 29.44 34.47 

 GED   30.82 36.78 29.77 33.86 

12 Normal 24.53 36.00 30.02 33.61 29.09 29.97 

 Student-t   29.46 36.39 28.73 32.73 

 GED   29.81 35.51 28.97 32.15 

*𝑃 values multiplied by 100 

Table 19: Predictive Power forecasting results for CBOE(^FVX) over multiple horizon  

 



81 

 

Horizon 
(Months) 

Distribution Naïve EWMA GARCH EGARCH GJR GARCH APARCH 

1 Normal 0.032713 0.025947 0.026981 0.023877 0.026850 0.025524 

 Student-t   0.028130 0.024601 0.026927 0.025255 

 GED   0.049587 0.546679 0.098462 4.002845 

2 Normal 0.035602 0.028658 0.029898 0.026044 0.029467 0.027781 

 Student-t   0.029403 0.025098 0.028902 0.026729 

 GED   0.050958 0.546162 0.100959 4.003322 

3 Normal 0.035594 0.029229 0.030144 0.026648 0.029464 0.027396 

 Student-t   0.029575 0.025703 0.029021 0.025207 

 GED   0.053361 0.548323 0.099932 4.005508 

4 Normal 0.034540 0.027946 0.028625 0.025189 0.027794 0.026174 

 Student-t   0.028176 0.024300 0.027438 0.024304 

 GED   0.051844 0.544637 0.097548 4.026736 

5 Normal 0.038626 0.032074 0.032872 0.028879 0.032375 0.031330 

 Student-t   0.031997 0.027387 0.031333 0.029822 

 GED   0.055305 0.546252 0.101668 4.004673 

6 Normal 0.037650 0.031631 0.032127 0.028491 0.031470 0.030135 

 Student-t   0.031091 0.027056 0.030444 0.028671 

 GED   0.054359 0.549060 0.102322 4.004081 

7 Normal 0.038812 0.032142 0.032526 0.028917 0.031741 0.030659 

 Student-t   0.031121 0.027200 0.030646 0.028599 

 GED   0.055578 0.548840 0.101965 4.022331 

8 Normal 0.039575 0.033702 0.034037 0.030552 0.033527 0.032355 

 Student-t   0.032600 0.028814 0.032366 0.030220 

 GED   0.056462 0.554604 0.099965 4.027364 

9 Normal 0.039850 0.034148 0.034599 0.031352 0.034168 0.033300 

 Student-t   0.033009 0.029497 0.032819 0.030329 

 GED   0.056128 0.555103 0.104210 4.020519 

10 Normal 0.045624 0.037773 0.038249 0.034332 0.037813 0.037251 

 Student-t   0.036332 0.031385 0.035960 0.033976 

 GED   0.059545 0.559215 0.107790 4.017264 

11 Normal 0.043831 0.036932 0.037329 0.033554 0.036931 0.036861 

 Student-t   0.035274 0.030494 0.035050 0.033080 

 GED   0.059969 0.556074 0.106323 4.039035 

12 Normal 0.044040 0.037434 0.037967 0.034237 0.037528 0.037776 

 Student-t   0.035713 0.030864 0.035637 0.033906 

 GED   0.059552 0.550875 0.107092 4.041235 

* MSE multiplied by 100 

Table 20: MSE forecasting results for USD/CHF over multiple horizon  
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Horizon 
(Months) 

Distribution Naïve EWMA GARCH EGARCH GJR GARCH APARCH 

1 Normal -30.25 -3.31 -7.43 4.93 -6.90 -1.63 

 Student-t   -12.00 2.05 -7.21 -0.55 

 GED   -97.43 -2076.64 -292.03 -15917.23 

2 Normal -41.43 -13.85 -18.77 -3.47 -17.06 -10.36 

 Student-t   -16.81 -0.29 -14.82 -6.18 

 GED   -102.44 -2069.73 -301.08 -15803.97 

3 Normal -39.02 -14.16 -17.74 -4.08 -15.08 -7.00 

 Student-t   -15.52 -0.39 -13.35 -1.55 

 GED   -108.42 -2041.67 -290.32 -15544.96 

4 Normal -40.75 -13.88 -16.64 -2.64 -13.26 -6.65 

 Student-t   -14.81 0.98 -11.81 0.96 

 GED   -111.26 -2119.35 -297.50 -16308.60 

5 Normal -51.56 -25.85 -28.98 -13.31 -27.03 -22.93 

 Student-t   -25.55 -7.46 -22.94 -17.01 

 GED   -117.00 -2043.35 -298.92 -15613.27 

6 Normal -49.61 -25.69 -27.66 -13.21 -25.06 -19.75 

 Student-t   -23.55 -7.51 -20.98 -13.93 

 GED   -116.01 -2081.83 -306.60 -15811.25 

7 Normal -54.33 -27.81 -29.33 -14.98 -26.21 -21.91 

 Student-t   -23.75 -8.15 -21.86 -13.72 

 GED   -120.99 -2082.36 -305.44 -15894.04 

8 Normal -58.52 -35.00 -36.34 -22.38 -34.30 -29.60 

 Student-t   -30.58 -15.42 -29.64 -21.05 

 GED   -126.16 -2121.51 -300.42 -16031.90 

9 Normal -59.06 -36.30 -38.10 -25.14 -36.38 -32.91 

 Student-t   -31.75 -17.73 -30.99 -21.05 

 GED   -124.03 -2115.63 -315.94 -15947.44 

10 Normal -79.47 -48.59 -50.46 -35.05 -48.74 -46.53 

 Student-t   -42.92 -23.46 -41.46 -33.65 

 GED   -134.23 -2099.79 -324.01 -15702.72 

11 Normal -80.03 -51.69 -53.32 -37.82 -51.69 -51.40 

 Student-t   -44.88 -25.25 -43.96 -35.87 

 GED   -146.31 -2183.95 -336.70 -16489.47 

12 Normal -74.18 -48.06 -50.16 -35.41 -48.42 -49.41 

 Student-t   -41.25 -22.07 -40.95 -34.10 

 GED   -135.53 -2078.75 -323.56 -15804.26 

*𝑃 values multiplied by 100 

Table 21: Predictive Power forecasting results for USD/CHF over multiple horizon  
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Horizon 
(Months) 

Distribution Naïve EWMA GARCH EGARCH GJR GARCH APARCH 

1 Normal 0.032460 0.024630 0.024928 0.023201 0.025628 0.026944 

 Student-t   0.071801 0.049460 0.066035 0.068683 

 GED   0.101450 21.854550 0.235197 11.033770 

2 Normal 0.029312 0.022756 0.022352 0.020742 0.023654 0.025120 

 Student-t   0.069324 0.046814 0.064437 0.067082 

 GED   0.097954 21.859330 0.227566 11.030630 

3 Normal 0.031887 0.025278 0.024259 0.021768 0.024616 0.025982 

 Student-t   0.070492 0.047042 0.065229 0.066109 

 GED   0.094728 21.885420 0.224672 11.004620 

4 Normal 0.033603 0.026786 0.025726 0.023580 0.026228 0.027896 

 Student-t   0.072023 0.048077 0.066464 0.067626 

 GED   0.096927 21.856760 0.225966 10.933050 

5 Normal 0.034507 0.027928 0.026912 0.024857 0.027276 0.028847 

 Student-t   0.073466 0.049729 0.067533 0.068890 

 GED   0.101987 21.913650 0.231218 10.913470 

6 Normal 0.034869 0.028435 0.027848 0.025707 0.027824 0.029144 

 Student-t   0.075670 0.051958 0.068870 0.070121 

 GED   0.102978 21.858080 0.229259 10.935620 

7 Normal 0.036848 0.029540 0.028812 0.026876 0.029159 0.030669 

 Student-t   0.076156 0.051986 0.069868 0.070678 

 GED   0.101389 21.838370 0.230344 10.926770 

8 Normal 0.039317 0.031687 0.030412 0.028307 0.030845 0.032601 

 Student-t   0.076905 0.053571 0.070345 0.070732 

 GED   0.105593 21.815930 0.238975 11.052790 

9 Normal 0.039064 0.031206 0.029852 0.027888 0.030462 0.032257 

 Student-t   0.076184 0.052757 0.069913 0.071675 

 GED   0.104556 21.829330 0.238964 11.063010 

10 Normal 0.039803 0.032220 0.031214 0.028646 0.031545 0.033183 

 Student-t   0.076972 0.053981 0.071168 0.074043 

 GED   0.100972 21.896690 0.238870 11.056300 

11 Normal 0.039185 0.032246 0.030989 0.028305 0.031043 0.032816 

 Student-t   0.076689 0.053550 0.070869 0.074771 

 GED   0.096912 21.903230 0.239037 11.049700 

12 Normal 0.040288 0.033090 0.032133 0.029628 0.032421 0.034342 

 Student-t   0.077228 0.054928 0.072026 0.074986 

 GED   0.097397 21.897400 0.232268 11.060550 

* MSE multiplied by 100 

Table 22: MSE forecasting results for GBP/CHF over multiple horizon  
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Horizon 
(Months) 

Distribution Naïve EWMA GARCH EGARCH GJR GARCH APARCH 

1 Normal -32.31 0.39 1.61 5.43 -4.46 -9.82 

 Student-t   -192.67 -101.60 -169.16 -179.95 

 GED   -313.52 -88980.34 -858.67 -44874.25 

2 Normal -22.71 4.74 6.43 13.17 -0.98 -5.16 

 Student-t   -190.20 -95.97 -169.74 -180.82 

 GED   -310.05 -91406.85 -852.63 -46076.08 

3 Normal -33.21 -5.60 -1.34 9.07 -2.83 -8.54 

 Student-t   -194.47 -96.51 -172.49 -176.16 

 GED   -295.72 -91323.87 -838.54 -45870.56 

4 Normal -39.51 -11.20 -6.80 2.11 -8.89 -15.81 

 Student-t   -199.01 -99.60 -175.93 -180.76 

 GED   -302.40 -90640.66 -838.12 -45289.72 

5 Normal -44.60 -17.04 -12.78 -4.17 -14.30 -20.89 

 Student-t   -207.87 -108.40 -183.00 -188.69 

 GED   -327.39 -91731.42 -868.94 -45634.06 

6 Normal -42.47 -16.18 -13.78 -5.04 -13.68 -19.08 

 Student-t   -209.18 -112.29 -181.39 -186.51 

 GED   -320.76 -89209.81 -836.73 -44581.78 

7 Normal -54.99 -24.25 -21.19 -13.04 -22.65 -29.00 

 Student-t   -220.33 -118.66 -193.88 -197.29 

 GED   -326.46 -91756.60 -868.87 -45860.21 

8 Normal -60.01 -28.96 -23.77 -15.20 -25.53 -32.68 

 Student-t   -212.99 -118.02 -186.29 -187.86 

 GED   -329.74 -88685.79 -872.57 -44882.29 

9 Normal -63.51 -30.62 -24.95 -16.73 -27.50 -35.02 

 Student-t   -218.88 -120.82 -192.63 -200.00 

 GED   -337.63 -91269.99 -900.22 -46205.91 

10 Normal -66.55 -34.82 -30.61 -19.86 -31.99 -38.85 

 Student-t   -222.07 -125.87 -197.78 -209.81 

 GED   -322.49 -91520.83 -899.49 -46162.14 

11 Normal -62.62 -33.83 -28.61 -17.47 -28.83 -36.19 

 Student-t   -218.27 -122.24 -194.12 -210.31 

 GED   -302.20 -90801.62 -892.04 -45757.87 

12 Normal -69.35 -39.10 -35.08 -24.54 -36.28 -44.36 

 Student-t   -224.63 -130.89 -202.77 -215.21 

 GED   -309.42 -91947.87 -876.36 -46394.11 

*𝑃 Values multiplied by 100 

Table 23: Predictive Power forecasting results for GBP/CHF over multiple horizon  
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Appendix 2: Reflective Note 

This thesis evaluates the predictive power of alternative volatility forecasting models from short 

horizon starting from 1 month to longest horizon ending at 12 month. The performance of each 

volatility forecasting models at different forecast horizon are examined by calculating the mean 

forecast error (MSE) for forecast accuracy and finally the predictive/explanatory power of each 

model at multiple horizon is calculated. Three asset classes (stock indices, interest rates and 

exchange rates) are selected for study so that the results can be compared within and among the 

asset classes. The reason for studying three different type of asset classes is reasonable as one 

would like to know if the model that perform well for a certain asset class would perform 

comparably well with other asset class or not. The empirical results showed that the explanatory 

power of every model are best at short horizon and as the horizon gets longer the both the forecast 

accuracy and predictive power of the model gradually declines at some horizon making it 

essentially unpredictable. The longest forecastable horizon does depend on the type of asset class. 

The result suggests longest forecastable horizon for Stock Indices, Interest Rates and Exchange 

rates are 4 months, 12 months and 2 months respectively. The results showed EGARCH model 

was able to increase the forecastable horizon.  Further, it was concluded there is no best model for 

all asset classes over all horizons. The best model is largely dependent upon the type of asset and 

the horizon of interest. 

Volatility has been central to finance and economic literature from the early 1900 as noted in the 

section 1 of the thesis. But since the considerable variation in volatility since 1970 and especially 

after the stock market crash at 1987 volatility prediction has been impetus for academicians and 

researchers to carry out further studies on the same matter . After the market crash in 2008 and its 

severe negative effect on the global economy the importance of accurate volatility prediction has 

been restated. 

Higher financial volatility has always been equated with high risk which is deemed to be 

undesirable. High financial volatility are often discussed to be undesirable and seen as an 

indication of malfunctioning of the market as a whole. Stock market, interest rates and exchange 

rates are all very central to economy of every country. The unwanted volatility in each can effect 
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that country’s economy as well as the effect can be transferred globally as today the investments 

are global and every country in one way or other are economically interrelated. The catalyst for 

volatility are several. For instance, any change in monetary policy by European Central Bank may 

change in the level of volatility with an effect to several countries. The change is actually the 

reaction to the policy and may be good or bad. The impact on volatility are not only due to finance 

related matters like trading volumes, changes in economic policies, positive/negative changes in 

international economic data etc. The financial volatility can also occur due to unexpected 

geopolitical events like civil wars, terrorism attacks etc. These all can prompt financial volatility 

which effects consumer spending, business spending and finally disrupting the smooth functioning 

of the economy. Thus, volatility has been the topic of interest for anyone who is directly or 

indirectly connected to the economy. They could be a single investor, a corporate house or 

government and economic planners all of whom want to achieve a level of risk that they are willing 

to take. The most logical way for them to know the associated risk is to predict the volatility. 

Today, researchers agree that the volatility is time varying and predictable. And as discussed 

accurate forecasting of volatility has important implications from individual investors to policy 

makers. But volatility predictability is only of importance when volatility can be predicted at a 

horizon of interest. However, the choice of horizon depends upon the type of application. For 

instance, a trader would like a short horizon while for pension fund forecasting for longer horizon 

is necessitated. But many empirical literatures focus on forecasting volatility for short periods 

which is of limited use and the necessity of predicting and evaluating volatility at longer horizon 

deems to be of importance as well. This thesis attempts to fulfill this gap by applying the volatility 

models to predict over multiple horizons. Further, volatility models are seen sensitive to different 

asset classes. So, when one model performs particularly well for one asset class like stock indices 

it would not be logical to conclude that the same model would predict volatility with highest 

forecast accuracy for other asset class like exchange rate and interest rates as well. Within the asset 

class also when multiple horizon is considered the best model at short horizons may not be the best 

model at longer horizon. So, in a real world scenario it would always be rational to assume that 

volatility predictability is possible but is a complex task to be undertaken as many different factors 

has to be taken into consideration. For instance, a general consensus may not be reached as 
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researcher’s preferences are different in terms of employing the sampling period, data frequency, 

forecast methods and models, evaluation criteria, different predictors etc. to predict volatility. 

Given, the complexity in measuring and quantifying volatility predictability it can be concluded 

we are still away from generally accepted model and method.  Thus, the challenges still lurks but 

still, it is possible to find a better model for volatility prediction from the wide range of models 

available which are evaluated on the basis of forecast accuracy and predictive power of the model. 

If the accurate prediction is sought the market participants can pre act to decrease the level of risk 

associated. For instance; Investors gets the chance to make the market favorable to them by shifting 

their portfolios to less risky assets, policy makers could intervene the market by pursing new 

regulatory policies to reduce volatility or assist the financial market and its participant to adapt to 

increased volatility etc. 
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