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Abstract: In this paper, theoretical and experimental implementation of heave compensation
on a redundant hydraulically actuated manipulator with 3-dof has been carried out. The
redundancy is solved using the pseudo-inverse Jacobian method. Techniques for minimizing
velocities and avoiding mechanical joint saturations is implemented in the null space joint
motion. Model based feed-forward, combined with a PI-controller handles the velocity control
of each joint.A time domain simulation model has been developed, experimentally verified, and
used for controller parameter tuning. Model verification and experimental results are obtained
while the manipulator is exposed to wave disturbances created in a dry environment by means
of a Stewart platform.
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1. INTRODUCTION

Heave compensation is widely used in offshore areas such
as oil and gas, ship transportation and wind power sys-
tems, where disturbances from sea waves affect the motion
of structures and articulated systems. Material handling
machines are greatly affected by the ocean environment.
Acceleration forces created by wave motion is a challenge
because of their unpredictable nature as well as their size.
They may attenuate nominal loads and introduce loads in
new directions. In any case, they may have a substantial
influence on the design of the equipment and should always
be carefully considered. Heave compensation is a key factor
in minimizing the effect of wave induced motion. When
implemented it reduces the loads on the equipment and
increase the weather windows that the equipment may
operate in. For a heave compensated manipulator, the
task can be to minimize the velocity of the tool point in
reference to an earth fixed coordinate system. Often the
tool point can be a hook that a hanging load is attached
to, or it can be a gripper tool for transporting objects.

Tool point control for a non-redundant manipulator is
done via the inverse kinematics. This yields either refer-
ence position or reference velocities for the actuated joints
depending on the specific task. Inverse kinematic control
for hydraulic/electric manipulators can be done by work
from Cinkelj et al. (2010) and Kucuk and Bingul (2004).

Approaches for solving the joint position for a given tool
point position for a redundant manipulator is proposed in
Beiner and Mattila (1999) and Park et al. (2001). As an
advantage the redundancy also gives the opportunities to
optimize properties for the manipulator by controlling the
null space motion of the manipulator. Work has been done

to find optimization functions that can increase perfor-
mance by controlling the null space motion. An approach
by Han and Chung (2007) minimizes the restoring mo-
ments.

The main contribution in this paper is the experimental
verification of the well known pseudo-inverse Jacobian
toolpoint control, including the null-space motion control
for avoiding joint saturation, for a hydraulically actuated
manipulator. Experimentation was done using a Stewart
platform as a disturbance source, inducing simulated wave
motion.

Fig. 1. Experimental setup showing Stewart platform, re-
dundant hydraulic crane and laser tracker for measur-
ing the tool point location.
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2. TOOL POINT CONTROL

The redundant manipulator investigated in this paper is
a three-bar mechanism. It consists of two rotational and
one translative joint as shown in Fig. 2. Each joint is
actuated by a hydraulic cylinder connected to a servo
valve. The two rotational joint angles are measured using
quadrature encoders. The extension of the translative joint
is measured by a linear potentiometer.

2.1 Kinematics

The forward kinematics of the manipulator’s tool point
can be written in as:

x1P = L1 cos(q1) + (L2 + q3) cos(q1 − q2) (1)

x2P = L1 sin(q1) + (L2 + q3) sin(q1 − q2) (2)

Fig. 2. Kinematic structure of the redundant manipulator.

The kinematics of the redundant manipulator and their
time derivatives containing n links is written as follows.

x = f(q) (3)

ẋ = J(q)q̇ (4)

where x ∈ Rm(n > m) is the position coordinates of the
end-point with m degrees of freedom, and ẋ is the end-
point velocity which is normally prescribed in tracking and
planned path operations. The vector q ∈ Rn is the joint
position and q̇ is the joint velocity, J(q) ∈ Rm×n is the
Jacobian matrix defined as:

J =
∂f(q)

∂q
(5)

The kinematics yield the following expression for the
Jacobian entries:

J(1,1) = −L1 sin(q1)− sin(q1 − q2)(L2 + q3)

J(1,2) = sin(q1 − q2)(L2 + q3)

J(1,3) = cos(q1 − q2)

J(2,1) = L1 cos(q1) + cos(q1 − q2)(L2 + q3)

J(2,2) = − cos(q1 − q2)(L2 + q3)

J(2,3) = sin(q1 − q2)

For a non-redundant manipulator, (n = m), the relations
between the joint and tool-point velocities are found by
combining (4) and (5):

q̇ = J−1ẋ (6)

For a redundant manipulator, however, the jacobian ma-
trix is non-square and not invertible, hence the pseudo-
inverse of the Jacobian (J†) is used as in Whitney (1969).

J† = JT (JJT )−1 (7)

Equation (7) defines the pseudo-inverse Jacobian which
may replace J−1 in (6) yielding a new equation (8) which
represents the relation between the joint and tool point
velocities of the redundant manipulator.

q̇ = J†(q)ẋ (8)

Computing the joint velocities according to (8) corre-
sponds to choosing the set of joint velocities that minimizes
1
2 q̇

T q̇ while meeting the end-point velocity constraint. In
equation (9) the weighting matrix W is introduced so
that the redundancy is handled by minimizing 1

2 q̇
TWq̇.

This makes it possible to take into account the velocity
limits of each joint. The matrix W ∈ Rn×n is a positive
diagonal matrix and contains a weighting of each of the
joint velocities.

W =

[
W1 0 0
0 W2 0
0 0 W3

]
(9)

(10)

In this paper the following weighting is adopted:

Wi =
1

(vUi − vLi )2
, i = 1..3 (11)

where vUi and vLi are the upper and lower limit, respec-
tively, of the velocity of the i’th joint. A joint with a
low velocity range will therefore be less activated during
the operation. The following expression is obtained for the
weighed pseudo-inverse Jacobian:

J†W = W−1JT (JW−1JT )−1 (12)

A more general solution of (8) is presented by (13), where
the weighted Pseudo-inverse Jacobian is used, see for
example Siciliano (1990).

q̇W = J†Wẋ + (I− J†WJ)q̇0 (13)

Here I ∈ Rn×n is the identity matrix and q̇0 ∈ Rn is
an arbitrary joint velocity vector. In (13) the null space

mapping is introduced. The term (I − J†WJ)q̇0 produces
only a joint self-motion of the structure, but no task space
motion.

A widely adopted approach is to solve the null space
redundancy by optimizing the scalar cost function h(q)
using the gradient projection method, choosing q̇0 to be
the derivative of the cost function with regards to the
joints, (14).

q̇0 =
∂h

∂q
(14)

The cost function (15) was introduced by Ligeois (1977)
and used in Pedersen et al. (2010) and Chan and Dubey
(1993) before. The main goal of the cost function is to
avoid mechanical joint saturation.

h(q) =
1

3

i=3∑
i=1

(
qi − ai
ai − yUi

)2

(15)

ai =
yUi + yLi

2
(16)
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where yUi and yLi are the upper and lower limit, respec-
tively, of the joint i.

2.2 Actuators

The transformation from joint velocity to cylinder velocity
is:

v = C(q)q̇ (17)

In (17) v ∈ Rn contains the cylinder velocities and C ∈
Rn×n decribes the transformation that can be written as:

C(q) =

[
R1 cos(γ1) 0 0

0 R2 cos(γ2) 0
0 0 1

]
(18)

The angles γ1 and γ2 are functions of q1 and q2, see figure
3

Fig. 3. Kinematic structure for the actuation system.

The governing steady state equation for the hydraulic
actuated cylinder are described by (19-21).

Qi = Ai · vi (19)

Qi = QN,i · ui · sign(∆pi) ·

√
|∆pi|
∆pN,i

(20)

∆pi =

{
ps − pi, ui ≥ 0
pi, ui < 0

}
(21)

In (19-21) i = 1...3 is the circuit index. Furthermore,
Q is the volume flow and A is the piston area. The
servo valve is modeled as a sharp edge orifice based on
nominal parameters. They are the nominal volume flow
QN that is measured at a nominal pressure drop ∆pN
across the orifice with the valve fully opened. The spool
travel −1 ≤ u ≤ 1 is the controlled variable of the valve.
Based on the equations above it is possible to compute a
spool position from the cylinder velocities if the pressure
drop is known.

ui =
Ai · vi
QN,i

√
∆pN,i
|∆pi|

(22)

This equation, used as a forward coupling term shown in
figure 5, can in a more compact form be rewritten as:

u = D(p)v (23)

sp

Fig. 4. Hydraulic diagram of the manipulator.

2.3 Controller Structure

The motion control for the redundant manipulator is based
on the pseudo-inverse Jacobian and the null-space vector.
The controller generates a joint velocity reference that is
given to the actuator controller shown in figure 5 and in
figure 6 as H(q). There is one actuator controller for each
joint, and it uses the joint velocity reference to generate a
current signal to the servo valve. The controller is based
on a forward coupling that uses equation (22) and a
proportional-integral gain to correct any error left from
the forward coupling.

In figure 5 the term D(p) is the forward coupling term, PI
represent the proportional-integral controller and C(q) is
the feedback term.

qref PI

D(p)

C(q)

C(q)

Servo
Valvevref

v

uref u

q

Fig. 5. Actuator Controller Structure.

The tool-point controller for the redundant manipulator,
in figure 6 shows the complete structure from the tool
position and velocity set-points to the manipulator. The
fixed constants Kp and Kd are gains for minimizing the

error in both position and velocity. The matrix J†W(q) is
the weighted pseudo inverse term in the first part of (13),
while N(q) represents the Null Space Control, and is the

(I− JJ†W)q̇0 term of (13). H(q) is the actuator regulator
and is described in figure 5. J(q) is the equation in (4) and
F(q) is the forward kinematic (3)

1
s

x

x

Kp

Kd

N(q)

J	(q)
w

† H(q) Plant

F(q)
J(q)

qq
u

qref
ref

ref

Fig. 6. Manipulator control structure.
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3. IMPLEMENTATION

The proposed control strategy was implemented both in
a simulation model as well as a physical model. The
simulation model was experimentally calibrated and, in
turn, used to develop and evaluate details in the control
strategy.

3.1 Wave Disturbance

In order to test the control strategy the manipulator
was arranged in series with a 6-dof Stewart platform
that was programmed to emulate wave induced vessel
motion. The wave disturbance represented by a Modified
Pierson-Moskovitz spectrum is used in both simulations
and experiments. It is written as:

Sζζ(ω) =
A

ω5
e

−B

ω4 (24)

A =
172.53H2

1/3

T
4 (25)

B =
689.97

T
4 (26)

where H1/3 is the significant wave height and T is the av-
erage wave period. Simulation of the sea surface elevation
is described in work by Perez (2005) and defined by:

ζ(t) =

N∑
n=1

√
2Sζζ · ω∗n ·∆ω · cos(ω∗nt+ ε) (27)

ω∗n = wn ∈ [ωn −
∆ω

2
, ωn +

∆ω

2
] (28)

where N is the number of wave frequencies, ωn is chosen
by fixed steps of ∆ω that is the step between the two
frequencies (ω(n+1) − ωn), ω∗n is the n-th frequency and is
chosen randomly in its domain defined in (28), t is time
and ε is the phase.
Using (27), a time series of the sea surface elevation or
heave motion is created. It is shown in figure 7. Since
the wave amplitude of the time series is greater than the
capability range for heave motion of the Stewart platform
and hydraulic manipulator, it has to be downscaled. To
introduce an additional disturbance, a pitch motion time
series was generated by scaling the time derivative of the
wave elevation, thereby emulating the tangent of the wave.

The time domain simulation of the redundant manip-
ulator is done using the commercial modeling software
SimulationX R©and MATLAB/Simulink R©, where the latter
is used for the weighted pseudo-inverse control.

3.2 Experimental Setup

The experimental setup contains the redundant hydraulic
manipulator and a Stewart platform. The Stewart plat-
form has a parallel kinematic structure that consists of
two platforms connected by six actuated legs. One of the
platforms are fixed to the ground, while the other platform
has the ability to move in six-degrees of freedom. As a
closed mechanical chain the Stewart platform can manip-
ulate payload with markedly higher mass than itself in a
fast and precise manner. These abilities makes the Stewart
platform ideal for evaluation and testing the redundant hy-
draulic manipulator. The goal of the experiments are both
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Fig. 7. Wave motion pattern in hb(t)(m) and ϕb(t) (deg).

to verify the controller and to get experimental results
that can be used for model calibration. The experimental
result will contain measurements of the control signals,
joint position and oil pressures for each hydraulic cylinder.
The physical dimentions for the hydraulic manipulator is
listed in the following table:

Link Length Joint Limit
L1 0.93 [m] yU1 2.7 [rad] yU3 0.2 [m]
L2 0.88 [m] yL1 1.1 [rad] yL3 0 [m]
R1 0.28 [m] yU2 2.2 [rad]
R2 0.10 [m] yL2 0.98 [rad]

The experiment are done by putting the redundant ma-
nipulator on top of the Stewart platform, see figure 8. The
platform will then move in reference to the time series of
both heave and pitch. The distance hb(t) and the angle
ϕb(t) is the heave and pitch motion respectively.

The absolute coordinates of the tool point is measured by
means of a FARO laser tracker that is capable of measuring
position in three-dimensional space with an accuracy of
0.049mm.

There exist a wide variety of tool point control tasks
related to heave compensation. In the experiments pre-
sented in this paper emphasis is on global fixation, i.e.,
maintaining the tool point fixed in the fixed coordinate
system x(0), see figure 8.

xref = Ax
(0)
PA (29)

ẋref = ϕ̇bBx
(0)
PA + Aẋ

(0)
PA (30)

where the transformation matrices are given as:

A =

[
cos(ϕb) sin(ϕb)

− sin(ϕb) cos(ϕb)

]
B =

∂A

∂ϕb
=

[
cos(ϕb) sin(ϕb)

− sin(ϕb) cos(ϕb)

]
(31)

and the global coordinates:

Copyright held by the International Federation of
Automatic Control

302



Fig. 8. Experimental setup with the redundant manipulator
and the Stewart platform.

x
(0)
PA = x

(0)
P − x

(0)
A = x

(0)
P −

[
−e cos(ϕb)

hb − e sin(ϕb)

]
(32)

ẋ
(0)
PA = −̇x(0)

A = −

[
−e sin(ϕb)ϕ̇b

ḣb − e cos(ϕb)ϕ̇b

]
(33)

In the experiments the values for hb(t), ˙hb(t), ϕb(t) and
˙ϕb(t) are derived from the sensor output of the Stewart

platform, i.e., in the same way that a motion reference
unit on a vessel would provide the base motion.

In figure 9 and 10 simulated and measured state variables
are compared. The accordance is considered satisfactory
and easily supports the use of the simulation model to
investigate and evaluate control schemes in general. In
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Fig. 9. Compared result of oil pressures from model and
experimental result.

figure 11 the compensation errors are shown. The result
is quite satisfactory and further improvement is propable
obtainable by taking into account the combined flexibility
of the hydraulic-mechanical manipulator. Also, the null-
space control ensures that the actuators move away from
end stops and possible saturation, see figure 10.
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Fig. 10. Compared result of joint positions from model and
experimental result. Horizontal dotted lines represents
the mechanical joint saturations
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Fig. 11. Experimental results showing compensation errors
in X and Y directions (m).

4. DISCUSSION AND CONCLUSIONS

In the current work a heave compensation scheme has
been developed and implemented both theoretically and
practically for a 3-dof redundant hydraulically actuated
manipulator. The experimental work has been carried out
under dry conditions using a Stewart platform to generate
the wave disturbances. The tool-point control scheme has
been proved to work satisfactory utilizing a model based
feed-forward term that takes into account the nonlinearity
of the control valves while avoiding position saturation
of the cylinder actuators. Also, it has been possible to
obtain a good correlation between measured and simulated
data leading to an experimentally calibrated time-domain
simulation model that has been used for tuning of the
controller parameters.
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