
Enhancing History-based Move Ordering in

Game Playing Using Adaptive Data Structures

Spencer Polk and B. John Oommen

School of Computer Science, Carleton University, Ottawa, Canada
andrewpolk@cmail.carleton.ca, oommen@scs.carleton.ca⋆⋆

Abstract. This paper pioneers the avenue of enhancing a well-known
paradigm in game playing, namely the use of History-based heuristics,
with a totally-unrelated area of computer science, the field of Adaptive
Data Structures (ADSs). It is a well-known fact that highly-regarded
game playing strategies, such as alpha-beta search, benefit strongly from
proper move ordering. From this perspective, the History heuristic is,
probably, one of the most acclaimed move ordering techniques, that could
enhance an alpha-beta search. Recently, the authors of this present paper
have shown that techniques derived from the field of ADSs, which are
concerned with query optimization in a data structure, can be applied to
move ordering in multi-player games. This was accomplished by ranking
opponent threat levels. The work presented in this paper seeks to ex-
tend the utility of ADS-based techniques to two-player and multi-player
games, through the development of a new move ordering strategy that
incorporates the historical advantages of the moves. The resultant tech-
nique, the History-ADS heuristic, has been found to produce substantial
(i.e, even up to 70%) savings in a variety of two-player and multi-player
games, at varying ply depths, and at both initial and midgame board
states. As far as we know, results of this nature have not been reported
in the literature before.

1 Introduction

The problem of intelligently playing a game against a human player using AI
techniques has been studied extensively, leading to many well-known techniques,
such as the alpha-beta search scheme, capable of achieving excellent performance
in a wide variety of games [1]. The performance of alpha-beta search can be
further improved by proper move ordering, which can lead to more efficient tree
pruning, and thus permit deeper search or a farther look-ahead in the game [2,
3]. Specifically, the best pruning is obtained when the best move is searched
first, thus leading to a wide range of move ordering heuristics, such as the Killer
Moves and the History heuristic, that seek to obtain this arrangement in an
environment where perfect information is naturally unavailable [3, 4].

⋆⋆ Chancellor’s Professor ; Fellow: IEEE and Fellow: IAPR. The second author is also
an Adjunct Professor with the Dept. of ICT, University of Agder, Grimstad, Norway.



2

Originally unrelated to game playing, the field of ADSs deals with the dy-
namic optimization of a data structure based on the object access frequencies
[5, 6]. ADSs attempt to solve the problem of the uneven accesses of objects by
reorganizing them in response to queries. The field provides a wide range of
methods to accomplish this, such as the Move-to-Front and Transposition rules
for adaptive lists [7]. As the objective is to improve the performance of the data
structure, these operations, by necessity, must be inexpensive to implement [7].

Previously, the authors of this present paper, demonstrated that techniques
derived from ADSs had applications in game playing, particularly within the
context of move ordering, leading to the development of the Threat-ADS heuris-
tic [8] for multi-player games. The Threat-ADS heuristic operates within the
context of the Best-Reply Search (BRS) for multi-player games, where oppo-
nents’ moves are grouped together to form a “super-opponent”, who minimizes
the perspective player’s gains [9]. The Threat-ADS places the opponents within
an adaptive list, and groups opponent moves based on the list, achieving sta-
tistically significant improvements in terms of tree pruning in a wide variety of
cases [8, 10]. Based on the success of the Threat-ADS, our submission is that it
is worthwhile to investigate if ADSs can achieve improvements to move ordering
using a metric other than opponent threats. This is the focus of this work.

The rest of the paper is laid out as follows. Section 2 describes, in more detail,
the motivation for this research endeavour. Section 3 details the History-ADS,
our new technique described in this work. Section 4 describes the experiments we
have performed to demonstrate the History-ADS’ capabilities. Section 5 presents
the results from the experiments we have conducted, and Section 6 contains
the discussion and analysis of the results we have obtained. Finally, Section 7
concludes the paper.

2 Motivation

The well-known and historically successful Killer Moves and History heuristics,
among others, make use of the concept of move history to achieve move ordering
[3]. Specifically, they are based on the hypothesis that if a move produced a cut
earlier in the search of the game tree, it is likely to be a strong move if it is
encountered again, and it should thus be searched first. The proven performance
of these techniques shows that this hypothesis is valid, and we thus know that
move history is a metric by which move ordering can be achieved.

The previous success of the Threat-ADS heuristic demonstrates that ADS-
based techniques can provide tangible benefits, in terms of move ordering, within
game tree searches. Given that it can achieve this using opponent threats, and
move history is known to be a worthwhile metric for move ordering, it is rea-
sonable to believe that ADSs can use move history as well as opponent threats.
This can intuitively be achieved by having an ADS hold moves, rather than op-
ponents, and update its structure when a move produces a cut, thereby keeping
moves that frequently produce cuts near the head of the data structure.

An ADS-based technique using move history would provide a number of
benefits including:



3

– Provide an inexpensive move-ordering strategy for a wide variety of games;
– Demonstrate another metric, aside from opponent threats, that ADSs can
employ to achieve move ordering;

– Be applicable to two-player games, along with multi-player games, unlike
the Threat-ADS heuristic;

– Potentially achieve greater savings in terms of tree pruning, compared to
the Threat-ADS, given that many more possible moves exist in a game than
opponents, in all but the most trivial of cases.

The development of a heuristic that accomplishes this, which we have named
the History-ADS heuristic, is described in the next section.

3 The History-ADS Heuristic

3.1 Developing the History-ADS Heuristic

The development of the History-ADS heuristic is achieved by explaining the
analogous operations of the Threat-ADS heuristic [8]. First of all, we must un-
derstand how to update the ADS at an appropriate time, i.e., through querying
it with the identity of a move that has led to a cut. The identity of such a move
will vary depending on the game, however it would normally be represented in
the same way as it is in the context of the Killer Moves or the History heuristics.
When the ADS is queried with a move, the move is repositioned according to its
update mechanism, or added to the data structure if it is not already present.
This is analogous to querying the ADS with the most threatening opponent
within the context of the Threat-ADS. Then, at each Max and Min node, we
must somehow order the moves based on its order within the ADS.

Fortunately, within the perspective of alpha-beta search, there is a very intu-
itive location to query the ADS, which is where an alpha or a beta cutoff occurs,
before terminating that branch of the search. To actually accomplish the move
ordering, when we expand a node and gather the available moves, we explore
them in the order proposed by the ADS, as alluded to before.

The last issue that must be considered is that a move that produces a cut on
a Max node may not be likely to produce a cut on a Min node, and vice versa.
This would occur, for example, if the perspective player and the opponent do not
have analogous moves, such as in Chess or Checkers, or if they are some distance
from each other. We thus employ two list-based ADSs within the History-ADS
heuristic, one of which is used on Max nodes, while the other is used on Min
nodes. This parallels how the History heuristic maintains separate values for
each player [3].

To clarify matters, a simple example of how the History-ADS updates its
data structures and applies that knowledge to achieve move ordering is provided
in Figure 1. The formal execution of the enhanced alpha-beta search is pro-
vided in Algorithm 1.1. The reader must observe that the enhanced algorithm
merely adds a couple of extra lines of pseudo-code to the original alpha-beta
search scheme. The efficiency of this inclusion and the marginal additional time
footprint encountered, is clear.



4

Fig. 1. A demonstration of how an ADS can be used to manage move history over
time. The move (7,8) to (8,8) produces a cut, and so it is moved to the head of the
list, and informs the search later.

Algorithm 1.1 Mini-Max with History-ADS

Function BRS(node, depth, player)

1: if node is terminal or depth ≤ 0 then
2: return heuristic value of node
3: else
4: if node is max then
5: for all child of node in order of MaxADS do
6: α = max(α,minimax(child, depth− 1)
7: if β ≤ α then
8: break (Beta cutoff)
9: query MaxADS with cutoff move
10: end if
11: end for
12: return α

13: else
14: for all child of node in order of MinADS do
15: β = min(α,minimax(child, depth− 1)
16: if β ≤ α then
17: break (Alpha cutoff)
18: query MinADS with cutoff move
19: end if
20: end for
21: return β

22: end if
23: end if

End Function Mini-Max with History-ADS



5

3.2 Features of the History-ADS Heuristic

As the reader will observe, the History-ADS heuristic is very similar, in terms of
its design, construction and implementation, to the Threat-ADS heuristic. Like
the Threat-ADS heuristic, it does not in any way alter the final value of the tree,
a trait common to many schemes that enhance tree pruning. As in the case of
the Threat-ADS, the ADSs are added to the algorithm’s memory footprint, and
their update mechanisms must be considered with regard to its running time.

Compared to the Threat-ADS, the History-ADS can be expected to employ
a much larger data structure, as there will be many more possible moves than
total opponents in any non-trivial game. One must further observe that, within
its ADSs, the History-ADS remembers any move that produces a cut, for the
entire search, even if it never produces a cut again and lingers near the end of
the list. However, as duplicate moves are never added to the list, the maximum
possible length is equal to the number of viable moves, and thus the History-
ADS heuristic’s memory requirements are bound by those of the highly-regarded
History heuristic. Furthermore, as it only maintains memory on moves that have,
indeed, produced a cut, it is very likely that the size of the data structures will
be far less than the number of possible moves.

However, unlike the History heuristic, which requires moves to be sorted
based on the values in its arrays, the History-ADS shares the advantageous
quality of the Threat-ADS in that it does not require sorting. One can simply
explore moves, if applicable, in the order specified by the ADS, thus allowing
it to share the strengths of the Killer Moves heuristic, while simultaneously
maintaining information on all those moves that have produced a cut.

Lastly, unlike the Threat-ADS, which was specific to the BRS, the History-
ADS works within the context of the two-player Mini-Max algorithm. However,
since the BRS views a multi-player game as a two-player game by virtue of it
treating the opponents collectively as a single grouped entity, the History-ADS
heuristic is also applicable to it, and it thus functions in both two-player and
multi-player contexts. We will thus be investigating its performance in both these
avenues in the following sections.

4 Experimental Model

Given the similarities between the two techniques (i.e., the History-ADS and the
Threat-ADS heuristic), we consider it useful to employ a similar set of experi-
ments in analyzing their performances. This will permit a fair comparison of the
schemes on a level playing field. We are interested in learning the improvement
gained from using the History-ADS heuristic, when compared to a search that
does not employ it. We accomplish this by taking an aggregate of the Node
Count (NC) over several turns. The NC measure is defined as the number of
nodes that are expanded during the search, i.e. excluding those generated but
then pruned before being visited. Historically, this metric has been shown to be
highly correlated to runtime, while also being platform-agnostic [3]. For a vari-



6

ety of games, we average this value over fifty trials, with different ADS update
mechanisms, and varying game states.

As in our previous work, we will employ the Virus Game, Focus, and Chinese
Checkers when considering the multi-player case. Focus and Chinese Checkers are
both well-known multi-player games, and the Virus Game is a territory control
game described in detail in [8]. However, since the History-ADS is applicable to
two-player games as well, we require an expanded set of games to handle these.
We have opted to use the two-player version of Focus, Othello, and the very well-
known Checkers, or Draughts. However, the requirement in Checkers that forces
jumps when possible, often leads to a game with a very small branching factor.
This factor can vary greatly especially in different midgame states. Thus, for our
experiments, we choose to relax this rule, and do not require that a player must
necessarily make an available jump. We shall refer to this game as “Relaxed
Checkers”. While Checkers has been solved, it still serves as a useful testing
environment for the general applicability of a domain-independent strategy, given
how well-known and documented the game is in the literature [11].

In testing the Threat-ADS heuristic, we had varied the update mechanism
used, the ply depth of the search, and most recently, the starting position of the
game, to test its performance in midgame states [12]. We have elected to perform
a subset of these experiments, using the History-ADS heuristic, to provide as
much information about its performance as possible. Specifically, we compare
the Move-to-Front and Transposition update mechanisms, perform trials at both
initial and midgame board states, and vary the depth of the search between
games. Trials with Othello, Relaxed Checkers, and the Virus Game are done to
a 6-ply depth, and trials with Chinese Checkers, and both variants of Focus to
a 4-ply depth. Midgame states were generated by playing games a set number
of turns using intelligent players, then taking measurements from this position.
The details of how midgame states are generated is described in detail in [12].

The number of turns we aggregate the NC over is five for Relaxed Checkers,
Othello, and Chinese Checkers, three for Focus, and ten for the Virus Game.
To determine statistical significance, we employ the Mann-Whitney test, as we
do not make the assumption of normalcy. We also provide the Effect Sizes – an
easily-readable indication of the degree of savings given by the History-ADS.

Our results are presented in the next section.

5 Results

Our results are presented in the following subsections, first for two-player games,
and after that, for multi-player games. In every case, the highest percentage
advantage gleaned by the History-ADS heuristic is highlighted in bold face.

5.1 Results for Two-Player Games

Table 1 presents our results for the game of Othello. The History-ADS produced
noticeable gains in terms of NC in all cases, in both initial and midgame states,
and the Move-to-Front rule outperformed the Transposition rule.



7

Table 1. Results of applying the History-ADS heuristic for Othello.

Midgame? Update Mechanism Avg. NC Std. Dev P-Value Effect Size

No None 5,061 2,385 - -

No Move-to-Front 3,827 (24%) 1,692 6.0 × 10−3 0.51

No Transposition 4,057 2,096 0.015 0.42

Yes None 20,100 9,899 - -

Yes Move-to-Front 14,500 (28%) 6,303 1.2 × 10−3 0.59

Yes Transposition 15,200 6,751 0.014 0.45

Consider Table 2, where we showcase our results for Relaxed Checkers. Again,
we observed a very large reduction in NC, and again, the Move-to-Front achieved
better performance than the Transposition rule.

Table 2. Results of applying the History-ADS heuristic for Relaxed Checkers.

Midgame? Update Mechanism Avg. NC Std. Dev P-Value Effect Size

No None 78,600 10,600 - -

No Move-to-Front 40,800 (48%) 5,619 < 1.0× 10−5 3.58

No Transposition 48,600 6,553 < 1.0× 10−5 2.84

Yes None 64,000 25,700 - -

Yes Move-to-Front 36,100 (44%) 12,700 < 1.0× 10−5 44%

Yes Transposition 43,600 16,600 < 1.0× 10−5 0.79

Table 3 shows our results for two-player Focus, where we again see the same
pattern observed in the previous cases, although with an even larger reduction
in NC, for reasons that will be discussed below.

5.2 Results for Multi-Player Games

Table 4 holds our results for the Virus Game. As we have witnessed in the two-
player case, the History-ADS obtained substantial gains in pruning, and the
Move-to-Front rule outperformed the Transposition rule marginally.

Table 5 presents our results for Chinese Checkers. We saw the same pattern
emerge as before, with a very large reduction in NC, and the Move-to-Front rule
again achieved better performance than the Transposition rule.



8

Table 3. Results of applying the History-ADS heuristic for two-player Focus.

Midgame? Update Mechanism Avg. NC Std. Dev P-Value Effect Size

No None 5,250,000 10,600 - -

No Move-to-Front 1,290,000 (75%) 88,000 < 1.0× 10−5 10.39

No Transposition 1,800,000 158,000 < 1.0× 10−5 9.07

Yes None 10,600,000 - -

Yes Move-to-Front 2,420,000 (77%) 637,000 < 1.0× 10−5 2.37

Yes Transposition 2,910,000 760,000 < 1.0× 10−5 2.22

Table 4. Results of applying the History-ADS heuristic for the Virus Game.

Midgame? Update Mechanism Avg. NC Std. Dev P-Value Effect Size

No None 10,500,000 1,260,000 - -

No Move-to-Front 4,690,000 (55%) 1,010,000 < 1.0× 10−5 4.57

No Transposition 4,850,000 739,000 < 1.0× 10−5 4.45

Yes None 12,800,000 1,950,000 - -

Yes Move-to-Front 5,940,000 (54%) 832,000 < 1.0× 10−5 3.51

Yes Transposition 6,060,000 974,000 < 1.0× 10−5 3.45

Table 5. Results of applying the History-ADS heuristic for Chinese Checkers.

Midgame? Update Mechanism Avg. NC Std. Dev P-Value Effect Size

No None 3,370,000 1,100,000 - -

No Move-to-Front 1,250,000 (63%) 316,000 < 1.0× 10−5 1.92

No Transposition 1,320,000 338,000 < 1.0× 10−5 1.87

Yes None 8,260,000 - -

Yes Move-to-Front 3,400,000 (59%) 899,000 < 1.0× 10−5 1.84

Yes Transposition 3,650,000 920,000 < 1.0× 10−5 1.74



9

Finally, Table 6 has our results for multi-player Focus. The same pattern,
seen in all the other cases, is observed yet again.

Table 6. Results of applying the History-ADS heuristic for multi-player Focus.

Midgame? Update Mechanism Avg. NC Std. Dev P-Value Effect Size

No None 6,970,000 981,000 - -

No Move-to-Front 2,180,000 (69%) 184,000 < 1.0× 10−5 4.88

No Transposition 2,740,000 271,000 < 1.0× 10−5 4.32

Yes None 14,200,000 8,400,000 - -

Yes Move-to-Front 3,240,000 (77%) 1,730,000 < 1.0× 10−5 1.30

Yes Transposition 3,570,000 1,860,000 < 1.0× 10−5 1.26

6 Discussion

Our results strongly reinforce the hypothesis that an ADS managing the move
history, employed by the History-ADS heuristic, can achieve improvements in
tree pruning through better move ordering, in both two-player and multi-player
games. This confirms that such an ADS does, indeed, correctly prioritize the
most effective moves, based on their previous performance elsewhere in the tree,
as initially hypothesized.

Our results confirm that the History-ADS heuristic is able to achieve a sta-
tistically significant reduction in NC in the three two-player games, Othello,
Relaxed Checkers, and the two-player variant of Focus, as well as three multi-
player games, the Virus Game, Chinese Checkers, and the multi-player variant
of Focus. We observed a drastic variation in the reduction between cases, i.e.,
from 24% to a value as high as 77%, depending on the game. Despite this wide
range, these savings are very high, substantially exceeding those obtained by
the Threat-ADS heuristic [8]. Savings remain high in both initial and midgame
board positions, demonstrating that the History-ADS heuristic can perform well
over the course of a game.

Our second observation is that the Move-to-Front rule outperformed the
Transposition rule in all cases. This is a reasonable outcome, as the adaptive list
may contain dozens to hundreds of elements, and it would take quite a bit of
time for the Transposition rule to migrate a particularly strong move to the head
of the list. As opposed to this, the Move-to-Front would migrate the move to
the front quickly, and would likely keep it there. This phenomenon also confirms
that the order of elements within the list matters to the move ordering. In other



10

words, merely maintaining an unsorted collection of moves that have produced
a cut will not perform as well as employing an adaptive list, further supporting
the use of the History-ADS heuristic.

When considering the wide range of savings between the various games, we
observe that in general, the larger the overall game tree, the greater are the
proportional savings. There are a number of possible reasons why this is the
case. Firstly, we note that the History-ADS retains information on all moves
that produce a cut, and in a larger tree, it is likely that there will be more moves
of this nature. Thus, the History-ADS has, available to it, more information to
work with. Secondly, in games with a very large branching factor, such as Focus
or Chinese Checkers, many of the available moves tend to not be very good,
and the prioritization of a small number of strong moves can thus prune huge
“chunks” of the search space. Lastly, in the case of deeper trees, the History-
ADS has more opportunities to apply its knowledge of strong moves gleaned from
other levels of the tree, similar to the reasoning behind the History heuristic.

As expected, the History-ADS heuristic achieved noticeably greater savings
compared to the Threat-ADS heuristic, which obtained between a 5% and 20%
reduction in tree size, with most advantages being around 10% [8, 10]. This is
not particularly surprising, however, as there are many more possible moves
than opponents, and so the History-ADS achieves that improved saving with a
larger adaptive list. That the Threat-ADS can, in some cases achieve half of the
History-ADS’ savings with a list of size 3-4 is, in and of itself, impressive. Thus,
it remains a viable option when the more complex History-ADS is not necessary,
perhaps due to other move ordering strategies being employed.

7 Conclusions and Future Work

Our work presented in this paper introduces the History-ADS heuristic, a pow-
erful move ordering technique, which employs an ADS to rank moves based on
their historical performance within the search. The development of the History-
ADS builds upon our previous work applying ADSs to move ordering, specifically
the Threat-ADS heuristic. Compared to it, the History-ADS is able to achieve
substantially greater savings in terms of tree pruning in a wide variety of cases,
and serves to extend the applicability of ADS-based techniques to the scope
of two-player games. Given the domain-independent nature of the History-ADS
heuristic and its excellent performance in those games tested in this work, we
hypothesize that it will perform well in a very wide variety of two-player and
multi-player games beyond those explored here.

The History-ADS heuristic represents our initial attempt to extend ADS-
based techniques to two-player games, and employ the powerful move history
metric. As this is a first attempt, the intuitive idea of storing all moves that
produce a cut within a single adaptive list was employed. However, it may be
that only a subset of these stored moves are particularly important, and limiting
the length of the ADS may preserve the majority of its performance, while
using much less memory and time to traverse the list. Furthermore, applying



11

the knowledge of the cuts obtained from all levels of the tree, equally suffers
from the issue of disproportionately favouring those moves that are strong near
the leaf nodes. Thus another avenue of research is to explore more complex ADSs
that mitigate this issue. Alternatively, it is possible that maintaining separate
ADSs for different levels of the tree can mitigate this as well. Both of these
concepts are the subjects of current and ongoing research.

References

1. S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, pp. 161–
201. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 3rd ed., 2009.

2. D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,” Artificial
Intelligence, vol. 6, pp. 293–326, 1975.

3. J. Schaeffer, “The history heuristic and alpha-beta search enhancements in prac-
tice,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11,
pp. 1203–1212, 1989.

4. A. Reinefeld and T. A. Marsland, “Enhanced iterative-deepening search,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 16, pp. 701–710,
1994.

5. G. H. Gonnet, J. I. Munro, and H. Suwanda, “Towards self-organizing linear
search,” in Proceedings of FOCS’79, the 1979 Annual Symposium on Foundations
of Computer Science, pp. 169–171, 1979.

6. J. H. Hester and D. S. Hirschberg, “Self-organizing linear search,” ACM Computing
Surveys, vol. 17, pp. 285–311, 1985.

7. S. Albers and J. Westbrook, “Self-organizing data structures,” in Online Algo-
rithms, pp. 13–51, 1998.

8. S. Polk and B. J. Oommen, “On applying adaptive data structures to multi-player
game playing,” in Proceedings of AI’2013, the Thirty-Third SGAI Conference on
Artificial Intelligence, pp. 125–138, 2013.

9. M. P. D. Schadd and M. H. M. Winands, “Best Reply Search for multiplayer
games,” IEEE Transactions on Computational Intelligence and AI in Games,
vol. 3, pp. 57–66, 2011.

10. S. Polk and B. J. Oommen, “On enhancing recent multi-player game playing strate-
gies using a spectrum of adaptive data structures,” in In Proceedings of TAAI’2013,
the 2013 Conference on Technologies and Applications of Artificial Intelligence,
2013.

11. J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, M. Muller, R. Lake, P. Lu,
and S. Sutphen, “Checkers is solved,” Science, vol. 14, pp. 1518–1522, 2007.

12. S. Polk and B. J. Oommen, “Novel AI strategies for multi-player games at inter-
mediate board states,” in Proceedings of IEA/AIE’2015, the Twenty-Eighth Inter-
national Conference on Industrial, Engineering, and Other Applications of Applied
Intelligent Systems, pp. 33–42, 2015.


