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Abstract

Learning Automata (LA) can be reckoned to be the foundingritigms on which the field of Rein-
forcement Learning has been built. Among the families of EAtimator Algorithms (EAS) are certainly
the fastest, and of these, the familydi$cretizedalgorithms are proven to converge even faster than their
continuouscounterparts. However, it has recently been reported legbtevious proofs fag-optimality
for all the reported algorithmi®r the past three decadésve been flawed We applaud the researchers
who discovered this flaw, and who further proceeded to sethié proof for the Continuous Pursuit Al-
gorithm (CPA). The latter proof examines the monotonicitypgerty of the probability of selecting the
optimal action, and requires the learning parameter to béraoously changing. In this paper, we pro-
vide a new method to prove tlgeoptimality of the Discretized Pursuit Algorithm (DPA) wdh does not
require this constraint, by virtue of the fact that the DPA lia and of itself, absorbing barriers to which
the LA can jump in a discretized manner. Unlike the proof gif@ for an absorbing version of the CPA,
which utilizes the single-action Hoeffding’s inequalitige current proof invokes, what we shall refer to,
as the “multi-action” version of the Hoeffding's inequglitVe believe that our proof is both unique and
pioneering. It can also form the basis for formally showingg-optimality of the other EAs that possess
absorbing states.
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1 Introduction

Learning automata (LA) have been studied as a typical mddelmforcement learning for decades. An LA
is an adaptive decision-making unit that learns the optamtibn from among a set of actions offered by the
Environment it operates in. At each iteration, the LA sedemte action, which triggers eithersébchastic
reward or a penalty as a response from the Environment. Bastte response and the knowledge acquired
in the past iterations, the LA adjusts its action selectimatsgy in order to make a “wiser” decision in the
next iteration. In such a way, the LA, even though it lacks mplete knowledge about the Environment, is
able to learn through repeated interactions with the Envivent, and adapts itself to the optimal decision.

Initial LA were designed to be Fixed Structure Stochastitofmata (FSSA), whose state update and de-
cision functions are time invariant. Later, Variable Stare Stochastic Automata (VSSA) were developed,
which are characterized by functions that update the pittyabf selecting the various actions. Repre-
sentatives of VSSA include the Linear Reward-Pendliy f) scheme, the Linear Reward-Inactidmk(,)
scheme, the Linear Inaction-Penalty (p) scheme and the Linear RewagBenalty [r_¢p) SCheme [4]. As
one observes, ther_| andLr_p Schemes assign more importance to reward responses thanalttigs;
they are als@-optimal in all stationary environments.

According to their Markovian representation, automathifab two categories: Ergodic automata and
automata possessing absorbing barriers. The latter atdagetlocked into a barrier state — sometimes af-
ter even dinite number of iterations. Many families of automata that posgesorbing barriers have been
reported [4, 5]. Ergodic automata have also been investigiat [4, 5]. These ergodic automata converge
in distribution and thus, the asymptotic distribution o tction probability vector has a value that is inde-
pendent of the corresponding initial vector. While ergddécare suitable for non-stationary environments,
absorbing automata are preferred in stationary envirotenen fact, ergodic automata are known to better
adapt to non-stationary environments where the rewardgibties are time dependent.

Among the families of LA, Estimator Algorithms (EAs) work tluia noticeably different paradigm.
During each learning cycle, these algorithms incorporatestimation phase, in which they estimate the
reward probability of each action. This renders the leaymprocess to be more goal-directed, leading to
a much faster convergence and to more accurate learnintisré8u[7] [8] [9] when compared to non-
estimator algorithms. Within the family of EAs, the setRiirsuit Algorithms (PAs) were the pioneering
schemes, whose design and analysis were initiated by Tdiethand Sastry [6]. EAs augment an action
probability updating scheme with the use of estimates glpi, Maximum Likelihood (ML)) of the actions’
reward probabilities. In each iteration, the PA determitiescurrent “Best” action based on the estimates
of the reward probabilities, and then pursties “Best” action by linearly increasingts action probability.
Families of Pursuit and Estimator-based LA have been shovine tfaster than VSSA, and the Continuous
Pursuit Algorithm (CPA) was the pioneering member of theas.E

Moving now to a disjoint vein, with respect to the values ttfa action probabilities can take, the



families of LA typically fall into one of the two categoriesamely, Continuous or Discretized. Continuous
LA permit the action probabilities to take any value in thieimal [0, 1]. In practice, the relatively slow rate
of convergence of these algorithms constituted a limitictdr in their applicability. In order to increase
their speed of convergence, the concept of discretizingtbleability space was introduced in [10-12]. This
concept is implemented by restricting the probability obasing an action to be one of a finite number of
values in the interval0, 1]. If the values allowed are equally spaced in this interved, discretization is said
to belinear, otherwise, the discretization is calladn-linear. Following the discretization concept, many of
the continuous VSSA have been discretized; indeed, disetkversions of almost all continuous automata
have been reported [10, 13, 14].

Historically, Oommen and Lanctot [10] presented the Digzee Pursuit Algorithm (DPA) by discretiz-
ing the action probability space. The DPA was shown to bersupm® its continuous counterpart. In order
to highlight the distinct characteristics of the DPA withihe family of PAs, the continuous version is re-
ferred to as the CPAWe briefly mention that discretized versions of all the régd EA schemes have been
devised [9, 13, 14].

LA have found applications in a variety of fields, includingnge playing [15], parameter optimiza-
tion [16], solving knapsack-like problems and utilizingetlolution in web polling and sampling [17]. LA
have also been used in vehicle path control [18], assigrapaggities in prioritized networks [19], resource
allocation [20], string taxonomy [21], graph partitionifig?2], and map learning [23]. To exemplify the
importance of the DPA, it is worth mentioning an applicatiwhere one of its variants has been applied.
Consider the research field of Cognitive Radio Networks (SR which the so-called Secondary Users
(SUs) attempt to use the channels that are allocated butvainicnot, at any given time instant, being occu-
pied by the Primary Users (PUs). By virtue of the stochastaperty of the PUs, it is meaningful that the
SUs attempt to determine the “best” channel, i.e., the orielwik being least used by the PUs, and to select
this “best” channel for possible package transmissions precisely the scheme advocated in [24], where
the authors have used a modified version of the DPA, i.e., iBer&lized Generalized Pursuit Algorithm
(DGPA), to assist the SU to adapt itself to the “best” chanaedl to thus achieve smart stochastic channel

selection.

1.1 Problem Statement

The most difficult part in the design and analysis of LA cotssif the formal proofs of their convergence
accuracies. The mathematical techniques used for theugafamnilies (FSSA, VSSA, Discretized etc.) are
quite distinct, and the details of these proof methodobdie these various families are described exten-

sively in the literature.

2PAs have also been extended by allowing them to be of the RieRanalty paradigms [13]. We do not consider these here.



Proof Complexity for EAs: Understandably, the most difficult proofs involve the fanuf EAs. This
is because the convergence involves two intertwined phenami.e., the convergence of the reward esti-
matesandthe convergence of the action probabilities themselvesidally, thecombinationof these in the
updating rule is what renders the EA fast. However, if theueary of the estimates are poor because of inad-
eguate estimation (i.e., the sub-optimal actions are mopkad “enough number of times”), the convergence
accuracy can be diminished. Hence the dilemma!

Prior Proofs: The g-optimality of the families of PAs have been presented in [2B], [10], [11],
and [12]. The basic result stated in these papers is thatiliming a sufficiently small value for the learning
parameter (or resolution), both the CPA and the DPA will @rge to the optimal action with an arbitrarily
large probability.

Flaws in the Existing Proofs The premise for this paper is that the proofs repoftedalmost three
decadedor all these schemes have a common flaw, which involves afimgyargument. In fact, the proofs
reported in these papers “deduced” ¢heptimality based on the conclusion that after a sufficielatige time
instant,ty, the probability of selecting the optimal action is monataily increasing, which, in turn, is based
on the condition that the reward probability estimates ager@d properlforeverafterty. This ordering is,
indeed, true by the law of large numbers if all the actionscli@sen infinitely often, which, consequently,
renders the time instanty, to also be infinite. If such an “infinite” selection does ncotuor, the ordering
cannot be guaranteed fall time instants aftety. In other words, the authors of these papers misinterpreted
the concept ordering “forever” with the ordering “most oethime” afterty. As a consequence of this
misinterpretation, the condition supporting the monatityiproperty is false, which leads to an incorrect
“proof” for the CPA and DPA being-optimaF.

Discovery of the Flaw Even though this has been the accepted argument for almest decades
(even by the second author of this present paper who wasith@gad author of many of the earlier papers),
we credit the authors of [25] for discovering this flaw. Whal@etailed exegesis of this is found in [25], in
the interest of completeness, a brief explanation on thiseiss also included in this paper, in Section 3.

Rationale for this Paper. This paper aims at correcting the above-mentioned flawdaarihe earlier
proofs by providing a new proof for the convergence of the DR# opposed to previous proofs, we will
show that because the DPA possesses absorbing barriesn-taled monotonicity property, though it is
sufficient for convergence, it is not realhecessaryor proving that the DPA ig-optimal. Rather, we will
present a completely new proof methodology which is basetherronvergence theory of submartingales
and the theory of Regular functions [4]. Our proof is distiirc principle and argument from the proof
reported in [25], which while it is valid for the CPA, also réres that the learning parameter is continuously

decreasing.

3In addition, like the proofs for the asymptotic convergerite finite time analysis of both the CPA and the DPA were also
done in [2]. Unfortunately, these analyses are also flawashimuch as they are also based on the reasoning of the aboviemee
“monotonicity” assumption of the probability of selectitite optimal action.



Proofs for Absorbing Continuous Pursuit Algorithms (ACPAS): An accurate and formal proof for the
ACPA's convergence was given in [26] and [3]. This proof i$yoralid for the ACPA, and it does not require
the learning parameter to be continuously decreasing.stt ases what we shall call the “single-action”
version of the Hoeffding’s inequality [27], invoking whiane can bound how much the estimate of any
singlereward probability differs from its true value.

Salient feature of this Present Proof as opposed to the ACP# This present paper specifically invokes
the “multi-action” version of the Hoeffding’s inequalitysing which one can bound how far the estimate
of any single reward probability differs from the estimate of the rewardhability of any other action.
We believe that the latter can be utilized to formally dentiaie thec-optimality of other absorbing EAs,
including, of course, the ACPA.

2 Overview of the DPA

As mentioned earlier, in this paper, we consider only the DP#e problem of correctly analyzing the
discretized versions of the other reported EAs remains.open
We first present the notations used for the DPA:
r: The number of actions.
di: Theit" element of the reward probability vectbr
a;i: Theit" action that can be selected by the LA, and is an element frersef{ay,... 0, }.
pi: Theith element of the action probability vectdr,
ui: The number of times; has been rewarded when it has been selected.
vi: The number of times; has been selected.
di: Theith element of the reward probability estimates ve®od; = %I'
m: The index of the optimal action.
h: The index of the largest element Bf
R: The response from the Environment, whBre- O corresponds to a Reward, aRd= 1 to a Penalty.
A: The discretized step size, wheke-= % with N being a positive integer.
The DPA follows a “pursuit” paradigm of learning, which cists of three steps. Firstly, it maintains an
action probability vectoP = [ps, po, ..., pr] to determine the issue of which action is to be selected, evher

S pj =1. Secondly, it maintains running ML reward probabilityiesttes to determine which action
j=1.r

can be reckoned to be the “best” in the current iteration. sTihupdatedd (t) based on the Environment’s
response as:
Ui(t) =t — 1) + (L R(t))
Vi) =vi(t—1)+1
dit) = &
Thirdly, based on the response of the Environment and theledge of the current best action, the DPA



increases the probability of selectitigjs action as per the Discretizdgy | rules. So ifcfh(t) is the largest
element inD(t), we updatep(t) as:
If R(t) =0Then
pj(t+1) =maxp;(t) —A,0}, j#h
pr(t+1)=1— 3 pjt+1).
Else -
P(t+1) =P(t).
EndIf

We now visit the proofs of the DPA's convergence.

3 Previous “Proofs” for DPA's e-optimality

The formal assertion of the-optimality of the DPA [13] is stated in Theorem 1, wherg,i$ measured in

terms of the number of iterations.

Theorem 1 Given anye > 0 andd > 0, there exist an pl> 0 and a < o such that for all time £ tg and

for any positive learning parameter N Np,
Pr{pm(t) >1—¢} >1-34.

The earlier reported proofs for tleeoptimality of the CPA and the DPA follow the same strateglyich
consists of four stefs Firstly, given a sufficiently small (large) value for theateing parametek (N), all
actions will be selected enough number of times before eefiimte instantty. Secondly, for allt > to,

dm will remain to be the maximum element of the reward probgbéistimates vectof). Thirdly, suppose
dm has been ranked as the largest elemend isincety. In that case, the action probability sequence of
{pm(t)}, witht > to, will be monotonically increasing, whence one concludes ph(t) converges to 1 with
probability 1. Finally, given that the probability af, being the largest element I is arbitrarily close

to unity, and thatpy(t) — 1 with probability (w.p.) 1.e-optimality is proven based on the axiom of total
probability.

The formal assertions of these steps are catalogued below.

1. The first step of the proof can be described mathematibgliyheorem 2.

“We state the conditions and parameters for the CPA, whilatlaéogous counterpart conditions and parameters for ttie DP
are stated in parenthesis to avoid repetition. The readeidiobserve that we, really, did not have to mention the itimmd and
parameters for the CPA. But we have opted to show it becaegertiof given in [25], which demonstrated the flaw, is basethen
CPA, and we believe that this will improve the readabilityttoé present paper. But this can be omitted if requested bipéifierees.



Theorem 2 For any given constantd > 0 and M < o, there exist an pl> 0 and § < o such that

under the DPA algorithm, for all positive N No,

Pr{All actions are selected at least M times each before tyhe-tl— 8, Vt > to.

The detailed proof for this result can be found in [2], [1348].

2. The sequence of probabilitie§pm(t)i-t, }, IS Stated to benonotonicallyincreasing. The previous

proofs attempted to do this by showing that:

[Pm(t)| < 1and )

_ dmA(1— pm(t)) >0, t > to, for the CPA
E[pm(t +1) — pm(t)[K(to)] = 2
Pm(t) +dmcA > 0, t > to, for the DPA

wherec; =1,2,....,r—1, andK_(to) is the condition thatl,, remains the greatest elemenfrafter time

to.

It is worth mentioning that the combination g (t)| < 1 andE[pm(t + 1) — pm(t)|K(to)] > 0 in Eq.

(1) and Eq. (2) makes the sequerdg®(t)i~t, } @ sSubmartingale, which is a weaker convergence than
{pm(t)t>t, } being monotonically increasing. However, the result ofekpectation, i.e., the right hand
side of Eq. (2), was obtained by invoking the conditlﬁ(to), which indeed ensures tmeonotonicity

property of the sequence ¢pm(t)i>t,}. Now thatK(tp) is invoked, it is, in fact, unnecessary to

examine the submartingale property, as the monotonicapeguty can be simply proven by

_ dmA(1— pm(t)) >0, t > to, for the CPA
[Pm(t+1) — pm(t)]|K(to) =
Pm(t) + dmGA > 0, t > to, for the DPA

Since{ pm(t) 1>t} can be proven to be monotonically increasing based on thaiteam K (to), pm(t)

converges to 1 w.p. 1.

3. As pm(t) = 1 w.p. 1, if it can, indeed, be proven thBt{K(tg)} > 1—J, by the axiom of total

probability, one can then see that:

Pr{pm(t) > 1—€} > Pr{pm(t) = 1}Pr{K(to)} >1-(1—-98) =1-9,

ande-optimality is proven.

According to the sketch of the proof above, the key is to pPMK (to)} > 1- 0, i.e.,

Pr{dm(t) > dj(t) jtmvt>to} > 1. (3)



In the proofs reported in the literature, Eq. (3) is consdeo be true if the following result, formalized

in Theorem 3, is true under the CPA and DPA algorithms.

Theorem 3 Let n(t) be the number of times; has been selected up to time t, and w be the difference
between the twbighestreward probabilities. Suppose that for a givén> 0, and for all i € (1...r), there

exists an M < o, such that ifo; is selected at least Mimes,
Pr{ld(t) ~d|< ¥} >1-3.

Then, as per Theorem 1, if we letMmax<i<,{M;}, and for all t > to, if mim<i< {ni(t)} > M,
Pr{ldi(t) —di| < ¥} >1-3.

The rationale of Theorem 3 is that sing€t) is the number of times; has been selected up to tirme
andw is the difference between the twighestreward probabilities, it implies that if all actions areesged
at leastM times, each of thei will be in a % neighborhood ot} with an arbitrarily large probability. In
other words, the probability afm(t) being greater tha(fj (t)j2m will be arbitrarily close to unity. This result
can be easily “proven” by the weak law of large numbers, aedphoof” can be found in [13].

However, there is a flaw in the above argument. In fact, The@eoes not guaranté&{K(tp)} > 1—9.

To be specific, let us define
K(t) = {dm(t) is the largest element D(t)}.

Then the result that can be deduced from Theorem 3 isRHa€ (t)} > 1— d whent > to. But, indeed, the

condition which Eq. (2) is based on is:

K(to) = N K(b),

t>tp

which means that for every single time instant in the futuee,t > to, on(t) needs to be the largest element
in I5(t). The flaw in the previous proofs reported in the literaturéhet the authors made a mistake by
reckoning thafPr{K(t)} > 1— 8]« is equivalent tcK (tp). This renders the existing proofs for the CPA
and the DPA being-optimal, to be incorrect.

The flaw is documented in [25], which focused on the CPA, amthés provided a way of correcting
the flaw, i.e., by provingr{K (to)} > 1— 3 instead of provindPr{K(t)}t-t) > 1— . Although their proof
requires a sequence decreasingvalues for the learning paramet®r to the best of our knowledge, it
currently stands as the only correct way to proveetioptimality of the CPA. We applaud the authors of [25]
for discovering this flaw, and for submitting an accurateopffor the CPA for the scenario when thé are
changing with time.

However, the proof methodology that we have used here foD## is quite distinct (and uses com-
pletely different techniques) than the proof reported iB][2The reasons why we have sought an alternate

proof are the following:



1. The monotonicity property which all the previous flawedqgds and the proof in [25] were based on,
is, indeed, a very strong condition. The condition reqmrmcfm(t) is ranked as the largest element
in D(t) at every single point of timfor all t > to, which, in turn, requires that for the CPA to achieve
its e-optimality, one must rely on an additional external asstimnpthat the learning parametey, is
gradually decreasing during the learning process. Thohgtetis, currently, no way to circumvent
this external constraint so as to prove the CRAsptimality, the essential difference between the DPA
and the CPA, i.e., that the former possesses states thakg@reitly absorbing to which the LA can
jumpto, makes it possible for us to prove the DP&sptimality without requiring the constraint of

decreasing the learning parameter over time.

2. In our earlier proof for the convergence of the ACPA [3], kngd relied on the use of Hoeffding’s
inequality [27]. The application of the inequality in sucletting was only able to bound how much
the estimate of anginglereward probability differs from its true value. We refer kastas the “single-
action” version of the Hoeffding’s inequality. The presapplication of the inequality is able to bound
how far the estimate of arginglereward probability (for example, of the “best” action) eif6 from
the estimate of the reward probability of any other actioa. (iof the “second best” action). We refer
to this as the “multi-action” version of the Hoeffding’s opality. This version is far more powerful,
but by the same token, it is also more difficult to both applgt aavoke. This version of the inequality
is fundamental to our present proof, and we believe that timsequent properties can be utilized to

formally and more elegantly demonstrate gheptimality of other EAs, including the ACPA.

In the next two sections, we shall correct the above-meatidtaw that exists in the previous proofs of
EAs. We do this by providing a new proof strategy for #eptimality of the DPA, and which does not
require that the learning parametir,is gradually increased. The new proof also follows a faapsketch

but is rather based on the convergence theory of submaes)gand on the theory of Regular functions.

4 The DPA'sg-optimality: A New Proof

Our proof for the DPA's-optimality consists of four steps, which we first explaifoimally here. Firstly,

we prove that by properly setting the learning parameédeeach action will be selected a large number of
times within a finite time instant. Secondly, based on thétfzat each action has been selected (or probed)
a large number of times, according to the law of large numhkbes probability that the estimate of each
reward probability being within a narrow neighborhood aftitue value, can be made arbitrarily large. In
other words, the reward estimation for each action is charaed by an arbitrarily high accuracy. Thirdly,
we prove that the sequence{gin(t)}, the probability of choosing the best action, witheing greater than a
certain time instant, is a submartingale, given the comdlithat the accuracy of the estimation of the reward

probability is arbitrarily high. Finally, by invoking theubmartingale convergence theory and the theory of



Regular functions{ py(t)} can be proven to converge to unity in probability, implyitng £-optimality of
the DPA.

Each of the steps of the proof will be detailed in the follogvgubsections.

4.1 The Moderation Property of the DPA

The property of moderation can be described precisely byiEme 2, which has been proven in [10]. This
implies that under the DPA, by utilizing a sufficiently largalue for the learning parameté, each action

will be selected an arbitrarily large number of times.

4.2 The Key ConditionG(to) for {pm(t)t>t,} being a Submartingale

In our proof strategy, instead of examining the condition{fom(t):~t, } beingmonotonically increasingve

will investigate the condition fof pm(t)t~t, } being asubmartingale By doing this, the previously mentioned
strong condition required by the authors of [25] represérhlyeK_(to), i.e., of rankingcfm(t) as the largest
element inlﬁ(t) atevery single time instarafter timetg, will not be necessary any longer. Instead, we base

our arguments on the weakewbmartingalgphenomenonG(to), defined as follows

q;(t) = Pr{dm(t) > dj(t), ] #m},

q(t) = Pr{dm(t) > dj(t),vj # m} = [ a(®), (4)
j#m

G(t) ={q(t) >1-0},0€(0,1),
G(to) = {() {a(t) > 1-8}},8 € (0,1). (5)

t>tp

Note thatk (to) is stronger thaiB(to) in the sense tha€ (to) = { () {dm(t) > dj(t), V] # m}}, is stronger

t>tp

than{ N {q(t) = 1}}, which is, in turn, stronger thaB(to).
t>tp

Our goal in this step is to prove the following result, foriamad in Theorem 4.

Theorem 4 Given ad € (0,1), there exists a time instang & o, such that the conditio®(tp) holds. In

other words, for this given, there exists agt< o, such thatvt > tq:
q(t) >1-2o. (6)

Proof: First of all, to make the proof easier and to help clarifytamgnts, we initially consider a two-

action Environment, whence the enhanced arguments fordlhon Environment can be generalized. With-

5In the interest of simplicity, at this juncture we have asedrim Eq. (4) that thef,— 's are independent of each other. We believe
that this assumption can be easily relaxed by considerihgtbe individualdj’'s and not all of them together.

10



out loss of generality, ledi; be the optimal action anal, the inferior one. We are to prove that:
Pr{dy(t) —dy(t) > 0} > 1—3. 7)
If we further define

H=d;— dg, and
H(t) = di(t) — da(t), (8)

then

Pr{dy(t) — dp(t) >0} < 1—Pr{H(t)—H < —H}, and
Pr{dy(t) —do(t) >0} >1—- 3= Pr{H(t) —H < —H} < 3. 9)
Hence, we can equivalently prove

Pr{H({t)—H < —-H} <3. (10)

If we denoten; (t) as the number of times; has been selected up to tiheby invoking the “two-action”
version of Hoeffding’s inequality [27], we have:

2H2

Pr{F(t)—H < —H|n(t) =n} <e ntent, ”

We thus have to find an appropriate valuericguch that

2H2

e n it <3, (12)
which guarantees th&@r{H(t) —H < —H} < 3.
1. Itis easy to see that
2H2
e n T < B
2H?2
—-——————<1Ind
nl+(t—n)-t
«—=2H2n’ - 2H%n—tInd< 0. (13)
Consider now the equation
2H?n? — 2H%tn—tInd =0, (14)

11



wheren is the variable to be solved for.

One can easily observe that Eqg. (14) is a quadratic equdtiarBy applying the formula for obtaining

the roots of this quadratic equation, we can derive the esas for its twaeal roots of Eq. (14) as:

_t VHA24+2tInd and
2 2H ’
t VHZAZ+2tInd
§+—2H . (15)

From Eq. (15), we see that if

H?%2+2tIn3 < 0, (16)

ie., if

—-2Ind

t<—p

17)
then Eq. (14) has no real roots. Besides, as the quadrafiicees 2H?2 > 0, we have that for alh,

2H?n? — 2H?%n—tInd > 0. (18)

Consequently, we conclude that

S —2Ind
e nl+t-n-t > dwhent < E (19)
Conversely, it > %'2”5.
2 <9, whenn;; <n<nyy,
e nli-n1 — (20)

>0, otherwise.

. We now investigat®y1 < n < n;», under the condition of > ‘,2_1'35. Briefly speaking, to make sure
that Eqg. (12) holds, we need to find an appropriate value garch that/t : t > ‘a'zné, nis greater than
N1 and at the same tima,is less than or equal tq.

Firstly, we investigatey; < n. Consider the function
t VHZAZ+2tInd
i) =n1=z————F+——. (21)

2 2H
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If we definef;(t) = 22U then

H% +1nd
2H/H22 + 2tInd
H%t +Ind
m)
1 H% +Ind ) 22)
V/(HZ+ 32— (Ind)2

—
-~
—~
—
S—
Il

1—

NI NI NP

/N

Since

H% +Ind
V(HZ 1+ Ind)2— (Ind)2

>1, (23)

we can see that{(t) <0, i.e., f1(t) decreases monotonically agrows. The maximum of;(t) thus

occurs wher = =222 This leads us to the conclusion that> =212,
—2Ind —Ind
N1 = fl(t) < fl( H2 ): nz (24)
Consequently, if we choose
—Ind
n> ?, (25)
i.e.,ay is selected more than!3? times, therivt > =212 n>n;y.
Secondly, we investigate < n,». To accomplish this, we consider the analogous function
t VHZ2+2tInd
fo(t) = N2 = = + —— 272 (26)

2 2H

Arguing in a manner analogous to the above, we observe that

) = f) _ L <1+ H%+Ind ) . -

o 2 v/ (H2 +1In8)Z— (In5)2
Hencef,(t) increases monotonically agrows and the minimum ofy(t) occurs wher = =22, In
other wordsyt > =212,
—-2Ind, —Ind
Nr2 = fa(t) > fa( H2 )= Hz (28)

If we further define:

f3(t) =t, (29)

13



we have

fa(t) = —afgf ) _ 1, and
, ! H%t+Ind
()~ fs(0) =3 \/(H2t+ln6)2—(ln6)2_l >0, (30)
implying thatafZ() afa() . Consequently, asincreases, the increment o, is always greater than

that oft. Moreover, if we increastby unity, n will be either increased by unity or remain the same,
asa; will be either selected or not selected. This further ingptieat the speed of the incrementt af

greater than that of. This reasoning leads to the conclusion that:

() whent > =218 n, > =152,

(b) and when increasesny, increases faster than

72In6

, we neech to only satisfy Eq. (25), i.en> =172 to ensure that

Therefore, we can see that > Az

N1 < N< nNeo.

Note that the above analysis is also applicablestowvhich is, indeed, symmetric tw, in this two action
environment considered. In other words, if we substitutevith o, and further define; (t) as the number
of timesa; has been selected within tihgthe corresponding results with regarchtoan be directly applied
to a,. The consequence of the above arguments is the followingussuppose that we define the time
instanttg such that within the time defined Iy, a1 anda, have each been selected more tlﬁéi_#;iﬂ times.

In that case:

___2n?
e n—Tit—n)-1 < 67

whence we can conclude that for the giviea (0,1), Vt > to,
q(t) = Pr{dy(t) — da(t) > 0} > 1.

The result follows because the above arguments can be sasityto be true for anyaction Environ-

ment inasmuch as it is true for every pair of actfiriBheorem 4 is thus proven.

6f one is interested in pursuing the generaiction scenario in greater detail without invoking thec®ien results, the argu-
ments involved are almost identical, except that the algéba little more cumbersome. Without going into the detb#lkyebraic
manipulations, we can submit the arguments as follows. specific Environment, we define:

Hj =dm—dj,j#m,
Hj(t) = dm(t) —dj (1), j #m

Then, given any € (0,1), if we denoted* =1 — "V1—3, we can show that there exists a time instignsuch that within the

time defined bytg, am has been selected more th ﬁ%w times, andx; j.m has been selected more th% Rnd -‘ times.

14



Table 1: The various possibilities for updatipg for the next iteration under the DPA.

Responses The greatest element d | Updatingpm
Om, (W.p. q(t)) Pm(t) + A
Reward, (w.pd; UL
Pm(t+1) (w.pd) dj,j #m (w.p. 1-q(t)) | pm(t)—
Penalty, (w.p. =-d;) | dj,j=1...r, (1) Pm(t)

4.3 {pm(t)t>t,} is @ Submartingale under the DPA

We now prove the submartingale property{@(t):-, } for the DPA.
Theorem 5 Under the DPA, the quantitypm(t)i~, } is a submartingale.

Proof: If we denote a sequence of random variableXaXs, ..., X, ..., then the sequence is a submartin-
gale, if it satisfies the property that for any time instgnt

E[X] < o, and
EXer1lX1, X, .0, X > X

Firstly, aspm(t) is a probability, we have
Elpm(t)] <1< oo (31)

Secondly, we explicitly calculatE[pn(t)]. Using the DPA's updating rule, we can describe the update
of pm(t) as per Table 1. Thus, we have:

E[pm(t + 1)|P()]
=>Z pj (dj (A(Pm+Gd) + (1—0)(Pm—A4)) + (1 dj) pm)

= Z (pjdjach) — Z pjd;A+ Z p;jd;0A+ Z Pj Pm

—mﬁ»z pid; (a(cA+A) —A). (32)

In the abovepn,(t) andq(t) are respectively written g%, andq in the interest of conciseness. The difference
betweerE [pm(t + 1)] and py(t) can be expressed as:

Dif f(t) = E[pm(t+ 1)!F’(t)] — Pm(t)
Z p;(t)d; (q(t)(qA+L) —A). (33)

Consequently, fovt > tg, qj(t) >1—-38"andq(t) > T[] qj(t) >1-4.
j=1.rj#m

15



Given thatp; (t) > 0 andd; > 0, if we denoteZ; = ;£ = =7, we see that ifft > to, q(t) > Z, then,

Dif f (t) > 0, and the sequend@m(t)i~t, } is a submartingale.
As per the action probability updating rules of the DRA= 1,2,...,r — 1, implying thatz; € [1,1]. Let

1-5=maxz) = 5 (34)

then, according to Theorem 4, there exists a time inggesuch thatvt > tg,
qt) > 3 > 7.

Consequently{ pm(t)t>t, } is @ submartingale, and the theorem is proven.

4.4 Pr{pm(e) =1} — 1under the DPA

We now prove th&-optimality of the DPA.

Theorem 6 The DPA iss-optimal in all stationary random Environments. More foligagiven anyl — & >
%, there exists a positive integelp N 0 and a time instantgt< co, such that for all resolution parameters

N > N and for all t > t, the quantities ¢f) > 1— 9, and PK py() =1} — 1.

Proof: According to the submartingale convergence theory [4],
Pm(0) =0 0r 1 (35)

If we denotee; as the unit vector with thg!" element being unity, thepy () = 1 is equivalent to the

assertion thalP(e«) = ey. If we define the convergence probability
Mm(P) = Pr{P(c) = en|P(0) = P}, (36)
our task is to now prove:
Mm(P) — 1. (37)

To prove Eq. (37), we shall use the theory of Regular funsti@md the arguments used follow the lines
of the arguments found in [4] for the convergence proofs addlbitely Expedient schemes.

Let d(P) as a function oP. We define an operattt as

U®P(P) =E[®(P(n+1))|P(n) =P]. (38)
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If we now repeatedly applyy, we get the result of the-step invocation ob) as:
U"®(P) = E[®(P(n))|P(0) = P].

We refer to the functiop(P) as being:

e Superregular: [J®(P) < ®(P). Then applyindJ repeatedly yields:
®(P) > U®D(P) > U?®(P) > ... > U”D(P).

e Subregular: lU®(P) > ®(P). In this case, if we apply repeatedly, we have
®(P) <UD(P) <U2D(P) < ... U D(P).

e Regular: IfU®(P) = ®(P). In such a case, it follows that:
P(P) =UP(P) =U?®(P) =... = U D(P).

Moreover, if®(P) satisfies the boundary conditions

®(em) =1 andd(ej) =0, (for j # m),

then, as per the definition of Regular functions and the sutimgale convergence theory, we have

UT®(P) = E[®(P())|P(0) = P]

bl

1¢(em)Pr{P(00) =¢j|P(0) =P}

Pr{P(e) = en|P(0) = P}
Cm(P).

(39)

(40)

(41)

(42)

(43)

(44)

Comparing Eq. (44) with Eq. (42), we see that(P) is exactly the functiorP(P) upon which ifU is

applied an infinite number of times, the sequence of operaitidll lead to a function that equals the function

®(P) itself, because it would then beRegularfunction. This observation readily leads us to the conolusi

that 'm(P) can be indirectly obtained by investigating a Regular fiomcbf P. However, as in the case

of Absolutely Expedient LA, a Regular function is not eadityind, although itexistencds guaranteed.
Fortunately, Eq. (40) and Eq. (41) tell us tha§(P), i.e., the Regular function d?, can be bounded from

above (below) by the Superregular (Subregular) functioR.ofurthermore, as we are most interested in

the lower bound of »(P), our goal is to find a propeBubregularfunction of P, which also satisfies the
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boundary conditions given by Eq. (43), which will then gudeg to bound ,,(P) from below.
To find such a Subregular function Bf we will firstly find a corresponding SuperregularfdfConsider

a specific instantiation ap to be the functionby,, defined below as:
Oy (P) = g XmPm, (45)
wherexq, is a positive constant. Then, under the DPA,

U (®Pm(P)) — Pm(P) = E[®m(P(n+1))[P(n) = P] — ®n(P)
= E[e”Pn(™D)|p(n) = P — @ XmPm

_ Z g Xm(Pmtaid) pidiq+ Z @ Xm(Pm—4) p;d; (1-q)
j=L.r j=L.r
+ Z e*XmFJm p] (1_ d]) _ e*xmpm
i=L.r
= Z pjdje P (e maA — gnt) 4 (gh — 1)). (46)
i=L.r
Our task is to determine a proper value fgrsuch thatd,(P) is Superregular, i.e.,
U(Pm(P)) —Pm(P) <O0. 47
This is equivalent to solving the following inequality:
q(e 8 — ) 4 (g4 — 1) < 0. (48)

We know that wherp > 0 andx — O,

b1+ (Inb)x-+ ('”Zb)zx? (49)

If we setb = e, whenA — 0, Eq. (48) can be re-written as

q <(In b)(c +1)A+ @(c& — 1)2A2> — (Inb)A+ gaz <0. (50)
If we substituteb with e*m, we see that
2 +1)-1)
oo Saga o) <0 o
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As xm, is defined as a positive constant, we have

2(q(a+1)—1)
0<Xm< (52)
AQ(f—1)+1
If we denote
2(q(a+1)—1)
= ; (53)
™ AA(F—1)+1)
we see thaky, > 0 because; = 1,2,....r — 1 andq(t) -, > % Thus, whem\ — 0, Xm, — .
We now introduce another function
1— @ XmPm
@n(P) =T (54)

wherexy, is the same as defined #,(P). Moreover, we observe the property thathf,(P) = e *mPm s

_ 1-eXmPm

a Superregular (Subregular), th@q(P) = ~“c==- is Subregular (Superregular) [4]. Therefore, ¢ as

defined in Eq. (52), which rende#&,(P) to be Superregular, causes the functgtiP) to be Subregular.

Obviously,@n(P) meets the boundary conditions, i.e.,

1 — @ *mPm 1 whenP = ©m,
M(P) = = (55)
0, whenP = gj.

Therefore, according to Eq. (41),

1 — @ XmPm

Fin(P) > @n(P) = S (56)

As Eq. (56) holds for every, bounded by Eqg. (52), we can choose the largest velyeand when
Xmy — ©, I'm(P) — 1. We have thus proved th&r{pm(~) = 1} — 1 under the DPA, implying it€-
optimality.

Remark: Having completed the proof of the DPAsoptimality, we are able to give firm figures for
to and the number of times each action needs to be selected. tdallpadetermine the value df, we
summarize the result of the above arguments as follows:dtet 1 — "v/1— 3, whered is the quantity

specified in the statement of Theorem 6. Then there existseaaitistantty, such that

—Ind* —Ind*
to > %mm{Hj})J + J;m {—sz W (57)

and up to the time instant specified faywe can guarantee thaf, has been selected more th ;E”H?*})J
nlnd*

times, andy; (j.m has been selected more th%ﬁww times, guaranteeing all the conditions imposed by
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the corresponding theorems.

5 The Difference between the Proofs Requiring Monotonicityand the Sub-

martingale Properties

To highlight the difference between the proof presentetlimpaper and the proof in [25], we define

Clto) = { () {a(t) = 1}}. (58)

t>tp

If we compare Eq. (58) with the definition @&(ty) in Eq. (5), we see that if we enforce the valbie- 0,

G(to) becomes equivalent ©(tp), and thesubmartingaleproperty of{ pm(t) -1, } becomes precisely the

monotonicityproperty. Accordingly, we see that the conditidn= 0 yields the lower bound d§ to become:

—Ind* —Ind*
to > [7-‘ + —— | =0, (59)
(min{H;})2 j;m[ H? -‘
Consequently, there will be no such time insten o, after whichq(t) ., = 1. This is precisely the
reason why in the case of the CPA in [25], one requires aniadditassumption that the learning parameter
A has to be gradually decreasing, as explained in greatear ihefi2b].

It should therefore be very clear to the reader that the arsand the new proof presented here are

significantly different than the corresponding analysid proof in [25]. They are based on the weaker con-

dition G(tp) instead ofK (tp), because of which the-optimality does not require that the scheme’s learning

parameter gradually decreases.

6 Conclusions

Estimator algorithms are acclaimed to be the fastest LegrAutomata (LA), and within this family, the
set of Pursuitalgorithms have been considered to be the pioneering schehtee-optimality of Pursuit
Algorithms (PAs) are of great importance and has been siifdiedecades. The convergence proofs for the
PAs in all the reported papers have a common flaw which waswised by the authors of [25], whom we
applaud. This paper corrects the flaw and provides a new fpootiie Discretized Pursuit Algorithm (DPA).

Rather than examining the monotonicity property of {ipa(t) 1~} Sequence as done in the previous
papers and in [25], our current proof studies shbmartingaleproperty of{ pm(t) ¢, }. Thereafter, by
virtue of the submartingale property and the weaker camlitihe new proof invokes the theory of Regular
functions, and does not require the resolution/parametdetrease/increase gradually.

Our analysis constitutes the only result for the DRRe submit that it is both novel and pioneering.

Further, as opposed to the proof found in [25], we do not meqgtlie parameter to change continuously.
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Also, since we have invoked the “multi-action” version ofeéfdling’s inequality, we believe that our proof
can be extended to formally demonstrate ¢haptimality of other EAs which possess absorbing states.
The formal “corrected” proof for the finite time analysis bEtDPA [2] remains open. It is currently

being investigated.

References

[1] X.Zhang, B. J. Oommen, O.-C. Granmo, and L. Jiao, “Ushmgtheory of regular functions to formally
prove thee-optimality of discretized pursuit learning algorithms;’ Proceedings of IEA-AIE 2014
Kaohsiung, Taiwan: Springer, Jun. 2014.

[2] K. Rajaraman and P. S. Sastry, “Finite time analysis ef plrsuit algorithm for learning automata,”
IEEE Transactions on Systems, Man, and Cybernetics, P&iBerneticsvol. 26, pp. 590-598, 1996.

[3] X.Zhang, O.-C. Granmo, B. J. Oommen, and L. Jiao, “A forpraof of thee-optimality of absorbing
continuous pursuit algorithms using the theory of regulaicfions,”to appear in Applied Intelligenge
2014.

[4] K. S. Narendra and M. A. L. Thathach&rarning Automata: An Introduction Prentice Hall, 1989.

[5] B. J. Oommen, “Absorbing and ergodic discretized twieaclearning automataJEEE Transactions
on Systems, Man, and Cybernetiesl. 16, pp. 282—-296, 1986.

[6] M. A. L. Thathachar and P. S. Sastry, “Estimator algarnithfor learning automata,” iRroceedings of
the Platinum Jubilee Conference on Systems and Signal §simgeBangalore, India, Dec. 1986, pp.
29-32.

[7] M. Agache and B. J. Oommen, “Generalized pursuit leayrinhemes: new families of continuous
and discretized learning automatdZEE Transactions on Systems, Man, and Cybernetics, Part B:
Cyberneticsvol. 32, no. 6, pp. 738-749, 2002.

[8] X. Zzhang, O.-C. Granmo, and B. J. Oommen, “The Bayesiarsyualgorithm: A new family of
estimator learning automata,” Froceedings of IEA-AIE 2011 New York, USA: Springer, Jun. 2011,
pp. 608-620.

[9] ——, “On incorporating the paradigms of discretizatiomddBayesian estimation to create a new family

of pursuit learning automata&pplied Intelligencevol. 39, pp. 782—792, 2013.

[10] B. J. Oommen and J. K. Lanctot, “Discretized pursuitihéag automata,IEEE Transactions on Sys-
tems, Man, and Cyberneticgol. 20, pp. 931-938, 1990.

21



[11] J. K. Lanctot and B. J. Oommen, “On discretizing estiondtased learning algorithmdEEE Trans.
on Systems, Man, and Cybernetics, Part B: Cybernetils 2, pp. 1417-1422, 1991.

[12] ——, “Discretized estimator learning automatlEEE Trans. on Systems, Man, and Cybernetics, Part
B: Cyberneticsvol. 22, no. 6, pp. 1473-1483, 1992.

[13] B. J. Oommen and M. Agache, “Continuous and discreteaduit learning schemes: various algo-
rithms and their comparison|EEE Transactions on Systems, Man, and Cybernetics, Pa@yBer-
netics vol. 31, no. 3, pp. 277-287, 2001.

[14] X. Zhang, O.-C. Granmo, and B. J. Oommen, “Discretizey&sian pursuit - a new scheme for rein-
forcement learning,” ilProceedings of IEA-AIE 201 Dalian, China, Jun. 2012, pp. 784-793.

[15] B.J. Oommen, O.-C. Granmo, and A. Pedersen, “Usinghststic Al techniques to achieve unbounded
resolution in finite player Goore Games and its applicatfoinsProceedings of IEEE Symposium on

Computational Intelligence and Gamés$onolulu, HI, Apr. 2007, pp. 161-167.

[16] H. Beigy and M. R. Meybodi, “Adaptation of parametersB# algorithm using learning automata,” in
Proceedings of Sixth Brazilian Symposium on Neural NetsydiR, Brazil, Nov. 2000, pp. 24-31.

[17] O.-C. Granmo, B. J. Oommen, S.-A. Myrer, and M. G. Olstmarning automata-based solutions
to the nonlinear fractional knapsack problem with appiaret to optimal resource allocationEEE

Transactions on Systems, Man, and Cybernetics, ParoB37, no. 1, pp. 166-175, 2007.

[18] C. Unsal, P. Kachroo, and J. S. Bay, “Multiple stochaktarning automata for vehicle path control in
an automated highway systeniEZEE Transactions on Systems, Man, and Cybernetics, RalA29,
pp. 120-128, 1999.

[19] B. J. Oommen and T. D. Roberts, “Continuous learningimatta solutions to the capacity assignment

problem,”IEEE Transactions on Computensl. 49, pp. 608-620, Jun. 2000.

[20] O.-C. Granmo, “Solving stochastic nonlinear resowib@cation problems using a hierarchy of twofold

resource allocation automatadlZEE Transactions on Computersol. 59, no. 4, pp. 545-560, 2010.

[21] B. J. Oommen and T. D. S. Croix, “String taxonomy usingrféng automata,JEEE Transactions on
Systems, Man, and Cybernetigsl. 27, pp. 354-365, Apr. 1997.

[22] ——, “Graph partitioning using learning automatdZEE Transactions on computersol. 45, pp.
195-208, 1996.

[23] T. Dean, D. Angluin, K. Basye, S. Engelson, L. Aelblirapd O. Maron, “Inferring finite automata
with stochastic output functions and an application to n&gpring,”Maching Learningvol. 18, pp.
81-108, 1995.

22



[24] Y. Song, Y. Fang, and Y. Zhang, “Stochastic channeldige in cognitive radio networks,” iRroceed-
ings of IEEE Global Telecommunications Conferend&ashington DC, USA, Nov. 2007, pp. 4878—
4882.

[25] M. Ryan and T. Omkar, “Ois-optimality of the pursuit learning algorithmJournal of Applied Prob-
ability, vol. 49, no. 3, pp. 795-805, 2012.

[26] X. Zhang, O.-C. Granmo, B. J. Oommen, and L. Jiao, “Omghe theory of regular functions to
prove thee-optimality of the continuous pursuit learning automdtam,Proceedings of IEA-AIE 2013

Amsterdan, Holland: Springer, Jun. 2013, pp. 262-271.

[27] W. Hoeffding, “Probability inequalities for sums of biwded random variablesJournal of the Ameri-

can Statistical Associatigrvol. 58, pp. 13-30, 1963.

23



