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Abstract

Learning Automata (LA) can be reckoned to be the founding algorithms on which the field of Rein-

forcement Learning has been built. Among the families of LA,Estimator Algorithms (EAs) are certainly

the fastest, and of these, the family ofdiscretizedalgorithms are proven to converge even faster than their

continuouscounterparts. However, it has recently been reported that the previous proofs forε-optimality

for all the reported algorithmsfor the past three decadeshave been flawed1. We applaud the researchers

who discovered this flaw, and who further proceeded to rectify the proof for the Continuous Pursuit Al-

gorithm (CPA). The latter proof examines the monotonicity property of the probability of selecting the

optimal action, and requires the learning parameter to be continuously changing. In this paper, we pro-

vide a new method to prove theε-optimality of the Discretized Pursuit Algorithm (DPA) which does not

require this constraint, by virtue of the fact that the DPA has, in and of itself, absorbing barriers to which

the LA can jump in a discretized manner. Unlike the proof given [3] for an absorbing version of the CPA,

which utilizes the single-action Hoeffding’s inequality,the current proof invokes, what we shall refer to,

as the “multi-action” version of the Hoeffding’s inequality. We believe that our proof is both unique and

pioneering. It can also form the basis for formally showing theε-optimality of the other EAs that possess

absorbing states.
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1 Introduction

Learning automata (LA) have been studied as a typical model of reinforcement learning for decades. An LA

is an adaptive decision-making unit that learns the optimalaction from among a set of actions offered by the

Environment it operates in. At each iteration, the LA selects one action, which triggers either astochastic

reward or a penalty as a response from the Environment. Basedon the response and the knowledge acquired

in the past iterations, the LA adjusts its action selection strategy in order to make a “wiser” decision in the

next iteration. In such a way, the LA, even though it lacks a complete knowledge about the Environment, is

able to learn through repeated interactions with the Environment, and adapts itself to the optimal decision.

Initial LA were designed to be Fixed Structure Stochastic Automata (FSSA), whose state update and de-

cision functions are time invariant. Later, Variable Structure Stochastic Automata (VSSA) were developed,

which are characterized by functions that update the probability of selecting the various actions. Repre-

sentatives of VSSA include the Linear Reward-Penalty (LR−P) scheme, the Linear Reward-Inaction (LR−I )

scheme, the Linear Inaction-Penalty (LI−P) scheme and the Linear Reward-εPenalty (LR−εP) scheme [4]. As

one observes, theLR−I andLR−εP schemes assign more importance to reward responses than to penalties;

they are alsoε-optimal in all stationary environments.

According to their Markovian representation, automata fall into two categories: Ergodic automata and

automata possessing absorbing barriers. The latter automata get locked into a barrier state – sometimes af-

ter even afinite number of iterations. Many families of automata that possesabsorbing barriers have been

reported [4, 5]. Ergodic automata have also been investigated in [4, 5]. These ergodic automata converge

in distribution and thus, the asymptotic distribution of the action probability vector has a value that is inde-

pendent of the corresponding initial vector. While ergodicLA are suitable for non-stationary environments,

absorbing automata are preferred in stationary environments. In fact, ergodic automata are known to better

adapt to non-stationary environments where the reward probabilities are time dependent.

Among the families of LA, Estimator Algorithms (EAs) work with a noticeably different paradigm.

During each learning cycle, these algorithms incorporate an estimation phase, in which they estimate the

reward probability of each action. This renders the learning process to be more goal-directed, leading to

a much faster convergence and to more accurate learning results [6] [7] [8] [9] when compared to non-

estimator algorithms. Within the family of EAs, the set ofPursuit Algorithms (PAs) were the pioneering

schemes, whose design and analysis were initiated by Thathachar and Sastry [6]. EAs augment an action

probability updating scheme with the use of estimates (typically, Maximum Likelihood (ML)) of the actions’

reward probabilities. In each iteration, the PA determinesthe current “Best” action based on the estimates

of the reward probabilities, and then pursuesthe “Best” actionby linearly increasingits action probability.

Families of Pursuit and Estimator-based LA have been shown to be faster than VSSA, and the Continuous

Pursuit Algorithm (CPA) was the pioneering member of these EAs.

Moving now to a disjoint vein, with respect to the values thatthe action probabilities can take, the
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families of LA typically fall into one of the two categories,namely, Continuous or Discretized. Continuous

LA permit the action probabilities to take any value in the interval [0,1]. In practice, the relatively slow rate

of convergence of these algorithms constituted a limiting factor in their applicability. In order to increase

their speed of convergence, the concept of discretizing theprobability space was introduced in [10–12]. This

concept is implemented by restricting the probability of choosing an action to be one of a finite number of

values in the interval[0,1]. If the values allowed are equally spaced in this interval, the discretization is said

to belinear, otherwise, the discretization is callednon-linear. Following the discretization concept, many of

the continuous VSSA have been discretized; indeed, discretized versions of almost all continuous automata

have been reported [10,13,14].

Historically, Oommen and Lanctot [10] presented the Discretized Pursuit Algorithm (DPA) by discretiz-

ing the action probability space. The DPA was shown to be superior to its continuous counterpart. In order

to highlight the distinct characteristics of the DPA withinthe family of PAs, the continuous version is re-

ferred to as the CPA2. We briefly mention that discretized versions of all the reported EA schemes have been

devised [9,13,14].

LA have found applications in a variety of fields, including game playing [15], parameter optimiza-

tion [16], solving knapsack-like problems and utilizing the solution in web polling and sampling [17]. LA

have also been used in vehicle path control [18], assigning capacities in prioritized networks [19], resource

allocation [20], string taxonomy [21], graph partitioning[22], and map learning [23]. To exemplify the

importance of the DPA, it is worth mentioning an applicationwhere one of its variants has been applied.

Consider the research field of Cognitive Radio Networks (CRNs), in which the so-called Secondary Users

(SUs) attempt to use the channels that are allocated but which are not, at any given time instant, being occu-

pied by the Primary Users (PUs). By virtue of the stochastic property of the PUs, it is meaningful that the

SUs attempt to determine the “best” channel, i.e., the one which is being least used by the PUs, and to select

this “best” channel for possible package transmission. This is precisely the scheme advocated in [24], where

the authors have used a modified version of the DPA, i.e., the Discretized Generalized Pursuit Algorithm

(DGPA), to assist the SU to adapt itself to the “best” channel, and to thus achieve smart stochastic channel

selection.

1.1 Problem Statement

The most difficult part in the design and analysis of LA consists of the formal proofs of their convergence

accuracies. The mathematical techniques used for the various families (FSSA, VSSA, Discretized etc.) are

quite distinct, and the details of these proof methodologies for these various families are described exten-

sively in the literature.

2PAs have also been extended by allowing them to be of the Reward-Penalty paradigms [13]. We do not consider these here.
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Proof Complexity for EAs: Understandably, the most difficult proofs involve the family of EAs. This

is because the convergence involves two intertwined phenomena, i.e., the convergence of the reward esti-

matesandthe convergence of the action probabilities themselves. Ironically, thecombinationof these in the

updating rule is what renders the EA fast. However, if the accuracy of the estimates are poor because of inad-

equate estimation (i.e., the sub-optimal actions are not sampled “enough number of times”), the convergence

accuracy can be diminished. Hence the dilemma!

Prior Proofs: The ε-optimality of the families of PAs have been presented in [2], [13], [10], [11],

and [12]. The basic result stated in these papers is that by utilizing a sufficiently small value for the learning

parameter (or resolution), both the CPA and the DPA will converge to the optimal action with an arbitrarily

large probability.

Flaws in the Existing Proofs: The premise for this paper is that the proofs reportedfor almost three

decadesfor all these schemes have a common flaw, which involves a veryfine argument. In fact, the proofs

reported in these papers “deduced” theε-optimality based on the conclusion that after a sufficiently large time

instant,t0, the probability of selecting the optimal action is monotonically increasing, which, in turn, is based

on the condition that the reward probability estimates are ordered properlyforeveraftert0. This ordering is,

indeed, true by the law of large numbers if all the actions arechosen infinitely often, which, consequently,

renders the time instant,t0, to also be infinite. If such an “infinite” selection does not occur, the ordering

cannot be guaranteed forall time instants aftert0. In other words, the authors of these papers misinterpreted

the concept ordering “forever” with the ordering “most of the time” after t0. As a consequence of this

misinterpretation, the condition supporting the monotonicity property is false, which leads to an incorrect

“proof” for the CPA and DPA beingε-optimal3.

Discovery of the Flaw: Even though this has been the accepted argument for almostthree decades,

(even by the second author of this present paper who was the principal author of many of the earlier papers),

we credit the authors of [25] for discovering this flaw. Whilea detailed exegesis of this is found in [25], in

the interest of completeness, a brief explanation on this issue is also included in this paper, in Section 3.

Rationale for this Paper: This paper aims at correcting the above-mentioned flaw found in the earlier

proofs by providing a new proof for the convergence of the DPA. As opposed to previous proofs, we will

show that because the DPA possesses absorbing barriers, theso-called monotonicity property, though it is

sufficient for convergence, it is not reallynecessaryfor proving that the DPA isε-optimal. Rather, we will

present a completely new proof methodology which is based onthe convergence theory of submartingales

and the theory of Regular functions [4]. Our proof is distinct in principle and argument from the proof

reported in [25], which while it is valid for the CPA, also requires that the learning parameter is continuously

decreasing.

3In addition, like the proofs for the asymptotic convergence, the finite time analysis of both the CPA and the DPA were also
done in [2]. Unfortunately, these analyses are also flawed inasmuch as they are also based on the reasoning of the above-mentioned
“monotonicity” assumption of the probability of selectingthe optimal action.
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Proofs for Absorbing Continuous Pursuit Algorithms (ACPAs): An accurate and formal proof for the

ACPA’s convergence was given in [26] and [3]. This proof is only valid for the ACPA, and it does not require

the learning parameter to be continuously decreasing. It also uses what we shall call the “single-action”

version of the Hoeffding’s inequality [27], invoking whichone can bound how much the estimate of any

singlereward probability differs from its true value.

Salient feature of this Present Proof as opposed to the ACPA’s: This present paper specifically invokes

the “multi-action” version of the Hoeffding’s inequality using which one can bound how far the estimate

of any single reward probability differs from the estimate of the reward probability of any other action.

We believe that the latter can be utilized to formally demonstrate theε-optimality of other absorbing EAs,

including, of course, the ACPA.

2 Overview of the DPA

As mentioned earlier, in this paper, we consider only the DPA. The problem of correctly analyzing the

discretized versions of the other reported EAs remains open.

We first present the notations used for the DPA:

r: The number of actions.

di : The ith element of the reward probability vectorD.

αi : The ith action that can be selected by the LA, and is an element from the set{α1, . . .αr}.

pi: The ith element of the action probability vector,P.

ui : The number of timesαi has been rewarded when it has been selected.

vi : The number of timesαi has been selected.

d̂i : The ith element of the reward probability estimates vectorD̂, d̂i =
ui
vi

.

m: The index of the optimal action.

h: The index of the largest element ofD̂.

R: The response from the Environment, whereR= 0 corresponds to a Reward, andR= 1 to a Penalty.

∆: The discretized step size, where∆ = 1
rN , with N being a positive integer.

The DPA follows a “pursuit” paradigm of learning, which consists of three steps. Firstly, it maintains an

action probability vectorP= [p1, p2, ..., pr ] to determine the issue of which action is to be selected, where

∑
j=1...r

p j = 1. Secondly, it maintains running ML reward probability estimates to determine which action

can be reckoned to be the “best” in the current iteration. Thus it updatesd̂i(t) based on the Environment’s

response as:

ui(t) = ui(t −1)+ (1−R(t))

vi(t) = vi(t −1)+1

d̂i(t) =
ui(t)
vi (t)

.

Thirdly, based on the response of the Environment and the knowledge of the current best action, the DPA
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increases the probability of selectingthis action as per the DiscretizedLR−I rules. So ifd̂h(t) is the largest

element inD̂(t), we updatep(t) as:

If R(t) = 0 Then

p j(t +1) = max{p j(t)−∆,0}, j 6= h

ph(t +1) = 1− ∑
j 6=h

p j(t +1).

Else

P(t +1) = P(t).

EndIf

We now visit the proofs of the DPA’s convergence.

3 Previous “Proofs” for DPA’s ε-optimality

The formal assertion of theε-optimality of the DPA [13] is stated in Theorem 1, where, ‘t’ is measured in

terms of the number of iterations.

Theorem 1 Given anyε > 0 andδ > 0, there exist an N0 > 0 and a t0 < ∞ such that for all time t≥ t0 and

for any positive learning parameter N> N0,

Pr{pm(t)> 1− ε}> 1−δ.

The earlier reported proofs for theε-optimality of the CPA and the DPA follow the same strategy, which

consists of four steps4. Firstly, given a sufficiently small (large) value for the learning parameterλ (N), all

actions will be selected enough number of times before a finite time instant,t0. Secondly, for allt > t0,

d̂m will remain to be the maximum element of the reward probability estimates vector,̂D. Thirdly, suppose

d̂m has been ranked as the largest element inD̂ sincet0. In that case, the action probability sequence of

{pm(t)}, with t > t0, will be monotonically increasing, whence one concludes that pm(t) converges to 1 with

probability 1. Finally, given that the probability of̂dm being the largest element in̂D is arbitrarily close

to unity, and thatpm(t) → 1 with probability (w.p.) 1,ε-optimality is proven based on the axiom of total

probability.

The formal assertions of these steps are catalogued below.

1. The first step of the proof can be described mathematicallyby Theorem 2.

4We state the conditions and parameters for the CPA, while theanalogous counterpart conditions and parameters for the DPA
are stated in parenthesis to avoid repetition. The reader should observe that we, really, did not have to mention the conditions and
parameters for the CPA. But we have opted to show it because the proof given in [25], which demonstrated the flaw, is based onthe
CPA, and we believe that this will improve the readability ofthe present paper. But this can be omitted if requested by theReferees.
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Theorem 2 For any given constantsδ > 0 and M< ∞, there exist an N0 > 0 and t0 < ∞ such that

under the DPA algorithm, for all positive N> N0,

Pr{All actions are selected at least M times each before time t0}> 1−δ, ∀t > t0.

The detailed proof for this result can be found in [2], [13] and [6].

2. The sequence of probabilities,{pm(t)t>t0}, is stated to bemonotonicallyincreasing. The previous

proofs attempted to do this by showing that:

|pm(t)| ≤ 1 and (1)

E[pm(t +1)− pm(t)|K̄(t0)] =











dmλ(1− pm(t))≥ 0, t > t0, for the CPA

pm(t)+dmct∆ ≥ 0, t > t0, for the DPA,
(2)

wherect = 1,2, ..., r−1, andK̄(t0) is the condition that̂dm remains the greatest element inD̂ after time

t0.

It is worth mentioning that the combination of|pm(t)| ≤ 1 andE[pm(t +1)− pm(t)|K̄(t0)] ≥ 0 in Eq.

(1) and Eq. (2) makes the sequence{pm(t)t>t0} a submartingale, which is a weaker convergence than

{pm(t)t>t0} being monotonically increasing. However, the result of theexpectation, i.e., the right hand

side of Eq. (2), was obtained by invoking the conditionK̄(t0), which indeed ensures themonotonicity

property of the sequence of{pm(t)t>t0}. Now that K̄(t0) is invoked, it is, in fact, unnecessary to

examine the submartingale property, as the monotonicity property can be simply proven by

[pm(t +1)− pm(t)]|K̄(t0) =











dmλ(1− pm(t))≥ 0, t > t0, for the CPA

pm(t)+dmct∆ ≥ 0, t > t0, for the DPA.

Since{pm(t)(t>t0)} can be proven to be monotonically increasing based on the condition, K̄(t0), pm(t)

converges to 1 w.p. 1.

3. As pm(t) → 1 w.p. 1, if it can, indeed, be proven thatPr{K̄(t0)} > 1− δ, by the axiom of total

probability, one can then see that:

Pr{pm(t)> 1− ε} ≥ Pr{pm(t)→ 1}Pr{K̄(t0)}> 1· (1−δ) = 1−δ,

andε-optimality is proven.

According to the sketch of the proof above, the key is to provePr{K̄(t0)}> 1−δ, i.e.,

Pr{d̂m(t)> d̂ j(t) j 6=m,∀t:t>t0}> 1−δ. (3)
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In the proofs reported in the literature, Eq. (3) is considered to be true if the following result, formalized

in Theorem 3, is true under the CPA and DPA algorithms.

Theorem 3 Let ni(t) be the number of timesαi has been selected up to time t, and w be the difference

between the twohighestreward probabilities. Suppose that for a givenδ > 0, and for all i∈ (1...r), there

exists an Mi < ∞, such that ifαi is selected at least Mi times,

Pr{|d̂i(t)−di |< w
2}> 1−δ.

Then, as per Theorem 1, if we let M= max1≤i≤r{Mi}, and for all t> t0, if min1≤i≤r{ni(t)}> M,

Pr{|d̂i(t)−di |< w
2}> 1−δ.

The rationale of Theorem 3 is that sinceni(t) is the number of timesαi has been selected up to timet,

andw is the difference between the twohighestreward probabilities, it implies that if all actions are selected

at leastM times, each of thêdi will be in a w
2 neighborhood ofdi with an arbitrarily large probability. In

other words, the probability of̂dm(t) being greater than̂d j(t) j 6=m will be arbitrarily close to unity. This result

can be easily “proven” by the weak law of large numbers, and the “proof” can be found in [13].

However, there is a flaw in the above argument. In fact, Theorem 3 does not guaranteePr{K̄(t0)}> 1−δ.

To be specific, let us define

K(t) = {d̂m(t) is the largest element in̂D(t)}.

Then the result that can be deduced from Theorem 3 is thatPr{K(t)} > 1−δ whent > t0. But, indeed, the

condition which Eq. (2) is based on is:

K̄(t0) =
⋂

t>t0
K(t),

which means that for every single time instant in the future,i.e.,t > t0, d̂m(t) needs to be the largest element

in D̂(t). The flaw in the previous proofs reported in the literature isthat the authors made a mistake by

reckoning that[Pr{K(t)} > 1− δ](t>t0) is equivalent toK̄(t0). This renders the existing proofs for the CPA

and the DPA beingε-optimal, to be incorrect.

The flaw is documented in [25], which focused on the CPA, and further provided a way of correcting

the flaw, i.e., by provingPr{K̄(t0)}> 1−δ instead of provingPr{K(t)}(t>t0) > 1−δ. Although their proof

requires a sequence ofdecreasingvalues for the learning parameterλ, to the best of our knowledge, it

currently stands as the only correct way to prove theε-optimality of the CPA. We applaud the authors of [25]

for discovering this flaw, and for submitting an accurate proof for the CPA for the scenario when theλ’s are

changing with time.

However, the proof methodology that we have used here for theDPA is quite distinct (and uses com-

pletely different techniques) than the proof reported in [25]. The reasons why we have sought an alternate

proof are the following:
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1. The monotonicity property which all the previous flawed proofs and the proof in [25] were based on,

is, indeed, a very strong condition. The condition requiresthat d̂m(t) is ranked as the largest element

in D̂(t) at every single point of timefor all t > t0, which, in turn, requires that for the CPA to achieve

its ε-optimality, one must rely on an additional external assumption that the learning parameter,λ, is

gradually decreasing during the learning process. Though there is, currently, no way to circumvent

this external constraint so as to prove the CPA’sε-optimality, the essential difference between the DPA

and the CPA, i.e., that the former possesses states that are explicitly absorbing to which the LA can

jump to, makes it possible for us to prove the DPA’sε-optimality without requiring the constraint of

decreasing the learning parameter over time.

2. In our earlier proof for the convergence of the ACPA [3], wehad relied on the use of Hoeffding’s

inequality [27]. The application of the inequality in such asetting was only able to bound how much

the estimate of anysinglereward probability differs from its true value. We refer to this as the “single-

action” version of the Hoeffding’s inequality. The presentapplication of the inequality is able to bound

how far the estimate of anysinglereward probability (for example, of the “best” action) differs from

the estimate of the reward probability of any other action (i.e., of the “second best” action). We refer

to this as the “multi-action” version of the Hoeffding’s inequality. This version is far more powerful,

but by the same token, it is also more difficult to both apply and invoke. This version of the inequality

is fundamental to our present proof, and we believe that the consequent properties can be utilized to

formally and more elegantly demonstrate theε-optimality of other EAs, including the ACPA.

In the next two sections, we shall correct the above-mentioned flaw that exists in the previous proofs of

EAs. We do this by providing a new proof strategy for theε-optimality of the DPA, and which does not

require that the learning parameter,N, is gradually increased. The new proof also follows a four-step sketch

but is rather based on the convergence theory of submartingales, and on the theory of Regular functions.

4 The DPA’s ε-optimality: A New Proof

Our proof for the DPA’sε-optimality consists of four steps, which we first explain informally here. Firstly,

we prove that by properly setting the learning parameter,N, each action will be selected a large number of

times within a finite time instant. Secondly, based on the fact that each action has been selected (or probed)

a large number of times, according to the law of large numbers, the probability that the estimate of each

reward probability being within a narrow neighborhood of its true value, can be made arbitrarily large. In

other words, the reward estimation for each action is characterized by an arbitrarily high accuracy. Thirdly,

we prove that the sequence of{pm(t)}, the probability of choosing the best action, witht being greater than a

certain time instant, is a submartingale, given the condition that the accuracy of the estimation of the reward

probability is arbitrarily high. Finally, by invoking the submartingale convergence theory and the theory of
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Regular functions,{pm(t)} can be proven to converge to unity in probability, implying the ε-optimality of

the DPA.

Each of the steps of the proof will be detailed in the following subsections.

4.1 The Moderation Property of the DPA

The property of moderation can be described precisely by Theorem 2, which has been proven in [10]. This

implies that under the DPA, by utilizing a sufficiently largevalue for the learning parameter,N, each action

will be selected an arbitrarily large number of times.

4.2 The Key ConditionḠ(t0) for {pm(t)t>t0} being a Submartingale

In our proof strategy, instead of examining the condition for {pm(t)t>t0} beingmonotonically increasing, we

will investigate the condition for{pm(t)t>t0} being asubmartingale. By doing this, the previously mentioned

strong condition required by the authors of [25] represented by K̄(t0), i.e., of rankingd̂m(t) as the largest

element inD̂(t) at every single time instantafter timet0, will not be necessary any longer. Instead, we base

our arguments on the weakersubmartingalephenomenon,̄G(t0), defined as follows5:

q j(t) = Pr{d̂m(t)> d̂ j(t), j 6= m},

q(t) = Pr{d̂m(t)> d̂ j(t),∀ j 6= m}= ∏
j 6=m

q j(t), (4)

G(t) = {q(t) > 1−δ},δ ∈ (0,1),

Ḡ(t0) = {
⋂

t>t0

{q(t)> 1−δ}},δ ∈ (0,1). (5)

Note thatK̄(t0) is stronger than̄G(t0) in the sense that̄K(t0) = { ⋂
t>t0

{d̂m(t)> d̂ j(t),∀ j 6= m}}, is stronger

than{ ⋂
t>t0

{q(t) = 1}}, which is, in turn, stronger than̄G(t0).

Our goal in this step is to prove the following result, formulated in Theorem 4.

Theorem 4 Given aδ ∈ (0,1), there exists a time instant t0 < ∞, such that the condition̄G(t0) holds. In

other words, for this givenδ, there exists a t0 < ∞, such that∀t > t0:

q(t) > 1−δ. (6)

Proof: First of all, to make the proof easier and to help clarify arguments, we initially consider a two-

action Environment, whence the enhanced arguments for ther-action Environment can be generalized. With-

5In the interest of simplicity, at this juncture we have assumed in Eq. (4) that thêd j ’s are independent of each other. We believe
that this assumption can be easily relaxed by considering only the individuald j ’s and not all of them together.
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out loss of generality, letα1 be the optimal action andα2 the inferior one. We are to prove that:

Pr{d̂1(t)− d̂2(t)> 0}> 1−δ. (7)

If we further define

H = d1−d2, and

Ĥ(t) = d̂1(t)− d̂2(t), (8)

then

Pr{d̂1(t)− d̂2(t)> 0} ⇔ 1−Pr{Ĥ(t)−H ≤−H}, and

Pr{d̂1(t)− d̂2(t)> 0}> 1−δ ⇔ Pr{Ĥ(t)−H ≤−H} ≤ δ. (9)

Hence, we can equivalently prove

Pr{Ĥ(t)−H ≤−H} ≤ δ. (10)

If we denoten1(t) as the number of timesα1 has been selected up to timet, by invoking the “two-action”

version of Hoeffding’s inequality [27], we have:

Pr{Ĥ(t)−H ≤−H|n1(t) = n} ≤ e
− 2H2

n−1+(t−n)−1
. (11)

We thus have to find an appropriate value forn such that

e
− 2H2

n−1+(t−n)−1 ≤ δ, (12)

which guarantees thatPr{Ĥ(t)−H ≤−H} ≤ δ.

1. It is easy to see that

e
− 2H2

n−1+(t−n)−1 ≤ δ

⇐⇒− 2H2

n−1+(t −n)−1 ≤ lnδ

⇐⇒2H2n2−2H2tn− t lnδ ≤ 0. (13)

Consider now the equation

2H2n2−2H2tn− t lnδ = 0, (14)

11



wheren is the variable to be solved for.

One can easily observe that Eq. (14) is a quadratic equation of n. By applying the formula for obtaining

the roots of this quadratic equation, we can derive the expressions for its tworeal roots of Eq. (14) as:

nr1 =
t
2
−

√
H2t2+2t lnδ

2H
, and

nr2 =
t
2
+

√
H2t2+2t lnδ

2H
. (15)

From Eq. (15), we see that if

H2t2+2t lnδ < 0, (16)

i.e., if

t <
−2lnδ

H2 , (17)

then Eq. (14) has no real roots. Besides, as the quadratic coefficient 2H2 > 0, we have that for alln,

2H2n2−2H2tn− t lnδ > 0. (18)

Consequently, we conclude that

e
− 2H2

n−1+(t−n)−1
> δ whent <

−2lnδ
H2 . (19)

Conversely, ift ≥ −2lnδ
H2 ,

e
− 2H2

n−1+(t−n)−1 =











≤ δ, whennr1 ≤ n≤ nr2,

> δ, otherwise.
(20)

2. We now investigatenr1 ≤ n ≤ nr2, under the condition oft ≥ −2lnδ
H2 . Briefly speaking, to make sure

that Eq. (12) holds, we need to find an appropriate value forn such that∀t : t ≥ −2lnδ
H2 , n is greater than

nr1 and at the same time,n is less than or equal tonr2.

Firstly, we investigatenr1 ≤ n. Consider the function

f1(t) = nr1 =
t
2
−

√
H2t2+2t lnδ

2H
. (21)
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If we define f ′1(t) =
∂ f1(t)

∂t , then

f ′1(t) =
1
2
− H2t + lnδ

2H
√

H2t2+2t lnδ

=
1
2

(

1− H2t + lnδ√
H4t2+2tH2 lnδ

)

=
1
2

(

1− H2t + lnδ
√

(H2t + lnδ)2− (lnδ)2

)

. (22)

Since

H2t + lnδ
√

(H2t + lnδ)2− (lnδ)2
> 1, (23)

we can see thatf ′1(t) < 0, i.e., f1(t) decreases monotonically ast grows. The maximum off1(t) thus

occurs whent = −2lnδ
H2 . This leads us to the conclusion that∀t ≥ −2lnδ

H2 ,

nr1 = f1(t)≤ f1(
−2lnδ

H2 ) =
− lnδ
H2 . (24)

Consequently, if we choose

n≥ − lnδ
H2 , (25)

i.e.,α1 is selected more than− ln δ
H2 times, then∀t > −2lnδ

H2 , n≥ nr1.

Secondly, we investigaten≤ nr2. To accomplish this, we consider the analogous function

f2(t) = nr2 =
t
2
+

√
H2t2+2t lnδ

2H
. (26)

Arguing in a manner analogous to the above, we observe that

f ′2(t) =
∂ f2(t)

∂t
=

1
2

(

1+
H2t + lnδ

√

(H2t + lnδ)2− (lnδ)2

)

> 0. (27)

Hence f2(t) increases monotonically ast grows and the minimum off2(t) occurs whent = −2lnδ
H2 . In

other words,∀t ≥ −2lnδ
H2 ,

nr2 = f2(t)≥ f2(
−2lnδ

H2 ) =
− lnδ
H2 . (28)

If we further define:

f3(t) = t, (29)
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we have

f ′3(t) =
∂ f3(t)

∂t
= 1, and

f ′2(t)− f ′3(t) =
1
2

(

H2t + lnδ
√

(H2t + lnδ)2− (lnδ)2
−1

)

> 0, (30)

implying that ∂ f2(t)
dt >

∂ f3(t)
dt . Consequently, ast increases, the increment ofnr2 is always greater than

that of t. Moreover, if we increaset by unity, n will be either increased by unity or remain the same,

asα1 will be either selected or not selected. This further implies that the speed of the increment oft is

greater than that ofn. This reasoning leads to the conclusion that:

(a) whent ≥ −2lnδ
H2 , nr2 ≥ − lnδ

H2 ,

(b) and whent increases,nr2 increases faster thann.

Therefore, we can see that∀t ≥ −2lnδ
H2 , we needn to only satisfy Eq. (25), i.e.,n≥ − lnδ

H2 , to ensure that

nr1 ≤ n≤ nr2.

Note that the above analysis is also applicable toα2, which is, indeed, symmetric toα1 in this two action

environment considered. In other words, if we substituteα1 with α2, and further definen1(t) as the number

of timesα2 has been selected within timet, the corresponding results with regard ton can be directly applied

to α2. The consequence of the above arguments is the following: Let us suppose that we define the time

instantt0 such that within the time defined byt0, α1 andα2 have each been selected more than
⌈

− lnδ
H2

⌉

times.

In that case:

e
− 2H2

n−1+(t−n)−1 ≤ δ,

whence we can conclude that for the givenδ ∈ (0,1), ∀t > t0,

q(t) = Pr{d̂1(t)− d̂2(t)> 0}> 1−δ.

The result follows because the above arguments can be easilyseen to be true for anyr-action Environ-

ment inasmuch as it is true for every pair of actions6. Theorem 4 is thus proven.

6If one is interested in pursuing the generalr-action scenario in greater detail without invoking the 2-action results, the argu-
ments involved are almost identical, except that the algebra is a little more cumbersome. Without going into the detailed algebraic
manipulations, we can submit the arguments as follows. For the specific Environment, we define:

H j = dm−d j , j 6= m,

Ĥ j(t) = d̂m(t)− d̂ j (t), j 6= m.

Then, given anyδ ∈ (0,1), if we denoteδ⋆ = 1− r−1
√

1−δ, we can show that there exists a time instantt0, such that within the

time defined byt0, αm has been selected more than
⌈

− lnδ⋆
(min{H j})2

⌉

times, andα j,( j 6=m) has been selected more than

⌈

− lnδ⋆
H2

j

⌉

times.
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Table 1: The various possibilities for updatingpm for the next iteration under the DPA.

Responses The greatest element in̂D Updatingpm

pm(t +1)
Reward, (w.p.d j )

d̂m, (w.p. q(t)) pm(t)+ct∆
d̂ j , j 6= m, (w.p. 1−q(t)) pm(t)−∆

Penalty, (w.p. 1−d j ) d̂ j , j = 1...r, (1) pm(t)

4.3 {pm(t)t>t0} is a Submartingale under the DPA

We now prove the submartingale property of{pm(t)t>t0} for the DPA.

Theorem 5 Under the DPA, the quantity{pm(t)t>t0} is a submartingale.

Proof: If we denote a sequence of random variables asX1,X2, ...,Xt , ..., then the sequence is a submartin-

gale, if it satisfies the property that for any time instantt,

E[Xt]< ∞, and

E[Xt+1|X1,X2, ...,Xt ]≥ Xt .

Firstly, aspm(t) is a probability, we have

E[pm(t)]≤ 1< ∞. (31)

Secondly, we explicitly calculateE[pm(t)]. Using the DPA’s updating rule, we can describe the update

of pm(t) as per Table 1. Thus, we have:

E[pm(t +1)|P(t)]

= ∑
j=1...r

p j (d j (q(pm+ct∆)+ (1−q)(pm−∆))+ (1−d j)pm)

= ∑
j=1...r

(p jd jqct∆)− ∑
j=1...r

p jd j∆+ ∑
j=1...r

p jd jq∆+ ∑
j=1...r

p j pm

=pm+ ∑
j=1...r

p jd j (q(ct∆+∆)−∆). (32)

In the above,pm(t) andq(t) are respectively written aspm andq in the interest of conciseness. The difference

betweenE[pm(t +1)] andpm(t) can be expressed as:

Di f f (t) = E[pm(t +1)|P(t)]− pm(t)

= ∑
j=1...r

p j(t)d j (q(t)(ct ∆+∆)−∆). (33)

Consequently, for∀t > t0, q j (t)> 1−δ⋆ andq(t)≥ ∏
j=1...r, j 6=m

q j (t)> 1−δ.
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Given thatp j(t)> 0 andd j > 0, if we denoteZt =
∆

ct ∆+∆ = 1
ct+1, we see that if∀t > t0, q(t)> Zt , then,

Di f f (t)> 0, and the sequence{pm(t)t>t0} is a submartingale.

As per the action probability updating rules of the DPA,ct = 1,2, ..., r −1, implying thatZt ∈ [1
r ,

1
2]. Let

1−δ = max{Zt}=
1
2
, (34)

then, according to Theorem 4, there exists a time instantt0 such that∀t > t0,

q(t) > 1
2 ≥ Zt .

Consequently,{pm(t)t>t0} is a submartingale, and the theorem is proven.

4.4 Pr{pm(∞) = 1}→ 1 under the DPA

We now prove theε-optimality of the DPA.

Theorem 6 The DPA isε-optimal in all stationary random Environments. More formally, given any1−δ ≥
1
2, there exists a positive integer N0 < ∞ and a time instant t0 < ∞, such that for all resolution parameters

N > N0 and for all t> t0, the quantities q(t)> 1−δ, and Pr{pm(∞) = 1} → 1.

Proof: According to the submartingale convergence theory [4],

pm(∞) = 0 or 1. (35)

If we denoteej as the unit vector with thejth element being unity, thenpm(∞) = 1 is equivalent to the

assertion thatP(∞) = em. If we define the convergence probability

Γm(P) = Pr{P(∞) = em|P(0) = P}, (36)

our task is to now prove:

Γm(P)→ 1. (37)

To prove Eq. (37), we shall use the theory of Regular functions, and the arguments used follow the lines

of the arguments found in [4] for the convergence proofs of Absolutely Expedient schemes.

Let Φ(P) as a function ofP. We define an operatorU as

UΦ(P) = E[Φ(P(n+1))|P(n) = P]. (38)

16



If we now repeatedly applyU , we get the result of then-step invocation ofU as:

UnΦ(P) = E[Φ(P(n))|P(0) = P]. (39)

We refer to the functionΦ(P) as being:

• Superregular: IfUΦ(P)≤ Φ(P). Then applyingU repeatedly yields:

Φ(P)≥UΦ(P)≥U2Φ(P)≥ ...≥U∞Φ(P). (40)

• Subregular: IfUΦ(P)≥ Φ(P). In this case, if we applyU repeatedly, we have

Φ(P)≤UΦ(P)≤U2Φ(P)≤ ...≤U∞Φ(P). (41)

• Regular: IfUΦ(P) = Φ(P). In such a case, it follows that:

Φ(P) =UΦ(P) =U2Φ(P) = ...=U∞Φ(P). (42)

Moreover, ifΦ(P) satisfies the boundary conditions

Φ(em) = 1 andΦ(ej) = 0,(for j 6= m), (43)

then, as per the definition of Regular functions and the submartingale convergence theory, we have

U∞Φ(P) = E[Φ(P(∞))|P(0) = P]

=
r

∑
j=1

Φ(em)Pr{P(∞) = ej |P(0) = P}

= Pr{P(∞) = em|P(0) = P}

= Γm(P). (44)

Comparing Eq. (44) with Eq. (42), we see thatΓm(P) is exactly the functionΦ(P) upon which ifU is

applied an infinite number of times, the sequence of operations will lead to a function that equals the function

Φ(P) itself, because it would then be aRegularfunction. This observation readily leads us to the conclusion

that Γm(P) can be indirectly obtained by investigating a Regular function of P. However, as in the case

of Absolutely Expedient LA, a Regular function is not easilyfound, although itsexistenceis guaranteed.

Fortunately, Eq. (40) and Eq. (41) tell us thatΓm(P), i.e., the Regular function ofP, can be bounded from

above (below) by the Superregular (Subregular) function ofP. Furthermore, as we are most interested in

the lower bound ofΓm(P), our goal is to find a properSubregularfunction of P, which also satisfies the
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boundary conditions given by Eq. (43), which will then guarantee to boundΓm(P) from below.

To find such a Subregular function ofP, we will firstly find a corresponding Superregular ofP. Consider

a specific instantiation ofΦ to be the functionΦm, defined below as:

Φm(P) = e−xmpm, (45)

wherexm is a positive constant. Then, under the DPA,

U(Φm(P))−Φm(P) = E[Φm(P(n+1))|P(n) = P]−Φm(P)

= E[e−xmpm(n+1)|P(n) = P]−e−xmpm

= ∑
j=1...r

e−xm(pm+ct∆)p jd jq+ ∑
j=1...r

e−xm(pm−∆)p jd j(1−q)

+ ∑
j=1...r

e−xmpm p j(1−d j)−e−xmpm

= ∑
j=1...r

p jd je
−xmpm

(

q(e−xmct ∆ −exm∆)+ (exm∆ −1)
)

. (46)

Our task is to determine a proper value forxm such thatΦm(P) is Superregular, i.e.,

U(Φm(P))−Φm(P)≤ 0. (47)

This is equivalent to solving the following inequality:

q(e−xmct∆ −exm∆)+ (exm∆ −1)≤ 0. (48)

We know that whenb> 0 andx→ 0,

bx=̇1+(lnb)x+
(lnb)2

2
x2
. (49)

If we setb= e−xm, when∆ → 0, Eq. (48) can be re-written as

q

(

(lnb)(ct +1)∆+
(lnb)2

2
(c2

t −1)2∆2
)

− (lnb)∆+
lnb2

2
∆2 ≤ 0. (50)

If we substituteb with e−xm, we see that

xm

(

xm− 2(q(ct +1)−1)

∆(q(c2
t −1)+1)

)

≤ 0. (51)
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As xm is defined as a positive constant, we have

0< xm ≤ 2(q(ct +1)−1)

∆(q(c2
t −1)+1)

. (52)

If we denote

xm0 =
2(q(ct +1)−1)

∆(q(c2
t −1)+1)

, (53)

we see thatxm0 > 0 becausect = 1,2, ..., r −1 andq(t)(t>t0) >
1
2. Thus, when∆ → 0, xm0 → ∞.

We now introduce another function

φm(P) =
1−e−xmpm

1−e−xm
, (54)

wherexm is the same as defined inΦm(P). Moreover, we observe the property that ifΦm(P) = e−xmpm is

a Superregular (Subregular), thenφm(P) = 1−e−xmpm

1−e−xm is Subregular (Superregular) [4]. Therefore, thexm, as

defined in Eq. (52), which rendersΦm(P) to be Superregular, causes the functionφm(P) to be Subregular.

Obviously,φm(P) meets the boundary conditions, i.e.,

φm(P) =
1−e−xmpm

1−e−xm
=











1, whenP= em,

0, whenP= ej .

(55)

Therefore, according to Eq. (41),

Γm(P)≥ φm(P) =
1−e−xmpm

1−e−xm
. (56)

As Eq. (56) holds for everyxm bounded by Eq. (52), we can choose the largest valuexm0, and when

xm0 → ∞, Γm(P) → 1. We have thus proved thatPr{pm(∞) = 1} → 1 under the DPA, implying itsε-

optimality.

Remark: Having completed the proof of the DPA’sε-optimality, we are able to give firm figures for

t0 and the number of times each action needs to be selected. To actually determine the value oft0, we

summarize the result of the above arguments as follows: Letδ⋆ = 1− r−1
√

1−δ, whereδ is the quantity

specified in the statement of Theorem 6. Then there exists a time instant,t0, such that

t0 >

⌈ − lnδ⋆

(min{H j})2

⌉

+ ∑
j 6=m

⌈

− lnδ⋆

H2
j

⌉

, (57)

and up to the time instant specified byt0, we can guarantee thatαm has been selected more than
⌈

− lnδ⋆
(min{H j})2

⌉

times, andα j,( j 6=m) has been selected more than

⌈

− ln δ⋆
H2

j

⌉

times, guaranteeing all the conditions imposed by
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the corresponding theorems.

5 The Difference between the Proofs Requiring Monotonicityand the Sub-

martingale Properties

To highlight the difference between the proof presented in this paper and the proof in [25], we define

C̄(t0) = {
⋂

t>t0

{q(t) = 1}}. (58)

If we compare Eq. (58) with the definition of̄G(t0) in Eq. (5), we see that if we enforce the valueδ = 0,

Ḡ(t0) becomes equivalent tōC(t0), and thesubmartingaleproperty of{pm(t)(t>t0)} becomes precisely the

monotonicityproperty. Accordingly, we see that the conditionδ⋆ = 0 yields the lower bound oft0 to become:

t0 >

⌈ − lnδ⋆

(min{H j})2

⌉

+ ∑
j 6=m

⌈

− lnδ⋆

H2
j

⌉

= ∞. (59)

Consequently, there will be no such time instantt0 < ∞, after whichq(t)(t>t0) = 1. This is precisely the

reason why in the case of the CPA in [25], one requires an additional assumption that the learning parameter

λ has to be gradually decreasing, as explained in greater detail in [25].

It should therefore be very clear to the reader that the analysis and the new proof presented here are

significantly different than the corresponding analysis and proof in [25]. They are based on the weaker con-

dition Ḡ(t0) instead ofK̄(t0), because of which theε-optimality does not require that the scheme’s learning

parameter gradually decreases.

6 Conclusions

Estimator algorithms are acclaimed to be the fastest Learning Automata (LA), and within this family, the

set ofPursuit algorithms have been considered to be the pioneering schemes. Theε-optimality of Pursuit

Algorithms (PAs) are of great importance and has been studied for decades. The convergence proofs for the

PAs in all the reported papers have a common flaw which was discovered by the authors of [25], whom we

applaud. This paper corrects the flaw and provides a new prooffor the Discretized Pursuit Algorithm (DPA).

Rather than examining the monotonicity property of the{pm(t)(t>t0)} sequence as done in the previous

papers and in [25], our current proof studies thesubmartingaleproperty of{pm(t)(t>t0)}. Thereafter, by

virtue of the submartingale property and the weaker condition, the new proof invokes the theory of Regular

functions, and does not require the resolution/parameter to decrease/increase gradually.

Our analysis constitutes the only result for the DPA. We submit that it is both novel and pioneering.

Further, as opposed to the proof found in [25], we do not require the parameter to change continuously.
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Also, since we have invoked the “multi-action” version of Hoeffding’s inequality, we believe that our proof

can be extended to formally demonstrate theε-optimality of other EAs which possess absorbing states.

The formal “corrected” proof for the finite time analysis of the DPA [2] remains open. It is currently

being investigated.
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