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Abstrat

The task of designing estimators that are able to trak time-varying distributions has found

promising appliations in many real-life problems. Existing approahes resort to sliding windows

that trak hanges by disarding old observations. In this paper, we report a novel estimator

referred to as the Stohasti Disretized Weak Estimator (SDWE), that is based on the priniples

of disretized Learning Automata (LA). In brief, the estimator is able to estimate the parameters

of a time varying binomial distribution using �nite memory. The estimator traks hanges in

the distribution by operating on a ontrolled random walk in a disretized probability spae.

The steps of the estimator are disretized so that the updates are done in jumps, and thus

the onvergene speed is inreased. Further, the state transitions are both state-dependent and

randomized. As far as we know, suh a sheme is both novel and pioneering. The results

whih have �rst been proven for binomial distributions have subsequently been extended for

the multinomial ase, using whih they an be applied to any univariate distribution using a

histogram-based sheme. The most outstanding and pioneering ontribution of our work is

that of ahieving multinomial estimation without relying on a set of binomial estimators, and

where the underlying strategy is truly randomized. Interestingly, the estimator possesses a low

omputational omplexity that is independent of the number of parameters of the multinomial

distribution. The generalization of these results for other distributions has also been alluded to.
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The paper brie�y reports onlusive experimental results that prove the ability of the SDWE to

ope with non-stationary environments with high adaptation and auray.

Keywords : Weak Estimators, Learning Automata, Non-Stationary Environments

1 Introdution

Estimation is a fundamental and substantial issue in statistial problems. Estimators generally fall

into various ategories inluding the Maximum Likelihood Estimates (MLE) and the Bayesian family

of estimates. The MLE and Bayesian estimates are well-known for having good omputational and

statistial properties. However, the basi premise for establishing the quality of estimates is based on

the assumption that the parameters being estimated do not hange with time, i.e, the distribution

is assumed to be stationary. Thus, within this premise, it is desirable that the estimate onverges

to the true underlying parameter with probability 1, as the number of samples inreases.

Consider, however, the senario when the parameter being estimated hanges with time. Thus,

for example, let us suppose that the Bernoulli trials leading to a binomially-distributed random

variable were done in a time-varying manner, where the parameter swithed, for example, period-

ially, to possibly, a new random value. Suh a senario exhibits the behavior of a non-stationary

environment. Consequently, in this setting, the goal of an estimator sheme would be to estimate

the parameter, and to be able to adapt to any hanges ourring in the environment. In other words,

the algorithm must be able to detet the hanges and to estimate the new parameter after a swith

has ourred in the environment, and hopefully, this must be done �reasonably quikly�. If one uses

strong estimators (i.e., estimators that onverge w.p. 1), it is impossible for the learned parameter

to hange rapidly from the value to whih it has onverged, resulting in poor time-varying estimates.

As opposed to the traditional MLE and Bayesian estimators, in the vein of the known results for

non-stationary environments (surveyed presently), we propose a novel disretized weak estimator,

referred to as the Stohasti Disretized Weak Estimator (SDWE), that an be shown to onverge

to the true value fairly quikly, and to also �unlearn� what it has learned so far so as to adapt to the

new, �swithed � environment. The onvergene of the estimate is weak, i.e., with regard to the �rst

and seond moments. The analyti results derived and the empirial results obtained demonstrate

that the SDWE estimator is able ope with non-stationary environments with a high adaptation

rate and auray.

With regard to their appliability, apart from the problem being of importane in its own right,

weak estimators admit a growing list of appliations in various areas suh as intrusion detetion sys-

tems in omputer networks [33℄, spam �ltering [41℄, ubiquitous omputing [20℄, fault tolerant routing

[25℄, adaptive enoding [29℄, and topi detetion and traking in multilingual online disussions [32℄.

We submit that the DSWE an be used expediently in all of these appliation domains. Further,
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suh an estimation sheme opens avenues towards a large set of real life appliations, as in traking

hanging user preferenes [26℄ and variations in ubiquitous environments, and as an integral om-

ponent of a hybrid framework appliable for servie reommendation systems [39℄. Indeed, we also

are urrently investigating the appliation of our estimator to inferring drifts in other user-interest

domains.

2 Related Work and State-of-the-Art

Traditionally available methods that ope with non-stationary distributions resort to the so-alled

sliding window approah, whih is a limited-time variant of the well-known MLE sheme. The

latter model is useful for disounting stale data in data stream observations. Data samples arrive

ontinuously and only the most reent observations are used to ompute the urrent estimates. Any

data ourring outside the urrent window is forgotten and replaed by the new data. The problem

with using sliding windows is the following: If the time window is too small the orresponding

estimates tend to be poor. As opposed to this, if time window is too large, the estimates prior to the

hange of the parameter have too muh in�uene on the new estimates. Moreover, the observations

during the entire window width must be maintained and updated during the proess of estimation

1

.

Apart from the sliding window approah, many other methods have been proposed, whih deal

with the problem of deteting hange points during estimation. In general, there are two major

ompetitive sequential hange-point detetion algorithms: Page's umulative sum (CUSUM) [2℄

detetion proedure, and the Shiryaev-Roberts-Pollak detetion proedure. In [31℄, Shiryayev used

a Bayesian approah to detet hanges in the parameter's distribution, where the hange points

were assumed to obey a geometri distribution. CUMSUM is motivated by a maximum likelihood

ratio test for the hypothesis that a hange ourred. Both approahes utilize the log-likelihood ratio

for the hypotheses that the hange ourred at the point, and that there is no hange. Inherent

limitations of CUMSUM and the Shiryaev-Roberts-Pollak approahes for on-line implementation

are the demanding omputational and memory requirements. In ontrast to the CUMSU and the

Shiryaev−Roberts−Pollak approahes, our SDWE avoids the intensive omputations of ratios, and

does not invoke hypothesis testing.

In earlier works [14, 16, 17℄, Koyhev et al. introdued the onept of Gradual Forgetting (GF).

The GF proess relies on assigning weights that derease over time to the observations. In this

sense, the GF approah assigns most weight to the more reent observations, and a lower weight to

the more-distant observations. Hene, the in�uene of old observations (on the running estimates)

dereases with time. It was shown in [17℄ that the GF an be an enhanement to the sliding window

paradigm. In this sense, observations within eah sliding window are weighted using a GF funtion.

1

Enhanements to this philosophy will be disussed later in this setion.
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As opposed to the above-mentioned papers, in the last deades, a wide range of tehniques for

estimation in dynamially hanging environments have appeared. We provide here a brief overview

of representative on-line approahes partiularly relevant to the family of tehniques pioneered in

the present paper. For a more detailed and omprehensive treatment of these, we refer the reader to

reent surveys [8, 18℄, whih inlude approahes based on adaptive windowing, aging fators, instane

seletion and instane weighting. Additionally, there is a distintion between passive approahes,

whih intrinsially adapt to hanges, and ative approahes that atively searh for hanges.

With regard to ategorizing these approahes, they di�er in terms of their memory management

and forgetting mehanisms [8℄. A memory management module aims to ontrol the data points that

are to be kept in memory for learning. As opposed to this, forgetting refers to the task of erasing

previously-learned information. One data management strategy, referred to as �instane seletion�,

is based on storing instanes relevant to the urrent situation. Here, the simplest approah is to

only keep a single data point in memory, with the task of forgetting being modeled by the gradual

dilution of its relevane through adaptation of the model's parameters [6℄. Suh a strategy an be

expanded to store multiple data points, using a window of �xed size. The data points in the window

are used to establish the urrent estimate, and at eah time step, the oldest data point is replaed

with the newest one, using a FIFO poliy. Slow hanges are best aptured by a larger window, while

rapid hanges require a orrespondingly smaller window. To address this on�it, an alternative

sheme involves variable-sized sliding windows, referred to as adaptive windowing [38℄. In brief, the

overall strategy is to allow the window size to grow over time, and use a dediated hange detetor

to reset the window size when a hange is deteted, resulting in windows with an adaptive size.

More advaned approahes arefully pik out prototypes, representing the onept being traked [3℄,

thus handling onept drift by replaing the prototypes themselves to re�et hanges.

Another strategy, whih avoids windowing, involves using aging fators. In this approah, while

training data spans all of the data points, eah data point is assigned a weight that re�ets its

importane. Reent data points are prioritized, for instane using a fading fator that gradually

redues the in�uene of older data points [4℄. The deay an be linear [15℄ or exponential [13℄.

By using weights ombined with instane seletion, referred to as instane weighting, one an take

advantage of the ability of support vetor mahines to proess weighted instanes [13℄.

Most of the above approahes are passive in the sense that they gradually adjust to hanges,

without expliitly pinpointing them. In ontrast, another lass of approahes atively searhes for

hanges using hange detetors. One solution is to maintain an ensemble of estimators, ombined

using voting, suh as the dynami integration of lassi�ers found in [37℄. The impat of eah

estimator is based on assessing them on reent data, prioritizing the one that produes the least

error, where the hange of priority indiates an underlying hange in the distribution of data points.

One an also monitor estimation error using various mehanisms, or the raw data itself. Changes
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in estimation error signals a hange in the distribution of data points, triggering re-estimation [28℄.

In all brevity, hanges are deteted based on omparing setions of data, using statistial analysis

to detet distributional hanges, i.e., abrupt or gradual hanges in the mean of the data points

when ompared with a baseline mean with a random noise omponent. One option is also to keep

a referene window and ompare reent windows with the referene window to detet hanges [7℄.

This an, for example, be done based on omparing the probability distributions of the referene

window and the reent window using Kullbak-Leibler divergene [5, 30℄.

Using a ompletely di�erent tool-set, Oommen and Rueda [27℄ presented a strategy by whih

the parameters of a binomial/multinomial distribution an be estimated when the underlying dis-

tribution is non-stationary. The method has been referred to as the Stohasti Learning Weak

Estimator (SLWE), and is based on the priniples of ontinuous stohasti Learning Automata

(LA). As opposed to this, our sheme resorts to disretizing the probability spae [1, 19, 24, 34℄,

and performing a ontrolled random walk on this disretized spae. It is well known in the �eld

of LA that disretized shemes ahieve faster onvergene speed than their ontinuous ounterparts

[1, 23℄. By virtue of disretization, our estimator realizes fast adjustments of the running estimates

by performing �jumps�, and it is thus able to robustly and quikly trak hanges in the parame-

ters of the distribution after a swith has ourred in the environment. Historially, the onept

of disretizing the probability spae was pioneered by Thathahar and Oommen in their study on

Reward-Ination LA [34℄, and sine then, it has atalyzed a signi�ant researh in the design of

disretized LA [1, 9, 10, 19, 24℄. Reently, there has been an upsurge of researh interest in solving

resoure alloation problems based on novel disretized LA [9, 10℄, in whih the authors proposed a

solution to the lass of Stohasti Nonlinear Frational Knapsak problems where resoures had to

be alloated based on inomplete and noisy information. The latter solution was thereafter applied

to resolve the web-polling problem, and to the problem of determining the optimal size required for

training a lassi�er. Our present paper is a distant relative of these shemes.

To the best of our knowledge, our SDWE is the �rst reported disretized

2

ounterpart of the

ontinuous SLWE [27℄. The numerous suessful appliations of the ontinuous SLWE and the

solution to stohasti point loation using, for example, a hierarhial [40℄ strategy, reported in [25,

29, 32, 41℄ motivates our SDWE, and eluidates its relevane for traking non-stationary distributions

in real-life problems.

2

We emphasize that the main thrust of this paper is not to merely demonstrate the superiority of the SDWE to

the SLWE et. Rather, we submit that the entire phenomenon of utilizing the onepts of disretization in weak

estimation is unexplored, and it is preisely here that we have our primary ontributions.
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2.1 Contributions of the Paper

In this paper, we provide a novel disretized estimator based on the priniples of LA. The sheme

presents a number of notable ontributions that an be summarized as follows:

• To the best of our knowledge, the SDWE is the �rst reported disretized estimator that is able

to trak a time varying binomial/multnimoial distribution.

• The sheme uses the disretizing priniple of LA, and operates by means of a ontrolled random

walk on the probability spae. Indeed, by virtue of disretization, our SDWE yields faster

onvergene speed than analogous ontinuous weak estimators.

• The SDWE also possesses a low omputational omplexity, measured in terms of the number

of updates per time step, for updating the vetor of estimates. Interestingly, this index is

independent of the number of parameters of the multinomial distribution to be estimated.

In fat, the SDWE makes at most two updates per time step, thus rendering the worst ase

omplexity to be onstant or O(1). To the best of our knowledge, this harateristi is unique

when ompared to the other estimators � inluding the alaimed SLWE, whih possesses a

omplexity of O(r), where r is the number of parameters of the multinomial variable.

• Apart from being omputationally e�ient, the sheme is memory e�ient and an be imple-

mented using simple �nite state mahines.

• Finally, with regard to the design and analysis of Random Walks (RWs), we submit that a

fundamental ontribution of this paper is the manner in whih we have designed the estima-

tion proess for the multinomial distribution, by reduing/projeting the latter onto multiple

binomial state spaes. This issue will be disussed, in detail, later.

3 Ergodi and Disretized Properties of the SDWE

Our devised SDWE is based on the theory of LA [21, 36℄, and in, partiular, on the family of ergodi

and disretized LA. In fat, aording to their Markovian representation, automata fall into two

ategories: ergodi automata and automata possessing absorbing barriers. The latter automata

get loked into a barrier state after a �nite number of iterations. Many families of automata that

posses absorbing barriers have been reported [21℄. Ergodi automata have also been investigated in

[21, 23℄. These automata onverge in distribution and thus, the asymptoti distribution of the ation

probability vetor has a value that is independent of the orresponding initial vetor. While ergodi

LA are suitable for non-stationary environments, absorbing automata are preferred in stationary

environments. In fat, ergodi automata are known to better adapt to non-stationary environments
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where the reward probabilities are time dependent. In the next setion, we shall present the reasons

why our LA-based sheme is ergodi.

Moving now to a disjoint vein, with respet to the values that the ation probabilities an take,

the families of LA typially fall into one of the two ategories, namely, Continuous or Disretized.

Continuous LA permit the ation probabilities to take any value in the interval [0, 1]. In pratie,

the relatively slow rate of onvergene of these algorithms onstituted a limiting fator in their

appliability. In order to inrease their speed of onvergene, the onept of disretizing the proba-

bility spae was introdued in [23, 34℄. This onept is implemented by restriting the probability of

hoosing an ation to be one of a �nite number of values in the interval [0, 1]. If the values allowed

are equally spaed in this interval, the disretization is said to be linear, otherwise, the disretization

is alled non-linear. Following the disretization onept, many of the ontinuous Variable Stru-

ture Stohasti Automata (VSSA) have been disretized; indeed, disretized versions of almost all

ontinuous automata have been reported [22, 23℄. Families of Pursuit and Estimator-based LA have

been shown to be faster than VSSA [35℄. As a matter of a fat, even faster disretized versions of

these shemes have been reported [1, 23℄.

We shall presently argue how our automata is linearly disretized. In brief, our estimator relies

on the priniple of disretization in order to hasten the onvergene speed, and on the phenomenon

of ergodiity to be able to ope with non-stationary distributions.

4 A Diret Estimator for Binomial Distributions

In this setion and the next, we submit the theoretial foundations on whih the SDWE is developed.

First of all, in Setion 4.2, we shall formally prove that the so-alled diret (or naively disretized)

solution will not work. Then, in Setion 5, we present a more-elaborate state-dependent RW-based

solution that will, indeed, yield aurate results in terms of the onvergene, in expetation, to the

orret underlying mean. We also explain the philosophy behind the design of the estimator based

on the analogy with birth-death proesses. The resulting disrete estimator an therefore, truly, be

pereived as a ompletely novel estimator.

4.1 De�nitions

We assume that we are estimating the parameters of a binomial distribution. The binomial distri-

bution is haraterized by two parameters, namely the number of trials and the parameter hara-

terizing eah Bernoulli trial. We assume that the number of observations is the number of trials.

We seek to estimate the Bernoulli parameter for eah trial.

Let X be a binomially distributed random variable, whih takes on the value either �1� or �2�.

We hoose to use these symbols instead of the more ommonly used notation �0� or �1� to make the
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notation onsistent when we onsider the multinomial ase. It is assumed that the distribution of

X is haraterized by the parameter S = [s1, s2]
T

. In other words,

X = �1� with probability s1, and

X = �2� with probability s2, where s1 + s2 = 1.

Let x(t) be a onrete realization ofX at time `t'. We intend to estimate S, i.e, si for i = 1, 2. We

ahieve this by maintaining a running estimate of P (t) = [p1(t), p2(t)]
T

of S where pi(t) represents

the estimate of si at time n, for i = 1, 2. Our proposed SDWE works in a disretized manner. In fat,

we enfore the ondition that pi(t) only takes values from a �nite set, i.e, pi(t) ∈ {0, 1/N, 2/N, . . . , 1},

where N is a user-de�ned integer parameter. N is alled the Resolution parameter, and determines

the stepsize ∆ (where ∆ = 1/N) relevant to the updating of the estimates.

4.2 The Diret Solution

In the ontinuous version of the SLWE pioneered by Oommen et al [27℄, the updating rule of the

estimate is given by the following rule:

p1(t+ 1) =











1− λ (1− p1(t)) if x(t) = �1�

λp1(t) if x(t) = �2�.

(1)

The ontinuous SLWE avoids the maximum-likelihood estimation priniple and is thus able to

ope with non-stationary environments. As a starting point, to motivate the results of this paper,

we shall onsider the issue of whether we an use the analogous priniple of updating the probability

vetor (albeit, in a disretized manner) to ahieve the same result. From a philosophial perspetive,

one would imagine that by updating the probability vetor in an idential dsiretized manner and

using these probabilities to estimate S, one ould obtain a reasonable estimate of S. This is more

plausible beause it turns out that the updating rule parallels a maximum likelihood mehanism

in whih the state index an be used to ount the number of ourrenes of the event. However,

ironially, unlike the maximum-likelihood sheme, the probability estimated by suh a mehanism

does not onverge to the true (unknown) underlying probability. This result is quite astonishing,

but it really is quite straightforward if one onsiders the properties of the underlying Markov Chain.

Based on the latter updating rules, the obvious approah analogous to the SLWE for updating

the estimate would be to inrease the estimate by the step size if x(t) = �1� and derease the estimate

by the step size if x(t) = �2�. Suh a strategy would lead to the following rules:

p1(t+ 1) =























p1(t) +
1
N

if 0 ≤ p1(t) < 1 and x(t) = �1� ,

p1(t)−
1
N

if 0 < p1(t) ≤ 1 and x(t) = �2�

p1(t) Otherwise.

(2)
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The Markov hain for the above-spei�ed updating sheme has N + 1 states k(t) ∈ {0, . . . , N}

estimating the underlying probability for observing x(t) = �1�, s1, as p1(t) = k(t)
N

. This Markov

hain is depited in Figure 1. We now state the following foundational result that P (n) does not

onverge to S(n), and it is proven below.

0k = 1k = 2k = 2k    N= − 1k    N= − k    N=

s1 s1 s1
s1 s1

s1

s1

s2s2s2 s2s2s2

s2

Figure 1: The Markov hain of the diret mapping of the SLWE onto a disretized spae.

Theorem 1 The stationary distribution de�ned by the Markov hain desribe by Figure 1 is:

πs =

(

s1
s2

)s

π0 0 ≤ s ≤ N, (3)

where π0 is a normalizing onstant suh that

∑N
s=0 πs = 1, and is given by:

π0 =
1− ρ/(1− ρ)

1− [ρ/(1− ρ)]N+1
. (4)

Proof : Sine the underlying probabilities are s1 and s2, one an pereive that the stationary

state probabilities πs of the Markov hain in Figure 1 must obey the following reurrene relation

for the non-extremal states:

πs = s1πs−1 + s2πs+1. (5)

Equation (3) is proven by indution. Consider �rst the basi ase for π0 by setting s = 0. Then,

if we use the simplifying notation that ρ = s1 (and (1 − ρ) = s2), and if we substitute the solution
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into the reurrene relation (5), we get:

πs = ρπs−1 + (1− ρ)πs+1

= ρ

(

ρ

1− ρ

)s−1

π0 + (1− ρ)

(

ρ

1− ρ

)s+1

π0

=
ρs

(1− ρ)s−1
π0 +

ρs+1

(1− ρ)s+1
π0 −

ρs+2

(1− ρ)s+1
π0

=
π0

(1− ρ)s+1

[

ρs(1− ρ)2 + ρs+1 − ρs+2
]

=
π0

(1− ρ)s+1

[

ρs
(

1− 2ρ+ ρ2
)

+ ρs+1 − ρs+2
]

=
π0

(1− ρ)s+1

[

ρs − 2ρs+1 + ρs+2 + ρs+1 − ρs+2
]

=
ρs(1− ρ)

(1− ρ)s+1
π0 =

ρs

(1− ρ)s
π0

=

(

ρ

1− ρ

)s

π0,

whih shows that the equations are aurate for the internal states. The stationary probability of

the extreme state must be omputed diretly from the reurrene relation for the �nal state as this

is di�erent from the relation for the internal states. To do this, we observe that:

πN = ρπN−1 + ρπN .

Now sorting the state probabilities, we get:

πN − ρπN = ρπN−1, whene (1− ρ)πN = ρπN−1.

Simplifying the above (after re-arranging), we see that:

πN =

(

ρ

1− ρ

)

πN−1 =

(

ρ

1− ρ

)

[

(

ρ

1− ρ

)N−1

π0

]

=

(

ρ

1− ρ

)N

π0.

To obtain the normalizing onstant, let a = ρ/(1 − ρ). Then the sum of π's over all states is

N
∑

s=0

πs =

N
∑

s=0

asπ0 = π0

N
∑

s=0

as

Thus, from the formula for the sum of a �nite power series,

= π0

[

1− aN+1

1− a

]
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Note that the the normal requirement that |a| < 1, whih is neessary for the onvergene of an

in�nite power series sums, is not needed for �nite sums. Sine this sum must be unity for a probability

distribution, the normalising onstant an be found as

π0 =
1

1− aN+1

1− a

=
1− a

1− aN+1
=

1− ρ/(1− ρ)

1− [ρ/(1− ρ)]N+1
.

Hene the result.

Theorem 2 Following the update rules given by Eq. (2), as N → ∞, E[P (∞)] onverges to [1, 0]T

if s1 > 1/2, and to [0, 1]T if s1 < 1/2 independent of the true value of S.

Proof : By observing that the asymptoti probability mass on the states follows a geometri

distribution, the expeted value of the distribution (i.e., the expeted value for the estimate) is

easily obtained for ρ 6= 1/2 as:

E[ρ̂] = 1−
1

1− aN+1
+

1

N

(

1

1− a
−

1

1− aN+1

)

, (6)

where a = ρ/(1− ρ).

The result follows diretly from (6) sine when ρ < 1/2, it implies that a < 1, and so as N → ∞

the �rst two terms anel, and the fator 1/N eventually takes the last term to zero independent of

the true value of ρ. Similarly, if ρ > 1/2 then a > 1, and as N grows, the term aN+1
will grow faster

than 1/N diminishes. Hene the expeted estimate an quikly be approximated by 1−1/(N(a−1)),

whih pushes the estimate towards unity as N inreases inde�nitely.

Remark: These ounter intuitive e�ets learly highlight the fat that it is not so straightforward

to �disretize� a ontinuous sheme beause the main problems with suh a strategy for devising a

disretized sheme is that the mean is asymptotially always at the boundary values. Interestingly,

the work in [11℄ further demonstrates that even for �nite values of N , the expeted estimate will

never be lose to S. Indeed, even for moderate values of N , the mean will be biased towards the

extreme values � basially rendering suh a disretization methodology to be useless. This motivates

the searh for a ompletely di�erent, non-trivial mehanism whereby one an obtain a disretized

SLWE. This is the subjet matter of the rest of the paper.

5 Design of the SDWE for the binomial ase

In order to derive a disretized solution that really works, it is neessary to step bak and revisit

the motivation for using disretized automata, and in partiular, the phenomenon that ontinuous

automata have the property that they only approah the extreme probability values asymptotially.
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This property has not been aptured by the previous attempt on disretizing the SLWE whih was

disussed in the last setion. This observation leads to the revelation that it must be inreasingly

di�ult for the automaton to move to a more extreme state even as it gets loser to the boundary

states represented by the indies zero or N . Consider the ase where s1 ≈ 1. In suh a ase, the

observations will primarily onsist of a sequene of x(·) = �1�, and although it should be harder for

the automaton to move towards the �nal state, it seems inorret to redue the state at time t upon

another observation of x(t) = �1�. The solution to this dilemma is to let the automaton keep the

urrent state with inreasing probability the loser the state is to either of the extreme states.

Stohasti proesses of this type are typially ategorized as birth-death proesses in the litera-

ture, stemming from early studies of disrete population dynamis, where the growth depends on

the number of individuals in the population [12℄. Assuming that the individuals ompete for food,

an individual's risk of dying of starvation over an epoh of observations will inrease with a growing

population, whereas epoh survival will be almost assured when there are few individuals. In addi-

tion, one an safely assume that the birth rates depend on the population size. Thus, an equilibrium

will be ahieved when the birth rate balanes the death rate for a given population size admitted by

the availability of the food resoures.

With this as a bakdrop, at this junture, we present the equations motivating the design of suh

a disretized estimator.

Initially, we assign p1(0) = p2(0) = N/2, where N is assumed to be an even integer. Thereafter,

the value of p1(t), is updated as follows:

If x(t) = �1� and rand() ≤ 1− p1(t) and 0 ≤ p1(t) < 1

p1(t+ 1) := p1(t) +
1

N
(7)

If x(t) = �2� and rand() ≤ 1− p2(t) and 0 < p1(t) ≤ 1

p1(t+ 1) := p1(t)−
1

N
(8)

p1(t+ 1) := p1(t) Otherwise, (9)

where p2(t+ 1) = 1− p1(t+ 1) and rand() is a uniform random number generator funtion. In the

interest of simpliity, we omit the time index t, whenever there is no onfusion and thus, P implies

P (t).

We state below two fundamental theorems onerning our sheme. The �rst theorem is about

the distribution of the vetor P whih estimates S as per Eqs. (7), (8) and (9). We a�rm that P

onverges in distribution. The mean of P is shown to onverge exatly to the mean of S. The seond
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theorem is about the variane of the estimate, desribing the rate of onvergene in relation to the

variane, and its dependene on N . We will show that a small N results in fast onvergene and a

large variane, and that a large value of N will lead to slow onvergene and a small variane. As

we will see, the hoie of this user-de�ned learning parameter, N , summarizes the trade o� between

the speed and the orresponding variane.

Sine the proofs of the theorems are rather intertwined, we shall prove them together.

Theorem 3 Let X be a binomially distributed random variable, and P (t) be the estimate of S at

time t obtained by Eqs. (7), (8) and (9). Then E[P (∞)] = S.

Theorem 4 Let X be a binomially distributed random variable, and P (t) be the estimate of S at

time t. Then the algebrai expression for the variane of P (∞) is fully determined by N . Moreover,

when N → ∞ the variane tends to zero, implying mean square onvergene.

Proof : We now present the proofs of Theorems 3 and 4.

In Theorem 3, our aim is to prove that as the index t is inreased inde�nitely, the expeted value

of the p1(t) onverges towards s1, implying that: limt→∞E[p1(t)] → s1.

We shall prove the above by analyzing the properties of the underlying Markov hain, whih is

spei�ed by the rules given by Eqs. (7), (8) and (9). In brief, rules given by Eqs. (7), (8) and (9)

obey the Markov hain with transition matrix H = [hkl], where.

hk,k−1 = s2
k
N

, 0 < k ≤ N ,

hk,k+1 = s1(1−
k
N
) , 0 ≤ k < N ,

hk,k = 1− hk,k−1 − hk,k+1 , 0 < k < N ,

= (1− k
N
) + (2 k

N
− 1)s1 , 0 < k < N ,

and, aordingly

h0,0 = 1− h0,1

hN,N = 1− hN,N−1.

The assoiated Markov Chain

3

is depited in Figure 2.

3

In the population dynamis formulation of the problem, the following two onepts an be de�ned from the above

de�nitions [12℄: Birthrate = s1(1−
k

N
), and Deathrate = s2

k

N
.
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Figure 2: The Markov hain of the SDWE where k denotes the state index.

We shall now ompute πk, the stationary (or equilibrium) probability of the hain being in state

k. Clearly H represents a single losed ommuniating lass whose periodiity is unity. The hain is

ergodi, and the limiting probability vetor is given by the eigenvetor of HT
orresponding to the

eigenvalue unity.

The vetor of steady state probabilities Π = [π1, . . . , πN ]T an be omputed using HTΠ = Π as:
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(10)

Consider �rst the stationary probability of being in state 0, π0. Expanding the �rst row of Eq.

(10) yields:

π0h0,0 + π1h1,0 = π0 =⇒ π1 =
(1− h0,0)

h1,0
=

h0,1
h1,0

π0. (11)

Expanding the seond row of Eq. (10) and substituting Eq. (11) yields:

π0h0,1 + π1h1,1 + π2h2,1 = π1 =⇒ π2 =
h1,2
h2,1

π1. (12)
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Arguing in the same manner, and after some algebrai simpli�ations, we obtain the reurrene:

πk =
hk−1,k

hk,k−1
πk−1. (13)

Using Eq. (13) and substituting hk−1,k and hk,k−1 gives:

πk = π0

k
∏

i=1

hi−1,i

hi,i−1

= π0

k
∏

i=1

s1(1−
i−1
N

)

s2
i
N

= π0(
s1
s2

)k
k
∏

i=1

(
N − i+ 1

i
)

=

(

N

k

)

(
s1
s2

)kπ0. (14)

Consider the sum

∑N
k=0 πk. Using Eq. (14) and applying the Binomial theorem gives:

N
∑

k=0

πk = π0

N
∑

k=0

(

N

k

)

(
s1
s2

)k

= π0(1 +
s1
s2

)N

=
π0

sN2
.

Using the fat

4

that

∑N
k=0 πk sums to unity, we obtain:

π0 = sN2 . (15)

Replaing Eq. (15) in Eq. (14), we obtain a losed form expression for the stationary probability

πk as:

πk =

(

N

k

)

sk1s
N−k
2 (16)

Let X∗
be the limiting index of the state of the random walker. From the above, learly X∗

is

binomially distributed, with parameters s1 and N .

Hene, E[X∗] = Ns1 and V ar[X∗] = Ns1s2.

Consequently, E[p1(∞)] = 1
N
E[X∗] = s1, and var[p1(∞)] = 1

N2V ar[X∗] = 1
N
s1s2.

4

The reader should observe that Eq. (14) is quite similar to the losed form expression we obtained for the so-alled

�diret� solution (Eq. (3)), exept that we have now also obtained a state dependent ombinatorial term. It is this

ombinatorial term, obtain as a onsequene of the state-dependent transitions, that makes this disretization work!

15



Thus, Theorem 3 is proved. Using the fat that limN→∞ V ar[p1(∞)] = limN→∞
1
N
s1s2 = 0, we

see that Theorem 4 is also proved.

6 The Estimator for Multinomial Distributions

In this setion, we shall onsider the problem of estimating the parameters of a multinomial distri-

bution, whih is a generalization of the binomial ase introdued earlier. There is a straight-forward

mehanism to extend the binomial result for the multinomial senario, and an be indeed desribed

as follows: Let us assume that P(t) = [p1(t), . . . , pr(t)℄
T

is the urrent estimate of S. At any single

time instant we observe that this represents

(

r

2

)

pairs of binomial sequenes. Therefore when an

event i ours, the probability pi an be inreased based on a binomial distribution with regards to

any or all the

(

r

2

)

pairs. So a simple-minded strategy is to assoiate event i with any other event

j so that when event i ours, pi is inreased and pj is dereased maintaining pi + pj to have the

same value as it had before the event i ourred. Notie thus that P will remain to be probability

vetor and onsequently the proof of onvergene of this updating rule will follow as a onsequene

of all the

(

r

2

)

binomial sequenes onverging to their orretion proportions.

However, rather than work with binomial pairs we now propose a more elegant solution whih

works with the multinomial sequene in its entirety, as Oommen and Rueda did in [27℄. However,

we emphasize the fasinating aspet that the Markov Chain obtained in the ontinuous senario is

ompletely distint from the one whih we enounter here. Unfortunately, although the asymptoti

onvergene properties are proven, the analogous Eigenvalue/Eigenvetor properties are, as yet,

unsolved � they are urrently under investigation. As in the LA �eld, the disretized results that

we have here are experimentally superior to their ontinuous ounterparts.

The multinomial distribution is haraterized by two parameters, namely, the number of trials,

and a probability vetor whih determines the probability of a spei� event. In this regard, we

assume that the number of observations is the number of trials. Thus, we deal with the problem of

estimating the latter probability vetor assoiated with the set of possible outomes.

LetX be a multinomially distributed random variable, taking values from the set {�1�,�2�, . . . ,�r�}.

Again, we assume that X is governed by the distribution S = [s1 . . . sr]
T
as follows:

X = �i� with probability si, where
∑r

i=1 si = 1.

Let x(t) be a onrete realization of X at time �t�. The task at hand is to estimate S, i.e., si

for i = 1 . . . r. We ahieve this by maintaining a running estimate P(t) = [p1(t), . . . , pr(t)℄
T

of S,

where pi(t) is the estimate of si at time t. Again we omit the time referene t in P (t) whenever this

does not lead to onfusion.

We assume that the resolution is a multiple of the number of parameters r, i.e, N = rδ where δ

is an integer. Therefore, for all i, we initialize pi(0) as per the following pi(0) =
δ
N

= 1
r
.
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Generalizing the randomized updating sheme used in the binomial ase, we get the following

update sheme for the multinomial ase:

If x(t) = �i� and rand() ≤ 1− pi(t) and 0 ≤ pi(t) < 1

(i) pi(t+ 1) := pi(t) +
1

N
. (17)

Randomly hoose pj , j 6= i, aording to the normalized probability

pj(t)∑

k 6=i

pk(t)
and update pj as:

(ii) pj(t+ 1) := pj(t)−
1

N
(18)

P (t+ 1) := P (t) Otherwise. (19)

As before, we shall state two theorems about the properties of the estimate �rst and prove them

simultaneously.

Theorem 5 Let X be a multinomially distributed random variable, and P (t) be the estimate of S

at time t obtained by Eqs. (17), (18) and (19). Then E[P (∞)] = S.

Theorem 6 Let X be a multinomially distributed random variable, and P (t) be the estimate of S

at time t obtained by Eqs. (17), (18) and (19). Then algebrai expression for the variane of P (∞)

is fully determined by N . Moreover, when N → ∞ the variane tends to zero, implying mean square

onvergene.

Having stated the theorems, we shall now present the proofs of Theorems 5 and 6.

Proof : Our aim is to prove that as the index t is inreased inde�nitely, the expeted value of

the pi(t) onverges towards si, for all 1 ≤ i ≤ r implying that: limt→∞E[pi(t)] → si.

The proof is analogous to the proof of the binomial ase.

Let us onsider pi(t) for the index i throughout the argument. Indeed, we shall prove the above

by analyzing the properties of the underlying Markov hain assoiated to pi(t), whih is spei�ed by

the rules given in Eqs. (17), (18) and (19).

In brief, the rules given in Eqs. (17), (18) and (19) obey the Markov hain with transition matrix

H i
. Let us onsider pi(t), in order to speify the exat expression of H i

, its Markov hain. Consider

the transitions that the disretized running estimate pi(t) exhibits. Note that the transitions happen

between adjaent states. We an easily observe that: hij,j+1 = si(1−
j
N
) , 0 ≤ j < N .

The transition from state j to j − 1, for 0 < j ≤ N , is more ompliated to ompute. The

latter happens with a ertain probability at time t if x(t) = �k � takes plae, for i 6= k, and pk(t) is

inreased at time instant t. In this sense, if pk(t) is inremented at time t, then pi(t), i 6= k, will
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be possibly deremented with a probability equal to

pi(t)∑r

l=1
l 6=k

pl(t)
whih orresponds to the normalized

probability of the seletion of pi(t) among {pl(t), l 6= k}.

In the following, we show that Markov hain is time-homogeneous by demonstrating that the

terms of the transition matrix H i
do not depend on time! In addition, we shall show that the matrix

H i
does not depend on the state of random walk pj(t) desribed by Hj

, for i 6= j. In other words,

the transitions of the random walk attahed to pi(t) are �deoupled� from those of pj(t), for i 6= j.

Therefore:

hij,j−1 =
∑r

k=1
k 6=i

sk(1− pk)
pi∑r

l=1
l 6=k

pl
, 0 < j ≤ N .

We note that,

∑r
l=1
l 6=k

pl = 1− pk. Moreover, whenever the random walker i is in state j, pi =
j
N
.

Therefore hij,j−1, for 0 < j ≤ N is expressed as:

hij,j−1 =
∑r

k=1
k 6=i

sk(1− pk)
j

N∑r

l=1
l 6=k

pl
=

∑r
k=1
k 6=i

sk
j
N
.

We note too that,

∑r
k=1
k 6=i

sk = 1− si.

Therefore, hij,j−1 = (1− si)
j
N
.

We now resume our argument by seeing that H i
is de�ned by:

hij,j+1 = si(1−
j
N
) , 0 ≤ j < N ,

hij,j−1 = (1− si)
j
N
, 0 < j ≤ N ,

hij,j = 1− hj,j−1 − hj,j+1 , 0 < j < N ,

and, aordingly

hi0,0 = 1− hi0,1

hiN,N = 1− hiN,N−1.

Therefore, H i
does not depend on time.

We shall now ompute πi
k the stationary (or equilibrium) probability of the hain being in state

k. Clearly H i
represents a single losed ommuniating lass whose periodiity is unity. The hain

is ergodi, and the limiting probability vetor is given by the eigenvetor of H iT
orresponding to

the eigenvalue unity.

Let Πi
denote the vetor of steady state probabilities. This vetor, Πi = [πi

1, . . . , π
i
N ]T , an be

omputed using H iTΠi = Πi
.

Sine the expressions are idential, we an use the results from the binomial ase to dedue that:

πi
k =

(

N
k

)

ski (1− si)
N−k

.

Let Xi∗
be the limiting index of the state of the random walker i. From the above, learly Xi∗

is binomially distributed, with parameters si and N .

Hene, E[Xi∗] = Nsi and V ar[Xi∗] = Nsi(1− si).

Consequently, E[pi(∞)] = 1
N
E[Xi∗] = si and V ar[pi(∞)] = 1

N2V ar[Xi∗] = 1
N
si(1− si).

Note too that, amazingly enough, the onvergene does not involve the number of states.
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Thus, Theorem 5 is proved. Using the fat that limN→∞ V ar[pi(∞)] = limN→∞
1
N
si(1−si) = 0,

we see that Theorem 6 is also proven.

Remarks:

A few remarks regarding our method for updating the estimates are not out of plae. Indeed:

• The reader will observe the very subtle point that our proofs of the theorems is based on the

assumption

5

that the parameter of the environment remains �stationary long enough� for suh

a estimation sheme to be meaningful. This is unavoidable beause, as far as we know, there

are no available methods for formally analyzing estimation methods for stritly non-stationary

environments. This is beause, one has to �rst determine a model for the non-stationarity and

for the way the underlying parameter would hange within this model, before an estimation

sheme an be devised. Sine this is not possible in a general setting, what one rather needs

is a method of estimation that quikly onverges to the urrent parameter of the environment

in a �weak� (i.e., not with probability `1') manner, and that would be able to quikly unlearn

if the parameter hanges. This is preisely what the SLWE and SDWE are able to do.

• To larify the above, we explain the dilemma of proving the results for stationary environments,

and then using them for non-stationary domains. The results we have derived are asymptoti,

and are thus, valid only as n → ∞. While this ould prove to be a handiap, realistially, and

for all pratial purposes, the onvergene takes plae after a relatively small value of n. Thus,

for the SLWE, if λ is even as �small� as 0.9, after 50 iterations, the variation from the asymptoti

value will be of the order of 10−50
, beause λ also determines the rate of onvergene, and

this ours in a geometri manner [21℄. In other words, even if the environment swithes its

Bernoulli parameter after 50 steps, the SLWE will be able to trak this hange. This same

observation is valid for the SDWE, for example, for relatively small values of the resolution of

disretization. Observe too that we do not need to introdue the use of a �sliding window�.

• The philosophy behind the form of the update de�ned by Eqs. (17), (18) and (19) is to,

eventually, inrease one omponent of the vetor of running estimates by a quantity equal to

the stepsize ∆ while dereasing another omponent by the same quantity ∆. This is done in

order to ensure that the sum of the omponents equals unity.

• The SDWE makes at most 2 updates per time step, thus rendering the worst ase to be

onstant or O(1). Interestingly, the estimator possesses a low omputational omplexity that

is independent of the number of the parameters of the multinomial distribution.

5

We are extremely grateful to the anonymous Referee who brought this up.
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• It is pertinent to mention that although the rationale for updating is similar to that used for the

Stohasti Nonlinear Frational Knapsak algorithm [10℄, there are fundamental di�erenes.

Unlike the latter, where the LA was made arti�ially ergodi by exluding the end-states

from the set of possible probability values, our estimator is truly ergodi

6

. The reason for

exluding the the end states in [10℄ was beause the LA in [10℄ uses its �estimates� to selet

�ations� with frequenies proportional to the estimates. Consequently, enforing an absorbing

ondition for the end states in [10℄ would imply always seleting the same ation from that

time instant onwards, and never seleting the alternate one thereafter. As opposed to this, our

urrent automaton does not perform/hoose ations (events) with frequenies proportional to

the estimate vetor. Rather, sine this present LA is intended for estimation, it is, indeed, the

environment whih �produes� events independent of the LA, and whih informs the LA about

these events. The LA then, in turn, estimates S based on the observed events. In other words,

the di�erene between the two LA is that the one in [10℄ performs ations in the environment

in order to maximize the number of rewards it reeives, while the present LA observes the

environment to estimate its properties.

• Apart from the above, it is pertinent to mention that the purpose of introduing the hierarhy

in the knapsak problem was, �rst and foremost, to ahieve better salability when it onerns

the learning speed. The hierarhy proposed in [10℄ improved the learning speed dramatially

ompared to the approah presented in [9℄ beause of the hierarhial on�guration of the

underlying LA. The question of introduing a hierarhial philosophy in the setting of the

urrent paper remains unsolved.

• One of the most signi�ant ontributions of this paper is, in our opinion, the rather elegant

manner by whih we have designed the RW for the estimation proess in the multinomial ase.

By intelligently designing the RW transitions in the disretized probability spae, we have

sueeded in deriving and analyzing the multinomial estimates in a manner idential to what

was involved for solving the binomial estimation ase. To further explain this, we mention that

if the transitions of the RW assoiated with pi were diretly dependent on the RW assoiated

with pj for i 6= j, the state spae would have been unmanageable, namely of the order of

O(N2
). However, the e�et of our spei� design and representation helped in reduing the

magnitude of the state spae of the RW for the multinomial ase from O(N2
) to O(N). This

further assisted in deoupling the transition matries for eah omponent of the multinomial

vetor, whih in fat, is an elegant alternative to the onept of using a team of normalized

binomial estimators for solving multionomial estimation problems

7

. In addition, we believe

6

If the LA in the present paper would have observed the event �i� with probability pi instead of probability si (for

i = 1, 2), the present LA would have also been absorbing!

7

The reader an easily see that this is also an alternate, although more umbersome, way to deouple the updates
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that the unique RW transitions used here for multinomial estimates, an inspire the design of

novel ways for generalizing two-ation learning mahines into multiation mahines!

• The issue of how we an obtain a generalization of these results for other distributions is very

interesting. As a �rst step, we propose approximating the distribution using a equi-depth or

equi-width histogram, whereby the original distribution itself an be approximately modeled

as a multinomial distribution by onsidering its relative proportions in eah of the histogram

bins. More elegant solutions of this are urrently being investigated.

7 Experimental Results: Arti�ial and Real-lie Data

In this setion, we evaluate the new family of disretzied estimators in non-stationary environments

and ompare this approah to traditional Maximum Likelihood estimation methods whih use the

sliding window (MLEW) and the SLWE. In order to on�rm the superiority of our sheme, we have

onduted extensive simulations results under di�erent parameter settings. In the interest of brevity,

we merely ite a few spei� experimental results. Also, while Setions 7.1-7.3 deal with arti�ial

data, Setion 7.4 presents the results for a real-life appliation domain.

7.1 Comparison with the MLEW of Binomial distributions

The estimation of the parameters for binomial random variables has been extensively tested for

numerous binomial distributions, and we ite the results from two of these experiments here. To do

this, in the interest of standardization, we have adopted the same simulation methodology used in

[27℄, using randomly generated values of N . To assess the e�ieny of the estimation methods in a

fair way, we randomly hose values for the resolution N and for the window width from the intervals

[6, 16] and [20, 80], respetively. Further, to enable us to obtain a smooth result, we performed

ensembles of 1, 000 simulations eah onsisting of 400 time steps. The true underlying value of the

quantity to be estimated was randomly hanged every 50 time steps. The plots from eah experiment

are presented in Figures 3 and 4 where the values for N are 6 and 8 respetively, and the sizes of the

windows are 32 and 57, respetively. The results we show here are typial. The reason for operating

with larger window sizes than 50 is that we generally have no knowledge about the environment

with regard to the frequeny or magnitude of the hanges. We observe that when the window size of

the MLEW beomes larger, e.g., 57, the estimation algorithm is unable to trak the hanges in the

environment, yielding a poor overall auray. In Figure 4, we see that the MLEW approximates

the true value fairly well for the �rst 50 time steps, but is thereafter unable to trak the variations.

In Figure 3, when the window size is smaller, the MLEW is apable of traking the hanges, but not

of the di�erent omponents of a vetor of multinomial estimates.
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nearly as fast nor as aurate as the SDWE. Even when the SDWE uses a resolution parameter as

low as 6, it learly outperforms the MLEW with regard to the onvergene speed.
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Figure 3: The expeted value of the estimates of p1(t), obtained from the SDWE and MLEW, using

N = 6 and w = 32.
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Figure 4: The expeted value of the estimates of p1(t), obtained from the SDWE and MLEW, using

N = 8 and w = 57.

In Figure 5, we keep the same window size and resolution as previously done in Figure 3, but we

instead inrease the periodiity by whih the environment swithes from 50 to 200 iterations. The

intention here is to simulate a slowly-varying environment. Interestingly, the SDWE seems to have
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higher adaptivity than the SLWE just after the environment swith, and then, as time proeeds,

the MLEW sueeds to onverge to the new true parameter of the environment in the order of 40

iterations, i.e, after some delay larger than the window size. The fat that the periodiity, i.e., 200,

is muh larger than the window size, 32, favors the MLEW after an order of 40 instants subsequent

to the swith. While the SDWE moves faster towards the true value, it is unable to get of rid of

some �utuations in the neighborhood of the true parameter haraterizing the environment � in

spite of the fat that we are averaging over an ensemble of 1000 experiments. These �utuations of

the SDEW merely re�et a larger variane than the MLEW. Similar �ndings are observed in Figure

6 where we inrease the periodiity to 200, as opposed to the value of 50 used for Figure 4.

Thus, we onlude that the SDWE seems to be more onvenient for �fast-varying� environments,

whih opens avenues towards devising methods that ombine the MLEW and SDWE shemes so as

to take advantage of the best properties of them both. Under a slowly varying, a simple idea is to

use the SDWE with a low resolution in order to quikly adapt to the new environment after the

swith, and to subsequently resort to the MLEW so as to redue the variane. Another alternative,

is to resort to the SDWE by starting with a low resolution so as to onverge faster, and to thereafter

inrease the resolution to �stabilize� around the true parameter.
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Figure 5: The expeted value of the estimates of p1(t), obtained from the SDWE and MLEW, using

N = 6 and w = 32 for a slowly varying environment.
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Figure 6: The expeted value of the estimates of p1(t), obtained from the SDWE and MLEW, using

N = 8 and w = 57 for a slowly varying environment

7.1.1 Comparison with MLWE for the Case of Multinomial Random Variables

We have also performed simulations for multinomial random variables, where the parameters were

estimated by following the SDWE and the MLEW. We onsidered a multinomial random variable,

X, whih an take any of three di�erent values, namely 1, 2, or 3, whose probability values hange

(randomly) every 50 steps. As in the binomial ase, we evaluated the estimators for 400 steps, and

repeated this 1, 000 times, after whih the ensemble average of P was evaluated. To report the

quality of an estimator, we omputed the index ||P − S||, i.e., the Eulidean distane between P

and S, whih was intended to be a measure of how good our estimate, P , was of S. The plots of the

latter distane obtained from the SDWE and the MLEW are depited in Figures 7 and 8, where the

values for N are 6 and 12, and the sizes of the windows are 67 and 34, respetively. The values for

N and the window size were obtained randomly from a uniform distribution in [6, 15] and [20, 80].

It is lear from both �gures that the SDWE is faster in traking the hanges than the MLEW.

Note that the MLEW onverges faster than the SDWE only during the �rst 50 time instants (before

the �rst environment swith). However, this behavior is not present in suessive epohs. In Figure

7, we remark that a window size as large as 67 slows down the onvergene speed of the MLEW.

This is due to the fat that the larger the window size, the greater is the e�et of the stale data

to jeopardize the running estimate. From both Figures 7 and 8, we observe that a large value of

N yields low variane. The problem, however, is that the rate of onvergene is slower than when

we used a lower value of N . A low value of N results in a faster onvergene, but it also yielded a

higher variane from the true underlying parameter. This on�rms that the hoie of the user-de�ned

learning parameter, N , redues to a trade o� between the speed and the orresponding variane.
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Similar results are observed for the window width parameter of the MLEW as well. We notie that

the MLEW is apable of traking the hanges of the parameters when the size of the window is small,

or at least smaller than the intervals of onstant probabilities. The latter, however, is not able to

trak the hanges properly when the window size is relatively large. Sine neither the magnitude

nor the frequeny of the hanges is known a priori, this senario demonstrates the weakness of

the MLEW, and its dependene on the knowledge of the input parameters. Suh observations are

typial.
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Figure 7: Plot of the Eulidean norm P-S (or the Eulidean distane between P and S), for both

the SDWE and MLEW, where N is 6 and the window size is 67 respetively.
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Figure 8: Plot of the Eulidean norm P-S (or the Eulidean distane between P and S), for both

the SDWE and MLEW, where N is 12 and the window size is 34 respetively.

7.2 Comparison with SLWE for the ase of Binomial Random Variables

We onsidered a binomial random variable, X, whih an take any of two di�erent values, namely

1, 2 where the probability hanges (randomly) every 50 steps. In order to ompare the performane

SDWE and the performane of the SLWE in a fair way, we adopted the same method as in the
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ase of the SDWE and the MLEW reported in [27℄. We randomly hose values for the resolution

N and for the parameter λ of the SLWE [27℄ from the intervals [8, 16] and [0.9, 1], respetively. It

was reported in [27℄ that using values of λ for the SLWE drawn from [0.9, 1] yields fast onvergene

speed and good auray. Again, we onduted an ensemble of 1, 000 simulations, eah onsisting of

400 time steps. In the interest of brevity, we inlude only the results from two of these experiments

here. The expeted value of the estimates of p1(t), obtained from the SDWE and SLWE, using

N = 8 and λ = 0.938 is depited in Figure 9. Similarly, the estimates of p1(t), obtained from the

SDWE and SLWE, using N = 12 and λ = 0.9623 is depited in Figure 10. Clearly, the SDWE is

signi�antly faster than the SLWE. This is parallel to the results known in the �eld of LA where

disretized LA have been reported to outperform their ontinuous ounterparts.
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Figure 9: The expeted value of the estimates of p1(t), obtained from the SDWE and SLWE, using

N = 8 and λ = 0.938 respetively.
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Figure 10: The expeted value of the estimates of p1(t), obtained from the SDWE and SLWE, using

N = 12 and λ = 0.9623 respetively.

7.3 Comparison with SLWE for the Case of Multinomial Random Variables

For the multinomial ase, we again performed ensembles of 1, 000 simulations eah onsisting of

400 time steps. The true underlying value of S was randomly hanged every 50 time steps. We

omputed ||P − S||, the Eulidean distane between P and S, and inlude here only the results

from two experiments. We randomly hose values for the resolution N and for the parameter λ of

the SLWE [27℄ from the intervals [6, 15] and [0.9, 1], respetively. Figure 11 illustrates the ase of

N = 12 for the SDWE and λ = 0.931 for the SLWE, whereas Figure 12 depits the results for N = 9

and λ = 0.942.
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Figure 11: Plot of the Eulidean norm P -S (or the Eulidean distane between P and S), for both

the SDWE and SLWE, where N is 12 and the λ = 0.931 respetively.
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Figure 12: Plot of the Eulidean norm P -S (or the Eulidean distane between P and S), for both

the SDWE and SLWE, where N is 9 and λ = 0.942 respetively.

From both Figures 11 and 12, we observe that the SDWE outperforms the SLWE in the multi-

nonmial ase both in speed and auray. In the ase of the SLWE, we note that a small value for

λ, yields less auray, but faster onvergene. Similarly, for the SDWE, large values of N yield a

higher auray but slower onvergene speed.

7.4 Real-life Appliation of the Sheme: Language Detetion

The solution that we have proposed is not only theoretial in nature. Indeed, we have also utilized

it in a real-life language detetion domain involving the languages English and Arabi

8

.

In order to simulate real life data, we downloaded text from two on-line newspapers, where one of

them was in Arabi (Aljazeera.net) and the other was in English (BBC.om). To render the problem

non-trivial, the text from both newspapers was srambled in a random manner. The srambled text

was then transformed into a series of bits where eah harater in the text orresponds to 8 bits

aording to the ASCII ode. This series of bits was given to our algorithm where the aim of the

exerise was to trak the ourrene of the bit `1' whih served as the reognizing feature, whene

we attempted to ahieve the lassi�ation of the orresponding piee of text. An example of the

srambled text is given in Table 1, where the respetive hange instants of the language from Arabi

to English and vie versa are also reorded. Here the hange instant denotes the index of the bit

where a hange of the language in the text ours.

We report here the results of three experiments, eah performed with three di�erent resolutions.

Figure 13(a), Figure 13(b) and Figure 13(), report the variation of the estimate of the ourrene

of the bit `1' for the respetive resolutions N = 10, N = 20 and N = 40.

The reader an easily observe that in the three �gures, the trend of the estimate hanges as soon

8

As requested by one of the anonymous Referees, the data used for these experiments is available at

https://www.dropbox.om/s/u4p8uop1que3ey8/text.txt?dl=0.
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as there is a language hange. The ourrene probability of `1' for English stabilizes around 0.9,

while for Arabi it seems to stabilize around 0.5. Interestingly enough, even for a resolution as small

as N = 10 (see Figure 13(a)), the �utuations are muh more onsiderable than for the resolution

N = 20 and N = 40, speially between time instants 600 and 620. The latter �onsiderable�

�utuations are explained by the fat that the level of disretization is haraterized by a resolution

parameter as small as 10. However, the �utuations are almost unobservable as N inreases. Thus,

in Figure 13(), we observe that the resolution is inreased to N = 40, the �utuations are extremely

minor. Indeed, the urve is muh smoother than for the ase when N = 10. Furthermore, it takes

around 40 bits for the sheme to �onverge� and stabilize after eah language swith. Thus, for

example, while a language hange took plae at the instant time around 140, the estimate onverged

around the time instant 180 .

The onvergene of the estimate and ability to trak the language hange is, in our opinion, quite

fasinating.

Table 1: The time instanes when a hange in the language (from English to Arabi and vie versa)

ourred.

Text Bit number

onountrytofailtorepayal 1 - 140

QKA¢Ëð

@ �é«A 	J�»ñJ.��
 140 - 293

Greeebeamethe� 293 - 425

�é»Qå��J

	® 	KñËð ñ�ÒÊÓ 425 - 649
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Figure 13: This �gure depits the variation of the estimate for di�erent values of the resolution N :

(a) For N = 10, (b) for N = 20, and () for N = 40.

8 Conlusion

This paper has presented a novel disretized estimator that is able to ope with non-stationary bi-

nomial/multinomial distributions using �nite memory. After demonstrating that a straightforward

naive disretization of the ontinuous SLWE is inadequate, we have proposed a novel randomized

disretization strategy, namely, the SDWE. To the best of our knowledge, our SDWE is the �rst

reported disretized ounterpart of the SLWE. Thus, through this paper, we have shown that dis-

retizing the probability spae o�ers a new promising approah for the design of weak estimators.

In fat, omprehensive simulation results demonstrate that the new estimator is able to ope with
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non-stationary environments with both a high adaptation rate and auray. In addition, the results

suggest that the SDWE outperforms the MLEW as well as the SLWE.

The most outstanding ontribution of our work is that of ahieving multinomial estimation with-

out relying on a set of binomial estimators, and where the underlying strategy is truly randomized.

We believe that this ontribution is partiularly of a pioneering sort.

The paper also reports the results of the estimate being able to trak the hanges in a orpus

of text interspersed by English and Arabi fragments. The hange detetion observed is quite

fasinating.

As a future work, we propose to study the performane of the estimator in real-life appliations.

Indeed, the possible appliation of the SDWE for lassi�ation and language detetion is urrently

being investigated.
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