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Abstra
t

The task of designing estimators that are able to tra
k time-varying distributions has found

promising appli
ations in many real-life problems. Existing approa
hes resort to sliding windows

that tra
k 
hanges by dis
arding old observations. In this paper, we report a novel estimator

referred to as the Sto
hasti
 Dis
retized Weak Estimator (SDWE), that is based on the prin
iples

of dis
retized Learning Automata (LA). In brief, the estimator is able to estimate the parameters

of a time varying binomial distribution using �nite memory. The estimator tra
ks 
hanges in

the distribution by operating on a 
ontrolled random walk in a dis
retized probability spa
e.

The steps of the estimator are dis
retized so that the updates are done in jumps, and thus

the 
onvergen
e speed is in
reased. Further, the state transitions are both state-dependent and

randomized. As far as we know, su
h a s
heme is both novel and pioneering. The results

whi
h have �rst been proven for binomial distributions have subsequently been extended for

the multinomial 
ase, using whi
h they 
an be applied to any univariate distribution using a

histogram-based s
heme. The most outstanding and pioneering 
ontribution of our work is

that of a
hieving multinomial estimation without relying on a set of binomial estimators, and

where the underlying strategy is truly randomized. Interestingly, the estimator possesses a low


omputational 
omplexity that is independent of the number of parameters of the multinomial

distribution. The generalization of these results for other distributions has also been alluded to.
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The paper brie�y reports 
on
lusive experimental results that prove the ability of the SDWE to


ope with non-stationary environments with high adaptation and a

ura
y.

Keywords : Weak Estimators, Learning Automata, Non-Stationary Environments

1 Introdu
tion

Estimation is a fundamental and substantial issue in statisti
al problems. Estimators generally fall

into various 
ategories in
luding the Maximum Likelihood Estimates (MLE) and the Bayesian family

of estimates. The MLE and Bayesian estimates are well-known for having good 
omputational and

statisti
al properties. However, the basi
 premise for establishing the quality of estimates is based on

the assumption that the parameters being estimated do not 
hange with time, i.e, the distribution

is assumed to be stationary. Thus, within this premise, it is desirable that the estimate 
onverges

to the true underlying parameter with probability 1, as the number of samples in
reases.

Consider, however, the s
enario when the parameter being estimated 
hanges with time. Thus,

for example, let us suppose that the Bernoulli trials leading to a binomially-distributed random

variable were done in a time-varying manner, where the parameter swit
hed, for example, period-

i
ally, to possibly, a new random value. Su
h a s
enario exhibits the behavior of a non-stationary

environment. Consequently, in this setting, the goal of an estimator s
heme would be to estimate

the parameter, and to be able to adapt to any 
hanges o

urring in the environment. In other words,

the algorithm must be able to dete
t the 
hanges and to estimate the new parameter after a swit
h

has o

urred in the environment, and hopefully, this must be done �reasonably qui
kly�. If one uses

strong estimators (i.e., estimators that 
onverge w.p. 1), it is impossible for the learned parameter

to 
hange rapidly from the value to whi
h it has 
onverged, resulting in poor time-varying estimates.

As opposed to the traditional MLE and Bayesian estimators, in the vein of the known results for

non-stationary environments (surveyed presently), we propose a novel dis
retized weak estimator,

referred to as the Sto
hasti
 Dis
retized Weak Estimator (SDWE), that 
an be shown to 
onverge

to the true value fairly qui
kly, and to also �unlearn� what it has learned so far so as to adapt to the

new, �swit
hed � environment. The 
onvergen
e of the estimate is weak, i.e., with regard to the �rst

and se
ond moments. The analyti
 results derived and the empiri
al results obtained demonstrate

that the SDWE estimator is able 
ope with non-stationary environments with a high adaptation

rate and a

ura
y.

With regard to their appli
ability, apart from the problem being of importan
e in its own right,

weak estimators admit a growing list of appli
ations in various areas su
h as intrusion dete
tion sys-

tems in 
omputer networks [33℄, spam �ltering [41℄, ubiquitous 
omputing [20℄, fault tolerant routing

[25℄, adaptive en
oding [29℄, and topi
 dete
tion and tra
king in multilingual online dis
ussions [32℄.

We submit that the DSWE 
an be used expediently in all of these appli
ation domains. Further,
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su
h an estimation s
heme opens avenues towards a large set of real life appli
ations, as in tra
king


hanging user preferen
es [26℄ and variations in ubiquitous environments, and as an integral 
om-

ponent of a hybrid framework appli
able for servi
e re
ommendation systems [39℄. Indeed, we also

are 
urrently investigating the appli
ation of our estimator to inferring drifts in other user-interest

domains.

2 Related Work and State-of-the-Art

Traditionally available methods that 
ope with non-stationary distributions resort to the so-
alled

sliding window approa
h, whi
h is a limited-time variant of the well-known MLE s
heme. The

latter model is useful for dis
ounting stale data in data stream observations. Data samples arrive


ontinuously and only the most re
ent observations are used to 
ompute the 
urrent estimates. Any

data o

urring outside the 
urrent window is forgotten and repla
ed by the new data. The problem

with using sliding windows is the following: If the time window is too small the 
orresponding

estimates tend to be poor. As opposed to this, if time window is too large, the estimates prior to the


hange of the parameter have too mu
h in�uen
e on the new estimates. Moreover, the observations

during the entire window width must be maintained and updated during the pro
ess of estimation

1

.

Apart from the sliding window approa
h, many other methods have been proposed, whi
h deal

with the problem of dete
ting 
hange points during estimation. In general, there are two major


ompetitive sequential 
hange-point dete
tion algorithms: Page's 
umulative sum (CUSUM) [2℄

dete
tion pro
edure, and the Shiryaev-Roberts-Pollak dete
tion pro
edure. In [31℄, Shiryayev used

a Bayesian approa
h to dete
t 
hanges in the parameter's distribution, where the 
hange points

were assumed to obey a geometri
 distribution. CUMSUM is motivated by a maximum likelihood

ratio test for the hypothesis that a 
hange o

urred. Both approa
hes utilize the log-likelihood ratio

for the hypotheses that the 
hange o

urred at the point, and that there is no 
hange. Inherent

limitations of CUMSUM and the Shiryaev-Roberts-Pollak approa
hes for on-line implementation

are the demanding 
omputational and memory requirements. In 
ontrast to the CUMSU and the

Shiryaev−Roberts−Pollak approa
hes, our SDWE avoids the intensive 
omputations of ratios, and

does not invoke hypothesis testing.

In earlier works [14, 16, 17℄, Koy
hev et al. introdu
ed the 
on
ept of Gradual Forgetting (GF).

The GF pro
ess relies on assigning weights that de
rease over time to the observations. In this

sense, the GF approa
h assigns most weight to the more re
ent observations, and a lower weight to

the more-distant observations. Hen
e, the in�uen
e of old observations (on the running estimates)

de
reases with time. It was shown in [17℄ that the GF 
an be an enhan
ement to the sliding window

paradigm. In this sense, observations within ea
h sliding window are weighted using a GF fun
tion.

1

Enhan
ements to this philosophy will be dis
ussed later in this se
tion.
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As opposed to the above-mentioned papers, in the last de
ades, a wide range of te
hniques for

estimation in dynami
ally 
hanging environments have appeared. We provide here a brief overview

of representative on-line approa
hes parti
ularly relevant to the family of te
hniques pioneered in

the present paper. For a more detailed and 
omprehensive treatment of these, we refer the reader to

re
ent surveys [8, 18℄, whi
h in
lude approa
hes based on adaptive windowing, aging fa
tors, instan
e

sele
tion and instan
e weighting. Additionally, there is a distin
tion between passive approa
hes,

whi
h intrinsi
ally adapt to 
hanges, and a
tive approa
hes that a
tively sear
h for 
hanges.

With regard to 
ategorizing these approa
hes, they di�er in terms of their memory management

and forgetting me
hanisms [8℄. A memory management module aims to 
ontrol the data points that

are to be kept in memory for learning. As opposed to this, forgetting refers to the task of erasing

previously-learned information. One data management strategy, referred to as �instan
e sele
tion�,

is based on storing instan
es relevant to the 
urrent situation. Here, the simplest approa
h is to

only keep a single data point in memory, with the task of forgetting being modeled by the gradual

dilution of its relevan
e through adaptation of the model's parameters [6℄. Su
h a strategy 
an be

expanded to store multiple data points, using a window of �xed size. The data points in the window

are used to establish the 
urrent estimate, and at ea
h time step, the oldest data point is repla
ed

with the newest one, using a FIFO poli
y. Slow 
hanges are best 
aptured by a larger window, while

rapid 
hanges require a 
orrespondingly smaller window. To address this 
on�i
t, an alternative

s
heme involves variable-sized sliding windows, referred to as adaptive windowing [38℄. In brief, the

overall strategy is to allow the window size to grow over time, and use a dedi
ated 
hange dete
tor

to reset the window size when a 
hange is dete
ted, resulting in windows with an adaptive size.

More advan
ed approa
hes 
arefully pi
k out prototypes, representing the 
on
ept being tra
ked [3℄,

thus handling 
on
ept drift by repla
ing the prototypes themselves to re�e
t 
hanges.

Another strategy, whi
h avoids windowing, involves using aging fa
tors. In this approa
h, while

training data spans all of the data points, ea
h data point is assigned a weight that re�e
ts its

importan
e. Re
ent data points are prioritized, for instan
e using a fading fa
tor that gradually

redu
es the in�uen
e of older data points [4℄. The de
ay 
an be linear [15℄ or exponential [13℄.

By using weights 
ombined with instan
e sele
tion, referred to as instan
e weighting, one 
an take

advantage of the ability of support ve
tor ma
hines to pro
ess weighted instan
es [13℄.

Most of the above approa
hes are passive in the sense that they gradually adjust to 
hanges,

without expli
itly pinpointing them. In 
ontrast, another 
lass of approa
hes a
tively sear
hes for


hanges using 
hange dete
tors. One solution is to maintain an ensemble of estimators, 
ombined

using voting, su
h as the dynami
 integration of 
lassi�ers found in [37℄. The impa
t of ea
h

estimator is based on assessing them on re
ent data, prioritizing the one that produ
es the least

error, where the 
hange of priority indi
ates an underlying 
hange in the distribution of data points.

One 
an also monitor estimation error using various me
hanisms, or the raw data itself. Changes
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in estimation error signals a 
hange in the distribution of data points, triggering re-estimation [28℄.

In all brevity, 
hanges are dete
ted based on 
omparing se
tions of data, using statisti
al analysis

to dete
t distributional 
hanges, i.e., abrupt or gradual 
hanges in the mean of the data points

when 
ompared with a baseline mean with a random noise 
omponent. One option is also to keep

a referen
e window and 
ompare re
ent windows with the referen
e window to dete
t 
hanges [7℄.

This 
an, for example, be done based on 
omparing the probability distributions of the referen
e

window and the re
ent window using Kullba
k-Leibler divergen
e [5, 30℄.

Using a 
ompletely di�erent tool-set, Oommen and Rueda [27℄ presented a strategy by whi
h

the parameters of a binomial/multinomial distribution 
an be estimated when the underlying dis-

tribution is non-stationary. The method has been referred to as the Sto
hasti
 Learning Weak

Estimator (SLWE), and is based on the prin
iples of 
ontinuous sto
hasti
 Learning Automata

(LA). As opposed to this, our s
heme resorts to dis
retizing the probability spa
e [1, 19, 24, 34℄,

and performing a 
ontrolled random walk on this dis
retized spa
e. It is well known in the �eld

of LA that dis
retized s
hemes a
hieve faster 
onvergen
e speed than their 
ontinuous 
ounterparts

[1, 23℄. By virtue of dis
retization, our estimator realizes fast adjustments of the running estimates

by performing �jumps�, and it is thus able to robustly and qui
kly tra
k 
hanges in the parame-

ters of the distribution after a swit
h has o

urred in the environment. Histori
ally, the 
on
ept

of dis
retizing the probability spa
e was pioneered by Thatha
har and Oommen in their study on

Reward-Ina
tion LA [34℄, and sin
e then, it has 
atalyzed a signi�
ant resear
h in the design of

dis
retized LA [1, 9, 10, 19, 24℄. Re
ently, there has been an upsurge of resear
h interest in solving

resour
e allo
ation problems based on novel dis
retized LA [9, 10℄, in whi
h the authors proposed a

solution to the 
lass of Sto
hasti
 Nonlinear Fra
tional Knapsa
k problems where resour
es had to

be allo
ated based on in
omplete and noisy information. The latter solution was thereafter applied

to resolve the web-polling problem, and to the problem of determining the optimal size required for

training a 
lassi�er. Our present paper is a distant relative of these s
hemes.

To the best of our knowledge, our SDWE is the �rst reported dis
retized
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ounterpart of the


ontinuous SLWE [27℄. The numerous su

essful appli
ations of the 
ontinuous SLWE and the

solution to sto
hasti
 point lo
ation using, for example, a hierar
hi
al [40℄ strategy, reported in [25,

29, 32, 41℄ motivates our SDWE, and elu
idates its relevan
e for tra
king non-stationary distributions

in real-life problems.

2

We emphasize that the main thrust of this paper is not to merely demonstrate the superiority of the SDWE to

the SLWE et
. Rather, we submit that the entire phenomenon of utilizing the 
on
epts of dis
retization in weak

estimation is unexplored, and it is pre
isely here that we have our primary 
ontributions.
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2.1 Contributions of the Paper

In this paper, we provide a novel dis
retized estimator based on the prin
iples of LA. The s
heme

presents a number of notable 
ontributions that 
an be summarized as follows:

• To the best of our knowledge, the SDWE is the �rst reported dis
retized estimator that is able

to tra
k a time varying binomial/multnimoial distribution.

• The s
heme uses the dis
retizing prin
iple of LA, and operates by means of a 
ontrolled random

walk on the probability spa
e. Indeed, by virtue of dis
retization, our SDWE yields faster


onvergen
e speed than analogous 
ontinuous weak estimators.

• The SDWE also possesses a low 
omputational 
omplexity, measured in terms of the number

of updates per time step, for updating the ve
tor of estimates. Interestingly, this index is

independent of the number of parameters of the multinomial distribution to be estimated.

In fa
t, the SDWE makes at most two updates per time step, thus rendering the worst 
ase


omplexity to be 
onstant or O(1). To the best of our knowledge, this 
hara
teristi
 is unique

when 
ompared to the other estimators � in
luding the a

laimed SLWE, whi
h possesses a


omplexity of O(r), where r is the number of parameters of the multinomial variable.

• Apart from being 
omputationally e�
ient, the s
heme is memory e�
ient and 
an be imple-

mented using simple �nite state ma
hines.

• Finally, with regard to the design and analysis of Random Walks (RWs), we submit that a

fundamental 
ontribution of this paper is the manner in whi
h we have designed the estima-

tion pro
ess for the multinomial distribution, by redu
ing/proje
ting the latter onto multiple

binomial state spa
es. This issue will be dis
ussed, in detail, later.

3 Ergodi
 and Dis
retized Properties of the SDWE

Our devised SDWE is based on the theory of LA [21, 36℄, and in, parti
ular, on the family of ergodi


and dis
retized LA. In fa
t, a

ording to their Markovian representation, automata fall into two


ategories: ergodi
 automata and automata possessing absorbing barriers. The latter automata

get lo
ked into a barrier state after a �nite number of iterations. Many families of automata that

posses absorbing barriers have been reported [21℄. Ergodi
 automata have also been investigated in

[21, 23℄. These automata 
onverge in distribution and thus, the asymptoti
 distribution of the a
tion

probability ve
tor has a value that is independent of the 
orresponding initial ve
tor. While ergodi


LA are suitable for non-stationary environments, absorbing automata are preferred in stationary

environments. In fa
t, ergodi
 automata are known to better adapt to non-stationary environments
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where the reward probabilities are time dependent. In the next se
tion, we shall present the reasons

why our LA-based s
heme is ergodi
.

Moving now to a disjoint vein, with respe
t to the values that the a
tion probabilities 
an take,

the families of LA typi
ally fall into one of the two 
ategories, namely, Continuous or Dis
retized.

Continuous LA permit the a
tion probabilities to take any value in the interval [0, 1]. In pra
ti
e,

the relatively slow rate of 
onvergen
e of these algorithms 
onstituted a limiting fa
tor in their

appli
ability. In order to in
rease their speed of 
onvergen
e, the 
on
ept of dis
retizing the proba-

bility spa
e was introdu
ed in [23, 34℄. This 
on
ept is implemented by restri
ting the probability of


hoosing an a
tion to be one of a �nite number of values in the interval [0, 1]. If the values allowed

are equally spa
ed in this interval, the dis
retization is said to be linear, otherwise, the dis
retization

is 
alled non-linear. Following the dis
retization 
on
ept, many of the 
ontinuous Variable Stru
-

ture Sto
hasti
 Automata (VSSA) have been dis
retized; indeed, dis
retized versions of almost all


ontinuous automata have been reported [22, 23℄. Families of Pursuit and Estimator-based LA have

been shown to be faster than VSSA [35℄. As a matter of a fa
t, even faster dis
retized versions of

these s
hemes have been reported [1, 23℄.

We shall presently argue how our automata is linearly dis
retized. In brief, our estimator relies

on the prin
iple of dis
retization in order to hasten the 
onvergen
e speed, and on the phenomenon

of ergodi
ity to be able to 
ope with non-stationary distributions.

4 A Dire
t Estimator for Binomial Distributions

In this se
tion and the next, we submit the theoreti
al foundations on whi
h the SDWE is developed.

First of all, in Se
tion 4.2, we shall formally prove that the so-
alled dire
t (or naively dis
retized)

solution will not work. Then, in Se
tion 5, we present a more-elaborate state-dependent RW-based

solution that will, indeed, yield a

urate results in terms of the 
onvergen
e, in expe
tation, to the


orre
t underlying mean. We also explain the philosophy behind the design of the estimator based

on the analogy with birth-death pro
esses. The resulting dis
rete estimator 
an therefore, truly, be

per
eived as a 
ompletely novel estimator.

4.1 De�nitions

We assume that we are estimating the parameters of a binomial distribution. The binomial distri-

bution is 
hara
terized by two parameters, namely the number of trials and the parameter 
hara
-

terizing ea
h Bernoulli trial. We assume that the number of observations is the number of trials.

We seek to estimate the Bernoulli parameter for ea
h trial.

Let X be a binomially distributed random variable, whi
h takes on the value either �1� or �2�.

We 
hoose to use these symbols instead of the more 
ommonly used notation �0� or �1� to make the
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notation 
onsistent when we 
onsider the multinomial 
ase. It is assumed that the distribution of

X is 
hara
terized by the parameter S = [s1, s2]
T

. In other words,

X = �1� with probability s1, and

X = �2� with probability s2, where s1 + s2 = 1.

Let x(t) be a 
on
rete realization ofX at time `t'. We intend to estimate S, i.e, si for i = 1, 2. We

a
hieve this by maintaining a running estimate of P (t) = [p1(t), p2(t)]
T

of S where pi(t) represents

the estimate of si at time n, for i = 1, 2. Our proposed SDWE works in a dis
retized manner. In fa
t,

we enfor
e the 
ondition that pi(t) only takes values from a �nite set, i.e, pi(t) ∈ {0, 1/N, 2/N, . . . , 1},

where N is a user-de�ned integer parameter. N is 
alled the Resolution parameter, and determines

the stepsize ∆ (where ∆ = 1/N) relevant to the updating of the estimates.

4.2 The Dire
t Solution

In the 
ontinuous version of the SLWE pioneered by Oommen et al [27℄, the updating rule of the

estimate is given by the following rule:

p1(t+ 1) =











1− λ (1− p1(t)) if x(t) = �1�

λp1(t) if x(t) = �2�.

(1)

The 
ontinuous SLWE avoids the maximum-likelihood estimation prin
iple and is thus able to


ope with non-stationary environments. As a starting point, to motivate the results of this paper,

we shall 
onsider the issue of whether we 
an use the analogous prin
iple of updating the probability

ve
tor (albeit, in a dis
retized manner) to a
hieve the same result. From a philosophi
al perspe
tive,

one would imagine that by updating the probability ve
tor in an identi
al dsi
retized manner and

using these probabilities to estimate S, one 
ould obtain a reasonable estimate of S. This is more

plausible be
ause it turns out that the updating rule parallels a maximum likelihood me
hanism

in whi
h the state index 
an be used to 
ount the number of o

urren
es of the event. However,

ironi
ally, unlike the maximum-likelihood s
heme, the probability estimated by su
h a me
hanism

does not 
onverge to the true (unknown) underlying probability. This result is quite astonishing,

but it really is quite straightforward if one 
onsiders the properties of the underlying Markov Chain.

Based on the latter updating rules, the obvious approa
h analogous to the SLWE for updating

the estimate would be to in
rease the estimate by the step size if x(t) = �1� and de
rease the estimate

by the step size if x(t) = �2�. Su
h a strategy would lead to the following rules:

p1(t+ 1) =























p1(t) +
1
N

if 0 ≤ p1(t) < 1 and x(t) = �1� ,

p1(t)−
1
N

if 0 < p1(t) ≤ 1 and x(t) = �2�

p1(t) Otherwise.

(2)
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The Markov 
hain for the above-spe
i�ed updating s
heme has N + 1 states k(t) ∈ {0, . . . , N}

estimating the underlying probability for observing x(t) = �1�, s1, as p1(t) = k(t)
N

. This Markov


hain is depi
ted in Figure 1. We now state the following foundational result that P (n) does not


onverge to S(n), and it is proven below.

0k = 1k = 2k = 2k    N= − 1k    N= − k    N=

s1 s1 s1
s1 s1

s1

s1

s2s2s2 s2s2s2

s2

Figure 1: The Markov 
hain of the dire
t mapping of the SLWE onto a dis
retized spa
e.

Theorem 1 The stationary distribution de�ned by the Markov 
hain des
ribe by Figure 1 is:

πs =

(

s1
s2

)s

π0 0 ≤ s ≤ N, (3)

where π0 is a normalizing 
onstant su
h that

∑N
s=0 πs = 1, and is given by:

π0 =
1− ρ/(1− ρ)

1− [ρ/(1− ρ)]N+1
. (4)

Proof : Sin
e the underlying probabilities are s1 and s2, one 
an per
eive that the stationary

state probabilities πs of the Markov 
hain in Figure 1 must obey the following re
urren
e relation

for the non-extremal states:

πs = s1πs−1 + s2πs+1. (5)

Equation (3) is proven by indu
tion. Consider �rst the basi
 
ase for π0 by setting s = 0. Then,

if we use the simplifying notation that ρ = s1 (and (1 − ρ) = s2), and if we substitute the solution

9



into the re
urren
e relation (5), we get:

πs = ρπs−1 + (1− ρ)πs+1

= ρ

(

ρ

1− ρ

)s−1

π0 + (1− ρ)

(

ρ

1− ρ

)s+1

π0

=
ρs

(1− ρ)s−1
π0 +

ρs+1

(1− ρ)s+1
π0 −

ρs+2

(1− ρ)s+1
π0

=
π0

(1− ρ)s+1

[

ρs(1− ρ)2 + ρs+1 − ρs+2
]

=
π0

(1− ρ)s+1

[

ρs
(

1− 2ρ+ ρ2
)

+ ρs+1 − ρs+2
]

=
π0

(1− ρ)s+1

[

ρs − 2ρs+1 + ρs+2 + ρs+1 − ρs+2
]

=
ρs(1− ρ)

(1− ρ)s+1
π0 =

ρs

(1− ρ)s
π0

=

(

ρ

1− ρ

)s

π0,

whi
h shows that the equations are a

urate for the internal states. The stationary probability of

the extreme state must be 
omputed dire
tly from the re
urren
e relation for the �nal state as this

is di�erent from the relation for the internal states. To do this, we observe that:

πN = ρπN−1 + ρπN .

Now sorting the state probabilities, we get:

πN − ρπN = ρπN−1, when
e (1− ρ)πN = ρπN−1.

Simplifying the above (after re-arranging), we see that:

πN =

(

ρ

1− ρ

)

πN−1 =

(

ρ

1− ρ

)

[

(

ρ

1− ρ

)N−1

π0

]

=

(

ρ

1− ρ

)N

π0.

To obtain the normalizing 
onstant, let a = ρ/(1 − ρ). Then the sum of π's over all states is

N
∑

s=0

πs =

N
∑

s=0

asπ0 = π0

N
∑

s=0

as

Thus, from the formula for the sum of a �nite power series,

= π0

[

1− aN+1

1− a

]

10



Note that the the normal requirement that |a| < 1, whi
h is ne
essary for the 
onvergen
e of an

in�nite power series sums, is not needed for �nite sums. Sin
e this sum must be unity for a probability

distribution, the normalising 
onstant 
an be found as

π0 =
1

1− aN+1

1− a

=
1− a

1− aN+1
=

1− ρ/(1− ρ)

1− [ρ/(1− ρ)]N+1
.

Hen
e the result.

Theorem 2 Following the update rules given by Eq. (2), as N → ∞, E[P (∞)] 
onverges to [1, 0]T

if s1 > 1/2, and to [0, 1]T if s1 < 1/2 independent of the true value of S.

Proof : By observing that the asymptoti
 probability mass on the states follows a geometri


distribution, the expe
ted value of the distribution (i.e., the expe
ted value for the estimate) is

easily obtained for ρ 6= 1/2 as:

E[ρ̂] = 1−
1

1− aN+1
+

1

N

(

1

1− a
−

1

1− aN+1

)

, (6)

where a = ρ/(1− ρ).

The result follows dire
tly from (6) sin
e when ρ < 1/2, it implies that a < 1, and so as N → ∞

the �rst two terms 
an
el, and the fa
tor 1/N eventually takes the last term to zero independent of

the true value of ρ. Similarly, if ρ > 1/2 then a > 1, and as N grows, the term aN+1
will grow faster

than 1/N diminishes. Hen
e the expe
ted estimate 
an qui
kly be approximated by 1−1/(N(a−1)),

whi
h pushes the estimate towards unity as N in
reases inde�nitely.

Remark: These 
ounter intuitive e�e
ts 
learly highlight the fa
t that it is not so straightforward

to �dis
retize� a 
ontinuous s
heme be
ause the main problems with su
h a strategy for devising a

dis
retized s
heme is that the mean is asymptoti
ally always at the boundary values. Interestingly,

the work in [11℄ further demonstrates that even for �nite values of N , the expe
ted estimate will

never be 
lose to S. Indeed, even for moderate values of N , the mean will be biased towards the

extreme values � basi
ally rendering su
h a dis
retization methodology to be useless. This motivates

the sear
h for a 
ompletely di�erent, non-trivial me
hanism whereby one 
an obtain a dis
retized

SLWE. This is the subje
t matter of the rest of the paper.

5 Design of the SDWE for the binomial 
ase

In order to derive a dis
retized solution that really works, it is ne
essary to step ba
k and revisit

the motivation for using dis
retized automata, and in parti
ular, the phenomenon that 
ontinuous

automata have the property that they only approa
h the extreme probability values asymptoti
ally.

11



This property has not been 
aptured by the previous attempt on dis
retizing the SLWE whi
h was

dis
ussed in the last se
tion. This observation leads to the revelation that it must be in
reasingly

di�
ult for the automaton to move to a more extreme state even as it gets 
loser to the boundary

states represented by the indi
es zero or N . Consider the 
ase where s1 ≈ 1. In su
h a 
ase, the

observations will primarily 
onsist of a sequen
e of x(·) = �1�, and although it should be harder for

the automaton to move towards the �nal state, it seems in
orre
t to redu
e the state at time t upon

another observation of x(t) = �1�. The solution to this dilemma is to let the automaton keep the


urrent state with in
reasing probability the 
loser the state is to either of the extreme states.

Sto
hasti
 pro
esses of this type are typi
ally 
ategorized as birth-death pro
esses in the litera-

ture, stemming from early studies of dis
rete population dynami
s, where the growth depends on

the number of individuals in the population [12℄. Assuming that the individuals 
ompete for food,

an individual's risk of dying of starvation over an epo
h of observations will in
rease with a growing

population, whereas epo
h survival will be almost assured when there are few individuals. In addi-

tion, one 
an safely assume that the birth rates depend on the population size. Thus, an equilibrium

will be a
hieved when the birth rate balan
es the death rate for a given population size admitted by

the availability of the food resour
es.

With this as a ba
kdrop, at this jun
ture, we present the equations motivating the design of su
h

a dis
retized estimator.

Initially, we assign p1(0) = p2(0) = N/2, where N is assumed to be an even integer. Thereafter,

the value of p1(t), is updated as follows:

If x(t) = �1� and rand() ≤ 1− p1(t) and 0 ≤ p1(t) < 1

p1(t+ 1) := p1(t) +
1

N
(7)

If x(t) = �2� and rand() ≤ 1− p2(t) and 0 < p1(t) ≤ 1

p1(t+ 1) := p1(t)−
1

N
(8)

p1(t+ 1) := p1(t) Otherwise, (9)

where p2(t+ 1) = 1− p1(t+ 1) and rand() is a uniform random number generator fun
tion. In the

interest of simpli
ity, we omit the time index t, whenever there is no 
onfusion and thus, P implies

P (t).

We state below two fundamental theorems 
on
erning our s
heme. The �rst theorem is about

the distribution of the ve
tor P whi
h estimates S as per Eqs. (7), (8) and (9). We a�rm that P


onverges in distribution. The mean of P is shown to 
onverge exa
tly to the mean of S. The se
ond

12



theorem is about the varian
e of the estimate, des
ribing the rate of 
onvergen
e in relation to the

varian
e, and its dependen
e on N . We will show that a small N results in fast 
onvergen
e and a

large varian
e, and that a large value of N will lead to slow 
onvergen
e and a small varian
e. As

we will see, the 
hoi
e of this user-de�ned learning parameter, N , summarizes the trade o� between

the speed and the 
orresponding varian
e.

Sin
e the proofs of the theorems are rather intertwined, we shall prove them together.

Theorem 3 Let X be a binomially distributed random variable, and P (t) be the estimate of S at

time t obtained by Eqs. (7), (8) and (9). Then E[P (∞)] = S.

Theorem 4 Let X be a binomially distributed random variable, and P (t) be the estimate of S at

time t. Then the algebrai
 expression for the varian
e of P (∞) is fully determined by N . Moreover,

when N → ∞ the varian
e tends to zero, implying mean square 
onvergen
e.

Proof : We now present the proofs of Theorems 3 and 4.

In Theorem 3, our aim is to prove that as the index t is in
reased inde�nitely, the expe
ted value

of the p1(t) 
onverges towards s1, implying that: limt→∞E[p1(t)] → s1.

We shall prove the above by analyzing the properties of the underlying Markov 
hain, whi
h is

spe
i�ed by the rules given by Eqs. (7), (8) and (9). In brief, rules given by Eqs. (7), (8) and (9)

obey the Markov 
hain with transition matrix H = [hkl], where.

hk,k−1 = s2
k
N

, 0 < k ≤ N ,

hk,k+1 = s1(1−
k
N
) , 0 ≤ k < N ,

hk,k = 1− hk,k−1 − hk,k+1 , 0 < k < N ,

= (1− k
N
) + (2 k

N
− 1)s1 , 0 < k < N ,

and, a

ordingly

h0,0 = 1− h0,1

hN,N = 1− hN,N−1.

The asso
iated Markov Chain

3

is depi
ted in Figure 2.

3

In the population dynami
s formulation of the problem, the following two 
on
epts 
an be de�ned from the above

de�nitions [12℄: Birthrate = s1(1−
k

N
), and Deathrate = s2

k

N
.
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Figure 2: The Markov 
hain of the SDWE where k denotes the state index.

We shall now 
ompute πk, the stationary (or equilibrium) probability of the 
hain being in state

k. Clearly H represents a single 
losed 
ommuni
ating 
lass whose periodi
ity is unity. The 
hain is

ergodi
, and the limiting probability ve
tor is given by the eigenve
tor of HT

orresponding to the

eigenvalue unity.

The ve
tor of steady state probabilities Π = [π1, . . . , πN ]T 
an be 
omputed using HTΠ = Π as:
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(10)

Consider �rst the stationary probability of being in state 0, π0. Expanding the �rst row of Eq.

(10) yields:

π0h0,0 + π1h1,0 = π0 =⇒ π1 =
(1− h0,0)

h1,0
=

h0,1
h1,0

π0. (11)

Expanding the se
ond row of Eq. (10) and substituting Eq. (11) yields:

π0h0,1 + π1h1,1 + π2h2,1 = π1 =⇒ π2 =
h1,2
h2,1

π1. (12)
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Arguing in the same manner, and after some algebrai
 simpli�
ations, we obtain the re
urren
e:

πk =
hk−1,k

hk,k−1
πk−1. (13)

Using Eq. (13) and substituting hk−1,k and hk,k−1 gives:

πk = π0

k
∏

i=1

hi−1,i

hi,i−1

= π0

k
∏

i=1

s1(1−
i−1
N

)

s2
i
N

= π0(
s1
s2

)k
k
∏

i=1

(
N − i+ 1

i
)

=

(

N

k

)

(
s1
s2

)kπ0. (14)

Consider the sum

∑N
k=0 πk. Using Eq. (14) and applying the Binomial theorem gives:

N
∑

k=0

πk = π0

N
∑

k=0

(

N

k

)

(
s1
s2

)k

= π0(1 +
s1
s2

)N

=
π0

sN2
.

Using the fa
t

4

that

∑N
k=0 πk sums to unity, we obtain:

π0 = sN2 . (15)

Repla
ing Eq. (15) in Eq. (14), we obtain a 
losed form expression for the stationary probability

πk as:

πk =

(

N

k

)

sk1s
N−k
2 (16)

Let X∗
be the limiting index of the state of the random walker. From the above, 
learly X∗

is

binomially distributed, with parameters s1 and N .

Hen
e, E[X∗] = Ns1 and V ar[X∗] = Ns1s2.

Consequently, E[p1(∞)] = 1
N
E[X∗] = s1, and var[p1(∞)] = 1

N2V ar[X∗] = 1
N
s1s2.

4

The reader should observe that Eq. (14) is quite similar to the 
losed form expression we obtained for the so-
alled

�dire
t� solution (Eq. (3)), ex
ept that we have now also obtained a state dependent 
ombinatorial term. It is this


ombinatorial term, obtain as a 
onsequen
e of the state-dependent transitions, that makes this dis
retization work!

15



Thus, Theorem 3 is proved. Using the fa
t that limN→∞ V ar[p1(∞)] = limN→∞
1
N
s1s2 = 0, we

see that Theorem 4 is also proved.

6 The Estimator for Multinomial Distributions

In this se
tion, we shall 
onsider the problem of estimating the parameters of a multinomial distri-

bution, whi
h is a generalization of the binomial 
ase introdu
ed earlier. There is a straight-forward

me
hanism to extend the binomial result for the multinomial s
enario, and 
an be indeed des
ribed

as follows: Let us assume that P(t) = [p1(t), . . . , pr(t)℄
T

is the 
urrent estimate of S. At any single

time instant we observe that this represents

(

r

2

)

pairs of binomial sequen
es. Therefore when an

event i o

urs, the probability pi 
an be in
reased based on a binomial distribution with regards to

any or all the

(

r

2

)

pairs. So a simple-minded strategy is to asso
iate event i with any other event

j so that when event i o

urs, pi is in
reased and pj is de
reased maintaining pi + pj to have the

same value as it had before the event i o

urred. Noti
e thus that P will remain to be probability

ve
tor and 
onsequently the proof of 
onvergen
e of this updating rule will follow as a 
onsequen
e

of all the

(

r

2

)

binomial sequen
es 
onverging to their 
orre
tion proportions.

However, rather than work with binomial pairs we now propose a more elegant solution whi
h

works with the multinomial sequen
e in its entirety, as Oommen and Rueda did in [27℄. However,

we emphasize the fas
inating aspe
t that the Markov Chain obtained in the 
ontinuous s
enario is


ompletely distin
t from the one whi
h we en
ounter here. Unfortunately, although the asymptoti



onvergen
e properties are proven, the analogous Eigenvalue/Eigenve
tor properties are, as yet,

unsolved � they are 
urrently under investigation. As in the LA �eld, the dis
retized results that

we have here are experimentally superior to their 
ontinuous 
ounterparts.

The multinomial distribution is 
hara
terized by two parameters, namely, the number of trials,

and a probability ve
tor whi
h determines the probability of a spe
i�
 event. In this regard, we

assume that the number of observations is the number of trials. Thus, we deal with the problem of

estimating the latter probability ve
tor asso
iated with the set of possible out
omes.

LetX be a multinomially distributed random variable, taking values from the set {�1�,�2�, . . . ,�r�}.

Again, we assume that X is governed by the distribution S = [s1 . . . sr]
T
as follows:

X = �i� with probability si, where
∑r

i=1 si = 1.

Let x(t) be a 
on
rete realization of X at time �t�. The task at hand is to estimate S, i.e., si

for i = 1 . . . r. We a
hieve this by maintaining a running estimate P(t) = [p1(t), . . . , pr(t)℄
T

of S,

where pi(t) is the estimate of si at time t. Again we omit the time referen
e t in P (t) whenever this

does not lead to 
onfusion.

We assume that the resolution is a multiple of the number of parameters r, i.e, N = rδ where δ

is an integer. Therefore, for all i, we initialize pi(0) as per the following pi(0) =
δ
N

= 1
r
.

16



Generalizing the randomized updating s
heme used in the binomial 
ase, we get the following

update s
heme for the multinomial 
ase:

If x(t) = �i� and rand() ≤ 1− pi(t) and 0 ≤ pi(t) < 1

(i) pi(t+ 1) := pi(t) +
1

N
. (17)

Randomly 
hoose pj , j 6= i, a

ording to the normalized probability

pj(t)∑

k 6=i

pk(t)
and update pj as:

(ii) pj(t+ 1) := pj(t)−
1

N
(18)

P (t+ 1) := P (t) Otherwise. (19)

As before, we shall state two theorems about the properties of the estimate �rst and prove them

simultaneously.

Theorem 5 Let X be a multinomially distributed random variable, and P (t) be the estimate of S

at time t obtained by Eqs. (17), (18) and (19). Then E[P (∞)] = S.

Theorem 6 Let X be a multinomially distributed random variable, and P (t) be the estimate of S

at time t obtained by Eqs. (17), (18) and (19). Then algebrai
 expression for the varian
e of P (∞)

is fully determined by N . Moreover, when N → ∞ the varian
e tends to zero, implying mean square


onvergen
e.

Having stated the theorems, we shall now present the proofs of Theorems 5 and 6.

Proof : Our aim is to prove that as the index t is in
reased inde�nitely, the expe
ted value of

the pi(t) 
onverges towards si, for all 1 ≤ i ≤ r implying that: limt→∞E[pi(t)] → si.

The proof is analogous to the proof of the binomial 
ase.

Let us 
onsider pi(t) for the index i throughout the argument. Indeed, we shall prove the above

by analyzing the properties of the underlying Markov 
hain asso
iated to pi(t), whi
h is spe
i�ed by

the rules given in Eqs. (17), (18) and (19).

In brief, the rules given in Eqs. (17), (18) and (19) obey the Markov 
hain with transition matrix

H i
. Let us 
onsider pi(t), in order to spe
ify the exa
t expression of H i

, its Markov 
hain. Consider

the transitions that the dis
retized running estimate pi(t) exhibits. Note that the transitions happen

between adja
ent states. We 
an easily observe that: hij,j+1 = si(1−
j
N
) , 0 ≤ j < N .

The transition from state j to j − 1, for 0 < j ≤ N , is more 
ompli
ated to 
ompute. The

latter happens with a 
ertain probability at time t if x(t) = �k � takes pla
e, for i 6= k, and pk(t) is

in
reased at time instant t. In this sense, if pk(t) is in
remented at time t, then pi(t), i 6= k, will
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be possibly de
remented with a probability equal to

pi(t)∑r

l=1
l 6=k

pl(t)
whi
h 
orresponds to the normalized

probability of the sele
tion of pi(t) among {pl(t), l 6= k}.

In the following, we show that Markov 
hain is time-homogeneous by demonstrating that the

terms of the transition matrix H i
do not depend on time! In addition, we shall show that the matrix

H i
does not depend on the state of random walk pj(t) des
ribed by Hj

, for i 6= j. In other words,

the transitions of the random walk atta
hed to pi(t) are �de
oupled� from those of pj(t), for i 6= j.

Therefore:

hij,j−1 =
∑r

k=1
k 6=i

sk(1− pk)
pi∑r

l=1
l 6=k

pl
, 0 < j ≤ N .

We note that,

∑r
l=1
l 6=k

pl = 1− pk. Moreover, whenever the random walker i is in state j, pi =
j
N
.

Therefore hij,j−1, for 0 < j ≤ N is expressed as:

hij,j−1 =
∑r

k=1
k 6=i

sk(1− pk)
j

N∑r

l=1
l 6=k

pl
=

∑r
k=1
k 6=i

sk
j
N
.

We note too that,

∑r
k=1
k 6=i

sk = 1− si.

Therefore, hij,j−1 = (1− si)
j
N
.

We now resume our argument by seeing that H i
is de�ned by:

hij,j+1 = si(1−
j
N
) , 0 ≤ j < N ,

hij,j−1 = (1− si)
j
N
, 0 < j ≤ N ,

hij,j = 1− hj,j−1 − hj,j+1 , 0 < j < N ,

and, a

ordingly

hi0,0 = 1− hi0,1

hiN,N = 1− hiN,N−1.

Therefore, H i
does not depend on time.

We shall now 
ompute πi
k the stationary (or equilibrium) probability of the 
hain being in state

k. Clearly H i
represents a single 
losed 
ommuni
ating 
lass whose periodi
ity is unity. The 
hain

is ergodi
, and the limiting probability ve
tor is given by the eigenve
tor of H iT

orresponding to

the eigenvalue unity.

Let Πi
denote the ve
tor of steady state probabilities. This ve
tor, Πi = [πi

1, . . . , π
i
N ]T , 
an be


omputed using H iTΠi = Πi
.

Sin
e the expressions are identi
al, we 
an use the results from the binomial 
ase to dedu
e that:

πi
k =

(

N
k

)

ski (1− si)
N−k

.

Let Xi∗
be the limiting index of the state of the random walker i. From the above, 
learly Xi∗

is binomially distributed, with parameters si and N .

Hen
e, E[Xi∗] = Nsi and V ar[Xi∗] = Nsi(1− si).

Consequently, E[pi(∞)] = 1
N
E[Xi∗] = si and V ar[pi(∞)] = 1

N2V ar[Xi∗] = 1
N
si(1− si).

Note too that, amazingly enough, the 
onvergen
e does not involve the number of states.
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Thus, Theorem 5 is proved. Using the fa
t that limN→∞ V ar[pi(∞)] = limN→∞
1
N
si(1−si) = 0,

we see that Theorem 6 is also proven.

Remarks:

A few remarks regarding our method for updating the estimates are not out of pla
e. Indeed:

• The reader will observe the very subtle point that our proofs of the theorems is based on the

assumption

5

that the parameter of the environment remains �stationary long enough� for su
h

a estimation s
heme to be meaningful. This is unavoidable be
ause, as far as we know, there

are no available methods for formally analyzing estimation methods for stri
tly non-stationary

environments. This is be
ause, one has to �rst determine a model for the non-stationarity and

for the way the underlying parameter would 
hange within this model, before an estimation

s
heme 
an be devised. Sin
e this is not possible in a general setting, what one rather needs

is a method of estimation that qui
kly 
onverges to the 
urrent parameter of the environment

in a �weak� (i.e., not with probability `1') manner, and that would be able to qui
kly unlearn

if the parameter 
hanges. This is pre
isely what the SLWE and SDWE are able to do.

• To 
larify the above, we explain the dilemma of proving the results for stationary environments,

and then using them for non-stationary domains. The results we have derived are asymptoti
,

and are thus, valid only as n → ∞. While this 
ould prove to be a handi
ap, realisti
ally, and

for all pra
ti
al purposes, the 
onvergen
e takes pla
e after a relatively small value of n. Thus,

for the SLWE, if λ is even as �small� as 0.9, after 50 iterations, the variation from the asymptoti


value will be of the order of 10−50
, be
ause λ also determines the rate of 
onvergen
e, and

this o

urs in a geometri
 manner [21℄. In other words, even if the environment swit
hes its

Bernoulli parameter after 50 steps, the SLWE will be able to tra
k this 
hange. This same

observation is valid for the SDWE, for example, for relatively small values of the resolution of

dis
retization. Observe too that we do not need to introdu
e the use of a �sliding window�.

• The philosophy behind the form of the update de�ned by Eqs. (17), (18) and (19) is to,

eventually, in
rease one 
omponent of the ve
tor of running estimates by a quantity equal to

the stepsize ∆ while de
reasing another 
omponent by the same quantity ∆. This is done in

order to ensure that the sum of the 
omponents equals unity.

• The SDWE makes at most 2 updates per time step, thus rendering the worst 
ase to be


onstant or O(1). Interestingly, the estimator possesses a low 
omputational 
omplexity that

is independent of the number of the parameters of the multinomial distribution.

5

We are extremely grateful to the anonymous Referee who brought this up.
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• It is pertinent to mention that although the rationale for updating is similar to that used for the

Sto
hasti
 Nonlinear Fra
tional Knapsa
k algorithm [10℄, there are fundamental di�eren
es.

Unlike the latter, where the LA was made arti�
ially ergodi
 by ex
luding the end-states

from the set of possible probability values, our estimator is truly ergodi


6

. The reason for

ex
luding the the end states in [10℄ was be
ause the LA in [10℄ uses its �estimates� to sele
t

�a
tions� with frequen
ies proportional to the estimates. Consequently, enfor
ing an absorbing


ondition for the end states in [10℄ would imply always sele
ting the same a
tion from that

time instant onwards, and never sele
ting the alternate one thereafter. As opposed to this, our


urrent automaton does not perform/
hoose a
tions (events) with frequen
ies proportional to

the estimate ve
tor. Rather, sin
e this present LA is intended for estimation, it is, indeed, the

environment whi
h �produ
es� events independent of the LA, and whi
h informs the LA about

these events. The LA then, in turn, estimates S based on the observed events. In other words,

the di�eren
e between the two LA is that the one in [10℄ performs a
tions in the environment

in order to maximize the number of rewards it re
eives, while the present LA observes the

environment to estimate its properties.

• Apart from the above, it is pertinent to mention that the purpose of introdu
ing the hierar
hy

in the knapsa
k problem was, �rst and foremost, to a
hieve better s
alability when it 
on
erns

the learning speed. The hierar
hy proposed in [10℄ improved the learning speed dramati
ally


ompared to the approa
h presented in [9℄ be
ause of the hierar
hi
al 
on�guration of the

underlying LA. The question of introdu
ing a hierar
hi
al philosophy in the setting of the


urrent paper remains unsolved.

• One of the most signi�
ant 
ontributions of this paper is, in our opinion, the rather elegant

manner by whi
h we have designed the RW for the estimation pro
ess in the multinomial 
ase.

By intelligently designing the RW transitions in the dis
retized probability spa
e, we have

su

eeded in deriving and analyzing the multinomial estimates in a manner identi
al to what

was involved for solving the binomial estimation 
ase. To further explain this, we mention that

if the transitions of the RW asso
iated with pi were dire
tly dependent on the RW asso
iated

with pj for i 6= j, the state spa
e would have been unmanageable, namely of the order of

O(N2
). However, the e�e
t of our spe
i�
 design and representation helped in redu
ing the

magnitude of the state spa
e of the RW for the multinomial 
ase from O(N2
) to O(N). This

further assisted in de
oupling the transition matri
es for ea
h 
omponent of the multinomial

ve
tor, whi
h in fa
t, is an elegant alternative to the 
on
ept of using a team of normalized

binomial estimators for solving multionomial estimation problems

7

. In addition, we believe

6

If the LA in the present paper would have observed the event �i� with probability pi instead of probability si (for

i = 1, 2), the present LA would have also been absorbing!

7

The reader 
an easily see that this is also an alternate, although more 
umbersome, way to de
ouple the updates
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that the unique RW transitions used here for multinomial estimates, 
an inspire the design of

novel ways for generalizing two-a
tion learning ma
hines into multia
tion ma
hines!

• The issue of how we 
an obtain a generalization of these results for other distributions is very

interesting. As a �rst step, we propose approximating the distribution using a equi-depth or

equi-width histogram, whereby the original distribution itself 
an be approximately modeled

as a multinomial distribution by 
onsidering its relative proportions in ea
h of the histogram

bins. More elegant solutions of this are 
urrently being investigated.

7 Experimental Results: Arti�
ial and Real-lie Data

In this se
tion, we evaluate the new family of dis
retzied estimators in non-stationary environments

and 
ompare this approa
h to traditional Maximum Likelihood estimation methods whi
h use the

sliding window (MLEW) and the SLWE. In order to 
on�rm the superiority of our s
heme, we have


ondu
ted extensive simulations results under di�erent parameter settings. In the interest of brevity,

we merely 
ite a few spe
i�
 experimental results. Also, while Se
tions 7.1-7.3 deal with arti�
ial

data, Se
tion 7.4 presents the results for a real-life appli
ation domain.

7.1 Comparison with the MLEW of Binomial distributions

The estimation of the parameters for binomial random variables has been extensively tested for

numerous binomial distributions, and we 
ite the results from two of these experiments here. To do

this, in the interest of standardization, we have adopted the same simulation methodology used in

[27℄, using randomly generated values of N . To assess the e�
ien
y of the estimation methods in a

fair way, we randomly 
hose values for the resolution N and for the window width from the intervals

[6, 16] and [20, 80], respe
tively. Further, to enable us to obtain a smooth result, we performed

ensembles of 1, 000 simulations ea
h 
onsisting of 400 time steps. The true underlying value of the

quantity to be estimated was randomly 
hanged every 50 time steps. The plots from ea
h experiment

are presented in Figures 3 and 4 where the values for N are 6 and 8 respe
tively, and the sizes of the

windows are 32 and 57, respe
tively. The results we show here are typi
al. The reason for operating

with larger window sizes than 50 is that we generally have no knowledge about the environment

with regard to the frequen
y or magnitude of the 
hanges. We observe that when the window size of

the MLEW be
omes larger, e.g., 57, the estimation algorithm is unable to tra
k the 
hanges in the

environment, yielding a poor overall a

ura
y. In Figure 4, we see that the MLEW approximates

the true value fairly well for the �rst 50 time steps, but is thereafter unable to tra
k the variations.

In Figure 3, when the window size is smaller, the MLEW is 
apable of tra
king the 
hanges, but not

of the di�erent 
omponents of a ve
tor of multinomial estimates.
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nearly as fast nor as a

urate as the SDWE. Even when the SDWE uses a resolution parameter as

low as 6, it 
learly outperforms the MLEW with regard to the 
onvergen
e speed.
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Figure 3: The expe
ted value of the estimates of p1(t), obtained from the SDWE and MLEW, using

N = 6 and w = 32.
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Figure 4: The expe
ted value of the estimates of p1(t), obtained from the SDWE and MLEW, using

N = 8 and w = 57.

In Figure 5, we keep the same window size and resolution as previously done in Figure 3, but we

instead in
rease the periodi
ity by whi
h the environment swit
hes from 50 to 200 iterations. The

intention here is to simulate a slowly-varying environment. Interestingly, the SDWE seems to have
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higher adaptivity than the SLWE just after the environment swit
h, and then, as time pro
eeds,

the MLEW su

eeds to 
onverge to the new true parameter of the environment in the order of 40

iterations, i.e, after some delay larger than the window size. The fa
t that the periodi
ity, i.e., 200,

is mu
h larger than the window size, 32, favors the MLEW after an order of 40 instants subsequent

to the swit
h. While the SDWE moves faster towards the true value, it is unable to get of rid of

some �u
tuations in the neighborhood of the true parameter 
hara
terizing the environment � in

spite of the fa
t that we are averaging over an ensemble of 1000 experiments. These �u
tuations of

the SDEW merely re�e
t a larger varian
e than the MLEW. Similar �ndings are observed in Figure

6 where we in
rease the periodi
ity to 200, as opposed to the value of 50 used for Figure 4.

Thus, we 
on
lude that the SDWE seems to be more 
onvenient for �fast-varying� environments,

whi
h opens avenues towards devising methods that 
ombine the MLEW and SDWE s
hemes so as

to take advantage of the best properties of them both. Under a slowly varying, a simple idea is to

use the SDWE with a low resolution in order to qui
kly adapt to the new environment after the

swit
h, and to subsequently resort to the MLEW so as to redu
e the varian
e. Another alternative,

is to resort to the SDWE by starting with a low resolution so as to 
onverge faster, and to thereafter

in
rease the resolution to �stabilize� around the true parameter.
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Figure 5: The expe
ted value of the estimates of p1(t), obtained from the SDWE and MLEW, using

N = 6 and w = 32 for a slowly varying environment.
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Figure 6: The expe
ted value of the estimates of p1(t), obtained from the SDWE and MLEW, using

N = 8 and w = 57 for a slowly varying environment

7.1.1 Comparison with MLWE for the Case of Multinomial Random Variables

We have also performed simulations for multinomial random variables, where the parameters were

estimated by following the SDWE and the MLEW. We 
onsidered a multinomial random variable,

X, whi
h 
an take any of three di�erent values, namely 1, 2, or 3, whose probability values 
hange

(randomly) every 50 steps. As in the binomial 
ase, we evaluated the estimators for 400 steps, and

repeated this 1, 000 times, after whi
h the ensemble average of P was evaluated. To report the

quality of an estimator, we 
omputed the index ||P − S||, i.e., the Eu
lidean distan
e between P

and S, whi
h was intended to be a measure of how good our estimate, P , was of S. The plots of the

latter distan
e obtained from the SDWE and the MLEW are depi
ted in Figures 7 and 8, where the

values for N are 6 and 12, and the sizes of the windows are 67 and 34, respe
tively. The values for

N and the window size were obtained randomly from a uniform distribution in [6, 15] and [20, 80].

It is 
lear from both �gures that the SDWE is faster in tra
king the 
hanges than the MLEW.

Note that the MLEW 
onverges faster than the SDWE only during the �rst 50 time instants (before

the �rst environment swit
h). However, this behavior is not present in su

essive epo
hs. In Figure

7, we remark that a window size as large as 67 slows down the 
onvergen
e speed of the MLEW.

This is due to the fa
t that the larger the window size, the greater is the e�e
t of the stale data

to jeopardize the running estimate. From both Figures 7 and 8, we observe that a large value of

N yields low varian
e. The problem, however, is that the rate of 
onvergen
e is slower than when

we used a lower value of N . A low value of N results in a faster 
onvergen
e, but it also yielded a

higher varian
e from the true underlying parameter. This 
on�rms that the 
hoi
e of the user-de�ned

learning parameter, N , redu
es to a trade o� between the speed and the 
orresponding varian
e.
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Similar results are observed for the window width parameter of the MLEW as well. We noti
e that

the MLEW is 
apable of tra
king the 
hanges of the parameters when the size of the window is small,

or at least smaller than the intervals of 
onstant probabilities. The latter, however, is not able to

tra
k the 
hanges properly when the window size is relatively large. Sin
e neither the magnitude

nor the frequen
y of the 
hanges is known a priori, this s
enario demonstrates the weakness of

the MLEW, and its dependen
e on the knowledge of the input parameters. Su
h observations are

typi
al.
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Figure 7: Plot of the Eu
lidean norm P-S (or the Eu
lidean distan
e between P and S), for both

the SDWE and MLEW, where N is 6 and the window size is 67 respe
tively.
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Figure 8: Plot of the Eu
lidean norm P-S (or the Eu
lidean distan
e between P and S), for both

the SDWE and MLEW, where N is 12 and the window size is 34 respe
tively.

7.2 Comparison with SLWE for the 
ase of Binomial Random Variables

We 
onsidered a binomial random variable, X, whi
h 
an take any of two di�erent values, namely

1, 2 where the probability 
hanges (randomly) every 50 steps. In order to 
ompare the performan
e

SDWE and the performan
e of the SLWE in a fair way, we adopted the same method as in the
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ase of the SDWE and the MLEW reported in [27℄. We randomly 
hose values for the resolution

N and for the parameter λ of the SLWE [27℄ from the intervals [8, 16] and [0.9, 1], respe
tively. It

was reported in [27℄ that using values of λ for the SLWE drawn from [0.9, 1] yields fast 
onvergen
e

speed and good a

ura
y. Again, we 
ondu
ted an ensemble of 1, 000 simulations, ea
h 
onsisting of

400 time steps. In the interest of brevity, we in
lude only the results from two of these experiments

here. The expe
ted value of the estimates of p1(t), obtained from the SDWE and SLWE, using

N = 8 and λ = 0.938 is depi
ted in Figure 9. Similarly, the estimates of p1(t), obtained from the

SDWE and SLWE, using N = 12 and λ = 0.9623 is depi
ted in Figure 10. Clearly, the SDWE is

signi�
antly faster than the SLWE. This is parallel to the results known in the �eld of LA where

dis
retized LA have been reported to outperform their 
ontinuous 
ounterparts.
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Figure 9: The expe
ted value of the estimates of p1(t), obtained from the SDWE and SLWE, using

N = 8 and λ = 0.938 respe
tively.
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Figure 10: The expe
ted value of the estimates of p1(t), obtained from the SDWE and SLWE, using

N = 12 and λ = 0.9623 respe
tively.

7.3 Comparison with SLWE for the Case of Multinomial Random Variables

For the multinomial 
ase, we again performed ensembles of 1, 000 simulations ea
h 
onsisting of

400 time steps. The true underlying value of S was randomly 
hanged every 50 time steps. We


omputed ||P − S||, the Eu
lidean distan
e between P and S, and in
lude here only the results

from two experiments. We randomly 
hose values for the resolution N and for the parameter λ of

the SLWE [27℄ from the intervals [6, 15] and [0.9, 1], respe
tively. Figure 11 illustrates the 
ase of

N = 12 for the SDWE and λ = 0.931 for the SLWE, whereas Figure 12 depi
ts the results for N = 9

and λ = 0.942.
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Figure 11: Plot of the Eu
lidean norm P -S (or the Eu
lidean distan
e between P and S), for both

the SDWE and SLWE, where N is 12 and the λ = 0.931 respe
tively.
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Figure 12: Plot of the Eu
lidean norm P -S (or the Eu
lidean distan
e between P and S), for both

the SDWE and SLWE, where N is 9 and λ = 0.942 respe
tively.

From both Figures 11 and 12, we observe that the SDWE outperforms the SLWE in the multi-

nonmial 
ase both in speed and a

ura
y. In the 
ase of the SLWE, we note that a small value for

λ, yields less a

ura
y, but faster 
onvergen
e. Similarly, for the SDWE, large values of N yield a

higher a

ura
y but slower 
onvergen
e speed.

7.4 Real-life Appli
ation of the S
heme: Language Dete
tion

The solution that we have proposed is not only theoreti
al in nature. Indeed, we have also utilized

it in a real-life language dete
tion domain involving the languages English and Arabi


8

.

In order to simulate real life data, we downloaded text from two on-line newspapers, where one of

them was in Arabi
 (Aljazeera.net) and the other was in English (BBC.
om). To render the problem

non-trivial, the text from both newspapers was s
rambled in a random manner. The s
rambled text

was then transformed into a series of bits where ea
h 
hara
ter in the text 
orresponds to 8 bits

a

ording to the ASCII 
ode. This series of bits was given to our algorithm where the aim of the

exer
ise was to tra
k the o

urren
e of the bit `1' whi
h served as the re
ognizing feature, when
e

we attempted to a
hieve the 
lassi�
ation of the 
orresponding pie
e of text. An example of the

s
rambled text is given in Table 1, where the respe
tive 
hange instants of the language from Arabi


to English and vi
e versa are also re
orded. Here the 
hange instant denotes the index of the bit

where a 
hange of the language in the text o

urs.

We report here the results of three experiments, ea
h performed with three di�erent resolutions.

Figure 13(a), Figure 13(b) and Figure 13(
), report the variation of the estimate of the o

urren
e

of the bit `1' for the respe
tive resolutions N = 10, N = 20 and N = 40.

The reader 
an easily observe that in the three �gures, the trend of the estimate 
hanges as soon

8

As requested by one of the anonymous Referees, the data used for these experiments is available at

https://www.dropbox.
om/s/u4p8uop1que3ey8/text.txt?dl=0.
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as there is a language 
hange. The o

urren
e probability of `1' for English stabilizes around 0.9,

while for Arabi
 it seems to stabilize around 0.5. Interestingly enough, even for a resolution as small

as N = 10 (see Figure 13(a)), the �u
tuations are mu
h more 
onsiderable than for the resolution

N = 20 and N = 40, spe
ially between time instants 600 and 620. The latter �
onsiderable�

�u
tuations are explained by the fa
t that the level of dis
retization is 
hara
terized by a resolution

parameter as small as 10. However, the �u
tuations are almost unobservable as N in
reases. Thus,

in Figure 13(
), we observe that the resolution is in
reased to N = 40, the �u
tuations are extremely

minor. Indeed, the 
urve is mu
h smoother than for the 
ase when N = 10. Furthermore, it takes

around 40 bits for the s
heme to �
onverge� and stabilize after ea
h language swit
h. Thus, for

example, while a language 
hange took pla
e at the instant time around 140, the estimate 
onverged

around the time instant 180 .

The 
onvergen
e of the estimate and ability to tra
k the language 
hange is, in our opinion, quite

fas
inating.

Table 1: The time instan
es when a 
hange in the language (from English to Arabi
 and vi
e versa)

o

urred.

Text Bit number

on
ountrytofailtorepayal 1 - 140

Q
KA¢Ëð


@ �é«A 	J�»ñJ.��
 140 - 293

Gree
ebe
amethe� 293 - 425

�é»Qå��J

	® 	KñËð 
ñ�ÒÊÓ 425 - 649
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Figure 13: This �gure depi
ts the variation of the estimate for di�erent values of the resolution N :

(a) For N = 10, (b) for N = 20, and (
) for N = 40.

8 Con
lusion

This paper has presented a novel dis
retized estimator that is able to 
ope with non-stationary bi-

nomial/multinomial distributions using �nite memory. After demonstrating that a straightforward

naive dis
retization of the 
ontinuous SLWE is inadequate, we have proposed a novel randomized

dis
retization strategy, namely, the SDWE. To the best of our knowledge, our SDWE is the �rst

reported dis
retized 
ounterpart of the SLWE. Thus, through this paper, we have shown that dis-


retizing the probability spa
e o�ers a new promising approa
h for the design of weak estimators.

In fa
t, 
omprehensive simulation results demonstrate that the new estimator is able to 
ope with
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non-stationary environments with both a high adaptation rate and a

ura
y. In addition, the results

suggest that the SDWE outperforms the MLEW as well as the SLWE.

The most outstanding 
ontribution of our work is that of a
hieving multinomial estimation with-

out relying on a set of binomial estimators, and where the underlying strategy is truly randomized.

We believe that this 
ontribution is parti
ularly of a pioneering sort.

The paper also reports the results of the estimate being able to tra
k the 
hanges in a 
orpus

of text interspersed by English and Arabi
 fragments. The 
hange dete
tion observed is quite

fas
inating.

As a future work, we propose to study the performan
e of the estimator in real-life appli
ations.

Indeed, the possible appli
ation of the SDWE for 
lassi�
ation and language dete
tion is 
urrently

being investigated.
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