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Abstract 
In this dissertation I report from a study of teaching-learning situations 
that deal with algebraic generalisation of shape patterns. The focus is on 
factors that constrain students’ establishment and justification of formu-
lae and mathematical statements that represent generality in different 
shape patterns. Participants in the study are six student teachers and two 
teacher educators in mathematics at the programme “Teacher education 
with emphasis on mathematics and science subjects” at a University Col-
lege in Norway.1 

I have used Guy Brousseau’s (1997) theory of didactical situations in 
mathematics to analyse the empirical material which consists of class-
room observations and the mathematical tasks with which the students 
engaged. Brousseau’s theory is a scientific approach to the problems 
posed by the teaching and learning of mathematics, where the particu-
larity of the knowledge taught is in focus and plays a significant role. I 
wanted to find out what factors constrain students’ algebraic generalisa-
tion processes by exploring relationships between three “instances”: the 
target mathematical knowledge; the teaching-learning situations in which 
the students engaged collaboratively; and, the outcome of the students’ 
engagement in those situations. I have augmented the theory of didacti-
cal situations in mathematics by Lev Vygotsky’s (1934/1987) theory of 
concept development. 

Methodologically, I interpret my study to be an educational case 
study (Stenhouse, 1988) within a qualitative research paradigm (Denzin 
& Lincoln, 2005). There are two cases, each of which consists of a group 
of three students (with teacher involvement). The cases are instrumental 
to the understanding of students’ algebraic generalisation of shape pat-
terns. In my investigation of factors that constrain students’ algebraic 
generalisation processes, I define the small-group teaching situation as 
the unit of analysis when I examine how the didactical “milieu” con-
strains the opportunities for the students to appropriate the target mathe-
matical knowledge. The milieu is the subset of the students’ environment 
with only those features that are relevant with respect to the target 
knowledge. 

                                         
 
 
 
 
 

1 In the rest of the abstract, “students” is used to refer to student teachers, and “teacher” is 
used to refer to a teacher educator. 
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The analytic findings indicate that the students’ algebraic generalisa-
tion processes are constrained in three senses. The first constraint is re-
lated to a limited feedback potential in situations where the students are 
supposed to solve the mathematical tasks without teacher intervention. 
This constraint is materialised in terms of three phenomena: adaptedness 
of design of mathematical tasks; clarity of concepts; and, institutionalisa-
tion of previous knowledge. The second constraint is related to obstacles 
the students face when they shall transform into algebraic notation for-
mulae and mathematical statements they have expressed informally in 
natural language. This constraint is materialised in terms of two phe-
nomena: distinctiveness of recursive and explicit approaches to generali-
ty in shape patterns; and, the syntax of algebra. The third constraint is 
related to challenges with justification of formulae and mathematical 
statements that the students have proposed. This constraint is material-
ised in terms of two phenomena: pertinence of concepts (spontaneous 
versus scientific concepts); and, validity of reasoning (empirical reason-
ing versus formal, rigorous mathematical reasoning). 

Overall, the dissertation contributes to a better understanding of fac-
tors that are important in the design and implementation of teaching-
learning situations aiming at algebraic generalisation of shape patterns. 
This includes insights into necessary features of the milieu. 
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Sammendrag 
I denne avhandlingen rapporterer jeg fra en studie av undervisnings- og 
læringssituasjoner knyttet til algebraisk generalisering av figurmønstre. 
Fokuset er på faktorer som begrenser studenters etablering av og bevis 
for formler og matematiske setninger som representerer generaliteter i 
ulike figurmønstre. Deltakere i studien er seks lærerstudenter og to lære-
rutdannere i matematikk i programmet “Allmennlærer med vekt på real-
fag” ved en høgskole.2 

Jeg har benyttet Guy Brousseaus (1997) teori for didaktiske situasjo-
ner i matematikk i analysen av det empiriske materialet, som består av 
klasseromsobservasjoner og matematikkoppgaver som studentene arbei-
det med. Brousseaus teori er en vitenskapelig tilnærming til spørsmål 
knyttet til undervisning og læring av matematikk, der særegenhetene til 
målkunnskapen spiller en avgjørende rolle. Jeg ønsket å finne ut hvilke 
faktorer som begrenser studenters algebraiske generaliseringsprosesser 
gjennom å utforske relasjoner mellom tre “instanser”: den definerte, ma-
tematiske målkunnskapen; undervisnings- og læringssituasjoner der stu-
denter samarbeider om å løse matematikkoppgaver; og, resultatet av stu-
dentenes arbeid med matematikkoppgavene. Jeg har utvidet teorien for 
didaktiske situasjoner i matematikk med Lev Vygotskys (1934/1987) 
teori for begrepsutvikling. 

Fra et metodologisk synspunkt ser jeg min studie som en utdannings-
casestudie (Stenhouse, 1988) innenfor et kvalitativt forskningsparadigme 
(Denzin & Lincoln, 2005). Studien består av to case der hver case utgjø-
res av en gruppe med tre studenter (i samhandling med matematikklære-
ren). Casene er instrumenter for forståelsen av studenters algebraiske 
generalisering av figurmønstre. I min utforskning av faktorer som be-
grenser studenters algebraiske generaliseringsprosesser defineres under-
visningssituasjonen knyttet til smågruppen som analyseenheten der jeg 
undersøker hvordan det didaktiske “miljøet” begrenser studenters mulig-
heter for å appropriere den definerte målkunnskapen. Miljøet er den 
delmengden av studentenes omgivelser som er relevant kun i forhold til 
den matematiske målkunnskapen.  

                                         
 
 
 
 
 

2 I resten av sammendraget vil “studenter” referere til lærerstudenter og “lærer” vil referere 
til en lærerutdanner. 
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De analytiske funnene indikerer at studentenes algebraiske generali-
seringsprosesser er begrenset på tre måter. Den første begrensningen er 
relatert til et begrenset feedbackpotensial i situasjoner der studentene er 
forventet å løse matematikkoppgaver uten lærerintervensjon. Denne be-
grensningen er materialisert gjennom tre fenomener: tilpasningen av ma-
tematikkoppgavenes design; begrepers klarhet; og, institusjonaliseringen 
av tidligere kunnskap. Den andre begrensningen er relatert til transfor-
masjonen fra naturlig språk til algebraisk notasjon av sammenhenger 
studentene har identifisert i figurmønstre. Denne begrensningen er mate-
rialisert gjennom to fenomener: særegenheten til rekursive og eksplisitte 
tilnærminger til algebraisk generalitet i figurmønstre; og, algebraisk syn-
taks. Den tredje begrensningen er relatert til argumentasjon og bevis for 
gyldigheten av de formlene og matematiske setningene som studentene 
utvikler. Denne begrensningen er materialisert gjennom to fenomener: 
relevansen av begreper (spontane versus vitenskapelige begreper); og, 
gyldigheten av resonnementer (empirisk resonnement versus stringent 
matematisk resonnement).  

Mer overordnet bidrar avhandlingen til en bedre forståelse av fakto-
rer som er viktige med tanke på design og implementering av undervis-
ningssituasjoner rettet mot algebraisk generalisering av figurmønstre. 
Dette inkluderer innsikt i nødvendige egenskaper ved miljøet. 
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1 Introduction 
This dissertation is about first-year student teacher’s collaborative en-
deavour to express and justify algebraic generality in shape patterns at a 
university college in Norway. The focus is on factors that constrain stu-
dent teachers’ appropriation of algebraic generality in shape patterns. 
The dissertation provides insights into the relationship between three fac-
tors: the design of mathematical tasks and the teaching approaches used; 
the student teachers’ engagement with the tasks; and, the target mathe-
matical knowledge.  

In this introductory chapter I provide a rationale for the choice of al-
gebra as the mathematical focus of my research (Section 1.1). Next fol-
lows a presentation of who I am and why I have undertaken this research 
(Section 1.2). Next follows a brief sketch of the theoretical framework 
that guided the research (Section 1.3). Then the research setting and 
methods employed are briefly introduced (Section 1.4), before the chap-
ter closes with an overview of the rest of the dissertation (Section 1.5). 

1.1 The relevance of algebra  
Inspired by the writing of Alfred N. Whitehead (1947), Godfrey H. Har-
dy (1940/1992), Michael D. Resnik (1981), Keith Devlin (1994), and 
others, I view mathematics as the science of patterns. Resnik theorises 
patterns by suggesting that infinite patterns are infinite extensions of fi-
nite patterns. In his proposal he observes that  

a pattern is a complex entity consisting of one or more objects, which I call 
positions, standing in various relationships (and having various characteristics, 
distinguished positions and operations). . . . Patterns are related to each other by 
being congruent or structurally isomorphic. Congruence is an equivalence 
relation whose field I take to include both abstract structures and arrangements 
of concrete objects. (Resnik, 1981, pp. 531-532)  

Resnik (1981) claims that patterns can be referred to in different modes 
and he mentions three possible ways of denotation: One way is by stat-
ing how many positions a pattern has and how they are related. A second 
way is by presenting an instance of a pattern and add that the pattern in-
stantiated is the pattern one has in mind.3 A third way is by introducing 

                                         
 
 
 
 
 

3 When a pattern and an arrangement of so-called concrete objects (e.g., an alignment of 
geometric configurations) are congruent, the arrangement is said to instantiate the pattern 
(Resnik, 1981). 
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labels for positions and stating how the positions are related in terms of 
these (Resnik, 1981).  

A shape pattern in school mathematics is usually instantiated by 
some consecutive geometric configurations in an alignment imagined as 
continuing until infinity, a denotation in line with Resnik’s (1981) se-
cond category presented above. Luis Radford (2006) characterises alge-
braic generalisation of patterns when he proposes that  

generalizing a pattern algebraically rests on the capability of grasping a 
commonality noticed on some elements of a sequence S, being aware that this 
commonality applies to all the terms of S and being able to use it to provide a 
direct expression of whatsoever term of S. (Radford, 2006, p. 5)  

This means that the algebraic generalisation of a pattern rests on noticing 
a local commonality that is then generalised to all members of the infi-
nite sequence mapped from the pattern (beyond the perceptual field). A 
closer examination of the concepts of shape pattern and algebraic gener-
alisation will be given in Chapter 5, where I present epistemological and 
didactical analyses of the mathematics potential in tasks on algebraic 
generalisation of shape patterns. 

Algebra is the language in which generalisation of quantity and rela-
tionships of patterns can be expressed, manipulated, and reasoned about 
(Whitehead, 1947; see also, Kieran, 2004). When John Mason (1996) 
claims that the heart of teaching mathematics is the awakening of pupils’ 
sensitivity to the nature of mathematical generalisation and dually, to 
specialisation, he points at the important role algebra plays in school 
mathematics. Students, however, experience serious difficulties in learn-
ing the symbolic language of algebra and algebraic thinking. This is well 
documented in the research literature (e.g., Bishop & Stump, 2000; Her-
scovics & Linchevski, 1994; Kieran, 1992; Lannin, Barker, & Town-
send, 2006; Linchevski & Herscovics, 1996; MacGregor & Stacey, 
1995; Redden, 1996; Sfard, 1991; Stacey, 1989; Stacey & MacGregor, 
2001; Warren, 2005). 

In the prevailing mathematics subject curriculum in Norway (Direc-
torate for Education and Training, 2006), Numbers and algebra is one of 
four main subject areas from Year 5 through Year 7 (the other subject 
areas are Geometry; Measuring; and, Statistics and probability), and one 
of five main subject areas from Year 8 through Year 10 (the other sub-
ject areas are Geometry; Measuring; Statistics, probability, and combi-
natorics; and, Functions). Previous curricula for school mathematics in 
Norway introduced algebra in later years. For example, during the period 
1997-2006, algebra was introduced from Year 7 (Ministry of Education, 
Research, and Church Affairs, 1996). The reason for implementing alge-
bra earlier, I interpret to be a desire to identify algebra with algebraic 
thinking, rather than with the structural features that has usually identi-
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fied school algebra. David Kirshner (2001) proceeds to argue that alge-
bra in school has been (and continues to be) to a great extent about ma-
nipulation of formalisms. The important role of algebra in school math-
ematics is reflected in the local framework for the compulsory mathe-
matics course in the teacher education programme where I conducted my 
research (The Faculty Board, 2003). I will come back to this framework 
in Section 4.3, where I present the context of the study. 

Algebra as generalisation of patterns is part of the elementary and 
secondary curriculum in many countries, for example England (Depart-
ment for Education and Employment, 1999); the United States (National 
Council of Teachers of Mathematics, 2000); Australia (Queensland Stud-
ies Authority, 2004); Canada (Ontario Ministry of Education and Train-
ing, 2005); and, Norway (Directorate for Education and Training, 2006). 
From a mathematical perspective, spatial and numerical patterns offer a 
powerful context for learning about dependent variation where students 
engage in formulation of functional relationships. Several studies have, 
however, documented students’ difficulties in establishing algebraic 
formulae from patterns and tables (e.g., MacGregor & Stacey, 1992, 
1993; Lannin et al., 2006; Orton & Orton, 1996; Stacey, 1989; Warren, 
Cooper, & Lamb, 2006). I will come back to these findings in Chapter 3 
where I include a summary overview of reports from empirical studies in 
which a pattern-based approach to algebra is used (Section 3.4). 

In the next section I present a brief autobiography and the research 
focus, and explain why I have undertaken the research reported in this 
dissertation.  

1.2 My professional background and research focus 
The research reported in this dissertation has focused on student teachers 
and mathematics teacher educators within a four-year undergraduate 
teacher education programme for primary and lower secondary educa-
tion. At the time I started the research project reported here, I had been a 
mathematics teacher in upper secondary school for four years and then a 
teacher educator in mathematics for six years. Simultaneously while 
conducting the research project, I have been involved in development 
and implementation of a master’s programme in mathematics education. 
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My formal education includes a master’s degree in pure mathematics 
(algebra),4 and pedagogical education.5  

During the years I have served as a mathematics teacher and mathe-
matics teacher educator, I have experienced that algebra is a topic that 
many students and student teachers conceive of as difficult to under-
stand. This experience, together with the relevance of algebra and the 
evidence of students’ difficulties in learning algebra referred to in Sec-
tion 1.1, triggered me to learn more about teaching and learning of alge-
bra. I presumed that being more knowledgeable in the field would make 
me a better teacher and enable me to better facilitate students’ learning 
of algebra. I wanted to develop knowledge about the nature of the com-
plexity of student teachers’ algebraic generalisation processes. More pre-
cisely, I wanted to get insights into how design of tasks and teaching ap-
proaches used has an impact on the knowledge developed by students 
while working collaboratively on algebraic generalisation of shape pat-
terns. The research question which I set out to address was: What factors 
constrain students’ appropriation of algebraic generality in shape pat-
terns? 

Research on students’ processes of pattern generalisation suggests 
that it is not generalisation tasks in themselves that are difficult, but ra-
ther the way they are designed and the limitations of the teaching ap-
proaches employed (Lee, 1996; Moss & Beatty, 2006; Noss, Healy, & 
Hoyles, 1997; Stacey & MacGregor; 2001). Relationships between the 
design of tasks and teaching approaches used on the one hand, and stu-
dents’ difficulties on the other, will be addressed by the research report-
ed in this dissertation. An argument for the significance of conducting 
systematic inquiry into teacher educators’ practice of preparing teachers 
for teaching algebra is offered by Helen M. Doerr (2004). She claims 
that this type of inquiry has been only occasional, and that further re-
search is important for developing a professional knowledge base for 
teaching algebra:  

While we know that traditional mathematics courses alone will not be sufficient 
in preparing teachers’ understanding of school algebra, the practical knowledge 
of teacher educators in preparing teachers has only sporadically contributed to 

                                         
 
 
 
 
 

4 In Norwegian, “hovedfag” (achieved 1994). 
5 My pedagogical education is equivalent to the Postgraduate Certificate in Education 
(PGCE) offered in the United Kingdom.  
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the building of a professional knowledge base for teaching in ways that are able 
to be shared, generalised, and reused by others in the field. (Doerr, 2004, p. 285) 
In the next section I present a brief introduction to the theories that 

underpinned the research (an elaborated version will be given in Chapter 
2).  

1.3 The theoretical framework that guided the re-
search 

I situate my research within the French didactique. The field of research 
of didactique can be understood as the study of the transformations of 
mathematical knowledge under the conditions and constraints of the so-
cial project of education (Herbst & Kilpatrick, 1999). I have used Guy 
Brousseau’s (1997) theory of didactical situations in mathematics to ana-
lyse the empirical material. Brousseau’s theory is a scientific approach to 
the problems posed by the teaching and learning of mathematics, where 
the particularity of the knowledge taught is engaged and plays a signifi-
cant role (Brousseau, 2000).6 I wanted to find out what factors constrain 
students’ algebraic generalisation processes by exploring relationships 
between, on the one hand, the teaching-learning situations in which the 
participants of the study engaged, and, on the other hand, the target 
mathematical knowledge defined by the teacher who had designed the 
situations. Brousseau’s theory is relevant as a framework in this respect 
because the theory is about a triadic didactic relationship; the interplay 
between the teacher, the student (or rather, a group of students), and 
some particular mathematical knowledge.  

The framework I have used as a grand theory (Carr & Kemmis, 
1986) to conceptualise cognition and learning is sociocultural theory as 
outlined by Lev S. Vygotsky (1978, 1981a, 1981b, 1934/1987) and his 
successors. There are three fundamental concepts in Vygotsky’s explana-
tion of learning and development as mediated processes (Daniels, 2007). 
First, the general genetic law of cultural development (Vygotsky, 
1981b); second, the zone of proximal development (Vygotsky, 1978); 
and third, concept formation as an outcome of the interplay between 
spontaneous and scientific concepts (Vygotsky, 1934/1987). Vygotsky's 

                                         
 
 
 
 
 

6 Quotations from Brousseau (2000) are translated by Virginia Warfield. Translation is re-
trieved from http://www.math.washington.edu/~warfield/Ed_and_Didact.html. Page num-
bers refer to the original publication in French. 



22   Factors Constraining Students’ Establishment of Algebraic Generality in Shape Patterns 

principle of scientific concepts as the content of school instruction is an 
elaboration of Vygotsky’s general theoretical view of mediated learning 
as the major determinant of human development (Kozulin, 2003).  

The theoretical framework that guided the research is presented in 
Chapter 2, where I explain and exemplify fundamental concepts. The 
chapter also includes an argument for the legitimacy of Brousseau’s 
framework in the research reported here. Further (in Chapter 2), I argue 
that Brousseau’s theory is compatible with socio-cultural theory as out-
lined by Vygotsky and his successors. 

In the next section I present a brief sketch of the context of the study 
and the methods adopted.  

1.4 The research setting and methods adopted 
The research reported in this dissertation has been conducted within a 
four-year undergraduate teacher education programme for primary and 
lower secondary education at a university college in Norway. The stu-
dents who participated in the research were enrolled on a programme 
referred to as Teacher education with emphasis on mathematics and sci-
ence subjects (Ministry of Education and Research, 2003). The teacher 
educators who participated in the research were experienced teacher ed-
ucators of mathematics. 

I have chosen a collective case study (Stake, 1995) as style of in-
quiry, where each of the two cases is a group of three students. The unit 
of analysis is defined as the teaching-learning situation in which the 
groups take part. In Chapter 4 I will explain further the unit of analysis, 
after I have presented necessary concepts in Chapter 2, on which it 
draws. There are two main sources of data: the video recorded observa-
tions of the students’ collaborative engagement with mathematical tasks 
on algebraic generalisation of shape patterns; and, the mathematical 
tasks with which the students engaged.  

I consider a teaching-learning situation in mathematics as a social en-
tity which is realised through its social participants; the teacher and the 
students actively construct the didactical situation with its potentialities 
and constraints. I assumed that knowledge of factors that constrain stu-
dents’ algebraic generalisation of shape patterns could be exposed as in-
terpretations of relationships between the students, the teacher, and the 
mathematical knowledge at stake. How the ontological and epistemolog-
ical assumptions expressed in the above called for an idiographic re-
search methodology (Burrell & Morgan, 1979) is explained in Chapter 4, 
where I provide a rationale for situating my study within a qualitative, 
interpretative paradigm and choosing an educational case study as style 
of inquiry. 
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An inductive approach has been used to analyse the classroom dia-
logues. The analysis involved coding of data, and drew on the epistemo-
logical and didactical analyses of the mathematics potential in the tasks. 
Three analytic categories emerged from the data analysis. They are con-
ceptualisations of factors that constrain students’ algebraic generalisation 
of shape patterns. The constraints are interpreted as properties of the 
teaching-learning situation which are identified in the relationships be-
tween the teacher, the students, and the target mathematical knowledge.  

In the next section I present an overview of the rest of the disserta-
tion.  

1.5 The structure of the dissertation 
Following this introductory chapter, I present in Chapter 2 the theoretical 
framework that guided the research. Then follows in Chapter 3 a theoret-
ical foundation for algebra as generalisation of patterns, including a 
summary overview of reports from empirical studies in which a pattern-
based approach to algebra is employed. The research methodology is 
presented in Chapter 4, including a presentation of the context of the 
study. Chapter 5 is a presentation of the epistemological and didactical 
analyses of the mathematics potential in the tasks with which the ob-
served students engaged. Chapter 6 presents the first of three analytic 
categories that emerged from the exploration of the empirical material, 
conceptualised as Constrained feedback potential in adidactical situa-
tions. Chapter 7 presents the second analytic category, conceptualised as 
Complexity of turning a situation of action into a situation of formula-
tion. Chapter 8 presents the third analytic category, conceptualised as 
Complexity of operating in the situation of validation. The dissertation 
closes in Chapter 9 with a synthesis of the findings, including a discus-
sion of strengths and limitations of the research I have undertaken, and 
reflections on potential pedagogical implications of the reported re-
search. 

In the next chapter I present the theoretical framework that guided 
the research. 
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2 Theoretical framework 
In analysing factors that constrain students’7 establishment of algebraic 
generality in shape patterns, I was interested in how teaching-learning 
situations have an impact on the knowledge developed by students when 
they work collaboratively on mathematical tasks. More precisely, I have 
studied the relationships between three components: the knowledge to be 
taught and learned; the mathematical tasks and the teaching approach 
used; and, the interactions between the students and the milieu8 during 
their engagement with the tasks. The theoretical framework I have used 
to do this is Brousseau’s theory of didactical situations in mathematics 
(Brousseau, 1997), which will be presented in this chapter. The frame-
work I have used as a grand theory9 (Carr & Kemmis, 1986) to concep-
tualise cognition and learning is sociocultural theory as outlined by 
Vygotsky and his successors.  

In Section 2.1 a characteristic of didactique and an introduction to the 
theory of didactical situations are presented. An account of the theory as 
a scientific approach to the problems posed by the teaching and learning 
of mathematics is presented in Section 2.2, where the concepts of learn-
ing, teaching, and knowledge are defined. Section 2.3 presents phenom-
ena of didactique conceptualised as didactical effects connected with 
control of the transformation of mathematical knowledge to the class-
room context. Section 2.4 presents Brousseau’s (1997) model of teaching 
situations, where the concepts, “devolution”, “adidactical situations”, 
“didactical situations”, “didactical contract”, and “milieu” are intro-
duced. In Section 2.5 I argue for the relevance of the theory of didactical 
situations in my study. 

Vygotsky’s theoretical approach is presented in Section 2.6 where the 
focus is on the notions of mediation and scientific concepts. These no-
tions are used in a conceptualisation of didactical situations in mathemat-

                                         
 
 
 
 
 

7 In the rest of the dissertation, “students” is used to refer to student teachers, and “teacher” 
is used to refer to a teacher educator. 
8 “Milieu” as used here refers to the subset of the students’ environment with those features 
only which are relevant with respect to the target mathematical knowledge. The concept will 
be further explained in Section 2.4.4. 
9 Wilfred Carr and Stephen Kemmis (1986) define a grand theory as a theory “that has a 
consciousness of the need to place education as a process of ‘coming to know’ in the context 
of general theory of society on the one hand and a theory of the child on the other” (p. 11). 
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ics as mediating between the students and some particular mathematical 
knowledge. In Section 2.7 I argue that Brousseau’s theory is compatible 
with sociocultural theory. Section 2.8 closes the chapter with a brief 
summary of the presented theoretical framework.  

2.1 Introduction to Brousseau’s theory of didactical 
situations in mathematics 

The object of study of didactique is the relationships between three com-
ponents: the mathematical knowledge to be taught and learned; the 
knowings that emerge in the interactions between the students and the 
milieu; and, the educational project that binds teacher and students into a 
relationship which requires the reproduction of cultural knowledge and 
simultaneously the production of meaningful knowings compatible with 
that knowledge (Herbst & Kilpatrick, 1999). Didactique can therefore be 
understood as the study of the transformations of mathematical 
knowledge under the conditions and constraints of the social project of 
education. As expressed by Brousseau (1997): 

The agreed effort of obtaining knowledge independently of the situations in 
which it is effective (decontextualization) has as a price the loss of meaning and 
performance at the time of teaching. The restoration of intelligible situations 
(recontextualisation) has as a price the shift of meaning (didactical trans-
position)10. The retransformation of the student’s knowledge or of cultural 
knowledge takes up the process again and heightens the risk of side-slip. 
Didactique is the means of managing these transformations, and first, of 
understanding their laws. (p. 262) 
Brousseau (1994, as cited in Sierpinska, 1995)11 claims that research 

in didactics12 of mathematics will consist of three fundamental constitu-
ents: application of research methods and theoretical concepts from other 

                                         
 
 
 
 
 

10 The concept of didactical transposition refers to the process of transformation of mathe-
matical knowledge to the classroom context. It will be explained in more detail in Section 
2.2.1. 
11 Brousseau, G. (1994). Problems and results of didactique of mathematics. Paper presented 
at the ICMI Study Conference, What is research in mathematics education and what are its 
results? University of Maryland, College Park, MD. 
12 I will use the word “didactics” in this dissertation to designate in English what the same 
noun usually means in German (Didaktik), French (didactique), Norwegian (didaktikk), and 
so forth. Briefly, I mean by didactics the study of the teaching and learning of knowledge 
within a disciplinary domain. This practice is in line with Yves Chevallard (1999), who dis-
cusses the advantages of using the word didactics also in English.  
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disciplines; didactique; and, didactical engineering. He explains what the 
three constituents are: 

- the research in mathematics teaching stemming from the application of 
methods or concepts from other disciplines (psychology, sociology, linguistics, 
education, etc.) and/or those that are not specific to mathematics; 

- the didactique of mathematics that endeavors to identify and explain didactic 
phenomena specific to mathematics and allows [the researcher] to apply the 
results of other disciplines; 

- the didactic engineering that endeavors to produce the means and teaching 
materials based more or less on didactique and other disciplines. (Brousseau, 
1994, as cited in Sierpinska, 1995, pp. 178-179) 

The three constituents defined in the quotation provide insights into the 
nature of knowledge in didactics of mathematics (the outcome of re-
search in the field) and aim to explain the distinction between didactique 
and didactical engineering, as conceptualised by Brousseau. It is relevant 
to give a further explanation of the concept of didactical engineering, of 
what is engineered. According to Patricio Herbst and Jeremy Kilpatrick 
(1999), didactique’s focus on knowledge (rather than on learning) quali-
fies one to speak about engineering only of the situations in which an 
item of mathematical knowledge is at stake rather than the psychological 
development of the students. Didactical engineering deals with the pro-
duction of the possible or obtainable meanings of a student’s engage-
ment. That is, it is about the design (relative to some target knowledge) 
of an actual opportunity for a student to learn rather than the actual learn-
ing. Essentially, engineering in the context of didactique is not about en-
gineering learners (Herbst & Kilpatrick, 1999; see also, Artigue & Per-
rin-Glorian, 1991). Didactical engineering is the practice of producing 
the means and teaching materials based on knowledge of the transposi-
tion of mathematical knowledge for teaching.  

According to Michèle Artigue (1994), the theory of didactical situa-
tions in mathematics is a system of models and concepts that aims to 
model teaching situations so that they can be developed in a controlled 
way. “The aim is to develop the conceptual and methodological means to 
control the interacting phenomena and their relation to the construction 
and functioning of mathematical knowledge in the student” (Artigue, 
1994, p. 29). This entails an epistemological analysis, the importance of 
which Brousseau (1997) emphasises when he writes:  

The creation and management of teaching situations are not reducible to an art 
which the teacher can develop spontaneously by means of good attitudes (listen 
to the child), around simple techniques (the use of games, material, or cognitive 
conflict, for example). Didactique is not reduced to a technology, and its theory 
is not that of learning but that of the organisation of other people’s learning, or 
more generally, that of dissemination and transposition of knowledge. (p. 244) 
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In claiming that a teaching situation is not reducible to an art which can 
be developed spontaneously, Brousseau refers to the importance of the 
teacher doing an a priori analysis of the target knowledge. He, further, 
argues that “it is indispensable [for the teacher or researcher] to create 
conditions that probably won’t occur naturally, in order to study them. A 
system delivers more information when it reacts to well chosen stimula-
tion” (Brousseau, 1999, p. 40). 

The theory of didactical situations proposes a methodology that starts 
by questioning mathematical knowledge as it is implicitly assumed in 
educational institutions: What is counting? What is algebra? What are 
decimal numbers? and so forth (Bosch, Chevallard, & Gascón, 2005). 
Brousseau’s theory has been described as an epistemological programme 
to didactique, focused on epistemological and didactical analyses of 
mathematical knowledge, where the students’ mathematical activity is 
the primary object of investigation (Gascón, 2003). The fundamental 
methodological principle of the theory is expressed by Marianna Bosch, 
Yves Chevallard, and Joseph Gascón (2005) to be that a piece of mathe-
matical knowledge is represented by an epistemological model – a situa-
tion – which involves mathematical problems that can be solved in an 
optimal manner using the knowledge aimed at: “A mathematical concept 
can only be analysed [by the teacher or researcher] as far as it appears as 
a solution to a situation” (p. 1255). An epistemological model is a model 
of two things: first, of some target knowledge; second, of a process by 
which the target knowledge is learned by the student. An example of an 
epistemological model is provided by Heinz Steinbring (1997, 1998), 
where he describes the concept of an epistemological triangle. He ex-
plains that  

the epistemological triangle is a means to characterize specific epistemological 
aspects of mathematical knowledge codified by signs and symbols, and at the 
same time this triangle can be used as a methodical instrument to analyze the 
constitution of mathematical meaning by interpreting signs in social processes of 
mathematical communication. (Steinbring, 1998, p. 172) 

I illustrate the idea of an epistemological model in the following para-
graphs, using an example of an epistemological model for the study of 
similarity, which is adapted from Brousseau (1997). 

The knowledge the students are intended to learn is the principle that 
similarity is a multiplicative structure; this is the target knowledge. A 
model of the target knowledge is created using the dissections of two 
squares into polygons as shown in Figure 2.1 (on the next page). Corre-
sponding polygons in the two squares are constructed such that corre-
sponding angles are equal and side lengths are changed in the same ratio; 
that is, they are similar figures. Next, the “imagined trajectory” of stu-
dents’ engagement with the task of enlargement of a shape into a similar 



Factors Constraining Students’ Establishment of Algebraic Generality in Shape Patterns   29 

shape is the model of the cognitive impact that the task is supposed to 
achieve. It models the presumed events in the learners’ process of com-
ing to know that similarity is based on the side lengths of the original 
shape being multiplied by a fixed factor (the scale, or ratio of magnifica-
tion). This operation, characteristic for a linear mapping, is the solution 
to the task of enlargement of a shape. I will now describe briefly how 
students’ engagement in the lesson might proceed. 

The teacher presents to the students the square in Figure 2.2, which 
she refers to as a puzzle which they are supposed to enlarge into a simi-
lar puzzle according to the following rule: The line segments that meas-
ure 5 cm on the given puzzle will measure 8 cm on the enlarged puzzle.  
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Figure 2.1. Model of the target knowledge, that “similarity is a multiplicative structure” 
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Figure 2.2. The puzzle presented to the students (reproduced from Brousseau, 1997, p. 177) 
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Students are divided into groups of six. Within each group, each student 
works independently on a separate piece of the puzzle. Brousseau’s ex-
periments with this type of situation show that almost all elementary stu-
dents think that the appropriate thing to do is to add 3 cm to every di-
mension (Brousseau, 1997). This is consistent with the findings of the 
CSMS (Concepts in Secondary Mathematics and Science) study con-
ducted in the United Kingdom (Hart, 1981). 

After having added 3 cm to every dimension, the students then expe-
rience that the enlarged pieces are not compatible. The point of the situa-
tion for the students is to observe that for three sides in the puzzle, a, b, 
and c, such that a b c+ = , using the addition strategy, they have 
( ) ( ) ( )f a f b f c+ ≠  for images f of the sides. Brousseau (1997) reports 

that “this often leads students to observe the need to fulfill the character-
istic condition of linearity” (p. 178); that the image of the sum of two 
lengths must be the sum of the images of these lengths.  

The desired idea that might be prepared by displaying the lengths on 
the chalkboard (Table 2.1) is to find the image of 1 cm, where 1 cm is a 
unit of measure from which all lengths of the puzzle are composed. If it 
is known how to enlarge 1 cm, the other lengths can be enlarged as well.  
 

Table 2.1. Side lengths in original and enlarged puzzle 

Original piece 2 4 5 6 7 9 
Enlarged piece   8    

 
The reasoning aimed at is the following: It is known that the image of 5 
parts is 8 parts; thus in order to find the image of 1, it is necessary to di-
vide 5 into five parts, and hence, 8 will need to be divided into five parts 
as well. It is intended that this representation of proportionality will 
prompt the students to argue something along the lines of the following: 
Because 5 times the image of 1 measures 8, the image of 1 is 8/5, or 1.6 . 
With the background of this experience, a principle for similarity of 
shapes (enlargement of a piece of the puzzle) can be formulated by the 
students: the side lengths should be multiplied by a fixed factor.13 Brous-
seau’s example here can be seen to be consistent with the conceptual dif-

                                         
 
 
 
 
 

13 I illustrate here briefly a didactical situation that is elaborated in more detail in Brousseau 
(1997, pp. 177-179). Brousseau notes that it is relevant also to find the image of fractional 
and decimal lengths. 
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ficulty of proportional reasoning experienced by students that is widely 
reported in the literature (e.g., Hart, 1981; Hoyles, Noss, & Pozzi, 2001; 
Karplus, Pulos, & Stage, 1983; Vergnaud, 1983). 

The above example was provided to illustrate the idea of an episte-
mological model. It consisted of, first, a model of the target knowledge 
(the principle that similarity is a multiplicative structure), which was 
modelled by similar dissections of squares. Second, it consisted of a pro-
posed model of the process of coming to know the target knowledge, 
which was modelled by the “imagined trajectory” of students’ engage-
ment with the task of enlargement of a puzzle into a similar puzzle.  

Brousseau (2000)14 makes a distinction between didactique and gen-
eral didactics. He claims that development of knowledge in the field of 
didactique is conditioned by the particular content knowledge at stake 
(mathematics) whereas general didactics is considered insignificant for 
didactique. According to Brousseau, many researchers’ position (outside 
didactique) is that methodology and theories of teaching should first be 
general theories that are independent of content, to be applied subse-
quently to a particular content. In such a perspective, he continues, di-
dactics of mathematics would first be a general theory of didactics, a po-
sition very different from the one proposed in didactique. “Didactique 
begins with the determination of its object: a particular piece of 
knowledge. There is no reason to believe that the invention or practice of 
geometry can be the same adventure as that of algebra” (Brousseau, 
2000, pp. 22-23). He claims that for the student as for humanity, a new 
piece of knowledge is a lot more than a simple application of a more 
general knowledge, and maintains that “general didactics can only, in my 
view, be a chancy metadidactics” (Brousseau, 2000, p. 23). Consequent-
ly, the theory of didactical situations in mathematics starts with the study 
and modelling of didactical situations proper to a specific piece of math-
ematical knowledge.  

                                         
 
 
 
 
 

14 The article referred to is Brousseau’s plenary lecture at the Fifth National Congress of 
Educational Research, Aguascalientes, Mexico, October, 1999. 
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2.2 A scientific approach to the set of problems posed 
by the teaching and learning of mathematical 
knowledge 

In my explication of the theory of didactical situations in mathematics, 
the main publication I will draw on is (Brousseau, 1997), which is a se-
lection of Brousseau’s papers written between 1970 and 1990.15 The edi-
tors of the volume have not only translated the chosen papers, they have 
also edited, annotated, and organised them so as to provide a coherent 
and comprehensive presentation of the theory. To avoid confusion of 
pronouns in this chapter, female gender is used to refer to a generic 
teacher whereas masculine gender is used to refer to a generic student.16  

Brousseau (1997) uses several metaphors in his theory (e.g., game, 
didactical contract, didactical engineering, devolution). It is relevant to 
make a comment on how to understand them. It may be helpful to notice 
that these metaphors are not to be taken as accurate portrayals of a reality 
(the mathematics classroom), but as active tools to interpret that reality. 
According to Herbst and Kilpatrick (1999), metaphors and models are 
productive because of their distance from the reality to which they refer; 
they provide plausible conjectures that it may not be possible to formu-
late from observation of reality alone (see Chevallard, 1992). In this dis-
sertation I use metaphors from the theory of didactical situations in line 
with Brousseau.  
2.2.1 A theory about a triadic didactical relationship 
Brousseau (1997) writes about mathematicians’ presentation of mathe-
matical knowledge: 

                                         
 
 
 
 
 

15 The theory of didactical situations is developed on the basis of observations and experi-
mentations in a mathematics classroom at École Jules Michelet in Talence, near Bordeaux 
(Brousseau, 1997). This school, built in 1971, was designed by Brousseau as an instrument 
to allow the observation of students and teachers in their natural milieu. But this “observa-
tion school” was an ordinary school in the sense that it was not an experimental school, nor 
was it a pilot or model school in which a supposedly better pedagogy was practiced. It was 
not a school for special children, gifted or in difficulties with mathematics or anything else. 
The curriculum taught was that normally stipulated by the national Ministry of Education. 
According to Brousseau, the only thing extraordinary was that mathematics teaching was the 
object of scientific inquiry. 
16 In quotations from Brousseau’s texts, however, female gender is used to refer to both the 
teacher and the student. 
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Mathematicians don’t communicate their results in the form in which they 
discover them; they re-organize them, they give them as general a form as 
possible. Mathematicians perform a “didactical practice” which consists of 
putting knowledge into a communicable, decontextualized, depersonalized, 
detemporalized form. (p. 227) 

But such a presentation removes all trace of the history of this 
knowledge, that is, of the succession of difficulties and questions which 
provoked the emergence of fundamental concepts, their use in formulat-
ing new problems, and the rejection of points of view found to be false 
or less helpful (Brousseau, 1997). To make teaching easier, the teacher 
replaces the true development of mathematical knowledge by an imagi-
nary development. This means that certain notions and properties are 
isolated and taken away from the network of activities (of mathemati-
cians) which provide their origins, meaning, motivation, and use; they 
are transposed into a classroom context. Epistemologists refer to this 
transfer of order and place as didactical transposition, a term first coined 
in 1985 by Yves Chevallard17 (Kieran, 1998). Brousseau (1997) de-
scribes the teacher’s task in these words: 

The teacher first undertakes the opposite action [of that of mathematicians when 
they communicate their results]; a recontextualization and a repersonalization of 
knowledge. She looks for situations which can give meaning to the knowledge to 
be taught. But when the student has responded to the proposed situation, if the 
personalization phase has gone well she [the student] will not know that she has 
“produced” a piece of knowledge that she will be able to use on other occasions. 
In order to transform her answers and knowings into a body of knowledge, she 
will, with the assistance of the teacher, have to redepersonalize and 
redecontextualize the knowledge which she has produced so that she can see that 
it has a universal character, and that it is re-usable cultural knowledge. (p. 227) 

Two different, and rather contradictory, roles of the teacher can be iden-
tified on the basis of this quotation from Brousseau (1997). One is to 
bring knowledge alive; to delegate to the students a situation which al-
lows them to produce a response. The other is to transform this response 
into a piece of knowledge which can be used beyond the situation in 
which the students have produced it. These two roles of the teacher, 
termed respectively, devolution and institutionalisation, characterise the 
theory of didactical situations. They will be explained further below. 

                                         
 
 
 
 
 

17 Chevallard, Y. (1985). La transposition didactique: Du savoir savant au savoir enseigné. 
Grenoble, France: La Pensée Sauvage. 
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The theory of didactical situations in mathematics is a scientific ap-
proach to the set of problems posed by the teaching and learning of 
mathematics, in which the specificity of the knowledge taught is engaged 
and plays a significant role (Brousseau, 2000). The theory is about a tri-
adic didactic relationship; the interplay between the teacher, the student 
(or rather, a group of students), and some particular mathematical 
knowledge. An important concept in the theory is constituted by the sub-
set of the students’ environment with only those features that are relevant 
with respect to the target knowledge. This concept is referred to as the 
milieu18 and will be explained further in Section 2.4.4.  
2.2.2 Learning, teaching, and knowledge in the framework of di-

dactical situations 
In the theory of didactical situations, learning is understood as sense-
making of situations in a milieu, and developing ways of coping with 
them. Teaching of some knowledge consists in organising the didactical 
milieu in such a way that this knowledge becomes necessary for the stu-
dent to “survive” in it. A didactical milieu with this quality is referred to 
as an adidactical, appropriate situation. The notion of an adidactical sit-
uation will be explained in Section 2.4.1. Brousseau uses the metaphor 
“game” in his writing to refer to a situation which involves, first, the 
teacher’s devolution to the students of an adidactical, appropriate situa-
tion. Second, it involves the students’ adaptation to the situation; that is, 
their interaction with the problems given to them. The idea of game will 
be explained further in Section 2.3.6.  

The kind of game the student has to play with the milieu, to survive 
in it, determines the kind of knowledge that he will acquire (Brousseau, 
1997). If the situations in a mathematics classroom are such that a certain 
type of social behaviour is sufficient for survival, without any use of 
mathematical knowledge, then it is likely that it is the social behaviour 
the students will learn, not the mathematical knowledge. If the teacher 
teaches the students an algorithm to solve certain problems, it is likely 
that the students will learn how to use the algorithm, not how to solve 
problems. Thus, in the theory of didactical situations, “knowledge is 

                                         
 
 
 
 
 

18 The notion of “milieu” can be understood in an ecological sense; e.g., the Arctic is the 
natural milieu of the polar bear. Thus the didactical milieu is the natural milieu of the stu-
dents. In order to “survive” in a milieu one has to get to know the “rules of the game” and 
develop strategies of winning the “game”. 



Factors Constraining Students’ Establishment of Algebraic Generality in Shape Patterns   35 

[understood as] the outcome of the interactions between the student and 
a specific milieu organized by the teacher in the framework of a didactic 
situation” (Balacheff, 1993, p. 133). As described in Section 2.1, the cru-
cial methodological principle of the theory of didactical situations is that 
a piece of mathematical knowledge is represented by an epistemological 
model, termed a situation, that involves problems that can be solved in 
an optimal manner using this knowledge (Bosch et al., 2005).  

In the next section I present didactical phenomena connected with 
control of the didactical transposition, before I turn to elements for mod-
elling of the fundamental relationships between the student (or, a group 
of students), the teacher, and mathematical knowledge. 

2.3 Didactical phenomena connected with control of 
the didactical transposition 

In this section I present seven types of didactical phenomena, effects or 
techniques, characterised by Brousseau (1997), which illustrate how re-
ciprocal obligations of the teacher and the students in teaching-learning 
situations constrain classroom interactions. The explication of the theory 
in terms of these didactical phenomena (presented in Sections 2.3.1 – 
2.3.7) could be interpreted to be giving an impression that Brousseau 
sees teachers and teaching as in some way deficient or lacking essential 
competencies, and that it is his task as a researcher to compensate for 
their deficiencies. However, this would be unfair to Brousseau, who re-
veals in his writing that he is concerned to analyse the complexity of 
teaching and learning mathematics.  

Brousseau (1997) describes didactical techniques that he has ob-
served in classrooms, techniques that I believe most mathematics teach-
ers recognise as fairly widespread. This is not to say that mathematics 
teachers or teaching is necessarily deficient, rather it is a recognition that 
teaching and learning mathematics is challenging and complex, as noted 
by several researchers in mathematics education. Further, it is possible 
that students are complicit in the use of these techniques as they “ap-
pear” to make success easier to come by. In the following paragraphs I 
refer to some of the researchers who have written about the complexity 
of teaching and learning mathematics. 

Hans Freudenthal (1991) asserts that mathematics is different from 
other disciplines in the way that there is a difference between the “con-
tent” (the substance of mathematics) and “form” (the way in which the 
substance is presented). Richard Skemp’s (1982) distinction between 
“surface structures” and “deep structures” in mathematics can be inter-
preted similarly to be about form and content. He observes that people 
try to communicate the deep structures (conceptual structures) with help 
of surface structures (by writing or speaking symbols). Further, he makes 



36   Factors Constraining Students’ Establishment of Algebraic Generality in Shape Patterns 

the point that “even within our minds the surface structures are much 
more accessible [than the deep structures], as the term implies. And to 
other people they are the only ones which are accessible at all” (Skemp, 
1982, p. 282).  

Raymond Duval (2006) is a third researcher who can be interpreted 
to deal with a similar distinction as that recognised by Freudenthal 
(1991). He claims that the crucial problem of mathematics comprehen-
sion for learners arises from the cognitive conflict between two quite op-
posite requirements for engagement in mathematical thinking, related to 
the representation of mathematical objects: 

In order to do any mathematical activity, semiotic representations must 
necessarily be used even if there is the choice of the kind of semiotic 
representation. But the mathematical objects must never be confused with the 
semiotic representations that are used. (Duval, 2006, p. 107) 

The descriptions of mathematics and of teaching and learning mathemat-
ics given by Freudenthal (1991), Skemp (1982), and Duval (2006) indi-
cate what is noticed in the Cockcroft Report; that “mathematics is a dif-
ficult subject both to teach and to learn” (Cockcroft, 1982, p. 67). Brous-
seau (1997) remarks that 

students’ reasoning is formed by a collection of constraints of didactical origin 
which modify the meanings of their responses and those of the knowledge they 
are taught; . . . these constraints are not arbitrary conditions freely imposed by 
teachers; they exist because they play a certain rôle in the didactical relationship. 
(p. 264) 

I interpret him here as referring to the reciprocal obligations of the 
teacher and the student in the didactical relationship as being the origin 
of the phenomena which constrain the meaning of the knowledge taught 
and learned. These constraints exist because mathematics is a difficult 
subject to teach and to learn, as noted above, and not because teachers 
are in some way deficient. Brousseau, further, remarks that “the disap-
pearance of meaning [which is the effect of some of the didactical phe-
nomena described by the theory of didactical situations], in the didactical 
relationship as well as in teaching, is a normal phenomenon: teachers, 
just as their students, are right in trying to obtain the expected answer for 
the minimum cost” (Brousseau, 1997, p. 266). He objects to the way a 
researcher (Baruk, 1985, as cited in Brousseau, 1997, p. 265) blamed 
teachers for “abnormal” responses given by “normal” students in an ex-
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periment.19 Brousseau asserts that it is not possible for teachers “to per-
ceive all the phenomena that make a communication of knowledge ‘ab-
normal’ and to prevent them from happening or correct them if they oc-
cur” (Brousseau, 1997, p. 266). Didactique aims at explanation and 
comprehension of the problems related to teaching and learning of math-
ematics, and Brousseau (1997) claims that, “often, the explanation of a 
failure or a difficulty allows both the teacher and the student to alleviate 
their guilt and re-orient themselves towards more positive points of 
view” (p. 267). I will now turn to a presentation of the didactical phe-
nomena described in the theory of didactical situations. 

Brousseau (1997) introduces seven types of didactical phenomena. 
Although I have identified only three of these in my analyses, I will nev-
ertheless describe all seven here. The seven are: “the Topaze effect”, 
“the Jourdain effect”, “the improper use of analogy”, “the metacognitive 
shift”, “the metamathematical shift”, “the Diénès effect”, and “the aging 
of teaching situations”.20 They will be presented in the following sec-
tions.  
2.3.1 The Topaze effect  
The Topaze effect is the phenomenon of giving away the answer in the 
question. Its name is taken from the play Topaze, written by Marcel 
Pagnol in 1928 (Brousseau, 1997). Topaze is the teacher who is giving a 
dictation to a weak student. The answer that the student must give is de-
termined in advance; the teacher chooses questions to which the answer 
can be given. The knowledge necessary to produce these answers chang-
es, so does its meaning. Faced with the student’s continued difficulties in 
giving the answer, the teacher poses easier and easier questions. If the 
target knowledge disappears completely, the phenomenon is referred to 
as the Topaze effect. 

To illustrate the Topaze effect I provide the following example:21 A 
student is given a word problem:  

                                         
 
 
 
 
 

19 Brousseau refers here to the experiment of the research team of Grenoble IREM (Institut 
de Recherche sur l’Enseignement des Mathématiques), called “the age of the captain”. This 
experiment will be described in Section 2.4.2. 
20 Didactical phenomena identified through analyses of my empirical material are the Topaze 
effect, the Jourdain effect, and the metamathematical shift. 
21 Examples presented in this chapter which are not referenced to sources, are invented by 
me to illustrate didactical phenomena. These examples are inspired from my own practice as 
a teacher educator in mathematics. 
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In a school there are 170 Grade 4 students who are to be equally divided into 5 
classes. How many students will there be in each class?  

The aim of the task is the student’s development of understanding of par-
titive division as a model of an everyday situation. Because the student 
struggles to find out how to translate the given word problem into an 
arithmetic task, the teacher tries to help him visualise the problem by a 
diagram with five blocks which intends to illustrate that the number of 
students in each class is found by dividing the total number of students 
by the number of classes (each class is represented by a block). Howev-
er, the student does not benefit from the teacher’s illustration and expla-
nation, whereupon the teacher just tells the student that he should divide 
the total number of students by the number of classes. The student then 
finds the answer to the division problem by using the division algorithm.  

This incident illustrates the Topaze effect because the target 
knowledge has disappeared; the student demonstrates proficiency in us-
ing the division algorithm, but this was not the knowledge aimed at. 
2.3.2 The Jourdain effect  
The Jourdain effect is a form of Topaze effect, and denotes the phenom-
enon of giving a scientific name to a trivial activity. The name of this 
phenomenon indicates a reference to the scene in Molière’s play Le 
Bourgeois Gentilhomme, in which the philosophy teacher reveals to 
Jourdain that he has been speaking prose all his life without being aware 
of it (Molière, 1670/1732, Act 2, Scene 4).22 The humour of the scene is 
based on the absurdity of giving scientific validity to ordinary activities 
(here, speaking prose).  

An example of the Jourdain effect can be illustrated by a teaching 
situation which involves algebraic expression of the general member of a 
sequence mapped from a linear shape pattern. The students have found a 
correct formula by construction of a table with values and the subsequent 
application of a strategy of guess-and-check. The teacher sees in the stu-

                                         
 
 
 
 
 

22 Le Bourgeois Gentilhomme (The Bourgeois Gentleman) is a comédie-ballet, first presented 
at Chambord in October 1670, before the court of Louis XIV. In the play, Jourdain, a non-
educated man with no relations to aristocracy, aspires to becoming part of nobility, if not by 
blood then at least by manners and education. So he hires a music master, a dancing master, 
a fencing master, and a philosophy master. The play satirises attempts at social climbing and 
the bourgeois personality, making fun both of the vulgar, pretentious middle-class and the 
self-important, snobbish aristocracy. Retrieved from http://encyclopedia.thefreedictionary 
.com/Le+Bourgeois+gentilhomme.  
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dents’ formula the linearity of the pattern, and comments that the stu-
dents have discovered the linearity. If the students have no notion of the 
generality of the formula they have developed, the situation is analogous 
with Molière’s Jourdain who had no notion of prose. This circumstance 
is a didactical phenomenon which is characterised by the teacher’s 
recognition of an item of scientific knowledge in a student’s answer, 
even though his answer is in fact motivated by ordinary causes.  
2.3.3 The improper use of analogy 
The phenomenon of improper use of analogy is characterised by the 
teacher giving to the students a problem so as to highlight its analogy 
with a problem previously solved in the class. The students find the solu-
tion by reading the didactical indications and not by involving them-
selves in the given problem (Brousseau, 1997). Implicit suggestion of 
analogy is a typical way of reproducing Topaze effects. Brousseau 
(1997) comments, however, that it is a natural practice: “If a few stu-
dents have not learned, they must be given a second attempt with the 
same subject matter” (p. 27). 

The following example illustrates the phenomenon of improper use 
of analogy: A teacher has given a word problem which is problematic to 
a student. The teacher presents its solution on the chalkboard, whereupon 
the student reacts by telling that he does not understand what the teacher 
has done. Then the teacher gives to him a new problem which is identi-
cal to the original problem apart from the quantities which are replaced 
by new ones. Hence, the student just has to recall what the teacher did to 
resolve the first problem, and solve the new problem by the same meth-
od. This is an incident of improper use of analogy because the student is 
enabled to find a solution without involving himself in the given prob-
lem.  
2.3.4 The metacognitive shift 
The metacognitive shift is an effect of the teacher’s obligation of teach-
ing at all costs. When a teaching activity has failed, the teacher can feel 
forced to justify herself and, in order to continue her activity, takes her 
own formulations and methods as objects of study instead of genuine 
mathematical knowledge. This may materialise in the form of teaching 
students the rules of interpreting and using tools (e.g., counters, blocks, 
graphical representations) that were supposed only to help students un-
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derstand the meaning of a mathematical concept. Brousseau illustrates 
the metacognitive shift by examples from the New Math reform period 
in the 1960s; the use of Venn diagrams in teaching the algebra of sets23 
and arrow diagrams in teaching about relations and functions, a method 
attributed to the Belgian mathematician, Georges Papy (Brousseau, 
1997, p. 26).  

During the New Math reform period, elementary school children 
were taught operations on sets. Because they could not be expected to 
reason about these operations using the language of formal logic, a less 
formal language was introduced. This language was based on a “model” 
originating from Euler (1768, as cited in Brousseau, 1997, p. 73), which 
makes reference to various graphical representations: Euler diagram; 
Venn diagram; and, Papy figure (Brousseau, 1997, pp. 26-27). But this 
model did not allow the expected semantic control and caused teaching 
difficulties. Because of these difficulties, this “method” of teaching in its 
turn became the object of teaching and the students were given exercises 
just for the practice of the conventions of the representation. “With this 
process, the more the teaching activity produced comments and conven-
tions, the less the student could control the situations which were being 
put to them” (Brousseau, 1997, p. 27). The metacognitive shift refers to 
the phenomenon that the teaching of for example Venn diagrams became 
an end in itself, whereas the intended knowledge (sets as mathematical 
structures) disappeared.  

An example of the metacognitive shift in the context of generalisa-
tion of shape patterns24 is the following: The teacher has presented a 
shape pattern that models a quadratic relationship and has given the stu-
dents the task of finding an explicit formula for the general member of 
the sequence of numbers mapped from the shape pattern. The aim of the 
task is to identify an invariant structure in order to establish a functional 
relationship between n (the position of an element) and the numerical 
value of the n-th element of the shape pattern. The students have pro-
duced a sequence of numbers mapped from the first few elements and 

                                         
 
 
 
 
 

23 The algebra of sets refers to the set-theoretic operations of union, intersection and comple-
mentation, and the relations of equality and inclusion (see e.g., Stečkin, 1963/1999).     
24 A shape pattern is a sequence of geometric configurations which develop in conformity 
with a fixed procedure. The geometric configurations are referred to as elements of the shape 
pattern. A more detailed explanation of the concept shape pattern will be presented in Chap-
ter 5.  
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have unsuccessfully used a strategy of “guess-and-check” to find a for-
mula.  

In an attempt to help them, the teacher encourages them to look at the 
differences between the members of their sequence (hereafter referred to 
as the original sequence). The students find the sequence of (first) differ-
ences and realise that these numbers are derived by adding the same con-
stant to the preceding number. With some help from the teacher they find 
an algebraic expression for the ( 1)n − -th difference and figure out that 
the n-th member of the original sequence is equal to the sum of the first 
member of the original sequence and all differences up to the ( 1n − )-th 
difference (here I represent this sum by 1 1 2 1n na a a a a −= + Δ + Δ + + ΔL , 
where ia  is the i-th member of the original sequence, and 1i i ia a a+Δ = − ). 
Now the teacher reminds them that the sum they have achieved is equal 
to the n-th partial sum of an arithmetic series, a formula with which they 
are familiar. The students recall this formula and use it to find an alge-
braic expression for the sum. They do not go back and reflect on the 
original shape pattern.  

There has been a shift away from the defined goal of the task (to es-
tablish a functional relationship through identification of an invariant 
structure), towards a focus on a method of finding a formula. This inci-
dent can therefore be interpreted as a metacognitive shift.  
2.3.5 The metamathematical shift 
The phenomenon of the metamathematical25 shift consists of substituting 
for a mathematical problem, a discussion of the logic of its solution and 
attributing the sources of error (in its solution) to a misunderstanding of 
that logic (Brousseau, 1997). An example of this phenomenon would be 
if a student originally is given a mathematical problem that requires solv-
ing an equation, and he fails in solving the equation. If the teacher, with 
the aim of improving the students’ proficiency in and understanding of 
solving equations, teaches the students a theory of equations, then there 
has been a metamathematical shift. That is, if the teacher, instead of 
communicating with the student about the original mathematical prob-
lem (the equation) states that an equation is a mathematical statement 
that asserts equality between two expressions. Further, she asserts that 

                                         
 
 
 
 
 

25 Metamathematics refers to the logical analysis of the fundamental concepts of mathemat-
ics, as number, equation, function, and so forth. That is, metamathematics is “the rigorous 
mathematical study of mathematics itself” (Gowers, 2008, p. 622). 
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this is the same as saying that the expressions are related by equality, 
which is an equivalence relation on a set (e.g., the real numbers). She 
explains that this means that for real numbers a, b, and c, the following 
properties hold: reflexivity (for any a, a a= ); symmetry (if a b=  then 
b a= ); transitivity (if a b=  and b c=  then a c= ); addition property 
( if a b= , then a c b c+ = + ); subtraction property ( if a b= , then 
a c b c− = − ); multiplication property ( if  then a b ac bc= = ); division 

property ( if  and 0, a b c= ≠ then a b
c c
= ); and, distributive property of 

multiplication over addition ( [ ]a b c ab ac+ = + ).  
The above is an example of a metamathematical shift because logic 

and theory of relations belong to metamathematics, which involves an 
abstraction from the particular mathematical statement (the given equa-
tion) and concentrates only on its general form. 
2.3.6 The Diénès effect 
The belief in the existence of some kind of infallible genesis of mathe-
matical knowledge that would be independent of the teacher’s invest-
ment in the learning process is the basis of what Brousseau (1997) refers 
to as the Diénès effect. The Diénès effect is thus the phenomenon that the 
teacher is assured of success by means of effects which are independent 
of her personal investment.  

Zoltan Paul Diénès, a Hungarian mathematician, became during the 
period of the New Math reforms known for his theory of the psychody-
namical process, a “teaching model founded on the recognition of simi-
larities among ‘structured games’ and on the schematization and the 
formalization of these guided ‘generalizations’” (Brousseau, 1997, p. 
36). According to Willy Servais and Tamas Varga (1971), Diénès be-
came well-known to elementary school teachers around the world for his 
blocks designed for the teaching of place value systems with various ba-
ses (“Diénès’ multibase blocks”), as well as blocks for the teaching of 
logic (“Diénès’ logic blocks”). An example with base three blocks for 
the learning of arithmetic (multiplication by the base number) is provid-
ed in the following paragraph.  

The material consists of several blocks in base three; “cubes” of 
3 33  cm , “plates” of 2 33  cm , “bars” of 33 cm , and “units” of 31 cm . The 

students are presented with an arrangement of base three blocks as 
shown in Figure 2.3 (on the next page). That is, they are presented with 2 
plates, 1 bar, and 2 units. Representation in symbols of this arrangement 
is introduced as 212. The task is how the blocks would be arranged and 
represented if there had been three times as many objects as the original 
one. 
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Figure 2.3. Arrangement of blocks to represent the number 212 in base three 

 
The teacher reveals the “rule” by illustrating that with three times as 
many objects the following applies: For every unit, there will be a bar; 
for every bar there will be a plate; and, for every plate, there will be a 
cube. The blocks will be arranged as shown in Figure 2.4.  

 

 
 

Figure 2.4. Arrangement of blocks to represent the number 2120 in base three 

 
That is, there will be 2 cubes, 1 plate, 2 bars, and 0 units; its representa-
tion in symbols is 2120. So, the original arrangement, 212, has become 
2120 and it is seen that the digits have “moved up” one level, each block 
being replaced by the block the next size up.  

The next step is to let the students experience (by using other base 
blocks) that the shifting of the digits and getting zero units does not de-
pend on the base used, as long as they multiply by the base number it-
self. If the students learn to manipulate the blocks but do not see through 
this activity to the mathematical knowledge that the blocks represent, it 
is an incident of what Brousseau refers to as the Diénès effect. 

In Diénès’ psychodynamical process, knowledge is not organised as a 
response to a problem-situation which is the case in Brousseau’s theory. 
In Diénès’ theory knowledge is provided totally prepared by the culture 
which guarantees its validity and usefulness and leaves the student no 
responsibility but to adhere to it (Brousseau, 1997, p. 141). The psycho-
dynamical process generally proceeds in six stages (accompanied by 
phenomena like, for example, that of generalisation): the playing stage; 
structured game; isomorphic games and abstraction; schematisation and 
formulation; symbolisation and formalisation; and, axiomatisation (for 
an outline of the psychodynamic process, see Brousseau, 1997, pp. 139-
143).  

Diénès’ theory was a motivation for the development of Brousseau’s 
theory of didactical situation in mathematics (Brousseau, 1997, 2000). 
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For this reason I include a relatively detailed outline of the didactical 
phenomenon referred to as the Diénès effect. Central in both Diénès’ 
theory and Brousseau’s theory is the notion of game. There are two as-
pects that distinguish the two theories. First, for Diénès, a game is de-
fined as a rule-bound play (Diénès, 1963), and it is not assumed that 
there are some strategies for winning the game, as in Brousseau’s theory. 
In the theory of didactical situations, on the other hand, knowledge is the 
outcome of the game (the construction of a strategy of winning the 
game), but the game does not resemble the knowledge, and the players 
are not playing with the target knowledge. However, playing with the 
target mathematical knowledge is exactly what the games are all about in 
Diénès’ theory: “The structure of the game and what knowledge ‘is’ are 
identical!” (Brousseau, 1997, p. 37). Brousseau (1997) claims that in or-
der to play the game in Diénès’ theory, the student must understand the 
rule of the game, which means that he must possess the knowledge that 
the teacher is claiming to teach him. To avoid teaching the student the 
rule (because this would transform the game into an exercise), “the 
teacher tries to make the student guess the rule – an activity which is not 
theorized in the psychomathematical process” (Brousseau, 1997, p. 37).  

Second, Brousseau (1997) does not, as he claims that Diénès does, 
believe in any infallible genesis of mathematical knowledge that is inde-
pendent of the teacher’s engagement. This can be exemplified by their 
divergent views of the process of abstraction. Diénès considers abstrac-
tion to result inevitably from the student’s engagement in the stages of 
structured game and isomorphic games. In Diénès’ theory, abstraction 
usually is not composed of any specific problem-situation (no new deci-
sion on the part of the teacher); “it appears as an answer, entirely the stu-
dent’s responsibility, given in the earlier stages which are at the same 
time the necessary and sufficient condition for it” (Brousseau, 1997, p. 
140). Brousseau, on the other hand, claims that what assures the process 
of abstraction is not an arbitrary law of the genesis of knowledge, but the 
existence of the didactical contract, which is about the reciprocal obliga-
tions of the teacher and the student in the teaching-learning situation re-
lated to some target mathematical knowledge. According to Brousseau, 
the possibility of the existence of the Diénès effect shows the necessity 
of integrating the teacher-student relationship in any didactical theory.  

An example which illustrates the Diénès effect, in addition to the one 
presented above with multibase blocks, is the use of a device developed 
by Diénès for making children construct the concepts of algebra. Servais 
and Varga (1971) write that the balance as a traditional device for illus-
trating solution of equations is replaced by Diénès by a simple beam 
with hooks at equal intervals from the fulcrum. Identical rings may be 
hung on different hooks. Diénès (1964, as cited in Servais & Varga, 
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1971) claims that students, as a consequence of engaging with the beam, 
discover the law of moments experimentally, and that it therefore be-
comes possible to prove that multiplication is distributive over addition. 
The belief of the teacher (or the researcher) that the students’ manipula-
tions with the rings on the beam will make them draw inferences about 
the properties of multiplication as an arithmetic operation, is an incident 
of what Brousseau (1997) refers to as the Diénès effect. 
2.3.7 The aging of teaching situations 
The teacher’s opinion that it is difficult to reproduce the same lesson 
(even with new students) may lead to modifications in the formulation of 
her explanations and instructions, or of the examples and exercises she 
uses. It may even lead to modifications in the structure of the lesson. 
Brousseau (1997) refers to this phenomenon of the teacher’s need to 
change a lesson as the aging of teaching situations. He claims that the 
phenomenon of aging raises an important question for didactique con-
cerning the meaning attributed to items of knowledge appropriated by 
the student: “What really is reproduced during the course of a lesson?” 
(Brousseau, 1997, p. 28).  

The phenomenon of aging of teaching situations can be exemplified 
by a situation where the target knowledge is a functional relationship 
between the position of elements in a shape pattern and the numbers rep-
resented by the elements (the sequence of numbers arising from the 
shape pattern). The teacher presents the same examples as those she has 
presented to previous classes: She demonstrates how the first few ele-
ments of different shape patterns can be partitioned to illustrate the in-
variant structure of the patterns. In each case she chooses a generic ex-
ample (one of the elements of the pattern) to show the functional rela-
tionship between position and numerical value. In previous classes she 
has introduced the concept of a “generic example”. This time however, 
she uses a generic example implicitly; that is, without making a point of 
its role in justification of the conjectured algebraic formula for the gen-
erality of the pattern. After the teacher’s presentation of the examples, 
the students are able to use the method of partitioning to find algebraic 
expressions for the general member of sequences mapped from shape 
patterns. However, the new students lack the metacognitive support of 
the concept of generic example, with the consequences it has for reason-
ing about the validity of algebraic formulae.  

The provided example illustrates the phenomenon of aging of teach-
ing situations because the teacher has modified her formulations and ex-
planations. At the surface, the outcome of the reproduced lesson is ap-
parently the same as for the old lesson (because the students can repre-
sent generality in shape patterns by algebraic symbols). However, the 
meaning of the knowledge appropriated during the reproduced lesson is 
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different; the new students do not have at their disposal the concept of a 
generic example. 

The didactical phenomena placed in three categories 
The seven didactical phenomena presented above illustrate different 
ways in which the reciprocal obligations of the teacher and the students 
constrain the teaching and learning of mathematics. They can be placed 
in three categories: The first category represents different ways in which 
the teacher offers tasks to students that enable students to evidence pos-
session or appropriation of some knowledge, but where this knowledge 
is different from the knowledge originally aimed at by the teacher. The 
Topaze effect, the Jourdain effect, and the improper use of analogy be-
long to this category. The second category represents different ways in 
which the teacher tries to help the students learn better, but the chosen 
method does not bring about the desired results. The metacognitive shift, 
the metamathematical shift, and the Diénès effect belong to this catego-
ry. The third category represents an inherent factor of teaching which 
signifies that what proceeds in the classroom cannot be scripted. The ag-
ing of teaching situations belongs to this category. 

The didactical phenomena presented in this section are important in 
an analysis of what is being produced in a teaching situation in the way 
they describe how the target mathematical knowledge is related to the 
didactical transposition. The phenomena have laid a foundation for the 
description of a theory that accounts for its known or inferred properties 
and can be used for further study of the characteristics of the theory. 
That is, it is a model of teaching-learning situations in mathematics, 
which will be outlined in the next section. 

2.4 Modelling of teaching situations 
In this section the fundamental relationships between the student (or 
group of students), the teacher, and mathematical knowledge are identi-
fied. These relationships enable the modelling of teaching-learning situa-
tions in mathematics.  
2.4.1 Devolution, adidactical situations, and didactical situations 
According to Brousseau (1997), the modern conception of teaching re-
quires that the teacher elicits the students’ intended learning by a careful 
choice of “problems” that she gives to them.  

These problems, chosen in such a way that students can accept them, must make 
the students act, speak, think, and evolve by their own motivation. Between the 
moment the student accepts the problem as if it were her own and the moment 
she produces her answer, the teacher refrains from interfering and suggesting the 
knowledge that she wants to see appear. The student knows very well that the 
problem was chosen to help her acquire a new piece of knowledge, but she must 
also know that this knowledge is entirely justified by the internal logic of the 
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situation and that she can construct it without appealing to didactical  
reasoning. . . . Such a situation is called an adidactical situation. (Brousseau, 
1997, p. 30) 

An adidactical situation is thus a situation in which the student takes a 
problem as his own and solves it on the basis of its internal logic without 
the teacher’s guidance and without trying to interpret the teacher’s inten-
tion with the problem. In the theory of didactical situations, an epistemo-
logical hypothesis is that to any piece of mathematical knowledge, it is 
possible to arrange an adidactical situation which sustains meaning. Such 
a situation is referred to as a fundamental situation: “Each item of 
knowledge can be characterized by a (or some) adidactical situation(s) 
which preserve(s) meaning; we shall call this a fundamental situation 
(Brousseau, 1997, p. 30). An example of an adidactical situation which 
can be characterised as a fundamental situation, is the puzzle situation 
described in Section 2.1. It is a fundamental situation for the principle 
that similarity is a multiplicative structure. 

The devolution26 of an adidactical learning situation is the act by 
which the teacher makes the student accept the responsibility for an 
adidactical learning situation or for a problem, and the teacher accepts 
the consequences of the transfer of this responsibility (Brousseau, 1997, 
p. 230). The student cannot engage in any adidactical situation immedi-
ately; the teacher arranges an adidactical situation which the student can 
handle. The design of an adidactical situation depends upon the student’s 
prior knowledge. Adidactical situations are arranged with didactical pur-
pose and determine the knowledge taught. Having introduced the notion 
of devolution of an adidactical situation, it is now possible to explain 
what a didactical situation is: 

[The] situation or problem chosen by the teacher is an essential part of the 
broader situation in which the teacher seeks to devolve to the student an 
adidactical situation which provides her with the most independent and most 
fruitful interaction possible. For this purpose, according to the case, the teacher 
either communicates or refrains from communicating information, questions, 
teaching methods, heuristics, etc. She is thus involved in a game with the system 
of interaction of the student with the problem she gives her. This game, or 
broader situation, is the didactical situation. (Brousseau, 1997, pp. 30-31) 

                                         
 
 
 
 
 

26 Brousseau (1997) explains: “Devolution was an act by which the king, by divine right, 
gave up power in order to confer it to the Chamber. ‘Devolution’ signifies ‘It is no longer I 
who wills [sic], it is you who must will, but I am giving you this right, because you cannot 
take it yourself’” (p. 249). 
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This means that an adidactical situation is part of the didactical situation, 
which is the broader situation (game) with the system of interaction of 
the students with the milieu arranged with the purpose of the students’ 
appropriation of the target knowledge without the teacher’s intervention. 
Situations of action, formulation, and validation are intentionally adidac-
tical situations, whereas the situation of institutionalisation is not adidac-
tical. The different didactical situations will be explained in Section 
2.4.3. 

The notion of teaching and learning can now be reformulated in 
Brousseau’s terms: “Teaching is the devolution to the student of an 
adidactical, appropriate situation; learning is the student’s adaptation to 
this situation” (Brousseau, 1997, p. 31). What makes an adidactical sit-
uation appropriate is that the student can handle it. That depends upon 
two conditions: first, that the student has prior knowledge that enables 
him to engage with the situation; second, that the milieu created by the 
teacher provides the student with knowings that enable him to develop 
the knowledge aimed at.  
2.4.2 The didactical contract 
As stated above, the didactical situation can be described through the 
metaphor of game. The rules and strategies of the game between the 
teacher and the student-milieu system, which are specific for the 
knowledge in play, are called the didactical contract. Brousseau ex-
plains: 

In a teaching situation, prepared and delivered by a teacher, the student generally 
has the task of solving the (mathematical) problem she is given, but access to this 
task is made through interpretation of the questions asked, the information 
provided and the constraints that have been imposed, which are all constants in 
the teacher’s method of instruction. These (specific) habits of the teacher are 
expected by the students and the behaviour of the student is expected by the 
teacher; this is the didactical contract. (Brousseau, 1980, as cited in Brousseau, 
1997, p. 225) 

The questions asked, the information provided and the constraints that 
the teacher has imposed are determined by the knowledge that the teach-
er intends the student to learn. This implies that there are rules in the di-
dactical situation which are specific for the target mathematical 
knowledge. These rules are crucial for the definition of the didactical 
contract. In a didactical situation there are also rules which are relevant 
from the point of view of the general culture of the classroom (classroom 
management, social behaviour, etc.). If these rules have nothing (or lit-
tle) to do with the target knowledge, they are not part of the didactical 
contract. “The didactical contract is not a general pedagogical contract” 
(Brousseau, 1997, p. 31). 
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As an example of the didactical contract used as an analytical tool, I 
provide Brousseau’s analysis of students’ responses to a problem re-
ferred to as the “age of the captain” problem27 (Brousseau, 1997, pp. 
263-265): “On a boat, there are 26 sheep and 10 goats. What is the age of 
the captain?” In third grade, 78 % of the students gave the answer 36. 
Brousseau (1997) shows how the notion of didactical contract allows one 
to restore rationality in the students’ behaviour: The students’ responses 
are a plausible consequence of a break in the didactical contract associat-
ed with elementary word problems. The contract in this case involves 
that students are supposed to use the numbers in the text to accomplish a 
hidden arithmetic operation. Because word problems must be solved uti-
lising the mathematics learned, contexts are chosen to contain indicators 
which enable students to ignore context and identify relevant mathemati-
cal information. The task of the student, according to the contract, is not 
one of making sense of the situation by using mathematics, but one of 
suppressing the situation so as to find the mathematics. The students’ 
strange answers are observed because the problem and the conditions 
under which it is posed violate the conditions that students reasonably 
can expect from a school mathematical problem (teachers are not sup-
posed to ask questions which cannot be answered by utilising prior 
knowledge and the information given). The results of the “age of the 
captain” problem become meaningful when interpreted in terms of the 
students’ obligations to produce an answer according to the didactical 
contract of elementary word problems. An interpretation of the responses 
within cognitive explanations of students’ personal knowledge is hard to 
imagine.  

Brousseau (1997) observes that “students’ reasoning is formed by a 
collection of constraints of didactical origin which modify the meanings 
of their responses and those of the knowledge they are taught” (p. 264). 
Negotiation of a didactical contract is a tool for the devolution of an 
adidactical learning situation to the student.	When the devolution is such 
that the student no longer takes into account any feature related to the 
didactical contract but just acts with reference to the characteristics of 
the adidactical situation (that is, the student uses his prior knowledge and 

                                         
 
 
 
 
 

27 The problem was posed to third-grade and fifth-grade students as an experiment by a re-
search team of the Grenoble IREM (Institut de Recherche sur l’Enseignement des Mathé-
matiques).  
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tries to solve the problem on the basis of its internal logic), an ideal state 
is accomplished. 	

The “traditional” didactical contract (i.e., a contract not informed by 
didactique) does not include an adidactical situation. I understand Brous-
seau (1997) to mean that if the teacher “tells” the student the target 
knowledge, or uses some form of “didactical situation”, then the student 
has difficulty in appropriating the target knowledge because it cannot be 
separated from elements within the didactical situation, which point to 
the resolution of the problem. In this sense, if the student expects the 
teacher to disclose new knowledge, and the teacher does not do this, the 
contract is broken. In circumstances with a “traditional” didactical con-
tract, “it is in fact the breaking of the contract that is important” (Brous-
seau, 1997, p. 32).  

According to Brousseau (1997), a totally explicit contract will not 
bring about the desired learning. “In particular, clauses concerning the 
breaking and the stake of the contract cannot be written in advance. 
Knowledge will be exactly the thing that will solve the crises caused by 
such breakdowns; it cannot be defined in advance” (Brousseau, 1997, p. 
32). The didactical contract is a contract in the sense that it regulates 
what can be done (from the point of view of legality) even if the clauses 
of the contract are not explicit. The contract becomes visible when it is 
broken, as in the “age of the captain” problem. At the moment of a 
breakdown of the didactical contract, the important enterprise is the 
“search for a new contract which depends on the new ‘state’ of 
knowledge, acquired and desired” (Brousseau, 1997, p. 32). This makes 
Brousseau claim that  

the theoretical concept in didactique is therefore not the contract (the good, the 
bad, the true, or the false contract), but the hypothetical process of finding a 
contract. It is this process which represents the observations and must model and 
explain them. (Brousseau, 1997, p. 32)  

The observations referred to by Brousseau (1997) are those done by the 
teacher in the metadidactical situation, where she reflects on the didacti-
cal situation, relative to some particular knowledge, and tries to find a 
didactical contract which models the observations. This means that the 
teacher reflects on what kinds of interactions with the milieu are neces-
sary to foster the desired learning. The role of the teacher in the meta-
didactical situation where the negotiation of the didactical contract takes 
place, will be explained further in Section 2.4.4, where I explain the con-
cept of milieu. In the same section an example is provided that illustrates 
the different roles of the teacher and student in the didactical situation. 
2.4.3 Different types of didactical situations 
There are different types of didactical situations, in which the role of the 
teacher and the status of knowledge change. Brousseau (1997) categoris-
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es didactical situations in mathematics into four types which (ideally) 
occur chronologically; situations of action, formulation, validation, and 
institutionalisation. Each situation depends on the accomplishment of the 
antecedent situation. The four types of didactical situations represent in 
the theory of didactical situations the “genetic” way of reinventing math-
ematical knowledge. Adidactical situations usually take place within sit-
uations of action, formulation, and validation whereas the situation of 
institutionalisation is a didactical situation. In the following I describe 
these situations and explain the different roles of the teacher, and the sta-
tus of knowledge in each of them. 

The situation of action 
The teacher organises a milieu for the students to engage with and then 
completely withdraws from the scene. This is supposed to be an adidac-
tical situation in which the students engage with the presented mathemat-
ical problem on the basis of its internal logic without the teacher’s inter-
vention. The milieu for the students is that of a mathematical problem so 
designed that two conditions are fulfilled: First, the students are willing 
to adopt the problem as their own, and want to solve it to satisfy their 
own curiosity or ambition. Second, the students have the means (prior 
knowledge and experiences) to construct the solution by themselves. To 
construct a solution, following Brousseau’s (1997) metaphor, means to 
develop strategies to win the game. Generally, a strategy is adopted by 
intuitive or rational rejection of an earlier strategy (Brousseau, 1997, p. 
9). A “final” strategy is therefore a result of repeated experimentation 
and refined strategies related to the problem-setting. The students organ-
ise their strategies and construct a representation of the situation which 
serves as a “model” that guides them in their decisions. This model is an 
example of relationships between certain objects or rules that they have 
perceived as relevant in the situation. “The set of relationships can re-
main more or less implicit; the [student] plays according to the model 
before being able to formulate it” (Brousseau, 1997, p. 9).  

Brousseau (1997) writes that the status of an implicit model in the 
classroom is that of a protomathematical notion (p. 162). Protomathe-
matical notions are original or primitive notions that are precursors to 
mathematical notions as we know them today (see e.g., Chevallard, 
1990). An example of a protomathematical notion is the notion of a 
“general number”, which, according to Radford (1996), is the basis for 
development of a formula in the context of generalisation of shape pat-
terns or numerical patterns. A general number is categorised by Dietmar 
Küchemann (1981) as a preconcept to the concept of variable, and may 
as such be viewed as a protomathematical notion.  
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The situation of formulation 
The milieu for the students in the situation of formulation is developed 
on the basis of the shared experience in the situation of action: The stu-
dents exchange and compare observations between themselves. A main 
purpose in the situation of formulation is to develop language to formu-
late their observations and agree on some common meanings. In the situ-
ation of formulation, the teacher re-enters the scene to chair the ex-
changes and make sure that all formulations are made “visible” in the 
classroom.  

Knowledge in this situation appears as a personal experience, which 
needs to be communicated in order for others to share the experience and 
make up their minds about the strategy developed. In this way “situa-
tions of formulation allow the acquisition of explicit models and lan-
guages which, in cases where mathematical notions are not yet in exist-
ence, are given the status of paramathematical notions” (Brousseau, 
1997, p. 162). Motivated by Apostolos Doxiadis (2003), I understand 
paramathematical notions to be notions used in mathematical activity; 
for example, the notions of equation and variable. These are notions 
which are part of the teacher’s instructions in mathematics, but they are 
not in the same way part of a mathematician’s consciousness: Paramath-
ematical notions are used by mathematicians implicitly when they for 
instance solve equations and when they deal with variables during work 
with mappings.  

The situation of validation 
The situation of validation is about establishment of theorems. For a 
model or a theory to be qualified as a valid strategy of winning the game 
there is a need for argumentation. Brousseau (1997) claims that  

to state a theorem is not to communicate information, it is always to confirm that 
what one says is true in a certain system; it is to declare oneself ready to support 
an opinion, to be ready to prove it. It is therefore not a question only of the 
student’s “knowing” mathematics, but of using it as a reason for accepting or 
rejecting a proposition (a theorem), a strategy, a model, that which requires an 
attitude of proof. (p. 15)  

He, further, asserts that this attitude of proof is not innate and therefore 
needs to be developed and sustained through specific didactical situa-
tions; situations of validation. Brousseau explains how the aim of con-
viction and the notion of truth imply that construction of mathematical 
knowledge (establishment of propositions) is primarily a social activity:  

In mathematics, the “why” cannot be learned only by reference to the authority 
of the adult. Truth cannot be conformity to the rule, to social convention like the 
“beautiful” and the “good”. It requires an adherence, a personal conviction, an 
internalization which by definition cannot be received from others without losing 
its very value. We think that knowledge starts being constructed in a genesis of 
which Piaget has pointed out the essential features, but which also involves 
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specific relationships with the milieu, particularly after the start of schooling. We 
therefore consider that for the child, making mathematics is primarily a social 
activity, not just an individual one. (Brousseau, 1997, p. 15) 
Piaget believed that learning resulted from a child’s action related to 

its external world. His stance is described by Jerome Bruner (1985) as 
“the paradigm of a lone organism pitted against nature” (p. 25). Piaget 
has a rather discouraging view on teaching, illustrated in his own words: 
“Each time one prematurely teaches a child something that he could have 
discovered himself, the child is kept from inventing it and consequently 
from understanding it completely” (Piaget, 1970, p. 715). Brousseau’s 
(1997) two quotations above show that he holds that the necessary atti-
tude of proof cannot be taught to the child. But Brousseau, as opposed to 
Piaget, does not think that the individual student can acquire or discover 
this attitude. Brousseau emphasises the importance of the student’s en-
gagement in the game with the didactic milieu, where the activity of 
bringing convincing reasons to the fore will generate the mathematical 
knowledge.  

In the situation of validation the students try to explain some phe-
nomenon or verify a conjecture. According to Brousseau (1997), the 
teacher acts as a chair in a scientific debate and intervenes only to struc-
ture the debate, draw the students’ attention to possible inconsistencies, 
and encourage them to use more precise mathematical concepts. 
Knowledge, in this situation, appears as mathematical notions (Brous-
seau, 1997, p. 162). The knowledge appropriated by the students in the 
situation of validation has the features of a theory in the making, not of 
an institutionalised theory.  

The situation of institutionalisation 
Brousseau (1997) claims that for a student’s model or theoretical conjec-
ture to be institutionalised, “it must already have functioned as such in 
scientific debates and in students’ discussions as a mean [sic] of estab-
lishing or rejecting proofs” (pp. 161-162). This points at the importance 
of the preceding situations (situations of action, formulation, and valida-
tion), where the theory has functioned as a solution to a problem given to 
the student under conditions which allow him to construct the solution 
by himself or to make a choice (based on his own judgement, without 
any didactical intentions) among several alternative solutions.  

The teacher, in the situation of institutionalisation, plays the role of a 
representative of the official curriculum, of the textbook, and of the 
mathematical community. She informs the student about conventional 
terminology and highlights definitions and theorems considered im-
portant for the contextualised knowledge to gain the status of cultural 
knowledge so that it can be used in settings other than in the original one 
set up by the teacher (i.e., for the knowledge to be decontextualised). 
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Knowledge, in this situation, acquires the features of a law rather than of 
an answer to a mathematical problem. It is justified through the authority 
of the institution (Brousseau, 1997, p. 44). 

Brousseau (1997) states that for teachers there is a great temptation to 
cut out the double work of recontextualisation and redecontextualisation 
and make the students learn a text of knowledge directly. If this is done, 
situations of institutionalisation will dominate the classroom. In this 
case, the other types of didactical situations may appear in degenerate 
form, caused by one or several of the phenomena connected with control 
of the didactical transposition (as described in Section 2.3), under the 
pressure of the didactical contract.  

Adidactical situations and their feedback 
As explained in Section 2.4.1, an adidactical situation is a situation in 
which the student takes a problem as his own and solves it on the basis 
of its internal logic without the teacher’s intervention. Adidactical situa-
tions are valuable, not only because of the ideological advantage of de-
volving to the student a responsibility for solving a problem that is 
meaningful to him, but also because of the epistemological importance 
of the adidactical milieu, which for the student is without didactical in-
tentions (Herbst & Kilpatrick, 1999). Within and against this milieu, the 
student’s activity may generate knowings that may eventually lead to a 
valid institutionalisation of the target knowledge. The adidactical milieu 
is “the image, within the didactical relationship, of the milieu which is 
external to the teaching itself; that is to say, stripped of didactical inten-
tions and presuppositions” (Brousseau, 1997, p. 229). The adidactical 
milieu consists, generally, of the task proposed to the students; of physi-
cal tools provided such as calculators, computers, hands-on material, ex-
ercise books, pencils, rulers, compasses, and so forth; of psychological 
tools such as texts, tables, notation, illustrations, diagrams, and so forth 
(psychological tools are frequently provided as part of the formulated 
task); and, of the arrangement of the classroom (organisation of desks 
and chairs, etc.). The adidactical milieu is independent from the teacher 
and the students (even if the teacher usually has prepared the adidactical 
milieu for devolution to the students).  

The fact that different types of interaction with the milieu and differ-
ent forms of knowledge are justified a priori allows the teacher or re-
searcher to discuss the properties of the milieu which are necessary in 
order to provoke the interactions and knowledge aimed at. Questions 
like, “Why would the student do or say this rather than that?”, “What 
must happen if he does or does not do it?” are suitable to expose im-
portant conditions on the milieu.  

An influence of a didactical or adidactical situation on a student is in 
the theory of didactical situations called feedback. The student receives 
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this influence as a sanction to his action, which provides him with the 
opportunity to adjust that action; to reject or accept a hypothesis, to 
choose the optimal solution among several (Brousseau, 1997, p. 7). In a 
situation of action, it is the situation itself that provides feedback; that is, 
whether the student can solve the problem given to him (or, whether he 
understands what it means to solve it). In the terminology of game, the 
feedback in the situation of action is in terms of a win or lose (Brous-
seau, 1997, p. 9). In the situation of formulation, the feedback for a stu-
dent is of two types: one is the feedback from other students in the group 
whether they, during the discussion, understand his suggestion of a strat-
egy or formulation or not; the other is the feedback from the milieu, if 
his suggestion solves the problem (in the terminology of game: if the 
proposed strategy was a winning one or not; Brousseau, 1997, p. 11). In 
the situation of validation, the student is dealing with relationships be-
tween a “real” situation (concrete or not) and one or several statements 
formulated about the subject (or, activity) in this real situation (Brous-
seau, 1997, p. 15). The student must make statements about these rela-
tionships. The feedback in the situation of validation is in terms of an 
interlocutor’s (peer student’s) judgement of the statements put forward. 
This interlocutor must be able to protest, reject a reason which he judges 
false, give reasons, and try to prove it in his turn (Brousseau, 1997, p. 
16).  
2.4.4 The milieu 
The concept of milieu models the elements of the material or intellectual 
reality on which the student acts and which may be an obstacle to his 
actions and reasoning (Laborde & Perrin-Glorian, 2005). As explained in 
Section 2.4.1, in the theory of didactical situations, teaching is envisaged 
as the devolution of a learning situation from the teacher to the student. 
In the devolution process, the teacher is faced with a system, itself built 
up from a pair of systems; the student and a milieu that lacks any didac-
tical intentions with regard to the student (Brousseau, 1997, p. 40).  

The milieu is a subset of the student’s environment with only those 
features that are relevant with respect to a given piece of knowledge (the 
environment is not relevant in all its complexity). As described in Sec-
tion 2.4.1, an epistemological hypothesis in the theory of didactical situa-
tions is that each item of knowledge must originate from adaptation to a 
specific situation, referred to as a fundamental situation. Translated into 
a learning situation, this means that students do not invent or use algebra, 
for example, in the same context and relationship with the milieu as that 
in which they invent or use probability theory (Brousseau, 1997, p. 23).  

The diagram in Figure 2.5 shows the structure of the didactical milieu 
in terms of the different roles of the student (S) and the teacher (T).  
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Figure 2.5. The different roles of the student (subject) and the teacher in the didactical milieu 
(adapted from Brousseau, 1997, p. 248) 

 
A situation at one level in the diagram is a milieu for the next (outside) 
level (M.-J. Perrin-Glorian, personal communication, 15 June, 2009). 
Following Brousseau (1997) and Marie-Jeanne Perrin-Glorian (personal 
communication, 15 June, 2009), I give the following explanation of the 
structure of the didactical milieu: At the first (innermost) level there is 
the objective situation constituted by the mathematical problem. The mi-
lieu for the objective situation is the material milieu, that is, the “reality” 
described in the mathematical problem. In the material milieu there may 
be hypothetical persons (S5) acting (those described in the mathematical 
problem, referred to as “objective actors” by Brousseau).28 Then, at the 
next level, the objective situation becomes a milieu (termed objective 

                                         
 
 
 
 
 

28 The material milieu does not necessarily include any actor.  
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milieu by Magali Hersant and Marie-Jeanne Perrin-Glorian, 2005) for a 
student (S4) who tries to solve the mathematical problem. 

Then, at the next level, this situation (termed the situation of refer-
ence) becomes a milieu for a student (S3)29 who reflects on the situation 
with the student (S4) trying to solve the mathematical problem. Then, at 
the next level, there is the didactical situation with a student (S2) and a 
teacher (T2) acting on this learning situation as a milieu. The outermost 
level is the metadidactical situation where the didactical situation is the 
milieu for the student (S1) and the teacher (T1) to act on; this is the level 
where the didactical contract is “negotiated”. In this way, each level re-
fers back to the previous one in the sense that the previous level is the 
milieu for the present level. 

The teacher designs a milieu (e.g., a mathematical problem) which 
reveals more or less clearly her intention of teaching to the student some 
particular knowledge. The teacher conceals enough of this knowledge 
and the expected answer so that the student can obtain them only by pro-
ducing responses to the milieu, which are managed by the student’s ex-
isting knowledge. According to Brousseau (1997), the value of the ac-
quired knowledge therefore depends on the quality of the milieu as an 
instigator of a “real”, cultural functioning of knowledge, and thus on the 
extent to which the knowledge is re-usable in different adidactical situa-
tions not prepared by the teacher. Hence, the milieu can be described as 
the student’s “antagonist” system in the learning process, and knowings 
as properties of the interactions (relationships) between a student and the 
milieu (Brousseau, 1997, p. 61). The antagonist system is something that 
gives feedback and can help the students to adjust their actions, formula-
tions, and conjectures.  

I provide an example of a didactical situation to illustrate the concept 
of milieu. The example takes as a starting point the mathematical task 
presented in Figure 2.6. I will explain what constitutes the milieu in dif-
ferent types of situations related to the task.30  
 

                                         
 
 
 
 
 

29 Selections of the students (S1, S2, S3, and S4) who are actors in the didactical milieu may 
be the same person (they may all be the same person), but they may also all be different per-
sons. T1 and T2 may or may not be the same person, as well. 
30 This rather long example is provided to help the reader understand the concept of milieu 
and to introduce him/her to the context of the mathematics (e.g., sequence, generic element, 
algebraic formula) that is fundamental to the analyses presented in Chapters 6, 7, and 8.  
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Example of task 
 
Below you see the first three elements of a shape pattern intended to be continuing 
to infinity. 

0.15

1 2 3

 
a) Draw the next element of the shape pattern presented above. What will the 

 10th element look like? 
 
b) There is a relationship between the position of an element in the shape pattern 
 and the number of circles in the different parts of the element. Try to illustrate 
 this relationship by decomposition of elements (i.e., diagrammatic isolation 
 by for instance encircling or painting with different colours). The decomposi-
 tion shows the invariant structure of the shape pattern. Express in natural  
       language what you see. What will the n-th element of the shape pattern look 
       like? 
 
c) Express the observed relationship between position and element in terms of a 
 formula; this means to express the n-th member of the sequence mapped from 
 the shape pattern as a function of its position.  
 Argue that your formula is correct. 

 
Figure 2.6. Task for algebraic generalisation of arithmetic relations in elements of a shape 

pattern 

The target knowledge in the exemplified didactical situation is algebraic 
generalisation of arithmetic relations in elements of a shape pattern. The 
algebraic formula for the n-th member of the sequence mapped from the 
shape pattern is intended to be justified by identification of references 
between partitions of a generic element and algebraic symbols in the 
formula.  

It is relevant to comment that the outline given below is just a sketch 
of a hypothetical didactical situation. The sketch does not include a de-
scription of all interactions between students, and between students and a 
teacher, which would be essential during the students’ engagement with 
the objective situation (the mathematical problem).  
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The situation of action and its milieu exemplified 
The situation of action involves the students’ engagement with drawing 
of the particular elements (geometric configurations) asked for. Further, 
it involves the students’ manipulation of the elements by decomposition 
(colouring with different colours, or other techniques) in order to experi-
ence a relationship between the position of an element and its numerical 
value (defined by its number of components). The milieu for the situa-
tion of action is the material milieu; that is, the image of the shape pat-
tern and the parts of the task that address the students’ drawing of new 
elements and manipulation of elements in order to illustrate the invariant 
structure of the shape pattern. 

The outcome of the situation of action is the students’ drawing of 
several elements and their illustration of a relationship between position 
and numerical value of elements. Figure 2.7 shows one of several possi-
ble decompositions that illustrate the invariant structure of the shape pat-
tern presented in Figure 2.6.  

 

0.15

1 2 3 4
 

 
Figure 2.7. One of several possible decompositions of elements of the shape pattern  

presented in the example (Figure 2.6) 
 

The students’ observations of and first informal conjectures about a 
potential relationship between position and numerical value of elements 
(originated from the decomposition made) are also part of the outcome 
of the situation of action. Observations may include the following arith-
metic relationships arising from the first four and the tenth elements: 
4 1 1,+ +  4 2 2,+ +  4 3 3,+ +  4 4 4,+ +  and 4 10 10.+ +  
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The situation of formulation and its milieu exemplified 
The situation of formulation involves the students’ attempts to represent 
mathematically the informal conjectures about the invariant structure of 
the shape pattern (illustrated by the decomposition made). The milieu for 
the situation of formulation is the outcome of the situation of action as 
described above, in addition to part c of the task (see Figure 2.6 above), 
which addresses the formulation of the sought relationship.  

The teacher expects that the students have observed that the number 
of circles in the two congruent rectangles of the elements is equal to the 
position of the elements in the shape pattern sequence. With respect to 
the circles in the middle (inside the square), the teacher expects that they 
have observed that it is constantly four.31 The outcome of the situation of 
formulation is intended to be a formula in terms of something like 
( ) 4 2f n n= + , 4 2na n= + , or “the number of circles in the n-th element 

is equal to 4 2n+ ”. 
The situation of validation and its milieu exemplified 

The situation of validation involves the students’ justification, in pres-
ence of and opposition to other students, that their conjectured formula is 
correct for all natural numbers. The milieu for the situation of validation 
is the outcome of the situation of formulation (a formula as described 
above), together with the requirement in the task (part d) to prove that 
the formula is always true.  

It may be that the students argue by a strategy of guess-and-check; 
that their formula is true because it is correct for particular elements of 
the pattern (the ones drawn). It will be the teacher’s role to encourage 
them to argue along the lines of a generic example (by using the decom-
position to identify references between the number of circles in the dif-

                                         
 
 
 
 
 

31 It may be that they have done some reasoning to find a relationship between position and 
number of circles in the middle of the elements. They may have observed the following 
regularity: For the first element, the number of circles in the middle is three more than the 
position; for the second, there are two circles more than the position, and so forth. For the 
tenth, there are six circles less than the position. Then this is the milieu for the students’ for-
mulation of the statement that the numbers composed in this way, 1 3+ , 2 2+ , 3 1+ , 4 0+ , 
and 10 - 6 , are all equal to four. Hence, the relationship between position and number of 
circles in the middle is equal to four, independently of position in the shape pattern.   
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ferent partitions of the elements and the symbols in the conjectured for-
mula). Another way would be to argue by a proof by induction.32 

The situation of institutionalisation and its milieu exemplified 
The situation of institutionalisation involves the teacher’s record of what 
has happened in the preceding situations and her giving meaning to the 
students’ actions and the knowledge developed. It involves among others 
the teacher’s focus on the following: the connection between a decompo-
sition33 and its representation of an invariant structure; how arithmetic 
relations can be derived from a decomposition; identification of the posi-
tion of elements in arithmetic expressions that represent the numerical 
values of elements; how arithmetic expressions of numerical values of 
elements are the basis for algebraic thinking where the variable has the 
role of placeholder for position; and, the notion of a generic example 
(how one decomposed element can be a representative for the whole 
class of elements). The teacher also informs about conventional termi-
nology and notation (function notation, use of indexes, etc.).  

Different from what is the case for situations of action, formulation, 
and validation, the milieu for the situation of institutionalisation is not 
only the outcome of the last situation; the milieu is the outcome of all the 
preceding situations. Institutionalisation of the formula that is established 
and justified by the students is not institutionalisation of the formula per 
se. It is institutionalisation of how it can be derived through identifica-
tion of arithmetic relations in the elements and, further, generalised by 
algebraic reasoning on a generic example. The cultural, reusable 
knowledge in this case is the nature of the relation between the algebraic 
expression and its referent (a generic element of the shape pattern).  

Through the example presented in Figure 2.6, I have illustrated the 
notion of milieu as it is manifested in situations of action, formulation, 
validation, and institutionalisation related to a didactical situation aimed 
at algebraic generalisation of a shape pattern. In the next paragraphs I 

                                         
 
 
 
 
 

32 An induction proof involves that it is observed that the conjectured formula is true for 
1n = . Then it is assumed that it is true for n k= ; that is, ( ) 4 2f k k= + . In the shape pattern 

presented in Figure 2.6, the difference between the numerical values of two consecutive ele-
ments is two. Therefore, it can be derived that ( ) 2 4 2 2 ( 1)f k k f k+ = + + = + , which shows 
that the formula is true also for 1n k= + . This proves the conjecture. It is obvious that the 
type of justification aimed at will depend on the grade at which the task is given. 
33 Students have probably made different decompositions. 
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use the same example to illustrate the structure of the didactical milieu in 
terms of the different roles of the students and the teacher.  

The different roles of the student and the teacher in the didactical mi-
lieu illustrated by the shape pattern example  
In the hypothetical didactical situation described above (related to the 
task presented in Figure 2.6), the first level of the didactical milieu (cf. 
Figure 2.5), termed the objective situation, is constituted by the mathe-
matical task which aims at algebraic generalisation of a shape pattern. 
The material milieu for the objective situation is the shape pattern which 
is without any acting subject. At the next level, termed the situation of 
reference, the objective situation is the milieu for a student (S4) who 
tries to establish a formula for the general member of the sequence 
mapped from the shape pattern. At the next level, termed the learning 
situation, the situation of reference is the milieu for a student (S3) who 
reflects on the situation of reference. It is a learning situation for S3 
where he reflects on S4’s work (his decomposition of elements, the 
arithmetic relations expressed, the conjectured formula and its justifica-
tion). It may be that S3 compares S4’s work with other students’ work 
and reflects on their achievements being different. S3 may wonder 
whether it is appropriate to establish the sequence of numbers 
{ }6,  8,  10,  12,L  mapped from the shape pattern and use it to establish 
the formula ( ) 2f n n=  for { }3,  4,  5,  6, .n∈ L   

At the next level, termed the didactical situation, the learning situa-
tion (with S3 reflecting on S4’s work) is the milieu for a student (S2) and 
a teacher (T2) to act on. At this level T2 both observes and acts on the 
learning situation. In the didactical situation, questions like the ones 
asked in the learning situation are discussed, and it is where T2 explains 
the status of the knowledge developed at the previous levels. This means 
for instance that T2 explains that the established formula is inevitably 
connected to the presented shape pattern and that its value lies in the na-
ture of the connection between the decomposition and the algebraic 
symbols in the formula. Introduction of the notion of a generic example 
belongs to this level, together with a discussion of the validity of differ-
ent types of reasoning.  

At the last level, termed the metadidactical situation, the didactical 
situation is the milieu for a universal student (S1) and a universal teacher 
(T1) who reflect on the didactical situation. This is where the didactical 
contract is “negotiated”, which means that T1 and S1 reflect on what 
kinds of interactions with the milieu will be required to foster students’ 
algebraic thinking. Relevant questions at this level, originated from the 
provided example with the shape pattern, would be: “How can students 
be encouraged to argue by using generic examples?”, “What must hap-
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pen if a student reasons by naïve empiricism and writes the sequence of 
numbers { }6,  8,  10,  12,L  mapped from the shape pattern and establish-
es the formula ( ) 2f n n=  for { }3,  4,  5,  6, ?n∈ L ”  

I have now presented the main elements of the theory of didactical 
situations in mathematics. In the next section I argue for the legitimacy 
of this theoretical framework in my study.  

2.5 Legitimacy of the theory of didactical situations in 
this study 

The objective of my study has been to identify relationships between, on 
the one hand, the didactical situations in which the participants of the 
study engaged, and, on the other hand, the target mathematical 
knowledge defined by the teacher who designed the situations. The rea-
son I find the theory of didactical situations relevant and valuable in my 
research inquiry is that it is a framework that addresses the problems 
posed by the teaching and learning of mathematics (see Section 2.2). The 
theory emphasises epistemological and didactical analyses and its focus 
is on the nature and functioning of some particular mathematical 
knowledge. This is significant for my investigation of factors that con-
strain students’ establishment of algebraic generality in shape patterns, 
where I define the small-group teaching situation as the unit of analysis 
when I examine the interplay between the teacher, the students and the 
mathematical knowledge at stake.  

In the following I use the concept regular teaching situation in the 
sense that the teaching situation is not the result of didactical engineer-
ing. A relevant consideration is whether it is appropriate to use the theo-
ry of didactical situations to analyse episodes from regular teaching 
events. By this I refer to a potential tension between the teacher perspec-
tive and the researcher perspective in the sense that I have analysed the 
observed situations from a theoretical perspective not utilised by the 
teacher when he designed or engaged in those situations. I have used 
concepts and models from Brousseau’s theory as analytical tools to con-
ceptualise the triadic didactic relationship which binds the teacher, the 
students, and the mathematical knowledge in play. I have through the 
analyses of the empirical material identified relationships between the 
mathematical tasks and the teacher’s interventions on the one hand, and 
the students’ engagement with the tasks on the other hand. This identifi-
cation is done from the perspective of an analysis of the target 
knowledge as being latent in the tasks and intended by the teacher. The 
identification is not done from the perspective of an evaluation of the 
tasks or the teacher’s interventions according to concepts and models in 
Brousseau’s theory.  
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It has not been my aim to design and test new didactical situations 
based on the analyses of the didactical situations observed. That would 
have been an endeavour of didactical engineering which would have in-
volved alternative research questions to be investigated, and was outside 
the scope of my study. In the following I argue that it is legitimate to use 
the theory of didactical situations to study regular teaching situations. 
This I do with reference to Brousseau’s more recent writing, and with 
reference to other studies in which the theory is used to analyse regular 
classroom situations. 

With respect to the status of the theory of didactical situations, 
Brousseau wrote in an e-mail message to Anna Sierpinska in November 
1999:34 

The theory of situations is aimed to serve both the study and the creation of all 
kinds of learning and teaching situations, whether they are “spontaneous”, or the 
product of an experience or of a special didactical engineering project, and 
whether they are efficient or not. It is not a method of teaching. The theory can 
provide some methods of teaching, it can justify some methods and disqualify 
some other methods, as the case may be. The theory contains models that may 
support certain plans of action aiming at making the students (re)discover some 
mathematics. This way the theory can make suggestions for engineering. 
(Brousseau, e-mail cited by Sierpinska, 199935, Lecture 8, p. 1) 

Didactical engineering can be considered the methodology of instruc-
tional design of the theory of didactical situations. Brousseau explains 
the relationship between the two: 

Theory of situations has been elaborated to provide a framework for the study 
and means of description of any situation in which there is an intention of 
teaching someone some precise knowledge, whether it succeeds in it or not. It 
can take into account all the forms of learning identified in all kinds of research. 
The theory does not pretend to present all aspects of teaching situations and 
replace all the approaches: psychological, psychoanalytical, linguistic, statistical, 
etc. But it tends to put the contribution of these approaches in the perspective of 
their function and their generality in the description of “didactic phenomena”.  
. . . Theory of situations is neither an ideology nor [a] particular didactic method. 
In this sense, it has no technical alternative. It does not directly recommend this 
or that particular didactic procedure. Its theoretical concepts only allow one, for 
                                         
 
 
 
 
 

34 The letter is translated into English by Sierpinska. 
35 Sierpinska writes that these lecture notes (Lectures 1-8) were given in the programme, 
“Master in the Teaching of Mathematics”, at Concordia University in Montreal. They were 
part of the course MATH 645, in the autumn of the year 1999. Brousseau’s book (Brousseau, 
1997) was used as a textbook in the course. Retrieved from http://annasierpinska.wkrib 
.com/index.php?page=lecture_on_tds  
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reasons of consistency, to predict the role of certain factors in some 
circumstances. (Brousseau, e-mail cited by Sierpinska, 1999, Lecture 8, p. 2) 

Thus, Brousseau considers the theory of didactical situations as neither a 
method of teaching nor an ideology. Its strength lies in its utility to pre-
dict the role of certain factors in the didactical relationship between the 
teacher, the student and some particular mathematical knowledge. He 
emphasises that the theory is applicable as a framework for the study of 
any situation in which there is an intention of teaching someone some 
particular mathematical knowledge (and not just situations which are 
results of didactical engineering). This is consistent with how the theory 
is used by many researchers; to study regular classroom situations (see 
Laborde, Perrin-Glorian, & Sierpinska, 2005). 

According to Colette Laborde and Marie-Jeanne Perrin-Glorian 
(2005), until around 1995, the notions of milieu and didactical contract 
were used mainly as tools for the design of didactical situations. Since 
then, however, partly under influence of Chevallard’s anthropological 
theory of didactics, these theoretical concepts have become tools for ana-
lysing the activity of teachers and students in regular36 classroom situa-
tions (Laborde & Perrin-Glorian, 2005). Laborde, Perrin-Glorian, and 
Sierpinska edited a collection of papers (Laborde, Perrin-Glorian, & 
Sierpinska, 2005)37 which report from empirical studies analysed mainly 
within the frameworks of the theory of didactical situations (Brousseau, 
1997) and the anthropological theory of didactics (Chevallard, 1992). In 
four of these papers, several concepts from the theory of didactical situa-
tions are used as analytical tools to study regular classroom situations. 
These papers are: Brousseau and Gibel (2005); Hersant and Perrin-
Glorian (2005); Margolinas, Coulange, and Bessot (2005); and, Sensevy, 
Schubauer-Leoni, Mercier, Ligozat, and Perrot (2005). They are exam-
ples which illustrate that the theory of didactical situations has developed 
to have applicability beyond didactical engineering. The paper by Guy 
Brousseau and Patrick Gibel (2005) addresses the issue of a teacher us-
ing an open problem situation that does not provide an adidactical milieu 
for the students’ prior knowledge. The papers by Hersant and Perrin-

                                         
 
 
 
 
 

36 Laborde, Perrin-Glorian, and Sierpinska (2005) use the concept ordinary classroom situa-
tion in the same meaning as I use the concept regular classroom situation. 
37 The collection of papers that constitutes the book (Laborde, Perrin-Glorian, & Sierpinska, 
2005) was first published as a special issue of Educational Studies in Mathematics (Volume 
59, 2005). 
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Glorian (2005) and Sensevy et al. (2005) illustrate how the teacher or-
ganises an interplay between the didactical contract and the milieu in 
order to let students progress in the process of solving a mathematical 
problem. In the paper by Margolinas et al. (2005) the notion of milieu is 
extended to the learning potential of the teacher. 

The aim of my study and the role I have taken as a researcher reso-
nate well with the research reported by Hersant and Perrin-Glorian 
(2005): 

The aim of the research is to gain knowledge and understanding of teaching 
phenomena; it is not to produce immediate action or to improve teaching in a 
direct way. Moreover, our project is not one of didactic engineering (Artigue, 
1992; Artigue & Perrin-Glorian, 1991). Indeed the researcher intervenes neither 
in the design of teaching nor in its realization. (Hersant & Perrin-Glorian, 2005, 
p. 114)  

The role of the researcher, both in my study and in Hersant and Perrin-
Glorian’s study, has been to observe and analyse regular teaching situa-
tions. In my study the observations were video recorded and transcribed, 
in Hersant & Perrin-Glorian’s study the observations were audio-
recorded and transcribed. Further, conversations with the teachers were 
conducted in both studies.  

The theory of didactical situations in mathematics provides models 
and concepts that make it possible to analyse and communicate what is 
going on in the mathematics classroom in terms of the interplay between 
the students, the teacher, and some particular mathematical knowledge. 
Rather than a theory of learning, it is a scientific approach to the set of 
problems put forward by the teaching and learning of mathematics, in 
which the specificity of the knowledge taught plays a significant role 
(Brousseau, 2000). It is relevant, therefore, to complement Brousseau’s 
theory with a theory of learning and development. Central in my utilisa-
tion of Brousseau’s theory is the conceptualisation of didactical situa-
tions in mathematics as mediating between the students and some partic-
ular mathematical knowledge. Important in this conceptualisation is the 
construal of instruction of scientific concepts as didactical situations de-
signed to teach and learn the target mathematical knowledge. This leads 
me to the Russian psychologist Lev S. Vygotsky’s theory of learning and 
development as mediated processes.  

In the next section I give a brief account of sociocultural theory as 
developed by Vygotsky and his successors where I focus on the notion 
of mediation and on concept development as an outcome of the interplay 
between spontaneous and scientific concepts.  
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2.6 Vygotsky’s theoretical approach 
Initial studies of cognitive development tended to ignore the context or 
to provide an incomplete view of the relationship between cognition and 
context (Daniels, 2001). Harry Daniels (2001) notes that since the 1980s 
the number of theoretical approaches which attempt to investigate the 
development of cognition in context using non-deterministic, non-
reductionist theories has grown rapidly. Daniels mentions four main ap-
proaches within this category: sociocultural approaches (Wertsch, 1991; 
Wertsch, del Río, & Alvarez, 1995); cultural-historical activity theory 
(Cole, Engeström, & Vasquez, 1997); situated learning models (Lave, 
1996); and, distributed cognition approaches (Salomon, 1993). Accord-
ing to Daniels (1996), the common feature of these approaches is that 
they build upon the writings of Vygotsky and use his theory as a tool to 
investigate and understand the processes of the social formation of mind.  

There are three central theoretical notions within Vygotsky’s account 
of learning and development as mediated processes (Daniels, 2007). 
First, the general genetic law of cultural development (Vygotsky, 
1981b); second, the zone of proximal development (Vygotsky, 1978); 
and third, concept formation as an outcome of the interplay between 
spontaneous and scientific concepts (Vygotsky, 1934/1987). Vygotsky's 
principle of scientific concepts as the content of school instruction is an 
elaboration of Vygotsky’s general theoretical view of mediated learning 
as the major determinant of human development (Kozulin, 2003). Brous-
seau’s (1997) theory of didactical situations in mathematics expands on 
Vygotsky’s theory of formation of scientific concepts in mathematics in 
in the way Brousseau’s theory provides insights into the premises for and 
nature of the instruction of scientific concepts. 

James V. Wertsch, Pablo del Río, and Amelia Alvarez (1995) have a 
concise description of a sociocultural approach: “The goal of a sociocul-
tural approach is to explicate the relationships between human action, on 
the one hand, and the cultural, institutional, and historical situations in 
which this action occurs, on the other” (p. 11). If human action is defined 
as students’ reasoning and development of some particular mathematical 
knowledge, and the cultural and institutional situation in which this ac-
tion occurs is interpreted as a didactical situation in Brousseau’s terms, 
the description by Wertsch et al. (1995) can be used to conceptualise the 
relationships between students’ development of some particular mathe-
matical knowledge and the didactical situation in which this develop-
ment occurs, in terms of sociocultural theory. Explication of the men-
tioned relationship within sociocultural theory is, as stated above, based 
on the comprehension of a didactical situation as mediating between the 
students and some particular mathematical knowledge. This will be ex-
plained further in Sections 4.1 and 4.2. 
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Wertsch (1985) claims that there are three themes that form the core 
of Vygotsky’s theoretical framework: 1) The reliance on a genetic38 or 
developmental method; 2) the claim that higher mental processes in the 
individual originate from social processes; and 3) the claim that mental 
processes can be understood only if we understand the tools and signs 
that mediate them (pp. 14-15). These themes are, according to Wertsch, 
interrelated with each other: The notion of origins in the second theme 
presupposes a genetic analysis, and Vygotsky’s account of social interac-
tion and mental processes depends to a great extent on the forms of me-
diation (such as language) involved. Wertsch argues that the theme con-
cerning tool and sign mediation is analytically prior to the other two; 
Vygotsky’s claims about mediation can generally be understood on their 
own grounds, whereas the other two can be understood only if the notion 
of mediation is called upon.  

The three theoretical notions characterised by Daniels (2007) as cen-
tral in Vygotsky’s explanation of learning and development as mediated 
processes (presented above) and the three themes identified by Wertsch 
(1985) as constituents of Vygotsky’s theory (presented in the previous 
paragraph) are interrelated: The claim that higher mental processes in the 
individual originate from social processes, together with reliance on the 
genetic method, leads to an articulation of the general genetic law of cul-
tural development. Further, the zone of proximal development and con-
cept formation as an outcome of the interplay between spontaneous and 
scientific concepts are conceptualisations of the process of mediation as 
manifested in instructional settings. Vygotsky (1934/87) refers to spon-
taneous concepts as concepts acquired by the child outside contexts in 
which explicit instruction is carried out, whereas scientific concepts are 
referred to as introduced by a teacher in school.  

In the next section I explain the notion of mediation in Vygotsky’s 
theory. 
2.6.1 Mediation 
Wertsch et al. (1995) note that claims about how (technical) tools and 
signs (psychological tools) mediate human action became increasingly 
important for Vygotsky near the end of his life and career. This point is 

                                         
 
 
 
 
 

38 The term “genetic” is used by Wertsch “in connection with developmental processes (as in 
ontogenetic or phylogenetic) rather than with genes, genetic codes and the like” (Wertsch, 
1985, p. 234, note 10). 
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reflected in Vygotsky’s 1933 remark that “the central fact about our psy-
chology is the fact of mediation” (Vygotsky, 1982, as cited in Wertsch et 
al., 1995, p. 20). Wertsch et al. (1995) refer to Vygotsky’s theory of se-
miotic mediation and Leontèv’s theory of activity (Leontèv, 1981), when 
they claim that the notions of “mediational means” and “mediated ac-
tion” have emerged as constitutive building blocks in the formulation of 
sociocultural research. 

A clarification of the notion “to mediate” is expressed through the 
following formulation by Wertsch et al. (1995): “An underlying assump-
tion of [sociocultural] research is that humans have access to the world 
only indirectly, or mediately [emphasis added], rather than directly, or 
immediately” (p. 21). According to Wertsch (1994), mediational means 
or cultural tools provide the link between the concrete actions, including 
mental action (e.g., reasoning and remembering) carried out by individu-
als and groups on the one hand and cultural, institutional, and historical 
settings on the other. Wertsch asserts that “the relationship at issue here 
between human action and sociocultural setting is not one of unidirec-
tional causality” (p. 203). He maintains that in order to provide an ac-
count of human action, it is necessary to take into account the cultural, 
institutional, and historical setting. On the other hand, such settings are 
produced and reproduced through human action (Wertsch, 1994).  

Vygotsky (1978, 1981a) viewed the introduction of a psychological 
tool (e.g., algebraic symbols) into a mental function (such as reasoning) 
as provoking a fundamental transformation of that function. This feature 
of psychological tools is central to Vygotsky’s genetic analysis of mental 
processes. He viewed development not as a regular stream of quantita-
tive increments but in terms of fundamental qualitative transformations 
associated with changes in the psychological tools (Wertsch, 1985). 

Vygotsky (1981a) claims that psychological tools are artificial for-
mations which by their nature are social, not organic or individual. He 
explains their role by presenting an analogy with technical means (also 
referred to as labour tools): “[Psychological tools] are directed toward 
the mastery or control of behavioural processes – someone else’s or 
one’s own – just as technical means are directed toward the control of 
processes of nature” (p. 137). He gives the following examples of psy-
chological tools and their complex systems: “language; various systems 
for counting; mnemonic techniques; algebraic symbol systems; works of 
art; writing; schemes, diagrams, maps, and mechanical drawings; all 
sorts of conventional signs; etc.” (Vygotsky, 1981a, p. 137).  

In Vygotsky’s approach, “the mediational means are what might be 
termed the ‘carriers’ of sociocultural patterns and knowledge” (Wertsch, 
1994, p. 204). Wertsch (1994) asserts that Vygotsky tended to focus on 
the process of mastering existing mediational means and that he said rel-
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atively little about how active use of them transforms meanings and me-
diational means and how it gives rise to new ones.  

In the next section I explain Vygotsky’s perspective on the relation-
ship between spontaneous and scientific concepts where I focus on the 
role of instruction. 
2.6.2 Instruction and development of scientific concepts 
Theories about the relationships between thought processes, concept de-
velopment and social communication, including instruction, are central 
to any educational project (Daniels, 2001). Vygotsky claims that specific 
ways of using words is a necessary part of the process of concept devel-
opment: “The concept is not possible without the word. Thinking in con-
cepts is not possible in the absence of verbal thinking” (Vygotsky, 
1934/1987, p. 131). For Vygotsky, content learning is associated with 
two different conceptual processes: the formation of spontaneous or eve-
ryday concepts and the formation of scientific concepts. Spontaneous 
concepts are acquired outside contexts of explicit instruction, and are 
formed on the basis of identifying common characteristics of empirical 
events or objects (Vygotsky, 1934/1987). Spontaneous concepts are un-
systematic, not conscious, and often wrong in the sense that they are 
based on some observed properties whereas the concept at stake requires 
other properties to be fulfilled. For example, a 3-year old child having 
observed that a needle, a pin, and a coin are sinking in water, arrives at 
the wrong conclusion that “all small objects sink” (Zaporozhets, 1986, as 
cited in Karpov, 2003). The conclusion is wrong in the sense that it is not 
consistent with the fact that for instance a small piece of wood does not 
sink in water. Scientific concepts, on the other hand, represent the gener-
alisation of the experience of human kind that is fixed in science; in nat-
ural and social sciences as well as in the humanities (Karpov, 2006). Sci-
entific concepts are introduced by the teacher inside contexts of explicit 
instruction, and correspond to scholarly, systematic reasoning in the sci-
ences (Vygotsky, 1934/1987).  

In the process of development of scientific concepts, the need for in-
struction is fundamental (Daniels, 2001; Karpov, 2003). This is associat-
ed with the institution of the school and the teacher: “The fundamental 
difference between the problem which involves everyday concepts and 
that which involves scientific concepts is that the child solves the latter 
with the teacher’s help” (Vygotsky, 1934/1987, p. 216). In instructional 
contexts, the word assumes a function which is different from that in 
everyday contexts. “[In instructional contexts] the word begins to func-
tion not only as a means of communication but as the object of commu-
nicative activity” (Minick, 1987, p. 27). This new function of the word, 
Vygotsky (1934/1987) asserts, leads to the development of scientific 
concepts.  
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Vygotsky (1934/1987) presents an interconnected model of the rela-
tionship between scientific and spontaneous concepts, and describes the 
way the two types of concepts contribute to each other: 

The formation of concepts develops simultaneously from two directions, from 
the direction of the general and the particular. . . . The development of scientific 
concepts begins with the verbal definition. As part of an organized system, this 
verbal definition descends to concrete; it descends to phenomena which the 
concept represents. In contrast, the everyday concept tends to develop outside 
any definite system; it tends to move upwards toward abstraction and generali-
zation. . . . The weakness of the everyday concept lies in its incapacity for ab-
straction, in the child’s incapacity to operate on it in a voluntary manner. . . . In 
contrast, the weakness of the scientific concept lies in its verbalism, in its 
insufficient saturation with the concrete. (Vygotsky, 1934/1987, pp. 163, 168-
169) 

Vygotsky’s claim that the development of scientific concepts begins with 
the verbal definition ascribes to the teacher an important role as respon-
sible for saturation of scientific concepts with the concrete, and for ab-
straction of spontaneous concepts. This is compatible with the teacher’s 
role in the situation of institutionalisation in Brousseau’s (1997) theory, 
where the teacher has the role of a representative of the official curricu-
lum: The teacher records what the students have done in the preceding 
situations; she describes what has happened related to the knowledge in 
question and gives it meaning. Further, she informs the students about 
accepted terminology, and highlights definitions and theorems consid-
ered important for the contextualised knowledge to gain the status of cul-
tural, decontextualised knowledge that can be re-used in settings other 
than the one originally set up. Institutionalisation involves two acts by 
the teacher: first, that she takes responsibility for an object of teaching 
and identifies its status as manifested in the processes and products of 
the students’ engagement; second, that she “bring[s] these products of 
knowledge closer to others (either cultural or linked to the curriculum), 
and indicate[s] that they could be used again” (Brousseau, 1997, p. 236).  

As commented by Wertsch (1984), Vygotsky never specifies the na-
ture of instruction of scientific concepts beyond general characteristics in 
terms of cooperation between adult and child and assistance by the 
teacher determined by the child’s zone of proximal development. In this 
respect, Brousseau’s theory of didactical situations is valuable in the way 
it describes the role of the teacher related to the instruction of some par-
ticular mathematical knowledge. 

In the next section I argue that Brousseau’s theory of didactical situa-
tions, as I understand it as articulated today, is compatible with sociocul-
tural theory as developed by Vygotsky and his successors.  
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2.7 Compatibility of Brousseau’s theory and 
Vygotsky’s theory 

In this section I draw attention to statements in Brousseau’s theory which 
I interpret as indications that it was necessary for him, in the course of 
development of the theory, to go beyond a mere cognitive approach and 
take the broader context into consideration. I show how Brousseau start-
ed within a constructivist frame but experienced that it was not sufficient 
to observe individuals isolated from activity because he wanted to study 
the relationship between the designed situation and the knowledge pro-
duced.  
2.7.1 Starting within a constructivist frame 
Brousseau started to develop the theory of didactical situations in the 
early 1970s. The theory was consistent with what was later referred to as 
(non-radical) constructivism (Artigue, 1992; Brousseau, Brousseau, & 
Warfield, 2004). As explained in Section 2.2.1, mathematical concepts 
are constructed in course of a history which follows another ordering 
than the logically-deductive ordering in which mathematicians present 
the knowledge they have developed (cf. the logic of mathematical dis-
covery as conceptualised by Imre Lakatos, 1976). Mathematical con-
cepts are constructed on the basis “of questions, of problems, and of so-
lutions, where a much richer collection of ‘reasons’ comes into play” 
(Brousseau et al., 2004, p. 4). Brousseau et al. (2004) explain that the 
motivation for the development of the theory of didactical situations was 
that Brousseau wanted to realise, in the classroom, a process of construc-
tion of concepts important to the school curriculum which simulated as 
well as possible that sort of genesis. The goal was “to simulate a process 
making minimal use of pieces of knowledge imported by the teacher for 
reasons invisible to the students. This type of project was subsequently 
labelled constructivist” (Brousseau et al., 2004, p. 4). 

Constructivism as an epistemological position influenced didactics of 
mathematics from the early 1970s, and generated a lot of research into 
children’s processes of acquiring notions of for example, natural num-
bers, fractions, arithmetic operations, and exponential function (e.g., see 
Steffe & Gale, 1995). A certain “ideal” of teaching mathematics was de-
veloped, where there was no lecturing, no drill exercises, but individual 
children constructing their own knowledge by problem solving, without 
any intervention from the teacher (cf. Piaget’s view on teaching referred 
to in Section 2.4.3). The hypothesis was that by adapting to a stimulating 
environment with interesting problems, children’s cognitive structures 
would evolve in a natural way. Ernst von Glasersfeld (1995) uses the 
metaphor of a biological organism that changes through adaptation to its 
environment:  
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From the constructivist perspective, as Piaget stressed, knowing is an adaptive 
activity. This means that one should think of knowledge as a kind of 
compendium of concepts and actions that one has found to be successful, given 
the purposes one had in mind. This notion is analogous to the notion of 
adaptation in evolutionary biology, expanded to include, beyond the goal of 
survival, the goal of a coherent conceptual organization of the world as we 
experience it. (von Glasersfeld, 1995, p. 7) 

Thus, from a constructivist perspective, knowledge is a psychological 
entity; an individual’s network of cognitive structures and schemas. Ac-
cording to von Glasersfeld’s (1995) radical constructivism, objectivist 
notions such as “truth” and “validity” of knowledge, which refer to a 
correct representation of reality, make no sense. They are replaced by the 
notion of “viability”; the ability of an organism to survive in its envi-
ronment. 

Artigue wrote in 1992 that “the didactics of mathematics in France 
has become based on constructivist theories of knowledge, greatly influ-
enced by the approach of the Geneva school of psychology” (Artigue, 
1992, p. 53). In her account of the teacher’s role within didactical engi-
neering, Artigue (1992) observes that it was the teacher who “paid the 
price” at the modelling and theorising level, for the exceptional role of 
the student (as “the most urgent task”) in the early development of di-
dactique within the constructivist framework: 

Whereas situations of action, formulation and validation have been present right 
from the start of the theory of situation, situations of institutionalisation were 
only introduced much later since they could not be easily integrated within the 
usual modelling of situations. (p. 53) 

As indicated by Artigue (1992), constructivism imposed a relatively 
strict limitation on the complexity that could be scientifically handled in 
didactics of mathematics. Because Brousseau became interested in the 
relationship between a didactical situation and the particular knowledge 
it aims at generating, he needed to extend Piaget’s work (Brousseau, 
2000). I argue below that what Brousseau terms “extension” of Piaget’s 
work, can be interpreted to mean a departure from constructivism to-
wards a sociocultural perspective on the activity of knowledge genera-
tion in an institutionalised setting.  
2.7.2 Studying relationships between experiments on children’s 

cognitive development and particular pieces of knowledge 
Brousseau (1997) holds a view on teaching, learning, and knowledge 
which is very different from von Glasersfeld’s (1995) view. Brousseau 
claims that the notion of learning by adaptation is inconsistent. “In some 
ways, adaptation contradicts the idea of the creation of new knowledge” 
(Brousseau, 1997, p. 45). He provides this example: If a student solves a 
problem different from all the problems he has solved so far, with some 
adaptation of the knowledge he already has, he may think that he has not 
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invented some new knowledge. But if he shows his solution process to 
another student who has also tried to solve it, but was not able to (even if 
he presumably had the same prior knowledge), then the first student 
might infer that he has actually invented some new knowledge.  

Brousseau (2000) writes that in the 1960s, while he was still a stu-
dent of mathematics and also studying cognitive psychology with Pierre 
Greco,39 he was impressed by Greco’s cleverness in arranging experi-
ments to expose the originality of children’s mathematical thinking and 
the stages in their cognitive development. But he noted that Greco “made 
no effort to analyze the design of the experiments that he invented and to 
make explicit the relationships between this design and the mathematical 
notion whose acquisition was being studied” (Brousseau, 2000, p. 4). 
Brousseau was interested in studying the experiments themselves and 
their relationship to particular pieces of knowledge: “[Under] what con-
ditions could a subject – any subject be induced to need this knowledge 
to make decisions, and why, a priori would he do it?” (Brousseau, 2000, 
p. 5). Brousseau wanted to find out how research could produce infor-
mation about the acquisition of knowledge that was connected with some 
generality, and found out that “the children’s behaviours are what reveal 
the functioning of the milieu considered as a system: the black box is 
thus the system” (p. 5).  

According to Mary S. Weldon (2000), learning is in a cognitive psy-
chological approach understood as taking place in the mind, and the goal 
is to build and test models of levels of individual mental processes that 
can be generalised across people. In order to understand these processes 
in pure form, experiments are isolated from activity and individuals are 
isolated from others (Weldon, 2000). Because Brousseau set out to re-
veal the functioning of the milieu considered as a system (i.e., to reveal 
the relationship between the designed situation and the knowledge pro-
duced), it was not sufficient to observe individuals isolated from activity. 
Hence, he needed to detach from Piaget’s theory. Brousseau (personal 
communication, 3 January, 2007)40 explains why he departed from Pia-
get:  

                                         
 
 
 
 
 

39 Greco, P. (1991). Stuctures et significations. Paris, France: EHESS. 
40 In an attempt to get a deeper understanding of the theory of didactical situations, I com-
municated among others with Luc Trouche. I asked for recommended sources which might 
help me understand the philosophical roots of Brousseau’s theory. Trouche translated and 
forwarded my request to Brousseau, who answered by an extended explanation, referred to 
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Piaget revealed a universe, but the weakness in his approach with respect to the 
analysis of the devices and role of the cultural environment and the weakness in 
his capacity to analyse the mathematics and its functioning, together with his 
excessive emphasis on psychological interpretation of learning, made me detach 
from him progressively. (G. Brousseau, personal communication, 3 January, 
2007) 

To the question about philosophical roots of the theory of didactical situ-
ations, Brousseau explains that it is not possible to give an exact answer. 
He expresses that he has been influenced by a lot of French scientific 
works, and acknowledges that the French philosopher Gaston Bachelard 
was a revelation for him. Bachelard’s (1938/2001) notion of epistemo-
logical obstacle is incorporated into the theory of didactical situations: 
“The identification and characterization of an obstacle are essential to 
the analysis and construction of didactical situations” (Brousseau, 1997, 
p. 77).41 However, Brousseau (personal communication, 3 January, 
2007) would rather not categorise any of the theories that inspired him as 
his philosophical roots, because he has made what he considers extensive 
changes and adaptations to them all. He emphasises further that his 
whole cultural background has stimulated him, though in terms of per-
sonal knowledge rather than scientific knowledge. This is recognised in 
his theory for instance by conceptualisations of phenomena which have 
been inspired from the literature (e.g., the Topaze and Jourdain effects, 
and Diderot’s paradox of acting). 

Brousseau (personal communication, 3 January, 2007) claims that 
there is no arrogance behind his apparent lack of interest in or acknowl-
edgement of English sources, a condition he explains by two factors: 
First, by the linguistic barrier caused by late French translations of Eng-
lish scientific literature; second, by the deep epistemological differences 
between the two cultures. Due to late translations, he discovered much 
later what he experienced as a close relatedness between Ludwig Witt-
genstein’s and his own epistemological ideas (e.g., Wittgenstein, 1978).  

                                                                                                                    
 
 
 
 
 

as (G. Brousseau, personal communication, 3 January, 2007). Brousseau’s explanation (in 
French) has been translated into Norwegian by Arne Amdal. Excerpts from the text used in 
this dissertation have been translated from Norwegian into English by me. 
41 The notion of epistemological obstacle is important in the theory of didactical situations 
because, “as results of learning by adaptation, knowings constructed by students are more 
often than not local and linked to other knowings in a ‘contingent and unjustified’ way. They 
are also temporary and incorrect” (Perrin-Glorian, 1994, as cited in Brousseau, 1997, p. 77). 
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Conditions for appearance and use of thought as Brousseau’s unit of 
analysis  
At the time Brousseau started his research on mathematics teaching and 
learning, a common teaching method was the Diénès approach (see Sec-
tion 2.3.6). This approach implied that the teacher communicated to the 
student the conditions and properties of a generating system so the stu-
dent could produce the intended knowledge (formulae, theorems, etc.) by 
exercising rules which had been taught him (Brousseau, 2000). Brous-
seau (2000) writes that he, however, questioned the predictability of this 
approach. He wanted to know about the relationship between the func-
tion of the particular mathematical knowledge and the student’s re-
sponse: “In these conditions, the question which, repeated for every 
proposition envisaged, engendered the [theory of didactical situations] 
was ‘Why?’: why should a subject do this rather than that? Why does 
this knowledge demand that behavior?” (Brousseau, 2000, p. 5). These 
questions had some implications for the choice of unit of analysis in the 
theory: 

The conditions for the appearance and use of thought are our black box, and the 
behaviors of the students and the teacher are what reveal them. Consequently, a 
didactical project must begin with its objective. It is the nature and function of 
knowledge that is the mainspring of its comprehension, use, and learning. 
(Brousseau, 2006, p. 6) 

The concrete studies in the theory of didactical situations (e.g., the study 
of teaching of decimal numbers, Brousseau, 1997, Chapter 4) indicate 
under what precise conditions the teaching of a particular notion is pos-
sible in a particular form, and, further, that these conditions are never 
extreme (Brousseau, 2000, p. 19). According to Brousseau (2000), the 
conclusion of these studies is that in most cases, didactical interventions 
are regulations specific to the mathematical notion, which are predeter-
mined to maintain equilibrium rather than to produce effects directly.  

Brousseau (2000) explains that his experiments made him refuse rad-
ical constructivism as a theory because of what he interpreted as the the-
ory’s lacking potential to explain the student’s learning of a predeter-
mined mathematical knowledge: “The most spectacular consequence of 
the theoretical studies of the didactical contract has been to show that 
radical constructivism cannot lead to the acquisition by the student of 
knowledge aimed at, without didactical interventions” (Brousseau, 2000, 
p. 19). This can be exemplified by conditions for students’ development 
of an attitude of proof, as outlined in Section 2.4.3 (the situation of vali-
dation); the aim of conviction and the notion of truth imply that con-
struction of mathematical knowledge is primarily a social activity. The 
origin of meaning of proof is found in the practice of doing mathematics; 
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it is the student-milieu system that can make proof indispensable as a 
means of convincing others of the validity of a conjecture.  

Learning construed as a social activity: Aiming at cultural 
knowledge 
Brousseau (1997) questions why it is necessary to introduce a milieu-
system into the learning situation:  

Isn’t learning essentially an individual act? Is it necessary to place it in such a 
large context in order to understand it? . . . Why isn’t the possession of knowl-
edge itself, together with general knowledge from the social sciences, some 
common sense and, of course, some pedagogical skills that no training can truly 
produce, sufficient for all teachers with all students, as it is for a few? 
(Brousseau, 1997, p. 24)  

The psychogenetic Piagetian process is the opposite of scholastic dogma-
tism; the former is characterised as owing nothing to didactical intention, 
whereas the latter owes everything to it (Brousseau, 1997). The psycho-
genetic Piagetian process is characterised by the individual student who 
internalises his manipulations of physical objects into mental structures, 
without the teacher’s intervention. Scholastic dogmatism is characterised 
by the teacher lecturing established facts. The theory of didactical situa-
tions proposes a methodology that presupposes that the student neither 
can appropriate the school mathematical knowledge through a psycho-
genetic Piagetian process, nor can he appropriate the school mathemati-
cal knowledge as a result of scholastic dogmatism. The methodology 
proposed in the theory of didactical situations identifies two main roles 
of the teacher (in addition to managing the evolution of the adidactical 
situation); devolution and institutionalisation, as explained in Section 
2.2.1. These roles deal with how the teacher can organise situations 
which make it possible and meaningful for the student to appropriate 
some particular cultural, re-usable mathematical knowledge. The need to 
introduce a milieu-system into the student’s learning situation is, accord-
ing to Brousseau (1997), neither a reification of the model (the instru-
ments of the didactical situation) nor the product of an observation, but 
that of an internal necessity (p. 47). This means that the introduced mi-
lieu is necessary for epistemological reasons – based on the mathemati-
cal knowledge it aims at.  

The main issue in the theory is therefore the necessary conditions for 
a situation to generate the particular mathematical knowledge aimed at. 
Questions like “Why would the student do or say this rather than that?”, 
“What must happen if she does or doesn’t do it?” are central in the 
teacher’s organisation of the student-milieu system (Brousseau, 1997, p. 
65). Brousseau (1997) asserts that the teacher must make sure that each 
student finds whom to speak to and what to act on in the classroom, thus 
including a rationale that makes the engagement with the problem situa-
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tion sensible for the students. The importance of communication and the 
rationale of action being located in the situation are features of the theory 
of situations that suggest that learning mathematics in the classroom is a 
social activity.  

Brousseau (1997) points at the importance of the teacher in organis-
ing situations that can realise the student’s acquisition of cultural math-
ematical knowledge:  

By attributing to “natural” learning what is attributed to the art of teaching 
according to dogmatism, Piagetian theory takes the risk of relieving the teacher 
of all didactical responsibility; this constitutes a paradoxical return to 
empiricism! But a milieu without didactical intentions is manifestly insufficient 
to induce in the student all the cultural knowledge that we wish her to acquire. 
(Brousseau, 1997, p. 30) 

The cultural knowledge here talked about I interpret to mean accepted 
semiotic means (notation, graphs, figures, etc.), concepts and relevant 
theorems that the teacher provides as a means of institutionalising the 
ideas and models that the students have constructed as a result of engag-
ing with a mathematical problem in the classroom context. It is relevant 
here to draw on Vygotsky’s theory of scientific concepts where he points 
at the importance of the teacher in providing the verbal definition of a 
scientific concept. The theory of didactical situations in mathematics 
provides models of the classroom interactions that need to precede the 
introduction of the verbal definition of a scientific concept. These inter-
actions, taking place in situations of action, formulation, and validation, 
are necessary for epistemological reasons relative to the scientific con-
cept aimed at. Further, the theory of didactical situations provides a 
model of the conditions under which the verbal definition of a scientific 
concept is possible; that is, the situation of institutionalisation.  

Didactical situations as mediating between the student and mathe-
matical knowledge 
Brousseau (1997, Chapter 4) describes didactical problems with deci-
mals and presents a fundamental situation with the thickness of a sheet 
of paper aiming at the students’ conceptualisation of rational numbers as 
measurements. He explains that the students during their engagement in 
the didactical situation have compared thicknesses and found equivalent 
pairs of sheets of paper, and points out that this knowledge is dependent 
of the situation in which they have been engaged: 

The children know how to find equivalent pairs. They know how to compare the 
thickness of sheets of paper (many of them using two methods). Using these 
comparisons, they have a strategy for ranking pairs. They know how to designate 
the thickness of a sheet of paper by means of a fraction and how to find 
equivalent fractions. They do not know how to find the equality of two fractions 
in the general case. 
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Remark: This know-how occurs within situations. It is not yet possible to take a 
question out of context and ask it independently. The results can not yet be 
depended upon as “acquired” knowledge, nor do the children identify them as 
such. (Brousseau, 1997, p. 204) 

The remark in this quotation can be interpreted to have resemblance with 
the theory of situated learning as conceptualised by Jean Lave and 
Etienne Wenger (1991). In the theory of didactical situations, a piece of 
mathematical knowledge is represented by a situation which comprises a 
problem whose optimal solution is the target mathematical knowledge. 
Bosch et al. (2005) claim that teaching and learning mathematics is in 
the theory of didactical situations not considered as teaching and learn-
ing mathematical ideas or concepts, but as “teaching and learning a situ-
ated human activity performed in concrete institutions” (p. 1256). Fur-
ther, they note that a situation includes the rationale that gives sense to 
the performed mathematical activity. This implies that the central ques-
tion in the theory of didactical situations is: “What are the necessary 
conditions for a situation to implement the specific mathematical 
knowledge it defines?” (Bosch et al., 2005, p. 1256).  

In this section I have argued that Brousseau’s theory, which in its be-
ginning was consistent with (trivial) constructivism, has developed to 
take the broader context into consideration. It is relevant, therefore, to 
question whether the theory is a kind of social constructivism. My inter-
pretation, however, that the source of meaning of the target mathematical 
knowledge is identified in the didactical situation, is consistent with a 
sociocultural perspective. In social constructivism, the source of mean-
ing is identified in the cognising individual (Lerman, 1996). The didacti-
cal situation mediates between the student and the mathematical 
knowledge aimed at. In this way a didactical situation is a mediational 
means which, in Wertsch’s words, is a carrier “of sociocultural patterns 
and knowledge” (Wertsch, 1994, p. 204).  

2.8 Summary 
In this chapter I have presented Brousseau’s theory of didactical situa-
tions in mathematics as the framework of my study. I have explained 
how the theory enables relationships to be identified between didactical 
situations and the target mathematical knowledge defined for the situa-
tions. Analyses of the empirical material will be presented in Chapters 6, 
7, and 8.  

Brousseau’s theory is a scientific approach to the set of problems put 
forward by the dissemination and transposition of mathematics, in which 
the specificity of the target knowledge plays a significant role (Brous-
seau, 2000). Because it is not a theory of learning, it is relevant to com-
plement the theory with a theory of learning and development. In order 
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to conceptualise learning as a social activity and to theorise the teacher’s 
role in the didactical situation (particularly as defined in the situation of 
institutionalisation) it is necessary to go beyond constructivism and in-
terpret didactical situations from a social perspective. I have argued in 
this chapter that the theory of didactical situations is compatible with 
sociocultural theory of learning and development as conceptualised by 
Vygotsky and his followers.  

In the next chapter I present a theoretical foundation for algebra as 
generalisation of patterns, and a literature summary of empirical studies 
in which a pattern-based approach to algebra is used.  
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3 Theoretical foundation for a pattern 
based approach to algebra 

The purpose of this chapter is to build a theoretical foundation for pat-
tern generalisation from an algebraic perspective, and to provide a sum-
mary overview of reports from empirical studies in which a pattern-
based approach to algebra is utilised.  

Section 3.1 presents a content analysis of algebra as a discipline in 
mathematics, where algebra is defined as a complex composite organised 
around five interrelated forms of reasoning (Kaput & Blanton, 2001a). 
Section 3.2 presents an outline of a distinction between algebra as gener-
alisation of patterns and algebra as generalised arithmetic. These two 
forms of reasoning constitute two different approaches to algebra 
(Balacheff, 2001; Radford, 1996). Section 3.3 provides a closer look at 
algebra as pattern generalisation and presents alternative definitions of 
algebraic thinking. A summary overview of reports from a pattern-based 
approach to algebra is presented in Section 3.4. Section 3.5 is about 
promoting algebraic thinking in students, where an “algebrafying” strat-
egy for helping teachers to foster and sustain algebraic thinking in stu-
dents is presented. Section 3.6 presents observations from some re-
searchers about the teacher’s role in students’ algebra learning. The 
chapter closes in Section 3.7 with a brief outline of the relevance of re-
search on students’ generalisation of patterns for my research inquiry. 

3.1 A content analysis of “algebra” 
Al-Khwārizmī’s work on elementary algebra, al-Kitab al-mukhtasar fi 
hisab al-jabr wa'l-muqabala (“The Compendious Book on Calculation by 
Completion and Balancing”), in ca. 825, was translated into Latin in the 
12th century, from which the title and term “algebra” derives (Al-
Khwārizmī, n.d.). Algebra appeared in this work as a collection of rules, 
together with demonstrations, for finding solutions of linear and quadrat-
ic equations based on intuitive geometric arguments. Algebra is derived 
from problems of al-jabr, which literally means adding or multiplying 
both sides of an equation by the same number in order to eliminate nega-
tive and fractional terms, and from problems of al-muqabala, which 
means subtracting the same number from both sides or dividing both 
sides by the same number (Mason, 1996, p. 73). 

James J. Kaput and Maria L. Blanton (2001a) claim that a broader 
and deeper view of algebra than algebra as primarily syntactically-
guided, symbolic manipulations is needed, in order to support the inte-
gration of algebraic thinking across all grades and all topics of school 
mathematics. Drawing on Kaput (1995, 1998, 1999), Kaput and Blanton 
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(2001a) assert that algebraic thinking is a complex composite organised 
around five interrelated forms, or strands, of reasoning:  
1. Algebra as Generalising and Formalising Relationships and Con-

straints.42 
Two subcategories can be identified within this strand: The first sub-
category involves generalised arithmetic, where the focus is on prop-
erties of the number system (e.g., commutativity, inverse relation-
ships, etc.). The second subcategory involves generalisations estab-
lished about particular number properties or relationships (e.g., sum 
of odd numbers is even, and finding regularities in the multiplication 
tables). 

2. Algebra as Syntactically-Guided Manipulation of Formalisms. This 
strand includes among others factoring and simplifying algebraic ex-
pressions, where simplifying involves collecting like terms. 

3. Algebra as the Study of Structures and Systems Abstracted from 
Computations and Relations. This strand includes reasoning and 
generalising with more abstract objects and systems, such as for in-
stance matrices and groups. 

4. Algebra as the Study of Functions, Relations, and Joint Variation. 
This strand includes generalising from numerical and geometric pat-
terns, typically to provide function descriptions for dependent varia-
tion, but also to provide descriptions of recurrence relations; how the 
next member of a sequence can be described in terms of the current 
member. 

5. Algebra as a Cluster of Modelling and Phenomena-Controlling Lan-
guages. This strand encompasses two different kinds of generalisa-
tion: The first kind involves generalising patterns and regularities 
built from mathematised situations or phenomena, where the gener-
alisation is supposed to be about the situation or phenomenon. The 
second kind involves generalising from solutions to single-answer 
modelling problems by relaxing the constraints of the given problem 

                                         
 
 
 
 
 

42 Kaput and Blanton (2001a) refer to the first category as “Algebra as generalising and for-
malising patterns and constraints”. I have, however, referred to it as “Algebra as generalising 
and formalising relationships and constraints”. That is, the notion “patterns” is replaced by 
“relationships”. This is done in order to distinguish Kaput and Blanton’s first and fourth 
categories. The fourth category includes algebra as generalising spatial or numerical patterns, 
to which I will come back in the next section where I present a distinction between two ap-
proaches to algebra; algebra as pattern generalisation and algebra as problem solving. 
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to explore its more general form, scope and deeper relations – in-
cluding comparison with other models and other situations. I offer 
the following example of algebra used in the sense of phenomenon-
control: When a model of monthly compound interest on capital is 
explored to yield continuous compound interest, algebra is used in 
the meaning of phenomenon-control. With continuous interest the 
length of the compounding period, which is the variable, is reasoned 
to be infinitely small. The interest, therefore, is compounded contin-
uously. 

Kaput and Blanton (2001a) claim that the listed categories emphasise 
algebra’s deep, but varied, connections with all of mathematics. The cat-
egories appear in various reform documents, for example Principles and 
Standards for School Mathematics (National Council of Teachers of 
Mathematics, 2000).  

In the next section I describe a distinction between two approaches to 
algebra: algebra as generalisation of patterns, which falls under Kaput 
and Blanton’s (2001a) category Algebra as the Study of Functions, Rela-
tions, and Joint Variation; and, algebra as generalised arithmetic, which 
falls under Kaput and Blanton’s category Algebra as Generalising and 
Formalising Relationships and Constraints. 

3.2 Two approaches to school algebra: Pattern general-
isation versus problem solving 

Radford (1996) distinguishes between two approaches to school algebra: 
one is generalisation of patterns; the other is problem solving (in the 
sense of equations arising from word problems). This categorisation is 
consistent with Nicolas Balacheff’s (2001) distinction between algebra 
as the study of patterns, and algebra as generalised arithmetic. Algebra as 
the study of patterns is marked by the recognition and description of 
general rules for describing patterns (Stacey & MacGregor, 2001; Kirsh-
ner, 2001). In this approach, letters are viewed as variables, and the 
study of structures and relationships is an important part (Bloedy-Vinner, 
2001). Algebra as generalised arithmetic is about the properties of num-
bers and operations on numbers (Stacey & MacGregor, 2001; Bloedy-
Vinner, 2001, p. 178). In this approach, letters are viewed as specific un-
knowns (e.g., a b b a+ = + , for a and b arbitrary numbers; the commuta-
tive law of addition). 

Giuliana Dettori, Rossella Garuti, and Enrica Lemut (2001) observe 
that a dilemma for students in a problem-solving process is the need for 
them to be able, on the one hand, to associate meanings with the symbols 
being used, and, on the other, to manipulate symbols independently of 
their meaning. In Kirshner’s (2001) conceptualisation, to associate 
meanings with symbols used means to have a referential approach (im-
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porting meaning from external sources of reference), and to manipulate 
symbols independently of their meaning means to have a structural view 
(building meaning internally from the connections generated within a 
syntactically constructed system). 

The distinction between the two approaches to algebra raises im-
portant questions regarding the learning of fundamental concepts of al-
gebra such as the notions of variable and unknown. According to Rad-
ford (1996), the goal of generalising spatial or numerical patterns is to 
find an expression representing the conclusion derived from the observed 
facts (concrete numbers). Radford claims that the obtained expression is 
in fact a formula which is constructed on the basis, not of the concrete 
numbers in the sequence, but on the idea of a general number. Radford 
asserts that “general number” appears as preconcepts to the concept of 
variable. Hence, he claims that the notion of letter as variable is con-
sistent with a generalising approach to algebra, aiming at establishment 
of relations between numbers. The point is constructing formulae where 
the symbols represent generalised numbers (Radford, 1996).  

According to Radford (1996), the goal of algebraic problem solving 
is not to find a formula, but to find a number through an equation. This 
number is represented in the equation by an unknown (a letter). The no-
tion of letter as unknown is therefore consistent with a problem solving 
approach where the point is to solve problems where the symbols repre-
sent unknowns (Radford, 1996). He notes that the difference in the situa-
tions of generalising patterns and solving equations is not unique at the 
word level (they are represented by the same algebraic symbols), a fact 
that can lead us to believe that an unknown is only a variable, and an 
equation is only a type of formula. Radford, further, claims that this fun-
damental difference often goes unnoticed, even in text books and school 
guidelines. 

Different logical bases of pattern generalisation and algebraic prob-
lem solving 
A goal in generalising spatial and numerical patterns is to obtain a new 
result. Radford (1996) claims that conceived in this form, generalisation 
is not a concept, but a procedure allowing for generation of a new result 
(a conclusion), based on observed facts. He highlights that one of the 
most significant characteristics of generalisation is its logical nature 
which makes the conclusion possible. This means that the process of 
generalisation is closely connected to that of justification and proof. The 
underlying logic of generalisation can be of various types, depending on 
the student’s mathematical thinking. Balacheff (1988) distinguishes be-
tween pragmatic and conceptual proofs in school mathematics, and has 
identified four types of reasoning in pupils’ practice of proof in school 
mathematics: Naïve empiricism, the crucial experiment, the generic ex-
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ample, and the thought experiment. Proofs by naïve empiricism, a crucial 
experiment and a generic example are pragmatic proofs, which have “re-
course to actual actions and showings” (Balacheff, 1988 p. 217). These 
types emerge in the data analysis reported in later chapters; therefore I 
will explain them in more detail in the following paragraphs. 

Many students think that some examples (even one or two) are suffi-
cient to justify the conclusion, a stance categorised by Balacheff (1988) 
as naïve empiricism. Other students think that the validity of a conclu-
sion is accomplished by testing it with a special member of the sequence, 
for instance the 100th member, a stance categorised by Balacheff as a 
crucial experiment. A generic example involves making explicit the rea-
sons for the truth of an assertion by means of operations on an object that 
is a representative of the class of elements considered (Balacheff, 1988). 
The numbers or items in a generic example are placeholders, in which 
different particulars could occur (Mason & Pimm, 1984). A generic ex-
ample is an example of something; the validity of a hypothesis is argued 
for by the characteristic properties of this example. Balacheff (1988) 
states that the thought experiment is a conceptual proof which requires 
that the one who produces the proof distances himself from the action 
and processes of solving the problem; he must give up the actual object 
for the class of objects on which relations and operations are to be de-
scribed. In order for this to happen, “language must become a tool for 
logical deductions and not just a means of communication” (Balacheff, 
1988, p. 217).  

Balacheff (1988) emphasises that a proof by naïve empiricism or by a 
crucial experiment does not establish the truth of an assertion. He uses 
the word “proof” only because they are recognised as such by their pro-
ducers. The generic example and the thought experiment are, however, 
valid proofs (Balacheff, 1988). They involve a fundamental shift in the 
students’ reasoning underlying these proofs: “It is no longer a matter of 
‘showing’ the result is true because ‘it works’; rather it concerns estab-
lishing the necessary nature of its truth by giving reasons” (Balacheff, 
1988, p. 218).  

As expressed above, Radford (1996) states that the logical base un-
derlying generalisation is that of justification of the conclusion. It is a 
proof process, which moves from empirical knowledge (related to the 
observed number facts in a sequence) to abstract knowledge that is be-
yond the empirical scope. It is important, according to Radford, to notice 
that the logical base of algebraic problem solving is found in its analyti-
cal nature, not in a process of justification. When solving an equation it 
is assumed that the number sought is known, and the number is treated 
as if it were known, so that its identity can be revealed in the end. In this 
process unknowns are used as abstract objects that can be manipulated. 
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Radford (1996) claims that “the generalization way of thinking and the 
analytic way of thinking that characterises algebraic word problem solv-
ing are independent and essentially irreducible, structured forms of alge-
braic thinking” (p. 111). 

In the next section I explain in more detail what pattern generalisa-
tion involves when used as an approach to algebra. 

3.3 Algebra introduced through generalisation of pat-
terns 

3.3.1 Abstraction and expression of generality 
That algebra and indeed all of mathematics is about generalising patterns 
is asserted by mathematician and philosopher Whitehead (1947): 

The history of the science of algebra is the story of the growth of a technique for 
representation of finite patterns. . . . Now in algebra, the restriction of thought to 
particular numbers is avoided. We write x y y x+ = +  where x and y are any two 
numbers. Thus the emphasis on pattern as distinct from the special entities 
involved in the pattern, is increased. Thus, algebra in its initiation involved an 
immense advance in the study of pattern. . . . Mathematics is the most powerful 
technique for the understanding of pattern, and for the analysis of the 
relationships of patterns. (pp. 107-109) 

The mathematician Hardy (1940/1992) put it: “A mathematician, like a 
painter or a poet, is a maker of patterns. If his patterns are more perma-
nent than theirs, it is because they are made with ideas” (p. 84). Anna 
Sfard (1995) defines algebra in terms of generalisation: “I use the term 
algebra with respect to any kind of mathematical endeavour concerned 
with generalized computational processes, whatever the tools used to 
convey this generality” (p. 18). Consequently, Sfard does not require the 
result of a generalisation process to be expressed by means of algebraic 
symbols for it to be termed algebra. Sfard’s stance is not uncontested; a 
contrasting stance set out by Carolyn Kieran (1989) is introduced in Sec-
tion 3.3.2.  

John Mason, Alan Graham, David Pimm, and Norman Gowar (1985) 
identify four roots of algebra: 1) expressing generality; 2) possibilities 
and constraints (supporting awareness of variable); 3) rearranging and 
manipulating (seeing why apparently different expressions for the same 
thing do in fact give the same answers); and, 4) generalised arithmetic 
(traditional letters in place of numbers to express the rules of arithmetic). 
I will in the following concentrate on the first root, that of expressing 
generality.  

Mason (1996) claims that the heart of teaching mathematics is the 
awakening of pupils’ sensitivity to the nature of mathematical generali-
sation and to specialisation. At school, algebra has come to mean “using 
symbols to express and manipulate generalities in number contexts” 
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(Mason, 1996, pp. 73-74). However, as Mason notes, every discipline is 
concerned with expressing generality, with differences only in what the 
generality is about and the way generalities are justified. Caleb Gattegno 
(1990, as cited in Mason, 1996, p. 74) puts forward that: “Something is 
mathematical only when it is shot through with infinity”. Mason (1996) 
takes this to mean that to be fully mathematical, there has to be a gener-
ality present, and claims that “lessons that are not imbued with generali-
sation and conjecturing are not mathematics lessons, whatever the title 
claims them to be” (p. 84).  

In a process of recognising and expressing generality, the question is 
how teachers can attract student attention, evoke awareness, and assist 
them to experience requisite shifts of attention. Mason (1989) builds on 
Jerome Bruner’s (1964) notions of enactive, iconic, and symbolic repre-
sentations when he defines the categories of manipulating, getting-a-
sense-of, and articulating. They are thought of as different phases in a 
developing spiral, in which  

manipulation (whether of physical, mental, or symbolic objects) provides the 
basis for getting a sense of patterns, relationships, generalities, and so on; the 
struggle to bring these to articulation is an on-going one, and as articulation 
develops, sense-of also changes; as you become articulate, your relationship with 
the ideas changes; you experience an actual shift in the way you see things, that 
is, a shift in the form and structure of your attention; what was previously 
abstract becomes increasingly, confidently manipulable. (Mason, 1996, pp. 81-
82) 

As Mason observes, others refer to abstraction (seeing a generality 
through the particular) and concretisation (seeing the particular in the 
general) in different language, and with different emphasis, for example, 
“as reification (Sfard, 1991, 1992), as reflective abstraction (Dubinsky & 
Lewin, 1986), as concept image (Tall & Vinner, 1981), and so on” 
(Mason, 1996, pp. 65-66).  

A scrutiny of established school practices involving algebraic gener-
alisation reveals that students often, when asked to express the general 
member of a sequence of numbers or shapes (geometric configurations), 
construct a table of values43 from which an explicit formula is extracted 
and checked with one or two examples (Bednarz, Kieran, & Lee, 1996). 

                                         
 
 
 
 
 

43 In the case of a sequence of shapes, the table consists of values arising from the number of 
building blocks (components) of the shapes. 
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Mason (1996) suggests that an approach like that in effect obstructs all 
the richness of the process of generalisation: 

Students remain unaware of the generality in a formula they conjecture because, 
in most mathematical topics, teachers collude with them to keep their attention 
focused on the technique in particular cases, and not on the technique qua 
technique, together with questions about the domain of the applicability of the 
technique. (p. 76)  

John Mason and Joy Davis (1991) claim that students’ readiness to ac-
cept a few examples as confirming evidence of the correctness of a con-
jecture is connected with lack of experience in formulating generalities 
for themselves. Several investigative approaches that can lead to stu-
dents’ construction of a formula for the general member of the sequence 
mapped from the shape pattern are put forward by Mason (1996): visual-
isation; manipulation of a generic element on which the generalisation is 
based; establishment of a recursive rule that shows how to construct the 
successive member from preceding ones; and, identification of the struc-
ture of the pattern which can lead to an explicit formula.  

Lesley Lee (1996) reports on results from a teaching experiment that 
focussed on very particular generalising activities that involved the use 
of algebraic symbolism. Six adult students enrolled in an elementary 
course in algebra were tested and taught using four different generalising 
activities, based mainly on generalising numerical and spatial patterns 
(dot patterns). Lee found that the students identified different patterns, 
and that the question of finding a formula that described the numerical 
value of the general element of the pattern was a question of sorting out 
what is an algebraically useful pattern.  

Lee (1996) found that the generalisation approach to algebra in the 
teaching experiment immediately threw students into using letters as var-
iables, making even low attaining students participate in what she refers 
to as an algebraic culture. She observes that the infinite series generated 
by many of the activities have potential to lead students into reflections 
on infinite processes, limits and the calculus. However, the generalisa-
tion approach used by Lee (1996) was not without difficulties. She 
comments that there were obstacles identified at three levels: at the per-
ception level (seeing the intended pattern); at the verbalisation level (ex-
pressing the pattern clearly); and, at the symbolisation level (using n to 
represent the position of a member in the sequence and then expressing 
the member as a function of n). 
3.3.2 Algebraic thinking 

Three definitions of algebraic thinking 
Mason (1996) defines algebraic thinking as noticing sameness and dif-
ference, making distinctions, repeating and ordering, and classifying and 
labelling. Through a series of particular examples Mason develops the 
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point that expressing generality is the key process underlying deep un-
derstanding of algebra.  

Radford’s (1996) definition of algebraic thinking is broader than Ma-
son’s (1996) definition; it includes generalisation that leads to concepts 
of variable and function, and the analytic reasoning that is involved in 
algebraic problem solving. In algebraic problem-solving, unknowns are 
treated as abstract objects that can be manipulated, in contrast with 
arithmetic methods where reasoning begins with what is known.  

A more recent definition of algebraic thinking is given by Romulo 
Lins and James J. Kaput (2004). Based on agreement among the mem-
bers of the Working Group of Early Algebra at the 12th ICMI Study 
Conference44, they define algebraic thinking in terms of two key charac-
teristics: “First, it involves acts of deliberate generalisation and expres-
sion of generality. Second, it involves, usually a separate endeavour, rea-
soning based on the forms of syntactically-structured generalisations, 
including syntactically and semantically guided actions” (Lins & Kaput, 
2004, p. 48). The first characteristic is consistent with Mason’s (1996) 
and Radford’s (1996) common category of noticing and expressing gen-
erality. The second characteristic of Lins and Kaput is about dealing with 
formalisms in the sense of manipulating symbols. When dealing with 
formalisms, the attention is on the symbols and syntactical rules for 
changing their form (manipulating them); however it is possible to act on 
formalisms semantically, where one’s action is guided by what one be-
lieves the symbols stand for (Kaput, 1995). For instance, when the gen-
eral member of a sequence is represented by 2x x+ , it can syntactically 
be converted into ( )1x x + . The expression 2x x+  can semantically be 
interpreted as the sum of a number and its square (arithmetic interpreta-
tion), or as the sum of two areas being a square with side length x and a 
rectangle with side lengths x and 1 (geometric interpretation). The ex-
pression ( )1x x +  can semantically be interpreted as the product of two 
numbers, in which one factor exceeds the other by 1, or ( )1x x + can be 
interpreted as the area of a rectangle with side lengths x and 1x + . 

In addition to dealing with formalisms in the context of generalising 
patterns, Lins and Kaput’s (2004) second characteristic of algebraic 

                                         
 
 
 
 
 

44 The conference, entitled The Future of the Teaching and Learning of Algebra, was held at 
the University of Melbourne, Australia from 9th to 14th December, 2001. 
 



90   Factors Constraining Students’ Establishment of Algebraic Generality in Shape Patterns 

thinking also includes dealing with formalisms in the context of problem 
solving. This may be exemplified by two different ways of solving the 

equation 
4
3 11x

+ = . One way is syntactically guided, in which the sym-

bols are treated as objective entities in themselves, and the conceptual 
system of rules applies to the system of symbols, not to what they might 
represent. In this case, one applies a rule for subtracting 3 from both 

sides of the equation to get 
4
8x

= , and then one multiplies both sides by 

4 to get 32x = . The other approach is semantically guided, where one 
reasons within the conceptual numerical system represented by the equa-
tion. This approach can be seen as an inverting process; if 3 is added to 
one fourth of a number, one gets 11. Hence, one fourth of the number 
must be 8, so the number must be 32.  

Mason’s (1996) definition of algebraic thinking is useful because he 
explicates what algebraic thinking in the context of pattern generalisation 
entails. Radford’s (1996) definition of algebraic thinking is useful be-
cause he includes both pattern generalisation and analytic reasoning in-
volved in algebraic problem solving, and describes how the logical bases 
underlying these two types of algebraic thinking are different (see Sec-
tion 3.2). The definition of algebraic thinking given by Lins and Kaput 
(2004) contributes a third dimension to the act of algebraic thinking, be-
cause it includes reasoning based on the forms of syntactically-structured 
generalisations, be it in the context of generalisation or that of algebraic 
problem solving.  

The role of algebraic symbolism in algebraic thinking  
When the term algebra is used, it involves the concepts algebraic think-
ing and algebraic symbolism. There is however disagreement among 
scholars about the relationship between the two concepts. According to 
Rina Zazkis and Peter Liljedahl (2002), some view algebraic symbols as 
a necessary component of algebraic thinking, while others view them as 
an outcome of algebraic thinking or as a communicative tool.  

Kieran (1989) suggests that seeing the general in the particular is not 
a sufficient characterisation of algebraic thinking; the generality must be 
expressed algebraically. She distinguishes between the ability to general-
ise and the ability to think algebraically, when she makes this claim:  

Generalization is neither equivalent to algebraic thinking, nor does it even 
require algebra. For algebraic thinking to be different from generalization, I 
propose that a necessary component is the use of algebraic symbolism to reason 
about and to express that generalization. (Kieran, 1989, p. 165) 

Kieran’s stance towards algebraic symbolism is in contrast to Sfard’s 
(1995) stance, as presented in Section 3.3.1. Willi Dörfler (1991) sug-
gests that theoretical generalisation needs a certain symbolic description, 
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but believes that it does not necessarily involve the use of algebraic 
symbols. According to Dörfler (1991), the symbolic descriptions can be 
verbal, iconic, geometric or algebraic in nature. I find Kieran’s (1989) 
definition useful because it aims to point out what distinguishes generali-
sation in a broad sense (a process in all disciplines) from algebraic think-
ing, where the latter is a mathematical activity. 

In the next section I present a summary overview of reports from 
empirical studies in which a pattern-based approach to algebra is used. 

3.4 Literature summary of reports from empirical 
studies of students’ pattern generalisation 

The summary overview of empirical studies of students’ pattern general-
isation presented in this chapter will concentrate on three aspects: lack of 
evidence that the pattern-based approach to algebra is better with respect 
to student achievement than the traditional “letter-as-specific-unknown” 
approach; students’ difficulties in establishing algebraic rules from pat-
terns and tables; and, important components of a successful pattern-
based approach to algebra.  

Comparison of the pattern-based approach and the traditional “let-
ter-as-specific-unknown” approach to algebra  
Kaye Stacey and Mollie MacGregor (2001) observe that mathematics 
curriculum documents from Australia, United Kingdom, and The United 
States promote the view that algebraic thinking begins to develop in the 
primary grades through experiences of generality and recognition of 
general relationships in shape patterns and number sequences. Introduc-
ing algebraic letters as pattern generalisers instead of as specific un-
known numbers is a clear break with tradition and is derived from the 
desire to identify early algebra in school with algebraic thinking rather 
than with manipulation of formalisms based on syntactical rules (Stacey 
& MacGregor, 2001). Stacey and MacGregor are critical of these rec-
ommendations because they find little evidence in published research 
that might support the change from the traditional “letter-as-specific-
unknown” approach to the pattern-based “letter-as-variable” approach. 
They refer to Küchemann’s (1981) study, and suggest that his study may 
be taken as an argument against a pattern-based approach. Küchemann 
found that algebra test items which required a letter to be interpreted as a 
generalised number or variable were found to be harder than most other 
items where letters could be thought of as representing particular un-
known values.  

MacGregor and Stacey (1992, 1993) carried out research on approx-
imately 2000 students in Years 7 to 10 (aged 12 to 15). The study in-
volved written tests of whole classes in a variety of schools, and inter-
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views with individual students. Some of the schools had used a pattern-
based approach to algebra, whereas others had used a traditional ap-
proach. Analysis of students’ responses to the test items showed that stu-
dents taught with a pattern-based approach were not better at the algebra 
items in the test, even though these items were close to the types they 
would have practiced in the classroom. Stacey and MacGregor (2001), in 
their discussion of these findings, wonder how well the approaches to 
algebra really were being taught. Their analysis of the way the pattern-
based approach is presented, at least in some textbooks, illustrates that 
“it is reduced to a routine, and is a far way from the rich lessons de-
scribed by Pegg and Redden (1990)” (Stacey & MacGregor, 2001, p. 
152). 

Students’ difficulties in establishing algebraic rules from patterns 
and tables 
Several studies have documented students’ difficulties in establishing 
algebraic rules from patterns and tables. In the following paragraphs I 
present a selection of these studies, which particularly illuminate my in-
quiry.  

Stacey (1989) reports responses to linear generalising problems of 
140 students aged between 9 and 13. Generalisation of the given prob-
lems was of the type ( )f x ax b= +  with 0b ≠ .45 It turned out that main-
ly two ideas were used. Stacey refers to these as the difference method 
and the whole-object method. The difference method involves multiply-
ing the common difference between members of a sequence by the rank 
of a member to calculate its numerical value. The whole-object method 
involves taking a multiple of the numerical value of a member of a se-
quence to calculate the numerical value of a member with a higher rank; 
that is, implicitly assuming that ( ) ( )f mn mf n= . The two methods will 
be applicable only when the linear problems are direct proportionalities. 

                                         
 
 
 
 
 

45 The linear generalising problems to which Stacey’s students were exposed were questions 
which required students to observe and use a linear pattern of the form ( )f n an b= +  with 

0b ≠ . As Stacey (1989) notes, there is some confusion about the term linear in this context. 
Although an equation y ax b= +  is always called a linear equation, the function 
( )f x ax b= +  is an affine function (i.e., a linear function plus a translation). It is not a linear 

function in the vector space sense because 1 2 1 2( ) ( ) ( )f x x f x f x+ ≠ +  and ( ) ( )f mx mf x≠ . 
However, the notion “linear” is used by Stacey instead of the notion “affine” to avoid what 
she conceives of as excessive pedantry.  
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Because the problems used by Stacey in her study were not direct pro-
portionalities ( 0b ≠ ), the difference method and the whole-object meth-
od were invalid. The erroneous generalisations were not discovered by 
the students because they failed to check the validity of the rules they 
produced.  

Another finding from Stacey’s (1989) study was that students 
showed a tendency to focus on recurrence relations in one variable rather 
than on functional relationships between two variables. As an example, 
on the “Ladders task” (Figure 3.1), the difference method produced the 
most common pair of wrong answers, 60)20( =M  and 

3000)1000( =M , where )(rM  denotes the number of matches needed 
for a ladder with r rungs. This answer was often accompanied by an ex-
planation such as “you add on three matches for every rung” (Stacey, 
1989, p. 152). An algebraic expression that would represent the relation-
ship between the two variables is 23)( += rrM . 

 

 
 

Figure 3.1. The Ladders task (reproduced with permission, from Stacey, 1989, p. 148) 

 
The same conclusion about students’ tendency to focus on recurrence 
relations was reached by MacGregor and Stacey (1995). They tested ap-
proximately 1200 students in Years 7 to 10 in ten schools on recognis-
ing, using, and describing rules relating two variables; fourteen students 
were interviewed. 

MacGregor and Stacey (1995) found that the students had difficulties 
in perceiving functional relationships and expressing them in words and 
as equations. The students’ tendency to find recurrence relations in pat-
terns and tables were in most cases counter-productive to identification 
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of a relationship between two variables. Hence, MacGregor and Stacey 
(1995) recommend teachers to use examples where it is not possible to 
find differences between consecutive members of a sequence (that is, to 
use sequences in which the input variables do not increase in equal 
steps). 

Anthony Orton and Jean Orton (1996) conducted a study in which 
1040 students from Years 6, 7 and 8 (ages 10 to 13) completed a written 
test on different pattern questions, and 30 of these students were inter-
viewed about their written responses. Five different types of sequences 
were used in Orton and Orton’s study: strings; cycles; tables; linear; and, 
quadratic.46 Responses on these five types of sequences enabled compar-
isons to be made in terms of the ability to complete a generalisation (i.e., 
to find a formula for the general member of the actual sequence) or con-
tinue number patterns. Correlations between the different types were 
found to be high (Orton & Orton, 1996). In relation to relative difficulty, 
Orton and Orton claim that students are more successful with linear pat-
terns than with quadratic. Further, they found that students have a clear 
tendency to use differencing methods47 and identify a recursive pattern 
which is not easily transformed into an explicit algebraic formula. This 
result is consistent with Stacey’s (1989) finding referred to above.  

John K. Lannin, David D. Barker, and Brian E. Townsend (2006) ex-
plored students’ use of recursive and explicit relationships by examining 
the reasoning of 25 sixth-grade students, including a focus on four target 

                                         
 
 
 
 
 

46 The term “string” refers to linear patterns based on simple number sequences (included to 
provide some simple tasks in the beginning of the test), whereas “linear” refers to the same 
kinds of sequences but presented within tasks where there is an obvious functional relation-
ship (Orton & Orton, 1996). Tabular number patterns were of two types; “cycles”, in which 
the data contained a cyclic property, and “tables”, where no cyclic property was present. The 
“quadratic” patterns in Orton and Orton (1996) were mapped from square numbers and tri-
angular numbers.  
47 The method referred to as the differencing method involves that students recognise that the 
first differences in linear sequences are constant, that the second difference in quadratic se-
quences are constant, and so forth. Orton and Orton (1999) observe that students’ finding 
these differences is no guarantee that they find the formula for the general member of the 
sequences. Finding the first differences, though, may be helpful with respect to figuring out 
the next member of the sequence (also for non-linear sequences). For example, in the se-
quence of square numbers, the first differences are given by the sequence of odd numbers 
(hence, it is easy to conjecture the next first difference). However, finding more members in 
a sequence is usually only the first step towards algebraic generalisation.     
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students, as they approached three generalisation tasks48 while using 
computer spreadsheets as an instructional tool. Their results demonstrate 
the difficulty experienced by the students when moving from successful 
recursive formulae towards explicit formulae. Lannin et al. (2006) ob-
serve that one factor that appeared to be an obstacle to students’ ability 
to connect recursive and explicit formulae was their limited understand-
ing of the meaning of mathematical operations and of connections be-
tween mathematical operations, such as addition and multiplication. Ac-
cording to Lannin et al., provoking students to find explicit formulae 
may lead to the use of “guess-and-check” strategies that involve superfi-
cial pattern spotting. They notice that students’ employment of guess-
and-check strategies resulted in students remaining unaware of the gen-
erality in a formula they conjecture; the target students focused on par-
ticular instances rather than general relationships to develop an explicit 
formula.  

The foregoing discussion of students’ difficulties in establishing al-
gebraic rules from patterns and tables can be summarised in three points. 
First, there are difficulties caused by students’ use of invalid or unsuc-
cessful methods to identify explicit formulae. These methods can be cat-
egorised into two main types: one type involves using differences (two 
different methods; the difference method and differencing); the other 
type involves taking a multiple of a member of a sequence to calculate a 
member with a higher rank (the whole-object method). Second, there are 
difficulties caused by students’ tendency to focus on recurrence relations 
because focus on an indirect relationship (between consecutive members 
of a sequence) is in many cases counter-productive to identification of an 
explicit relationship (between the rank of a member and the member it-
self). Third, one factor that appears to be an obstacle in transforming re-
currence relations into explicit relationships is students’ limited under-
standing of the meaning of mathematical operations and connections be-
tween them.  

Important components of a successful pattern-based approach to al-
gebra 
Results from Ted Redden’s (1996) study demonstrate a significant asso-
ciation between natural language descriptions and symbolic notation 

                                         
 
 
 
 
 

48 One task was a shape pattern (referred to as Theatre Seat problem), the others were text 
problems (referred to as Pizza Sharing problem and Phone Cost problem). 
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used by students. On the basis of investigation of how 1435 children 
aged 10 to 13 responded on requests to generalise shape patterns, he 
found that natural language descriptions exclusively in terms of func-
tional relationships appear to lead to students’ successful use of algebraic 
notation. This finding indicates that students need to be able to explain a 
pattern in terms of relating the independent variable to the dependent 
variable, which means relating the position of a member in a sequence49 
to the member itself.  

Whereas Redden’s (1996) study demonstrates significant correlation 
between natural language description of functional relationships and stu-
dents’ ability to use symbolic notation, Elisabeth A. Warren (2000) 
demonstrates significant correlation between students’ ability to reason 
visually (identify, analyse, and describe patterns) and successful algebra-
ic generalisations from shape patterns and tables of values. Warren’s 
finding is based on responses on two written tests administered to 379 
students; aged between 12 and 15 years (16 of whom were interviewed 
in groups of four students).  

Elisabeth A. Warren, Tom J. Cooper, and Janeen T. Lamb (2006) ex-
amined the development of students’ functional thinking during a teach-
ing experiment that was conducted in two classrooms with a total of 45 
Year 4 students (average age nine and a half years). They found that the 
fact that input values in a table did not increase in equal steps assisted 
students to search for relationship between two data sets instead of fo-
cusing on variation within one. The randomness of the input values en-
couraged students to think relationally instead of sequentially, a finding 
which is consistent with MacGregor and Stacey’s (1995) recommenda-
tion referred to above. 

Against the background of the research reported in Lannin et al. 
(2006) presented above, Lannin et al. recommend that students be en-
couraged to connect recursive and explicit formulae. Further, they em-
phasise the importance of building students’ understanding of the mean-
ing of connections between mathematical operations, such as addition 
and multiplication. Furthermore, they recommend that tasks which in-
volve generalisation of shape patterns be designed so as to promote stu-
dents to remain connected to the iconic (figural) representation and avoid 

                                         
 
 
 
 
 

49 The members referred to here are members of the number sequence mapped from the 
shape pattern (the numerical values of the corresponding shapes). 
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the desire to apply a guess-and-check strategy. Lannin et al.’s opinion 
about remaining connected to the original context is consistent with Da-
vid Hewitt’s (1994) experiences. Hewitt describes five lessons in which 
students were encouraged to find connections, to make and test conjec-
tures, to establish generalisations, and to express these in algebraic form. 
Even if the mathematical problems in the lessons he observed were of 
different types (topology, shape pattern, geometry, number theory, and 
probability) the activity in all lessons ended up with tables of numbers 
and the students trying to find patterns in the numbers. He claims that 
spotting patterns in number sequences this way becomes an activity in its 
own right and not a means to gain insights into the original mathematical 
situation (Hewitt, 1994). He assumes that “more might be learnt about 
the original mathematics if one particular situation were looked at in 
depth, rather than rushing through several in order to collect results” 
(Hewitt, 1994, p. 49).  

The foregoing discussion of important features for a successful pat-
tern-based approach to algebra can be summarised in five points. First, 
students’ mastery of expressing functional relationships in natural lan-
guage is correlated with the ability to use symbolic notation. Second, 
students’ ability to reason visually (identify, analyse, and describe pat-
terns) is correlated with successful algebraic generalisations from shape 
patterns and tables of values. Third, teacher’s use of tables of values in 
which the input variables do not increase in equal steps is important to 
encourage students’ identification of functional relationships; this in or-
der to avoid that students find differences between consecutive members 
and develop a recurrence relation. Fourth, students’ tendency to find re-
currence relations should be acknowledged and students should be en-
couraged to find connections between recursive and explicit formulae so 
as to stimulate sense-making of explicit formulae. Fifth, tasks should be 
designed so as to promote students to remain connected to the geomet-
rical configurations and avoid the desire to apply a “guess-and-check” 
strategy. 

Blanton and Kaput (2004) have demonstrated that children are capa-
ble of thinking functionally at an early age. In the next section I present a 
strategy developed by Kaput and Blanton termed the “algebraifying” 
strategy, for helping teachers to promote students’ algebraic thinking 
(Kaput & Blanton, 2001a, 2003). Results from a case study in which a 
teacher has participated in a professional development project will be 
presented, together with its impact on students’ achievement. 

3.5 Promoting students’ algebraic thinking 
In the following paragraphs I present a strategy developed by Kaput and 
Blanton (2001a, 2003) for helping elementary teachers to learn to identi-
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fy and create opportunities for algebraic thinking as part of their normal 
instruction and to use their own resources such as textbooks and com-
plementary materials. Developing children’s capacity for algebraic 
thinking is an important goal also in the Norwegian mathematics curricu-
lum from elementary through secondary education (Directorate for Edu-
cation and Training, 2006). Kaput and Blanton have developed an ex-
plicit “algebrafication” strategy, which involves classroom-grounded 
teacher development in three dimensions (Kaput & Blanton, 2001a): 
“Algebrafying instructional material”. This involves building opportuni-
ties of algebraic thinking, especially generalisation and formalisation 
opportunities, from available instructional materials, including the alge-
brafication of existing arithmetic problems by transforming them from 
one-numerical-answer arithmetic problems to opportunities for pattern 
building, conjecturing, generalising, and justifying mathematical facts 
and relationships; 
Building of teachers’ “algebra eyes and ears” so they can identify op-
portunities for generalisation and systematic expression of that generality 
(including written expression) and then exploit these as they occur across 
mathematical topics; 
Creating a classroom culture and practices that promote algebraic 
thinking. This involves encouraging and supporting active student gener-
alisation and formalisation within the context of purposeful conjecture 
and argument, so that opportunities of algebraic thinking occur frequent-
ly and are viable when they do occur.  

Results from a case study which examined the classroom practice of 
one third-grade teacher as she participated in a long-term professional 
development project led by Blanton and Kaput are reported in Blanton 
and Kaput (2005). They analysed one year of the teacher’s classroom 
instruction to determine the robustness with which she integrated alge-
braic thinking into the regular course of daily instruction and its subse-
quent impact on students' ability to reason algebraically. The diversity of 
types of algebraic thinking, their frequency and form of integration, and 
techniques of instructional practice that supported students' algebraic 
thinking was taken as a measure of the robustness of the teacher’s capac-
ity to build algebraic thinking (Blanton & Kaput, 2005). Results from 
this study indicate that the teacher was able to integrate algebraic think-
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ing into instruction in planned and spontaneous ways that led to positive 
shifts in students' algebraic thinking skills.  

Impact on students’ achievement of the developmental project led by 
Blanton and Kaput (referred to above) is reported in Kaput and Blanton 
(2001b). The teacher who participated in the professional development 
project had a class of fourteen 3rd grade students, a class with low socio-
economic status (SES) by standard measures.50 Kaput and Blanton ad-
ministered a set of fourteen test items selected from a 4th grade state-
wide mandatory exam to the experimental class and to a second 3rd 
grade control class with comparable SES from the same school (Kaput & 
Blanton, 2001b). Analysis of students’ responses to the test items, in 
both individual and partner settings, offers evidence to support the strat-
egy adopted by Blanton and Kaput (2005) with elementary teachers as a 
means to build classrooms that prioritise students’ development of com-
petencies to formulate generalisations, and express those generalisations 
in increasingly formal ways.  

An item analysis comparing the results of Kaput and Blanton’s ex-
perimental class with the results of the control group (whose teacher did 
not participate in the development project) shows that the experimental 
class outperformed the control group on 11 of the 14 test items (Kaput & 
Blanton, 2001b). Moreover, the experimental class performed signifi-
cantly better than the control group on 4 of these 11 items (Kaput & 
Blanton, 2001b). Of the 14 items on the assessment, Kaput and Blanton 
identified seven as being deeply algebraic in nature, requiring students to 
continue sequences of shapes and numbers, understand whole number 
properties (e.g., commutativity), and identify unknown quantities in 
number sentences.  

Kaput and Blanton (2001b) find it significant that the experimental 
group outperformed the control class on 6 out of 7 of these items. They 
consider the test results, taken together, to provide strong evidence in 
favour of the innovation: “These results indicate that the experimental 
3rd grade class performed approximately as well as the 4th graders state-
wide, and significantly better than the district 4th graders” (Kaput & 
Blanton, 2001b, p. 102). 

                                         
 
 
 
 
 

50 The socioeconomic status of this class and that of the school was lower than average for 
the district, with 75 % on free and 15 % on reduced lunch, 65 % with parents for whom Eng-
lish was a second language, and 25 % with no parent living at home (Blanton & Kaput, 
2005, p. 416). 
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In the next section I present reflections made by researchers on the 
teacher’s role in students’ algebra learning. 

3.6 The teacher’s role in students’ algebra learning 
The meanings that students construct for and in algebra are related to the 
types of problems which are prioritised in the mathematics classroom 
(Lins, Rojano, Bell, & Sutherland, 2001). It is therefore important to be 
aware of the kind of meaning that is desired for students to construct. 
However, as Lins et al. (2001) observe, presenting algebra problems to 
students is not enough for students to learn algebra:  

The traditional approach of presenting students with so-called algebra problems 
may have worked for some students when the teacher more or less imposed an 
algebraic solving approach. The current trend however is to encourage students 
to solve problems for themselves, without imposing [an algebraic] problem solv-
ing approach. (p. 10) 

There may be a problem with this independence, because students are 
likely to solve these problems in many non-algebraic ways. Lins et al. 
(2001) doubt that algebraic approaches can develop in a “seamless way” 
from students’ non-algebraic approaches (p. 11).  

Falk Seeger (1989), drawing on Davydov’s theory of generalisation 
(Davydov, 1972/1990), claims that the teacher plays an important role in 
cultivating algebraic thinking in students (see also, Davydov, 1988). 
Seeger observes that the use of manipulatives and representations re-
quires abstractions to be developed, and asserts that if abstractions are to 
be meaningful for students, it is not adequate to only view them as cases 
where students have to perform concrete activities: “The power of 
‘meaning’ and ‘abstraction’ can only flourish in a certain climate. This 
climate is produced by teacher-student-interaction” (Seeger, 1989, pp. 
17-18). 

Seeger’s (1989) assertion about the importance of the teacher’s role 
in promoting algebraic thinking in students is supported by Sonia Ursi-
ni’s (2001) results from investigation of the feasibility of helping 12-13 
year old students to develop a pre-algebraic experience through Logo. 
She claims that in order for students to develop understanding of variable 
as a general number, “substantial teacher’s support and guidance are re-
quired” (p. 213). Balacheff (2001), further, compares algebra learning 
with learning mathematical proof and asserts that  

there is no possible entrance to the world of algebra without a strong push and 
guidance from the teacher because there is no natural passage from the 
problématique accessible from the child’s world to the mathematical 
problématique. . . . [A]lgebra may be the first theoretical experience mathematics 
teaching offers to the student. (Balacheff, 2001, pp. 259-260) 

This statement emphasises the importance of the teacher and warns 
against believing that “good” problems alone will provoke algebra learn-
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ing. The point that there is no natural passage from the students’ world to 
the world of algebra is also made by Lins (2001) who uses a theoretical 
model of Semantic Fields in his argument that there is no transition from 
“concrete to abstract” with respect to algebra learning. He discusses the 
teacher’s role in a classroom approach where the focus is on algebraic 
thinking as a way of producing meaning for algebraic notation, rather 
than on an “intrinsic meaning” of algebraic notation. Relevant in this re-
spect is experiences from Vasilij V. Davydov’s (1962) experimental 
programme used to teach scientific knowledge in mathematics in the first 
and second grade. Davydov’s (1962) results show that it was possible to 
teach mathematics to children in elementary school as a science of quan-
titative relationships (in which the concept of number is learned as a re-
lationship between a magnitude and a unit of measure) and dependencies 
of magnitudes in algebraic form. 

According to Balacheff (2001), it is the didactical contract (Brous-
seau, 1997) that can regulate the student-teacher interaction and qualify 
what counts as an adequate algebraic solution to a mathematical prob-
lem. In other words, the teacher plays a central role in encouraging stu-
dents to locate themselves in the relevant paradigm and “play the game” 
of algebra, especially when it would be possible and even more econom-
ical for them not to do so (see also, Kieran, 2004).  

In the next section I argue that the research presented in this chapter 
is relevant for my research on student teachers’ algebraic generalisation 
of shape patterns. Furthermore, I will show how the research presented 
in this chapter informs my research inquiry.  

3.7 Relevance of research on students’ generalisation 
of patterns for this research inquiry 

My research inquiry reported in this dissertation is about student teach-
ers’ algebraic generalising of shape patterns. The research results sum-
marised in Section 3.4 and Section 3.5 are, however, about children’s 
pattern generalisation. Hence, there is a question of the relevance of the-
se studies for my study of student teachers. In the following I provide 
support for the stance that being an adult does not lead to an elimination 
of the kinds of difficulties that children encounter. The point is to estab-
lish that outcomes from studies of children’s generalisation of patterns 
are relevant for research on adults’ generalisation of patterns. 
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Jean Orton, Anthony Orton, and Tom Roper (1999) refer to written 
examination results of adults who wished to train as teachers and there-
fore needed to provide evidence of satisfactory attainment in mathemat-
ics.51 Three cohorts, one per year, with a total of 123 adults (considered 
academically very able candidates) were involved in the study reported 
by Orton et al. (1999). Each year one question in the examination in-
volved generalising from a pattern of dots. The candidates were asked to 
predict the number of dots for the fifth, tenth, fiftieth and the n-th mem-
ber of the sequence; in all cases the formula was quadratic (Orton et al., 
1999). Orton and colleagues found that these mature adults, like many 
children, are likely to first approach a formula by differences. Further-
more, they found that these adults are able to handle the recursive pattern 
(based on the differences) very competently, but then have great difficul-
ty in leaving this approach and seeking a better approach which will lead 
them more successfully towards an explicit formula. According to Orton 
et al. (1999), this obstacle, noted so frequently with children, is just as 
evident with adults. 

Lee’s (1996) study of six adult students, which was presented in Sec-
tion 3.3.1, reports on obstacles in students’ generalisation of patterns at 
three levels: seeing the intended pattern; expressing the pattern clearly; 
and, finding a functional relationship between the position of a member 
in a sequence and the member itself. Lee’s (1996) results of adults’ diffi-
culties are similar to the results of children obtained by Redden (1996), 
as presented in Section 3.4. The findings reported by Orton et al. (1999) 
and Lee (1996) I take as indications that studies of children’s difficulties 
with pattern generalisation can inform my research on student teachers’ 
generalisation of patterns.  

In the research reported in this dissertation, I have studied the rela-
tionships between three components: the target knowledge (e.g., arithme-
tic relations in elements of shape patterns, mathematical statements, re-
cursive and explicit formulae, justification of generality); the mathemati-
cal tasks and the teaching approach employed; and, the knowings that 
emerged in the interaction between the students and their milieu. Anal-
yses of these relationships are informed by the theoretical outline and 

                                         
 
 
 
 
 

51 This requirement was independent of age range and subjects they expected to teach (Orton 
et al., 1999). 
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summary overviews presented in this chapter. In the following para-
graphs I explain how. 

Analysis of the observed students’ engagement with one of the tasks 
that involved no prescribed type of formula (recursive or explicit) 
showed that the students focused on a recurrence relation, whereas the 
teacher aimed at an explicit formula. It resulted in the production of To-
paze effects, analyses of which will be presented in Chapter 6. Students’ 
tendency to focus on recurrence relations is documented through re-
search presented in Section 3.4 (Stacey, 1989; MacGregor & Stacey, 
1995; Orton & Orton, 1996). Furthermore, one of the observed groups 
had a problem with symbolic notation of recursive formulae, a phenom-
enon reported by Lannin et al. (2006).  

Another constraint to students’ appropriation of algebraic generality, 
presented in Chapter 6, is the teacher’s use of generic examples without 
the students’ awareness of them. This is a feature noticed by Mason 
(1996). Lannin et al. (2006) reported on students’ difficulties in moving 
from successful recursive formulae towards explicit formulae. The anal-
ysis presented in Chapter 7 shows that this transformation was difficult 
also for the students whom I observed. One of the constraints related to 
the generation of a symbolic expression for an explicit formula was iden-
tification of how the rank of a member of a sequence is related to the 
member itself, a phenomenon referred to by Radford (2000) as the posi-
tioning problem. 

Balacheff’s (1988) categories of pupils’ “proofs” (naïve empiricism, 
crucial example, and generic example) are used in Chapter 8 in the anal-
ysis of a situation of validation where the students’ try to justify their 
conjectured formula. That the teacher plays a very important role in stu-
dents’ algebra learning is asserted by Balacheff (2001), Lins et al. 
(2001), Seeger (1989), and Ursini (2001). This gives legitimacy to my 
inquiry into didactical situations intended aimed at students’ appropria-
tion of algebraic generality in shape pattern, where the teacher’s role is 
investigated.  

In the next chapter I present the research methodology, where I pro-
vide a rationale for situating my study within a qualitative, interpretative 
paradigm and choosing an educational case study as mode of inquiry. 
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4 Methodology 
This chapter presents the methodology applied in the research project 
that enabled me to get insights into the complexity of students’ generali-
sation processes in algebra. My research question is: What factors con-
strain students’ appropriation of algebraic generality in shape patterns? 

The aim of educational research is “to ensure that the observations, 
interpretations and judgements of educational practitioners can become 
more coherent and rational and thereby acquire a greater degree of scien-
tific objectivity” (Carr & Kemmis, 1986, p. 124). Wilfred Carr and Ste-
phen Kemmis (1986) observe that educational research is characterised 
by its application of “a methodology which enables it to describe how 
individuals interpret their actions and the situations in which they act” 
(p. 79). The classroom considered as a social entity reveals aspects of 
social reality which researchers interpret in different ways. According to 
Gibson Burrell and Gareth Morgan (1979), there are four different kinds 
of philosophical assumptions which underpin the nature of social sci-
ence. These assumptions can be classified under the following branches: 
ontology; epistemology; nature of human beings; and, methodology 
(Burrell & Morgan, 1979).  

Graham Hitchcock and David Hughes (1995) suggest a temporal re-
lationship between ontology, epistemology, methodology, and methods 
in social research when they write that “ontological assumptions will 
give rise to epistemological assumptions which have methodological im-
plications for the choice of particular data collection methods” (p. 21). 
This is coherent since ontology is about the phenomena with which the 
research question deals, whereas epistemology is about what can be 
known about these phenomena, and methodology is about what the re-
searcher can do to expose new knowledge about these phenomena. The 
ontological and epistemological assumptions underlying my research 
question are explained in Section 4.1; the research methodology is ex-
plained in Section 4.2. In order to make sense of the methods used to ex-
pose the evidence required, it is necessary to explain the context of the 
study first. Hence, the context of the study is presented in Section 4.3, 
before I return to a discussion of the research methods in Section 4.4.  

The outline of the research methods starts with the rationale for 
choosing an educational case study as style of inquiry (Section 4.4.1). 
Next follow accounts of the selection of site and research participants 
(Section 4.4.2), of data sources and instruments used to collect data (Sec-
tion 4.4.3), and of my own role during data collection (Section 4.4.4). 
Further, the unit of analysis is explained (Section 4.4.5) and the methods 
used to analyse the data are accounted for (Section 4.4.6). The chapter 
closes with a discussion of ethical issues (Section 4.4.7).  
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4.1 Ontological and epistemological assumptions  
4.1.1 Ontology of the social reality studied 
Louis Cohen, Lawrence Manion, and Keith Morrison (2007) claim that 
ontological assumptions are concerned with the essence of the phenome-
na being investigated. In social science, ontological assumptions have to 
do with the relationship between the social reality and the individual and 
examine if the one is dependent or independent of the other (Cohen et 
al., 2007). In my study, the social reality being investigated is the class-
room, or more specifically, the teaching-learning situation (referred to as 
a didactical situation) aiming at the students’ appropriation of algebraic 
generality in shape patterns.  

The aim of the research reported in this dissertation is to gain insights 
into factors that constrain students’ algebraic generalisation of shape pat-
terns. I assume that these factors can be discerned in the didactical situa-
tion; in the relationships between the teacher, the students, and the math-
ematics. Figure 4.1 is a model of these three “instances”, where the 
mathematics is part of the milieu (which is a subset of the students’ envi-
ronment with only those features that are relevant with respect to the tar-
get mathematical knowledge).  
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Figure 4.1. Model of the didactical situation illustrating the relationships between the teach-

er, the student, and the milieu (adapted from Brousseau, 1997, p. 56) 
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Figure 4.2 illustrates my interpretation of the indirect relationship be-
tween the target mathematical knowledge and the student: The dotted 
line illustrates that there is no direct relationship between the mathemat-
ics and the student.  

 
                                        Mathematical knowledge 
 
 
 
 The didactical situation 
 
 
                                                                                                                                                 
 
 

 
 

 
 

Figure 4.2. Model of the indirect relationship between the target mathematical knowledge 
and the student – mediated through the didactical situation (presented in Figure 4.1) 

 
The mathematics is mediated to the student through a didactical situa-
tion, where the meanings developed by the student in the didactical sit-
uation are institutionalised by the teacher to gain the status of cultural, 
reusable (for the student) mathematical knowledge. Factors that con-
strain students’ algebraic generalisation processes have, in my analyses, 
been conceptualised as constraints in the milieu, and as reciprocal obli-
gations between the students and the teacher. The existence of reciprocal 
obligations has been identified in terms of didactical phenomena which 
exist because they play a certain rôle in the didactical relationship be-
tween the student and the teacher (see Section 2.3). 

What I have explained above concerns my assumption about the rela-
tionship between the didactical situation in mathematics and the individ-
ual. The essence of this assumption is that the didactical situation is de-
pendent on the individuals, where the individuals are the teacher who has 
designed the situation (with a milieu) and the student who engages in the 
situation. The mathematics influences the didactical situation via the in-
dividual: Via the teacher it is in the form of an a priori analysis of the 
mathematics (no matter how informal that analysis might be) and the 
mathematics potential that the teacher “sees” in the didactical situation. 
Via the student it is in the form of prior mathematical knowledge; that is, 

STUDENT

M

S

T

MILIEU

TEACHER Student 



108   Factors Constraining Students’ Establishment of Algebraic Generality in Shape Patterns 

how capable the student is to use prior knowledge to engage in the 
adidactical situation devolved to him by the teacher.  

In my analysis of the didactical situation I take an epistemological 
approach rather than a psychological approach. That is, I analyse the di-
dactical situation in terms of the triadic didactic relationship between the 
teacher, the students, and the target mathematical knowledge (which is 
part of the milieu). This means that my focus is on the students’ possibil-
ities to appropriate the target knowledge (an epistemological issue) ra-
ther than their actual learning (a psychological issue). The epistemologi-
cal focus is consistent with Vygotskian theory in the way that my re-
search findings provide information about the nature of instruction of 
scientific concepts related to algebraic generalisation of shape patterns. 
In Section 9.2 I will discuss the complexity of developing the scientific 
concept of “mathematical statement”. 

From what I have explained above, I consider the didactical situation 
in mathematics as a social entity which is realised through its social par-
ticipants; the teacher and the students actively construct the didactical 
situation with its potentialities and constraints. This is an assumption 
about human nature which is in agreement with voluntarism, the philo-
sophical position that asserts that human beings act intentionally and 
make meanings in and through their activities (Burrell & Morgan, 1979).  

The ontological assumptions about the studied reality expressed 
above are consistent with what Alan Bryman (2001) characterises as a 
constructionist ontology of social phenomena. It is opposed to objectiv-
ism, the ontological position that asserts that social phenomena and their 
meanings exist independent of social actors (Bryman, 2001).52  

In the next section I explain what can be known about the social phe-
nomena I have studied.  
4.1.2 Epistemology of the social reality studied 
Torsten Husén (1988) notices that the twentieth century has seen the 
conflict between two main paradigms employed in educational research. 
He describes the nature of the two paradigms:  

The one is modelled on the natural sciences with an emphasis on empirical 
quantifiable observations which lend themselves to analyses by means of 
mathematical tools. The task of research [in this paradigm] is to establish causal 

                                         
 
 
 
 
 

52 Cohen et al. (2007) use the concepts of nominalism and realism, respectively, to refer to 
these ontological positions. 
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relationships, to explain (Erklären). The other paradigm is derived from the 
humanities with an emphasis on holistic and qualitative information and to 
interpretive approaches (Verstehen). (Husén, 1988, p. 17) 

According to Cohen et al. (2007) the paradigm modelled on the natural 
sciences is based on an objectivist approach to social science, in which 
the epistemological position is that of positivism. The paradigm derived 
from the humanities is based on a subjectivist approach to social science, 
in which a non-positivist epistemology prevails (Cohen et al., 2007). 
Two generic terms used to describe these two perspectives, particularly 
as they refer to social psychology and sociology, are the “normative par-
adigm” and the “interpretive paradigm” (Cohen et al., 2007).53  

Whereas ontology of the social reality is about the existence of social 
phenomena, epistemology of the social reality is about what can be 
known about the social phenomena studied. As accounted for in the pre-
vious section, my aim with the research reported here is to get insights 
into factors which constrain students’ establishment of algebraic general-
ity in shape patterns. These factors are not observable per se; that is, they 
do not exist as substantial phenomena. I have gained knowledge about 
them in terms of interpretations of relationships between the teacher, the 
students, and the target mathematical knowledge in terms of the stu-
dents’ opportunities to appropriate the target knowledge. The gained 
knowledge comprises analytical statements about the impact of the mi-
lieu and didactical phenomena originating from the reciprocal obliga-
tions between the teacher and the students in the didactical situation. My 
aim has been to understand what factors have constrained students’ op-
portunities to appropriate algebraic generality in shape patterns in the 
actual context; it has not been to establish general laws of relationships 
that constrain algebraic generalisation processes.  

Richard Pring (2000) claims that the particular philosophical position 
that asserts that the research gets at the world as it really is, applies to the 
physical world, but not to the non-physical world of personal and social 
meaning. I interpret Pring’s claim to mean that the non-physical world of 
personal and social meaning (of which a didactical situation is an exam-
ple) is understood in terms of interpretations of the phenomena studied. 
Because the phenomena studied (the relationships between the teacher, 

                                         
 
 
 
 
 

53 Other researchers refer to the two perspectives in other terms: for example, Lincoln and 
Guba (1985) use the terms “positivist paradigm” and “naturalistic paradigm”; Bryman 
(2001) uses the terms “quantitative research strategy” and “qualitative research strategy”. 



110   Factors Constraining Students’ Establishment of Algebraic Generality in Shape Patterns 

the students, and the target knowledge) is understood through my inter-
pretations, what can be known about the reality studied is dependent on 
me as a researcher.  

In the context of the above, epistemological assumptions that under-
pinned my research were that the knowledge developed would be subjec-
tive and contextualised. The underlying epistemological position is the 
one Husén (1988) refers to as deriving from the humanities. It is con-
sistent with what Bryman (2001) refers to as interpretivism, a contrasting 
epistemology to positivism. He explains that interpretivism “is predicat-
ed upon the view that a strategy is required that respects the differences 
between people and the objects of the natural sciences and therefore re-
quires the social scientist to grasp the subjective meaning of social ac-
tion” (Bryman, 2001, p. 13). 

In the next section I explain what I have done to expose new 
knowledge about the social phenomena studied. 

4.2 An idiographic research methodology 
In order to get insights into factors that constrain students’ appropriation 
of algebraic formulae and mathematical statements as representations of 
generality in shape patterns, it is necessary to study the students’ sense-
making in their regular setting (the didactical situation). I have attempted 
to interpret the observed generalisation processes in terms of the mean-
ings that the students and the teacher brought to the didactical situation. 
This follows from the ontological stance adopted (explained in Section 
4.1.1); I assume that the didactical situation is dependent on the individ-
ual. It is also coherent with the epistemological stance adopted (ex-
plained in Section 4.2.1); I assume that knowledge of factors that con-
strain algebraic generality exists in terms of interpretations of relation-
ships between interacting instances in the didactical situation (see Figure 
4.1 in Section 4.1.1).  

The constructionist ontology and interpretive epistemology of the so-
cial reality under study, together with the voluntaristic assumption about 
human nature, calls for an idiographic methodology (Cohen et al., 2007). 
The employed methodology is idiographic in the sense that the study at-
tempts to explain and understand what is unique and particular to the ob-
served didactical situations, rather than what is general and universal. I 
understand my unit of analysis (the didactical situation) as one focusing 
on mediated action, which Wertsch (1998) argues is the unit of analysis 
in sociocultural studies. When I study the didactical situation, I study 
individuals (the students and the teacher) operating with mediational 
means (e.g., mathematical tasks, language, signs, algebraic expressions, 
diagrams, geometrical configurations). This approach is consistent with 
sociocultural research, as introduced in Section 2.6, where it was stated 



Factors Constraining Students’ Establishment of Algebraic Generality in Shape Patterns   111 

that the goal is to “explicate the relationships between human action, on 
the one hand, and the cultural, institutional, and historical situations in 
which this action occurs, on the other” (Wertsch et al., 1995, p. 11). As 
explained in Section 4.1.1, I understand the didactical situation as medi-
ating between the student and the mathematical knowledge (see Figure 
4.2).   

The idea is that achieving a comprehensive and subtle understanding 
of just a few participants’ engagement in didactical situations will lead to 
more general understanding of other students and teachers. The aim is to 
understand a phenomenon (constraints to students’ appropriation of al-
gebraic generality in shape patterns) in its context. The employed re-
search methodology resonates with what Norman K. Denzin and Yvonna 
S. Lincoln’s (2005) define as qualitative research: 

Qualitative research is a situated activity that locates the observer in the world. It 
consists of a set of interpretive, material practices that make the world visible. 
These practices transform the world. They turn the world into a series of 
representations, including field notes, interviews, conversations, photographs, 
recordings, and memos to the self. At this level, qualitative research involves an 
interpretive naturalistic approach to the world. This means that qualitative 
researchers study things in their natural settings, attempting to make sense of, or 
to interpret, phenomena in terms of the meanings people bring to them. (Denzin 
& Lincoln, 2005, p. 3) 

In the research reported in this dissertation I study students’ algebraic 
generalisation processes in their natural setting, in the classroom where 
two mathematics teachers have interacted with them. A presentation of 
choice of and rationale for methods adopted follows in Section 4.4. 
However, to complete this discussion of the philosophical foundation of 
the study I will conclude this section as if the choice and rationale were 
already presented. 

The students’ collaborative engagement with mathematical tasks has 
been observed and video recorded and then translated into a series of 
texts in the form of transcripts which also include accounts of what the 
students have written during the lessons. These transcripts, together with 
written accounts of conversations with the teachers, have been analysed 
from the perspective of my epistemological and didactical analyses of 
the mathematics potential in the tasks. The transcripts from the students’ 
engagement with the tasks were thereafter coded in a process of a con-
ceptual interpretation using Brousseau’s theory of didactical situations in 
mathematics (Brousseau, 1997). Hence, what I have done to expose new 
knowledge of the studied phenomenon (the didactical situation aiming at 
the students’ appropriation of algebraic generality in shape patterns) is to 
interpret the students’ opportunities to learn the target knowledge (rather 
than their actual learning) from the perspective of my epistemological 
and didactical analyses of the mathematics potential in the tasks. In this 



112   Factors Constraining Students’ Establishment of Algebraic Generality in Shape Patterns 

way I, as a researcher, have been an instrument in the analytical process 
by the assumptions and theories I have brought to the research field. 
These features are consistent with the definition of qualitative research 
as given by Denzin and Lincoln (2005) in the above quotation.  

In order to make sense of the methods used to expose the evidence 
required, it is necessary to explain the context of the study first. There-
fore, in the next section I outline this context and return to a discussion 
of the methodology in Section 4.4.  

4.3 The context of the study 
In this section I present the teacher education programme on which the 
students who participated in the research reported here were enrolled. 
Further, I present the mathematics course in which I collected data in 
terms of observations of small-group lessons at the university college 
where the study was conducted. Then I present the students and teachers 
who were participants in the study, and explain briefly the organisation 
of the mentioned mathematics course. 
4.3.1 The teacher education programme 
The research reported in this dissertation has been conducted within a 
four-year undergraduate teacher education programme for primary and 
lower secondary education at a university college in Norway. The stu-
dents who participated in the research were enrolled on a programme 
referred to as Teacher education with emphasis on mathematics and sci-
ence subjects (Ministry of Education and Research, 2003). This is a 
teacher education programme that is distinct from the regular programme 
with respect to compulsory study units in the last two years.54 Whereas 
the regular programme has 120 optional study units during the last two 
academic years,55 the programme with emphasis on mathematics and 

                                         
 
 
 
 
 

54 With effect from the academic year 2010-2011, general teacher education in Norway is 
revised. This involves that there are two parallel programmes geared to the different levels of 
schooling; one is preparing teachers for Year 1 through 7, the other for Year 5 through 10. 
The revisions are also reflected in the programme Teacher education with emphasis on 
mathematics and science subjects. Despite the fact that the teacher education programme(s) 
referred to in this dissertation is no longer in force, I use present tense when I refer to it be-
cause it is the context of the research I report.  
55 Of 120 optional ECTS credits in the ordinary programme, 60 ECTS credits have to be 
taken in study units preparing for teaching of school subjects in primary and lower secondary 
school, whereas the remaining 60 ECTS points have to be relevant for teaching in school. 60 
ECTS credits is equivalent to one year full-time study. 
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science subjects involves a compulsory course in mathematics (30 ECTS 
credits), and two compulsory courses in science (each amounts to 30 
ECTS credits) during the last two years.56 The structure of the pro-
gramme on which the participating students were enrolled, is shown in 
Figure 4.3. Didactics of subject matter and practice field experiences are 
integrated in all study units in the programme.  

 

 
 

 
 
 
 

Figure 4.3. Structure of the programme Teacher education with emphasis on mathematics 
and science subjects, in force for students enrolled 2003 (*RWM is an acronym for Reading, 

Writing and Mathematics) 

 
The framework for the first two years of the teacher education pro-

gramme is described in Ministry of Education and Research (2003). The 
programme involves 20-22 weeks compulsory field practice in schools 
during the four years the programme spans (Ministry of Education and 
Research, 2003). Field practice means school-based learning, and in-
volves experiences with teaching in primary or lower secondary school. 

                                         
 
 
 
 
 

56 Students who are enrolled on the programme with emphasis on mathematics and science 
subjects can be placed into two categories: One category comprises students who are particu-
larly interested in teaching mathematics and science subjects. The other category comprises 
students who have lower grades from upper secondary school than those enrolled on the 
regular programme. Information about the strengths of the students who participated in my 
research (with respect to mathematics) is provided in Section 4.3.3 (see Tables 4.1 and 4.2).  
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The field practice is supervised by mentors who are classroom teachers 
in the respective classes.57 
4.3.2 The mathematics course 
Mathematics 1 is a compulsory 30 ECTS credits study unit taught in the 
first three semesters of the teacher education programme. The main data 
source in the research reported here consists of observations of small-
group lessons from this mathematics course. According to the national 
framework for teacher education for primary and lower secondary educa-
tion, the aim of Mathematics 1 is that:  

the student teachers shall be prepared to teach mathematics in correspondence 
with the prevailing mathematics curriculum for primary and lower secondary ed-
ucation in a professional and reflective way, and give the student teachers a 
knowledge base that enables them to further develop their knowledge and ways 
of working. (Ministry of Education and Research, 2003, p. 25, my translation) 

The national framework presents for the compulsory mathematics course 
three content areas: academic knowledge of mathematics and didactics 
of mathematics; being a mathematics teacher; and, interaction and reflec-
tion (equivalent content areas are defined for the study units Norwegian, 
and Religious and Ethical Education).  

The study plan for Mathematics 1 (The Faculty Board, 2003) is a lo-
cal implementation of the national framework for mathematics in teacher 
education for primary and lower secondary education (Ministry of Edu-
cation and Research, 2003). The academic components described in this 
study plan are the following: numbers; geometry; algebra and functions; 
and, statistics and probability. The target knowledge in the lessons I ob-
served in my study was algebraic generalisation of patterns. I will in the 
following show how this topic is rooted in the study plan for the course 
in which the data were collected. A relevant theme under the subject area 
“numbers” is referred to as “different forms of numerical patterns (figur-
ate numbers and other numerical sequences)” (The Faculty Board, 2003, 
p. 3, my translation). Under the subject area “algebra and functions”, the 
following themes are listed:  

Simple functions and examples of how they can be used to describe among other 
things, processes in nature and everyday life; the connection between functions 
and algebra; basic understanding of the significance of the algebraic symbol 

                                         
 
 
 
 
 

57 For a detailed outline of the organisation and aims of the field practice in the teacher edu-
cation programme, see Nilssen (2007, pp. 65-67).  
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language; the concept of variable, identified in functions as well as in equations; 
and, graphic expressions of functions and graphic solutions of equations. (The 
Faculty Board, 2003, p. 4, my translation) 

The first theme, “how [functions] can be used to describe . . . processes 
in nature and everyday life”, is relevant for the observed lessons in the 
sense that shape patterns can be considered the result of what Alan J. 
Bishop (1988) refers to as designing. He claims that designing is one of 
six universal activities58 which are carried out by every cultural group 
ever studied, and, further, that these activities are fundamental in the de-
velopment of mathematical knowledge. Designing involves “creating a 
shape or design for an object or for any part of one’s spatial environ-
ment. It may involve making the object, as a ‘mental template’, or sym-
bolising it in some conventionalised way” (Bishop, 1988, p. 183).  

The second theme under the subject area “algebra and functions” 
from the study plan for Mathematics 1, “the connection between func-
tions and algebra”, is relevant in the observed lessons of the following 
reason: The aim of two of the mathematical tasks with which the ob-
served students engaged was to express the regularity of shape patterns 
in terms of a functional relationship between position and member of the 
sequence of numbers mapped from the shape pattern.59 A third theme 
under “algebra and functions” is the concept of variable, which is central 
to the theme about “connections between functions and algebra”.  

The main aim of the course Mathematics 1 is the students’ develop-
ment of relational understanding (Skemp, 1976) of the topics they learn, 
in order to foster relational understanding of mathematics for pupils in 
school (The Faculty Board, 2003). Under the headline, “interaction and 
reflection”, the study plan describes that generation of mathematical 
knowledge often occurs in several phases, where the first phase is char-
acterised by intuition, guess-and-check, eventual reformulation and new 
hypotheses. The next phase, according to the study plan, involves sys-
tematic work where general results are established through logical infer-
ences. The tasks given to the students for collaborative work on algebra-
ic generalisation of shape patterns I interpret as an implementation of the 
study plan according to the above mentioned subject areas, descriptions 
and competence aims.  

                                         
 
 
 
 
 

58 The other activities referred to by Bishop (1988) are counting, locating, measuring, play-
ing, and explaining.  
59 The mathematical tasks are reproduced in Appendix A. 
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4.3.3 Student teacher participants  
The six students who participated in my research were members of a 
class of 66 students. The six students constituted two practice groups. A 
practice group is a composition of three or more students which is estab-
lished by the faculty administration for one academic year to have 
school-based learning in a particular class in primary or lower secondary 
school. Members of a practice group are also supposed to collaborate at 
the university college with respect to several types of tasks in different 
subjects. Each of the two practice groups that agreed to be my research 
participants consisted of three students; three females who belonged to 
one group (referred to as Group 1), and two females and one male who 
belonged to the other group (referred to as Group 2). An explanation of 
how the students were recruited is given in Section 4.4.2. 

During the time the data for the research reported here were collect-
ed, the students were in the second semester of the teacher education 
programme. Tables 4.1 and 4.2 give an overview of the age, mathemati-
cal background, and proficiency indications of the students at the time 
the data were collected. This information was collected through a ques-
tionnaire filled out by the students. The names are pseudonyms. Courses 
are explained below the tables. The proficiency indications are: High 
marks (H); Middle-average marks (M); and, Low marks (L). 

 
Table 4.1. Group 1 

 
Table 4.2. Group 2 

 
1MA:  Compulsory course in mathematics (5 hours per week) during the first 
  academic year in upper secondary school 

2MX, 3MX:  Voluntary courses in mathematics (5 hours per week) during the sec-
  ond and third year in upper secondary school, preparing for further 
  studies in natural sciences and mathematics. 
2MY, 3MY:  Voluntary courses in mathematics (5 hours per week) during the sec-
  ond and third year in upper secondary school, preparing for further 
  studies in social sciences and economics. 

Name Age Mathematical background 
Alice 20 1MA (M), 2MX (L) 
Ida 21 1MA (M), 2MX (M), 3MX (M) 
Sophie 22 1MA (M), 2MY (M), 3MY (M) 

Name Age Mathematical background 
Anne 21 1MA (H), 2MX (H), 3MX (H) 
Helen 20 1MA (M), 2MX (M), 3MX (M) 
Paul 26 1MA (H), 2MX (H), 3MX (M), MB110 (M) MB120 (L) 
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MB110 Compulsory mathematics course (6 ECTS credits) in a university col-
  lege study programme of business administration. 

MB120 Compulsory statistics course (6 ECTS credits) in a university college 
  study programme of business administration. 

 
The mathematical background and proficiency of the students as 

shown in the tables above, indicate that all students, except for Alice, 
have attended voluntary mathematics courses over the two last years in 
upper secondary school with middle-average or high marks. Alice has 
attended a voluntary mathematics course only in her second year in up-
per secondary school from which she has achieved a low mark. On the 
basis of the students’ marks from upper secondary school, Group 1 can 
be considered middle/average strong, whereas Group 2 can be consid-
ered strong. Paul has, in addition to the mathematics courses in upper 
secondary school, taken two mathematics courses in business administra-
tion;60 one with an average mark, the other with a low mark.  
4.3.4 Mathematics teacher participants and organisation of the 

mathematics teaching 
During the three semesters the mathematics course ran, the class was 
taught mathematics by three teachers: one male senior lecturer with more 
than thirty years of practice as a teacher educator in mathematics; one 
male professor with more than ten years of practice as a teacher educator 
in mathematics; and, I who had a minor teaching responsibility in the 
course.  

Mathematics lessons in the class where I collected the data were con-
ducted by two of the three mathematics teachers who were responsible 
for the course.61 For each lesson, the two teachers responsible were both 
present. The classroom used was large and divided into two parts (of dif-
ferent sizes) by movable walls. There were four to six mathematics les-
sons each week (each lesson lasts for 45 minutes), mainly placed within 
one day. The most common organisation of the mathematics teaching 
was in the form of an introduction where all students were gathered in 

                                         
 
 
 
 
 

60 Paul had attended a three-year business administration programme at a university college 
before he was enrolled on the teacher education programme.  
61 The teaching pair depended upon the content taught and the share each teacher had on the 
course. 
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the biggest part of the classroom.62 The introductory part would normally 
contain some information or stimulation before the class was spilt in two 
parallel groups. Sometimes the introduction was a lecture given by one 
of the teachers, other times it was a whole-class discussion, or a review 
of previous tasks. The introductory part was followed by two parallel 
group lessons each led by one of the two teachers, one in each part of the 
classroom. The two parallel group lessons had several formats: collabo-
rative small-group lessons; lectures combined with discussions; or, re-
view of previous tasks solved by students. When the students, placed in 
two different parts of the classroom, worked together in small groups on 
tasks designed by one of the teachers, the two teachers took a collective 
responsibility for all groups. That is, the teachers moved around the 
whole classroom, communicated with and helped students, irrespectively 
of where the groups were placed.  

Teacher Erik63 was responsible for the lessons on algebra which I ob-
served and video recorded for the purpose of the research reported here. 
The responsibility included design of tasks and division of labour. 
Teacher Thomas, his partner, collaborated on the role of “teacher assis-
tant” in the orchestration of the students’ work and shared the task of 
helping students during collaborative engagement with the given tasks. I 
had no teaching duties in the class during the period the data were col-
lected. The students whom I observed were, during my observations, 
placed in a small room adjacent to the classroom (it was a separate room, 
not just divided by the movable walls). The purpose of this arrangement 
was to reduce the background noise on the video recordings. The ob-
served students were informed that they could at any time go and ask for 
help or get suggestions from the teachers or peer students in the large 
classroom where the rest of the class worked in small groups on the same 
tasks. The teachers also, on their own initiative, went occasionally to the 
room in which the observed students worked.  

A considerable part of the teaching time was spent on small-group 
lessons in the mathematics course. It was therefore interesting for me to 
get insight into the outcome of these lessons in terms of what the stu-
dents appropriated of mathematical knowledge, or did not appropriate in 
those lessons, and why.  

                                         
 
 
 
 
 

62 One part of the classroom had tables and chairs for all 66 students. 
63 Teachers’ names are pseudonyms. 
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In the next section I return to a discussion of the research methods.  

4.4 Research methods 
4.4.1 Style of inquiry 
In my study I wanted to expose evidence about “how” and “why” stu-
dents’ opportunities to establish algebraic generality in shape patterns are 
constrained. The data I needed for this to be done were the mathematical 
tasks given to the students, and observation of didactical situations in 
which students engaged with these tasks. This is a contemporary event 
over which I had little control (as explained in Section 4.3). These fac-
tors led me to the choice of a case study method. Robert K. Yin (2009) 
claims that case studies are the preferred research method when asking 
“how” and “why”64 questions, and the focus is on “a contemporary set of 
events over which the investigator has little or no control” (p. 13).65 
Hence, the criteria proposed by Yin to legitimise the selection of a case 
study as style of inquiry were present in my research.  

Lawrence Stenhouse (1988) has identified four types of case study: 
ethnographic; evaluative; educational; and, action research case studies. 
His characteristic of an educational case study matches with the inten-
tion of my project:  

Educational case study [is where] many researchers using case study methods are 
concerned neither with social theory nor with evaluative judgement, but rather 
with the understanding of educational action. They may adopt a strategy close to 
that of the ethnographer (Smith and Keith 1971) or close to that of the evaluator 
(Hamilton 1977). They are concerned to enrich the thinking and discourse of 
educators either by the development of educational theory or by refinement of 
prudence through the systematic and reflective documentation of evidence. 
(Stenhouse, 1988, p. 50) 

                                         
 
 
 
 
 

64 The “why” questions referred to here are not to be interpreted in a positivistic meaning as 
explaining cause and effect. The purpose is to understand why something happened in a par-
ticular context.  
65 Yin (2009) expresses that also experimental studies and historical studies are methods 
used to answer “how” and “why” questions. However, these methods are different from case 
studies with respect to the extent of control an investigator has over actual behavioural 
events, and the degree of focus on contemporary as opposed to historical events: Experi-
mental studies focus on contemporary events, but require control over behavioural events; 
historical studies require no control over behavioural events, but do not focus on contempo-
rary events.   
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I selected an educational case study (Stenhouse, 1988) with two cases as 
mode of inquiry. This makes it a collective case study (Stake, 1995). 
Each case involves a practice group of three students. An important fea-
ture of a case study is that it has been conducted within a localised 
boundary of space and time (Bassey, 1999). This is accomplished in my 
study because I have studied each practice group as its participants en-
gaged collaboratively in eight small-group lessons on algebra at the uni-
versity college.  

Rather than the purpose of learning about the intrinsic properties of 
these particular cases, I use the cases as instruments to get a general un-
derstanding of the complexity of students’ algebraic generalisation of 
shape patterns. This purpose of a case study is consistent with the type of 
case study that Robert Stake (1995, 2005) refers to as an instrumental 
case study. He explains that an instrumental case study is where  

a particular case is examined mainly to provide insight into an issue or to draw a 
generalization. The case is of secondary interest, it plays a supportive role, and it 
facilitates our understanding of something else. The case still is looked at in 
depth, its contexts scrutinized and its ordinary activities detailed, but all because 
this helps us pursue the external interest. (Stake, 2005, p. 445) 

Michael Bassey (1999) refers to a case study with features consistent 
with an instrumental case study as a theory-seeking case study, “aiming 
to lead to fuzzy propositions (more tentative) and fuzzy generalizations 
(less tentative) and conveying these, their context and the evidence lead-
ing to them to interested audiences” (p. 58). A “fuzzy generalisation” has 
a built-in uncertainty; it recognises the likelihood of there being excep-
tions (Bassey, 1999). According to Bassey, the concept of fuzzy general-
isation is appropriate in educational research where human complexity is 
of the greatest importance. He explains the concept in these words: 

[A fuzzy generalisation] reports that something has happened in one place and 
that it may also happen elsewhere. There is a possibility, but no surety. There is 
an invitation to “try it and see if the same happens for you”. (Bassey, 1999, p. 
52)  

The intention with the research reported here is to present a fuzzy gener-
alisation by reporting from my educational case study what factors con-
strain students’ establishment of algebraic generality in shape patterns. It 
is also a purpose to explore the power of the theory of didactical situa-
tions in mathematics to expose critical features of teaching and learning 
mathematics on a teacher education programme. 
4.4.2 Selection of site and research participants 
The class from which participants were recruited to my study was chosen 
by default. The reason is that my research funding was limited to the 
programme for teacher education with emphasis on mathematics and sci-
ence subjects at the university college where I had been employed the 
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previous four years. In the academic year I started the research project, 
66 students (constituting one class) were enrolled at the programme from 
which my research participants were recruited. There were two mathe-
matics teacher educators in this class, in addition to me. They were will-
ing to participate in the research and agreed to be observed and video 
recorded during mathematics teaching.  

As explained above, my case study consists of two groups (cases). 
There were two reasons for choosing to have more than one case in my 
project. First, I wanted to raise the chance of gathering empirical materi-
al that contained sufficient interesting events and situations, which could 
provide evidence for analytical statements (hypotheses) made through 
the analysis. Because I did not know much about the practice groups in 
advance, and I thought that “interesting events and situations” with re-
spect to my research questions, depended on the quality of the group 
work, I considered it a good idea to observe more than one group. Se-
cond, I thought of the vulnerability of having just one group in case 
some of the students in that group dropped out of the teacher education 
programme. The reason why I chose not to have more than two cases 
was about manageability, both with respect to practical issues (e.g., col-
lecting empirical material) and the analytical process.  

In the autumn 2003 I gave information about my research study to 
the class in which the potential research participants were members. I 
explained what I planned to inquire into, and what the intention of the 
project was. I expressed that I wanted to cooperate with two practice 
groups from the class during their second and third semester at the 
teacher education programme, and informed them about what that coop-
eration would involve and what requests there were to the participants. 
The most thorough requirement I had to the research participants was 
that they had to be in the same practice group and have school based 
learning in the same class for two instead of (as normally) one academic 
year. I will return to a comment on this requirement (under the headline 
Progressive focusing) after the presentation of additional requirements to 
the student participants.  

A second requirement was that potential participants had to have the 
intention of taking part in (almost) all mathematics lessons at the univer-
sity college. The first and second requirements were based on the need to 
have a continuous and prolonged engagement with the actions of the 
cases. A third requirement was that I wanted to observe practice groups 
which functioned well. An ill-functioning group of students I presumed 
would be a disturbance for the possibility of observing collaborative 
generalisation processes. A fourth requirement was the willingness of the 
research participants to be observed and video recorded during engage-
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ment with algebraic tasks at the university college and during algebra 
teaching in the practice field. 

After information was given about the project and requirements to 
student participants, I asked all practice groups to sit together and dis-
cuss if they would be interested in cooperating with me. I then asked 
members of groups that might be interested, to write (individually) brief-
ly about their former education in mathematics, intentions with respect to 
presence at mathematics lessons (presence is generally voluntary at the 
university college), and how they assessed the functioning of the practice 
group. The result was that three groups were interested and willing to be 
my research participants based on the premises described above. Based 
on what the students had written concerning group functioning, I con-
cluded that two groups met my purposes. When one of these groups later 
regretted their agreement, I asked another group directly if they were 
willing to participate. This group I chose on the basis of the impression I 
had formed of them as rather conscientious with respect to their studies. 
The students in this group agreed to stay in the same practice group the 
subsequent year, but hesitated to agree about having school based prac-
tice in the same class. Their rationale was that they believed they would 
learn more if they had school-based learning in a new class the next year, 
an argument I found reasonable. Hence, I relaxed the requirement for 
both practice groups of having school based practice in the same class 
during the first two years at the programme. The students and teachers 
participating in the study have been presented in Section 4.3.3 and Sec-
tion 4.3.4, respectively.  

Progressive focusing 
When I planned the project, the intention was to find answers to two 
questions: First, what factors constrain student teachers’ algebraic gener-
alisation processes? Second, what factors are of importance for student 
teachers’ design and implementation of algebra teaching in the practice 
field? The intention was to try to find relationships between, on the one 
hand, the student teachers’ engagement with algebraic tasks at the uni-
versity college, and their engagement with algebra teaching in the prac-
tice field, on the other. I planned for (and accomplished) data collection 
in the practice field during the second and third semester of the pro-
gramme. This was the background for the requirement that the recruited 
practice groups (and schools) were the same during the first and second 
academic years.  

However, in this dissertation I report only from the analysis of the 
material collected at the university college, with respect to the first re-
search question. The reason for this is two-fold. First, the data collected 
from the practice field turned out to be less suitable to answer the second 
research question. It was complicated to ensure opportunities for algebra 
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teaching for the students in the practice periods. It was necessary to at-
tend to the one-year plans already developed by the regular class teach-
ers for mathematics content in the practice periods. In retrospect I realise 
that it would have been essential to negotiate with the class teachers at an 
early stage about content in the practice periods (and potentially about 
what algebra teaching may involve).  

Second, findings from the analysis with respect to the first research 
question were quite extensive. Presenting findings with respect to anoth-
er research question66 would not be feasible in order to contain this re-
port within reasonable boundaries of length, and ensure sufficient depth. 
Hence, I report from findings related to the research question which ad-
dresses constraints to students’ appropriation of algebraic generality in 
shape patterns, as discerned in the data collected from students’ collabo-
rative engagement with mathematical tasks at the university college.  

In the next section I present an account of the data sources and how 
they are collected. The data referred to are only those collected to answer 
the research question about constraints to students’ establishment of al-
gebraic generality in shape patterns.  
4.4.3 Data sources and instruments used to collect data  
Case study research has no specific methods of collecting data or of 
analysis which are unique to it as a method of inquiry: “It is eclectic and 
in preparing a case study researchers use whatever methods seem to 
them to be appropriate and practical” (Bassey, 1999, p. 69).  

Data sources 
I have chosen two main sources of data and a secondary source which is 
used in a methodological triangulation (Denzin, 1978). The primary 
source of data is eight small-group lessons at the university college, in 
which the students engaged collaboratively (in the practice groups) on 
algebraic generalisation of shape patterns. A second source of data is 
four mathematical tasks (each constituted by several subtasks) on alge-
braic generalisation of shape patterns with which the students engaged 
during the eight observed lessons (the tasks are reproduced in Appendix 
A). A third source of data, which is secondary to the first two sources, is 
three conversations with teacher Erik who had designed the mathemati-
cal tasks for the observed lessons.  

                                         
 
 
 
 
 

66 Presuming that the data from the practice field would make it possible to answer other 
research questions than the one originally posed.  
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The eight lessons (11 hours of video recordings) which constitute the 
primary data source were the first lessons on algebra in the mathematics 
course and the only lessons these students had on algebraic generalisa-
tion of shape patterns.67 

Instruments used for collecting data 
Material from the students’ collaborative engagement with the mathe-
matical tasks was collected in terms of observations which were record-
ed on video tapes.68 The mathematical tasks were collected in terms of 
files which I downloaded from the website of the mathematics course.69  

Conversations with teacher Erik, who was responsible for the ob-
served lessons and the one who had designed the mathematical tasks, 
were recreated in my research journal (i.e., they were not audio- or video 
recorded). The first two conversations were short conversations about 
the aim of the designed tasks and other emergent topics related to the 
observed lessons. They were recreated the same day after the conversa-
tions took place. The third conversation was about the interpretation of 
one of the observed episodes as reported in a paper I had written 
(Måsøval, 2005). This conversation was about the impact the paper had 
on him who was the teacher participating in the analysed episode. I 
wrote notes from this conversation simultaneously as it took place.  
4.4.4 My own role during data collection 
During the period of data collection at the university college, I did not 
have teaching obligations in the class where the research participants 
were enrolled. For the research participants, I defined my role during 
data collection to be a silent observer, not enabling myself to take part in 
the classroom or in the students’ work. The reason for this was that I 
wanted the observed situations to be as natural as possible, acknowledg-
ing though that my observation of their engagement was in itself a dis-
turbance. If I had been available for help and discussions with the stu-

                                         
 
 
 
 
 

67 There were several lessons in the mathematics course on algebra and functions succeeding 
the observed sessions. These were not on generalisation of shape patterns. 
68 The video tapes were stored (labelled with information about the observed event) in my 
office for display and transcription. A file was created in which I recorded a schedule of the 
observed sessions (date, time, students, tasks).  
69 On the website of the mathematics course the activities in all mathematical topics were 
published (plans, notes from lectures, assignments, and mathematical tasks). The content of 
the website as it appeared at the end of the course (with all elements recorded), I stored on a 
CD-ROM. The website showed that the students had no algebra lessons before those that I 
observed.   
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dents during their work, they probably would have considered me to be 
an external authority (in addition to the teachers who were responsible 
for the observed lessons), which they could, or was expected to, consult. 
That would disturb the natural setting which was based on their collabo-
ration in the group with the possibility to consult the teachers in charge 
as well as peer students if they found it necessary or desirable.  
4.4.5 Unit of analysis 
The classroom is a place where knowledge is appropriated through vari-
ous processes, in particular through situations that contextualise 
knowledge and through interactions about and with this knowledge 
amongst teacher and students who act within and on these situations 
(Laborde & Perrin-Glorian, 2005). Teaching and learning in the class-
room is at the same time part of a broader social project, that of “educat-
ing future citizens according to cultural, social and professional expecta-
tions” (Laborde & Perrin-Glorian, 2005, p. 1; see also, Herbst & Kilpat-
rick, 1999). In view of the macrolevel of the global educational system 
and the microlevel of individual learning processes, Laborde and Perrin-
Glorian (2005) claim that at an intermediate position between these lev-
els, “the classroom teaching situation constitutes a pertinent unit of anal-
ysis for didactic research in mathematics, that is, research into the ternary 
didactic relationship which binds teachers, students and mathematical 
knowledge” (Laborde & Perrin-Glorian, 2005, p. 1). Based on reports 
from empirical studies published in Laborde, Perrin-Glorian, and Sier-
pinska (2005), Laborde and Perrin-Glorian (2005) observe that the size 
of the classroom teaching situation as a unit of analysis seems to be ap-
propriate to study didactic phenomena which play a role in the multifac-
eted complexity of the interrelations between the teaching and learning 
in school. 

In my investigation of factors that constrain students’ establishment 
of algebraic generality in shape patterns, I define the small-group teach-
ing situation as the unit of analysis when I examine the interplay be-
tween the teacher, the students, and the mathematical knowledge at 
stake. The small-group teaching situation, conceptualised as a didactical 
situation (Brousseau, 1997), is analysed from the perspective of the dif-
ferent phases of a didactical situation (situations of action, formulation, 
validation, and institutionalisation), where the concept of milieu is cru-
cial (see Figure 4.1 in Section 4.1.1 for an illustration of the different 
parts and the relationships between them in the didactical situation). 

In the next section I explain how I have conducted the analysis of the 
data.  
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4.4.6 Methods for analysis of data 
The first approach to the data including analyses of the mathematics 

potential in the tasks on shape patterns 
The process of data analysis started after the fieldwork was completed. I 
made a brief overview of possible solutions to the tasks on algebraic 
generalisation of shape patterns (some of the tasks had several solutions; 
some had several paths to a solution). After I had transcribed the video 
recordings from the classroom observations, I read the transcripts (total 
of 147 pages; 3462 turns).70 I tried to get a sense of what was going on 
and how, with respect to the students’ engagement with the mathematical 
tasks on shape patterns. That is, I examined how the students interpreted 
and solved the tasks, and what was challenging for them in terms of 
solving them. After I had read the transcripts, I made a brief overview of 
each group’s solutions to the tasks (Appendix B). 

In order to engage with the data, I felt a need to do more detailed 
analyses of the mathematics content in the tasks given to the students. 
This was essential to finding out what constrained students’ algebraic 
generalisation processes. I therefore conducted epistemological and di-
dactical analyses of the mathematical concepts present in the tasks and 
concepts that I interpreted to be relevant for the given tasks. The episte-
mological analysis has been pursued with the purpose of defining the 
terms used very carefully, attempting to achieve precision in language 
that is consistent with current mathematical convention. The didactical 
analysis is conducted to expose relationships between the intended math-
ematical knowledge and different approaches to algebraic generality in 
shape patterns. An elaborated version of the epistemological and didacti-
cal analyses is presented in Chapter 5. 

Methods for analysis of students’ engagement with the mathematical 
tasks 
The first written account that I made from the transcripts was the brief 
overview of the outcome of the students’ engagement with the tasks as 
mentioned above. Thereafter I worked through the transcripts and parti-
tioned them into segments where each segment constituted a unit of 
meaning with respect to what the observed persons did and achieved, or 

                                         
 
 
 
 
 

70 The transcripts were segmented in numbered turns, where a turn is defined as the set of 
utterances made by a person until another person takes a turn. The transcriptions were made 
in Norwegian, except the first lesson of Group 1, which was transcribed in English.     



Factors Constraining Students’ Establishment of Algebraic Generality in Shape Patterns   127 

not achieved, in relation to the intentions of the tasks. The interpretations 
of meaning in the segments were written on post-it notes which I ad-
hered to the margin of the transcript, beside the turns they represented. 
The use of post-it notes gave me more space to account for the interpre-
tations than would marginal remarks have provided (in case of many 
segments on a page, notes were adhered overlapping). The process of 
analysis constituted by dividing the transcripts into units of meaning I 
interpret to be a data reduction process according to Matthew B. Miles 
and A. Michael Huberman’s (1994) definition of the concept. They refer 
to data reduction as  

the process of selecting, focusing, simplifying, abstracting, and transforming the 
data that appear in written-up field notes or transcriptions. . . . Data reduction is a 
sort of analysis that sharpens, sorts, focuses, discards, or organizes data in such a 
way that “final conclusions” can be drawn and verified. (Miles & Huberman, 
1994, p. 10) 

In the following I will refer to the accounts written on the post-it notes as 
explanatory notes.  

The next step in the analytic process was that I examined the reduced 
data (the explanatory notes) with the aim of making a data display 
(Miles & Huberman, 1994). In this process I coded the data chunks rep-
resented by the explanatory notes which were significant with respect to 
my research question.71 While I was coding I wrote theoretical memos, 
that is, “theorizing write-up[s] of ideas about codes and their relation-
ships” (Glaser, 1978, p. 83).  

The data display was made in the form of four matrices; for each of 
the two groups, I made a matrix for each of the two days with algebraic 
generalisation of shape pattern. The matrices had three columns: The 
first column consisted of codes that conceptualised the data segments 
identified as significant with respect to the research question. The second 
column displayed the excerpts from the transcript that the code repre-
sented. The third column displayed the numerals representing the numer-
ical orders of the turns that the codes represented. The rows were estab-
lished by significant segments from the data; they were identified by epi-

                                         
 
 
 
 
 

71 In making the explanatory notes, I had represented what the persons did and achieved with 
respect to the mathematical tasks, with the aim of finding out what was going on, and how. 
Not all segments into which the transcripts were partitioned were significant with respect to 
my research question. In the data display process I only coded the segments that I interpreted 
to give insights into factors which constrained the students’ establishment of algebraic gen-
erality in shape patterns.  
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sodes which I interpreted as in some way significant with respect to con-
straining the students’ algebraic generalisation processes.  

When I went through the process of displaying the data this way, I 
constantly compared emerging codes with existing codes and went back 
to refine codes in order to capture their meaning better and more eco-
nomically (trying not to introduce unnecessarily fine grained codes). In 
this process I drew on both the theoretical memos and the epistemologi-
cal and didactical analyses that I had conducted of the mathematics po-
tential in the tasks. Examples of codes in the data display are: “focus on 
number of components instead of structure”; “insecurity related to the 
concept mathematical statement”; “problems with the syntax of algebra”. 
Each matrix spanned from 7 to 11 pages.  

The next stage consisted of going through the matrices and conduct-
ing a conceptual interpretation where I used Brousseau’s theory of didac-
tical situations in mathematics as a framework. This conceptualisation 
was made in the form of categorising the codes in the data display, using 
concepts from the theory of didactical situations. These categories were 
written as notes at each row in the margin of the matrices. Afterwards, 
categories were compared and collected into groups, distributed with re-
spect to the role each category played in the didactical situation. From 
this process, three main groups emerged. These groups are referred to as 
core categories which are labelled according to their significance in the 
didactical situation. Rather than being mere labels, these categories are 
conceptualisations of key aspects of the data. According to Ian Dey 
(2004), they are therefore analytic categories. The core categories are: 
Constrained feedback potential in adidactical situations; Complexity of 
turning a situation of action into a situation of formulation; and, Com-
plexity of operating in the situation of validation.  

The categories that were collected under the core categories are re-
ferred to as subcategories. They explain the core categories (hereafter 
referred to as just categories) in the way they offer purposeful interpreta-
tions of the phenomenon under investigation; that is, constraints to stu-
dents’ algebraic generalisation of shape patterns. Through constant com-
parison, properties of and relationships between subcategories have been 
identified and refined. The subcategories are further illustrated by events 
which are characteristic of the subcategories. The events are circum-
stances in which the subcategories are manifested. The categories with 
subcategories and events will be presented in Chapters 6, 7, and 8. The 
headline of each of these chapters is the same as the title of the category 
that the chapter presents. The same applies for the subcategories and 
events; headlines of sections and subsections correspond to the respec-
tive subcategories and events. Illustrations of the categories with subcat-
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egories and events are provided in Figure 4.4, Figure 4.5, and Figure 4.6 
(presented on the following pages). 

 

 
 
Figure 4.4. The core category Constrained feedback potential in adidactical situations with 

its subcategories and events (the category will be presented in Chapter 6) 
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Figure 4.5. The core category Complexity of turning a situation of action into a situation of 
formulation with its subcategories and events (the category will be presented in Chapter 7) 
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Figure 4.6. The core category Complexity of operating in the situation of validation with its 
subcategories and events (the category will be presented in Chapter 8) 

A comment on relationships between the employed methodology and 
the sociocultural framework that underpins the research 
Vygotsky (1930/1997b) argues that a scientific study of mental processes 
(as in my study) must focus on the unity of those processes, rather than 
on their elements separated by temporal interruptions:  

Indeed, mental life is characterized by breaks, by the absence of a continuous 
and uninterrupted connection between its elements, by the disappearance and 
reappearance of these elements. Therefore it is impossible to establish causal 
relationships between various elements and as a result it is necessary to refrain 
from psychology as a natural scientific discipline. . . . We must not study sepa-
rate mental and physiological processes outside their unity. We must study the 
integral process which is characterized by both a subjective and an objective side 
at the same time. (pp. 111-113)  

René Van der Veer (2001) draws on Vygotsky (1931/1997a) when he 
identifies three interconnected requirements for an analysis of higher 
mental functions which is holistically as suggested in the quotation 
above. The researcher should: 1) distinguish the analysis of things from 
the analysis of process; 2) focus on the genesis of action; and, 3) distin-
guish between explanatory and descriptive tasks of analysis (Van der 
Veer, 2001).  

In my search for factors that constrain students’ appropriation of al-
gebraic generality in shape patterns, I have chosen the didactical situa-
tion as unit of analysis (as explained in Section 4.4.5). This analytical 
unit preserves the essence of the whole (the students’ appropriation of 
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the target knowledge) in that I interpret the knowledge appropriated by 
the students as properties of the interactions (relationships) between the 
student and the milieu (the subset of the environment with only those 
features that are relevant with respect to the target knowledge). In the 
analysis I have taken an epistemological approach which means that the 
focus has been on the students’ possibilities to learn rather than their ac-
tual learning. This approach has been carried out by distinguishing be-
tween, on the one hand, the analysis of things (the mathematical 
knowledge) and on the other, the analysis of process (the interactions 
between the student and the milieu; see Section 4.1.1). The analysis of 
things comprises epistemological and didactical analyses of the mathe-
matics potential in the tasks, where mediational means are an integral 
part (e.g., concepts, notation, geometrical configurations, and diagrams). 
The analysis of process involves the analysis of video recorded class-
room observations, where the students and the teacher interact in the di-
dactical situation with the purpose of the students’ appropriation of alge-
braic generality in shape patterns.  

My aim has been to understand what factors have constrained stu-
dents’ opportunities to appropriate algebraic generality in shape patterns 
in the actual context; it has not been to establish general laws of relation-
ships that constrain algebraic generalisation processes. This has been es-
sential to my choice of an idiographic research methodology. I have tried 
to explain factors constraining students’ appropriation of the target 
knowledge in that I have exposed relationships between the milieu in 
which the students engaged and the outcome of the students’ engage-
ment. This has been done from the perspective of trying to uncover the 
genesis of the constraints the students encounter in their appropriation of 
the target knowledge.   

In the next section I discuss ethical considerations made in the re-
search reported here. 
4.4.7 Ethical issues 
The research reported in this dissertation has been registered at Norsk 
Samfunnsvitenskapelig Datatjeneste (Norwegian Social Science Data 
Services) with project number 18044. Three basic ethical principles are 
important in research with “human subjects”: informed consent in re-
cruitment; avoidance of harm in fieldwork; and, confidentiality in report-
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ing (Flinders, 1992).72 These principles are consistent with the guidelines 
presented in The National Committee for Research Ethics in the Social 
Sciences and the Humanities (2006), which I have followed in the re-
search reported here. 

Informed consent 
Informed consent is referred to as “the procedures in which individuals 
choose whether to participate in an investigation after being informed of 
facts that would be likely to influence their decisions” (Diener & Cran-
dall, 1978, as cited in Cohen et al., 2007, p. 52). As described in Section 
4.4.2, I informed the class from which my research participants were to 
be recruited, about my project. It was done in terms of a presentation 
where the students were invited to make comments and pose questions. 
The presentation was made on the basis of a document with the main 
issues as seen at the time the information was given (this document is 
reproduced in Appendix C). Information was given about these aspects: 
intention with the project; research style; data sources and data collection 
methods; time commitments; who would have access to the collected 
data; confidentiality; and, requests to research participants. 

After this information was given, the participants were recruited as 
described in Section 4.4.2, and a consent form (Appendix D) was signed 
by each student. This form made clear that they were free to withdraw 
from the project at any point of time. The teachers were, in the same way 
as the students, informed about the project, but were not given a consent 
form to sign. They only gave their oral consent to collaborate with me. 
The reason why I treated the teachers and students differently with re-
spect to consent was that the intention with the project in the beginning 
was to focus on the students’ collaborative engagement with algebraic 
tasks. But when I analysed the data, I saw that the teachers’ approach 
(including the mathematical tasks) was important in order to answer the 
research question as it developed after a process of progressive focusing 
(Parlett & Hamilton, 1976).  

In addition to consent to participate in the project, consent was given 
by each student to let me use excerpts from the data (video recordings 
and transcripts) for instructional or scientific purpose (Appendix E). 
Again, consent from the teachers was given orally. 

                                         
 
 
 
 
 

72 These principles are aspects of research which fall under the ethical framework conceptu-
alised as utilitarianism (Flinders, 1992). 
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Debriefing 
According to Joan E. Sieber (1992), debriefing, defined as “providing an 
opportunity for interaction with subjects and relevant others immediately 
following the research participation” (p. 39), is important. I had one vid-
eo session with each group, where we looked at extracts from the video 
recordings. The aim was two-fold: First, I considered it relevant to get 
insights into the students’ rationale for what they did (and did not do) in 
the episodes; that they might explain from their perspective what was 
going on, and why. Second, I wanted to give the students an opportunity 
to look at extracts from the collected data (video recordings), transcripts 
and pre-analytic accounts of the chosen extracts in order for them to get 
a sense of how their actions appeared on the video, how the observations 
were transformed into texts (transcripts), and how the outcome of the 
analysis might look. The second aim was in respect for the students’ 
well-being.  

After I had seen the video recordings from the first two days of data 
collection, I chose one episode from each group which I interpreted to be 
significant with respect to my research question. I transcribed these epi-
sodes and did a preliminary analysis of what was going on. Theory was 
used to illuminate the incidents, and short analytic accounts were written 
for each of the episodes. The transcripts together with the preliminary 
analytic accounts were sent to the respective group members before we 
had video sessions, one with each group. In the video session, the stu-
dents expressed that it was strange to see themselves in the video, and 
that it was interesting to see how the episodes were transformed into 
texts. One of the groups expressed that they had felt rather unsuccessful 
during the observed episode and that it was embarrassing for them to be 
observed and video recorded. I explained that my aim was to find obsta-
cles to their algebraic generalisation processes and that the episode there-
fore was significant. I explained that I understood that they felt unsuc-
cessful (they had engaged with a task for quite a long time without get-
ting at a solution). I pointed at a factor which I interpreted to be crucial 
for the lack of progress; that the students focused on a recursive formula, 
whereas the teacher focused on an explicit formula, of which neither the 
teacher nor the students seemed to be aware. For me it was important to 
convey to the students that neither they nor the teacher were to be 
“blamed” for the lack of progress, and that I did not want to put any of 
them in “deficit” mode in the research report. A year later I sent to the 
students in this group a paper which I wrote based on the mentioned epi-
sode (Måsøval, 2005). Their reaction was that it was “exciting to be in a 
paper”. Because the only research reported in which observations from 
the other group are used, is this dissertation, the students of that group 
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have not been afforded a paper that reports from observation of their en-
gagement with the mathematical tasks.  

The teachers have not been debriefed through video sessions as the 
students. As noted earlier, in the beginning of the project, my focus was 
on the students and their collaborative engagement with mathematical 
tasks in groups. It was not teaching in the sense of instruction that I 
wanted to focus on, but the students’ learning in small groups. Therefore, 
I did not consider the teachers as relevant in the same way as the stu-
dents. Later, I found it relevant to take the didactical situation as the unit 
of analysis, a decision which implied that the teaching became signifi-
cant.  

What the teachers have been afforded from the project in terms of po-
tential beneficence, are the papers published from the research (Måsøval, 
2005, 2006, 2007, 2009; Goodchild, Jaworski, & Måsøval, 2007). In a 
conversation with me (on 26 September, 2005), teacher Erik explained 
that the research in which he had participated had made an impact on 
him as a teacher. He claimed that the findings reported in Måsøval 
(2005) were significant for the way he interacted with students in a 
mathematics class some months after he had read the mentioned paper. 
Erik said that he had become more aware of listening carefully to the 
students and trying not to practice “funnelling” (scaffolding in a way that 
reduces the mathematical challenge of the given task; Bauersfeld, 
1988).73 Below I provide an excerpt from the same conversation which 
points at how the theoretical framework used to analyse the dialogues 
had been significant for Erik: First, Erik asserts that the theory helped 
him to understand better what was going on in the dialogue (turn 7). Se-
cond, he asserts that he got a better grasp of the theory because it was 
related to himself as a participant in the analysed episode (turn 9). (For 
transcription codes, see Appendix F). 

3 Teacher Erik:  It was your analysis of the previous episode [reported in 
Måsøval, 2005] that had a strong impact on me.  

4 Heidi:  In what way did it have a strong impact? 
5 Teacher Erik:  When I read your paper [Pause 1-3 s] that was the first 

thing. I was not at all aware that I behaved in that manner. It 
became so obvious when I read the dialogues. When I was 
in the middle of the activity, I didn’t realise that they [the 
students] searched for a recursive formula. 

                                         
 
 
 
 
 

73 Funnelling conceptualises the same phenomenon as the Topaze effect (Brousseau, 1997). 
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6 Heidi:  How did the impact [from the paper] develop?  
7 Teacher Erik:  It was like, in a way I didn’t recognise the situation. Was it 

really like that? But it was also a strong impact how this, the 
theory from Bauersfeld and Brousseau, contributed to the 
fact that I understood better what happened in the dialogue 
[Pause 1-3 s]  

8 Heidi:  Why did you read Brousseau and Bauersfeld? 
9 Teacher Erik: It was supposedly because you began to read Brousseau, and 

then I read Bauersfeld because I read the paper, and you re-
ferred to this theory. The theory became much more mean-
ingful to me when I got it related to myself.  

[Conversation with teacher Erik, 26 September, 2005]74 
I would like to remark that researchers cannot expect that research par-
ticipants will be interested in, and prioritise to use time on, engagement 
with the theoretical framework that underpins the research inquiry in 
which they participate, like Erik did.  

Avoidance of harm  
I have applied the theory of didactical situations in mathematics (Brous-
seau, 1997) to analyse the collected data. Brousseau’s (1997) framework, 
as described in Chapter 2, is a scientific approach to the set of problems 
posed by the teaching and learning of mathematics, in which the speci-
ficity of the knowledge taught is engaged and plays a significant role 
(Brousseau, 2000). As argued in Section 2.5, the theory of didactical sit-
uations is neither a method of teaching nor an ideology. Nevertheless, as 
noted by Brousseau (e-mail cited by Sierpinska, 1999, Lecture 8), the 
theory can provide some methods of teaching mathematics, it can legiti-
mise some methods and render some other methods unsuitable. For this 
reason I have faced a tension caused by the fact that the theory of didac-
tical situations in mathematics has not informed the teachers’ preparation 
of and methods used in the observed lessons. However, as explained in 
Chapter 2, the theory of didactical situations in mathematics provides 
models and concepts that make it possible to analyse and communicate 
what is going on in the mathematics classroom in terms of the interplay 
between the students, the teacher, and some particular mathematical 
knowledge. I have used the theory as a scientific approach to the com-
plexity of teaching and learning of algebraic generality in shape patterns. 

                                         
 
 
 
 
 

74 The conversation was transcribed by me at the same time as the conversation took place. 
The excerpt included above is translated into English by me. 
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I have analysed what I have observed; it has not been my aim to make 
value judgements of the teaching or of the students’ engagement accord-
ing to the concepts and models of the theory of didactical situations. (See 
Section 2.5 for a discussion of the legitimacy of using Brousseau’s theo-
ry in my research inquiry). 

Because the knowledge taught plays a significant role in the theory of 
didactical situations, in my analyses I have drawn on epistemological 
and didactical analyses of the target knowledge (presented in Chapter 5). 
These analyses I accomplished after the data were collected, which 
means that they were not shared with the teachers before the observed 
lessons were prepared and conducted.  

My focus has been on factors that constrain students’ algebraic gen-
eralisation processes. Naturally, I have identified aspects of the teachers’ 
approaches (including task design) which I have interpreted as constitut-
ing constraints to the students’ appropriation of algebraic generality in 
shape patterns. It has been challenging to present the outcome of the 
analyses without seeming to be critical of the teachers. The fact that the 
theoretical framework and the epistemological and didactical analyses of 
the target mathematical knowledge did not inform the teachers’ prepara-
tion and conduct of the observed lessons, constituted a tension. I did not 
want to present analytic findings that could be giving an impression that 
the teachers were interpreted as lacking essential competencies. At the 
same time I needed to give insights into the nature of the complexity of 
teaching and learning mathematics, because that was what my research 
inquiry was about.  

Another reason for the discernible conflict between wanting not to do 
harm to the teachers on the one hand, and conveying the complexity of 
teaching mathematics on the other, has been that I conducted the re-
search in my own professional milieu. This implies that absolute confi-
dentiality has been impossible. Other implications are the possible 
strains on relationships between me and my colleagues, the vital im-
portance of remaining non-judgemental, impartial and objective.  

A point I want to make is that the design of my study and the chosen 
theoretical framework entailed that my ethical considerations with re-
spect to avoidance of harm had to be far more stringent than the usual 
guidelines applied.  

Confidentiality 
Confidentiality refers to agreements with research participants about 
what can be done with the collected data (Sieber, 1992). According to 
Sieber (1992), the confidentiality agreement between a researcher and a 
participant is part of the informed consent. In the consent signed by the 
students in my research it was confirmed that the data would be anony-
mised by use of pseudonyms in transcribing and in writing up the study. 



138   Factors Constraining Students’ Establishment of Algebraic Generality in Shape Patterns 

In the information given to the participants, it was communicated that 
the video recordings would be seen only by the researcher, the supervi-
sor and examiners. Later, I have been given consent from the participants 
to use excerpts from the video recordings for instructional and scientific 
presentation purposes (as described above).  

Even if pseudonyms are used for the teachers’ names, their anonymi-
ty has been harder to protect because they are presented in the disserta-
tion as my colleagues.  

In the next chapter I present the epistemological and didactical anal-
yses of the mathematics potential of the tasks with which the students 
engaged. 
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5 Epistemological and didactical analyses 
of the mathematics potential in tasks on 
algebraic generalisation of shape pat-
terns 

In this chapter I present epistemological and didactical analyses of math-
ematical concepts embedded in the tasks with which the observed stu-
dents engaged. The tasks are reproduced in Appendix A.  

The purpose of the epistemological analysis is to define the terms 
used in the tasks and identify relationships between them. The purpose 
of the didactical analysis is to expose relationships between the intended 
mathematical knowledge in the tasks and different approaches to alge-
braic generality in shape patterns. The analyses have been conducted to 
enable me to inquire into factors that constrain students’ establishment of 
algebraic generality in shape patterns.  

5.1 Epistemological analysis 
The epistemological analysis has been pursued with the purpose of de-
fining the terms used very carefully, attempting to achieve precision in 
language that is consistent with current mathematical convention. How-
ever, it is recognised that many of the key words used, for example 
statement, formula, relationship, and so forth also have an everyday 
meaning. When students encounter these words in their study it is likely 
that they attach the everyday meaning, even if they have met the esoteric 
mathematical definition in their earlier studies. 
5.1.1 Sequences and shape patterns 
In order to explain the concept of sequence, it is necessary to define the 
concepts of “relation” and “function” first. In mathematics a relation is 
any subset of a Cartesian product; for instance, a subset of A B× , called 
a binary relation from A to B, is a collection of ordered pairs ( , )a b  with 
first component from A and second component from B (Weisstein, 2009, 
Vol. 3, p. 3324). Robert R. Stoll (1963/1979) defines a function to be a 
relation that uniquely associates members of one set (the domain) with 
members of another set (the range): ”A function is a relation so that no 
two distinct members have the same first coordinate” (p. 23). This defi-
nition is influenced by Bourbaki’s (1939/1968) definition of the concept 
of function: 

Let E and F be any two sets, which may or may not be distinct. A relation 
between a variable element x of E and a variable element y of F is called a 
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functional relation in y if, for all x E∈ , there exists a unique y F∈  which is in 
the given relation with x. 

We give the name of function to the operation which in this way associates with 
every element x E∈  the element y F∈  which is in the given relation with x; y 
is said to be the value of the function at the element x, and the function is said to 
be determined by the given relation. Two equivalent functional relations 
determine the same function. (Bourbaki, 1939/1968, p. 351) 

According to Glenn James and Robert C. James (1992), “a sequence is a 
set of quantities ordered as are the positive integers” (p. 373). An infinite 
sequence, represented by { }1 2 3, , , , , ,na a a aL L  { } 1

,n n
a ∞

=
 or ( )na , is a func-

tion whose domain is the set of positive integers (James & James, 1992).  
A shape pattern is a sequence of geometric configurations which de-

velop in conformity with a fixed procedure. The geometric configura-
tions are referred to as elements of the pattern. A shape pattern is imag-
ined as continuing to infinity, and its regularity is referred to as its invar-
iant structure. The building blocks of an element are referred to as com-
ponents. The constituents of a shape pattern are illustrated in Figure 5.1. 
Each element of a shape pattern gives rise to a numerical value arising 
from the number of components within the element. In this way a se-
quence is said to be mapped from the shape pattern.  

 

 
 

Figure 5.1. Constituents of (the first part of) a shape pattern  

 
5.1.2 Arithmetic relations 
The invariant structure of a shape pattern provides the possibility to de-
compose the elements into different repetitive parts (according to a fixed 
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procedure).75 The point is to express the number of components of each 
partition as a function of the element’s position in the shape pattern. The 
idea of decomposition is exemplified in Section 5.1.4 (Figure 5.4 and 
Figure 5.5). When numbers arising from partitions of an element are 
used in a mathematical expression, the result is an arithmetic expres-
sion76 that represents the total number of components of the element. 
When an arithmetic expression is generalised (to represent the general 
member of the sequence mapped from the shape pattern) it turns into an 
algebraic expression where letters are placeholders for numbers.  

Arithmetic expressions arising from elements of a shape pattern give 
rise to an arithmetic relation which is a set of ordered pairs. The first 
component of such an ordered pair represents the position of an element 
in the shape pattern. The second component is an arithmetic expression 
that represents the total number of components of the element and shows 
the relationship between the numbers representing the different partitions 
within the element.  

The target mathematical knowledge in tasks on generalisation of 
shape patterns is the algebraic generalisation of arithmetic relations in 
members of the sequence mapped from the shape pattern. The point with 
introducing shape patterns into the teaching and learning of algebra is to 
offer a concrete reference context to facilitate algebraic thinking.  
5.1.3 Generalisation in terms of two different types of mathemati-

cal objects 
There are two types of shape patterns which can be classified according 
to the type of mathematical object their generalisation aims at. One type 
can be referred to as arbitrary shape patterns whose generalisation aims 
at a formula for the n-th member of the sequence mapped from the shape 
pattern. An example of such a pattern is given in Figure 5.2 (on the next 
page), where the generalisation can be symbolised algebraically as for 
instance 2 2: ( 1)f n n n→ + − , or 2 2( ) ( 1)f n n n= + − .  

The other type of shape patterns is special in the way that these pat-
terns can be interpreted to represent number theoretical relationships 

                                         
 
 
 
 
 

75 “Decomposition” refers to diagrammatic isolation (encircling, painting with different col-
ours, or other techniques) of various parts of the geometric configuration (element) in order 
to visualise the invariant structure of the shape pattern.  
76 An “arithmetic expression” is a composition of numbers and arithmetic operations (sum, 
difference, product, and quotient). 
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which have relevance beyond the context in which they are explored. 
That is, it is not only the sequence of numbers mapped from the elements 
of the shape pattern which is relevant in an algebraic generalisation pro-
cess. 

 

 
1 1→            2 5→                        3 13→                                     4 25→  
 

Figure 5.2. The first four elements of an arbitrary shape pattern whose generalisation is a 
formula for the n-th member in the sequence mapped from the pattern. 

 
In these patterns the spatial properties of the elements is of importance; it 
is of significance how the elements are configured. This means that an 
element illustrates an equivalence relation between, on the one hand, an 
arithmetic expression mapped from partitions (collections of compo-
nents) of an element, and, on the other hand, the total number of compo-
nents of the element. An example is provided by the shape pattern pre-
sented in Figure 5.3, declared to illustrate a theoretical relationship be-
tween odd numbers and square numbers.  

 

 
 

Figure 5.3. The first three elements of a shape pattern, intended to illustrate an equivalence 
relation between square numbers and sums of odd numbers.  

 
This example is equal to the shape pattern in Task 3 with which the ob-
served students engaged. The mathematical object aimed at is the math-

ematical statement, 2

1

(2 1)
n

i
i n

=

− =∑ .  

The relevant collections of components in the above example are the 
rows of the towers (where the components are single squares). Within an 
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element of this shape pattern, the point is to illustrate that the sum of the 
number of components of the rows (odd numbers) is equal to the total 
number of components of the element (a square number). These observa-
tions can be generalised in terms of an equivalence relation between the 
n-th square number and the sum of the first n odd numbers. This is a 
conjecture which asserts a mathematical relationship between members 
of sets of numbers.77 It has relevance beyond the shape pattern in which 
it is discovered.  

I will explain the nature of the different mathematical objects (formu-
la for n-th member of sequence, and mathematical statement about rela-
tionships between sets of numbers) in Section 5.1.4 and Section 5.1.5, 
respectively. 
5.1.4 Formulae for the general member of a sequence 
There are two different approaches to obtain the general member of a 
sequence. One is a recursive approach which focuses on arithmetic rela-
tionships between a member and its predecessor(s) in the sequence; how 
the current member is developed from the previous one(s). A recursive 
approach results in a recursive formula, for example 1 ( )n nu f u+ = . The 
other is an explicit approach which focuses on a functional relationship 
between the position of a member in the sequence and the member itself. 
An explicit approach results in an explicit formula, for example 

( )nu f n= .  
A recursive formula for the general member, na , of a sequence is a 

mathematical relationship, a recurrence relation, expressing na  as some 
combination of ia  with i n< . When formulated as an equation to be 
solved, recurrence relations are known as recurrence equations, or differ-
ence equations (Weisstein, 2009, Vol. 3, p. 3301). A linear recurrence 
equation is a recurrence equation on a sequence of numbers { } 1n n

a ∞

=
 ex-

pressing na  as a first-degree polynomial in ka  with k n<  (Weisstein, 
2009, Vol. 2, p. 2322). An example can be given by the recurrence equa-
tion 1 2n n na a a− −= +  with initial conditions, 1 2 1a a= = . The outcome of 
this recurrence equation is known as the Fibonacci numbers. 

                                         
 
 
 
 
 

77 In order for the conjecture to be established as a theorem, it needs to be proved. This fea-
ture will be explained in Section 5.1.5.  
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Members of the sequences mapped from the shape patterns in the 
tasks with which the observed students engaged satisfy the linear recur-
rence equation, 1 ( 1)n na a d n−= + −  with some initial condition, 1a k=  
with k a constant, and ( )d i  an integer function which denotes the differ-
ence function between 1ia +  and ia . The properties of the function d de-
termine the type of growth of the sequence, a concept which will be ex-
plained in Section 5.1.6.  

Figure 5.4 shows how the second, third, and fourth elements of the 
arbitrary shape pattern (presented in Figure 5.2 above) are decomposed 
into the respective previous element plus a multiple of four. The recur-
sive formula for the n-th member of the sequence mapped from this pat-
tern is given by 1 4( 1)−= + −n na a n  with initial condition, 1 1=a . It is ob-
served that the difference function in this example is given by ( ) 4=d i i  
for i∈• . 

 

 
1 1a =       2 1 4 1a a= + ⋅             3 2 4 2a a= + ⋅                            4 3 4 3a a= + ⋅  

 
Figure 5.4. The first four elements of a shape pattern illustrating that the first three  

differences are multiples of four 

 
An explicit formula for the general member of a sequence can be giv-

en in terms is a functional relationship (Bourbaki, 1939/1968) between 
the position of the member in the sequence and the member itself. That 
is, an explicit formula expresses the general member as a function of n. 
As explained in Section 5.1.2, elements of a shape pattern can be de-
composed into repetitive parts that correspond to the invariant structure 
of the pattern. This results in arithmetic expressions that show the func-
tional relationship between position and number of components of the 
repetitive parts of the elements. Further, one of the elements (together 
with the arithmetic expression that represents its number of components) 
can be used as a generic example to establish an algebraic generalisation 
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in terms of an explicit formula for the n-th member of the sequence 
mapped from the shape pattern.  

The elements of the arbitrary shape pattern presented in Figure 5.2 
above can be decomposed into two consecutive squares as shown in Fig-
ure 5.5. The third or fourth of the decomposed elements can be used as a 
generic example to establish that the functional relationship between n 
(position) and the general member of the sequence mapped from the 
shape pattern (in Figure 5.2 above) is given by 2 2( ) ( 1)f n n n= + − . 

 

 
2

1 1a =      2 2
2 2 1a = +                2 2

3 3 2a = +                              2 2
4 4 3a = +  

 
Figure 5.5. A possible decomposition of elements of a shape pattern illustrating nested 

squares  

 
Another approach to the explicit formula can be done by the decomposi-
tion presented in Figure 5.4 above which stimulates the expression  

1

1

( ) 1 4
n

i
g n i

−

=

= +∑ . A closer examination will be made of these formulae 

(the functions f and g) in Section 5.2.2.  
The two different approaches (explicit and recursive) to the general 

member of a sequence mapped from a shape pattern will be explained in 
more detail in Section 5.2, where I present the didactical analysis of the 
mathematics potential in tasks on algebraic generalisation of shape pat-
tern. 
5.1.5 Mathematical statements 
According to Timothy Gowers (2008), mathematical statements are the 
object of research papers in mathematics and the main currency of the 
discipline. Different types of mathematical statements include theorems, 
propositions, lemmas, and corollaries, the common feature of which is 
that their truth is established by means of a mathematical proof (Gowers, 
2008).  
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A theorem is “a statement that has been proved to be true if certain 
hypotheses (axioms) are true” (James & James, 1992, p. 419). A proof of 
a theorem may use previously proved theorems instead of making ex-
plicit use of the hypotheses (James & James, 1992). Whereas theorems 
are regarded to be intrinsically interesting, propositions are more pre-
dictable results which are easier to prove (Gowers, 2008). It is common 
to define a statement that follows “easily” from a theorem as a corollary 
to that theorem, whereas a statement that is proved primarily because of 
its use in proving another theorem is said to be a lemma (James & James, 
1992). 

According to James and James (1992), a principle is a general truth 
or law, either assumed or proved to be true. If a principle is assumed 
true, it is called a postulate or axiom; if a principle is or is to be proved, 
it is called a theorem (James & James, 1992). A formula is a general an-
swer, rule, or principle which is expressed in terms of mathematical 
symbols (James & James, 1992). Formulae can be given for instance by 
equations, equalities, identities, inequalities, and limits (Weisstein, 2009, 
Vol. 1, p. 1412). An equality is a mathematical statement of the equiva-
lence of two quantities. The above given definitions of the concepts of 
mathematical statement and formula require that a formula is a mathe-
matical statement only in the case where it is a principle which is to be 
proved (i.e., it is a theorem).  

Like a formula for the n-th member of a sequence (generalisation of a 
quantity) can be approached in two ways, a mathematical statement 
about number theoretical relationships can also be approached in two 
ways: by a recursive or by an explicit approach. A mathematical rela-
tionship between square numbers and odd numbers can, as mentioned in 
Section 5.1.3, be given explicitly (i.e., in closed form) in terms of an 
equivalence relation between the n-th square numbers and the sum of the 
first n odd numbers (a statement about how square numbers are con-
structed from odd numbers). Also, a mathematical relationship between 
square numbers and odd numbers may be given recursively as an equiva-
lence relation between the n-th square number and the sum of the 
( 1)n − -th square number and the n-th odd number (a statement about 
how the square numbers are constructed from a square number and an 
odd number).  
5.1.6 Growth of sequences 
The sequences mapped from the shape patterns in the tasks with which 
the observed students engaged are recursive sequences. Their general 
member is given by 1 (1) (2) (3) ( 1)na a d d d d n= + + + + + −L  with ( )d i  
an integer function which denotes the difference function between 1ia +  
and ia . If a sequence has the property that for all i n< , ( )d i b=  with b a 
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constant, the growth of the sequence is characterised as linear (or arith-
metic, according to Kalman, 1997). That is, each member of the se-
quence is computed from the previous member by adding a constant b. 
The general member of a sequence with linear growth is then given by:  

1 2 32 3n n n na a b a b a b− − −= + = + = + 1 ( 1)a b n= = + −L , with 1n > .  
A sequence with this property is denoted an arithmetic sequence and b is 
referred to as its difference78 (James & James, 1992).  

If a sequence has the property that for all i n< , ( )d i bi c= +  with 
0b ≠  and c constants, the growth is characterised as quadratic. That is, 

each member of the sequence is computed from the previous member by 
adding a number which is a linear function of the element’s position. The 
general member of a sequence with quadratic growth is then given by: 

1 2( 1) ( 2) ( 1)n n na a b n c a b n c b n c− −= + − + = + − + + − +  
     1 2 12 ( 1)na b c a b c a b n c−= = + + + + + + + + − +L L  
     1 ( 1) (1 2 3 1)a n c b n= + − + + + + + −L  

     2
1( )

2 2
b bn c n a c= + − + − , with 1.n >  

The above explication shows how knowledge of growth of sequences 
can be used to make links between recursive and explicit formulae; that 
is, how an explicit formula for the general member can be developed 
from a recursive formula. 

5.2 Didactical analysis 
In Sections 5.2.1, 5.2.2, and 5.2.3 I present the potential of mathematical 
tasks based on shape patterns as a means of stimulating students’ en-
gagement with algebraic generalisation and its implications of establish-
ing formulae or mathematical statements. 
5.2.1 Different approaches to and different modes of reasoning 

about algebraic generality in shape patterns 
In this section I present different approaches to and different modes of 
reasoning about algebraic generality in shape patterns. Categorisation of 

                                         
 
 
 
 
 

78 The sum of an arithmetic sequence { } 1i na ∞

=
 is termed an arithmetic series (Weisstein, 2009, 

Vol. 1, p. 168). The n-th partial sum nS of an arithmetic series is therefore given by 

[ ]1 1 1 1 1 1
1 1( ) ( 2 ) ( 1) ( 1) 2 ( 1)
2 2nS a a b a b a n b na bn n n a b n= + + + + + + + − = + − = + −L . 
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approaches to generality of shape patterns into recursive and explicit ap-
proaches, as introduced in Section 5.1.4, is based on the way one pro-
ceeds to find a representation of generality; that is, whether one aims at a 
relationship between elements of the pattern, or, at a relationship be-
tween position and element.79 The syntax of the resulting generality is 
different in the two cases (recursive or explicit formula for the n-th 
member of the sequence mapped from the shape pattern, or a recursively 
or explicitly expressed mathematical statement about a number theoreti-
cal relationship illustrated by the shape pattern). Each of these ways of 
approaching generality can, further, be categorised into either a figural 
or numerical mode of reasoning.80 

Figural mode of reasoning 
By a figural mode of reasoning I mean reasoning that is based on struc-
tural relationships in the geometric configurations, either between posi-
tion and element (aiming at an explicit formula or a mathematical state-
ment), or, between consecutive81 elements (aiming at a recursive formula 
or a recursively defined mathematical statement). A figural mode of rea-
soning is based on decomposition of the elements of the shape pattern. 
By this is meant diagrammatic isolation (e.g., encircling, painting with 
different colours as used in Figure 5.4 and Figure 5.5, or other tech-
niques82) of various parts of the geometric configurations according to a 
procedure determined by the invariant structure of the pattern. To make 
the presentation more lucid, I will in the rest of the explication of the 
figural mode refer only to the case when the generality aimed at is an 

                                         
 
 
 
 
 

79 Recall that the notion of “element” refers to the geometric configurations which constitute 
the shape pattern. Hence, the approaches referred to include both the case when the mathe-
matical object aimed at is a formula for the n-th member of a sequence and the case when the 
mathematical object aimed at is a number theoretical relationship. 
80 The reader who is familiar with Joanne R. Becker and Ferdinand Rivera’s work will notice 
that the categories “figural” and “numerical” that I am using are not the same as those used 
by Becker and Rivera (2005, 2006) in the notions, “figural generaliser” and “numerical gen-
eraliser”. Whereas employing a figural mode of reasoning is consistent with being a figural 
generaliser, employing a numerical mode of reasoning is not consistent with being a numeri-
cal generaliser. 
81 Recall from Section 5.1.4 that members of the sequences mapped from the shape patterns 
in the actual tasks satisfy the linear recurrence equation, 1 ( 1)n na a d n−= + −  with some initial 
condition, 1a k=  with k a constant, and ( )d i  an integer function which denotes the differ-
ence function between 1ia +  and ia . Hence, it is a recursive approach that focuses on a rela-
tion between consecutive elements. 
82 Decompositions may be done mentally. 
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explicit formula for the n-th member of the sequence arising from the 
shape pattern.83  

As explained in Section 5.1.4, an explicit formula expresses the gen-
eral member of the sequence mapped from the shape pattern as a func-
tion of n. The essence of the figural mode is that the numerical values of 
the repetitive parts resulting from the decomposition of an element are 
expressed as a function of the position of the element in the pattern. 
When the numerical values of the partitions of an element are written as 
a sum, the result is an arithmetic expression of the numerical value of the 
element itself. This stage in the figural mode I refer to as the arithmetic-
structural level. Further, the arithmetic expression of one of the elements 
is used as a generic example to express the n-th member of the sequence 
in algebraic symbols (as a function of n).  

The figural mode of reasoning as described above is relation-oriented 
in the sense that one tries to identify an invariant structure in the align-
ment of elements of the shape pattern. Hence, the figural mode of rea-
soning is based on algebraic thinking, as defined in Section 3.3.2 with 
reference to Mason (1996).  

Numerical mode of reasoning 
By a numerical mode of reasoning I mean reasoning that is based on 
numbers. These numbers are members of the sequence mapped from the 
shape pattern. The numerical mode can be used both in an explicit ap-
proach (searching for a relationship between position and member) and 
in a recursive approach (searching for a relationship between consecutive 
members). To make the presentation more lucid, I will in the rest of the 
explication of the numerical mode refer only to the case when the gener-
ality aimed at is an explicit formula for the n-th member of the sequence 
arising from the shape pattern.  

The numerical mode of reasoning can be further classified into two 
subcategories; one involves reasoning at the arithmetic-structural level 
as described for the figural mode; the other involves a method of guess-
and-check to find the formula which represents the generality in the 

                                         
 
 
 
 
 

83 A figural mode when the aim is a mathematical statement about number theoretical rela-
tionships is similar to the case when the aim is a formula for the n-th member of the se-
quence. The essence of a figural mode of reasoning when the aim is a recursive formula or a 
recursively defined mathematical statement, however, is to express the n-th first difference 
as a function of its position (instead of expressing the general member itself as a function of 
its position).  
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shape pattern. The arithmetic-structural level involves identification and 
generalisation of arithmetic relationships between numbers (as explained 
for the figural mode). Because the mathematical object aimed at is an 
explicit formula, these relationships are between positive integers (repre-
senting positions of members in the sequence) and the members them-
selves. The method of guess-and-check involves starting with the first 
few members of the sequence mapped from the shape pattern and em-
ploying naïve empiricism (see Section 3.2) to establish a formula for the 
generality.  

Whereas the arithmetic-structural level is based on algebraic thinking 
as accounted for above, the method of guess-and-check short-circuits all 
the richness of the generalisation process because the students remain 
unaware of the nature of the generality they represent (Mason, 1996; see 
also, Orton & Orton, 1999). The different paths towards generality in 
shape patterns are illustrated in Figure 5.6.  

 

 
 

Figure 5.6. Different approaches to generality in shape patterns 
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A demonstration of the figural and numerical modes of reasoning 
based on a particular shape pattern is provided in the next section.  
5.2.2 Exemplification of different modes of reasoning towards an 

explicit formula for the n-th member of a sequence mapped 
from a shape pattern 

The algebraic generalisation I will exemplify in this section is an explicit 
formula for the n-th member of the sequence mapped from the “dots-at-
grid” pattern presented in Figure 5.7 (this pattern was first presented in 
Figure 5.2 above but is reproduced here for the sake of continuity). 

Figural mode of reasoning exemplified 
The invariant structure of the “dots-at-grid” pattern (Figure 5.7) can be 
illustrated by various decompositions, two of which were presented in 
Section 5.1.4 (Figure 5.4 and Figure 5.5).  

 

 
1 1→            2 5→                        3 13→                                     4 25→  
 

Figure 5.7. The first four elements of an arbitrary shape pattern whose generalisation is a 
formula for the n-th member in the sequence mapped from the pattern. 

 
A first decomposition, shown in Figure 5.5 (Section 5.1.4), illustrates 
partitions in terms of nested squares. At the arithmetic-structural level 
this structure can be represented by expressions as listed in Table 5.1. 
 
Table 5.1. Arithmetic expressions originating from a decomposition in terms of two 
squares, generalised algebraically 

Position 1 2 3 4 L  n 

Number of dots 2 21 0+  2 22 1+  2 23 2+  2 24 3+  L  2 2( 1)n n+ −  

 
In the n-th position of this table the arithmetic expression is generalised 
to show the functional relationship between position and member of the 
sequence mapped from the shape pattern in Figure 5.7 above. Hence, the 
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decomposition that illustrates nested squares is generalised algebraically 
in terms of the function, 2 2( ) ( 1)f n n n= + − . 

A second decomposition of the “dots-at-grid” pattern, shown in Fig-
ure 5.4 above illustrates partitions in terms of multiples of four. At the 
arithmetic-structural level this structure can be represented by expres-
sions as listed in Table 5.2.  
 

Table 5.2. Arithmetic expressions originating from a decomposition in terms of multi-
ples of four, generalised algebraically 

Position 1 2 3 L  n 

Number of dots 1 1 4 1+ ⋅  1 4 1 4 2+ ⋅ + ⋅  L  
1

1
1 4

n

i
i

−

=

+∑  

 
In the n-th position of this table the arithmetic expression is generalised 
to show the functional relationship between position and member of the 
sequence mapped from the shape pattern in Figure 5.7 above. Hence, the 
decomposition that illustrates multiples of four is generalised 

algebraically in terms of the function, 
1

1

( ) 1 4
n

i
g n i

−

=

= +∑ . This is one more 

than the n-th partial sum of an arithmetic series with difference four. The 
n-th partial sum of an arithmetic series implies that 

2( ) 1 4 ( 1) 2 2 1 ( )
2
ng n n n n f n= + − = − + = , where f is the function 

originating from the decomposition that illustrates nested squares 
(presented in Figure 5.5 above).  

Representation of the explicit formula in terms of the series given by 
the function g also shows a relationship between a recursive and an ex-
plicit formula for the generality in the sequence mapped from the shape 
pattern. It shows how an explicit formula can be developed by starting 
with the first member and adding successively the first differences of the 
sequence mapped from the shape pattern. As presented in Chapter 3, 
Lannin et al. (2006) argue that it is important for students to connect re-
cursive and explicit formulae as a potential means for constructing suc-
cessful generalisations in terms of explicit formulae.  

Numerical mode of reasoning exemplified 
A numerical mode of reasoning about generality in the shape pattern pre-
sented in Figure 5.2 takes as a starting point the numbers in the sequence 
{ }1,  5,  13,  25,  41,L  which correspond to the numerical values of the 
elements of the shape pattern. It can be observed that the members in this 
sequence, except for the first member, are one more than particular num-
bers in the four-times table. Hence, the sequence can be written, 
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{ }1,  1 4 1,  1 4 3,  1 4 6,  1 4 10,+ ⋅ + ⋅ + ⋅ + ⋅ L . This is reasoning at the arith-
metic-structural level, and is the basis for generalisation by using alge-
braic thinking: A systematic way to write the members of the sequence is  

1

1

 1,  1 4 1,  1 4 (1 2),  1 4 (1 2 3), , 1 4 ,
n

i
i

−

=

⎧ ⎫
+ ⋅ + ⋅ + + ⋅ + + +⎨ ⎬

⎩ ⎭
∑L L . It is observed 

that the factors by which four is multiplied are sums of consecutive natu-
ral numbers (i.e., they are triangular numbers). The explicit formula for 
the n-th member of the sequence is given by the n-th partial sum of the 

series 
1

1

( ) 1 4
n

i
g n i

−

=

= +∑  which was shown to be equal to 

2 2( ) ( 1)f n n n= + − .  
The alternative path in a numerical mode of reasoning is the method 

of guess-and-check, which involves that the numbers in the sequence 
{ }1,  5,  13,  25,  41,L  are used to guess a formula which is checked 
against a few members in the sequence. Lannin et al. (2006) recommend 
that mathematical tasks aiming at algebraic generalisation of shape pat-
terns are designed so as to promote students to remain connected to the 
iconic representations and avoid the desire to apply a strategy of guess-
and-check. This is important in order to avoid students remaining una-
ware of the nature of the generality they are supposed to represent alge-
braically (Mason, 1996). In the concrete example, there is little value, 
with respect to mathematical learning, in students’ development of a 
formula like 2( ) 2 2 1f n n n= − +  if students do not appropriate an under-
standing of how the formula is related to the shape pattern from which it 
originates. 
5.2.3 The value of algebraic generalisation of shape patterns with 

respect to mathematical learning 
There is a two-fold purpose of students’ engagement with algebraic gen-
eralisation of shape patterns; these can actually be considered two sides 
of the same coin. One is to provide a context (physical or iconic) for al-
gebraic generalisation where the aim is to promote students’ algebraic 
thinking. This can be considered as an approach to algebra through pat-
tern generalisation. The other is to lead students to experience patterns as 
mathematical structures as an aim in itself, where infinity and generalisa-
tion are focused upon. In this perspective, algebra is a mediational means 
to represent invariant structures in the patterns.  

In both perspectives (algebra manifested in patterns, or patterns gen-
eralised through algebra), the mathematical concepts introduced in Sec-
tion 5.1 are central. Another aspect that I want to stress is justification of 
the conjectured formulae or mathematical statements. A goal in general-
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ising shape patterns is to obtain a new result; a formula for the general 
member of a sequence arising from the pattern, or a mathematical state-
ment about number theoretical relationships arising from the pattern. As 
explained in Section 3.2, with reference to Radford (1996), generalisa-
tion in this sense is not a concept, but a procedure based on the observed 
facts, allowing the generation of a new result. The logical base underly-
ing such a procedure is that of justification of the new result. According 
to Radford, it is a proof process, which moves from empirical knowledge 
(related to the observed number facts in a sequence of geometrical con-
figurations) to abstract knowledge that is beyond the empirical scope. 
Central in justifying the conjectured generality through a figural mode is 
the utilisation of a generic example as explained in Section 3.2. 
Balacheff (1988) explains why the generic example, despite being prag-
matic, is a valid proof (see Section 3.2). For further details about the mi-
lieu for generalisation and the different roles of the student and the 
teacher in the didactical situation, I refer to the explication in Section 
2.3.4. 

Different nature of the target knowledge 
The nature of a formula for the general member of a sequence mapped 
from a shape pattern is different from the nature of a mathematical 
statement about number theoretical relationships arising from the shape 
pattern. The first mathematical object, a formula, is inevitably connected 
to the presented shape pattern. The second mathematical object, a math-
ematical statement, is, on the other hand, decontextualiseable in the 
sense that it has relevance beyond the shape pattern from which it origi-
nates.  

Institutionalisation of the knowledge in the case when algebraic gen-
eralisation aims at a formula is not institutionalisation of the formula per 
se. It is institutionalisation of how the formula can be derived through 
identification of an invariant structure in the elements of the pattern. Fur-
ther, it is institutionalisation of how the invariant structure is interpreted 
into arithmetic relations and how these in turn are generalised algebrai-
cally in terms of a formula (for the general member). The cultural, reus-
able knowledge in this case is the nature of the relationship between the 
algebraic expression and its referent (a generic element of the pattern). 
On the other hand, institutionalisation of the knowledge in the case when 
algebraic generalisation aims at a mathematical statement involves de-
contextualisation of the mathematical statement from the shape pattern 
on the basis of which it is developed. The cultural, reusable knowledge 
in this case is algebraic generalisation of arithmetic relations between 
sequences of numbers. Either generality aims at a formula or a mathe-
matical statement, the target knowledge involves students’ understanding 
of generality, proof, and so forth.  
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As described in Section 5.1.3, there are two different types of shape 
patterns which correspond to the two types of mathematical objects 
aimed at when generalising shape patterns; formulae or mathematical 
statements. The foregoing didactical analysis reveals the potential of 
tasks based on shape patterns as a means of stimulating students’ en-
gagement with algebraic generalisation and its entailments of formulat-
ing propositions, theorems, and proving. However, a didactical analysis 
does not presume that the mathematical aims will be met. The challenge 
that faces mathematics teachers at all levels is to design tasks that enable 
students to experience the intended mathematical challenge and appro-
priate the desired mathematical knowledge.  

In the next three chapters I present the analytic categories that 
emerged from the exploration of the empirical material. These chapters 
are introduced by a prelude to the analysis.  
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Prelude to the analysis 
In the next three chapters I present the results from the analysis. It is or-
ganised by the three analytic categories that emerged from exploration of 
the empirical material.  

Chapter 6 presents the first analytic category. It is about features of 
the adidactical milieu. Situations of action, formulation, and validation 
are (intentionally) adidactical situations where each situation has a feed-
back potential on which the success of the situation depends. The catego-
ry deals with how the adidactical milieu is constrained in the way that it 
does not provide the students with adequate feedback which could tell 
them if their responses are appropriate. The first category is organised 
around three properties of the milieu: adaptedness of design of tasks; 
clarity of concepts; and, outcome of institutionalisation of previous 
knowledge.  

Chapter 7 presents the second analytic category. It is about features 
of the situation of formulation of algebraic generality in shape patterns. 
The category deals with challenges the students face when they shall 
transform into algebraic notation formulae and mathematical statements 
they have expressed informally in natural language. These challenges are 
divided into two different categories: recursive and explicit approaches 
to generality; and, engagement with the syntax of algebra.   

Chapter 8 presents the third analytic category. It is about features of 
the situation of validation. The category deals with challenges related to 
students’ justification of algebraic generality in shape patterns. These 
challenges are divided into two different categories: pertinence of con-
cepts (spontaneous versus scientific concepts); and, validity of reasoning 
(empirical reasoning versus formal, mathematical reasoning). 

In the next chapter I present the first analytic category. It is referred 
to as Constrained feedback potential in adidactical situations. 
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6 Constrained feedback potential in 
adidactical situations 

In this chapter I present one of the analytic categories that emerged from 
the exploration of data from student teachers’ collaborative work on al-
gebraic generalisation of shape patterns. I analysed the data with the 
purpose of answering the research question presented in Chapter 4: 
“What factors constrain students’ appropriation of algebraic generality in 
shape patterns?” The analysis draws on the epistemological and didacti-
cal analyses of the mathematics potential in the tasks presented in Chap-
ter 5. The analytic category is called Constrained feedback potential in 
adidactical situations.  

I show how the feedback potential in adidactical situations is con-
strained by these features: by the design of the tasks (Section 6.1); by the 
students’ unfamiliarity with the concept of a mathematical statement, 
and by the teacher’s use of a generic example without the students’ 
awareness of it (Section 6.2); and, by incomplete institutionalisation of 
previous knowledge (Section 6.3). Next, a summary of the findings is 
presented (Section 6.4). The chapter closes with a discussion of how the 
identified constraints constitute shortcomings in the milieu for algebraic 
generalisation of shape patterns (Section 6.5).  

Notes from conversations I had with teacher Erik were written in my 
research journal on the same day the conversations took place. These 
notes will be referred to by RJ_dd.mm.year.   

6.1 Features of the objective milieu arising from the 
design of the tasks 

In this section I present the first subcategory of Constrained feedback 
potential in adidactical situations. The phenomenon described by this 
subcategory is manifested in two circumstances: in how students’ ade-
quate solutions to subtasks fail to prepare a milieu for appropriation of 
the target mathematical knowledge; and, in how the idea of proof as in-
tended by the teacher is not apparent to the students.  
6.1.1 Adequate solutions to subtasks do not prepare an adequate 

milieu for the (teacher’s) intended mathematical statement   
According to the epistemological analysis presented in Section 5.1.3, the 
target mathematical knowledge in Task 3 (Figure 6.1 on the next page) is 
a theorem about equivalence of two expressions. More explicitly, the 
target knowledge is algebraic generalisation of equivalence relations be-
tween square numbers and sums of odd numbers. Teacher Erik who has 
designed the tasks claimed that the goal of Task 3 was for the students to 
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express in natural language, and transform into algebraic notation, the 
mathematical statement that the sum of the first n odd numbers is equal 
to the n-th square number (RJ_06.02.2004).  

 
Task 3 (Part I) 
 
Look at the shapes below.84 You may use centicubes to concretise.  

    
         1                2                           3     
  
a) How many cubes will there be in the fourth shape? And in the fifth? 
b) How many do you think there will be in shape number 10? And in shape  
 number n? 
c) What kinds of numbers are present in these shapes? In each row, and totally 
 in the shape? 
d) Can you express what the shapes seem to show, as a mathematical state-
 ment?85 
 - In words? 
 - In symbols? 

 
Figure 6.1. Task 3 (Part I) 

 
Both Group 1 and Group 2 answer Task 3a by counting components 

of the first few elements of the shape pattern and noticing that the nu-
merical value of an element is equal to the square of the element’s posi-
tion. Based on this observation, the students conjecture by naïve empiri-
cism (“guess-and-check”) that the tenth shape has 100 components and 
that the n-th element has 2n  components. Students of both groups an-
swer correctly the next question about what types of numbers there are in 
the rows and totally in the elements of the shape pattern (that it is odd 

                                         
 
 
 
 
 

84 The notion “shape” (in Norwegian, “figur”) is used in the mathematical tasks and by the 
observed students and teachers to refer to an element of a shape pattern. I will however use 
the notion “element” (as introduced in Chapter 5) in the report, but use the notion “shape” 
when I quote from tasks and participants’ speech. 
85 “Mathematical statement” has been translated into English from the Norwegian expression 
“matematisk setning” which is used in Task 3 and Task 4.  
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numbers and square numbers, respectively). Both groups’ solution to the 
question about “a mathematical statement that expresses what the ele-
ments seem to show”  is given in terms of a formula that expresses that 
the n-th element has 2n  components. It is symbolised as 2Fn n=  by stu-
dents of Group 1,86 and symbolised as 2

na n=  by students of Group 2.  
There is no feedback potential in the situation of action related to 

arithmetic relations between odd numbers and square numbers (the con-
cept at stake). The students act as practical persons in accordance with 
the principle of economy of logic (Bourdieu, 1980, as cited in Balacheff, 
1991) and produce solutions to Tasks 3a, 3b, and 3c in a most efficient 
way. This means that they count the components and reason by naïve 
empiricism to find the answer for the tenth and n-th element. In doing 
this they do not focus on the structure of the elements (that the total 
number of components of an element is equal to the sum of the compo-
nents in each row).  

Considered separately, the students’ solutions are adequate. Howev-
er, their solution to the question about the types of numbers in rows and 
elements as a whole (presumably meant to draw attention to the concept 
aimed at) does not provide them with the possibility to adjust their ac-
tions towards the formulation of a mathematical statement about a rela-
tionship between odd numbers and square numbers. The only way their 
knowing the answer to this question might have contributed to the for-
mulation of a mathematical statement, would have been if they had tried 
to figure out the teacher’s intention with the task. But that would have 
been a solution by didactical reasoning, and consequently, a threat to the 
adidactical situation. Hence, the problem is not the students’ existing 
knowledge. There is a problem with the design of the adidactical situa-
tion; the design of Task 3 does not provide the students with knowings 
that enable them to formulate a mathematical statement, and, conse-
quently, appropriate the target mathematical knowledge. The lack of fo-
cus on the target mathematical knowledge (arithmetic relations between 
odd numbers and square numbers) makes the objective milieu inappro-
priate.   

                                         
 
 
 
 
 

86 For Group 1, Fn  stands for “the n-th shape” (or, figure number n; in Norwegian the stu-
dents say “figur nummer n”). It represents the n-th member of the sequence mapped from the 
shape pattern. Standard mathematical notation (with F) would be nF  or ( )F n . 
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In the next section I present the second manifestation of Features of 
the objective milieu arising from the design of the tasks.  
6.1.2 The idea of proof as intended in Task 3 is not apparent for the 

students 
Teacher Erik has designed Part I of Task 3 with the purpose of the stu-
dents’ conjecturing the mathematical statement of an equivalence rela-
tion: 21 3 5 2 1n n+ + + + − =L . Part II of Task 3 (reproduced in Figure 
6.2) is designed to motivate the proof of the mathematical statement 
from Part I.  
 
Task 3 (Part II) 
 
The mathematical statement that you have formulated above is only based on a 
few observations. It is therefore just a conjecture. In order for it to become a justi-
fied statement, it needs to be proved. We will now look at a possible way to do 
this. 
 
Below, the staircase towers have been extended into rectangles. 

 
e) Build or draw (using two colours or symbols) the next shape in this pattern. 
f) Find an explicit formula for the total number of squares in the n-th shape. 
 Then find an explicit formula for the number of  ¨ in the n-th shape. 
g) Use this to find the number of  n in shape number n. 
h) Discuss if the conjecture from earlier in the task can be considered proved 
 now. 
i) An alternative way to prove it may be through a so-called proof by induction 
 (see last page). Those who want to go a bit further here can try that! 

 
Figure 6.2. Task 3 (Part II) 

 
Figure 6.3 (on the next page) shows the connection between Part I and 
Part II of Task 3 as intended by the teacher to prove the mathematical 
statement aimed at. According to a conversation with teacher Erik after 
the observed lessons on 6 February, 2004 (RJ_06.02.2004), the intention 
with Part II of Task 3 is that the students utilise structure (area of rectan-
gle with width n and length 2 1−n ) to express the total number of com-
ponents of the n-th rectangle by the product, (2 1)⋅ −n n . This expression 
will be referred to as Formula 1. Further, the teacher’s intention is that 
the students utilise prior knowledge of triangular numbers to express the 
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number of white squares in the n-th rectangle by 2( 1)2
2
−

⋅ = −
n n n n. 

This expression will be referred to as Formula 2.  
 

 

 
 

Figure 6.3. Intended connection between Part I and Part II of Task 3, aimed at formulation 
and justification of the mathematical statement, 21 3 5 2 1n n+ + + + − =L  

 
The number of black squares in the n-th rectangle, 1 3 5 2 1n+ + + + −L , 
will then be given by the difference between the total number of squares 
in the n-th rectangle (as given by Formula 1) and the number of white 
squares in the n-th rectangle (as given by Formula 2). 

The two groups treat the second part of Task 3 quite differently. I 
present the groups’ engagement with the proof in the following para-
graphs.  

Group 1’s engagement with proof of a conjecture (Task 3, Part II) 
As explained in the previous section, the students of Group 1 have in 
Part I of Task 3 made a statement of a function (this is their conjecture). 
That is, they have symbolised the number of components (cubes) in the 
n-th staircase tower as 2Fn n= . When they start with Part II of the task, 
they treat it as a new generalisation task, where they interpret the goal as 
finding a formula for the n-th element of the pattern of rectangles: They 
establish a formula for the number of white squares in the n-th rectangle, 
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2n n−  (Formula 2), on the basis of guess and check. Further, they use 
the generalisation from Part I, 2n , to express the total number of compo-
nents in the n-th rectangle as the sum of white squares and black squares, 
the result of which is 22n n−  (Formula 1).  

The students seem to be unaware of the role the rectangle pattern has 
in proving the conjecture from the first part of the task. This is indicated 
by Alice’s utterance in turn 574 below (for transcription codes, see Ap-
pendix F). Figure 6.4 illustrates Group 1’s engagement with Task 3.  

 
 

 
 

Figure 6.4. Group 1’s engagement with Task 3, illustrating how they treat the connection 
between Part I and Part II of the task 

  

574 Alice: The reason why we used n squared here [in Formula 1] is 
that we used n squared in the first part of the task. Then it 
was just carried forward down here. 

575 Teacher E: Well, it was just carried forward. But then you haven’t come 
any further in a way, because you have just carried the con-
jecture [from Part I of Task 3] forward.  

[Task 3 (Part II), Group 1] 

This means that they take as given (justified) what they were supposed to 
prove (their conjecture that the number of squares in the n-th staircase 
tower is equal to 2n ), which implies that the proof process collapses, as 
recognised by the teacher in turn 575.  

What these students have produced (Formula 1) is an explicit formula 
for the total number of squares in the n-th rectangle of the shape pattern 
in Task 3 (Part II). There is no explicit requirement in Task 3f that the 
formula should be justified. The students are convinced by empirical rea-
sons that Formula 1 is correct because it gives the expected numbers in 
several cases. There is, however, an introductory text to the second part 
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of Task 3 which makes clear that the aim of the second part of Task 3 is 
to prove the (conjectured) mathematical statement from the first part of 
the task:  

The mathematical statement that you have formulated above is only based on a 
few observations. It is therefore just a conjecture. In order for it to become a 
justified statement, it needs to be proved. We will now look at a possible way to 
do this. [Introductory text, Task 3, Part II] 

This information changes the didactical contract because, from an epis-
temological perspective, the introductory text adds constraints to the 
task. The presented aim of proving implies that Task 3f is not just a mat-
ter of finding explicit formulae by naïve empiricism; the formulae need 
to be established by theoretical reasoning (using axioms or previously 
proved theorems, or structural relationships).  

The students’ treatment of Task 3f as a new generalisation task (iso-
lated from the first part of Task 3) as described above, shows that they, 
either, do not pay attention to the introductory text, or, that they do not 
know how to handle the implications of the introductory text with re-
spect to establishment of the requested formulae. In either case, it is an 
instance of weakness in the milieu for establishment of generality in 
shape patterns. There is no feedback in the milieu that might inform their 
actions and guide them to establish a formula by utilising structural rela-
tionships. The adidactical situation turns into a didactical situation when 
the teacher tells them that their formula is inadequate (turn 575). 

Group 2’s engagement with proof of a conjecture (Task 3, Part II) 
Recall from the previous section that the outcome of Part I of Task 3 for 
Group 2 (as for Group 1) was the statement of a function, symbolised as 

2
na n=  (this is their conjecture). That is, they have not formulated the 

teacher’s intended mathematical statement of equality between the n-th 
square number and the sum of the first n odd numbers. During their en-
gagement with Part II of the task, the students of Group 2 establish an 
appropriate expression for the total number of squares in the n-th rectan-
gle (Formula 1) by a structural argument: They use a generic example to 
establish that the total number of squares of the n-th rectangle is equiva-
lent to the product of n (width) and 2 1n −  (length). Since a generic ex-
ample is a valid proof (Balacheff, 1988), Formula 1 can be considered 
justified. However, an expression for the number of white squares in the 
n-th rectangle (Formula 2) appears to be established by naïve empiri-
cism, as indicated by the excerpt from the students’ dialogue below. The 
exchange takes place after Paul has written a formula for the number of 
white squares in the n-th rectangle, succeeded by examples where the 
formula is evaluated for certain values of n (Figure 6.5 on the next page). 
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Figure 6.5. Paul’s formula for the number of white squares in the n-th rectangle, succeeded 

by examples where the formula is evaluated for certain values of n (positions) 

 
249 Anne: n times n minus one? 
250 Paul: Look at the second figure [Pause 1-3 s] It is [indecipherable] 
251 Helen: Yes, this is correct now. 
252 Anne: Well? Yes. 
253 Paul: Figure number two is [Pause 1-3 s] n is equal to 2.  
254 Anne: Yes.  
255 Paul: If you put 2 in, put 2 minus 1 in [evaluating the expression 

( 1)n n− for 2n = ] 
256 Anne: Well, I can see that you have put [2] in, but I have to kind of 

see it [Pause 1-3 s] understand it 
257 Helen: But how did you figure it out [to Paul]? 
258 Anne: yes? 
259 Paul: Well, how shall I put it? [Pause 1-3 s] In the second figure, I 

thought it was something about n. But how I figured it out, I 
don’t know. 

[Task 3 (II), Group 2] 

The continuation of the dialogue shows that they agree that Paul’s for-
mula is correct because it gives the expected value (the number of white 
squares of the elements in the rectangle pattern) in several cases. This 
implies that Group 2’s formula for the number of white squares is justi-
fied by naïve empiricism and therefore not proved (Balacheff, 1988).  

Then they represent the number of black squares by the difference 
between the total number of squares and the number of white squares in 
the n-th rectangle. But because Formula 2 is not proved, the proof pro-
cess collapses and, hence, the conjecture is not justified. The lack of ri-
gor in their argument is illustrated by dotted lines in Figure 6.6 (on the 
next page). The students, however, do not experience this deficiency, 
and believe, because they have found the number of black squares in the 
n-th rectangle to be equal to 2n , that they have proved the conjecture 
from the first part of the task: 

274 Anne: Black squares, then we just take the total number minus the 
white ones, because by this we prove that, then we will see 
if it is in agreement with the other formula [ 2

na n= ] 
M    
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285 Anne: Yes indeed, it is the same. That’s why it was written that we 
were going to prove it. (Paul: yes). That’s what we have 
done now. 

286 Paul: Right. 
287 Helen: Uh huh. 
[Task 3 (Part II), Group 2] 

 
 

Figure 6.6. Group 2’s engagement with Task 3, illustrating how they treat the connection 
between Part I and Part II of the task 

 
Group 2 follows the structure of a proof as motivated by the design 

of Task 3. It is relevant to remark that because the students have made 
the statement of a function instead of a theorem (Part I of Task 3), they 
may not see the need for a proof. However, the data I have collected do 
not enable me to investigate how their engagement with the proof might 
have been different if they had proposed a theorem in Part I of the task. 
The problem with Group 2’s treatment of the task is that they seem una-
ware that proving a conjecture depends on justification of each statement 
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(Formula 1 and Formula 2) that constitutes the argument.87 The students 
have found the same symbolic expression for the general member of the 
sequence mapped from the shape pattern in two different ways. Accord-
ing to their reasoning this implies that the symbolic expression is correct 
(turn 285). But, as explained above, the statement constituted by Formu-
la 2 appears to be established by guess and check and is, therefore, not 
justified.    

Comments on the process of proof 
The only feedback provided by the milieu is the students’ verification 
that the conjectured formulae are correct in particular cases (naïve em-
piricism). That formulae established by naïve empiricism are inappropri-
ate constituents of mathematical proofs is not made clear to the students 
through the objective milieu; it is only through the teacher’s intervention 
they are made aware of it. The proof of the conjecture is orchestrated 
through Task 3f and Task 3g, in which the students might be guided to 
find the appropriate formulae and do the appropriate operation. There is, 
however, no guidance in the task about mathematically valid ways to 
establish the desired formulae.  

The students do what they believe is their obligation according to the 
didactical contract; to produce solutions to the given mathematical tasks, 
one at a time. Task 3h (“Discuss if the conjecture from earlier in the task 
can be considered proved now”) is designed to trigger them to take a 
broader perspective and to reflect on the task as a whole; that is, if the 
conjecture from earlier in the task can be considered proved after they 
have done Part II. As a response to Task 3h, students of Group 1 have 
the following conversation:  

787 Alice: Now it is proved because we have indeed gone the whole 
way once more. 

788 Sophie: Yes. 
789 Ida: But the way we started, why wasn’t it proved then? 
790 Alice: Because we hadn’t taken the complete, heavy way as we 

have done now. 
791 Ida: I don’t quite understand what heavy way we have gone. 

                                         
 
 
 
 
 

87 The conjecture formulated by the students in Part I of Task 3 is a function (not a theorem 
as required). The students then conceive the proof (required by Part II of Task 3) to be estab-
lished by the observation that they arrive at the same expression via the pattern of rectangles 
as they found in the first part of the task (i.e., 2n ).  
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792 Alice: Because now we didn’t look only at [Pause 1-3 s] we did not 
look, we hadn’t drawn them all and [Pause 1-3 s] well, here 
it may be a connection, and there it may be a connection. 
We rather looked at, we considered a single one and found 
out that it applied for all. 

[Task 3 (Part II), Group 1] 

Alice’s answer (turn 790) to Ida’s question about what distinguishes 
their original formula from the one developed by the teacher’s guidance 
gives no substantial information. Alice’s explanation just repeats what 
she has already said, that it is proved because they have taken the “heavy 
way”. It says nothing about the different character of the two formulae in 
terms of why the second formula is valid whereas the first is not. In her 
response to Ida’s not understanding what is meant (turn 791), Alice does 
however to some extent use the character of a generic example (turn 
792). This will be further discussed in Section 8.3.   

As a response to Task 3h (consideration whether their conjecture is 
proved), students of Group 2 claim that, because they have got the same 
symbolic expression in Part II as in Part I of the task, they have proved 
the conjecture from Part I: 

280 Anne:  I get n squared, and that is equal to what we got [initially]. 
M  
284 Anne: [indecipherable] what we have [indecipherable] [Anne turns 

one page back and points at something written in her notes, 
possibly the proposed formula 2

na n= ] 
285 Paul: it will be the same [indecipherable] 
286 Anne: Yes, indeed, it is the same. That’s why it is written that we 

were supposed to prove it. (Paul: yes). That’s what we have 
done now.  

287 Paul: Yes (Helen: uh huh) 
288 Anne: [Anne looks in Helen’s notes] Because I have got it by cal-

culation and then [Pause 1-3 s] 
289 Helen: [indecipherable] I have evaluated it for a number. [Helen 

has evaluated the new formula for the black squares, 
( ) ( )2 1 1n n n n− − −  when 3n = ] 

[Task 3 (Part II), Group 2] 

They agree that because they have got the same expression (n squared), 
they have proved the conjecture from Task 3d (that the number of com-
ponents of the n-th staircase tower is equal to n squared). 

Neither of the groups reflect on Task 3 as a whole by discussing the 
role of Part I and Part II and the implications thereof; there is no discus-
sion of the nature of a mathematical proof in this context. The analyses 
of the students’ engagement with Task 3 presented in this section show 
that the idea of proof in Task 3 as intended by the teacher is not apparent 
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for the students. This is a property of the objective milieu (see Section 
2.4.4) arising from the design of Task 3. 

Comments on characteristics of the objective milieu (Sections 6.1.1 
and 6.1.2) 
The analyses of the students’ engagement with Task 3 have pointed to 
some constraints of the students’ formulation and justification of alge-
braic generality: The adidactical milieu does not have an adequate feed-
back potential that could provide the students with opportunities to ad-
just their actions. That is, there is no feedback in the milieu that would 
make the students experience the inadequacy of the function 2( )f n n=  
they have produced (Task 3, Part I). Further, there is no feedback in the 
milieu that would make the students experience the inadequacy of their 
solution to the intended justification of the mathematical object they 
have produced (Task 3, Part II). The milieu does not have qualities to 
function as the student’s antagonist system (opponent) in the learning 
process (see Section 2.4.4). This can be concretised by two features: 
First, the adidactical milieu does not include a receiver of messages, 
which the student must send in order to attain the fixed goal (in the situa-
tion of formulation, Part I of Task 3). That is, appropriate solutions to 
subtasks do not provide an appropriate milieu to produce the target 
knowledge which is a mathematical statement about relations between 
odd numbers and square numbers. Second, the adidactical milieu does 
not include an antagonist (opponent) by whom the student must be con-
fronted in order to attain the fixed goal in an exchange of opinions (in 
the situation of validation, Part II of Task 3). That is, the students use 
naïve empiricism as their logic of generalisation, and the milieu does not 
provide feedback that would make them experience the insufficiency of 
this approach. Complexity of transcending naïve empiricism will be 
elaborated in Chapter 8, where I develop the analytic category Complexi-
ty of operating in the situation of validation.  

In the next section I present the second subcategory of Constrained 
feedback potential in adidactical situations.  

6.2 Features of the milieu arising from lacking clarifi-
cation of the concepts of “mathematical statement” 
and “generic example” 

Four tasks on algebraic generalisation of shape patterns were given to the 
students in two consecutive mathematics classes (each class was divided 
into four lessons). The students engaged with Task 1 and Task 2 in the 
first four lessons and with Task 3 and Task 4 in the next four lessons a 
week later. These classes were the first (and only) classes on algebraic 
generalisation of shape patterns. The epistemological analysis of the 
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mathematics potential in the tasks presented in Chapter 5 showed that the 
tasks were different in terms of the kind of generalisation they aimed at: 
Task 1, Task 2, and Task 3 (Part II) aim at formulae for the general 
member of the sequence mapped from the respective shape patterns; 
Task 3 (Part I) and Task 4 aim at mathematical statements which express 
relations between sets of numbers (equivalence of two expressions) as 
illustrated in the respective shape patterns. (For a complete collection of 
tasks, see Appendix A).  

In this section I present the second subcategory of Constrained feed-
back potential in adidactical situations. The subcategory is concerned 
with how students’ generalisation processes are constrained by lack of 
clarification of the concepts of “mathematical statement” and “generic 
example”. The phenomenon described by this subcategory is manifested 
in three different circumstances: in the students’ establishment of a for-
mula for the numerical value of the n-th element of the shape pattern in-
stead of a theorem about an equivalence relation between square num-
bers and sums of odd numbers (as illustrated by the n-th element of the 
shape pattern); in the teacher’s use of a generic example without the stu-
dents’ awareness of its meaning; and, in Topaze effects resulting from 
lack of existence of a conjecture.  
6.2.1 Establishment of a formula for the numerical value of an ele-

ment instead of a theorem about equivalence of two expres-
sions  

The teacher presents the students with the task of formulating a mathe-
matical statement. In so doing, the teacher, it appears, seeks an object of 
a particular mathematical quality. My analysis leads me to conjecture 
that the students’ understanding of the task does not match the teacher’s 
requirement. To support this conjecture I need to examine what the stu-
dents produce, and relate it to the character of a mathematical statement, 
as presented in Section 5.1.  

Group 1’s engagement with Task 3 (Part I) 
During Group 1’s engagement with the first part of Task 3 (see Figure 
6.2 above), Sophie has constructed a table as shown in Table 6.1.  

 
Table 6.1: Number of components of the first five elements of the shape pattern, as 
produced by Sophie 

N 1 2 3 4 5 

number 1 4 9 16 25 

 
The students have verbalised that the number of components of an ele-
ment in the staircase tower pattern is equal to the square of its position. 
The excerpt from the dialogue below shows how they use this to estab-
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lish a formula for the general member of the sequence mapped from the 
shape pattern as a function of its position: 

36 Ida: The formula just has to be [Pause 1-3 s] 
37 Sophie: What do we write first?  
38 Ida:        n squared 
39 Alice: You can take f  n then 
40 Sophie: f  n [Pause 1-3 s] f ? 
41 Alice: the number of the shape 
42 Sophie: yes [Pause 1-3 s] is equal to 
43 Ida: is equal to n squared [Sophie writes 2Fn n= ] 
44 Sophie: is equal to n squared (Alice: yes) 
M 
49 Sophie: It’s just a matter of putting in [values for n] here then. Shape 

number, let’s say shape number seventeen? Does someone 
have a calculator?  

[Task 3 (Part I), Group 1] 

As accounted for in Section 6.1.1, the teacher’s intention with Task 3 is 
the students’ establishment of a mathematical statement about equiva-
lence of two expressions. Concretely, it aims at establishing that the sum 
of the first n odd numbers is equivalent to the n-th square number. In this 
form, the mathematical statement has the property of being a theorem 
which expresses an equivalence relation between square numbers and 
sums of odd numbers, a mathematical relation which is not self-evident 
and therefore needs to be proved.  

The students however, when establishing the formula 2Fn n= , are 
not making the statement of equality of two quantities. For them the 
formula seems to be a self-evident truth. It is a function which to every 
natural number n (position in the sequence) ascribes a unique number, 
2n . In turn 49 Sophie emphasises the nature of the formula as an algo-

rithm for calculation. Because the formula does not make explicit use of 
hypotheses about odd numbers or of previously proved theorems, the 
formula is a principle assumed to be true (for empirical reasons). Ac-
cording to the epistemological analysis presented in Section 5.1, their 
formula is therefore a postulate, not a theorem. That is, the students of 
Group 1 have produced a statement of a function, which is a postulate 
about the numerical value of the general element of the staircase tower 
pattern.   

When they come to Task 3d, which is about expressing a mathemati-
cal statement based on what the shape pattern seems to show, they are 
insecure about the notion “mathematical statement”. When teacher Erik, 
on his own initiative, enters the room, the following conversation takes 
place: 
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106 Ida: A mathematical statement? We have made a formula for 
[Pause 1-3 s] but how do you make a mathematical state-
ment? 

107 Teacher E:  Well, a formula is a mathematical statement if it [Pause 1-3 
s] 

108 Ida:  Yes, because we have made it with symbols actually. 
[Task 3 (I), Group 1] 

Ida’s utterance in turn 108 suggests that she interprets the teacher’s con-
ditioning in turn 107 to mean that a formula is a mathematical statement 
if represented by (mathematical) symbols. The characteristics of a math-
ematical statement are never made explicit by the teacher during the time 
spent on Task 3 and Task 4. The teacher’s response to the conjectured 
formula, 2Fn n= , is: 

114 Teacher E: Well ok, so it is [Pause 1-3 s] yes exactly, it, it is an expres-
sion for the total number of [Pause 1-3 s] squares in [Pause 
1-3 s] in shape number n.  Uh huh [Pause 1-3 s] ehm [Pause 
1-3 s] that’s fair enough [Pause 1-3 s] ehm but ehm then you 
could think, could you have expressed [Pause 1-3 s]? 

115 Ida:  The same thing with words? 
116 Teacher E: Well, or expressed the total number in another way, by 

thinking about how this shape is built up? 
[Task 3 (Part I), Group 1] 

Turns 114 and 116 show how the teacher tries to direct attention towards 
the structure of the elements of the shape pattern; that is, how the ele-
ments can be decomposed invariantly into repetitive parts, as explained 
in Section 5.1. However, the teacher’s focus in turns 114 and 116 on to-
tal number of components may reinforce the students’ conception that 
the task is about the numerical value of the general element of the shape 
pattern.  

As explained in Section 5.1, a mathematical statement is a theorem 
which can be proved on the basis of explicit assumptions. In Task 3, the 
(intended) explicit assumptions are that the rows of the general staircase 
tower have odd numbers of components: 1 at the first row; 3 at the se-
cond; 5 at the third; and, 2 1n −  components at the n-th row. Further, the 
relevant arithmetic operation (to get the total numbers of components) is 
addition of these odd numbers. The mathematical object aimed at in 
Task 3 is the statement of equivalence of two different algebraic expres-
sions for the numerical value of the general element of the shape pattern. 
The nature of this mathematical object (an equality) is different from the 
nature of a formula for the numerical value of the general element of the 
shape pattern. This issue is, however, not addressed in the course of the 
observed algebra lessons. 
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Group 2’s engagement with Task 3 (Part I) 
The engagement of Group 2 with the first part of Task 3 also makes evi-
dent insecurity about the notion of a mathematical statement. They work 
independently of the teacher in this episode: 

72 Helen: Express what the shapes seem to show, as a mathematical 
statement in words? [Pause 1-3 s] Ehm. 

73 Anne: We have probably written it in a way that [Pause 1-3 s] ehm 
[Pause 1-3 s] there are n squared number of cubes in the n-th 
shape.  

74 Helen: Right. 
75 Anne: Express what the shape seems to show as a [Pause 1-3 s] 

Well, it is the square then of [Pause 1-3 s] of [Pause 1-3 s] 
the shape [indecipherable]. Mathematical statement [Pause 
1-3 s] [Anne turns towards Paul] Do you have any formula-
tion of a mathematical statement? 

[Task 3 (Part I), Group 2] 
Anne’s utterances in turns 73 and 75 show that the students have found a 
formula that expresses that the number of components of the n-th ele-
ment is equal to n squared. The excerpt from the dialogue below sug-
gests that even if they are insecure, they find it unlikely that a mathemat-
ical statement should be more complicated than just an expression of the 
number of components of the general element: 

87 Helen: Isn’t that n squared or? [laughs a bit] 
88 Anne: na  is equal to n squared? 
89 Helen: Yes. 
90 Paul: It has to be like that [Pause 1-3 s] 
91 Anne: [Element] number n is equal to n squared. Well? Can’t be-

lieve it is supposed to be more complicated? 
[Task 3 (Part I), Group 2] 

Comments on both groups’ achievement related to Task 3 (Part I) 
The students of both groups have identified the numerical values of the 
rows of a staircase tower to be odd numbers and the numerical value of 
the staircase tower as a whole to be a square number. However, when 
they are asked to formulate a mathematical statement (intended to be an 
equivalence relation between square numbers and sums of odd numbers), 
they come up with a formula for the general member of the sequence of 
numbers mapped from the shape pattern. Whereas Group 1 denotes the 
general member by Fn  (i.e., “function-like” notation), Group 2 denotes 
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it by na (i.e., conventional notation for the n-th member of a sequence)88. 
The function produced by the groups is an empirically based conjecture 
about the general member of the sequence mapped from the shape pat-
tern which says nothing about the arithmetic relations attempted to be 
illustrated by the elements of the staircase tower pattern. It is a formula 
for the numerical value of the n-th element. 

The incomplete achievement in the situation of formulation can be 
explained by two factors. First, there is a problem with the students’ (of 
both groups) prior knowledge because they do not know the nature of a 
mathematical statement. Neither is the nature of a mathematical state-
ment explained by the teacher during his interaction with the groups. Se-
cond, there is no feedback potential in the objective milieu that could 
support their appropriation of the concept of mathematical statement 
(and approve their formulation). I conjecture that the students perhaps 
would benefit from a specification (either in the task or by the teacher’s 
intervention) what it was intended to be a statement about; that it was 
intended to be a statement about equality (i.e., a statement of equivalence 
of square numbers and sums of odd numbers).  

Teacher Erik explained in a conversation after the lesson 
(RJ_06.02.2004) that he had used the concept of mathematical statement 
in Task 3 and Task 4 in the meaning of “theorem”. His rationale for us-
ing the concept of mathematical statement was that it was likely to ap-
pear easier for the students because it was closer to natural language than 
the word theorem (conceived lower threshold).  

That the students remain unaware of the nature of a mathematical 
statement is detrimental to the situation of formulation because it de-
prives them of the possibility to formulate a conjecture about number 
theoretical relationships. The connection aimed at in Task 3 is a theorem 
about equality of the n-th square number and the sum of the first n odd 
numbers; 21 3 5 2 1n n+ + + + − =L . Task 4 aims at a theorem about 
equality of n-th square number and the sum of the n-th and the ( 1n − )-th 
triangular numbers; 2

1n nT T n−+ = , with 1 2 3nT n= + + + +L . These 
connections are equivalence relations between elements of particular sets 
of numbers. It is theoretical knowledge decontextualised from the shape 
patterns from which the equivalence relations emerge. The knowledge 

                                         
 
 
 
 
 

88 Given that a sequence is a function on the set of natural numbers, an could also be regarded 
as functional notation. 
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developed by the students, however, is formulae for numerical values of 
the general element of the given shape patterns. It is empirical 
knowledge contextualised by the shape patterns from which the formulae 
emerge.  

As explained above, the outcome from both groups’ engagement with 
the first part of Task 3 is the function 2( )f n n=  (this expression I will 
use to refer to the function produced by the groups, even if the notation 
used by the groups is 2Fn n=  and 2

na n= ). This function is not a con-
jecture that needs to be justified by a mathematical proof. It is a formula 
established on the basis of counting the components of the first few ele-
ments of the shape pattern and inferring by naïve empiricism that the 
numbers are square numbers. Hence, the milieu for the situation of vali-
dation is inadequate; there are no conjectures that need to be justified. 
For the students of Group 1 the adidactical situation collapses and turns 
into a didactical situation by teacher Erik’s interventions. This teaching 
situation produces Topaze effects, a phenomenon that will be presented 
in Section 6.2.3. The students of Group 2 continue on the second part of 
the task (the proof) without knowing that the mathematical object they 
have produced is not the one aimed at. 

The second part of Task 3 is intended to establish a theorem through 
a mathematical proof. When the students of Group 2 engage in the situa-
tion of validation they follow the steps described in the task: They ex-
press the number of components of the general element of the staircase 
tower pattern as the difference between the number of components of the 
general elements of two other shape patterns (rectangle and triangular 
numbers). The result of this process is the n-th square number, which the 
students interpret as the intended outcome: They have found, in another 
way than counting, that the number of components of the n-th element of 
the staircase tower pattern is equal to the n-th square number. There is 
nothing in the milieu that challenges them to propose any connection 
between square numbers and odd numbers. The target mathematical 
knowledge, the theorem which expresses that 21 3 5 2 1n n+ + + + − =L , 
has disappeared. It was dependent on the students’ knowing what was 
meant by a mathematical statement. When this failed to be the case, the 
students were prevented from achieving the intended learning.  

In the next section I present the second manifestation of Features of 
the milieu arising from lacking clarification of the concepts of “mathe-
matical statement” and “generic example”.  
6.2.2 A generic example for the teacher but not for the students 
In this section I present the analysis of Group 2’s engagement with Task 
4 (Figure 6.7 on the next page). I will explain how the students’ una-
wareness of the nature of a mathematical statement, combined with the 
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teacher’s use of a generic example without the students’ awareness of it, 
leads to degeneration of the algebraic generalisation process. 

 
Task 4 
 

 
 
Thorvaldsen’s museum in Copenhagen contains several floor mosaics with math-
ematical content. We looked at one mosaic last Friday, and here we shall look at 
another one. (The picture is reproduced from the book Matematik til tiden by Bjerg 
et al., 2000). 
 
This pattern can be thought of as built up by equal squared areas containing bright 
and dark mosaic tiles. On the shape below the pattern is reproduced schematically 
with n for each of the dark squared tiles and ¨ for each of the bright ones. 
 

 
 
a) If this shape were part of a sequence of shapes, what would the next one look 
       like? 
b) What kinds of figurate numbers do you find in the bright and the dark areas,  
       and in the shape as a whole? 
c)    Express what the shape tells you about these numbers in terms of a mathe- 
       matical statement. 

 
Figure 6.7. Task 4 

 
The students have drawn what they define to be the first three ele-

ments of a shape pattern (Figure 6.8 on the next page). They have found 
that for the first element of this shape pattern (a 5x5 square), the number 
of black tiles is equal to the sum of the first four natural numbers, and 
the number of white tiles is equal to the sum of the first five natural 
numbers. The students have observed that this is a regularity that applies 
also for the next two elements of the shape pattern. That is, they have 
verified by inspection that for the second element (a 6x6 square), the 
number of black tiles is equal to the sum of the first five natural num-
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bers, and the number of white tiles is equal to the sum of the first six 
natural numbers, and likewise for the third element. They have, however, 
not identified the sums of natural numbers to be triangular numbers. 

 

 
 

Figure 6.8. Continuation of the shape pattern invented by Group 2 (Task 4a) 

 
When they come to Task 4c, they wonder what is meant by “figurate 

number” and “mathematical statement”, and get teacher Erik to help 
them. Teacher Erik explains that the question about figurate numbers is 
about being down on the “bedrock” looking for standard numbers that it 
is common to have in one’s “toolbox”. The teacher thereafter asks what 
the students recognise if they look at the first element as a whole. The 
subsequent exchange which takes place is this: 

591 Paul: Well, that it is five squared. 
592 Teacher E: Right. 
593 Anne: Yes, it is indeed squares, and then [Pause 1-3 s]  
594 Teacher E: Yes, it is indeed squares, square numbers. 
595 Paul: And then you have nine and sixteen as the numbers of 

[Pause 1-3 s] no, ten perhaps? 
596 Teacher E: And then there are the black and white ones? Do you recog-

nise them? 
597 Anne: Fifteen, twenty one [Pause 1-3 s] ehm [Pause 1-3 s] 
[Task 4, Group 2] 

In turn 591 Paul focuses on the first element (a 5x5 square) of the shape 
pattern. I interpret his words here to suggest that he continues to look at 
this element in turn 595 and refers to the number of black and white tiles 
of the 5x5 square. The numbers he suggests at first are wrong, but he 
then makes a new suggestion which is right for the number of black tiles 
of the first element. The teacher does not directly respond to Paul’s con-
tribution, and when the teacher asks if they recognise the black and white 
tiles (turn 596), Anne responds by giving the number of black and white 
tiles of the second element. This seems to make Paul insecure about what 
the teacher asks for; he wonders whether it is only the first element or it 
is the sequence of elements they are supposed to consider:  

598 Paul: If we are supposed to see the connection, it is only this very 
shape we shall look at now? [Draws a curve with his pencil 
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around the element given in the task] It is not the next 
shapes we have made [points at the succeeding elements 
drawn in his notebook when he says “next”]? 

599 Teacher E: You may well look at it as it stands there [Pause 1-3 s] uh 
[Pause 1-3 s] [indecipherable] 

600 Paul: Not further, ok. 
[Task 4, Group 2] 
I interpret the teacher’s response in turn 599 as confirming that it is 

satisfactory that the students look at the element given in the task (the 
5x5 square) as a basis for finding answers to Tasks 4b and 4c. It is plau-
sible that the teacher takes this stance as a consequence of seeing the 5x5 
square as a generic example. This element of the shape pattern is an ex-
ample which illustrates that the sum of the fourth and the fifth triangular 
numbers is equal to the fifth square number. It is generic in the sense that 
it is a representative of a class of elements which have the property that 
they are squares which illustrate that the n-th square number is the sum 
of the ( 1n − )-th and the n-th triangular numbers.  

It is important for the analysis of the students’ outcome of engage-
ment with Task 4 to note that these general properties are not addressed 
in the classroom situation. In the presentation of my analyses, when I 
refer to examples as being generic, it is a consequence of my conceptual-
isation of them as having this character, not because the teacher or the 
students refer to them as being generic. The teacher does not express to 
the students that he uses the 5x5 square in the sense of a generic exam-
ple, nor does he use the terms “generic example” or “generic”. The utili-
sation of a generic example appears to be implicit in the teacher’s ap-
proach. The stance taken by the teacher about the sufficiency of looking 
at one element of the shape pattern (genericity of the 5x5 square) is con-
sistent with the formulations in the task, a correspondence which may be 
expected since the task is designed by the same teacher. Applications (in 
Task 4) of grammatical number singular as manifested in the notion “the 
shape” are indications that the presented element (5x5 square) is seen as 
generic:  

What kinds of figurate numbers do you find in the bright and the dark areas, and 
in the shape as a whole? [Task 4b, emphasis added]  

Express what the shape tells you about these numbers in terms of a mathematical 
statement. [Task 4c, emphasis added] 

After having observed that the 5x5 square contains ten black tiles and 
fifteen white tiles, they look at the next elements of the shape pattern. 
They observe that the elements develop by adding to the white tiles an 
extra row (at the top) with one more tile, and that the number of black 
tiles of a successive element is the same as the number of white tiles of 
the present element. The teacher reminds the students that they have ear-
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lier written ten as a sum of the first four natural numbers, and further, 
tells them that numbers with this structure are referred to as triangular 
numbers. He refers to what I interpret as (for him) a generic example 
when he continues: 

640 Teacher E: So this is actually the clue here. That this element, I think 
I’ll just tell you, that this shape represents a kind of connec-
tion between triangular numbers and square numbers. 

[Task 4, Group 2] 
This is succeeded by a comment by Anne that she had been insecure 
what was meant by the concept of “figurate numbers”. After some ex-
changes between the teacher and her, she turns attention to the concept 
of mathematical statement in Task 4c: 

651 Anne: Express what the shape tells about these numbers in terms of 
a mathematical statement [recitation from the task]. Are we 
supposed to write it as a formula or shall we formulate it? 

[Task 4, Group 2] 

The teacher responds by reinforcing attention towards the same element 
(the 5x5 square), which I suggest the teacher is using as a generic exam-
ple: 

652 Teacher E: Well, then you can think of that one. [He points at the 5x5 
square presented in the task] If you look at it as a whole, 
what square number is it that it [Pause 1-3 s] shows us? 
[Pause 1-3 s] What position? 

653 Helen: Five or? 
654 Anne: What number in the series or? 
655 Teacher E: What number in the series of square numbers, right.  
656 Anne: Well, I can imagine it is [Pause 1-3 s] the fifth then. 
657 Teacher E: The fifth, right. 
658 Anne:  Because that would have been good for us [smiles] 
659 Teacher E: Yes. [Students laugh] Well, but here we don’t have much 

choice, really. It is the fifth, it is twenty five, it is square 
number five. (Anne: uh huh). And if we think of it as com-
posed by triangular numbers (Anne: yes) then you can think 
of [Pause 1-3 s] what position in the series of triangular 
numbers is that which these black and white [components] 
represent? 

[Task 4, Group 2] 

I interpret the teacher’s responses in turns 652, 655, 657, and 659 as 
constraining the students’ possibilities to develop the knowledge aimed 
at (a theorem which asserts equivalence of square numbers and sums of 
two consecutive triangular numbers). The interpretation is grounded in 
two circumstances. First, the nature of a mathematical statement has not 
been explained. The analysis presented in the previous section showed 
that the outcome of students’ engagement with Task 3 was a formula for 
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the number of components of the general element of the shape pattern 
instead of (as intended by the teacher) a mathematical statement about 
equivalence of two different expressions for the number of components 
of the general element. During engagement with Task 3 there was no 
feedback in the milieu that had the potential to challenge the students’ 
formula and adjust their conception of a mathematical statement. Based 
on that experience, it is plausible that the students, during engagement 
with Task 4, remain unaware that the mathematical statement aimed at is 
a theorem about equivalence of two different expressions for the number 
of components in the general element of the shape pattern.  

Second, the fact that at the teacher uses a generic example apparently 
without the students’ consciousness about it, contributes to the students’ 
comprehension of the particular example as representing a mathematical 
statement in its own right. Teacher Erik leaves the group room after turn 
659 (in the transcript above), and the students collaborate to find the po-
sitions of the triangular numbers from which the fifth square number is 
constructed. The outcome of their engagement with Task 4c is the ex-
pression in natural language of the property of one particular shape; the 
fifth square number is constructed from the fourth and the fifth triangular 
numbers. They make no attempt to generalise this characteristic to apply 
to all elements of the shape pattern, neither in natural language, nor in 
algebraic notation.  

682 Paul: Well, a person who could figure out a formula for this, he 
would be good [laughs]. 

683 Anne: No, but it is not written (Paul: no) that we shall have a for-
mula (Paul: yes). We are supposed to express it as a mathe-
matical statement. We have done that now. It is not very 
good, but we have emphasised what is relevant, I think. 

[Task 4, Group 2] 
Recall that Anne asked teacher Erik if they were supposed to write the 
mathematical statement as a formula or just formulate it (turn 651 in the 
transcript on the previous page). Paul’s and Anne’s utterances (turns 682 
and 683 in the transcript above) indicate that they have interpreted the 
teacher’s response in turn 652 (previous page) to mean that a mathemati-
cal statement in this context is meant to be just a formulation about the 
numbers in the particular shape. Paul’s utterance in turn 682 indicates, 
by the emphasis of the word “formula” and the way he laughs, that he 
thinks it may be impossible to establish a formula that expresses what 
the element presented in the task tells you about the numbers involved. It 
is plausible that their stance is influenced by what they possibly interpret 
as the teacher’s rejection (turn 652) that the intended mathematical ob-
ject is a formula. 
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What is reported above shows how the generalisation process intend-
ed in Task 4 collapses. The students remain unaware that the aim of the 
task is to establish a theorem about a number theoretical relationship 
(equivalence of square numbers and the sum of two consecutive triangu-
lar numbers). The generalisation process is obscured by two factors: The 
first is a lack of clarification of what is meant by a mathematical state-
ment; the students interpret the teacher to mean that they shall not find a 
formula, but formulate a connection in natural language. The second fac-
tor is the use of the singular form of the noun “shape” in Task 4c, ac-
companied by what the students’ interpret as the teacher’s confirmation 
that they can just consider the 5x5 square. Underlying both factors is 
what I interpret to be the teacher’s use of a generic example without the 
students’ awareness of it. The described factors are detrimental to the 
generalisation process in the way they steer the students’ attention away 
from generality and towards particularity.  

The students’ unawareness of the nature of a mathematical statement 
and the teacher’s use of a generic example without the students’ aware-
ness of it, are features of the milieu which constrain the students’ possi-
bility to solve the problem in the reference situation (the task designed 
by the teacher). When Anne asks the teacher what is meant by a mathe-
matical statement, it indicates that the adidactical situation devolved to 
the students is not appropriate because it depends on knowledge which 
the students do not have. The teacher, however, instead of giving them 
the definition of a mathematical statement, directs attention to the 5x5 
square. This I interpret as an attempt from the teacher to try to keep the 
didactical relationship intact and rescue the adidactical situation by not 
telling the students the answer (thereby reinforcing their possibility to 
find the answer themselves).  

It is relevant that the teacher believes that the students know the con-
cept of mathematical statement (RJ_06.02.2004). It is therefore plausible 
that he interprets Anne’s question after she has recited Task 4c (turn 
651) to signify a problem with seeing the structural relationships of the 
elements of the shape pattern, and not a problem with the concept of 
mathematical statement per se. For that reason, when he responds to the 
students’ questions, he tries to help them discover the structure of the 
elements (by utilising a generic example) so they can develop the 
knowledge aimed at; an equivalence relation between square numbers 
and the sum of two triangular numbers. But, as described above, the stu-
dents’ interpretation of the teacher’s (generic) example as complete in 
itself, without attention to general properties, terminates the generalisa-
tion process. Another incidence of the teacher’s use of a generic example 
without the students’ awareness of it is included in the next section.  
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In the next section I present the third manifestation of Features of the 
milieu arising from lacking clarification of the concepts of “mathemati-
cal statement” and “generic example”.  
6.2.3 Topaze effects resulting from students’ production of an unin-

tended mathematical object  
Section 6.2.1 showed that both groups, in the adidactical situation con-
cerned with Task 3d (“…express what the shapes seem to show, as a 
mathematical statement”), have made a formula for the numerical value 
of the general element of the actual shape pattern in terms of the function 

2( )f n n= . As explained in Section 6.2.1, when teacher Erik observes 
that the students of Group 1 have made this function, he does not tell 
them that it is not a mathematical statement. Rather than directly refus-
ing their formula, he acknowledges that what they have got is an expres-
sion for the total number of components in the general element. Further, 
he encourages them to express the total number of components of the 
general element in another way by directing their attention towards 
structure: 

116 Teacher E: Well, or expressed the total number in another way, by 
thinking about how this shape is built up? 

[Task 3 (Part I), Group 1] 
After Sophie has expressed that the next element is built by adding a row 
to the current element (verbalised as “adding a line”), the following ex-
change takes place:  

133 Teacher E: And then we build it line by line [Pause 1-3 s] So we are 
concerned with adding numbers [Pause 1-3 s] in order to get 
the total number [hesitantly] [Pause 1-3 s] Shape number 
two is one plus three [Pause 1-3 s] and the next shape is one 
plus three plus five [Pause 1-3 s] 

134 Alice: So you [Pause 1-3 s] just increase all the time, so if [Pause 
1-3 s] there is one (Teacher E: uh huh) one plus three 
(Teacher E: uh huh) one plus three plus five (Teacher E: uh 
huh) one plus three plus five plus seven (Teacher E: uh huh) 
one plus three plus five plus seven plus nine. 

135 Teacher E: Yes, exactly.  
136 Alice:  And like this the whole way upwards. 
137 Teacher E: And instead of saying this, what could you say that you are 

doing in this adding process? [Pause 1-3 s] Now you have 
said it with examples, one plus three plus five plus seven, 
but what are you actually adding here now? [Ida looks at Al-
ice, then in Sophie’s notes] 

138 Alice: The odd numbers in this series. [Alice has a cheerless facial 
expression]  

139 Teacher E: Yes, so it is. Adding odd numbers. And what numbers do 
you get as an answer? [Teacher in an excited voice; Alice 
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strokes her eyes] What kind of numbers do you get as an an-
swer? 

140 Alice: Square [Pause 1-3 s] what kind of numbers I get as an an-
swer? 

141 Teacher E: When you are adding the odd numbers in this way? 
142 Alice: Square numb [carefully] 
143 Teacher E: Then you will get a square number, indeed. This is almost a 

little discovery [Pause 5 s] which is at least such that [Pause 
1-3 s] if I have asked, what happens if I add, what kind of 
numbers do you get if you add the first ten odd numbers? 
(Alice: uh huh). If I had asked you this question this morn-
ing, then you sure couldn’t have answered: Then I’ll get the 
tenth square number. [Alice shakes her head and says: no] 
So this is not something quite obvious, which you just know 
without any more fuss. This, you can say, is the idea of a 
mathematical statement, that nobody knows it without fur-
ther thinking. A piece of work has to be done, and that is the 
process which has been going on here now, which [Pause 1-
3 s] which is resulting in [Pause 1-3 s] it actually is like this, 
that if I add the first three odd numbers, I will get the third 
square number. [Alice and Sophie nod and say: uh huh. Ida 
leans her head in her arm, looking down at the table] Well, 
if I add the first four odd numbers, I will get sixteen, which 
is the fourth square number, oh yeah, connection in the 
world of numbers, in a way. [Ida nods and looks down at the 
table] It looks like this, as if it’s going to be like this. 

 [Task 3 (Part I), Group 1] 

In turn 133 the teacher claims that building an element of the shape 
pattern line by line corresponds to adding numbers, and offers the second 
and third elements as examples. Alice’s responses in turns 134 and 138 
are evidence that she understands that the teacher describes a sequence 
of sums of consecutive odd numbers. However, Alice’s hesitation (turns 
140 and 142) and her repetition of the question (turn 140) when the 
teacher asks what kind of numbers they will get when they add the odd 
numbers, indicate that she has not got a clear idea of the relationship be-
tween the sum of odd numbers and the resulting number. It may be that 
Alice’s response in turn 134 is just a matter of repeating the structure 
(adding consecutive odd numbers) of which the teacher has given the 
first two examples. The fact that Alice does not relate ordered elements 
to her listing of the sums in turn 134 (as the teacher did in his examples 
in the preceding turn) supports the interpretation that she has not ob-
served the nature of the relationship between square numbers and odd 
numbers (that the n-th square number is equal to the sum of the first n 
odd numbers).   

I interpret what is described above as an instance of a Topaze effect 
(Brousseau, 1997): The teacher’s intention is the students’ appropriation 
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of the equivalence of the n-th square number and the sum of the first n 
odd numbers. The students have found (by extrapolating the number of 
components of the first few elements) that the total number of compo-
nents of the general element is given by the n-th square number. The 
teacher tries to make them see that the total number of components can 
be constructed also by adding the number of components of each row 
(turn 133). The idea is that this would enable the students to conjecture 
that the n-th square number is equal to the sum of the first n odd num-
bers. The teacher asks what kind of numbers they add and what kind of 
numbers they get (turns 137 and 139). Alice gives correct answers (turns 
138, 140, 142), though hesitatingly with respect to the kind of number 
they get. The teacher’s questions about types of numbers are however 
not focused on the target knowledge (the equivalence relation) per se. 
They enable Alice to give appropriate answers without dealing with the 
original issue, the equivalence relation. This is an instance of a Topaze 
effect, the outcome of which is that the target knowledge has disap-
peared. 

When the teacher in turn 143 reveals that the sum of the first ten odd 
numbers is equal to the tenth square number, I interpret him as using a 
generic example which for him is a representative of the equivalence re-
lation between the n-th square number and the sum of the first n odd 
numbers. Later in the same turn he exemplifies this relation for 3n =  
and 4n = . When the teacher characterises Alice’s preceding utterances 
as “almost a little discovery”, it is an incidence of a Jourdain effect, 
which is a kind of Topaze effect. A Jourdain effect is characterised by 
the teacher’s disposition to “recognize the indication of an item of scien-
tific knowledge in the student’s behaviour or answer, even though these 
are in fact motivated by ordinary causes and meanings” (Brousseau, 
1997, p. 26). The teacher recognises in Alice’s utterances the equiva-
lence relation that he aims at, but there is no evidence in Alice’s utter-
ances that she is aware of the nature of the relationship between odd 
numbers and square numbers. Her hesitation in turns 140 and 142 sug-
gests that she does not understand what the teacher is after.  

Section 6.2 has presented a feature of the milieu arising from the stu-
dents’ unawareness of the nature of a mathematical statement. The con-
cept “mathematical statement” is questioned by students in both groups, 
but is not clarified. This feature of the milieu has some important effects 
on the students’ algebraic generalisation processes: First, it has been 
shown how the students establish a postulate instead of a theorem. This 
gives rise to a shortcoming in the milieu for validation, the analysis of 
which will be presented in Chapter 8. Second, it has been shown how the 
students’ lacking awareness of the nature of a mathematical statement 
together with the teacher’s use of a generic example without the stu-
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dents’ awareness of it, constrain the generalisation process. Third, it has 
been shown how the fact that the students have made the statement of a 
postulate (a formula for the number of components of the general ele-
ment) instead of a theorem produces Topaze effects in the teaching situa-
tion.  

In the next section I present the third subcategory of Constrained 
feedback potential in adidactical situations.  

6.3 Features of the milieu arising from incomplete in-
stitutionalisation of previous knowledge 

In this section I present the third subcategory of Constrained feedback 
potential in adidactical situations. The phenomenon described by this 
subcategory is manifested in three different circumstances: in a conjec-
ture that has not been institutionalised and therefore is not reusable in a 
new context; in a “malformula” resulting from incomplete institutionali-
sation of syntax of recursive formulae; and, in the teacher’s assumption 
about the outcome from a previous lesson which does not accord with 
the achieved outcome. 
6.3.1 Non-reusability of knowledge originated by Topaze effects  
As explained in the previous section, teacher Erik has exemplified in 
natural language for the students of Group 1 the equivalence relation 
aimed at in Task 3. That is, he has told them that the sum of the first n 
odd numbers is equivalent to the n-th square number for particular values 
of n (i.e., 3n = , 4n = , and 10n = ). The teacher then writes down in 
mathematical symbols the equality in two particular cases and in the 
general case (in the last case he omits the expression for the n-th odd 
number) as shown in Table 6.2. Further, the teacher gives them the task 
of symbolising the n-th odd number. I will in Section 7.1.5 describe and 
analyse their attempt to represent the n-th odd number in algebraic nota-
tion. Now, I turn to the presentation of evidence of what I interpret as 
non-reusability of knowledge originated by Topaze effects. 

 
Table 6.2: The equivalence relation in two particular cases and in the general case, as 
written by teacher Erik in Alice’s notebook 

2

2

2

1 3 2
1 3 5 3

1 3 5     n

+ =

+ + =

+ + + + =L

 

 

The students of Group 1 do not succeed in symbolising the n-th odd 
number whereupon they start to focus on differences between consecu-
tive members of the sequence mapped from the staircase tower pattern. 
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They do not, however, reflect on the fact that these differences are odd 
numbers. So when they find that the increase from the ( 1n − )-st member 
to the n-th member is given by ( 1)n n+ −  they are not aware that this 
expression does indeed represent the n-th odd number.89  

There are three incidents that might suggest that the students would 
see that the increase is an odd number. First, they have answered correct-
ly the subtask about what numbers they find in the rows of the staircases; 
that is, they have observed that the number of components in each row is 
an odd number. Second, Alice has answered that it is odd numbers they 
add to get the total number of components in each element (turn 138 in 
transcript presented in the previous section). Third, the teacher has ver-
bally (as explained above) and symbolically (as shown in Table 6.2) ex-
pressed that the number of components in each element of the shape pat-
tern is built up by adding odd numbers. Nevertheless, the students do not 
combine the concept of increase from one element to the next with the 
actual arithmetic expression (Table 6.2) of the number of components of 
the elements they look at. That is, they do not utilise the observation that 
the n-th member of the sequence arising from the numbers of compo-
nents of the elements is equivalent to the sum of the first n odd numbers 
(where the odd numbers denote the number of components of the rows) 
to conclude that the difference between the n-th and the ( 1n − )-th ele-
ments is equal to the n-th odd number and therefore is given by 
( 1)n n+ − . 
The conjecture that the sum of the first n odd numbers is equal to the 

n-th square number has originated through Topaze effects as explained 
in Section 6.2.3. The origin of the conjecture (for the students) is Alice’s 
correct answers to questions which are not focused on the target 
knowledge (the mentioned equivalence relation) and the teacher’s recog-
nition of these answers as indications that the target knowledge has been 
appropriated. Brousseau (1997) claims that for a theoretical conjecture to 
be institutionalised it must already have functioned as a conjecture in 
students’ discussions as a means of establishing or rejecting proofs (pp. 
161-162). At the stage in the adidactical situation where the students 
have found that the difference between two elements is given by 

                                         
 
 
 
 
 

89 The students use the concept “increase” to refer to the (first) difference between consecu-
tive members of the sequence mapped from the shape pattern. I will however use the concept 
“difference” in my text, as presented in Chapter 5. 
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( 1)n n+ − , the conjecture that the sum of the first n odd numbers is equal 
to the n-th square number has not (yet) functioned as a conjecture in the 
students’ discussions. According to Brousseau, the mentioned conjecture 
has therefore not been institutionalised. Further, because it has not been 
institutionalised, it is not reusable in a new context. This explains why 
the students of Group 1 do not use the conjecture (that the sum of the 
first n odd numbers is equal to the n-th square number) to conclude that 
the difference they have found between two elements, ( 1)n n+ − , is 
equal to the n-th odd number.  

In the next section I present the second manifestation of Features of 
the milieu arising from incomplete institutionalisation of previous 
knowledge.  
6.3.2 A “malformula” resulting from incomplete institutionalisa-

tion of syntax of recursive formulae 
Another incidence of incomplete institutionalisation of previous 
knowledge is when Group 1 struggle to write down the recursive formula 
which they have identified as representing the pattern of Task 3. As de-
scribed above, they have found the difference between the n-th and the 
( 1n − )-th element of the pattern to be given by ( 1)n n+ − . But they do 
not know how to represent in mathematical symbols that the previous 
member plus the difference is equal to the current member. Instead of 
writing 1 ( 1)n na a n n−= + + − , with 1 1a = , they propose that the formula 
is given by 2( 1)n n n+ − = . They check the validity of the formula by 
looking at the case when 3n = . Alice has written 23 (3 1) 3+ − =  and 
says: 

248 Alice: Five [Pause 1-3 s] What are we struggling with then? This is 
actually correct. The increase is indeed five.  

[Task 3 (Part I), Group 1] 
It is correct that the difference between the third and second member 

of the sequence of square numbers is five, but they fail to represent that 
it is the sum of the previous square number and the difference which is 
equal to the current square number. After a while they see the hopeless-
ness of their suggested formula because the two sides need to be equal 
and this is not the case (the only number which satisfies the equation is 
1n = ): 
274 Alice: Because, actually it doesn’t make any sense that five is 

equal to nine, in a way. 
[Task 3 (Part I), Group 1] 

It is relevant here to look at the background for their engagement with a 
recursive formula in Task 3. Task 3 is part of the assignment for the se-
cond day on which the students work on generalisation of shape pattern. 
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On the first day with generalisation of shape patterns (a week earlier), 
students of Group 1 solved Task 1 (Figure 6.9) where they found a re-
cursive formula for the shape pattern they invented (Figure 6.10).  

 
Task 1 
 
Below you see the development of the first two shapes in a pattern. 

 
a)  Draw the third and fourth shapes in this pattern. You may use the squared  
 paper. 
b)  Count the number of stars in each of the shapes you have now, and put the re-
 sults into a table. Explain how the number of stars increases from one shape to 
 the next. Use this to calculate how many stars there are in the fifth shape. 
c) What you have found in task b) above is called a recursive (or indirect) for- 
       mula. Can you express it in terms of mathematical symbols? 

 
Figure 6.9. Tasks 1a, 1b, and 1c 

 

 
 

Figure 6.10. Continuation of the shape pattern in Task 1 invented by Group 1 

 
In the following paragraphs I present the analysis of Group 1’s process 
of finding a recursive formula for the pattern in Figure 6.10 above.  

In their engagement with the pattern, the students of Group 1 have 
written the second through the eighth members of the sequence mapped 
from the shape pattern as the sum of the difference (between the current 
and previous members) and the previous member (reproduced in Table 
6.3 on the next page). Teacher Thomas then introduces the label s with 
an index n where ns  represents the number of components of the n-th 
element. The students use this to add indexed labels to the rows of their 
table, as shown in Table 6.4 (on the next page).  
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Table 6.3: Second through eighth member of the sequence mapped from the shape pat-
tern in Task 1, symbolised recursively 

(1 4) 1 5
(2 4) 5 13
(3 4) 13 25
(4 4) 25 41
(5 4) 41 61
(6 4) 61 85
(7 4) 85 113

⋅ + =

⋅ + =

⋅ + =

⋅ + =

⋅ + =

⋅ + =

⋅ + =

 

 
Table 6.4: Second through eighth member of the sequence mapped from the shape pat-
tern in Task 1, symbolised recursively 

2

3

4

5

6

7

8

(1 4) 1 5
(2 4) 5 13
(3 4) 13 25
(4 4) 25 41
(5 4) 41 61
(6 4) 61 85
(7 4) 85 113

s
s
s
s
s
s
s

= ⋅ + =

= ⋅ + =

= ⋅ + =

= ⋅ + =

= ⋅ + =

= ⋅ + =

= ⋅ + =  
 

Afterwards teacher Thomas encourages them to reason algebraically by 
challenging them to write down 20s , 43s , and 100s . This task they solve 
without any problems; they write the requested members of the sequence 
as shown in Table 6.5.  

 
Table 6.5: Three members of the sequence mapped from the shape pattern in Task 1, 
showing the relationship between consecutive members 

19 20

42 43

99 100

(19 4)
(42 4)
(99 4)

s s
s s
s s

⋅ + =

⋅ + =

⋅ + =

 

 
Further, the teacher asks them what the n-th member of the sequence 
would look like, whereupon the students write a recurrence relation be-
tween the n-th and the ( 1n − )-th members of the sequence mapped from 
the shape pattern in Task 1: 1( 1)4 n nn s s−− + = .  

With this background it may be reasonable to expect that they are 
aware of the syntax of a recursive formula; “previous member plus in-
crease is equal to current member”. But during engagement with Task 3 
a week later they represent a recursive formula on the form “increase is 
equal to current member”. There are two incidents which may explain 
this construal of the syntax of a recursive formula. First, there is the ra-
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ther loose definition of a recursive formula in terms of the outcome of a 
process, as described in Task 1: 

Count the number of stars in each of the shapes you have now, and put the 
results into a table. Explain how the number of stars increases from one shape to 
the next. Use this to calculate how many stars there are in the fifth shape. [Task 
1b] 

Second, during engagement with Task 1 (in the first lesson on shape pat-
terns), teacher Thomas’ response (turn 81 in the transcript below) rein-
forces focus on differences. When the students reveal that they have 
never heard about a recursive formula before, he explains the nature of a 
recursive formula like this: 

81 Teacher T: Recursive, that is in a way, one is not so concerned with 
how many there are totally, but if for instance I knew that 
[Pause 1-3 s] if I can say, think that I know how many 
[components] there are in one [element], how can you tell 
me how I can get the number [of components] of the next? 
This is the recursive, you only tell how you get to the next, 
without considering how many [components] there are in 
the current. 

[Task 1, Group 1] 
What the teacher said in turn 81 to explain the nature of a recursive 

formula is comprehensive in the given context, where he made sure that 
they symbolised the formula adequately. In turn 81 he emphasises the 
nature of a recursive formula; that what is crucial to know is the differ-
ence between consecutive members of the sequence mapped from the 
shape pattern. He says nothing about how a recursive formula is symbol-
ised though. As described above, a week later the students of Group 1 try 
to find a recursive formula for the shape pattern in Task 3: They appear 
to be focused on the difference between consecutive members of the se-
quence mapped from the shape pattern, and represent a recursive formula 
for the general member on the form “increase is equal to current mem-
ber”. In the following paragraph I point at two circumstances that may 
have influenced their construal of the syntax of a recursive formula as 
being on this form.  

It is possible that the wording of Task 1, together with the teacher’s 
utterance, “you only tell how you get to the next, without considering 
how many [components] there are in the current” (turn 81), has influ-
enced their construal of a recursive formula as being of the form “in-
crease is equal to current element”. The fact that during engagement with 
Task 1 they had symbolised a recursive formula in terms of 

1( 1)4 n nn s s−− + = , where ns  represents the n-th member of the sequence 
mapped from the shape pattern, seems to have no influence on their es-
tablishment of a recursive formula for the shape pattern in Task 3 a week 
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later. My interpretation is that the syntax of a recursive formula has not 
yet been adequately institutionalised. 

In the next section I present the third manifestation of Features of the 
milieu arising from incomplete institutionalisation of previous knowl-
edge.  
6.3.3 Teacher’s assumption about students’ outcome from a previ-

ous lesson does not accord with achieved outcome 
In this section I present the analysis of an episode which shows how 
teacher Erik, when he realises that the assumed outcome of a previous 
lesson does not accord with the achieved outcome, expounds to the stu-
dents the desired knowledge.  

The students of Group 1 have, during engagement with Task 3f (Fig-
ure 6.11), reasoned by naïve empiricism and found that the number of 
white squares in the n-th rectangle is given by ( 1)n n − . The teacher as-
sumes that the students are informed by knowledge developed in the first 
four lessons a week earlier. Teacher Erik’s utterance below (turn 693 in 
transcript) indicates that he expects them to have reasoned on the basis 
of structural relationships identified in the elements of the shape pattern 
in Task 3f  (where the geometrical configuration of the white squares in 
the rectangles correspond to the triangular numbers). 

 
Task 3 (Part II) 
 
Below, the staircase towers have been extended into rectangles. 

 
f) Find an explicit formula for the total number of squares in the n-th shape. 
 Then find an explicit formula for the number of  ¨ in the n-th shape. 

 
Figure 6.11. Task 3f  

 
693 Teacher E: And these are the ones, the ones we have called triangular 

numbers which we used last Friday as well. Those which are 
built up as 1 2 3+ +  [points at the physical element built in 
centicubes by the students] and next time it is 1 2 3 4+ + +  
(Alice: uh huh). So it is just a matter of adding numbers 
from one and upwards. 

[Task 3 (Part I), Group 1] 
However, in the first four lessons on generalisation of shape patterns 
students of Group 1 have not recognised or mentioned triangular num-
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bers, neither have triangular numbers been mentioned by either of the 
teachers. Alice tells the teacher that they have not utilised structure and 
by this reveals that they have just generalised from examples by guess-
and-check: 

696 Alice: We saw it [the formula] only from examples. 
[Task 3 (Part I), Group 1] 

The teacher then provides an example where he illustrates a strategy for 
adding consecutive natural numbers:  

697 Teacher E: But you have seen it on more than just examples before, I 
think. Because haven’t you seen once that [Pause 1-3 s] 
what happens if I add for example, 1 2 3 4 5+ + + + ? [Writes 
in Alice’s notebook] Then I can add the first [member] and 
the last, the second and the second last. Then I will get six 
each time. Then I will get two times six 

698 Alice: plus three 
699 Teacher E: plus three. If I have one more, I can continue and get seven  
700 Alice: get seven 
701 Teacher E: everywhere. How many sums which are equal to seven do I 

get? 
702 Alice: Oh yes. 
703 Teacher E: How many sums equal to seven like this do I get? That 

structure comes from here, a structure which I can use on all 
kinds of examples. If I add the first and the last [member], I 
always get [interrupted by Alice] 

704 Alice: the last number, right 
705 Teacher E: and the second and second last, I will always get one more 

than the amount of numbers which I am supposed to add 
(Alice: yes uh huh) and then I can ask how many sums equal 
to seven will I get? Well, indeed I will get three. And here 
[teacher E points at the series 1 2 3 4 5+ + + + ] I will get two 
times six. And what is the number two [sic]? Well, it is, it is 
ehm half [Pause 5 s] of this one. Here I can think of the 
number three as half of that one, so the formula comes from 
this [Pause 1-3 s] Well, no, not really. Like this, six divided 
by two [very low voice]. Six times seven divided by two. 
The number three is [the result of] six divided by two. Here 
[teacher E points at the series 1 2 3 4 5+ + + + ] it is six times 
[Pause 1-3 s] let us see, there it is fifteen right? [very low 
voice] [Sophie rolls a pen, and Ida scratches herself on the 
back and then looks into the ceiling] Six times five is equal 
to thirty divided by two is equal to fifteen [Alice nods]. Sev-
en times six is equal to forty two divided by two is equal to 
[Pause 1-3 s] twenty one. This is the structure that we have 
met before and when we have done it once, we can reuse 
this result. 

[Task 3 (Part I), Group 1] 
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Turn 697 and the last utterance of turn 705 indicate that the teacher con-
siders his contribution to be reinforcement of previous institutionalisa-
tion. The dialogue shows that the teacher’s explication (except for Al-
ice’s minor responses) becomes a rather long monologue. It is my inter-
pretation that the teacher (in turn 697) has used the series 
1 2 3 4 5+ + + +  as a generic example to explain that finding the sum of 
the first n natural numbers is about seeing that it is possible to join pairs 
of numbers which adds up to the same sum: the first and the last term; 
the second and the second last term. Turn 705 I interpret to be an attempt 
from the teacher to explain that the formula for the sum of the first n nat-

ural numbers, (1 )
2
n n+ , applies also when the series has an odd number 

of addends.90 He tries to explain how the middle term (three) of the ge-
neric series can be related to the formula which is interpreted as the sum 
of pairs. In his utterance, “Here I can think of the number [addend] three 
as half of that one”, I interpret the demonstrative pronoun “that” to refer 
to the last addend (five) in the series. This implies that he confuses the 
sum of the paired terms (first and last; second and second last) with the 
last term of the series. He becomes aware of the mistake, corrects him-
self and explains three as the result of the operation “six divided by 
two”. I interpret his low voice as indication that he is thinking, or that he 
is insecure about his explanation. His subsequent utterance, “Six times 
seven divided by two”, I interpret to be his examination of the presented 
formula in a case when the number of addends is an even number (six). 

Whereas Alice comes with some (non-substantial) responses during 
the teacher’s explication in the transcript presented above, Sophie and 
Ida make some gestures (described in turn 705) which may suggest that 
they are not concentrating. The teacher’s exposition is based on the stu-
dents’ recognition of triangular numbers, but because this is not a situa-
tion of recognition for the students, it is not easy for the students to fol-

                                         
 
 
 
 
 

90 For a series with an even number of addends, the formula (1 )
2
n n+  can be explained by 

making references between the first factor (
2
n ) and the number of pairs to be added, and 

between the second factor (1 n+ ) and the sum of the pairs. The teacher’s explication in turn 
705 I interpret as a recognition that the references made above (which is a common way to 
rationalise the formula) do not apply directly to the case when the series consists of an odd 
number of addends. 
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low the teacher’s reasoning. The teacher’s point was for the students to 
be reminded of the structural reasoning by which the formula for the sum 
of the first n natural numbers (sum defined as triangular numbers) can be 
derived (RJ_06.02.2004). Why this is important is not clear to Sophie 
who requests the point with the teacher’s exposition when she asks:  

708 Sophie: What was wrong with the first one [the formula] that we 
made? That it wasn’t [Pause 1-3 s] correct?      

[Task 3 (Part II), Group 1]  
As explained in Section 6.1.2, the students of Group 1 are focused on 

finding an algebraic expression which represents the number of white 
squares in the n-th rectangle in the presented shape pattern. They have 
found an expression which gives the expected values in several cases. 
The problem discovered by the teacher is that their formula is derived by 
empirical reasoning (guess and check), and hence, that it is not valid as a 
constituent in the proof of the mathematical statement in Task 3d. He 
does not express the reason for the insufficiency of their formula, but 
accomplishes spontaneously (in the moment) what he interprets as rein-
forcement of previous institutionalisation of the formula for the sum of 
the first n natural numbers. The students, however, probably experience 
what the teacher presents as new knowledge. The teacher of course does 
not have access to the students’ dialogue before he joins the group, nor 
to any analysis of the students’ engagement with the task. His response is 
a combination of what he observes in the moment and his own intentions 
for the task.  

The analysis of the episode in this section provides insights into a 
possible effect of a feature of the milieu arising from incomplete institu-
tionalisation of previous knowledge. The teacher develops the teaching 
situation in the moment as a response to the students’ endeavour of 
which he has just been informed. This means that he probably accom-
plishes (or, recalls from the past) an analysis of the mathematics (n-th 
partial sum of an arithmetic series) simultaneously as he communicates 
the mathematical ideas to the students. My analysis of the didactical sit-
uation suggests that his explication is experienced by the students as in-
sufficient. The formulae aimed at in the second part of Task 3 (the for-
mulae for the rectangles and for the white squares) play a role in proving 
the mathematical statement from the first part of Task 3. Hence, these 
formulae must be established either by structural arguments or by reus-
ing previous (justified) knowledge. This requirement with respect to ri-
gor is neither expressed explicitly in the task nor by the teacher in his 
interaction with the students. That the students are not aware of this con-
dition is a feature of the milieu which contributes to the students’ miss-
ing comprehension of the point with the teacher’s exposition of the for-
mula for the number of white squares. In Chapter 8 I will come back to 
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the phenomenon of students’ unawareness of the importance of how a 
formula is derived when I develop the analytic category, Complexity of 
operating in the situation of validation. 

The analysis presented in this section has given insights into possible 
consequences for a teaching-learning situation when the teacher assumes 
learning from previous lessons which does not accord with the students’ 
demonstrated thinking. As the observed small-group lessons were organ-
ised, without succeeding whole-class lessons, the teacher’s management 
of subsequent lessons was dependent upon his record of students’ (or 
groups’) learning from previous lessons. It is my conjecture (which is 
informed by my insights from the research analysis) that the students 
perhaps would benefit from institutionalisation in whole class of the 
knowledge developed in the small-group lessons. This is not to say that I 
believe that students’ outcome of a situation is predictable (or similar for 
different students) if the knowledge developed in groups has been insti-
tutionalised in whole class. An important point with institutionalisation 
in whole class, however, is that the teacher has a reference to which he 
can refer in subsequent lessons.  

In the next section I give a brief summary of the findings presented in 
the first three sections, before I discuss the findings in Section 6.5. 

6.4 Summary 
Sections 6.1, 6.2, and 6.3 have provided insights into phenomena that 
constrain the feedback potential in adidactical situations that aim at es-
tablishment of algebraic generality in shape patterns. The first phenome-
non is conceptualised as a weakness in the objective milieu caused by 
the design of the tasks. It is manifested in two circumstances: in that ap-
propriate solutions to subtasks do not prepare an adequate milieu for the 
teacher’s intended mathematical statement; and, in that the idea of proof 
as designed by the teacher is not recognised by the students.  

The second phenomenon which constrains the feedback potential in 
adidactical situations is conceptualised as a weakness in the milieu 
caused by lack of clarification of the concepts of “mathematical state-
ment” and “generic example”. It is manifested in three circumstances: in 
the students’ establishment of a formula for the numerical value of the 
general element of a shape pattern instead of a theorem about an equiva-
lence of two expressions; in that a generic example used by the teacher is 
not conceived as generic by the students; and, in Topaze effects resulting 
from students’ production of an unintended mathematical object. 

The third phenomenon which constrains the feedback potential in 
adidactical situations is conceptualised as a weakness in the milieu 
caused by incomplete institutionalisation of previous knowledge. It is 
manifested in three circumstances: in the non-reusability of knowledge 
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originated through a Topaze effect; in the students’ establishment of a 
“malformula” resulting from incomplete institutionalisation of syntax of 
recursive formulae; and, in that the teacher’s assumption about students’ 
outcome of a previous lesson does not accord with their achieved out-
come of the lesson. 

The diagram in Figure 6.12 presents the analytic category developed 
in this chapter with its subcategories and events. 

 
Figure 6.12. First analytic category with subcategories and events 
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In the next section I discuss the findings presented in this chapter. 

6.5 Discussion of the first analytic category 
The analytic category developed in this chapter, Constrained feedback 
potential in adidactical situations, provides insights into factors which 
constrain the feedback potential in adidactical situations related to stu-
dents’ establishment of algebraic generality in shape patterns. Con-
straints to the feedback potential are factors that in some way obscure, 
interfere or hinder the students’ possibilities to produce the knowings 
that are crucial for the development (in the last phase, institutionalisa-
tion) of the target mathematical knowledge. The discussion of these fac-
tors is presented in three parts: design of tasks; different target mathe-
matical objects; and, institutionalisation. 
6.5.1 Design of tasks 
The mathematical tasks with which the students engaged in algebraic 
generalisation of shape patterns are designed by teacher Erik for collabo-
ration in small groups. The tasks are divided into subtasks with the inten-
tion to make the students appropriate the target knowledge which is an 
algebraic expression of the generality identified in the respective shape 
pattern. The analysis shows, however, that it is possible for the students 
to give appropriate solutions to the subtasks and still be kept from devel-
oping the knowledge aimed at. Hence, there is a problem with the design 
of the tasks; they are not focused on the target mathematical knowledge.  

According to Pierre Bourdieu’s principle of economy of logic (Bour-
dieu, 1980, as cited in Balacheff, 1991), students are likely to bring into 
play no more logic than what is necessary to solve the problem given to 
them. The observed students acted as practical persons, for whom the 
target was to produce solutions to the given tasks rather than to produce 
knowledge. Hence, their focus was on being efficient (practical) rather 
than on being rigorous (theoretical). They did one subtask at a time 
without reflecting on potential relationships between them or on the so-
lutions in a broader mathematical perspective. Because this is what may 
be expected, it is important that mathematical tasks are designed such 
that responses, which might be expected according to Bourdieu’s princi-
ple of economy of logic, are of a character which can afford students 
with knowings which can be institutionalised to become the cultural, re-
usable mathematical knowledge aimed at.  

In the context of algebraic generalisation of shape patterns, the target 
knowledge is algebraic generalisation of arithmetic relations mapped 
from the elements of the pattern. For epistemological reasons, the focus 
in the tasks therefore should be on those arithmetic relations, rather than 
on just the total number of components of the elements. In the first parts 
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of the tasks with which the observed students engaged, the focus is on 
the total number of components of the elements (see Section 6.1.1). The-
se tasks, in the way they focus on total number of components, are simi-
lar to tasks commonly used by mathematics teachers (and teacher educa-
tors)91 to engage students in generalisation of shape patterns (e.g., Beck-
er & Rivera, 2006; Lannin et al., 2006; Lee, 1996; Radford, 2000; 
Stacey, 1989). This indicates that the idea of relationships between vari-
ables is complex to communicate. I conjecture that the process of de-
composition and the concept of generic example, as outlined in Chapter 
5, would be useful for teachers in communicating ideas of structure and 
relationships between variables. 
6.5.2 Different target mathematical objects 
The epistemological analysis presented in Chapter 5 showed that the 
tasks with which the observed students engaged are of two different 
types with respect to the kind of mathematical object they aim at. Task 1, 
Task 2, and Task 3f aim at a formula for the general member of the se-
quence mapped from the respective shape pattern, whereas Task 3d and 
Task 4 aim at a theorem about arithmetic relations between members of 
particular sets of numbers (odd numbers and square numbers) arising 
from the respective shape pattern. The concept “formula” (recursive or 
explicit) is used in Task 1, Task 2, and Task 3f to refer to the target 
mathematical object (a functional relationship). The concept “mathemat-
ical statement” is used in Task 3d and Task 4 to refer to the target math-
ematical object (a theorem). The analysis presented in Section 6.2.1 
showed that the concept of mathematical statement is not a priori 
knowledge for the observed students and that the concept is not clarified 
during the actual lesson. 

The explication in Section 6.2.1 of the concepts of mathematical 
statement, principle, postulate, and formula demonstrated that the con-
cepts are related in the sense that a formula is a mathematical statement 
in the case when it is a principle which is not self-evident, and therefore 
needs to be proved. The students, however, interpreted the requested 
mathematical statement in Task 3d to be a formula for the general mem-
ber of the sequence mapped from the actual shape pattern, for which they 
produced the statement of a function. In Task 4, the students interpreted 
the requested mathematical statement to be a formula for the fifth ele-

                                         
 
 
 
 
 

91 When I refer to “teachers” in general in this chapter, I include myself in the noun. 
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ment of the shape pattern and thereby missed the general algebraic for-
mulation of an equivalence relation. In neither of the cases the formula 
established by the students satisfied the requirement of a mathematical 
statement. The mathematical statements aimed at were mathematical ob-
jects with the property of being equivalence relations between members 
of sets of numbers: Task 3d aimed at an equivalence relation between 
square numbers and sums of odd numbers; Task 4 aimed at an equiva-
lence relation between square numbers and sums of triangular numbers. 
These equivalence relations are not self-evident and need to be proved. 
Hence, they are theorems according to Gowers (2008) and James and 
James (1992). 

The students’ engagement with the tasks analysed from the perspec-
tive of the target mathematical objects, leads me to suggest that it is im-
portant, in the context of generalisation of shape pattern, to distinguish 
between two types of outcome of algebraic generalisation. These are 
mathematical objects which share the property that they express arithme-
tic relations derived from the elements of the shape pattern. But the 
mathematical objects are of different nature with respect to their func-
tional character; one is a formula in terms of an algebraic expression for 
the numerical value of the general element of a shape pattern; the other 
is a theorem which asserts equality, that is, it is a statement about equiva-
lence of different algebraic expressions for the numerical value of the 
general element of a shape pattern.  

The analyses of the episodes from the students’ engagement with the 
tasks, together with the recognition that the distinction between a formu-
la and a mathematical statement is rather sophisticated (as shown in Sec-
tion 6.2.1), leads me to suggest that it is important to clarify the nature of 
the target mathematical object (functional relationship or theorem). Fur-
ther, I conjecture that a clarification of what the requested mathematical 
object is intended to be about would make the target knowledge more 
accessible. That is, whether it is a formula for the general member of the 
sequence mapped from the shape pattern (i.e., the general member given 
as a function of its position), or, it is a theorem about equivalence of two 
different expressions for the general member of the same sequence. In 
other words, the target mathematical object is either a statement about a 
general number, or it is a statement about number theoretical relation-
ships.  

The different target mathematical objects in the context of generalisa-
tion of shape patterns have, from an epistemological perspective, differ-
ent outcomes of a situation of institutionalisation. A formula for the nu-
merical value of the general element of a shape pattern is inevitably con-
nected to the presented shape pattern. A theorem which asserts equiva-
lence of two different algebraic expressions mapped from a shape pattern 
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is, on the other hand, decontextualiseable in the sense that it has rele-
vance beyond the shape pattern from which it is derived. Institutionalisa-
tion of the knowledge in the case when algebraic generalisation aims at a 
formula is not institutionalisation of the formula per se, but of how it can 
be derived through identification of arithmetic relations mapped from the 
geometrical configurations and, further, generalised. The cultural, reusa-
ble knowledge in this case is the nature of the relation between the alge-
braic expression and its referent (a generic element). On the other hand, 
institutionalisation of the knowledge in the case when algebraic generali-
sation aims at a mathematical statement about number theoretical rela-
tionships involves decontextualisation of the mathematical statement 
from the shape pattern on the basis of which it is developed. The cultur-
al, reusable knowledge in this case is generalised arithmetic relations 
between sequences of numbers. The mathematical statements aimed at in 
the analysed episodes are the following relationships: an equivalence 
relation between the n-th square number and the sum of the first n odd 
numbers (Task 3d); and, an equivalence relation between the n-th square 
number and the sum of the ( 1n − )-th and the n-th triangular numbers 
(Task 4). 

Mathematics teachers and educators are aware that there appears to 
be a disjunction between the didactical intentions embedded in a de-
signed task and the epistemological affordances when students engage 
with the task. My analysis presented here not only confirms this but 
serves to emphasise just the complexity of the didactical problem. The 
analysis reveal constraints at several levels, within the mathematics, the 
meta language used in talking about the mathematics, characteristics of 
the task and the outcomes that students produce from the tasks, and not 
least the challenge faced by teachers as they are required to react sponta-
neously to students with very little information about the nature of the 
students’ engagement prior to talking with them. 

What can be learned from this is that when we (mathematics teachers 
and educators) design tasks like this, we have to be rather cautious to 
ensure that the tasks are focused on the target mathematical knowledge. 
6.5.3 Institutionalisation 
The tasks on algebraic generalisation of shape patterns were given to the 
students for collaborative work in small groups. There were about sixty 
students working in groups of three to five members. They were placed 
in a big classroom; the groups which I observed were placed in a sepa-
rate room adjacent to the big classroom. Teaching was in the form of 
helping each group with the tasks, observing their work, taking part in 
dialogues, and assessing verbally students’ solution processes and out-
comes. Situations of institutionalisation related to the observed lessons 
took place within these meetings between the group members and the 
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teachers. There were no whole-class lessons taking place after the stu-
dents’ became engaged in groups. This means that knowings developed 
in the different groups were not collected, compared and brought into 
contact with cultural knowledge in a lesson where all students took part.  

The analytic category presented in this chapter has exposed possible 
characteristics of the organisation of mathematics learning based exclu-
sively on reliance on institutionalisation of knowledge in small groups. It 
is my conjecture that the likelihood for the teacher of discovering and 
adjusting shortcomings or misunderstandings caused by vague formula-
tions in the designed tasks is less when there is no overarching institu-
tionalisation phase. By this I mean that institutionalisation in small-
groups is dependent on the teachers’ observation of all groups and his 
record of the outcome of their work. With around 15 groups, this is chal-
lenging. Furthermore, I conjecture that the fact that there are two teach-
ers responsible for the small-group lessons adds to the complexity of or-
chestrating institutionalisation of the knowings developed in the groups 
(with respect to coordination).   

What we (mathematics teachers and teacher educators) can learn 
from this is that when we design teaching units that include small-group 
lessons, we have to attend to collection and comparison of the knowings 
developed in the groups. This is in order to enable the students’ know-
ings to become cultural knowledge which they can reuse in later situa-
tions.  

Chapter 6 has provided insights which constitute some answers to my 
research question about what factors constrain students’ generalisation of 
algebraic generality in shape patterns. First, the design of the tasks con-
stitutes a weakness in the objective milieu in the way solutions to sub-
tasks do not prepare for the target mathematical knowledge. Second, stu-
dents’ unawareness of the nature of the target mathematical objects con-
stitutes a weakness in the milieu for formulation. Third, incomplete insti-
tutionalisation of previous knowledge and inexplicit use of generic ex-
amples constitutes weaknesses in the milieu. These weaknesses constrain 
the feedback potential in adidactical situations and thereby constitute 
obstacles in students’ generalisation processes.  

In the next chapter I present the second analytic category that 
emerged from the analysis. It is referred to as Complexity of turning a 
situation of action into a situation of formulation.  
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7 Complexity of turning a situation of ac-
tion into a situation of formulation 

In this chapter I present the second analytic category that emerged from 
the exploration of student teachers’ collaborative work on algebraic gen-
eralisation of shape patterns. The data are analysed with the purpose of 
finding answers to the research question presented in Chapter 4, “What 
factors constrain students’ appropriation of algebraic generality in shape 
patterns?” The analysis draws on the epistemological and didactical 
analyses of the mathematics potential in the tasks presented in Chapter 5. 
The analytic category is called Complexity of turning a situation of ac-
tion into a situation of formulation and consists of two subcategories 
which are phenomena that define the category. 

First, I show how recursive and explicit approaches to generality 
constrains the formulation phase (Section 7.1). Then, I show how inar-
ticulate engagement with the syntax of algebra constrains the students’ 
appropriation of algebraic generality in shape patterns (Section 7.2). 
Next, a summary of the findings presented in the first two sections is 
given (Section 7.3). The chapter closes with a discussion of the findings 
(Section 7.4).  

7.1 Recursive and explicit approaches to the general 
member of a sequence 

In this section I present the first subcategory of Complexity of turning a 
situation of action into a situation of formulation. The subcategory is 
concerned with how the students’ generalisation processes are con-
strained by recursive and explicit approaches to generality. The phenom-
enon described by this subcategory is manifested in five different cir-
cumstances: in what I interpret as the students’ overgeneralisation of a 
recursive approach to generality; in a Jourdain effect resulting from an 
attempt to establish a functional relationship; in the students’ acceptance 
of an incomprehensible difference; in the students’ and teacher’s diverse 
foci (recursive versus explicit approaches); and, in the complexity of 
transforming recursive properties into an explicit algebraic expression. 
7.1.1 Overgeneralisation of a recursive approach to an explicit ap-

proach to generality and an incidence of a metamathematical 
shift 

In this section I present how Group 1’s engagement with an explicit for-
mula for the general member of the sequence mapped from the shape 
pattern in Task 1d (Figure 7.1 on the next page) is constrained by their 
recent engagement with a recursive formula for the same pattern. 
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Task 1 
 
Below you see the development of the first two shapes in a pattern. 

  
d) Try to find a connection between the position of a shape and the number of 
 stars in that shape. This is called an explicit formula. Can you express such a 
 formula in terms of mathematical symbols? 

 
Figure 7.1. Task 1d 

 
Groups 1’s continuation of the shape pattern in Task 1 (“dots-at-grid” 
pattern) is reproduced in Figure 7.2 (it was first presented in Figure 6.10 
in Section 6.3.2, but is reproduced here for the sake of continuity).  

 

 
 

Figure 7.2. Continuation of the shape pattern in Task 1 invented by Group 1 

 
Recall from Section 6.3.2 that during engagement with Tasks 1b and 1c, 
the students of Group 1 have experienced that the nature of a recursive 
formula for a number sequence is that it expresses the general member of 
the sequence as the sum of its previous member and the difference be-
tween the previous member and the current member. As explained in 
Section 6.3.2, the students have calculated the (first) differences between 
consecutive members, and have, as a result of maieutic92 practice by 
teacher Thomas, represented a recursive formula as 1( 1) 4 n nn s s−− ⋅ + = .  

                                         
 
 
 
 
 

92 Maieutics is a method of teaching by question and answer; it was used by Socrates to elicit 
truths from his students (Brousseau, 1997). The method is based on the idea that truth is 
latent in the mind of every human being due to innate reason but has to be “given birth” by 
answering intelligently proposed questions.  
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When the students afterwards shall find an explicit formula for the  
n-th member of the same sequence, they use an analogue approach: In 
their search for an explicit relationship, explained in Task 1d as “a con-
nection between the position of a shape and the number of building 
blocks in that shape”, they calculate the differences between the mem-
bers of the actual sequence and their respective positions. This method I 
interpret as the students’ erroneous application of the features of a recur-
sive approach in an explicit approach to the general member of the se-
quence. I conceptualise the method as “overgeneralisation” of the recur-
sive approach. 

An explicit formula for the general member of a sequence of shapes 
is defined as the general member expressed as a function of its position 
in the sequence. The method employed by the students is inappropriate 
because they establish an arithmetic relation (difference) between mem-
ber and position, ( )f n n− , instead of a functional relationship between 
the member and position. Based on their calculation of the differences, 
( )f n n− , I infer, as I reason below, that they have interpreted the word 

“connection” used in the task to mean “difference”. This construal done 
by the students may be influenced by their recent engagement with a re-
cursive formula: In their search for a recursive formula, the students had 
calculated the differences between consecutive numbers of the sequence 
mapped from the shape pattern. The sequence of numbers they construct 
in search for an explicit formula is given in the second row of Table 7.1, 
( )f n n− .  

 
Table 7.1. Diagram produced by students of Group 1 in search for an explicit formula 
(Task 1d). The commentary column, where R refers to “row”, is made by me. 

            Commentary 

 1  2  3  4  5  6 R 1 n  

0  3  10  21  36  55  R 2 ( )f n n−  

 1  5  13  25  41  61 R 3 ( )f n  

  3  7  11  15  19  R 4 1(R 2) (R 2)i i+ −  

   +4  +4  +4  +4   R 5 1(R 4) (R 4)i i+ −  

 
The second row of Table 7.1 consists of differences between members of 
the sequence mapped from the shape pattern (third row) and their posi-
tion (first row); these numbers are symbolised by me in the commentary 
column by ( )f n n− . In constructing these numbers the students have not 
focused on coordinating the referents (stars and position) for the varia-
bles. If referents were added for numbers in the second row, the resulting 
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number sentence would be: 5 [stars]−2 [position?]=3 [stars]. This is 
problematic since the operation of difference is not referent transform-
ing.  

The students are insecure how to proceed. They continue by calculat-
ing the differences between consecutive elements of the second row of 
the table (first differences of ( )f n n− ; written in fourth row of Table 
7.1), and then the differences between these numbers again (second dif-
ferences of ( )f n n− ; written in fifth row). When teacher Erik, on his 
own initiative, enters the room, the students tell him that they have found 
a recursive formula and ask him if they are on the right track with re-
spect to an explicit formula. The teacher responds by asking them what 
the characteristic of the recursive formula is. The students answer by de-
scribing the general nature of a recursive formula, but the teacher says 
that he means the particular recursive formula in Task 1. He goes on and 
says: 

374 Teacher E: It is not so easy, you know, the explicit one [laughs]. There 
is something, there is something about the recursive [rela-
tionship] which makes it complicated [Pause 1-3 s] How is 
it if you look at the increase from one shape to the next? 

375 Alice: Ehm [Pause 1-3 s] you take the previous one and multiply. 
No, you take the previous increase and add four to it. 

376 Teacher E: Yes, exactly, right. You take the previous increase and add 
four. Uh huh. 

[Task 1d, Group 1] 

When the teacher in turn 374 suggests that there is something that makes 
the sought explicit relationship complicated, I interpret that he attempts 
to explain the complexity by the type of growth of the sequence arising 
from the shape pattern. This is indicated in the same turn by the teacher’s 
attention to the (first) differences of the sequence when he asks the stu-
dents to describe “the increase from one shape to the next”. He reinforc-
es that the growth is non-constant by repeating Alice’s description of the 
increase; that it grows by four from one difference to the next (turn 376). 
I find it plausible that his claim about the complexity of the sought ex-
plicit relationship and his attention to the fact that the first differences 
are non-constant, are attempts to make the students work analytically and 
thereby potentially deduce statements about the symbolic expression of 
the explicit formula searched for (that it necessarily needs to include a 
member of second degree in the independent variable). This interpreta-
tion is consistent with a later utterance from teacher Erik, where it ap-
pears that he understands that the numbers in the fourth row represent 
the first differences of the sequence mapped from the shape pattern:  

455 Teacher E:   It’s just that, that [Pause 1-3 s] life would have been much 
easier with respect to a formula, if we had a pattern where 
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this row had been a constant number. [He points at the 
fourth row in the table produced by the students, reproduced 
in Table 7.1 above]  

[Task 1d, Group 1] 

What I interpret as the teacher’s implicit introduction of the concept 
of type of growth can be characterised as an instance of the didactical 
phenomenon referred to as a metamathematical shift (see Section 2.3.5). 
The students are given the task of finding an explicit formula for the 
general member of a sequence mapped from a shape pattern. They have 
created a table (reproduced in Table 7.1), the third row of which contains 
the first six members of the sequence mapped from the shape pattern, 
{ }1,  5,  13,  25,  41,  61 . The first five first-differences of this sequence are 
given by { }4,  8,  12,  16,  20 , which should imply that the growth of the 
sequence be categorised as quadratic.93 However, the concept of type of 
growth has not been given attention by the students. Given the school 
curriculum, I believe that it is most likely that the students have no pre-
vious knowledge about different types of growth of sequences. The 
teacher’s intervention in this episode is interpreted as an instance of a 
metamathematical shift because the teacher does not relate his focus on 
growth to the symbolic expression of an explicit formula. Hence, the 
students are left with observations about the nature of the growth (which 
mathematically can be described as quadratic). These observations, 
however, are not helpful for the students in solving the original task, 
which is to find an explicit formula. This will be explained in the follow-
ing paragraphs.  

There is a general connection between a recursive and an explicit 
formula for a sequence of numbers which is related to the growth of the 
sequence: An explicit formula for the n-th element of the sequence is 
established by adding the first element of the sequence to the sum of the 
first ( 1)n −  first differences, as identified by the recursive formula. In 
the following I show that the teacher’s intervention is not helpful to 
bring into the students’ awareness a relationship between a recursive and 
an explicit formula.   

                                         
 
 
 
 
 

93 The students have not presented these first differences in Table 7.1. As explained above, 
they have instead calculated the differences between the numerical values and their posi-
tions.  
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It is possible that the students’ diagram in Table 7.1 is interpreted by 
teacher Erik to manifest the students’ work towards a recursive relation-
ship. He never questions the relevance of the quantities in the second 
row. It is possible that the teacher has in mind, and responds on the basis 
of, a diagram with entries like the one presented in Table 7.2.94  

 
Table 7.2: First and second differences between numbers arising from the shape pat-
tern in Figure 7.2.  

Numerical values of 
elements of pattern 1  5  13  25  41  61 

First difference  4  8  12  16  20  

Second difference   4  4  4  4   

 
Teacher Erik challenges the students to express what the first, third, 
fourth and fifth rows in their diagram (Table 7.1) represent. The students 
claim that the first row consists of the positions of the elements of the 
pattern, the third row consists of the elements themselves,95 the fourth 
row consists of the increases between the elements, and the fifth row 
consists of the increases of the increases of the elements.  

The last concept (increase of increase) the students find a bit strange, 
but the teacher gives support that this is a legitimate concept. It is notice-
able that he does not ask them to describe what the second row repre-
sents. A plausible explanation why he leaves this out may be that he in-
terprets the second row to represent the differences between consecutive 
members of the sequence. Alice’s claim about one of the numbers in the 
second row of Table 7.1 reinforces the conception that the second row 
consists of first differences:  

377 Alice: Yes, and then when we, so when we found ehm we found 
out that the previous one was, or the difference here then 
(Ida: yes; Teacher E: uh huh), from the fifth to the sixth 
shape we have got fifty five and like this the whole way 
(Teacher E: uh huh). And then we have got [Pause 1-3 s] 

[Task 1d, Group 1] 

                                         
 
 
 
 
 

94 Table 7.2 is made by me in an attempt to explain a plausible background for the teacher’s 
response to the students. 
95 In the conversation, both the students and the teacher speak of the shapes, both when they 
refer to the shapes of the pattern and when they refer to the numerical values of the shapes.  
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But the number fifty five is not equal to the difference between the sixth 
and fifth member of the sequence mapped from the shape pattern, as Al-
ice claims. Fifty five is equal to the difference between the sixth member 
and its position. Whereas Alice claims to refer to the difference 
(6) (5)f f−  (which is equal to 20), she actually refers to the difference 
(6) 6f −  (which is equal to 55). The question if the numbers in the se-

cond row of Table 7.1 correspond with (first) differences between con-
secutive members of the sequence (as, I interpret, the teacher seems to 
think) is not investigated.  

The teacher directs attention towards the fact that the (first) differ-
ence between the members of the sequence mapped from the shape pat-
tern is non-constant, but does not assert that the n-th first-difference can 
be generalised by a linear expression. Such an approach might be used if 
the intention were for the students to infer, from the syntax of the first 
differences (given by a linear expression), a consequence for the syntax 
of the explicit formula (that it must be a quadratic expression). Such a 
connection is, however, non-trivial, and I interpret the teacher’s interven-
tion in the given situation as not providing the students with necessary 
tools to engage with the mathematics on which the desired result de-
pends. The teacher does not express in plain terms that he is after a con-
nection between recursive properties of the sequence (manifested in the 
type of growth) and an explicit formula for the general member of the 
sequence. He asks the students:  

474 Teacher E: Do you have a kind of feeling which type of formulaic ex-
pressions that may emerge? [Pause 16 s] 

[Task 1d, Group 1] 
This utterance I interpret to maintain hinting at a connection between the 
observations done with respect to growth and the syntax of the desired 
formula. There is, however, no indication in the students’ reasoning 
which suggests that they are able to utilise the teacher’s hints.   

In summary, what I interpret as the teacher’s focus on a connection 
between the nature of the growth of the sequence arising from the shape 
pattern and the nature of the explicit formula for the general member of 
this sequence can be conceptualised as an instance of a metamathemati-
cal shift. It is characterised by the phenomenon that the teacher has sub-
stituted for the mathematical task (to find an explicit formula in algebraic 
notation) a discussion of the logic of its solution (what can be inferred 
about the syntax of the explicit formula from the observations about the 
growth of the sequence). The teacher has tried to help the students im-
prove their proficiency in establishing an explicit formula for the general 
member of a sequence, but the chosen method did not bring about the 
desired results.  
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The teacher’s intervention with respect to differences did not give 
rise to any progress in the students’ formulation of an explicit formula. 
He then initiates a different approach which, however, produces a Jour-
dain effect. This will be explained in the next section, where I present the 
second manifestation of Recursive and explicit approaches to the gen-
eral member of a sequence. 
7.1.2 A Jourdain effect resulting from an attempt to establish a 

functional relationship 
In this section I present the analysis of the second part of Group 1’s en-
gagement with an explicit formula for the general member of the se-
quence mapped from the shape pattern in Task 1. The teacher suggests 
that the students try to look at the pattern when stars are inserted to fill 
the empty places in each element of the pattern they have developed (see 
Figure 7.2 above). Alice and Ida then find (correctly) that the members 
of the new sequence (with stars filled in) will be 2 2 2 21 ,  3 ,  5 ,  7 . When 
the teacher asks what kind of numbers that emerged, the following ex-
change takes place:  

531 Ida: The next one is nine. 
532 Alice: What is it called? Odd numbers? 
533 Teacher E: Exactly, right. 
534 Ida: But you see, that one is constant (Teacher E: uh huh). 
535 Alice: Yes, because it is indeed a square. (Teacher E: uh huh). 
536 Ida: So [Pause 1-3 s] 
537 Teacher E: So now, you actually have a kind of idea about what kind of 

functional relationship that will, just as you said Alice, that 
the two [the exponent?] will become some kind of expres-
sion of second degree.96 

538 Alice: Well, but this is only when it [the shape] is filled up with 
stars. 

[Task 1d, Group 1] 
Turns 531 and 532 show that the students focus on the bases of the pow-
ers, 2 2 2 21 ,  3 ,  5 ,  7 . I interpret Ida’s use of the words “that one” in turn 
534 to refer to the exponent of the powers. The bases of the powers vary 
whereas the exponent “is constant”. Alice expresses the rationality of the 
exponent being constant because the shapes are squares (turn 535). This 

                                         
 
 
 
 
 

96 The teacher’s turn (537) in Norwegian is: “Så da, nå har dere egentlig en slags ide om hva 
slags type funksjonsuttrykk som kommer, akkurat som du sa Alice, at den toeren kommer til 
å bli et andregradsuttrykk av et aller annet slag”. 
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is interpreted by the teacher to mean that Alice has an idea that the 
“functional relationship” will be “some kind of expression of second de-
gree” (turn 537). Alice, however, has said nothing about a functional re-
lationship or an expression of second degree. She even repudiates that it 
will become a second degree expression and claims that this is only 
when the empty places are filled with stars (turn 538). The teacher’s 
judgement in 537 I interpret as an instance of the Jourdain effect; he im-
poses an item of scientific knowledge (a functional relationship in terms 
of a polynomial of degree two) in Alice’s utterance in turn 535, which 
actually was just about the geometric configuration of an element of the 
shape pattern.  

Before teacher Erik leaves the students of Group 1 on their own, he 
encourages them to find a general expression for the number of stars 
which must be added to a shape in order for it to get the shape of a 
square. The students do not succeed in doing this and turn back to their 
original approach, which means to look at the difference between the 
members of the sequence and their positions, ( )f n n− . After a while 
they are confused. The following utterances show that they are aware of 
the fact that they confuse recursive and explicit approaches to generality: 

609 Ida: Because for me it is a bit confusing in a way [Pause 1-3 s] 
Now I have the recursive one [leafs through her notes] in the 
back of my head [interrupted by Alice] 

610 Alice: I don’t really manage to distinguish between [interrupted by 
Ida] 

611 Ida: and then I’m supposed to come up with that one [explicit] 
and then I think of [Pause 1-3 s] well, maybe we’re sup-
posed to, I don’t know really, I’m all the time confused by 
the one we figured out here [points at the recursive formula 
in notes] 

612 Alice: no, because I do not have a clear distinction between recur-
sive and explicit (Ida: no). I don’t know what the different 
formulae are, and then I can’t just shift from one to the oth-
er. 

[Task 1d, Group 1] 
There is no feedback potential in the milieu that could have prevented 
the students from approaching the explicit formula by the difference be-
tween member and position. The provided feedback is a definition of an 
explicit formula being “a connection between the position of a shape and 
the number of stars in that shape” (Task 1d). I believe that the students 
interpreted “connection” to mean “difference”, a construal probably in-
fluenced by their recent experience with a recursive formula, where dif-
ference is a key concept. I conjecture, further, that nor did the teacher 
realise their interpretation of the word “connection”.  
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I interpret the teacher’s focus on the structure of the elements ex-
plained in this section as an attempt to make references between the dia-
grammatic configuration of a generic element and the algebraic symbols 
in an explicit formula; that is, between the geometric configuration of a 
“square” and an “algebraic expression of second degree”. However, the 
teacher’s intervention with respect to identification of reference between 
diagrammatic configuration of elements and algebraic symbols in a for-
mula is characterised by his reluctance to be explicit. It appears that this 
reluctance, which is opening the possibility of producing a Topaze ef-
fect, results in an unhelpful lack of clarity for the students. Steinbring 
(2005) refers to shape patterns as geometric configurations. He asserts 
that they must not be seen simply as direct visual objects. Instead of be-
ing pictures or illustrations, “these geometric diagrams are carriers of 
multiple structures which yet have to be interpreted by the students” 
(Steinbring, 2005, p. 96). I conjecture that the students in the described 
episode would perhaps benefit from a reformulation of the task so that 
there were appropriate feedback that could help them interpret the multi-
ple structures inherent in the pattern, and further, how to translate these 
structures into relationships represented by algebraic symbols. The di-
dactical analysis presented in Chapter 5 provides insights into the matter 
of interpretation and algebraic representation of structures inherent in 
shape patterns.    

The analyses presented in Section 7.1.1 and Section 7.1.2 shows how 
the students’ generalisation process is constrained by vagueness in the 
definition of the concept “explicit formula”. It is defined as a “connec-
tion between the position of a shape and the number of stars in that 
shape” (Task 1d). The concept connection is used to describe the rela-
tionship searched for. This is a spontaneous concept that lacks the scien-
tific precision of the intended concept, function. The intended mathemat-
ical object is a formula for the general member of the sequence ex-
pressed as a function of its position.  

The problems encountered by the students that were described in the 
previous and present sections produced a metamathematical shift and a 
Jourdain effect, respectively. The analyses of these episodes give in-
sights into elements of importance for an appropriate milieu for algebraic 
generalisation of shape patterns. This issue will be discussed in Chapter 
9, where I synthesise the analytic findings and discuss potential pedagog-
ical implications.   

In the next section I present the third manifestation of Recursive and 
explicit approaches to the general member of a sequence. 
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7.1.3 Acceptance of an incomprehensible difference 
In this section I present the analysis which shows how students of Group 
2 confuses explicit and recursive approaches to generality in Tasks 1b 
and 1c (Figure 7.3).  
 
Task 1 
 
Below you see the development of the first two shapes in a pattern. 

  
b)  Count the number of stars in each of the shapes you have now, and put the re-
 sults into a table. Explain how the number of stars increases from one shape to 
 the next. Use this to calculate how many stars there are in the fifth shape. 
c)  What you have found in task b above is called a recursive (or indirect) for- 
        mula. Can you express it in terms of mathematical symbols? 

 
Figure 7.3. Tasks 1b and 1c 

 
The students have identified two alternative continuations of the ele-
ments presented in Task 1: one that can be characterised as a linear pat-
tern (reproduced in Figure 7.4 on the next page); and another that can be 
characterised as a quadratic pattern (reproduced in Figure 7.5 on the next 
page).97 

I present the analysis of Group 2’s engagement with the quadratic 
pattern.98 In their search for a recursive formula for the general member 
of the sequence mapped from this pattern, the students have found the 

                                         
 
 
 
 
 

97 The students have not identified the patterns as linear and/or quadratic. These are my de-
scriptions in accordance with different types of growth of sequences as outlined in Section 
5.1 (e.g., a sequence with linear growth is mapped from a linear pattern). 
98 Students of Group 2 found both a recursive formula (expressed appropriately in natural 
language, but not in symbolic notation) and an explicit formula for the general member of 
the sequence mapped from the linear pattern (Figure 7.4). However, in my analysis I focus 
on the students’ engagement with the quadratic pattern (Figure 7.5). The fact that the linear 
pattern was easier for these students than the quadratic pattern (in terms of success with rep-
resentation of generality in algebraic notation) is consistent with Orton and Orton’s (1996) 
findings discussed in Chapter 3 (Section 3.4), which show that linear patterns are conceived 
as easier for students to deal with than quadratic patterns. The reason why I focus on the 
alternative that is problematic for the students is due to my focus on factors that constrain 
students’ algebraic generalisation processes. 
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following expression for what they believe is a recursive formula: 
2 2( 1)na n n= + − . This formula is, however, an explicit formula. It is de-

veloped by the students with help of the fourth element of the pattern in 
which the stars are painted in two colours, as shown in Figure 7.6. 

 

 
 

Figure 7.4. One continuation of the shape pattern in Task 1 invented by Group 2  
(linear pattern) 

 
 

 
 

Figure 7.5. Another continuation of the shape pattern in Task 1 invented by Group 2  
(quadratic pattern)  

 
 

 
 

Figure 7.6. Fourth element of the quadratic shape pattern used by students of Group 2 to 
develop a formula (Task 1) 

 
The students check if the conjectured formula is correct for 3n =  and 
5n = , and verify that the formula produces the third and fifth members 

in the sequence mapped from the shape pattern. Anne, however, hesi-
tates: 
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347 Anne: and 2n  well? [Pause 1-3 s] 
348 Helen: It is correct now, isn’t it? 
349 Paul: It is in a way [Pause 1-3 s] 2( 1)n−  it is? [Pause 1-3 s] 
350 Anne: Ehm? 2( 1)n−  is kind of what is added each time. 
351 Paul: Yes [Pause 1-3 s] 
352 Anne: I cannot see how 2n  can be the preceding number then. 

Well, but [Pause 1-3 s] the answer will be correct though 
[laughs]. But the answer will be correct though. 

353 Helen: It is correct for five. 
354 Anne: Can try with six. 
355 Paul: [indecipherable] 
356 Anne: It is correct for six as well (Paul: uh huh) so it must be like 

this. But [Pause 1-3 s] it is easier to explain it with help of 
the shape [Figure 7.1] than thinking about those numbers 
(Helen: uh huh), because in my head I cannot understand 
that it can be right [with the numbers]. (Helen: no) 

[Task 1, Group 2] 

It is my interpretation that Anne understands the formula 2 2( 1)n n+ −  
as a recurrence relation with the second term, 2( 1)n − , being the first dif-
ference (turn 350). But 2( 1)n −  is not the difference between consecutive 
members of the sequence mapped from the shape pattern; it is one of the 
addends in the sum of consecutive squares which constitutes an explicit 
formula.99 This is probably noticed by Anne whose utterances in turns 
352 and 356 indicate that she finds it incomprehensible that 2( 1)n −  is 
“what is added each time” (in the sense of being the first difference in a 
recurrence relation). After this exchange Anne explains how the terms in 
the formula, 2 2( 1)na n n= + −  correspond to the structure of the second 
and third elements in the shape pattern:  

358 Anne:  But [Pause 1-3 s] on the [second] shape you see that [Pause 
1-3 s] it is one squared plus two squared [she draws a curve 
around the star in the middle, then draws a curve around the 
four stars in the next layer in the second element of the pat-
tern] This one [about the third element] is three squared plus 
two squared [she connects with curves the stars that consti-
tutes a 3x3 square, then connects the stars that constitutes a 

                                         
 
 
 
 
 

99 A recursive formula for the quadratic shape pattern (Figure 7.5) can be represented by 
1 4( 1)n na a n−= + −  with initial condition 1 1a = .  
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2x2 square].100 (Helen: uh huh). There we see it. [Pause 1-3 
s] Then I think we can continue. 

[Task 1, Group 2] 
The students do not discuss whether the formula is recursive or ex-

plicit, but conclude that the formula is correct. The above indicates that 
the students of Group 2 are not aware that they have found (a conjecture 
for) an explicit formula. They consider the expression 2 2( 1)na n n= + −  
to be a recursive formula. It may be that the notation they use, denoting 
the n-th member of the sequence mapped from the shape pattern by na , 
influences their conception of the formula as being recursive. The epi-
sode can be interpreted in terms of the didactical contract: The students’ 
obligation according to the contract is to come up with an answer to the 
task which is acceptable in the classroom context. They consider it done 
because they have observed that the invariant structure of the shape pat-
tern corresponds to sums of squares, represented algebraically by the 
formula, 2 2( 1)na n n= + − . Furthermore, they have verified that the con-
jectured formula is correct in particular cases. Anne encounters, howev-
er, a discrepancy between, on the one hand, the conception of the formu-
la as a recurrence relation between consecutive members of the sequence 
mapped from the shape pattern, and, on the other hand, the conception of 
the term 2( 1)n −  as being the first difference of the mentioned sequence. 
That the students do not inquire into the contradiction observed by Anne 
can be interpreted in terms of (their interpretation of) the clauses of the 
didactical contract: Their obligation is not to understand the implications 
of a recursive (or an explicit) formula; it is to give an appropriate answer 
to the task set by the teacher.  

In the adidactical situation described in this section there is a lack of 
awareness of what distinguishes a recursive approach from an explicit 
approach to generality. The milieu for the formulation phase is therefore 
constrained; the students have established a formula but are not con-
scious of its nature. Task 1 involves establishment of, first, a recursive 
formula, and then an explicit formula. It is my interpretation that the stu-
dents believe that they have established a recursive formula, when it is 
indeed an explicit one. When they later realise that what they have pro-

                                         
 
 
 
 
 

100 See Figure 7.6 where the fourth element of the shape pattern is used to show that the 
structure of the general element is constituted from the sum of two consecutive squares. 
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duced, 2 2( 1)na n n= + − , is an explicit formula, they do not engage in 
reflection on what distinguishes a recursive formula from an explicit 
formula (nor do they engage in developing a recursive formula). The mi-
lieu does not provide the students with feedback that the formula they 
have developed is recursive or explicit. For instance, there is no require-
ment that makes it necessary for them to reflect on the nature of the for-
mula they have established.   

In the next section I show how Group 1’s recursive approach to gen-
erality is left unmarked by the teacher who aims at an explicit formula. It 
is the fourth manifestation of Recursive and explicit approaches to the 
general member of a sequence. 
7.1.4 Students’ recursive approach to generality unmarked by the 

teacher 
In this section I show how the different foci (recursive and explicit ap-
proaches to generality) of Group 1and teacher Erik constrain the situa-
tion of formulation. As explained in Section 6.1.1, the aim of Task 3d 
(reproduced in Figure 7.7) was for the students to express in natural lan-
guage, and further, transform into algebraic notation, the mathematical 
statement that the sum of the first n odd numbers is equivalent to the n-th 
square number (RJ_06.02.2004). The task, however, is designed such 
that there is flexibility with respect to the choice of approach to generali-
ty. That is, a mathematical statement induced from the shape pattern in 
Task 3d could be expressed as a recurrence relation: The n-th square 
number, ns , is equivalent to the sum of the ( 1)n − -th square number and 
the n-th odd number (2 1n − ), symbolised as 1 2 1n ns s n−= + − , with ini-
tial condition 1 1s = .  

 
Task 3 (Part I)  

   
        1                2                            3     
 
d)  Can you express what the shapes seem to show, as a mathematical statement?  
 - In words? 
 - In symbols? 

 
Figure 7.7. Task 3d  

 
Teacher Erik was however not aware of this potential during the stu-
dents’ engagement with Task 3d (RJ_06.02.2004). The milieu for the 
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teacher’s intended mathematical statement (materialised through Task 3) 
is therefore not adequate. This implies a constraint to the situation of 
formulation. 

Both groups of students have found a formula for the general mem-
ber of the sequence mapped from the shape pattern in Task 3 (Part I), 
symbolised by 2Fn n=  (Group 1) and 2

na n=  (Group 2). In presence of 
teacher Erik, Group 1 claims that their formula is a mathematical state-
ment which represents what the shape pattern seems to express. The 
teacher then tries to encourage them to express the number of compo-
nents in another way by directing their attention towards the structure of 
the elements of the shape pattern: 

114 Teacher E: Then you could think, could you have expressed [Pause 1-3 
s] 

115 Ida:  The same thing with words? 
116 Teacher E: Well, or expressed the total number in another way, by 

thinking about how this shape is built up? 
[Task 3 (Part I), Group 1] 
The students accommodate to the teacher’s request by making a recur-
sive approach to the structure of the elements. The dialogue below shows 
how the students and the teacher are unaware of each other’s different 
focus (recursive and explicit approach to generality, respectively): 

117 Alice: It’s the former plus a [Pause 1-3 s] 
118  Ida: two more on the lowest line. 
119 Teacher E: Yes it is, and when you take the former plus two more, and 

start by one which is on the top, what kind of numbers does 
emerge then? 

120 Ida: Three? [low-voiced] 
121 Sophie: Odd numbers? 
122 Teacher E: Odd numbers? Yes? One, three, five, nine 
123 Alice: seven 
124 Teacher E: well maybe seven first, yes [students laugh] uh huh [Pause 

1-3 s] so that [Pause 1-3 s] uh huh [Pause 1-3 s] odd num-
bers that we build up, and what are we doing, and what is 
the result? There is a kind of connection here now. [Pause 5 
s). Results in n squared, as you have said. It results in square 
numbers, but what do we do in order to make these square 
numbers appear? 

125 Sophie: What we do? We just square the shape? Or the number of 
the shape. 

126 Teacher E: Yes, well you do that, when you [Pause 1-3 s] but that may 
not be the most obvious visual picture of these towers. 

127 Sophie: That you add a line. 
128 Teacher E: Yes. 
129 Alice: That you increase at the ends with one at each side. 
130 Teacher E: Indeed. 
131 Alice: This in order to have that staircase pattern. 
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132 Teacher E: And then we build it line by line [Pause 1-3 s] So we are 
concerned with adding numbers [Pause 1-3 s] in order to get 
the total number of cubes [hesitantly] [Pause 1-3 s] Shape 
number two is one plus three [Pause 1-3 s] and the next 
shape is one plus three plus five [Pause 1-3 s]  

[Task 3d, Group 1] 

When the teacher in turn 116 challenges them to take into account how 
the elements of the shape pattern are built up, Alice’s and Ida’s respons-
es (in the subsequent turns) indicate that they think about the recurrence 
relation which can be identified in the pattern. The teacher continues his 
attempt to make them establish an explicit relationship; that is, an equiv-
alence relation between square numbers and the sum of odd numbers 
(turns 119, 124, and 126). On the teacher’s request for the most obvious 
diagrammatic configuration of the elements, Sophie and Alice respond 
by describing different recurrence relations: Sophie’s attention (turn 127) 
is on the sequence of elements (staircase towers), where the difference 
between consecutive members of the sequence mapped from the shape 
pattern is equal to an odd number. Alice’s attention (turn 129), however, 
is on the rows of a generic staircase tower, where the difference between 
consecutive members of the sequence mapped from the rows of the ge-
neric staircase tower is equal to the number 2 (the rows are built up of 
consecutive odd numbers of cubes). Turn 132 shows that the teacher’s 
focus continues to be on an explicit relationship (adding odd numbers 
and getting square numbers). Communication of the mathematics, as 
manifested in the excerpts from the transcript above (turns 114-132), is 
done in natural language. Analysis of Group 1’s engagement with Task 
3d shows that the situation of formulation is constrained by the complex-
ity of expressing in natural language, reference between the position and 
numerical value of elements in the shape pattern. This is reported in 
Måsøval (2006). It is my conjecture that it perhaps would be easier for 
the teacher to discover the students’ recursive approach if the mathemat-
ics were communicated in algebraic notation. 

The missing coordination of the teacher’s and the students’ ap-
proaches contributed to production of Topaze effects and Jourdain ef-
fects, the analysis of which was presented in Section 6.2.3. The fact that 
a mathematical statement in Task 3d can be given either as a direct rela-
tionship or as an indirect relationship is not per se detrimental to the sit-
uation of formulation. It is my interpretation that it is the interlocutors’ 
apparent lacking awareness (in the given situation) of the two alterna-
tives which constrains the situation of formulation.  

The analysis presented in this section has shown how the different 
foci of the teacher and the students constrain the situation of formulation. 
Teacher Erik has defined the target knowledge of Task 3 to be a mathe-
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matical statement in terms of an equality: the statement of equivalence 
between square numbers and sums of odd numbers. The milieu, howev-
er, is not consistent with the intended goal. This is manifested in the pos-
sibility of formulating a mathematical statement in terms of a recurrence 
relation between a square number and the sum of the previous square 
number and an odd number, which is also an equivalence relation. The 
former mathematical statement (“the sum of the first n odd numbers is 
equivalent to the n-th square number”) is the outcome of an explicit ap-
proach whereas the latter (“the n-th square number is equivalent to the 
sum of the ( 1n − )-th square number and the n-th odd number”) is the 
outcome of a recursive approach to generality. Both statements have the 
quality of being equivalence relations between sets of numbers (square 
numbers and sums of odd numbers).  

In the next section I present the analysis of the complexity experi-
enced by the students when they attempt to transform recursively ex-
pressed properties into an expression in closed form. It is the fifth mani-
festation of Recursive and explicit approaches to the general member of 
a sequence.  
7.1.5 Complexity of transforming recursively expressed properties 

into an explicit algebraic expression 
During their engagement with Task 3, the students of Group 1 are given 
the task of transforming from natural language into mathematical sym-
bols the mathematical statement that “the sum of the first n odd numbers 
is equal to the n-th square number”. The teacher writes down, in mathe-
matical symbols, the statement in two particular cases (when 2n =  and 
3n = ), before he writes down the general equivalence relation, 

21 3 5   n+ + + + =L , where he leaves open space for the symbolic ex-
pression for the n-th odd number (the equalitites are reproduced in Table 
7.3). He then gives the students the task of finding a symbolic expression 
for the n-th odd number: 

158 Teacher E: This is square number two. (Alice: uh huh). If I take the first 
three [he writes 21 3 5 9 3+ + = = ] I will come up with square 
number three, and so on. Then I take the first n ones, but 
how shall I give the message about this? Then I continue 
here and I shall go up to odd number n. How shall I express 
odd number n? 

[Task 3d, Group 1] 
The excerpt from the dialogue below makes evident the problem of 

choosing and remaining faithful to a point of reference when represent-
ing a quantity (the n-th odd number) by an explicit algebraic expression. 
This problem is described by Radford (2000) as the positioning problem, 
and is about how the rank of a member in a sequence relates to the mem-
ber itself.  
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Table 7.3. The equivalence relations in two particular cases and in the general case, as 
written by teacher Erik in Alice’s notebook  

2

2

2

1 3 2
1 3 5 3

1 3 5     n

+ =

+ + =

+ + + + =L

 

 
159 Sophie:  Can’t we just take n? [for the n-th odd number]  
160 Teacher E:  What is the fourth odd number?  
161 Alice: 7. 
162 Teacher E:  The fifth odd number?  
163 Alice?: 9.  
164 Teacher E:  So odd number n is? [Pause 1-3 s]  
165 Ida:  2n + ? 
166 Teacher E:  Well, but it is exactly a structure like this you have to try to 

search for now. Odd number n cannot be n, because then 
odd number four would have been four. If you say n twice 
in a sentence, it has the same meaning. [Pause 5 s] 

167 Ida:  But it has to be something with plus two (Teacher E: ok?) 
because it increases by two each time. 

168 Teacher E:  Yes, but then you are on a path in a way, which is about 
searching, searching for a structure. Then you can start to 
test out. You [to Ida] have an idea that it is n plus two. 

169 Alice:  If we take five here then, so the increase from here to there 
is nine. [She points with her pencil at something she has 
written in her notebook] 

170 Ida:  What? [Sophie draws her eyebrows together] 
171 Alice:  Do you get four plus two then? [Pause 1-3 s] Is it? 
172 Ida:  I don’t know, you have to bring all this matter [about the 

sum of the odd numbers?] with you. That’s what I mean. I 
don’t know. I only [interrupted by Alice] 

173 Alice: If we’re going to find the [indecipherable] number four. 
  [Teacher E leaves the group room] 
174 Ida: know that it increases by two each time. But how shall we 

write it? I don’t know. 
[Task 3d, Group 1] 

Sophie’s suggestion in turn 159 that they let n represent the n-th odd 
number illustrates that she does not relate the rank of the member to the 
member itself. The impossibility of Sophie’s suggestion is demonstrated 
by the counterexamples provided in turns 160 – 163. Ida’s suggestion to 
let the n-th odd number be represented by 2n +  (turn 165) she supports 
by the claim that “it has to be something with plus two because it in-
creases by two each time (turn 167). Moreover, nor does the expression 
2n +  relate the rank of the member to the member itself. I interpret the 

expressions n and 2n +  in Sophie and Ida’s suggestions to be what Rad-
ford (2002a) refers to as symbolic narratives, where n and 2n +  are 
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nouns in a referencing act (Radford, 2002b). What makes n and 2n +  
symbolic narratives is that these “translations” still tell a story, not in 
natural language, but in mathematical symbols. The expression n tells 
that it is the n-th member, whereas 2n +  tells the story that the differ-
ence between two consecutive members in the sequence of odd numbers 
is equal to 2. “Adding two” describes the recursive relationship between 
consecutive members of the sequence of odd numbers. What is desired, 
however, is an explicit relationship that expresses the n-th odd number as 
a function of its rank.   

The teacher has reformulated the task; the original task (to express in 
terms of a mathematical statement what the shape pattern seems to show) 
is reduced to finding a symbolic expression for the n-th odd number. But 
the requirement that the expression needs to be explicit (i.e., in closed 
form) remains implicit (the expression aimed at is the n-th term of the 
sum at the left hand side of the equality 21 3 5   n+ + + + =L ). The new 
task is formulated by the teacher under the constraint that the n-th odd 
number is an addend in an explicit formula; therefore the n-th odd num-
ber needs to be represented in closed form. This may explain why the 
teacher did not choose to build on the students’ contributions about add-
ing 2 and then help them with notation that could have enabled them to 
establish a recurrence relation ( 1 2n nu u −= +  as mentioned above).  

The target knowledge intended by the teacher (an equivalence rela-
tion between square numbers and sums of odd numbers) disappears as a 
consequence of the reformulation of the task, which is a characteristic of 
the Topaze effect. The reformulated task is not devolved to the students 
as an appropriate adidactical situation. These students have limited expe-
rience with representing recurrence relations in mathematical symbols. 
They have solved Task 1 one week earlier, where they have found a re-
cursive formula for the general member of the sequence mapped from 
the shape pattern. However, as explained in Section 6.3, there has been 
an incomplete institutionalisation of representation of recursive formu-
lae.   

Another incidence of complexity related to transformation of recur-
sively expressed properties into an explicit algebraic expression occurs 
when Group 2 is working on the pattern of rectangles in Task 3f (Figure 
7.8 on the next page). Turn 127 in the transcript shows how Anne uses 
empirical examples and makes a claim about the growth of the sides of 
the rectangles: 

127 Anne: Two times three, three times five, four times seven. So the 
width increases by one and the length increases by two. 

[Task 3f, Group 2] 
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Task 3 (Part II) 
 
Below, the staircase towers have been extended into rectangles. 

 
f) Find an explicit formula for the total number of squares in the n-th shape. 
 Then find an explicit formula for the number of  ¨ in the n-th shape. 

 
Figure 7.8. Task 3f  

 
Both Anne and Helen write in their notebooks a table of products of two 
factors (reproduced in Table 7.4) which represent the width and length of 
rectangles in the pattern of rectangles. Helen proposes that the second 
factor, which represents the length of the n-th rectangle, is symbolised by 
2n +  (turn 138 in the transcript):  
136 Helen: Shall we write it as a formula then? 
137 Anne: na  is equal to [Pause 1-3 s] n times [Pause 1-3 s] 
138 Helen: n times [Pause 1-3 s] times n minus, no n plus two. 
[Task 3f, Group 2] 

 
Table 7.4. Area of rectangles in a shape pattern written as the product of width and 
length (Task 3f) 

1

2

3

4

5

1 1
2 3
3 5
4 7
5

a
a
a
a
a

= ⋅

= ⋅

= ⋅

= ⋅

= ⋅

 

 
Helen’s suggested expression for the width of the general rectangle is 
similar to Ida’s suggested expression for the n-th odd number (as dis-
cussed above) in the sense that it does not relate the rank of the general 
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rectangle to its measured length.101 It can therefore be interpreted as a 
symbolic narrative, a noun in a referencing act (Radford, 2002a, 2002b). 

In Section 7.1.4 I explained how Group 1’s recursive approach to 
generality was not noticed by the teacher. An important factor in ex-
plaining that phenomenon was the students’ lacking proficiency in nota-
tion for recurrence relations. Lacking proficiency in notation is also an 
important factor in explaining the complexity experienced by the stu-
dents in transforming verbally expressed recursive properties into explic-
it expressions, analysed in this section.  

The analysis presented in Sections 7.1.1 – 7.1.5 has shown how con-
fusion of recursive and explicit approaches to generality in shape pat-
terns contributes to the complexity of turning a situation of action into a 
situation of formulation.  

In the next section I present the second subcategory of Complexity of 
turning a situation of action into a situation of formulation.  

7.2 The syntax of algebra   
The second subcategory of Complexity of turning a situation of action 
into a situation of formulation is concerned with how expectations in the 
milieu with respect to type of formula combined with students’ limited 
knowledge of syntax of formulae constrain the situation of formulation. 
The subcategory is manifested in two circumstances: in identification of 
a need for knowledge of arithmetic series; and, in the students’ regard (or 
as I will argue, disregard) of a presented formula. 
7.2.1 Identification of need for knowledge of arithmetic series  
In search for an explicit formula for the general member of the sequence 
mapped from the “dots-at-grid” pattern (repeated in Figure 7.9 on the 
next page), the students of Group 1 have written each of the first nine 
members of the sequence as the sum of the previous member plus the 
difference (with 1 1s = ).  

 

                                         
 
 
 
 
 

101 The positioning problem is however solved for the first factor of the products which rep-
resent the area of the rectangles in the pattern of rectangles. The rank of a rectangle is equal 
to its measured width. 
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Figure 7.9. “Dots-at-grid” pattern derived from Task 1 invented by Group 1 

 
Further, they have written the members of the sequence as sums of dif-
ferences according to the recurrence relation (see Table 7.5), and identi-
fied that the first differences are numbers in the four-times table. 

Teacher Thomas has helped them to focus on the number theoretical 
properties of the resulting sums as being one more than a number in the 
four-times table (written at the left column of Table 7.5). They have ex-
pressed the third, fourth, fifth, sixth and seventh element as one more 
than a multiple of four when Ida identifies the regularity as expressed in 
the utterance below: 

758 Ida: yes [Pause 1-3 s] three, six, ten [whispers] [Pause 6 s] Yes, I 
know! It increases by one each time [she points at the fac-
tors 3, 6, 10, 15, 21]. If you start with three, three plus three 
is equal to six. Six plus four is equal to ten. Ten plus five is 
equal to fifteen. Fifteen plus six is equal to twenty one. 

[Task 1, Group 1] 

 
Table 7.5. The first nine members of the sequence mapped from the shape pattern in 
Task 1 as developed by students of Group 1 

1

1 2

3 2

4 3

5 4

6 5

(4 0) 1       1
(4 1) 1       4 5 1 4
(4 3) 1       8 1 4 8 13
(4 6) 1       12 1 4 8 12 25
(4 10)+1      16 1 4 8 12 16 41
(4 15)+1      20 1 4 8 12 16 20 61
(4 21)+1      

s
s s
s s
s s
s s
s s

⋅ + =

⋅ + + = = = +

⋅ + = + = + + =

⋅ + = + = + + + =

⋅ = + = + + + + =

⋅ = + = + + + + + =

⋅ 7 6

8 7

9 8

24 1 4 8 12 16 20 24 85
(4 28)+1      28 1 4 8 12 16 20 24 28 113
(4 36)+1      32 1 4 8 12 16 20 24 28 32 145

s s
s s
s s

= + = + + + + + + =

⋅ = + = + + + + + + + =

⋅ = + = + + + + + + + + =  
 

Ida talks about the difference between the multipliers of four when she 
says that “it increases by one each time”. The students consider the ex-
pressions at the left hand side in Table 7.5 and try to find a connection 
between the position (number of row) of an expression and the number 
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by which four is multiplied, expressed by the teacher as “a connection 
between the index and the number by which we multiply four” (turn 
818). They do not succeed in doing so, and are encouraged by teacher 
Thomas to look at the structure of the elements of the shape pattern (by 
filling in stars at the open spaces to create squares and keep track of the 
open spaces in order to subtract afterwards). 

The students find, as a result of engagement with filling in and sub-
tracting stars on shapes drawn in their notepads, that the second, third, 
and fifth elements of the sequence can be expressed as 23 2 1 1 2− ⋅ − ⋅ , 
25 3 2 2 3− ⋅ − ⋅ , and 29 5 4 4 5− ⋅ − ⋅ , respectively. They then conjecture 

that the sixth element can be expressed as 211 6 5 5 6− ⋅ − ⋅ , which indi-
cates that they have identified the invariant structure of the first three 
examples. The lesson ends however before they are given the opportuni-
ty to generalise algebraically the particular observations expressed as 
arithmetic relations.  

The arithmetic relations manifested in Table 7.5 (on the previous 
page) can be generalised in algebraic notation in terms of 

11 4 8 12 4( 1) 1 4(1 2 3 1) 1 4n ns n n T −= + + + + + − = + + + + + − = +L L ,  
where 1 2 3nT n= + + + +L  is defined as the n-th triangular number. In a 
conversation with the two teachers after the lesson (RJ_30.01.2004), 
teacher Erik (who had designed the tasks) told that he had expected that 
the students would recognise the triangular numbers, and hence, that 

they could use the formula, ( 1)1 2 3
2n

n nT n +
= + + + + =L  to express 

the general element of the identified pattern. Teacher Thomas said that 
he, like the students, had not recognised the triangular numbers.  

In looking back on the students’ engagement, it can be noticed that 
they do not generalise the expressions written as sums of multiples of 
four. Nor does teacher Thomas encourage them to do so. From their dia-
gram (Table 7.5 above), it would be possible to express the elements as 
shown in Table 7.6. The n-th element could then be represented by  

1 1 4 2 4 3 4 ( 1)4 1 4(1 2 3 1)ns n n= + ⋅ + ⋅ + ⋅ + + − = + + + + + −L L . 
 

Table 7.6. Representation of elements as potential basis for generalisation 

1

2 1 1

3 2 2

4 3 3

1
 4 1 4
 8 2 4 1 1 4 2 4
12 3 4 1 1 4 2 4 3 4

etc.

s
s s s
s s s
s s s

=

= + = + ⋅

= + = + ⋅ = + ⋅ + ⋅

= + = + ⋅ = + ⋅ + ⋅ + ⋅
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Whether the indeterminate expression for ns  would count as an answer 
in the classroom context is not clear from the task. There is no feedback 
potential in the didactical situation that could give validity to the expres-
sion; the only thing asked for in Task 1d is an explicit formula for the 
“connection between the position of a shape and the number of stars in 
that shape”. The member ns  is equivalent to the n-th partial sum of an 
arithmetic series with difference four. Hence, the expression can be sim-

plified as [ ] 211 4 4( 1) 2 2 1
2n
ns n n n−

= + + − = − + . But knowledge of 

sums of arithmetic series is not expected prior knowledge for these stu-
dents. Therefore, the indeterminate expression (the series) 

1 1 4 2 4 3 4 ( 1)4 1 4(1 2 3 1)ns n n= + ⋅ + ⋅ + ⋅ + + − = + + + + + −L L  would 
be an acceptable formula in mathematical symbols for the general ele-
ment of the sequence mapped from the shape pattern.  

It is interesting that, when the students have found expressions for 
1 2 3 4 5, , , , ,s s s s s  and 6s  (reproduced in Table 7.7), the following exchange 

takes place:   
690 Alice: We are indeed writing down the whole four-times table 

here. 
691 Ida: Can’t we rather write [Pause 8 s] 
692 Alice: Just write 7s  as well.    
693 Ida: I thought if we could find a [Pause 1-3 s] symbol for that? 

[She points at the right hand side of the diagram where the 
elements are expressed as sums: one plus four plus eight 
plus twelve, etc.] 

[Task 1, Group 1] 

Ida’s request for a symbol to represent the sum (turn 693) could have 
been met by knowledge of arithmetic series, as explained above.  

 
Table 7.7. The diagram produced by students of Group 1 

1

1 2

3 2

4 3

5 4

6 5

1
4 5 1 4

8 1 4 8
12 1 4 8 12
16 1 4 8 12 16
20 1 4 8 12 16 20

s
s s
s s
s s
s s
s s

=

+ = = = +

= + = + +

= + = + + +

= + = + + + +

= + = + + + + +

 

 
This episode points at generalisation of shape patterns as a context which 
can motivate for learning about series. It is, however, likely that the stu-
dents would not have considered the indeterminate expression 

1 4(1 2 3 1)ns n= + + + + + −L  to be an adequate formula. This claim I 
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will support by the analysis in the next section, where I present the se-
cond manifestation of The syntax of algebra. 
7.2.2 Disregard of a presented formula associated with limited 

knowledge of syntax of formulae 
During their engagement with Task 3d, the students of Group 1 are, as 
explained in Section 7.1.5, given the task of transforming from natural 
language into mathematical symbols the mathematical statement that 
“the sum of the first n odd numbers is equal to the n-th square number”. 
The teacher has presented the conjecture in the general case, 

21 3 5   n+ + + + =L , and has challenged the students to represent in 
mathematical symbols the n-th odd number (which is omitted in the pre-
sented equality). The students do not succeed in symbolising the n-th 
odd number, and start to focus on the increase from the ( 1n − )-th mem-
ber to the n-th member of the sequence. They find out that the increase is 
given by ( 1)n n+ − , but are not aware of the fact that this expression in-
deed represents the n-th odd number. They conjecture that the formula 
which describes the pattern in Task 3 (Part I) is given by 2( 1)n n n+ − = . 
The students refer to the formula as a “two-in-one formula”, because it 
tells them both the increase from one member to the next (left hand side 
of conjectured formula) and how many cubes there are totally in the n-th 
shape (right hand side of conjectured formula). However, they find that it 
cannot be correct since the two sides give different values when evaluat-
ing for particular values of n. They conclude that the failure with their 
formula is that it says nothing about adding odd numbers.  

I notice that the students of Group 1 do not consider the teacher’s 
conjectured formula, 21 3 5   n+ + + + =L , as relevant. The conjecture 
presented by the teacher is about adding odd numbers and, hence, what 
is omitted (the n-th odd number) is exactly the increase from the ( 1n − )-
th member to the n-th member of the sequence. Alice has even written 
the third and fourth row in the diagram with which the teacher started (as 
shown in Table 7.8). 

 
Table 7.8: Diagram showing arithmetic relations between odd numbers and square 
numbers (the third and fourth rows are written by Alice, the others by teacher Erik) 

2

2

2

2

2

1 3 2
1 3 5 3

1

1 3 5 7 4
1 3 5 7 9

3 5    

5

n

+ + + =

+ + + + =

+ =

+ + =

+ + + + =L
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But the students do not consider the indefinite expression with dots to be 
an adequate mathematical formula. Evidence for this claim is provided 
by the transcript below:  

360 Teacher E: If we add them, we will get square number four [Ida nods] 
which is sixteen. Here we have the first odd number, the se-
cond, the third, the fourth, the fifth. [He points at the fourth 
row] If we add them all, then we will get the fifth square 
number. And how do we get the n-th square number? Then 
we must add all the odd numbers from the bottom [inter-
rupted by Ida] 

361 Ida: And how shall we write it then? 
362 Teacher E: and up to the n-th odd number of which you have now got 

an expression, which is two n minus one [Pause 1-3 s] So, I 
don’t know if you perhaps [Pause 1-3 s] think that this be-
comes more complicated than it really is? But actually [he 
writes 2 1n −  as the last addend of the sum at the left hand 
side of the equality at the bottom row, so that it becomes 

21 3 5 2 1n n+ + + + − =L ] like this, that we can mark that we 
have added (Alice: uh huh) the first, the second, the third 
odd number up to the n-th odd number. That is the process 
of building with cubes. The first odd number, the second 
odd number and so forth, like this. Here it is concretised. 
[He picks up a tower that the students have built with cen-
ticubes, the image of which is shown in Figure 7.10 on the 
next page] 

363 Teacher E: Here is the left hand side of that equation. [He moves the 
pen alongside the equality 21 3 5 2 1n n+ + + + − =L ] 

364 Alice: Right.  
365 Ida: Right. 
366 Teacher E: The first odd number [he points at the first addend at the left 

hand side of the equality and thereafter at the first [top] row 
in the tower] plus the third odd number. [He points at the 
second row in the tower] Then we have joined [interrupted 
by Alice] 

367 Alice: The second odd number you mean. 
368 Teacher E: The second odd number I mean, hence I have joined that 

one. (Ida: uh huh). Plus the third odd number, then I have 
joined that one [he points at the third row in the tower] plus 
the fourth odd number and then we can think that it will 
continue [Pause 1-3 s] 

369 Ida: Yes, but how shall, shall I kind of write [Pause 1-3 s] 
370 Teacher E: There are not so many other ways to do it, actually. Well, 

there is another way, but [laughs a bit]. But for the time be-
ing you can write it like this, plus and then dot dot dot, to 
indicate that there is (Ida: yes) much in between. 

371 Ida: It continues the same way? 
373 Teacher E: Continues the same way up to the n-th odd number. (Ida: 

yes). And then it adds up to the n-th square number. 
374 Alice: Is this a [Pause 1-3 s] formula? 
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375 Teacher E: This is a formula. 
376 Alice: I didn’t expect that we should include so much [Pause 1-3 s] 
377 Teacher E: No, I see. 
378 Ida: But, you remember in the textbooks in secondary school? 

First there was an explanation, and afterwards they only 
used [Pause 1-3 s] (Alice: yes, but) n squared [Pause 1-3 s] 
or two n minus one. 

379 Alice: Yes, because a formula [Pause 1-3 s] that is kind of not any 
number [smiles]. 

380 Ida: Yes, I know [smiles]. 
[Task 3, Group 1] 

 

 
 

Figure 7.10. Image of the tower built in centicubes by students of Group 1 

 
The problem for the students is how to write in mathematical sym-

bols the general case where there is a variable number of odd numbers to 
be added (Ida in turns 361 and 369). The teacher writes 2 1n −  as the last 
addend of the sum at the left hand side of the equivalence relation that he 
had written down the last time he visited the group, so it becomes 

21 3 5 2 1n n+ + + + − =L . His question in turn 362, if they happen to 
think that the formula becomes more complicated than it really is, possi-
bly indicates that he is not aware of what they find problematic. He then 
explains carefully, with reference to the fourth staircase tower built in 
centicubes (which they have in front of them), how the process of con-
structing a tower with rows of (odd number of) cubes is interpreted 
arithmetically as adding odd numbers (turns 362, 363, 366, and 368).  

Ida’s question in turn 369 appears to be motivated by the teacher’s 
description of the general case: “… then we can think that it will contin-
ue” (teacher E in turn 368). This possibly indicates that she does not 
know how to represent mathematically that the process of adding odd 
numbers will continue up to an indeterminate odd number. Hence, there 
is a problem with the syntax. Alice’s question in turn 374 provides evi-
dence that she has not considered the teacher’s equivalence relation to 
qualify as a formula. Her explanation (turn 376) why this has been the 
case is supported by Ida (turn 378) who refers to secondary school text-
books. It is my interpretation of turns 376, 378 and 379 that Alice and 
Ida think that mathematical formulae should be simple expressions in 
terms of n and not a sum of several numbers.  
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Turns 369 – 380 indicate that the expression at the left hand side of 
the equality 21 3 5 2 1n n+ + + + − =L  is unfamiliar for the students and 
is conceived of as non-adequate because it consists of an indeterminate 
sum of several numbers in addition to an algebraic expression. They 
have been searching for a simple (determinate) expression in terms of n, 
a closed formula that would represent an indeterminate sum of odd num-
bers. I interpret the students’ conjectured formula, the expression 

2( 1)n n n+ − = , to be the result of their attempt to represent the requested 
mathematical statement by a recursive formula.  

As explained in Section 7.1.4, Task 3d is designed in a way that does 
not exclude a mathematical statement in terms of a recursive relation-
ship. That the students struggle with representing the mathematical 
statement recursively, I ascribe to their limited experience with notation 
for recursive relationships. Their disregard of the explicit formula pre-
sented to them by the teacher may be the result of limited knowledge of 
syntax of explicit formulae; an indeterminate expression was not judged 
adequate by the students. These phenomena constitute shortcomings in 
the milieu for formulation of algebraic generality in shape pattern and 
points at the importance of students’ familiarity with symbolisation of 
number theoretical relationships.  

The analysis presented in this section points at the necessity an a pri-
ori justification of the kind of interaction with the milieu which is neces-
sary in order to develop particular forms of knowledge. To develop a 
recursive formula requires different interaction with the milieu (includ-
ing notation) than an explicit formula requires. The analysis presented 
shows how inexplicit expectations with respect to type of formulae to-
gether with students’ limited experience with the syntax of algebra con-
stitute shortcomings in the milieu for formulation of a mathematical 
statement.  

In the next section I present the third manifestation of The syntax of 
algebra. 
7.2.3 Complicated symbolisation of relations between natural 

numbers, odd numbers and square numbers 
The tasks on algebraic generalisation of shape patterns given to the stu-
dents are of two kinds: The patterns in Task 1, Task 2, and Task 3 (Part 
II) call for formulae for the numerical value of the general element of the 
sequence of shapes. The patterns in Task 3 (Part I) and Task 4, on the 
other hand, call for mathematical statements about number theoretical 
relationships (that is, equivalence relations between sets of numbers): 
The pattern in Task 3 (Part I) is intended to illustrate that the sum of the 
first n odd numbers is equivalent to the n-th square number. The pattern 
in Task 4 is intended to illustrate that the sum of the ( 1)n − -th and the n-
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th triangular numbers is equivalent to the n-th square number. In this sec-
tion I present the analysis of the complexity experienced by Group 1 of 
symbolising algebraically the arithmetic relation between the n-th square 
number and the sum of the first n odd numbers, as intended illustrated in 
the shape pattern in Task 3 (Part I).  

As explained in Section 6.2.1, the students of Group 1 have during 
engagement with the first part of Task 3 established a formula for the 
numerical value of the general element of the shape pattern (represented 
by the function 2Fn n= ). This is, as argued in Section 6.2.1, not the 
mathematical object aimed at. When the teacher observes that they have 
made the statement of function, he challenges them to express the nu-
merical value of the general element of the shape pattern in a way that 
says something about how this element is built up. Section 6.2.3 present-
ed the analysis of how this situation produces Topaze and Jourdain ef-
fects. Teacher Erik has conveyed, in natural language, that the mathe-
matical statement aimed at asserts that the sum of the first n odd numbers 
is equal to the n-th square number. He then challenges them to write the 
statement in mathematical symbols: 

152 Teacher E: Because what we have expressed now with words, is in a 
way an equation, that if we add the first n odd numbers, 
we’ll get the n-th square number. And with symbols, n 
squared will denote square number n, so that is what we get 
at.  But then you can start to think about, how can we, how 
can we, with symbols, write with symbols that we add the 
first n odd numbers? [Pause 5 s] 

[Task 3, Group 1] 

As explained in Section 6.3.1, teacher Erik has, further, illustrated the 
mathematical statement in two particular cases (for 2n =  and 3n = ) and 
in the general case where he has omitted the representation of the n-th 
odd number (see Table 7.8 in the previous section). The students struggle 
for about 10 minutes to find out how to symbolise the n-th odd number, 
but do not succeed. Alice and Ida reveal that they know that the amount 
of odd numbers to be added is equal to the rank of the square number: 

193 Alice: Here you have four, the first four odd numbers, and the an-
swer will be four squared, right? And the next  

194 Ida: There it will be twenty five, you add five numbers. But how 
do you say it? 

[Task 3, Group 1] 

But they do not know how to symbolise it, expressed as not knowing 
“how to say it”.  

195 Alice: How do you say it? 
196 Ida: How do you say that these five numbers becomes a five. 

Because that one is ok. [She points at the right hand side of 
the expression] We know how we shall write that one. It is n 
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squared. But how do you say those? [about the left hand side 
of the expression] Ok, what is n then? 

[Task 3, Group 1] 
This I interpret as problems with the relations between n, the n-th odd 
number and n squared. The mathematical statement aimed at in this case 
is, as commented by teacher Erik in turn 152 above, a mathematical 
statement about equivalence of two quantities; that is, an equality. The 
statement of equality of two different expressions (here, 
1 3 5 2 1n+ + + + −L  and 2n ) for the numerical value of the general ele-
ment of a shape pattern is a mathematical object of a different nature 
than a formula for the general member of the sequence of numbers aris-
ing from the shape pattern. In the first case, the mathematical object is a 
mathematical statement about arithmetic relations between members of 
sequences of numbers (here, odd numbers and square numbers); in the 
second case, the mathematical object is a functional relationship between 
position and member of the sequence arising from the shape pattern.  

As explained in the previous section, the students disregard the 
equivalence relation presented by the teacher as a consequence of limited 
knowledge of syntax of mathematical formulae. It may be that the stu-
dents’ problems with symbolising what they have expressed correctly in 
natural language (turns 193 – 196) is based on a conception that it should 
be possible to represent the observed arithmetic relation between odd 
numbers and square numbers in terms of a formula as they had done in 
Task 1.102 But in Task 1 the assignment was to find a formula for the 
numerical value of the general element, which the students in Group 1 
accomplished in terms of a recursive formula. In Task 3, however, the 
relations observed in the pattern are based on what I refer to as a two-
stage process. The first stage can be interpreted as identification of a 
functional relationship, f, between position and numerical value of the 
lowest row in the shapes, which can be symbolised by ( ) 2 1f i i= − . The 
second stage can be interpreted as identification of a functional relation-
ship, g, between position and numerical value of the complete shape, 
where the complete shape is defined as the composition of the rows. This 

can be symbolised by 
1

( ) ( ) 1 3 5 2 1
n

i
g n f i n

=

= = + + + + −∑ L . The func-

                                         
 
 
 
 
 

102 Group 1 has not engaged with Task 2 because they spent the whole time on Task 1. Group 
2, however, has completed both Task 1 and Task 2. 
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tion g is defined as the n-th partial sum of an arithmetic series with dif-

ference 2. Hence, g can be written as 2(1 2 1)
2

( ) n ng n n+ − ⋅
== , which 

proves the intended conjecture about equality of the sum of the first n 
odd numbers and the n-th square number, 21 3 5 2 1n n+ + + + − =L . 

As evidenced by the excerpts from the transcript above, the students 
of Group 1 understand that it is about adding odd numbers and getting 
square numbers as an answer. They exemplify by adding the first four 
odd numbers and getting four squared, and by adding the first five odd 
numbers and getting five squared. But they do not know how to repre-
sent the observed connection mathematically (Ida in turn 196). As pre-
sented in Section 7.2.2, the students have been introduced to the expres-
sion 21 3 5 n+ + + + =L  by teacher Erik, and given the task of replac-
ing the empty place (illustrated by a box in the above equality) with a 
symbolic expression for the n-th odd number. The analysis has shown 
that they disregard the presented equality, possibly due to their limited 
knowledge of syntax of formulae.  

Recall that the students’ conjecture for a mathematical statement in 
Task 3d is a function that identifies a relationship between position and 
numerical value of the general element of the pattern. An important issue 
is why this function is not an adequate solution to the problem. The na-
ture of the knowledge aimed at in Task 3d rests in the definition of the 
concept of mathematical statement. This definition, however, is not 
known to the students, nor is the concept clarified in the course of the 
lesson. This is a weakness in the milieu for formulation, as explained in 
Section 7.2.1.  

In the next section I give a brief summary of the findings presented in 
Sections 7.1 and 7.2, before I discuss the findings in Section 7.4. 

7.3 Summary 
Sections 7.1 and 7.2 have provided insights into the complexity of turn-
ing a situation of action into a situation of formulation of algebraic gen-
erality in shape patterns, as experienced by the students and teachers 
whom I have observed. Two properties of this complexity have been 
identified. The first property is related to the phenomenon of confusing 
recursive and explicit approaches to generality. This phenomenon is 
manifested in five different circumstances: in the students’ over-
generalisation of a recursive approach to an explicit approach to general-
ity; in the production of a Jourdain effect; in the students’ acceptance of 
an incomprehensible difference; in the students’ and teacher’s unaware-
ness of each other’s different foci with respect to approaches to generali-
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ty (recursive versus explicit); and, in the complexity of transforming re-
cursive properties into an explicit algebraic expression.  

The second property of the complex nature of turning a situation of 
action into a situation of formulation of generality in shape patterns is 
related to the phenomenon of expectations regarding the syntax of the 
target mathematical object. This phenomenon is manifested in three cir-
cumstances: in identification of a need for knowledge of arithmetic se-
ries; in the students’ disregard of a presented formula associated with 
their limited knowledge of syntax of formulae; and, in the complicated 
symbolisation of relations between natural numbers, odd numbers, and 
square numbers.  

The diagram in Figure 7.11 (on the next page) presents the analytic 
category developed in this chapter with its subcategories and events. In 
the next section I discuss the findings presented in this chapter. 
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Figure 7.11. Second analytic category with subcategories and events 

7.4 Discussion of the second analytic category 
The analytic category developed in this chapter, Complexity of turning a 
situation of action into a situation of formulation, provides insights into 
factors that constrain students’ formulation of algebraic generality in 
shape patterns. The discussion of these factors is presented in two parts: 
recursive versus explicit approaches to generality; and, algebraic sym-
bolisation of generality in shape patterns. 
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7.4.1 Recursive versus explicit approaches to algebraic generality 
in shape patterns 

When given the first few members of a sequence of numbers, most stu-
dents are likely to apply a recursive strategy to find the next members of 
the sequence (English & Warren, 1998; Lannin et al., 2006; Orton & Or-
ton, 1999; Orton et al., 1999; Stacey & MacGregor, 2001). Radford 
(2002b) claims that in identifying a relationship between consecutive 
members of a sequence, perception and natural language play a central 
role in the sense that the relationship can be seen and spoken about. An 
explicit (direct) relationship, on the other hand, requires that a point of 
reference is chosen and a symbolic expression in terms of a functional 
relationship between the point of reference (position) and the member 
itself is established. Here perception is much less helpful (Radford, 
2002b). This may explain why many students, when they engage in gen-
eralising patterns, often focus on recursive rather than explicit relation-
ships, as reported above.  

Some researchers (e.g., Amit & Neria, 2008; Steele, 2008), however, 
do not consider a recursive solution to be an adequate generalisation, be-
cause it does not easily permit the calculation of values for large posi-
tions in the sequence. David W. Carraher, Mara V. Martinez, and 
Analúcia D. Schliemann (2008), on the other hand, point out that a re-
cursive approach is important because “the recursive expression tends to 
be consistent with many young students’ conceptualizations of linear 
functions (p. 7). Further, Lannin et al. (2006) recommend that students 
should be familiar with both recursive and explicit strategies and with 
connections between them (see Section 3.4). This stance is supported by 
Dörfler (2008) who observes that the two different approaches to gener-
ality in shape patterns shed different light on the underlying relationship: 
A recursive approach analyses the sequence of numbers arising from the 
shape pattern as the position in the sequence increases; an explicit ap-
proach analyses a single generic case. The epistemological and didactical 
analyses in Chapter 5 have presented the mathematics potential of tasks 
on algebraic generalisation of shape patterns, and its potential for stimu-
lating students’ algebraic thinking.  

Results from the analysis of classroom data presented in this chapter 
have shown how students’ lacking awareness of the distinction between 
explicit and recursive approaches to generality, students’ weak fluency 
in symbolising relationships between variables, and the students’ and 
teacher’s unawareness of each other’s different foci (recursive versus 
explicit) have constrained the process of representing algebraic generali-
ty. It is relevant to notice that the observed students most likely had no 
experience in representing recursive relationships symbolically at the 
time the data were collected. This assumption is based on knowledge of 
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the mathematics curricula which were in force throughout these students’ 
previous education: The Curriculum Guidelines for Compulsory Educa-
tion in Norway, M87 (Ministry of Education and Church Affairs, 1987); 
The Norwegian Curriculum for Primary and Lower Secondary Educa-
tion, L97 (Ministry of Education, Research and Church Affairs, 1996); 
and, The Norwegian Curriculum for Upper Secondary Education, R94 
(Ministry of Education, Research, and Church Affairs, 1993). None of 
these curricula defines any learning goals or competence aims related to 
recursive formulae. Nor does the curriculum which replaced them do so, 
The National Curriculum for Knowledge Promotion in Primary and Sec-
ondary Education and Training (Directorate for Education and Training, 
2006).  

In the next section I argue how consideration of shape patterns con-
tributes to generalisation in terms of algebraic notation. 
7.4.2 Algebraic symbolisation of generality in shape patterns 
In situations of action the observed students have engaged with the shape 
patterns: They have constructed subsequent elements of the respective 
pattern, in terms of drawings (geometric configurations) or as concrete 
objects (e.g., built with centicubes). Further, they have found numerical 
values (by counting components) of the elements, which have been used 
to produce tables or sequences of numbers. Additionally, they have made 
observations of the relationship inherent in the pattern (e.g., how the 
number of components grows, or how the position of an element is relat-
ed to its numerical value). The students’ reflections on their manipula-
tions of the concrete or iconic models (shape patterns) are similar to the 
work of mathematicians, as described by Aleksandr D. Aleksandrov 
(1963/1999):  

It is true that mathematicians also make constant use, to assist them in the 
discovery of their theorems and methods, of models and physical analogues, and 
they have recourse to various completely concrete examples. These examples 
serve as the actual source of the theory and as a means of discovering its 
theorems, but no theorem definitely belongs to mathematics until it has been 
rigorously proved by a logical argument. (pp. 2-3) 

Aleksandrov emphasises in the last part of the quotation the need for jus-
tification of a proposed conjecture, a process I interpret to be dependent 
on representation of the conjectured relationships in formal mathematical 
notation.  

The outcome of situations of action is the milieu for situations of 
formulation, where students formalise in mathematical notation the ob-
servations and conjectures made. Drawing on Kieran’s (1989) definition 
of algebraic generalisation and Davydov’s (1972/1990) theory of gener-
alisation, I consider formalisation in terms of mathematical notation an 
important feature in the appropriation of algebraic generality. Carraher 
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and Schliemann (2002) claim that when students comprehensively repre-
sent relationships in mathematical notation they transform their 
knowledge, extending its range and significance. “Their formal represen-
tations can serve as objects of reflection and inquiry, thereby playing a 
role in the future evolution of their mathematical understanding” (Car-
raher & Schliemann, 2002, p. 299).  

Mathematical objects represented in formal notation are the intended 
outcome of situations of formulation. In the context of algebraic general-
isation of shape patterns, these objects are formulae or mathematical 
statements as explained in Section 6.5.2. The outcome of the situation of 
formulation is the milieu for the situation of validation. Justification of 
the proposed conjecture (a formula for the numerical value of the general 
element of the shape pattern, or a mathematical statement about equiva-
lence of two expressions) depends on the conjecture being represented in 
formal (algebraic) notation. Its representation in algebraic notation 
makes it possible to manipulate the generality which represents the gen-
eral element of the shape pattern. When the generality is a functional re-
lationship (between position and member of the sequence mapped from 
the shape pattern), justification is in the form of a generic (decomposed) 
element showing references between the element and symbols in the al-
gebraic formula. When the generality is a mathematical statement about 
equivalence of two expressions, justification is in the form of proving the 
proposed equality algebraically (by symbol manipulation).  

Kieran (1996) categorises algebraic activity into three types: genera-
tional (establishing the expressions and equations that are the objects of 
algebra); transformational (manipulating symbols); and, global/meta-
level activity. The third category of Kieran (1996) refers to activities 
where algebra is used as a tool but where the activities are not exclusive 
to algebra (e.g., problem solving, modelling, noticing structure, studying 
change, generalising, analysing relationships, and proving). According to 
Kieran (2004), the global/meta-level activities are inseparably linked to 
the other activities of algebra, especially the generational activities. This 
stance points at the importance of fluency in the syntax of algebra. 
Kieran claims that the algebra teacher has a crucial role to play in accen-
tuating algebraic representations and in making students’ manipulations 
of them “a venue for epistemic growth” (p. 31). This statement resonates 
with the claims about the teacher’s role in students’ algebra learning re-
ferred to in Section 3.6 (with reference to Balacheff, 2001; Lins et al., 
2001; Seeger, 1989; and Ursini, 2001).  

Results from my analysis of classroom data showed that students of 
Group 1 did not succeed in representing the n-th odd number in algebraic 
notation. This circumstance I interpret to limit their ability to use the 
teacher’s proposed equality in their reasoning about the invariant struc-
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ture of the shape pattern in Task 3d. A phenomenon that made the task 
even more complex is the students’ and teacher’s different foci (recur-
sive versus explicit approaches), as described in Section 7.1.5. Ida ex-
pressed the n-th odd number recursively in natural language; “it has to be 
something with plus two because it increases by two each time” (turn 
167, Task 3d). I conjecture that it perhaps would be easier for the stu-
dents to reason about the n-th odd number with respect to the given task 
if they managed to represent Ida’s observation in algebraic notation: 

1 2n nu u −= + , with 1 1u =  (for { }\ 1n∈• ). 
Based on the analytic findings and discussion presented in this chap-

ter, it is possible to reflect on relevant elements in an a priori analysis of 
a teaching situation aiming at algebraic generality in shape patterns. I 
consider these questions as important elements: “What is the nature of 
the mathematical object aimed at (functional relationship or theorem)?”, 
“What is the nature of the intended mathematical relationship (recursive 
or explicit)?”, “What do the intended mathematical objects require of the 
milieu?”, “What types of representations and syntax of formulae are ex-
pected to be familiar to the students (iconic configurations, natural lan-
guage, algebraic notation, graphic)?”, “What should happen if they are 
not?”, “How can the knowledge developed by students in situations of 
action, formulation and validation be institutionalised?” 

In Chapter 9 I will present a synthesis of the analytic categories de-
veloped in my study, which includes a discussion of the complexity of 
developing the scientific concept of “mathematical statement” (Section 
9.2). In the next chapter I present the third analytic category that 
emerged from the analysis. It is referred to as Complexity of operating in 
the situation of validation. 
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8 Complexity of operating in the situation 
of validation 

In this chapter I present the third analytic category that emerged from the 
exploration of the student teachers’ collaborative work on algebraic gen-
eralisation of shape patterns. I have analysed classroom data only from 
Group 1. The reason for this is that Group 1 was the only one where a 
teacher intervened in the situation of validation.103 The data are analysed 
with the purpose of finding answers to the research question presented in 
Chapter 4, “What factors constrain students’ appropriation of algebraic 
generality in shape patterns?” The analysis draws on the epistemological 
and didactical analyses of the mathematics potential in the tasks present-
ed in Chapter 5. The analytic category is called Complexity of operating 
in the situation of validation and consists of two subcategories which are 
phenomena that define the category.  

First, I present a feature of the milieu for the situation of validation 
which is about the pertinence of concepts, where spontaneous concepts 
do not “carry” the mathematical rigor required (Section 8.1). Then, I pre-
sent a feature of the milieu for the situation of validation which is about 
the distinction between empirical reasoning and mathematically valid 
reasoning (Section 8.2). Next, a summary of the findings is presented 
(Section 8.3). The chapter closes with a discussion of how the identified 
features constitute shortcomings in the milieu for validation of algebraic 
generality in shape patterns (Section 8.4). 

8.1 Pertinence of concepts (spontaneous versus scien-
tific concepts)  

In this section I present the first subcategory of Complexity of operating 
in the situation of validation. The subcategory presents features of the 
milieu for validation, and provides insights into how the students’ justifi-
cation of algebraic generality in shape patterns is constrained. It is mani-
fested in the act of explaining what is meant by “structure” and “struc-
tural relationship”.  

                                         
 
 
 
 
 

103 Students of Group 2 also engaged with the justification part of Task 3, but their (empiri-
cal) reasoning was not challenged at any time. Hence, they were left to believe that they had 
accomplished a valid proof, even if their proof did not have the required rigor, as explained 
in Section 6.1.2.  
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8.1.1 Explaining what is meant by “structure” and “structural rela-
tionship” 

During their engagement with the first part of Task 3 (the staircase tower 
pattern in which the objective is to produce a mathematical statement 
about equivalence of two expressions), the students of Group 1 have, 
with some help from teacher Erik, formulated that the sum of the first n 
odd numbers is equal to the n-th square number. The mathematical 
statement is represented in algebraic symbols by the equality 

21 3 5 2 1n n+ + + + − =L  and has been verified for { }2,3,4,5n∈ . The 
teacher asserts that because this equality is not obvious, it is necessary to 
prove mathematically that it is true in all cases. He continues:  

392 Teacher E: For the time being we have a hypothesis because we have 
tried with three and four and five and perhaps more, but we 
have still tried only for a finite number of cases. We just 
have some examples, so at present it is about raising our-
selves to a more superior plane and see the structure.  

[Task 3, Group 1] 

I interpret this utterance by the teacher to be his way of mediating what 
distinguishes, in this situation, mathematical reasoning from empirical 
reasoning. Recall from Section 6.1.2 (Figure 6.3) that he has designed 
the second part of Task 3 with the intention that the students use struc-
tural arguments to prove the conjecture from the first part of Task 3. The 
structural reasoning intended by the teacher is based on the students’ fa-
miliarity with two types of shapes: First, it is based on familiarity with 
rectangles, which involves that the students use that the number of com-
ponents is equal to the product of the number of columns and the number 
of rows, thus relating the number of components to the area of a rectan-
gle. Second, it is based on familiarity with triangular numbers, which 
involves that the students know that the number of components of the n-

th triangular number is equal to ( 1)
2
n n + . Next, the task is based on the 

recognition that an element of the staircase tower pattern can be seen as a 
rectangle where two triangles are removed. Arithmetically, this means 
that a member of the sequence mapped from the staircase tower pattern 
is equal to the difference between a member of the sequence mapped 
from the rectangle pattern and a member of the sequence mapped from 
twice the triangle number pattern.  

The students of Group 1, however, establish a formula for the general 
member of the sequence mapped from the rectangle pattern by empirical 
reasoning based on the first four elements of the pattern of rectangles as 
drawn by Sophie (Figure 8.1 on the next page). Table 8.1 (on the next 
page) is a reproduction of the table made by Sophie. The students find 
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that a formula for the n-th element of the sequence of rectangles is given 
by 2 ( 1)n n n+ ⋅ −  (their reasoning is illustrated in Figure 6.4, Section 
6.2.1). The way they justify generality by empirical reasoning is shown 
in the transcript below.  

 

 
 

Figure 8.1. Sophie’s illustration of the first four rectangles in the pattern in Task 3 (Part II) 

 
Table 8.1. The number of black and red squares in the rectangles as written by Sophie 

N 1 2 3 4 5 

number 1 (4 2+ ) (9 6+ ) (16 12+ )  
 

468 Ida: Four plus two? 
469 Sophie: Yes, if you look here at the second [element] (Ida: uh huh) 

then we have got two three four black (Ida: yes) and two red 
[Sophie counts black and red squares in the second element 
in her pattern as drawn in Figure 8.1 above] (Ida: uh huh). 
Hence I write four plus two.  

470 Ida:  Ok. 
471 Sophie: Shape three, here you have got one two three four five six 

seven eight nine black 
472 Ida:  plus six 
473 Sophie: one two three four five six. [Pause 9 s] And here you have 

got one two three four five six yes seven [Pause 1-3 s] no 
nine ten eleven twelve thirteen fourteen fifteen sixteen plus 
twelve (Ida: uh huh). Sixteen black plus twelve red. [Pause 
20 s] 

474 Sophie: We can indeed try to make or calculate with seven and af-
terwards draw and look if it is correct. (Ida: uh huh). 

M  
478 Ida: Seven times six is 42. 49 plus 42. [Sophie draws a tower 

with 1+3+5+7+9+11+13 black squares and then picks up the 
red pen] No, just continue to draw. [Ida counts how many 
rows the tower spans] 

479 Sophie: What? 
480 Ida: I will just check how many there are. [She counts the num-

ber of squares at the bottom row] Thirteen. 
481 Alice: It is seven times thirteen.  
482 Ida:  Yes.  
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483 Alice: Haven’t calculated this [product]. [Sophie colours with red 
the rest of the rectangle. Ida verifies that 49 42+  is equal to 
7 13⋅  by calculation] 

484 Ida: It becomes true. This is correct. Good, Sophie! [excited 
voice] 

485 Sophie: Ok then [smiles] [Pause 1-3 s] 
486 Ida: Was it correct for more values? Have you done several? [to 

Alice] 
487 Alice: No, I have only checked for [element number] four. There it 

is correct. 
488 Ida: Yes, and it’s correct for seven [Pause 1-3 s] 
  [Draws a frame around the formula like this 

2 ( 1)n n n+ ⋅ − ] 

[Task 3, Group 1] 
Turns 469, 471, and 473 suggest that Sophie is concerned with the 

number of black and red squares; she is not focusing on the structure of 
the elements in terms of shape. This is signified by her counting the 
black and red components from the beginning in the second, third, and 
fourth elements of the pattern. She verifies that the addends 2n  and 
( )1n n −  in the formula they have established correspond to the numbers 

of black and red squares in the rectangles, respectively. Justification of 
their conjectured formula by Sophie in turns 469 – 473 is seen to be done 
by naïve empiricism (Balacheff, 1988) for { }2,  3,  4n∈ . In turn 474 So-
phie suggests that they test the conjecture for 7n = , which I interpret as 
a call for a crucial experiment (Balacheff, 1988) to be carried out. Ida’s 
verification of the fact that the sum of the addends in the formula when 
7n =  is equal to the product of the width and length of the seventh rec-

tangle (as commented in turn 483) leads her to assume that the conjec-
tured formula is correct. The conclusive nature of Ida’s assumption is 
indicated by her exited voice in turn 484 and her drawing of a frame 
around the formula, as commented in turn 488. 

As Balacheff (1988) observes, justification of a mathematical state-
ment by naïve empiricism or by a crucial experiment is not a valid math-
ematical proof. The intention with including the sequence of staircase 
towers in a sequence of rectangles was to use familiar shapes, as ex-
plained above. This is what the teacher referred to when he talked about 
seeing the structure (turn 392 above). When the teacher realises how the 
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students of Group 1 have justified their conjectured formula, he claims 
that a number of examples, regardless how many, can never prove that a 
property is true in all cases.104 The following exchange takes place:  

549 Teacher E: In order to be quite sure, we have to raise ourselves in the 
sense of seeing a superior structure in our system. What we 
now believe is that the number of dark squares is n squared. 
But we don’t know it because we have only verified it in 
some particular cases. [Sophie looks at the teacher with 
slightly lifted eyebrows; Alice leans the head in her left arm] 

550 Ida: So this isn’t quite correct? [She laughs and points at the ex-
pression 2 ( 1)n n n+ ⋅ − ] 

551 Teacher E: Not correct in the sense that you can kind of defend it in a 
trial yet. 

552 Ida: It is not the one that we were supposed to obtain. 
553 Sophie: But it is correct [Pause 1-3 s] or what? 
554 Teacher E: Correct, in what way is it correct? 
555 Sophie: It is correct if we put the numbers in [the formula]. Put them 

in. 
556 Teacher E: Yes, but then you have [verified] it only for some examples. 
557 Sophie: Yes, but this applies for all the formulae that we invent, 

doesn’t it? 
558 Teacher E: Well, so this is really the first time we have challenged you 

to go beyond [Pause 1-3 s] No we have in fact done that be-
fore. But there is actually a leap from testing some examples 
and getting a conjecture, to really proving that it is true. And 
in order to prove that it really is true, we have to see a struc-
ture that is independent of choosing three or five or seven, 
which is more about the whole [Ida nods] and the structural 
relationship in a way. And that is not so obvious to see in 
these shapes [he points at the sequence of staircase towers] 
so the reason why I have added the white squares here was 
to help you. It may be easier to identify the structure of this 
pattern [sequence of rectangles] than of that pattern [se-
quence of staircase towers].   

559 Sophie: I can’t really get the picture here now. I don’t quite under-
stand. [Pause 1-3 s] What, what are we supposed to get at 
then? 

[Task 3, Group 1] 

                                         
 
 
 
 
 

104 The teacher’s claim may be experienced by himself as a truth, whereas the students may 
sense the truth value only because the teacher says it is so. It is possible that the students 
have no experience of when the type of naïve empiricism they have employed in this prob-
lem breaks down. 
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The first sentence of turn 549, which basically repeats the teacher’s 
utterance in turn 392, is the teacher’s guidance for action. It is supposed 
to mediate what needs to be done in order for the conjectured formula to 
become a theorem (i.e., to prove it). However, Ida’s and Sophie’s ques-
tions in turns 550, 552, 553, 555, and 557 indicate that they have not un-
derstood what is asked for. An attempt to explain what he means by 
“raising ourselves to a more superior plane and see the structure” (turn 
392) and “seeing a superior structure in our system” (turn 549) is made 
when he says that “in order to prove that it really is true, we have to see a 
structure that is independent of choosing three or five or seven, which is 
more about the whole and the structural relationship in a way (turn 558). 
Expressions used by the teacher (turns 392, 549, and 558) to mediate and 
explain what it takes to accomplish a mathematical proof are: “raise one-
self”; “structure”; “structural relationship”; “the whole”; “superior struc-
ture”; “superior plane”; and, “system”. Later, the teacher uses the formu-
lation “level above the level of examples” to mediate that it takes more 
than examples to justify mathematically that a formula is correct:  

577 Teacher E: So that n squared must be the result of a process which must 
be on a level above the level of examples.  

[Task 3, Group 1] 
These concepts have particular connotations when used in this situa-

tion; they carry with them the meaning of generality and regularity (in-
variance). However, the concepts used by the teacher also have everyday 
meanings, without the theoretical meaning as referred to above. If the 
students attach the everyday meanings of the concepts, it is less likely 
that they develop awareness of the nature of a mathematical proof (and 
of what distinguishes it from naïve empiricism).  

Sophie’s confusion as expressed in turn 559 I interpret to be about 
the role of the two different sequences of which the teacher talks (stair-
case tower pattern, and rectangle pattern). This interpretation is support-
ed by the next utterances from the transcript: 

560 Teacher E: You can prove the formula for that pattern [he points at the 
sequence of staircase towers] by finding the formula for this 
pattern [he points at the sequence of rectangles]. We are 
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supposed to find a deeper connection for the black shapes by 
utilising the structure of this pattern [rectangles].105 

561 Sophie: Yes, but how is it? [Pause 1-3 s] What do you talk about 
now? Are we supposed to find a deeper connection for that 
one [staircase towers] or this one [rectangles]? It is indeed 
this one [rectangles] we have worked on. 

562 Teacher E: In fact, that one. [He points at the sequence of staircase 
towers] 

563 Sophie: That one? Well, but then we have to look at another formula 
which we have established. 

564 Alice: Yes, we have n squared as a formula for that one. 
565 Teacher E: Well, that is a conjecture. 
566 Alice: Ok.  
[Task 3, Group 1] 

The teacher presents in turn 560 the role played by the sequence of rec-
tangles in proving the formula from the first part of the task. Sophie re-
veals in turns 561 and 563 that she is unaware of the role of the rectan-
gles in proving the original conjecture about a relationship between odd 
numbers and square numbers. As explained in Section 6.1.2, this sug-
gests that the students treat the second part of Task 3 as a new generali-
sation task aiming at a formula for the general member of the sequence 
mapped from the rectangle pattern (instead of a proof of the conjecture 
about equivalence of the n-th square number and the sum of the first n 
odd numbers).  

The students of Group 1 seem unaware that the way they derive the 
formula for the general member of the sequence mapped from the rec-
tangle pattern is of crucial importance. This will be explained in the next 
section, where I present the second subcategory of Complexity of operat-
ing in the situation of validation. 

8.2 Distinction between empirical reasoning and for-
mal, rigorous mathematical reasoning 

In this section I present the second subcategory of Complexity of operat-
ing in the situation of validation. The subcategory presents features of 
the milieu for validation, and provides insights into a tension between 
empirical reasoning and mathematical reasoning. The phenomenon de-

                                         
 
 
 
 
 

105 Recall that the “black shapes” are included in the rectangle pattern (see Figure 7.8 in Sec-
tion 7.1.5); they represent the elements of the staircase tower pattern from the first part of the 
task. 



246   Factors Constraining Students’ Establishment of Algebraic Generality in Shape Patterns 

scribed by this subcategory is manifested in two circumstances: in con-
sciousness of the importance of how a formula is derived; and, in the act 
of explaining the disparity between two equivalent formulae that are de-
rived in different ways.  
8.2.1 Unawareness of the importance of how a formula is derived 
The following exchange supports the plausibility of the interpretation 
that the students of Group 1 do not have in mind that the formula for the 
rectangle pattern has a role in proving the formula for the staircase tower 
pattern:  

571 Alice: That pattern [the staircase towers] is the same as the black 
squares in this pattern [rectangles] and that is the one with 
which we are going to start now, so there we haven’t made 
up our minds or done anything yet. 

572 Teacher E: Well, I thought you might have done that because you have 
written this down. [He makes a circle around the formula for 
the rectangles in Ida’s notebook, 2 ( 1)n n n+ ⋅ − ] 

573 Sophie: This is indeed the formula. 
574 Alice: The reason why we used n squared here is that we used n 

squared in the first part of the task. Hence, it was just repli-
cated down here. 

[Task 3, Group 1] 
As explained in Section 6.1.2, Task 3 (Part II) is designed to evoke a 
proof of the conjecture about equivalence of two expressions. The point 
is to establish the validity of two formulae: First, a formula for the gen-
eral member of the sequence mapped from the rectangle pattern by utilis-
ing structural relationships. Second, a formula for the general member of 
the sequence mapped from the white squares pattern (triangular num-
bers, assumed known structure). The essence is that the general member 
of the sequence mapped from the staircase tower pattern is equal to the 
difference between the two formulae. Alice shows in turn 574 how they 
have figured out the total number of squares in the n-th rectangle: In-
stead of having established a formula for the general member of the se-
quence mapped from the rectangle pattern by utilising structure (width 
times length), they have written the total number of squares in the n-th 
rectangle as the sum of the number of black squares, 2n , and the number 
of white squares, ( 1)n n⋅ − , in the n-th rectangle. The number of black 
squares in the n-th rectangle they write as 2n , a consequence of replicat-
ing the conjecture from the first part of the task. Because this is what 
they are supposed to prove, the proof process as intended by the teacher 
collapses.  

There is a disparity between a formula being a conjecture based on 
empirical reasoning (guess-and-check) and a formula derived from struc-
tural reasoning (utilising structural relationships). This disparity does not 
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necessarily occur at the symbolisation level; a formula derived from em-
pirical reasoning can be (syntactically) identical with a formula derived 
from structural relationships. This fact contributes to the complexity of 
understanding that it is not the formula as such that may be inadequate – 
the point is how it is derived. The students’ formula, 2 ( 1)n n n+ ⋅ − , does 
indeed represent the generality in the sequence of rectangles. But it is 
derived by a chain of empirical reasoning rooted in the numbers, not by 
reasoning on the basis of structural relationships evident in the shapes. 
When the teacher, as a response to their having used the conjecture that 
they were supposed to prove, claims that they have just repeated the hy-
pothesis, Alice says:  

576 Alice: So actually, we should have found a completely different 
formula for the rectangles? If we were to enter a new plane, 
we should not have used what we had first? 

[Task 3, Group 1] 
Alice’s utterance illustrates the intricacy of the connection between gen-
eralisation and proof. To come up with a different formula, as Alice in-
dicates, is not the point because (as commented above) different formu-
lae for the same pattern will be equivalent. It is possible to derive identi-
cal syntactical expressions by empirical and structural reasoning. How-
ever, empirical reasoning does not, within accepted convention, justify 
the formula arrived at, whereas structural reasoning (using the properties 
of one of the elements in the shape pattern, a generic example) justifies 
the formula (Balacheff, 1988). Sophie does not seem to understand what 
is wrong with their original formula for the rectangles. When the teacher 
tries to explain that structure has to do with expressing the width and 
length of the n-th rectangle in terms of n, Sophie says: 

580 Sophie: Yes, but we have indeed written in parenthesis nine plus six. 
Nine black ones plus six white ones. 

581 Teacher E: Yes, indeed. I do not doubt that, you see. 
582 Sophie: Then it will be [Pause 1-3 s] 
583 Alice: It is the wording of the formula which is, is not what [Pause 

1-3 s] is not desirable [Pause 1-3 s] because it is a bit too 
[Pause 1-3 s] shallow or how shall I put it. [Laughs a bit] 

[Task 3, Group 1] 
Alice’s hesitation and tentative formulation in turn 583 about wording 
and properties of their original formula indicate the complexity of medi-
ating what is involved in establishing a formula by structural reasoning. 
With guidance from teacher Erik, Alice succeeds in expressing the width 
and length of the n-th rectangle. Afterwards the group collaborates and 
develops a formula by structural reasoning. Sophie, however, is not fa-
miliar with the reason why they need to establish the formula once again. 
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After she has taken part in developing the formula, (2 1)n n⋅ − , by utilis-
ing structure, she asks:  

708 Sophie: What was wrong with the first one [the formula] that we 
made? That it wasn’t [Pause 1-3 s] correct? 

[Task 3, Group 1] 
It is not surprising that this question comes up, because their original 
formula had turned out to give the correct values in the cases checked. 
Sophie is probably convinced by empirical reasons that their formula is 
correct and does not understand why they should consider it inadequate.  

In the next section I present the complexity of explaining the differ-
ence between a formula based on naïve empiricism and a formula based 
on structural reasoning. It is the second manifestation of Distinction be-
tween empirical reasoning and formal, rigorous mathematical reason-
ing. 
8.2.2 Explaining the disparity between two equivalent formulae 
When Sophie asks what was wrong with the first formula they had de-
veloped, the subsequent dialogue reveals the intricacy of explaining and 
understanding the disparity between the two equivalent formulae for the 
rectangles. 

709 Alice: Well, it is written here later, it is written that we shall dis-
cuss if the conjecture from earlier in the task can be consid-
ered proved now. If we get the same [formula] now, we can 
say that it is proved because we are on a higher plane. 

710 Sophie: Yes, but this one, we did indeed make one for the dark ones 
first? 

711 Ida: Uh huh 
712 Alice: Yes, that one [interrupted by Sophie] 
713 Sophie: It [the first formula] doesn’t work? 
[Task 3, Group 1] 

Sophie in turns 710 and 713 refers to the conjectured formula for the 
general member of the sequence mapped from the staircase tower pattern 
from the first part of the task (the statement of a function, 2

na n= ). I in-
terpret her questions to demonstrate that she does not have a clear con-
ception of the intention with the second part of the task (its role in prov-
ing the conjecture from the first part of the task, as explained in the pre-
vious section).  
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Then follows an exchange between the students that reveals confu-
sion about three formulae: first, the formula for the rectangles106 (derived 
by naïve empiricism); second, the formula for the rectangles developed 
with the teacher’s guidance (derived by structural reasoning); and third, 
the formula for the staircase towers (derived by naïve empiricism). The 
pronouns “it”, “this”, and “that” are used to denote the formulae at stake. 
In some of the utterances these words create uncertainty about which 
formula is referred to (e.g., turns 719, 721, 729, 732, 734, 735 in the 
transcript). 

714 Alice: n squared doesn’t work? 
715 Ida: Right. 
716 Alice: Because it is not [a formula] for the black [ones]? 
717 Sophie: Indeed it is. 
718 Alice: No [Pause 1-3 s] it was for the whole figure?107 
719 Sophie: No, it was this one.  
720 Alice: The first one we made for the whole figure [the rectangle 

pattern] is the one you have written in red there. [Refers to 
the expression 2 ( 1)n n n+ ⋅ − ] 

721 Ida: But this one was wrong. 
722 Sophie: So, this one is wrong? [Points at the expression 

2 ( 1)n n n+ ⋅ − ] 
723 Ida: Or well, we couldn’t use it. 
724 Teacher E: Not wrong 
725 Ida: not wrong but we couldn’t [interrupted by Alice] 
726 Alice: It was not on the right plane  
727 Ida:  yes [Alice and Ida laugh]  
728 Teacher E: But you took for granted that the number of black ones was 

n squared (Alice: uh huh) [Pause 1-3 s] whereas the point 
was that [interrupted by Ida] 

729 Ida: Then we made a new one for the black [components] be-
cause that [she points in Sophie’s notes] is the black [inter-
rupted by Sophie] 

730 Sophie: no 
731 Ida: not the whole I mean. This was the one we had for the 

whole. 
732 Sophie: No, we had this one for the black  

                                         
 
 
 
 
 

106 “Formula for the rectangles” is shorthand for the stringent expression “formula for the 
general member of the sequence mapped from the rectangle pattern”. The same applies to 
subsequent references to formulae (for the same or for other patterns) in this text. 
107 The “whole figure” refers to the pattern of rectangles as presented in Task 3 (Part II). The 
“black ones” refer to the pattern of staircase towers included in the rectangles. 
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733 Alice: no 
734 Sophie: no this one was for the whole, right? 
735 Ida: But we couldn’t use it though. 
736 Teacher E: We don’t have anything else [interrupted by Sophie] 
737 Sophie: And that one was the whole previously and this one is the 

whole now. [Refers to the formulae 2 ( 1)n n n+ ⋅ −  and 
(2 1)n n⋅ − , respectively] 

738 Ida and Alice: uh huh 
739 Teacher E: The expressions are indeed the same, but it is on the mental 

plane they are different [Pause 1-3 s]  
740 Ida  yes [very low voice] 
[Task 3, Group 1] 

When Ida claims that the first formula they developed for the rectangles 
was wrong (turn 723), teacher Erik corrects her by saying “not wrong” 
(turn 724). Alice then adjusts her statement by saying that it was “not on 
the right plane” (turn 726), and thereby repeats what she said in turn 709 
about being on a “higher plane”. This wording by Alice and her empha-
sis on the words “right plane”, I interpret to be the result of taking over 
speech from the teacher when he tried to explain what it means to prove 
something mathematically. He said that “it is about raising ourselves to a 
more superior plane and see the structure” (turn 392, Section 8.1.1). Ida 
and Alice’s laughter in turn 727 may signify that Alice’s observation 
(turn 726) is just a recitation of the teacher’s utterance (turn 392) and 
that it is not really understood by them.  

The above shows that there is confusion caused by the fact that there 
are two equivalent formulae: the formula for the rectangles developed by 
the students (based on naïve empiricism), and the formula developed un-
der guidance from the teacher (based on structural relationships). The 
teacher acknowledges that the formulae are equivalent and expresses that 
it is on the mental plane they are different (turn 739). He further attempts 
to explain what distinguishes a hypothesis based on empirical reasoning 
from a mathematically valid argument:  

741 Teacher E: There is a disparity between, on the one hand, having a hy-
pothesis that it will be n squared, and, on the other hand, be-
ing able to see it at a level where we are independent of hav-
ing checked for four and seven and ten and so on. We kind 
of [Pause 1-3 s] lift ourselves from the particular examples 
up to a more like [Pause 1-3 s] a plane where we see [Pause 
1-3 s] structure. That may be an appropriate word for it. 
[Low voice in whole turn] 

[Task 3, Group 1] 
Teacher Erik here tries to convey what I interpret to be the utility of a 
generic example, where he talks about generality and structure (regulari-
ty). His low voice and tentative formulation in the last sentence, howev-
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er, may indicate that he finds it complex to convey the nature of mathe-
matical rigor. The teacher then leaves the students to finalise the task.  

The students then compute the difference between the expressions 
derived by structural reasoning, (2 1) ( 1)n n n n⋅ − − ⋅ − , and find that it is 
equal to 2n , as conjectured. The transcript below shows their discussion 
about whether they then can consider the conjecture as proved: 

787 Alice: Now it is proved because we have indeed gone the whole 
way once more. 

788 Sophie: Yes. 
789 Ida: But the way we started, why wasn’t it proved then? 
790 Alice: Because we hadn’t taken the complete, heavy way as we 

have done now. 
791 Ida: I don’t quite understand what heavy way we have gone. 
792 Alice: Because now we didn’t look only at [Pause 1-3 s] we did not 

look, we hadn’t drawn them all and [Pause 1-3 s] well, here 
it may be a connection, and there it may be a connection. 
We rather looked at [Pause 1-3 s] we considered a single 
one and found out that it applied for all. 

793 Ida: Ok. 
794 Sophie: Well, but [holds the task sheet up in the air] [Pause 1-3 s] 
795 Alice: The next subtask is just for those who want. [Proof by in-

duction of the same formula] 
796 Sophie: I don’t think we are qualified to do the rest of the task. [All 

three laugh loudly] 
[Task 3, Group 1] 

Alice’s answer (turn 790) to Ida’s question why the formula was not 
proved by their first approach does not give any information about the 
character of the formula developed under the teacher’s guidance. The 
notion “to be developed by the heavy way” gives no information about 
what distinguishes it from their original formula. Alice just repeats her 
opinion as put forward in 787, on the basis of which Ida’s responses 
(turns 789 and 791) are made. This indicates the intricacy of verbalising 
what it means to utilise structural relationships. Alice, however, in her 
follow-up response (turn 792), does to some extent describe the quality 
of the last formula by the way she expresses that they, rather than having 
looked at several examples, considered a single example and found out 
that it applied to all. This is an important property of a generic example 
(Balacheff, 1988; Mason & Pimm, 1984) which is possibly understood 
by Alice, though not so precisely formulated.  

Even if Ida and Sophie pose no further questions related to the dis-
tinction between the two formulae, it is plausible that they do not com-
pletely understand it. This claim is supported by Sophie’s statement (turn 
796) about their lacking qualification to accomplish the optional subse-
quent subtask (which involves a proof by induction to justify the intend-
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ed mathematical statement). Their subsequent laughter I interpret as rein-
forcing the validity of the assumption about lacking comprehension. 

In the next section I give a brief summary of the findings presented in 
Sections 8.1 and 8.2, before I discuss the findings in Section 8.4. 

8.3 Summary 
Sections 8.1 and 8.2 have provided insights into the nature of operating 
in the situation of validation of algebraic generality in shape patterns, as 
experienced by the students and teachers whom I have observed. Two 
properties of this nature have been identified. The first property is related 
to pertinence of concepts (spontaneous versus scientific concepts) related 
to explanation of what it means to accomplish a mathematical proof. 
This phenomenon is manifested in one circumstance: in the act of medi-
ating what is meant by the notions “structure” and “structural relation-
ship”.  

The second property of the nature of operating in the situation of val-
idation is related to the distinction between empirical reasoning and for-
mal, rigorous mathematical reasoning. This phenomenon is manifested 
in two circumstances: in consciousness of the importance of how a for-
mula is derived; and, in the act of explaining the disparity between two 
equivalent formulae.  

The diagram in Figure 8.2 presents the analytic category developed 
in this chapter with its subcategories and events. 

 

 
Figure 8.2. Third analytic category with subcategories and events 
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In the next section I discuss the findings presented in this chapter. 

8.4 Discussion of the third analytic category 
The analytic category developed in this chapter, Complexity of operating 
in the situation of validation, provides insights into factors which con-
strain students’ justification of algebraic generality in shape patterns. 
The discussion of these factors is presented in two parts: an attitude of 
proof; and, validity of reasoning. 
8.4.1 An attitude of proof 
As outlined in Section 2.4.3, the situation of validation is about estab-
lishment of theorems. Brousseau (1997) claims that “to state a theorem is 
not to communicate information, it is always to confirm that what one 
says is true in a certain system” (p. 15). By this I understand the practice 
of using definitions, axioms, and previously proved results to establish 
the truth of statements one puts forward by utilising deductive logic. 
Such a practice depends on a stance which Brousseau (1997) refers to as 
an attitude of proof. He claims that such an attitude is not innate in per-
sons, and that it therefore needs to be developed and sustained through 
specific didactical situations; that is, situations of validation.  

Balacheff (1991) emphasises the importance of designing validation 
situations in such a way that students come to realise that there is a risk 
attached to uncertainty, and hence, motivate students to find a mathe-
matically acceptable solution. Drawing on Bourdieu’s108 principle of 
economy of logic, Balacheff claims that students “are likely to bring into 
play no more logic than what is necessary for practical needs” (p. 180). 
Hence, “most of the time students do not act as theoreticians, but as prac-
tical persons” (Balacheff, 1991, p. 187). The students’ task is to give a 
solution to the mathematical problem given to them by the teacher, 
which is acceptable in the classroom situation:  

[The most important thing for] the practical person is to be efficient, not to be 
rigorous. It is to produce a solution, not to produce knowledge. Thus the problem 
solver does not feel the need to call for more logic than is necessary for practice. 
That means that beyond the social characteristics of the teaching situation, we 
must analyse the nature of the target it aims at. If students see the target as 
“doing”, more than “knowing”, then their debate will focus more on efficiency 
and reliability, than on rigor and certainty. (Balacheff, 1991, p. 188) 

                                         
 
 
 
 
 

108 Bourdieu, P. (1980). Le sens pratique. Paris, France: Éditions de Minuit. 
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Balacheff’s claims about students’ behaviour during engagement with 
mathematical proofs are supported by results from a study he accom-
plished with students in eighth and tenth grade. Based on these claims, it 
is relevant to concentrate on how to make the students focus on rigor and 
certainty. The question is how to negotiate students’ acceptance of new 
rules, rules which involve that the goal is to establish the truth of some 
statement, not just to obtain agreement of the validity of the statement. 

As explained in Section 6.1.2, the second part of Task 3 is designed 
with the intention of guiding the students step by step towards a proof of 
the conjecture developed in the first part of Task 3. That is, to prove the 
mathematical statement that the sum of the first n odd numbers is equal 
to the n-th square number. The analysis of the two groups’ engagement 
with the proof was presented in Section 6.1.2. It showed how Group 1 
accomplished the subtasks, one at a time, apparently without awareness 
of the role of the subtasks in proving the conjecture about equivalence of 
two expressions. The students of Group 2 were aware of the role of the 
different subtasks in proving the conjecture, but failed in producing a 
valid proof because they did not justify each step in the proof process.  

The task (Task 3, Part II), designed to evoke a proof of the conjec-
tured equivalence relation, consists of a detailed description of stepwise 
action. The well-structured subtasks leave little initiative to the students 
to decide what to do. It is a matter of the task allowing the students to be 
efficient instead of rigorous, because if they do the subtasks, one at a 
time, they are supposed to constitute a valid proof. But success in prov-
ing the original conjecture does nevertheless depend upon the students 
having an attitude of proof. This means that the constituents of the proof 
established in the subtasks (from which the target mathematical state-
ment is supposed to be deduced) need to be justified. As accounted for in 
Section 6.1.2, both groups fail in this respect: Group 1 because they take 
as a premise what they are supposed to prove; Group 2 because they use 
naïve empiricism to establish a mathematical statement used to deduce 
the original mathematical statement.  

The analytic findings presented in this chapter give insights into the 
complexity of getting students to grasp what distinguishes reasoning 
based on examples from mathematically valid reasoning. It has been pre-
sented how words with an everyday meaning fall short in communi-
cating mathematical rigor. Even concepts like “structure” and “structural 
relationship” (commonly used in mathematics) do not seem to be helpful 
for the students in explaining what it means to produce a valid proof of a 
mathematical statement about generality in a shape pattern. I conjecture 
that the students of Group 1 perhaps would benefit from the concept of 
structure being elaborated and discussed in the context of the given task 
(what is meant by “structure”). The expressions used in the dialogue to 
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mediate what it takes to make a mathematical proof were these: “raise 
oneself”; “structure”; “structural relationship”; “the whole”; “superior 
structure”; “superior plane”; “system”; and, “level above the level of ex-
amples”. These expressions can be characterised as spontaneous con-
cepts, but they are used by the teacher with a scientific meaning (i.e., 
they are scientific concepts; Vygotsky, 1934/1987). The many different 
expressions indicate that it is complicated for the teacher to explain what 
distinguishes empirical reasoning from mathematically valid reasoning. 
Similarly, it is difficult for the students to understand precisely what the 
teacher is after because of the everyday connotation of these expressions.  
8.4.2 Validity of reasoning 
Several studies have showed that students struggle to establish the validi-
ty of general statements and, further, that students are likely to rely on 
empirical validation (Balacheff, 1988; Chazan, 1993; Healy & Hoyles, 
2000; Hoyles, 1997; Lannin, 2005; Martin & Harel, 1989). 

Task 3 (Part II) is designed such that there is no risk (Balacheff, 
1991) involved with being practical (do the subtasks) instead of being 
rigorous (make sure that all steps are justified). The analysis presented in 
this chapter shows that the students, when solving Task 3, developed 
formulae without focusing on their general nature. The students in the 
observed episode are seen to be practical; they produce answers which 
they have reason to believe is acceptable in the classroom context: They 
have accomplished all the subtasks and thereby established a formula, 
2 ( 1)n n n+ ⋅ − , which generates correct values for several positions in the 

rectangle pattern (see Section 8.2.2). The adidactical situation turns into 
a didactical situation when the teacher intervenes and explains to the stu-
dents that what they have done is not adequate. The students are con-
vinced by empirical reasons that their formula is right; output values of 
the formula are in agreement with numbers arising from counting com-
ponents of the first few elements of the shape pattern. That their formula 
is unsatisfactory is therefore surprising for them. 

Following Kieran (1989), algebraic generalisation is a process which 
aims at representing a generality by algebraic notation. In the context of 
shape patterns, it means to find a mathematical object which represents 
the general member of a sequence mapped from geometrical configura-
tions which constitute the pattern. As elaborated in Section 5.2.1, there 
are different approaches to this generality, which brings about the formu-
la aimed at. At the level of representing generality, a formula is judged 
only by its utility to represent generality correctly. Its algebraic manifes-
tation can vary, but syntactically different formulae (if correct) are 
equivalent. However, at the level of justifying generality (proving that a 
formula is correct in all cases), it is significant how a formula for gener-
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ality is derived. That is, it is important that all steps towards the formula-
ic expression are justified.  

The analysis presented in this chapter has given insights into the 
complexity of distinguishing between two types of reasoning about alge-
braic generality: empirical reasoning and structural reasoning. The com-
plexity is related to explication and comprehension of what is meant by a 
mathematical proof. This has been identified in two factors which con-
strain the milieu for the situation of validation: first, in the use of every-
day concepts which lack the necessary scientific precision; second, in 
students’ lacking consciousness of the importance of how a formula is 
derived. 

It is my conjecture that the teacher and the students perhaps would 
benefit from operating with the concept of a generic example (see Sec-
tion 3.2 and Section 5.2). It has the potential to capture the meaning of 
the concepts “structure” and “structural relationship. According to Ma-
son (1996), it is important for teachers (and I would add, for students) to 
explain what makes an example generic, because students often see an 
example presented by the teacher as just a particular case and do not ex-
perience it as an example of a general notion. Mason & Pimm (1984) 
pose the question:  

How can you expose the genericity of an example to someone who sees only its 
specificity? Apart from stressing and ignoring, and repeating the general 
statement over and over, how can the necessary act of perception, of seeing the 
general in the particular, be fostered? (p. 287) 

In the context of generalisation of shape patterns, I suggest the act of de-
composition (presented in Section 5.2) by dividing the first few geomet-
rical configurations into different partitions (to identify the invariant 
structure of the shape pattern) would be an answer to Mason and Pimm’s 
question. Important in this respect is teachers’ and students’ articulation 
of what makes an example generic. In this sense, the concept of generic 
example is a paramathematical notion (Brousseau, 1997) as explained in 
Chapter 2. 

In the next chapter I present a synthesis of the analytic findings, to-
gether with reflections on strengths and limitations of the research I have 
undertaken, and potential pedagogical implications of the research. 
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9 Synthesis 
The research question which I set out to address was: What factors con-
strain students’ appropriation of algebraic generality in shape patterns? 
The student teachers I observed were in their first academic year in a 
programme for teacher education with emphasis on mathematics and sci-
ence subjects. I report from observation of the first encounter the stu-
dents had with a generalisation perspective on algebra in the mathemat-
ics course in the programme on which they were enrolled.  

The answers to my research question are structured by the three ana-
lytic categories which emerged dialectically between my exploration of 
the empirical material and engagement with the theory of didactical situ-
ation. Hence, the factors interpreted to constrain students’ algebraic gen-
eralisation of shape patterns are classified into these phenomena: con-
strained feedback potential in adidactical situations; complexity of turn-
ing a situation of action into a situation of formulation; and, complexity 
of operating in the situation of validation.  

In this chapter I present my interpretation of relationships between 
the categories that emerged from the analysis (Section 9.1). Further, I 
discuss the complexity of students’ development of the scientific concept 
of “mathematical statement” (Section 9.2). Next, I present reflections on 
strengths and limitations that I perceive in the research I have undertaken 
(Section 9.3). The chapter closes with a reflection on possible pedagogi-
cal implications of the findings (Section 9.4).  

9.1 Relationships between categories, and dimensions 
of subcategories 

In this section I present my interpretation of relationships between the 
three categories that emerged from the analysis. The analytic categories 
are categories of constraints to students’ algebraic generalisation of 
shape patterns. The first category, Constrained feedback potential in 
adidactical situations, embraces the second and third categories, Com-
plexity of turning a situation of action into a situation of formulation, 
and Complexity of operating in the situation of validation. The first cate-
gory conceptualises general properties of the milieu for algebraic gener-
ality; it refers to the level of design and devolution of adidactical situa-
tions. The second and third analytic categories conceptualise properties 
that are specific for situations of formulation and validation of algebraic 
generality, respectively; they refer to the level of implementation of 
adidactical situations in which the students are supposed to engage.   

Situations of action, formulation, and validation are (intentionally) 
adidactical situations where each situation has a feedback potential on 
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which the success of the situation depends. The first analytic category 
conceptualises different properties of the adidactical milieu for algebraic 
generalisation of shape patterns. The outcome of my analysis shows how 
the success of situations of action, formulation, and validation (whether 
they manage to establish an adequate milieu for the succeeding situation) 
depends upon the adaptedness of design of tasks, clarity of concepts, and 
outcome of institutionalisation of previous knowledge. These attributes 
are subcategories of Constrained feedback potential in adidactical situa-
tions; they are conceptualisations of different properties of the adidacti-
cal milieu.   

The quality of the adidactical milieu for situations of formulation and 
validation (with which the second and third analytic categories deal) de-
pends upon the feedback potential in adidactical situations with which 
the first analytic category deals. Hence, there is a relationship between 
the first category and the second and third categories. The subcategories 
of the second category (distinctiveness of recursive and explicit ap-
proaches, and engagement with the syntax of algebra) are conceptualisa-
tions of different properties of the milieu for formulation of algebraic 
generality in shape patterns. In an equivalent way, the subcategories of 
the third category (pertinence of concepts, and validity of reasoning) are 
conceptualisations of different properties of the milieu for validation of 
algebraic generality in shape patterns.  

The relationships between categories and subcategories are illustrated 
in Figure 9.1 (on the next page): The diagram illustrates core categories 
(placed within thick-edged rectangles) and subcategories, the latter with 
dimensions of the property of the subcategory on a continuum. The rela-
tionships between the first category and the second and third categories, 
are illustrated in the diagram in the way the first category is placed in 
relation to the others: The first category is placed above the two other 
main categories, with arrows pointing from the subcategories of the first 
category to the second and third categories. The arrows represent the act 
of contribution. By this I mean that the subcategories of Constrained 
feedback potential in adidactical situations lead to Complexity of turning 
a situation of action into a situation of formulation and to Complexity of 
operating in the situation of validation. 

The subcategories in the diagram in Figure 9.1 are neutral categories. 
Extreme values on the continuum of the dimension of a subcategory de-
fine the range of a property of the subcategory. In the following para-
graphs I present the extreme values between which the dimension of 
each subcategory spans.  
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Figure 9.1. Categories (placed within thick-edged rectangles) and subcategories with dimen-
sions (the extreme values of the dimensions are written in italics; the continuum of the di-

mensions are represented by dotted lines) 

 
Recall from Section 5.1 the introduction of two different types of shape 
pattern, referred to as arbitrary shape patterns and shape patterns illus-
trating number theoretical relationships. Some of the dimensions of sub-
categories are created by the different nature of shape patterns. The ex-
treme values of the dimensions will therefore be explained in the context 
of two different types of shape patterns: one where the target knowledge 
is a mathematical statement; another where the target knowledge is a 
functional relationship. The first shape pattern, referred to as Example 
9.1, is the shape pattern presented in Figure 9.2 (on the next page), in-
tended to illustrate that the sum of the first n odd numbers is equivalent 
to the n-th square number. The target mathematical knowledge in this 
example is a mathematical statement about the generality in the shape 
pattern, represented in algebraic notation by the equality 

21 3 5 2 1n n+ + + + − =L .  
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Figure 9.2. The first three elements of a shape pattern which is imagined as continuing to 
infinity (Example 9.1) 

 
The second shape pattern, referred to as Example 9.2, is the shape 

pattern presented in Figure 9.3, where the target knowledge is a formula 
for the numerical value of the n-th element of the shape pattern. Below 
follows a presentation of the dimension (with extreme values) of each 
subcategory. 

 

 
 

Figure 9.3. The first four elements of a shape pattern imagined as continuing to infinity  
(Example 9.2) 

 
1) Adaptedness of design of tasks spans between focused and not fo-

cused with respect to the target mathematical knowledge: A task design 
that is focused on the target mathematical knowledge in Example 9.1 
concentrates on an equivalence relation between odd numbers and 
square numbers in the first few shapes (that is, encourages algebraic 
thinking based on formulation of the arithmetic equalities: 21 1= , 

21 3 4 2+ = = , 21 3 5 9 3+ + = = , etc.). A task design that is not focused on 
the target mathematical knowledge is one that for instance allows the 
total number of components in each shape to be the focal point, without 
attention to the structure of the shapes in the pattern. In this case, gener-
ality may be proposed as a functional relationship between position and 
member of the sequence mapped from the shape pattern, 
( ) 2f n n= (which is not the target knowledge).  

2) Clarity of concepts spans between transparent and opaque con-
cepts: In Example 9.1 “mathematical statement” is a transparent concept 
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if it is understood that it is a statement about a mathematical relationship, 
which needs to be proved, and it is told what the mathematical relation-
ship is about (here, odd numbers and square numbers). “Mathematical 
statement” is an opaque concept if students conceive of it as denoting an 
expression in mathematical notation, which does not need to be proved, 
and which could be represented for instance by a function (in Example 
9.1: ( ) 2f n n= ). 

3) Level of institutionalisation spans between complete and incom-
plete institutionalisation of previous knowledge: In Example 9.1 the tar-
get knowledge is the statement of equality; that is, of an equivalence re-
lation between the n-th square number and the sum of the first n odd 
numbers. A complete institutionalisation of previous knowledge about 
odd numbers (which could be reused in this example) would be that the 
n-th odd number can be represented by 2 1n −  for .n N∈  An incomplete 
institutionalisation (of odd numbers) with respect to reuse in Example 
9.1, would be a representation of the n-th odd number in terms of a re-
cursive relationship (e.g., 1 2n no o+ = + , where no  denotes the n-th odd 
number and 1 1o = ). Further, its incompleteness is conditioned by stu-
dents’ incapacity to transform the recursive relationship into an explicit 
one. 

4) Distinctiveness of recursive and explicit approaches spans be-
tween distinct and confused awareness of recursive and explicit ap-
proaches to generality: A distinct awareness of recursive and explicit ap-
proaches to generality in Example 9.2 would be awareness about how 
the two approaches are different. It involves knowing that a recursive 
approach focuses on differences between consecutive members of the 
sequence mapped from the shape pattern, and that the generality will be 
expressed in terms of a relationship between consecutive members of the 
mentioned sequence (i.e., a recursive formula). Further, a distinct aware-
ness involves knowing that an explicit approach focuses on a functional 
relationship between position and member of the sequence mapped from 
the shape pattern, and that the generality in this case will be a function 
(i.e., an explicit formula). A confused awareness of recursive and explic-
it approaches involves that properties of the two approaches (as de-
scribed above) are undistinguishable. This may be manifested for in-
stance in the search of an explicit formula on the background of a rela-
tionship different from a functional one (e.g., when a formula is attempt-
ed to be developed from the differences between numerical value and 
position of elements of the shape pattern).  

5) Engagement with the syntax of algebra spans between fluent and 
inarticulate involvement: A fluent engagement with the syntax of alge-
bra would comprise the capacity to transform the observation that one 
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gets the next member of the sequence (Example 9.2) by “adding four to 
the previous member” (recursively expressed property) into the algebraic 
explicit expression “4n”. An inarticulate engagement with the syntax of 
algebra would be if the observation that “the next member equals the 
current member plus four” is translated into the algebraic expression 
“ 4n + ”, intended to represent the ( )1n + -th member of the sequence 
mapped from the shape pattern in Example 9.2.  

6) Pertinence of concepts spans between scientific concepts and 
spontaneous concepts. The concept “generic example” is a scientific 
concept that would make it possible to establish references between an 
element of a shape pattern and an explicit formula represented by an al-
gebraic expression. In Figure 9.4 the fourth element of the shape pattern 
presented in Example 9.2 is used as a generic example to show that the 
element is composed by one dot (in the middle) plus four “arms”, each 
with one dot less than the position of the respective element in the pat-
tern. 

 

 
 

Figure 9.4. The fourth element of the shape pattern presented in Example 9.2, used as a  
generic example 

 
The point is to make references between the elements of the shape pat-
tern and an explicit formula which represents the regularity of the pat-
tern, ( ) 1 4( 1)f n n= + − . The concept “structure”, used by a teacher in 
connection with justification of a formula for the general member of a 
sequence mapped from a shape pattern, would be a spontaneous concept 
if it is understood by students in an everyday sense and (for them) lacks 
clarity of its intention (which might be communicated for instance by use 
of the concept generic example). 

7) Validity of reasoning spans between reasoning that is mathemati-
cally valid and reasoning that is mathematically invalid (referred to in 
the diagram as “mathematical ---- empirical”). Reasoning that is mathe-
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matically valid in justification of the formula in Example 9.2, 
( ) 1 4( 1)f n n= + − , would be reasoning by showing references between 

the partitions of a generic example (e.g., Figure 9.4) and symbols in the 
algebraic expression which constitutes the formula. Reasoning which is 
empirical (and mathematically invalid) would be reasoning by claiming 
that the formula is correct by observing that one gets the right values if 
evaluating the formula when n equals one, two, three, four, and up to a 
finite position.    

Figure 9.1 above presented categories of constraints to students’ al-
gebraic generalisation of shape pattern which might prove useful to any 
teacher or teacher educator in analysing didactical situations in which 
students engage with mathematical tasks on algebraic generalisation. The 
diagram is a neutral setting out of the categories and dimensions of my 
study. The analysis of the transcripts from the groups of students that I 
have studied leads me to assert that: The tasks were not sharply focused 
on the mathematics (Section 6.1); concepts with which the students were 
supposed to engage lacked clarity (Section 6.2); institutionalisation of 
the mathematics was left incomplete (Section 6.3); there was confusion 
with respect to distinctiveness of recursive and explicit approaches to 
generality (Section 7.1); there were problems with the syntax of algebra 
(Sections 7.1 and 7.2); everyday concepts did not interact adequately 
with scientific concepts in explanation of the notion of mathematical 
proof (Section 8.1);  and, students were reasoning empirically rather than 
mathematically (Section 8.2). These assertions are illustrated in Figure 
9.5 (on the next page). They are findings which are answers to my re-
search question about what factors constrain students’ appropriation of 
algebraic generality in shape patterns. 

I want to stress that these constraints became evident after many 
hours of painstaking analysis of transcripts or recordings. In the regular 
course of events, teachers have neither the opportunity nor time to make 
such an analysis. My conjecture is (and I cannot validate this from my 
data) that the constraints I have observed, and perhaps others, are rather 
commonplace in mathematics teaching at all levels. As noted by the UK 
Committee of Inquiry into the teaching of mathematics in schools 
(Cockcroft, 1982), mathematics is a difficult subject both to teach and to 
learn. These weaknesses in the milieu that have just been listed draw into 
sharp focus some of the specific issues that make teaching mathematics 
so challenging and the significance of thorough epistemological analysis.   

According to the epistemological analysis presented in Chapter 5, the 
target mathematical object in tasks on algebraic generalisation of shape 
patterns is either a formula for the general member of the sequence 
mapped from the shape pattern, or a mathematical statement that ex-
presses a number theoretical relationship mapped from the shape pattern. 
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“Formula” and “mathematical statement” are both scientific (mathemati-
cal) concepts. In the next section I explain how the students’ formulation 
of a mathematical statement is constrained in the didactical situation.  

 

  
 

Figure 9.5. Relationships between categories and subcategories as developed through  
analysis of the empirical material  

9.2 Complexity of developing the scientific concept 
“mathematical statement” 

The concept of mathematical statement is used in Task 3 and Task 4 (see 
Appendix A) as a mediational means to refer to the mathematical object 
aimed at (the algebraic generality that represents the regularity of the 
respective shape pattern). The first parts of the mathematical tasks 
(Tasks 3a, 3b, 3c, and Tasks 4a, 4b) are designed to provide the students 
with experiences with invariant structures in shape patterns. These parts I 
interpret as intended to activate students’ spontaneous concepts, which in 
the last part of the tasks (Task 3d, Task 4c) are intended to be saturated 
with the scientific concept of mathematical statement. The analysis 
shows, however, how the milieu for formulation and validation of a 
mathematical statement is constrained: First, there are obstacles in terms 
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of a constrained feedback potential in adidactical situations (first analytic 
category). Second, there are constraints in terms of complexity of formu-
lating in mathematical notation what they have experienced and ex-
pressed in everyday or spontaneous concepts (second analytic category). 
Third, there are constraints in terms of complexity of mediating the idea 
of mathematical proof (third analytic category). In Sections 9.2.1, 9.2.2, 
and 9.2.3 I explain how these constraints are manifested in the didactical 
situation that aims at the students’ formulation of a mathematical state-
ment about number theoretical relationships. 

In the next section I explain how the feedback potential in adidactical 
situations is constrained and constitutes constraints to the formulation of 
a mathematical statement expressed in algebraic notation. 
9.2.1 Formulation of a mathematical statement constrained by fea-

tures of the milieu 
In Chapter 6 I presented how the feedback potential in adidactical situa-
tions is constrained. The identified constraints can be interpreted as 
weaknesses in the milieu for formulation of a mathematical statement in 
three senses: First, there is a weakness in the objective milieu caused by 
the design of the tasks: The students produce adequate solutions to sub-
tasks but these solutions do not prepare a milieu for the formulation of a 
mathematical statement (see Section 6.1.1); and, the idea of proof as in-
tended by the teacher is not transparent for the students who treat the 
proof assignment as a new generalisation task which they solve by using 
naïve empiricism (see Section 6.1.2).  

Second, there is a weakness in the milieu for formulation of a math-
ematical statement caused by missing clarification of the concepts of 
mathematical statement and generic example: The students establish a 
formula for the general member of the actual sequence instead of a 
mathematical statement about a relationship between odd numbers and 
square numbers (see Section 6.2.1); the teacher uses a generic example 
without the students’ awareness of its general meaning (see Section 
6.2.2); and, Topaze effects are produced because the students have made 
the statement of a function instead of a conjecture about number theoret-
ical relationships (see Section 6.2.3).109  

                                         
 
 
 
 
 

109 The students have made the statement of a function (the general member of a sequence is 
expressed as a function of its position). This is a statement of quantity based on empirical 
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Third, there is a weakness in the milieu for formulation of a mathe-
matical statement caused by incomplete institutionalisation of previous 
knowledge: The symbolic representation of an odd number is not reusa-
ble for the students because it originates from a Topaze effect and has 
not been institutionalised (see Section 6.3.1); the students formulate a 
mathematical statement which is inadequate as a consequence of incom-
plete institutionalisation of syntax and notation for recursive relation-
ships (see Section 6.3.2); and, the students are inhibited from following 
the teacher’s explication because it presupposes prior knowledge which 
the students do not have (see Section 6.3.3).  

In the next section I explain how the students’ everyday concepts 
about invariant structures in a shape pattern are complicated to transform 
into a mathematical statement in algebraic notation. 
9.2.2 Complexity of transforming experiences with invariant struc-

tures expressed in everyday concepts into the scientific con-
cept of a mathematical statement 

The students’ formulation in scientific concepts of what they have ex-
pressed in everyday concepts is constrained in two senses. First, there is 
a constraint caused by the students’ confusion of recursive and explicit 
approaches to the general member of the sequence mapped from the 
shape pattern: The students’ experiences with a recursive formula are 
used inadequately to find an explicit formula (See Section 7.1.1); a Jour-
dain effect is produced when the teacher interprets a functional relation-
ship in a student’s description of properties in spontaneous concepts (see 
Section 7.1.2); the students accept an incomprehensible difference be-
cause they confuse an explicit formula with a recursive formula (see Sec-
tion 7.1.3); the students’ and teacher’s different approaches (recursive 
vs. explicit) are unmarked by both parts (see Section 7.1.4); and, the stu-
dents’ have difficulties in transforming recursively expressed properties 
into an explicitly expressed mathematical statement (see Section 7.1.5).  

Second, there is a constraint to the formulation of a mathematical 
statement caused by expectations with respect to the syntax of the math-
ematical object aimed at: The students’ desire to write an indeterminate 
sum (the n-th partial sum of an arithmetic series) in an easier way is an 
indication of the need (and potential) for knowledge about arithmetic 

                                                                                                                    
 
 
 
 
 

facts (counting components of the elements). It is not a theorem that needs to be justified by 
a mathematical proof.  
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series (see Section 7.2.1); the students do not benefit from the teacher’s 
intervention because they have limited knowledge about syntax of for-
mulae (see Section 7.2.2); and, the epistemological properties of the rela-
tionships between natural numbers, odd numbers, and square numbers 
(as illustrated in the shape pattern) expressed in spontaneous concepts by 
the students are complicated to transform into the scientific concept of a 
mathematical statement in symbolic notation (see Section 7.2.3). 

In the next section I explain how it is complicated for the teacher to 
communicate and for the students to understand the idea of mathematical 
proof.    
9.2.3 Complexity of mediating the idea of (and need for) mathemat-

ical proof 
As referred to in Section 5.1.5, mathematical statements, which are the 
main currency of the discipline of mathematics, are defined by the fea-
ture that they are established by means of a mathematical proof (Gowers, 
2008). This requirement of the mathematical object aimed at in Task 3 
and Task 4 is a feature which involves an attitude of mathematical proof. 
There are constraints in the situation of validation caused by the distance 
between the students’ everyday meaning of justification (manifested as 
reasoning by naïve empiricism) and the rigorous requirements of a math-
ematical proof. The activity in the situation of validation is constrained 
in two senses. First, there is a constraint in the milieu for validation re-
lated to the use of concepts which have both an everyday and a scientific 
connotation: The teacher uses the concepts “structure” and “structural 
relationships” when he tries to make the students focus on the regularity 
(relationship between position and number of components based on ge-
ometrical configuration) of the shape pattern (see Section 8.1.1); and, the 
teacher uses the concepts “plane” and “level” when he attempts to ex-
plain the distinction between empirical reasoning and structural reason-
ing (see Section 8.1.2). 

Second, there is a constraint in the milieu for validation of a conjec-
tured mathematical statement caused by the students’ unawareness of the 
inadequacy of empirical reasoning: The students are unaware of the im-
portance of how a formula or mathematical statement is derived (see 
Section 8.2.1); and, it is complicated to explain and understand the dis-
parity between two formulae that are syntactically identical but derived 
in different ways (by empirical versus structural reasoning; see Section 
8.2.2).  

In the next section I use Vygotsky’s theory to explain how the con-
cept of mathematical statement fails to be institutionalised.    
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9.3 Degenerated situation of institutionalisation  
As outlined in Section 2.6.2 with reference to Daniels (2001) and Karpov 
(2003), there is a fundamental need for instruction in the development of 
scientific concepts. The insights provided by the research reported in this 
dissertation are relevant with respect to the development and use of the 
concept of mathematical statement in the context of shape patterns: It 
gives insights into the outcome of an adidactical situation aimed at alge-
braic generalisation when students attach the everyday meaning of words 
they encounter (e.g., “statement”). Teachers110 (as did the teacher in the 
observed lessons) may want to spare students from esoteric mathematical 
definitions and use what is believed to be more comprehensible terms 
(e.g., avoid the notion “theorem”). However, in so doing, teachers may 
inhibit students from learning the characteristics of the concept at play 
and potentially leave students to use didactical reasoning instead of 
mathematical reasoning. The students in the observed groups were seen 
to search for didactical markers (in the tasks and in the teacher’s utter-
ances) when they solved the tasks because they were not familiar with 
the definition of “mathematical statement” (see Section 6.2.1). The con-
cept of mathematical statement was not institutionalised, either in or af-
ter the observed lessons. As a consequence of missing knowledge about 
the mathematical object aimed at (that a mathematical statement needs to 
be proved), the students did not appropriate the number theoretical rela-
tionships aimed at.  

In the observed episodes the term “mathematical statement” was 
questioned by the students (Task 3 and Task 4). The teacher responded 
in a way quite common for teachers (Mason, 1996): he presented an ex-
ample (one for each task) which I interpret to be generic for him but not 
for the students. This terminated the possibility of the notion “mathemat-
ical statement” to become “the object of communicative activity” (Min-
ick, 1987, p. 27), a function of the word which leads to development of 
scientific concepts (Vygotsky, 1934/1987). Communication about a 
mathematical concept is exactly the enterprise of a situation of institu-
tionalisation (see Section 2.4.3 and Section 2.6.2). Institutionalisation 
involves that the teacher takes responsibility for an object of teaching 
and identifies its status as manifested in the processes and knowings de-
veloped by the students in situations of action, formulation, and valida-

                                         
 
 
 
 
 

110 Here and in the following, I include myself in the noun “teachers”. 
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tion. It is important that the student takes into account the object of 
knowing, and that the teacher takes into account the student’s learning. 
This double recognition is defined by Brousseau (1997) to be the object 
of institutionalisation. 

Institutionalisation of knowledge developed by the groups took place 
within the collaborative lessons. The teacher interacted with the groups, 
on the students’ as well as on the teacher’s own initiative. There were no 
whole-class lessons where knowledge collected from the small-group 
collaboration were compared, decontextualised, and reformulated in 
conventional notation to become cultural, reusable knowledge. This con-
stitutes a possible weakness in the design of the teaching units aimed at 
algebraic formulae or mathematical statements representing generality in 
shape patterns (see Section 6.5.3). 

What is researched and what is not researched 
The research question set out to expose constraints in the teaching-
learning situation. The analysis of data reported in Chapters 6, 7 and 8, 
and summarised above, has drawn attention to a number of constraints 
seen through the lens of the theory of didactical situations. It would be 
very easy to conclude from the analysis that nothing positive emerged 
from the teaching-learning during the observed classes. Such a conclu-
sion would be inappropriate because the research did not set out to ex-
pose the learning that occurred. My purpose in this research was to look 
deeply into didactical situations so that I might be more aware of con-
straints that may arise in my own practice, and to report these constraints 
so that other teachers might learn alongside me. The students I observed, 
who very generously allowed me to look into their collaborative en-
gagement with mathematical tasks, are not exceptional, in any way – 
apart from their willingness to be exposed in research such as my own. 
The teachers involved are my closest colleagues, for whom I have the 
highest regard as mathematics educators. Their willingness to allow me 
to explore constraints that emerged in didactical situations in their class-
rooms reveals their concern to contribute to the development of our prac-
tice. We have learned together in this research enterprise and it is hoped 
that their readiness for their practice to be exposed in this report will 
support other dedicated teachers in learning more about their own prac-
tice.  

In the next section I discuss strengths and limitations of the research 
reported in this dissertation.  

9.4 Strengths and limitations of the reported research 
Reliability and validity, which are important criteria for evaluating the 
quality of quantitative research, are not indisputably applicable to quali-
tative research (Bryman, 2001). Yvonna S. Lincoln and Egon G. Guba 
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(1985) propose trustworthiness as a criterion for evaluating a qualitative 
study. They draw on Guba (1981) when they propose that trustworthi-
ness has four criteria, each of which has an analogous criterion in quanti-
tative studies: credibility, which parallels internal validity; transferabil-
ity, which parallels external validity; dependability, which parallels reli-
ability; and, confirmability, which parallels objectivity.   

The research design and methods I have chosen to ensure trustwor-
thiness can be summarised in the following points: First, I have re-
searched a “regular” class in the teacher education programme; nothing 
special has been done regarding content or approach for my inquiry. Se-
cond, there has been minimum disruption of routine; special arrange-
ments have been made on ethical grounds (choice of participants) and on 
practical grounds (choice of participants and room). Third, a non-
intrusive approach has been used in that there has been no engagement 
between researcher and participants. Fourth, I was familiar with the rou-
tine; I did not need to acclimatise myself to the context. Fifth, the analy-
sis is based on a dialectic between theory and data; theory has been used 
to explore the data, and data has been used to test the theory. Sixth, re-
sults from the analysis have been open to critical peer review through 
presentations at conferences and seminars, and through peer reviewed 
publications.   

In the following sections I examine more closely the research report-
ed in this dissertation against the four criteria of trustworthiness present-
ed above. 
9.4.1 Credibility 
Credibility is about whether the reported research “rings true”. As stated 
above, Lincoln and Guba (1985) propose that credibility parallels inter-
nal validity in quantitative studies. Joseph A. Maxwell (1992) claims that 
understanding is a more fundamental concept for qualitative research 
than validity. He distinguishes among different types of understanding 
that may emerge from a qualitative study: descriptive understanding ad-
dresses what happened in specific situations; interpretive understanding 
addresses what it meant to the people involved; theoretical understanding 
addresses the theoretical constructs (and their relationships) used or de-
veloped by the researcher; and, evaluative understanding involves the 
application of an evaluative judgement of the objects under study (Max-
well, 1992). The understanding developed through my study is theoreti-
cal in that it goes beyond concrete description and interpretation and ex-
plicitly addresses the concepts of the theory of didactical situations in 
mathematics: The function of my account is, as well as a description and 
interpretation, an explanation of the phenomenon under study (con-
straints to students’ algebraic generalisation of shape patterns). The ana-
lytic categories that emerged from the analysis are conceptualisations of 
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key aspects of the data, and the dissertation presents an interpretation of 
relationships between the categories (Section 9.1). 

Strengths of the reported research I claim to be the following: First, I 
have studied a regular class which is minimally disturbed from routine 
(see Section 4.3). I have used a non-intrusive approach; there has been 
no didactic engagement between researcher and participants during ob-
servation. Second, in writing this report, the aim has been to provide the 
reader with “thick description” (Geertz, 1973) that will enable him/her to 
recognise the context (see Section 4.3). Third, I have studied didactical 
situations in mathematics (more specifically, relationships between the 
teacher, the students, and the target mathematical knowledge). Hence, 
there is coherence between theory and data. Fourth, I have done a meth-
odological triangulation (as explained in Section 4.4.3). The analysis of 
the transcript data draws on two other sources: first, on the epistemologi-
cal and didactical analyses of the mathematics potential in the tasks with 
which the students engaged; second, it draws on conversations with the 
teacher who has designed the tasks. Fifth, mathematics teacher educators 
and researchers in mathematics education have been engaged in peer cri-
tique. This has taken place through presentations at conferences and 
seminars111, and through peer reviewed publications (Måsøval, 2006, 
2007, 2009; Goodchild, Jaworski, & Måsøval, 2007). Peer critique is 
also provided by my two supervisors. In addition, aspects of the theoreti-
cal foundation of the study have been discussed with other researchers in 
mathematics education.112 

A weakness of the chosen methodology is the inevitability of disturb-
ance. The context is changed because the participants know that they are 
part of a research project, and that they are being recorded. In social re-
search this phenomenon is referred to as the Hawthorne effect, “the fact 
that any intervention tends to have positive effects merely because of the 
attention of the experimental team to the subjects’ welfare” (Brown, 
1992, p. 163). As a teacher and teacher educator I have found it chal-

                                         
 
 
 
 
 

111 Conferences: PME 28 (2004); NORMA 05 (Forth Nordic Conference on Mathematics 
Education, 2005); NORMA 08 (Fifth Nordic Conference on Research in Mathematics Edu-
cation, 2008). Seminars with researchers in mathematics education: Sør-Trøndelag Universi-
ty College (2006); University of Agder (2005, 2008); Loughborough University (2007); and, 
Norwegian University of Science and Technology (2010). 
112 These include Nicolas Balacheff, Guy Brousseau, Stephen Lerman, Marie-Jeanne Perrin-
Glorian, and Carl Winsløw. 
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lenging to don the mantel of a classroom researcher and avoid being 
judgemental. However, the analysis is based on what is observed. I have 
included a lot of data to enable the critical reader to test my interpreta-
tions and assertions and reach his/her own conclusions.  
9.4.2 Transferability 
Transferability is about whether the research findings apply to other situ-
ations. A quality of the chosen methodology is that the analysis is based 
on strong theoretical foundation that has enabled analytic generalisation. 
This concept is explained by William A. Firestone (1993) as “extrapola-
tion using a theory” (p. 16). I have provided an extended introduction to 
the theory of didactical situations in mathematics. This is done to famil-
iarise the reader with the theoretical concepts used and to make it easier 
for him/her to judge whether the theory is used appropriately in an ana-
lytic generalisation. The reason for including a lengthy explication of 
Brousseau’s theory is that many find this theory difficult to understand, a 
stance acknowledged by Sierpinska (2005).   

The analytic generalisations presented in this dissertation are in the 
form of fuzzy generalisations (Bassey, 1999), as explained in Section 
4.2.1. The intention with the research reported here is two-fold: First, it 
is to report from my educational case study what factors constrain stu-
dents’ establishment of algebraic generality in shape patterns. Second, it 
is to explore the power of the theory of didactical situations in mathe-
matics to expose critical features of teaching and learning mathematics 
on a teacher education programme. 

The thick description provided enables a type of extrapolation that 
Firestone (1993) refers to as case-to-case translation. It is up to the read-
er to make a judgement about whether the groups I describe fit their own 
context. In this way, responsibility for application to another case is 
passed from the researcher to the reader, which should be facilitated by 
the thick description of the context that has been provided. According to 
Firestone (1993), the claims of a study using case-to-case translation, 
while legitimate, are weaker than when generalisation is done by extrap-
olation from sample to population, or by extrapolation using a theory.  

A limitation of the chosen methodology is that there have been 
changes in the teacher education programme since the data were collect-
ed. This could mean that similar groups of students would not appear. 
My research will in this case be historically bound, held fast like a “fly in 
amber”. However, I want to assert that the general issues highlighted by 
the theoretical perspective transcend minor historical changes in the con-
stitutional order. It is easy to change the curriculum; it is not so easy to 
transform students or teachers. 
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9.4.3 Dependability 
Dependability is about whether other analysts would make the same in-
terpretations and assertions. A strength of the reported research is the 
amount of data reproduced in the report, and that the interpretations have 
been open to critical peer review (as explained in Section 9.4.1). In writ-
ing this report, my intention has been to provide sufficient examples 
from the data to allow other researchers to judge the strength of the in-
terpretations made and allow them to exercise their own critical judge-
ment (whether the interpretations presented in the report are reliable giv-
en the collected data). In addition, in Chapter 4, I have described in de-
tail how the data were collected, how decisions were made throughout 
the inquiry, and how analytic categories were derived. Sharan B. Merri-
am (2009) claims that such descriptions are preconditions for an audit 
trail procedure to be accomplished. An audit trail is a way of ensuring 
what Lincoln and Guba (1985) refer to as dependable data. 

A weakness of the chosen methodology is the adherence to one theo-
ry (Brousseau’s theory of didactical situations in mathematics, augment-
ed by Vygotsky’s theory of concept development). Other theoretical per-
spectives might produce different interpretations. However, I have pro-
vided one interpretation that could be used by teachers to examine their 
own practice and learning opportunities of their students.  
9.4.4 Confirmability 
Confirmability is about whether the findings would be consistently re-
peated if the study were replicated in the same (or similar) context with 
the same (or similar) participants. Miles and Huberman (1994) explain 
that confirmability is about “relative neutrality and reasonable freedom 
from researcher biases – at the minimum, explicitness about the inevita-
ble biases that exist” (p. 278). My account of the ontological and episte-
mological assumptions that underlie the inquiry (Section 4.1), together 
with the epistemological and didactical analyses of the mathematics po-
tential in the tasks with which the participants engaged (Chapter 5), are 
made to make my assumptions and preconceptions explicit.  

A quality of the chosen approach is that the data could be re-analysed 
by other researchers if wanted. With respect to the classroom observa-
tions, there are ethical regulations that prevent others from seeing the 
video recordings (The National Committee for Research Ethics in the 
Social Sciences and the Humanities, 2006). The transcript data, however, 
are available for re-analysis. The mathematical tasks used in the ob-
served didactical situations are reproduced in the dissertation, and hence 
available for other researchers to make their own epistemological and 
didactical analyses. Transcripts and summaries from conversations with 
the teacher who designed the tasks are also available for use in a re-
analysis by others. Further, as mentioned in the previous section, the 
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study’s general methods and procedures are described explicitly and in 
detail. Furthermore, data reduction and analysis products are available 
for inspection; these include theoretical memos and summaries such as 
condensed notes. 

A weakness of the chosen research design is that it is impossible to 
replicate because reproduction of the same context is unattainable; every 
teaching situation is unique. But it would be possible for a teacher or re-
searcher to record group activity with teacher interaction and subject it to 
the same type of analysis. The points on the dimensions of categories 
might be different, but it would be possible to confirm the categories as 
providing a description of the data. 

In the next section I reflect on possible pedagogical implications of 
the research reported in this dissertation. 

9.5 Potential pedagogical implications 
As explained in Section 5.2.3 there is a two-fold purpose of students’ 
engagement with algebraic generalisation of shape pattern: One is to 
provide a context for algebraic generalisation where the aim is to pro-
mote students’ algebraic thinking. This can be considered as an approach 
to algebra through pattern generalisation. The other is to lead students to 
experience patterns as mathematical structures as an aim in itself, where 
the focus is on infinite processes and generalisation. In this perspective, 
algebra is a mediational means to represent invariant structures in the 
patterns. The potential of pattern generalisation as an entrance to alge-
braic knowledge is noted by Miriam Amit and Dorit Neria (2008) who 
write:   

The importance of pattern problems – linear, and particularly non-linear ones – 
lies in their extensive mathematical potential. They not only encourage 
generalization, they also require students to pool their existing knowledge 
resources and build upon them. Thus, they are a gateway to new knowledge, in 
this case, algebraic knowledge. (p. 128) 

Different nature of the target mathematical knowledge 
In my study there are two kinds of mathematical objects which are po-
tential outcome of algebraic generalisation of shape patterns: one is a 
functional relationship; the other is a theorem. These mathematical ob-
jects correspond to different types of shape patterns (see Section 5.1.3 
and Section 6.5.2). One type can be referred to as arbitrary shape pat-
terns whose generalisation points at a formula for the n-th member of the 
sequence mapped from the shape pattern, where the formula is given as a 
function of n. The other type can be referred to as relational shape pat-
terns whose generalisation points at a theorem about general numerical 
relationships. The theorem will be a mathematical statement about 
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equivalence of two algebraic expressions for the numerical value of the 
general element of the shape pattern.  

It is relevant for mathematics teachers113 to take the different nature 
of the target knowledge into consideration when they design teaching 
units aimed at algebraic generalisation of shape patterns. Whereas a for-
mula (in terms of a function) is inevitably connected to the presented 
shape pattern, a mathematical statement is decontextualiseable in the 
sense that it has relevance beyond the shape pattern from which it origi-
nates. Institutionalisation of the knowledge in the case when algebraic 
generalisation of a shape pattern aims at a formula is not institutionalisa-
tion of the formula per se. It is institutionalisation of how the invariant 
structure of the pattern is interpreted into arithmetic relations and how 
these in turn are generalised algebraically in terms of a formula (for the 
general member). The cultural, reusable knowledge in this case is the 
nature of the relationship between the algebraic expression and its refer-
ent (a generic element of the pattern). On the other hand, institutionalisa-
tion of the knowledge in the case when algebraic generalisation aims at a 
mathematical statement involves decontextualisation of the mathematical 
statement from the shape pattern on the basis of which it is developed. 
The cultural, reusable knowledge in this case is algebraic generalisation 
of arithmetic relations between sequences of numbers.  

The challenge that faces mathematics teachers at all levels is to de-
sign a milieu that enables students to experience the intended mathemat-
ical challenge and appropriate the desired mathematical knowledge. The 
analytic categories presented in Figure 9.1 (Section 9.1) could be used by 
mathematics teachers in preparing teaching units aimed at algebraic gen-
eralisation. The core categories, which emerged from exploration of the 
empirical material, indicate two types of constraints which could be an-
ticipated in didactical situations aiming at students’ algebraic generalisa-
tion: The first type of constraint deals with how students’ “free produc-
tion of knowledge”114 in a teaching-learning situation can be constrained. 
That is, how the feedback potential in adidactical situations can be lim-
ited. The other type of constraint deals with the complexity of different 

                                         
 
 
 
 
 

113 In the following I include teacher educators of mathematics in the noun “mathematics 
teachers”. 
114 “Free production of knowledge” refers to knowings developed by students as a response 
to a mathematical problem given to them, without didactical reasoning and without interven-
tions by the teacher. 
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phases in the teaching-learning situation; that is, situations of formula-
tion and validation. In the following paragraphs I explain in more detail 
potential pedagogical implications of the analytic findings. 

Generalisation process focused on the target knowledge 
The reported research reveals that when we (mathematics teachers) de-
sign tasks on algebraic generalisation of shape patterns, we have to be 
rather cautious to ensure that the tasks are focused on the target mathe-
matical knowledge. The target knowledge (whether it is a functional re-
lationship or a theorem) is algebraic generalisation of arithmetic relations 
arising from the elements of the shape pattern. For epistemological rea-
sons, the focus in the tasks therefore should be on those arithmetic rela-
tions, rather than on just the total number of components of the elements.  

I conjecture that the process of decomposition and the concept of ge-
neric example, as outlined in Chapter 5, would be useful for teachers in 
communicating ideas of structure and relationships between variables. 
Decomposition can help to focus on a relationship between the algebraic 
expression (of a formula or a mathematical statement) and its referent (a 
generic element). This could help to avoid an isolated focus on the total 
number of components of elements, an unhelpful focus which is likely to 
be accompanied by a guess-and-check approach to a formula.   

Recursive and explicit approaches 
Several researchers recommend that students should be familiar with 
both recursive and explicit strategies for algebraic generalisation of 
shape patterns (e.g., Dörfler, 2008; Lannin et al., 2006). Based on find-
ings related to constraints in students’ generalisation processes reported 
in this dissertation, I suggest that it is important to let students experi-
ence and express the different nature of the two approaches, and how the 
outcomes of the two diverge. This includes developing awareness about 
the different relationships expressed by recursive and explicit formulae 
or mathematical statements, and notation for the two types. This includes 
that students should develop awareness about the different nature of the 
two approaches: that a recursive approach analyses the relationship be-
tween members in the sequence mapped from the shape pattern (i.e., it 
analyses the sequence as the position in the sequence increases); and, 
that an explicit approach analyses the relationship between position and 
member of the sequence in this position (i.e, it analyses a single generic 
element of the sequence). 

In the observed lessons, which comprised these students’ first experi-
ences with algebraic generalisation and shape patterns in this course, 
there were five manifestations of confusion of recursive and explicit ap-
proaches to generality. This leads me to suggest that the two different 
approaches should be introduced with some distance in time. It is also 
important that teachers design the milieu in accordance with the target 
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mathematical object. That is, that there is feedback provided which tells 
the students whether they have developed an appropriate (recursive or 
explicit) formula or mathematical statement. An a priori analysis of the 
mathematics potential in tasks done by the teacher will give insights into 
the issue of alternatives; that is, whether the solution can be given both 
as a recursive and as an explicit relationship. This is important for a 
teacher’s possibility to notice and respond appropriately to students’ con-
tributions.      

An attitude of proof 
With respect to situations of validation, my research can be helpful in the 
way it points at the necessity of developing students’ awareness of the 
distinction between empirical reasoning and mathematical reasoning. 
Further, it points at the intricacy of explaining the inadequacy of empiri-
cal reasoning, and shows how concepts like “structure”, “higher plane” 
and “superior level” fall short in explaining what it takes to justify an 
assertion mathematically. I conjecture that the concept of “generic ex-
ample” would be beneficial in situations of validation to mediate be-
tween a shape pattern and the structural relationships it is intended to 
illustrate. A generic example can be used to make explicit the reasons for 
the truth of an assertion. This applies both when the assertion is a formu-
la for the general member of the sequence mapped from an arbitrary pat-
tern, and when the assertion is a theorem about equivalence of two gen-
eral expressions mapped from a relational pattern. The above points at 
the necessity of students being taught what distinguishes formal, rigor-
ous mathematical reasoning from empirical reasoning. We cannot expect 
students to discover or adapt an attitude of mathematical proof for them-
selves, no matter how well the situation of validation is designed. 

A potential pedagogical implication of another character is the theo-
retical foundation for a pattern based approach to algebra provided in 
Chapter 3. This outline could be useful for mathematics teachers and 
teacher educators as a foundation for organisation and facilitation of stu-
dents’ learning of algebra through pattern generalisation.  

9.6 Closing remark 
Based on the experience with the research reported here, I will make the 
point that an a priori epistemological analysis of mathematical 
knowledge, while necessary, is not adequate for assessing the epistemo-
logical constraints of mathematical knowledge in a didactical situation. 
The knowledge exposed in this report is a component of epistemological 
knowledge of mathematics in social learning settings in the way that it is 
a result of analyses of teaching-learning situations drawing on epistemo-
logical analysis of the mathematical knowledge at stake. Steinbring 
(1998) claims that this kind of epistemological knowledge  
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is not a systematized, canonical knowledge corpus which could be taught to 
future teachers in the way of a fixed curriculum. Rather, the epistemological 
knowledge consists of exemplary knowledge elements as it refers to case studies 
of analyses of teaching episodes or of interviews with students, and comprises 
historical, philosophical, and epistemological conceptual ideas. (Steinbring, 
1998, p. 160) 

The case study reported in this dissertation is about the interplay between 
the didactical constraints of the communicative process aiming at stu-
dents’ appropriation of algebraic generality, on the one hand, and the 
epistemological structure of this target mathematical knowledge (alge-
braic generality and related concepts), on the other. The knowledge ex-
posed in this report, supported by Steinbring’s (1998) notices about ele-
ments of epistemological knowledge for mathematics teachers, offers 
guidance for the way I, as a teacher educator of mathematics, will work 
with student teachers: It is important for student teachers to analyse 
teaching-learning situations from the perspective of an epistemological 
analysis of the mathematical knowledge in play. 
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Appendix A: Four mathematical tasks with which the students engaged 
 

Task 1 
 
Below you see the development of the first two shapes in a pattern. 

  
a) Draw the third and fourth shapes in this pattern. You may use the squared pa- 
      per. 
b) Count the number of stars in each of the shapes you have now, and put the re-
 sults into a table. Explain how the number of stars increases from one shape 
 to the next. Use this to calculate how many stars there are in the fifth shape. 
c) What you have found in task b) above is called a recursive (or indirect) formu-

la. Can you express it in terms of mathematical symbols? 
d) Try to find a connection between the position of a shape and the number of 
 stars in that shape. This is called an explicit formula. Can you express such a 
 formula in terms of mathematical symbols? 
e) You have got a box with 200 stars that you are going to use to make as big a 
 figure as possible in this pattern. (You are not supposed to start with figure 
 number one and make all successive figures). How big a figure can you make?  
 

 
Task 2116 
 
a) A growing picture made of stars is presented below. Express the number of 
 stars in this pattern as a function of n. 
 

 
 

                                         
 
 
 
 
 

116 Task 2a is reproduced from Regnereisen 9A (Skoogh, Pedersen, & Breiteig, 1994, p. 189), 
a mathematics textbook for Grade 9, written in accordance with the Curriculum Guidelines 
for Compulsory Education in Norway, M87 (Ministry of Education and Church Affairs, 
1987).  
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b) Task a) asked for an explicit formula for the pattern. Can you find also a recur- 
 sive formula? 
c)    Can you draw a shape that would precede the ones given above which would  
       be consistent with the given pattern? 
 
 
Task 3 (Part I) 
 
Look at the shapes below. You may use centicubes to concretise.  
 

  
                1               2                          3     
 
a) How many cubes will there be in the fourth shape? And in the fifth? 
b) How many do you think there will be in shape number 10? And in shape  
 number n? 
c) What kinds of numbers are present in these shapes? In each row, and totally 
 in the shape? 
d) Can you express what the shapes seem to show, as a mathematical statement? 
 - In words? 
 - In symbols? 

 
 

Task 3 (Part II) 
 
The mathematical statement that you have formulated above is only based on a 
few observations. It is therefore just a conjecture. In order for it to become a justified 
statement, it needs to be proved. We will now look at a possible way to do this. 
 
Below, the staircase towers have been extended into rectangles. 

 
e) Build or draw (using two colours or symbols) the next shape in this pattern. 
f) Find an explicit formula for the total number of squares in the n-th shape. 
 Then find an explicit formula for the number of ¨ in the n-th shape. 
g) Use this to find the number of n in shape number n. 
h) Discuss if the conjecture from earlier in the task can be considered proved 
 now. 
i) An alternative way to prove it may be through a so-called proof by induction 
 (see last page). Those who want to go a bit further here can try that! 
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Task 4 
 

 
 
Thorvaldsen’s museum in Copenhagen contains several floor mosaics with mathe-
matical content. We looked at one mosaic last Friday, and here we shall look at an-
other one. (The picture is reproduced from the book Matematik til tiden by Bjerg et 
al., 2000). 
            
This pattern can be thought of as built up by equal squared areas containing bright 
and dark mosaic tiles.  
On the shape below the pattern is reproduced schematically with n for each of the 
dark squared tiles and ¨ for each of the bright ones. 
 

 
 
a) If this shape were part of a sequence of shapes, what would the next one look 
       like? 
b) What kinds of figurate numbers do you find in the bright and the dark areas,  
       and in the shape as a whole? 
c)    Express what the shape tells you about these numbers in terms of a mathe- 
       matical statement. 
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Appendix B: Brief summary of students’ solutions to the mathematical 
tasks 

 
Task 1 – Group 1 (Ida & Alice; Sophie is sick)  

 
a) Pattern:  

  
 
b) 

 
4   8   12  16  +20

Fig. no.               1     2      3       4       5       6
Numb. of stars    1      5     13     25     41     61
                              + + + +

 

   
 “The increase of the number of stars increases by four each time”. 
 
c) Recursive formula: 1(( 1) 4) ( )n nn s s−− ⋅ + =  (with maieutic practice by teacher T). 
 
d) Explicit formula:  

  

1

1 2

3 2

4 3

5 4

6 5

(4 0) 1       1
(4 1) 1       4 5 1 4
(4 3) 1       8 1 4 8 13
(4 6) 1       12 1 4 8 12 25
(4 10)+1      16 1 4 8 12 16 41
(4 15)+1      20 1 4 8 12 16 20 61
(4 21)+1      

s
s s
s s
s s
s s
s s

⋅ + =

⋅ + + = = = +

⋅ + = + = + + =

⋅ + = + = + + + =

⋅ = + = + + + + =

⋅ = + = + + + + + =

⋅ 7 6

8 7

9 8

24 1 4 8 12 16 20 24 85
(4 28)+1      28 1 4 8 12 16 20 24 28 113
(4 36)+1      32 1 4 8 12 16 20 24 28 32 145

s s
s s
s s

= + = + + + + + + =

⋅ = + = + + + + + + + =

⋅ = + = + + + + + + + + =

 

 
 The students do not succeed in generalising the pattern in terms of an explicit 
 formula. Teacher T tries to help them generalise the multiplicator of 4 in the 
 products to the left, but claims himself not able to generalise it either. Last part of 
 lesson is used on trying to calculate the number of stars as the difference between 
 the total number of stars when empty places are filled in, and the number of stars 
 filled in. Time runs out.  
 
e) There was no time left to do this task. The students spent the whole time on the 
 previous tasks. 
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Task 1 – Group 2 (Paul, Anne & Helen) 
 
a) Pattern alternatives: 
 
 Paul and Anne (Pattern 1): 

  
 
 Helen (Pattern 2): 

  
 
b) Pattern 1:  
  
 Paul: 

   
   
  
 Helen: 

  
   
 “First, it increases by four then by eight and then by twelve”. “By the four times 
 table”. 
 
 Pattern 2:  
 
 Paul:  
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 Helen:  

  
   
 ”Plus four each time”. 
 
c) Recursive formula: They believe they have found the recursive formulae when it 
 is indeed the explicit formulae. When reading the next task (asking for explicit 
 formula), they conclude that they have indeed found the explicit formulae. They 
 do not pay more attention to representing the recursive formulae by mathematical 
 symbols. 
  
d) Pattern 1: 2 2( 1)na n n= + −  
  
 Pattern 2: 1 ( 1)4na n= + −  
 
e) They solve the quadratic equation 2 2 1n n− +  on calculator and write: 
 10,5       9,5n n= ∨ = −  . Concludes that the largest figure they can build with 
 200 stars is the 10th figure. 
 
 
Task 2 – Group 1 (Ida & Alice; Sophie is sick) 
 
Did not come this far in the task sheet. They spent all time on Tasks 1a-d. 
 
 
Task 2 – Group 2 (Paul, Anne & Helen) 
 
a) Function of n: 2 2(2 1)na n n= + − . 
 
b) Recursive formula: 1 6 1n na a n+ = + + . 
 
c) One star.  
 
 
Task 3 – Group 1 (Sophie, Ida & Alice) 
 
a) Number of cubes in figure; 4th: 16; 5th: 25. 
 
b) 10th: Does not pay attention to this. The n-th: 2n . 
 
c) In each row: Odd numbers. Totally in the figure: Square numbers. 
 
d) Mathematical statement in words: The whole figure becomes a square number.  
 
 Mathematical statement in symbols: 2Fn n= .  
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Teacher E tries to make them express the total number by focusing on how the 
figure is built up. Teacher E interprets Alice’s answer to mean that she has under-
stood the arithmetical relation between odd numbers and square numbers. He sets 
them the task of writing with symbols that we add the first n odd numbers. 
Teacher E writes in Alice’s notebook:  

 

 

2

2

2

1 3 2
1 3 5 3

1 3 5     n

+ =

+ + =

+ + + + =L

  

  
 and asks how he should write the n-th odd number?  
 Students do not succeed in symbolising the n-th odd number, but they try to find 
 an expression for the increase from one figure to the next, and finds that 
 ( 1)n n+ −  equals the increase from the ( 1)n− -th square number to the n-th 
 square number. They conjecture the formula: ( ) 21n n n+ − = . They consider it a 
 “two-in-one formula” because the left hand side equals the increase and the right 
 hand side equals how many cubes there are totally. But realises the inconsistency 
 (exemplified by 5 9≠ ). 
 
 They then write the third and fourth row of the table in which the teacher has 
 completed the first two and the n-th rows: 

 
2

2

2

2

2

1 3 2
1 3 5 3

1

1 3 5 7 4
1 3 5 7 9

3 5    
5
n

+ + + =

+ + + + =

+ =

+ + =

+ + + + =L

 

 
 Teacher E enters room. Makes them aware of the fact that ( 1)n n+ −  symbolises 
 the n-th odd number and that it can be written 2 1n − . He then writes 2 1n −  for 
 the n-th odd number (place left open in the formula in figure above, last line), so 
 the formula becomes: 21 3 5 2 1n n+ + + + − =L . Students have not considered 
 this a formula (“because a formula is in a way no numbers…”). 
 
e) 4th rectangle built in centicubes: 

  
 
 They establish explicit formula for the n-th rectangle by using that the number of 
 black squares (towers) equals the square numbers (which is, indeed, what they 
 are supposed to prove) and find by guess and check that the number of white 
 squares is given by ( 1)n n− . Results in the formula: 2 ( 1)n n n+ ⋅ − . 
  
 Teacher E tells them this is not sufficient. He tries to mediate what a valid 
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 mathematical proof involves and how to utilise structure. Practices maieutic to 
 help them (interaction with Alice) find length and width of rectangle.  
 
 Alice writes: 
  

 2 2

2

( (2 1)) ( ( 1))
(2 ) ( )
n n n n
n n n n

n

⋅ − − ⋅ −

− − −

=

 

 
 Alice indicates some understanding of a generic example. Sophie indicates she 
 has not understood what was wrong with their original formula, 2 ( 1)n n n+ ⋅ − . 
 They suggest they are not competent to do this voluntary task (laughter). 
 
 
Task 3 – Group 2 (Paul, Anne & Helen) 
 
a) Number of cubes in figure; 4th: 16; 5th: 25. 
 
b) 10th: 100. The n-th: 2n . 
 
c) In each row: odd numbers. Totally in the element: square numbers. 
 
d) In each element, the number of cubes is equal to the square of the element’s posi-
 tion. 
 2

na n= . 
 
e) Picture drawn:  

  
 
f) Rectangles:  

 

1

2

3

4

5

1 1       1
2 3      1+2
3 5      1+2+2
4 7     1+2+2+2
5 9      1+2+2+2+2

a
a
a
a
a

= ⋅

= ⋅

= ⋅

= ⋅

= ⋅

   

 
 Generalised as ( )2 1na n n= − . 
 
 Number of white cubes by guess and check: ( )1na n n= − . 

g)  
( )

( )
( ) ( ) 2

Total in rectangle    2 1

Formula                     1

Black cubes           2 1 1

na n n

n n

n n n n n

= ⋅ −

−

− − − =

W  
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h) Discussion if they consider the conjecture from earlier proved: Just comment that 
 they will get the black cubes when they take the difference between the total 
 number of cubes and number of white cubes in rectangle. No substantial reflec-
 tion on the nature of proof or the disparity between formulae established by guess 
 and check and formulae established in basis of structural relationships. 
 
i) Induction proof:  
 “Sum of first n odd numbers equals n-th square number” expressed as a recursive 
 formula: 1 1 2n na a n+ = + + . 
 
 Teacher intervenes and suggests that they, rather than completing the induction 
 proof, continue on the next task.  
 
 
Task 4 – Group 1 (Sophie, Ida & Alice) 
 
Did not come this far in the task sheet (spent whole lesson on Task 3). 
 
 
Task 4 – Group 2 (Paul, Anne & Helen) 
 
a) Alternatives for continuation of pattern. Students agree on working with Alterna-
 tive 1. 

   
 
b) The rule for bright tiles and dark tiles is 1 2 3 4 5+ + + + +L  ; number of dark 
 tiles equals number of previous bright tiles (“bright ones are one level above the 
 dark ones”). The figure as a whole is a square number. 
 Teacher E reveals that the figurate numbers found in the dark tiles and bright 
 tiles are called triangular numbers. 
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c) What the figure expresses as a mathematical statement: The fifth square number 
 equals the sum of the fifth and the fourth triangular number (expressed in natural 
 language). No generalisation. 
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Appendix C: Outline for information about PhD-project to potential re-
search participants117 

 
Information about the project Investigative approach to mathematical 
understanding – with focus on the conversation 

 
A doctoral project with the intention to develop knowledge about student teachers’ 
algebra learning at the university college and learning to teach algebra in the practice 
field.  

 
Intention of the project – what does it aim to develop knowledge about? 
  
Student teachers’ algebra learning at the university college 
Student teachers’ engagement with tasks on algebraic generalisation and proof 
Focus on the collaboration and conversation  
 
Student teachers’ learning to teach algebra to pupils in school  
What aims do student teachers define for their teaching (concerning pupils’ learn-
ing). How do they accomplish teaching? → Interpretation of student teachers’ con-
ception of mathematical knowledge and of their beliefs about how this knowledge 
can be learned. 
 
Aim: Try to get an understanding of what is happening through the eyes of the re-
search participants → Qualitative approach.  
 
Research style 
Case study 
Two cases where each case consists of a practice group 
Time commitments: Pilot November/December 2003. Data collection Spring 2004 
and autumn 2004.  
 
Requirements to research participants 
Be in the same practice group and have school based practice in the same school for 
the first two years of the programme 
Be member of a well-functioning practice group 
Have a fair interest in mathematics 
Take part in all mathematics teaching at the university college 
Be willing to let Heidi observe and video record mathematics small-group lessons 
and some whole-class lessons at the university college; about 10 lessons for each 
group. 

                                         
 
 
 
 
 

117 This appendix is a translation of a document used by me on October 8, 2003, as disposi-
tion for an oral presentation of my intended PhD-project to potential research participants. 
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Be willing to let Heidi observe and video record student teachers’ mathematics 
teaching in the practice field; about 6 lessons for each group.  
 
Video-meetings with each group where the student teachers can see extracts from 
video recordings. Transcripts from the chosen episodes will be sent in advance. The 
student teachers can ask questions about or comment on the video recordings or tran-
scripts, but there is no expectation that they must give any response to the episodes.  
 
Who has access to the collected data? (Who can see the video recordings and listen 
to the audio-recordings?) 
The researcher (Heidi) 
The researcher’s supervisors and examiners  
 
Anonymity in the dissertation and other publications from the project 
Use of pseudonyms 
The name of the university college will not be used 
 
To those who might be interested in participation: 
 
Discuss it in the practice group. In case of interest, every member of the practice 
group writes (individually) on a sheet of paper briefly about the following (hand in to 
Heidi): 
- Name 
- Age 
- Previous education 
- Presence in mathematics teaching 
- Your judgement of how your practice group is functioning 
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Appendix D: Consent form 
 
Consent  
I agree to collaborate with Heidi S. Måsøval in her PhD-study, “Investigative ap-
proach to mathematical understanding – with focus on the conversation”. I agree to 
be observed and video recorded during mathematics lessons at the university college 
and during mathematics teaching in the practice field. I agree that conversations with 
me about mathematics teaching and learning are audio recorded.  
  
I am aware that the collected data will be transcribed and analysed, and that parts of 
it will be used in reporting from the study. The data will be anonymised by the use of 
pseudonyms in transcribing and reporting from the study.  
 
I am free to withdraw from the project at any time. 
 
 
 
 
___________________________________________ 
Signature 
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Appendix E: Consent form for showing of video recordings  
 

Consent to use video recordings  
from Heidi S. Måsøval’s PhD-project Expressing and justifying generality in geo-
metric patterns: A case study of first-year student teachers’ small-group collaboration 
at a university college 

 
(Erase from the line below what is not in accordance with your decision) 
 
I agree / do not agree to let Heidi S. Måsøval show excerpts from video tapes which 
include me. This involves recordings made in her PhD-project during the period Jan-
uary – December, 2004.  
 
The agreement applies to organised teaching situations or other professional situa-
tions, for instance presentations at scientific conferences or seminars.  

 
 
 
 
________________________________________________ 
Signature  
 
 
 
 
________________________________________________ 
Date 
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Appendix F: Transcription codes 
 

 
 [Pause n s]  Pause n seconds 
 
M  Omitted turns 
 
Italics  Emphasis (Italicised letter represents a variable) 
 
[Text in brackets]  Account of nonverbal action, or comment on utterance 
 
[indecipherable]  One or more words omitted because not possible to 

decipher 
 
(A: Interjection)  Interjection by person A during another person’s turn 
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