
Cryptographic Enforcement of Attribute-
based Authentication

Huihui Yang

Cryptographic Enforcement of Attribute-
based Authentication

Doctoral Dissertation for the Degree Philosophiae Doctor (PhD) in
Information and Communication Technology

University of Agder
Faculty of Engineering and Science

2016

iii

Doctoral Dissertations at the University of Agder 133
ISBN: 978-82-7117-826-0
ISSN: 1504-9272

c©Huihui Yang, 2016

Printed in the Printing Office, University of Agder
Kristiansand

iv

Preface and Acknowledgments

This dissertation is the research result during my PhD study, from August 2012 to
January 2016 in University of Agder, Norway. The experience and training during
my PhD allow me to learn research and academic paper writing skills and finally
grow as a research scientist.

First and foremost I would like to express my special appreciation to my main
supervisor Dr. Vladimir A. Oleshchuk, who has been a tremendous mentor for me.
As a professor with broad knowledge in information security, he has guided me into
my current research area and given me enough space and time to find where my real
interest lies. He is always patient, kind and willing to discuss with me about my
ideas. I appreciate all his contributions of time, professional suggestions and proof-
readings for papers and this thesis. At the same time, I want to thank my second
supervisor, Dr. Geir M. Køien. He has a special way of inspiring his PhD students
by asking lots of questions, which makes us reflect more on details and impresses
me with his serious attitude towards research. He is also a nice person and always
willing to help.

I would like to acknowledge all supports received from the administration and
all faculty from ICT departments, especially Tonje Sti and Emma Elizabeth Horne-
man. Tonje helped me to settle down when I just arrived in Norway and she is a
person that I can turn for help even for trivial things in life. As a PhD program co-
ordinator, Emma has helped me so much in these three years. In addition, I would
like to express my appreciations for all the help and kindness that I have received.

I would also like to thank all PhD fellows in ICT and other departments I know.
I have spent so much happy time with them and we have encouraged each other
through difficulties in PhD research and life. They have made my life more colorful
and have brought me so many laughters. Many thanks to my friend Alex P. Hage
for all his help and the good, happy time we have spent together, to my best old
friend Jing Xu for our long years’ friendship, her understandings and support for
everything, to the couple of Xuan Zhang and Lei Jiao for their warmth like a family,
to Indika A. M. Balapuwaduge, Martin W. Gerdes and all my other friends.

The last but not the least, my most sincerely gratitudes go to my family for their
love, support and encouragement in my lifetime.

Huihui Yang
January 2016

Grimstad, Norway

v

vi

Summary

This dissertation investigates on the cryptographic enforcement about attribute-
based authentication (ABA) schemes. ABA is an approach to authenticate users
via attributes, which are properties of users to be authenticated, environment condi-
tions such as time and locations. By using attributes in place of users’ identity in-
formation, ABA can provide anonymous authentication, or more specifically, ABA
enables to keep users anonymous from their authenticators. In addition, the property
of least information leakage provides better protection for users’ privacy compared
with public key based authentication approaches. These properties make it possible
to apply ABA schemes in privacy preserving scenarios, for instance, cloud-based
applications.

The most important security requirements of ABA schemes consist of anonymity,
traceability, unforgeability, unlinkability and collision resistance. In this disserta-
tion, we combine these security requirements with other properties such as hierar-
chy to divide ABA schemes into different categories, based on which we use exam-
ples to demonstrate how to construct these schemes cryptographically. The main
contributions of this dissertation include the following aspects:

• We categorize ABA schemes into different types and describe their struc-
tures as well as workflows, such that readers can gain a big picture and a clear
view of different ABA schemes and their relations. This categorization serves
as a guideline how to design and construct ABA schemes.

•We provide two examples to demonstrate how to construct ciphertext-policy
attribute-based authentication (CP-ABA) schemes via two different approaches.
Different from key-policy attribute-based authentication (KP-ABA) schemes,
attribute keys generated in CP-ABA schemes are comparatively independent
of relations among attributes. Thus compared with KP-ABA, CP-ABA ex-
tends the flexibility and usage scope of ABA schemes.

• We extend the core ABA schemes to hierarchical ABA (HABA) schemes
by adding the property of hierarchy. Then we propose two different types
of hierarchical structures, i.e., user related hierarchical ABA (U-HABA) and
attribute related hierarchical ABA (A-HABA). According to these two hier-
archical structures, an example is provided for each type to show how to use
cryptographic primitives to build HABA schemes.

vii

All ABA schemes discussed above and proposed in this dissertation can be im-
plemented to assist users to achieve anonymous authentication from their authen-
ticators. Therefore, these schemes can offer more opportunities to protect users’
privacy, for example, in attribute-based access control (ABAC) and cloud-based
services.

viii

Contents

List of Figures xiii

List of Tables xv

Abbreviations xvii

1 Introduction 1
1.1 Motivations . 1
1.2 Background Knowledge . 4
1.3 Problem Statement and Main Contributions 6
1.4 Organization of the Dissertation 7

2 Usage Scenarios and Application Requirements 9
2.1 Usage Scenarios . 9

2.1.1 Usage Scenario 1: Multi-organization Cooperation 9
2.1.2 Usage Scenario 2: Data Outsourcing 11
2.1.3 Usage Scenario 3: e-Health 13

2.2 Applications of Different ABA Schemes 15

3 Categorization of ABA Schemes 17
3.1 Categorization of ABA Schemes: Criterion 1 17

3.1.1 Core ABA Schemes . 18
3.1.2 Traceable ABA Schemes 19
3.1.3 Dynamic ABA Schemes 19
3.1.4 U-HABA Schemes . 22
3.1.5 A-HABA Schemes . 23

3.2 Categorization of ABA schemes: Criterion 2 25
3.3 Security Requirements of ABA Schemes 28

ix

Cryptographic Enforcement of Attribute-based Authentication

4 Construction of ABA Schemes 31
4.1 Related Work . 32
4.2 Attribute Trees . 33

4.2.1 Top-to-down Attribute Trees 33
4.2.2 Down-to-top Attribute Trees 35

4.3 Definitions . 38
4.4 ABA Scheme with Dynamic Attribute Trees 40

4.4.1 Security Requirements . 40
4.4.2 Building Blocks: Algorithms 41
4.4.3 Scheme 1 Construction . 43
4.4.4 Correctness Analysis . 47
4.4.5 Adversary Model . 49
4.4.6 Security Analysis . 51

4.5 ABA Scheme with One-time Attribute Trees 53
4.5.1 General Idea of One-time Attribute trees 54
4.5.2 Building Blocks: Algorithms 55
4.5.3 Scheme Construction . 56
4.5.4 Correctness Analysis . 60
4.5.5 Adversary Model . 61
4.5.6 Security Analysis . 63

4.6 Conclusions . 65

5 HABA Schemes 67
5.1 Related Work . 67
5.2 Motivations . 70
5.3 Case Study 1: A User-related HABA Scheme 71

5.3.1 Building Blocks: Algorithms 72
5.3.2 Scheme Construction . 74
5.3.3 Correctness Analysis . 78
5.3.4 Adversary Model . 79
5.3.5 Security Analysis . 82

5.4 Case Study 2: An Attribute-related HABA Scheme 83
5.4.1 Building Blocks: Algorithms 84
5.4.2 Scheme Construction . 85
5.4.3 Correctness Analysis . 90
5.4.4 Adversary Model . 91

x

Contents

5.4.5 Security Analysis . 93
5.5 Conclusions . 94

6 ABA Schemes without Traceability 97
6.1 Related Work . 98
6.2 Case Study 1: An Untraceable ABA Scheme Based on Scheme 1 . . 99

6.2.1 Scheme Construction . 99
6.3 Case Study 2: An Untraceable ABA Scheme Based on Scheme 2 . . 101

6.3.1 Scheme Construction . 102
6.4 Conclusions . 103

7 Discussion, Conclusions and Future Work 105
7.1 Conclusions . 105
7.2 Discussion and Future Work . 107

7.2.1 Attribute Tree Building . 108
7.2.2 General Framework of Constructing ABA Schemes 108
7.2.3 Security Models . 110
7.2.4 Hierarchy . 111
7.2.5 Traceability . 112
7.2.6 Revocation . 113

References 115

List of Publications 132

xi

Cryptographic Enforcement of Attribute-based Authentication

xii

List of Figures

1.1 Access control mechanism . 2
1.2 Attribute-based access control mechanism 3
1.3 Relations between ABA and ABAC 3
1.4 Comparison between PKI-based authentication and ABA 5
1.5 Message flow of attribute-based authentication 6

2.1 Usage scenario 1: multi-organization cooperation 10
2.2 RBAC and ABA based mechanisms for usage scenario 1 12
2.3 Usage scenario 2: data outsourcing 13
2.4 Usage scenario 3: e-Health . 14

3.1 Workflow of core ABA schemes without traceability 19
3.2 Workflow of traceable ABA schemes 20
3.3 Workflow of dynamic ABA Schemes 21
3.4 Structure of authorities and users in U-HABA schemes 23
3.5 Structure of A-HABA schemes . 24
3.6 Two categories of ABA schemes 27

4.1 Attribute tree: an example . 34
4.2 The central attribute tree . 37
4.3 Simplifying a central attribute tree 39

5.1 CP-ABE and KP-ABE . 68
5.2 A scenario of classed security . 70
5.3 Structure of user-related HABA schemes 72
5.4 Structure of attribute-related HABA schemes 83

xiii

Cryptographic Enforcement of Attribute-based Authentication

xiv

List of Tables

4.1 Notation for Scheme 1 . 44
4.2 Notation for Scheme 2 . 57

5.1 Notation for Scheme 3 . 75
5.2 Notation for Scheme 4 . 86

7.1 Security Comparisons . 111

xv

Cryptographic Enforcement of Attribute-based Authentication

xvi

Abbreviations

ABA Attribute-based authentication
ABAC Attribute-based access control
ABE Attribute-based encryption
ABID Attribute-based identification
ABS Attribute-based signature
AC Access control
ACM Access control mechanism
A-HABA Attribute related hierarchical attribute-based authentication
CPA Chosen plaintext attack
CP-ABA Ciphertext-policy attribute-based authentication
CP-ABE Ciphertext-policy attribute-based encryption
DAC Discretionary access control
DeLP Decision linear Diffie-Hellman problem
DH Diffie-Hellman
DLE Decision linear Diffie-Hellman based encryption
DLP Discrete logarithm problem
HABA Hierarchical attribute-based authentication
HABAC Hierarchical attriubte-based access control
HABE Hierarchical attribute-based encryption
HASBE Hierarchical attribute-set-based-encryption
HGABAC Hierarchical group and attribute-based access control
HIBE Hierarchical identity-based encryption
IBE Identity-based encryption
IND-CPA In-distinguishable chosen plaintext attack
KP-ABA Key-policy attribute-based authentication
KP-ABE Key-policy attribute-based encryption
PDP Policy decision point

xvii

Cryptographic Enforcement of Attribute-based Authentication

PEP Policy enforcement point
PKI Public key infrastructure
MAC Mandatory access control
q-SDH q-Strong Diffie-Hellman problem
RBAC Role-based access control
U-HABA User related hierarchical attribute-based authentication

xviii

Chapter 1

Introduction

In this chapter, we first discuss the motivations why we conduct the research on the
cryptographic enforcement on attribute-based authentication (ABA) in Section 1.1,
which is followed by some background knowledge in Section 1.2. Then we express
the problem statements and our main contributions in Section 1.3. Section 1.4 is a
brief introduction about how this dissertation is organized and the research topic in
each chapter.

1.1 Motivations

Currently there are a lot of cloud-based services, such as cloud storage [1, 2], cloud
computing [3, 4] and data outsourcing [5]. Consider Dropbox [6, 7], one of the
most popular cloud storage applications. By using Dropbox, users can create a
special folder on their computers and save files in this folder. Later, users can access
them elsewhere from mobiles, iPad or other computers. In addition, users can share
files saved in Dropbox folders with other people. Cloud users can also use cloud
resources to perform complicated calculations. When utilizing cloud facilities, on
the one side, cloud users want to keep their data safe and secret from other Internet
users and even the service providers. On the other side, users may also need to
gain more fine-grained control over their data, for example, how their data can be
accessed.

Many cloud services have an increasing demand and emphasis on protecting
both the privacy and security of users and their data, but how to achieve it? One
possible solution is attribute-based access control (ABAC) [8]. Access control
(AC) [9, 10] is an approach to control the authorization of users’ or subjects’ access

1

Cryptographic Enforcement of Attribute-based Authentication

Authentication Access
Control

User

Administrator

Auditor

Authorization
Database

Authentication Access control

Auditing

System
resources

Figure 1.1: Access control mechanism

to resources and aims at protecting the security of the resources or objects. The defi-
nition of AC from [8] is as follows. “Access control mechanism (ACM): The logical
component that serves to receive the access request from the subject, to decide, and
to enforce the access decision.” We can illustrate ACM as described in Fig. 1.1.
The administrator manages AC policies in the system and decides whether users
should be granted with specified accessing rights. When a user or subject wants
to access system resources, she sends an access request and then the administrator
checks whether the user is allowed to access the resources. If the user’s request
does not conflict with AC policies, then the user will be allowed to carry out the
access request. Otherwise, user’s request will be denied. Only if a user’s access
request is allowed, the user may have the chance to access resources. However, the
enforcement of the access request also depends on factors that are comparatively
independently of the access policies, for example, system time and locations.

ABAC is an ACM based on attributes, which requests properties of subjects
and objects. A typical ABAC system can be illustrated in Fig. 1.2. When a sub-
ject or a user wants to access an object or resources, it sends an access request to
the system together with its attributes to the system, where attributes are properties
of the subject, such as addresses, ages, names and so on. After receiving the re-
quest and attributes from the subject, the policy decision point (PDP) combines the
subject’s attributes, the object’s attributes and environmental conditions, and then
checks whether it satisfies AC policies. If so, the subject’s access request will be

2

Introduction

Subject
Attributes

(SA)

Attribute Based Access
Control Mechanism

Policy Decision Point
(PDP)

Policy Enforcement Point
(PEP)

Object
Attributes

(OA)

Environmental
Conditions (EC)

AC policies

Object�
���

Subject�
���

Figure 1.2: Attribute-based access control mechanism

 ABACABA

Figure 1.3: Relations between ABA and ABAC

allowed and it will be enforced by the policy enforcement point (PEP). During the
process described above, PDP’s decision making part can be considered as a part
of authentication, while the AC policy enforcing part by PEP be can considered as
authorization. As illustrated in Fig. 1.3, ABA is only part of ABAC and the au-
thentication result of ABA is an important factor to decide whether a user’s access
request can be enforced or not. In this dissertation, our main focus is ABA rather
than the whole scope of ABAC.

As far as we know, research on ABA mainly includes the general structure how
an ABA system can be built [11], the languages how to express AC policies [12]
and cryptographic enforcement [13]. For most current approaches to build ABA
schemes, AC polices are expressed as attribute requirements, which are combined
with group signatures to construct ABA schemes [13]. Since there have already

3

Cryptographic Enforcement of Attribute-based Authentication

been lots of research on the cryptographic construction of attribute-based signatures
(ABS) [14, 15] and attribute-based encryption (ABE) [16, 17], it must be a good
choice to utilize these results to construct ABA schemes. Besides, there is also a
drawback on the group signature based ABA schemes. The way how to represent
attribute requirement is not flexible enough. If we need to change the attribute
requirements, the whole system should be rebuilt which will surely consume extra
system resources. To solve the above two issues, research in this dissertation is
conducted.

1.2 Background Knowledge

One of the well known authentication approaches is based on the public key infras-
tructure (PKI) [18, 19]. Assume Alice is to be authenticated by Bob. For PKI-based
authentication, as illustrated in Fig. 1.4a , Alice first obtains a pair of public and
private keys from the authority. Then Alice uses her private key to generate a signa-
ture and sends it to Bob. After Bob receives the signature from Alice, he retrieves
Alice’s pubic key from the authority and uses it to check whether Alice’s signature
is valid or not. Alice will be successfully authenticated only if her signature is valid.

Different from PKI-based authentication mechanism, ABA is based on multiple
factors, such as subjects’ attributes and objects’ attributes. Fig. 1.4b and Fig. 1.5
explain the main idea and the workflow of ABA respectively. The way how ABA
proceeds can be summarized into the following steps:

1. A user obtains authorized attribute keys from the authority.

2. The user sends an authentication request to the authenticator.

3. After receiving the authentication request from the user, the authenticator re-
sponds with the attribute requirements.

4. If the user owns the required attributes, he or she generates a signature with
the required attribute keys and sends the signature to the authenticator.

5. To verify the signature, the authenticator retrieves some information from the
authority first, such as the user’s attribute public keys, revocation information
and so on. Next the authenticator checks whether the signature is valid or not.

6. The authenticator responses the user with the verification result, which is nor-
mally yes or no.

4

Introduction

Certificate Alice’s public key

Signature

Yes or No

Alice Bob

Authority

Verify Alice’s
signature

Generate a
siganture

(a) PKI-based authentication

Private attribute key Alice’s public attribute key

Signature

Yes or No

Alice Bob

Authority

Verify Alice’s
signature

Generate a
siganture

(b) ABA

Figure 1.4: Comparison between PKI-based authentication and ABA

5

Cryptographic Enforcement of Attribute-based Authentication

Authority User Authenticator

1. Attribute keys

2. Authentication request

3. Attribute request

4. Signature

5. Attribute keys and revocation information

6. Response (Y/N)

Figure 1.5: Message flow of attribute-based authentication

Compared with the PKI-based authentication, ABA has three main differences.
First of all, Alice generates a signature based on specific attribute requirements.
Secondly, instead of using Alice’s private key which represents her identity, Alice
uses a set of attribute keys to generate a signature, where these attributes are the
required ones from Bob. Finally, different from the one-to-one relation between
Alice’s private key and public key in the PKI-based authentication, the relation
between Alice’s public attribute keys and private attribute keys may be one-to-one
or one-to-multiple.

1.3 Problem Statement and Main Contributions

This dissertation focuses on the cryptographic enforcement of ABA schemes [13,
20], and the main topics can be summarized as follows:

1. When and under which situations do we need ABA?

2. How do ABA schemes work and what properties do they have?

3. How to construct ABA schemes cryptographically?

4. When do we need hierarchical attribute-based authentication (HABA) schemes
and how to construct them?

6

Introduction

5. When do we need traceable ABA schemes, how to construct untraceable ABA
schemes based on traceable ones?

The main contributions consists of the following.

1. We categorize ABA schemes into different types according to two criteria in
Chapter 3, which are their security requirements and the way how to generate
attribute keys respectively.

2. We demonstrate how to construct ciphertext-policy attribute-based authen-
tication (CP-ABA) schemes by two different approaches by using different
cryptographic primitives in Chapter 4.

3. We provide two examples to explain how to implement user- and attribute-
related hierarchy in ABA schemes in Chapter 5.

4. We research on untraceable and traceable ABA schemes as well as their rela-
tions in Chapter 6.

5. We survey on ABA related research results, discuss open problems and pro-
pose possible solutions in Chapter 7.

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows:
In Chapter 2, we elaborate on possible usage scenarios and applications.
In Chapter 3, we categorize ABA schemes according to two different criteria,

based on which we describe the workflow of ABA schemes and their security and
privacy properties.

In Chapter 4, we use two examples to demonstrate how to construct CP-ABA
schemes cryptographically. These two examples are based on the work in [20]
and [21] respectively.

In Chapter 5, we present how to apply user- and attribute-related hierarchy in
ABA schemes and provide two examples to demonstrate how to construct them.
This chapter is an extension of the work in [22].

In Chapter 6, we use two examples to study on the relations between traceable
and untraceable ABA schemes. These two examples are based on the two schemes
proposed in Chapter 4.

7

Cryptographic Enforcement of Attribute-based Authentication

In Chapter 7, we first conclude our work and main contributions in this disserta-
tion in Section 7.1. Then in Section 7.2, we study on several open problems related
to ABA schemes, including attribute tree building, general frameworks to construct
ABA schemes, security models, hierarchy, traceability and revocation. Next we
propose possible solutions to these open problems. The main results in this chapter
are based on paper [23].

8

Chapter 2

Usage Scenarios and Application
Requirements

In this Chapter, we first describe several usage scenarios and applications where
ABA schemes can be applied. Then we summarize under which circumstances
different ABA schemes can be used.

2.1 Usage Scenarios

To better understand ABA schemes, we start with three different usage scenarios
to describe properties and advantages of ABA schemes.The first scenario is data
sharing among multiple organizations and we show how complex can the situa-
tion be without applying ABA. The second scenario is a case study related to data
outsourcing and we express the reason why ABA schemes with specific security
requirements are needed. The third scenario is in e-Health. In this scenario, we
explain the general structure of e-Health applications and how ABA can be applied
to solve privacy issues in an e-Health system.

2.1.1 Usage Scenario 1: Multi-organization Cooperation

Let us consider three companies C1, C2 and C3 (Fig. 2.1) that have to cooperate and
share some data with each other. Suppose the companies have their own separate
data manage systems. We assume that as long as a user belongs to any of these
three companies, the user should be allowed to access the shared data. Consider
the case when an employee E1 belonging to C1 who wants to access the shared data

9

Cryptographic Enforcement of Attribute-based Authentication

C1E1

C2

C3

Figure 2.1: Usage scenario 1: multi-organization cooperation

from companies C2 and C3. This issue can be solved by a mechanism based on
role-based access control (RBAC) or ABA. In the following, we will describe both
approaches and compare them.

Assume that the RBAC systems of companies C1, C2 and C3 are denoted by
S1, S2 and S3 respectively. The mechanism to solve the multi-cooperation issue
for usage scenario 1 can be described in Fig. 2.2a. Since E1 is an employee of
company C1, E1 must have already had an account in S1. After E1 logs in S1, it
will be assigned with a role such that it can access data in S1. To access the shared
data owned by companies C2 and C3, E1 should first have an account in systems
S2 and S3 respectively, and each account should be associated with several roles
based on which E1 can access data in systems S2 and S3. Suppose there are ni

(1≤ i≤ 3) roles associated with E1’s account in system Si, and then there are three
accounts and (n1 + n2 + n3) roles created for E1. Assume there are Ni (1 ≤ i ≤ 3)
employees in company Ci, each employee has one account in a system and each
account is associated with an average of n roles. Then each system has to create
(N1+N2+N3) accounts and there will be n(N1+N2+N3) roles in each system and
3n(N1+N2+N3) accounts all together. When the number of cooperation companies
increase, the number of accounts and roles will increase much more. In addition, the
synchronization of employee’s data in all cooperated companies’ system may cause
problems. For example, when an employee newly joins in a company, transfers
internally or leaves the company, not only the employee’s company has to update his

10

Usage Scenarios and Application Requirements

information in the system, all the other cooperated companies also have to update
his information. Otherwise, a newly joined or internally transferred employee may
not be able to access the shared data correctly and a former employee still have
access to the shared data.

In the usage scenario described above, it actually should be enough for E1 to
show an evidence that it is an employee of company C1, which is also the main
idea behind ABA. The way how to resolve this multi-organization cooperation is-
sue via ABA based system can be described in Fig. 2.2b . Assume there is an
authority which is fully trusted by companies C1, C2 and C3, and being an employee
of company C1 is considered as an attribute denoted by Att1. First of all, evidence
that E1 is an employee of company C1 should be shown to the authority, which is
normally realized by company C1 handing in all employee’s information to the au-
thority. Secondly, the authority authorizes E1 with all the attributes E1 possesses,
which is denoted by {Att1, · · · ,Attn}. When E1 wants to access the shared data
owned by companies C2 and C3, it shows the the authorized attribute Att1 to C2 and
C3. Since both C2 and C3 trust the authority, once they have checked that Att1 is
authorized by the trusted authority, they believe that E1 is an employee of C1. E1

will be authenticated and this authentication result will be used to judge whether
E1 can be authorized with the required access privileges or not. Compared with the
mechanism based on RBAC, this approach is not only more simple and effective,
but also can overcome the synchronization issue.

2.1.2 Usage Scenario 2: Data Outsourcing

A scenario of data outsourcing is described in Fig. 2.3. There is a top authority,
which can only authorize new domain authorities. A domain authority can autho-
rize both new domain authorities and data users. The top authority has the highest
level of trust and the lowest level authorities have the lowest level of trust. In gen-
eral, the lower the authorities are, the less trustful they are. In the system described
in Fig. 2.3, data owners outsource their data in the cloud. At the same time, they
want to have some control of the way how their data are accessed. Therefore, data
owners define access requirements and the cloud server implements them. In ad-
dition, data users may want to access the data anonymously to the data owner. A
possible solution can be based on ABAC. First of all, data users register themselves
to authorities and gain authorized credentials of the attributes they possess. When
data users request to access the outsourced data, they generate a signature based

11

Cryptographic Enforcement of Attribute-based Authentication

E1
S2account

role1
…

rolen2
S1 account

role1
…

rolen1

S3

account

role1…rolen3

(a) Usage scenario 1: RBAC-based mechanism

E1

Att1
…
Attn

Att1 S2
Att1

Att1

Authroity

S1

S3

(b) Usage scenario 1: ABA-based mechanism

Figure 2.2: RBAC and ABA based mechanisms for usage scenario 1

12

Usage Scenarios and Application Requirements

…

…

Top
authority

Authorize

Authorize

Authorize

Domain Authority

Domain Authority

Data Owner

Data Owner

Authorize

Authorize

Authorize

Manage

Outsourced files

Access files

Cloud

Figure 2.3: Usage scenario 2: data outsourcing

on their credentials according to associated AC rules. If the signature is valid, data
users are authenticated and will be authorized with requested access rights. The
process described is a typical user scenario of basic ABA schemes.

As shown in Fig. 2.3, authorities are organized in a hierarchical structure ac-
cording to their trust levels, and therefore credentials authorized by different leveled
authorities should also have different trust levels. In this way, the data owner can
even require that the credentials should be generated by which specific authority or
specific trust level. If this property is supported by ABA schemes, HABA schemes
can be obtained and data owners can have more flexibility in defining authentication
requirements and policies.

2.1.3 Usage Scenario 3: e-Health

Fig. 2.4 is a simplified illustration of an e-Health system with main system entities.
Patients use medical devices to record their physical conditions and send their med-
ical data to the cloud. Nurses and doctors can access patients’ data in the cloud, but
they can only access the data related to their work rather than all patients’ records.
Service provider manages cloud servers and the system but should not be allowed to
access medical records stored in the cloud. Administration employees can only ac-
cess data related to administration and management. Normal users are only allowed
to perform some basic operations, for example, reviewing hospital regulations and
opening hours. In addition, we have the following assumptions:

1. Patients are allowed to be registered in different hospitals.

13

Cryptographic Enforcement of Attribute-based Authentication

Cloud-based
services

Administration

Patient

Nurse

IT

Normal user

Doctor

Figure 2.4: Usage scenario 3: e-Health

2. Different hospitals share part of their medical records in the cloud with each
other, for instance, the medical records of patients who are treated by co-
operation hospitals.

3. Doctors may be responsible for medical cases in different hospitals at the
same time. For instance, a patient P1 has newly transferred from hospital H1

to hospital H2. Doctor D1 from hospital H1 was in charge of P1’ case. Now
doctor D2 from hospital H2 takes the charge instead of doctor D1, but D1

should still be allowed to access the necessary part of P1’s medical records to
insist doctor D2.

4. For complex medical cases, it should be very helpful to collect opinions and
suggestions from other doctors. However, these doctors may want to give
advice anonymously. Meanwhile, it should be able for the system to trace
these doctors’ identities when necessary.

From the above descriptions, we can see that the e-Health system can be con-
sidered as another case of multi-organization cooperation. However, according to
assumption 4 listed above, there is an additional requirement compared with the first
usage scenario, i.e., the system needs to achieve anonymity and traceability at the
same time. Therefore, there should be an authority in the system that can open sig-
natures and recognize signers’ identities. Meanwhile, it should also be impossible

14

Usage Scenarios and Application Requirements

for normal users to gain any identifying information even given enough signatures.
An e-health system described above can be solved by traceable ABA schemes.

2.2 Applications of Different ABA Schemes

In this section, we study categorizations of ABA schemes and which types of appli-
cations they are suitable for. We divide them into the following four categories:

1. Basic ABA schemes: a basic ABA scheme is as described in usage scenario
1 in Subsection 2.1.1. In a basic ABA scheme, users are supposed to be
authorized with keys of attributes that they possess. When a user wants to
be authenticated, he sends a request to the authenticator. The authenticator
replies with attribute requirements. If the user owns the required attributes, he
uses his attribute keys to generate a signature and sends it to the authenticator.
If the signature is valid, the user is authenticated and otherwise rejected. The
main goal of basic ABA schemes is to achieve anonymous authentication.
They can provide least information leakage for users as well, which means
that users only need to provide exactly the required “attributes” rather than a
whole package of information. In addition, ABA schemes are also suitable
for multi-organization cooperation and similar applications.

2. Attribute-related hierarchical attribute-based authentication (A-HABA)
schemes: As stated in usage scenario 2 in Subsection 2.1.2, attribute author-
ities can be organized in a hierarchical structure based on their trust levels.
Besides, they can also be organized according to their privilege levels based
on specific needs of the system. In such systems, data owners or the storage
systems have requirements on the trust or privilege level of attribute creden-
tials.

3. User-related hierarchical attribute-based authentication (U-HABA) schemes:
Except for attribute related hierarchy, ABA systems can also be built based
on user related hierarchy. In such an ABA scheme, attribute keys are au-
thorized by the same authority, while users are managed by different domain
authorities of different trust levels. In this way, data owners can specify which
groups can access their data in addition to attribute related requirements. This
property enables more fine-grained and more flexible definition for authenti-
cation requirements. Different from using “group” as an attribute, this type of

15

Cryptographic Enforcement of Attribute-based Authentication

domain management has several advantages, one of which is that the domain
authority can gain more control over group users’ identity information. In-
stead of using an opener that is responsible to trace all users’ identities in the
system, the group can have its own opener which can trace users’ identities in
the same group.

4. Traceable and untraceable ABA schemes: The ABA scheme described for
e-Health in usage scenario 3 in Subsection 2.1.3 is traceable. Therefore, it
achieves both anonymous authentication and traceability at the same time. In
some ABA systems, signers’ identities may need to be revealed under some
special circumstances such that identities can serve as legal evidence, so trace-
able ABA schemes are preferred for these cases. If there is only a need for
anonymous authentication, untraceable ABA schemes can be a good choice.

Among all the properties described above, only anonymity is mandatory for
ABA schemes, meaning that given a signature, it is impossible for normal users to
trace the signers’ identity. As for hierarchy and traceability, they can be selectively
implemented and combined, depending on requirements of specific applications
and systems. Based on the above categorizations, we will express the cryptographic
constructions of basic ABA schemes, user and attribute-related HABA schemes and
untraceable ABA schemes in details in Chapters 4, 5 and 6 respectively.

16

Chapter 3

Categorization of ABA Schemes

In this chapter, we divide ABA schemes into different types according to two dif-
ferent criteria. The first criterion is properties of ABA schemes, such as anonymity,
dynamic, traceability and hierarchy. In this Chapter, we will use these properties to
divide ABA schemes into different categories, such as core, traceable, dynamic and
HABA schemes. Meanwhile, we will describe the structure and workflow of each
type of ABA schemes. The second criterion is the relation between attribute keys
and attribute requirements, and we will use this criterion to divide ABA schemes
into KP-ABA and CP-ABA schemes. This chapter will end with a summary of the
security requirements of ABA schemes.

3.1 Categorization of ABA Schemes: Criterion 1

Most ABA schemes [20] use different authorities which are in charge of different
tasks, but some ABA schemes [24] do not separate authorities by their responsibili-
ties or functions. For better understanding, we assume that all ABA schemes in this
dissertation consists of different authorities and each authority has only one main
function. In this following, we divide ABA schemes into five types and describe
their workflow, including core ABA schemes, traceable ABA schemes [13, 20], dy-
namic ABA schemes [13], user- and attribute-related HABA schemes. As far as we
know, there has been no work in literature that deals with such detailed categoriza-
tion for ABA schemes before.

17

Cryptographic Enforcement of Attribute-based Authentication

3.1.1 Core ABA Schemes

As shown in Fig. 3.1, core ABA schemes consist of five entities, three of which are
authorities, including the central authority, the attribute authority and the revocation
authority. The central authority is considered as the top authority and it is responsi-
ble for system parameter generation and user registration. Given an attribute set, the
attribute authority generates public and private attribute key pairs for all attributes
in the given attribute set. The revocation authority manages revocation information
related to users and attributes. The workflow of the core ABA schemes includes two
phases: 1) system setup and 2) signature generation and verification. Its workflow
proceeds as follows.

1. System setup This phase includes five steps from 1-a to 1-d in Fig. 3.1. The
central authority generates system parameters in Step 1-a and sends them to
the attribute authority in Step 1-b. Users register themselves and get their user
keys from the central authority in Step 1-c. Next, the attribute authority gen-
erates public and private key pairs for all attributes in the system and deliver
related private attribute keys to users in Step 1-d. In Step 1-e, the revocation
authority retrieves revoked information from the central authority and the at-
tribute authority, where the revoked information can related to revoked users
or revoked attributes depending on different revocation mechanisms.

2. Signature generation and verification In this phase, the verifier chooses the
required attributes and sends the requirement to the signer. If the signer owns
the required attributes, he uses related attribute keys to generate a signature
and sends it to the verifier in Step 2-a. After receiving the signature, the veri-
fier first retrieves related revocation information from the revocation authority
in Step 2-b and then gets necessary public parameters such as public attribute
keys from the attribute authority in Step 1-e. Next the verifier checks whether
the signature received in Step 1-a is valid as well as whether the signer or
the attribute keys used are revoked. If neither the user nor the attribute keys
used are revoked and the signature is valid at the same time, the signer will be
authenticated successfully. Otherwise, the authentication fails. The verifier
sends the verification result to the signer in Step 2-c.

18

Categorization of ABA Schemes

1-a

1-
e

User or
Signer Verifier

Revocation Authority

Central Authority

Attribute Authority

1-c

1-d

2-c

2-a

1-b

1-e

2-b

Figure 3.1: Workflow of core ABA schemes without traceability

3.1.2 Traceable ABA Schemes

Fig. 3.2 describes the general workflow of traceable ABA schemes. Compared with
core ABA schemes, there is one more authority, called “opener”, in traceable ABA
schemes. In Step 1-f, the central authority communicates with the opener, sending
the system tracing key and users’ registration keys to the opener. The system tracing
key is usually generated by the central authority and will be used by the opener to
trace signers’ identity later. Users’ registration key may be users’ keys or part of
users’ keys and they will be considered as users’ identifying information.

In Step 2-d, the verifier sends a request to the opener requiring that the signer’s
identity needs to be revealed. This situation normally happens when there is a
dispute and the signer’s identity can be used as legal evidence. Identity revealing
can only be performed when it is authorized by legal authorities. Intuitively, there
are two requirements for identity tracing. First of all, given a valid signature, the
opener should be able to “open” the signature and find the identity information.
Secondly, the found identity information should belong to the real signer rather
than a forged user.

3.1.3 Dynamic ABA Schemes

When users register themselves in the core ABA schemes in Step 1-c (Fig. 3.1),
their user keys are generated by the central authority. As described in Subsection
3.1.1, the central authority is assumed as the top authority and should have the
highest trust level. However, if the central authority is compromised, all user keys

19

Cryptographic Enforcement of Attribute-based Authentication

2-c

1-d

1-e

1-a

User or
Signer Verifier

Revocation Authority

Central Authority

Attribute Authority

1-c 2-a

1-b

Opener

1-e

1-f

2-b

2-d

Figure 3.2: Workflow of traceable ABA schemes

will be revealed to adversaries and this can be solved by “dynamic” ABA schemes
described in Fig. 3.3. In dynamic ABA schemes, a “join in” protocol [13] is applied
to strengthen the security and privacy of users’ keys. During this “join in” protocol,
users interact with the central authority and both contribute in users’ key generation
by providing their own secrets. Two types of dynamic ABA schemes are shown
in Fig. 3.3, without (Fig. 3.3a) and with (Fig. 3.3b) traceability respectively.
Similar to the core ABA scheme shown in Fig. 3.1, there is no opener in Fig. 3.3a,
an authority that can get the signer’s identity information. However, the dynamic
ABA scheme described in Fig. 3.3b is traceable, which means signers’ identity
information can be revealed with the help of an opener. Meanwhile, compared with
Fig. 3.3a, there are two more steps in Fig. 3.3b. In step “1-f”, the opener receives
a tracing key from the central authority. In step “2-d”, the opener sends back the
signer’s identity information to the verifier after it receives a valid request from a
user requesting to open a signature.

There are two main advantages for both types of dynamic ABA schemes. Firstly,
users can join the system at any point of time. Secondly, since users’ secret key gen-
eration partly depends on users’ secret which is unknown to the central authority,
compromising the central authority will not cause the leakage of users’ keys. There-
fore it can strengthen the security and stability of an ABA scheme. Compared with
the core ABA schemes described in Subsection 3.1.1, the ABA schemes in Fig.
3.3 is more “dynamic” because users can join in the system anytime, which is the

20

Categorization of ABA Schemes

2-b

1-e
1-a

User or
Signer Verifier

Revocation Authority

Central Authority

Attribute Authority

1-
c

1-
e

1-d

2-c
2-a

1-bJoin
In

1-c

(a) Dynamic ABA schemes without traceability

2-b

1-d

1-e 1-
c

1-c

1-
e

1-a

1-f

User or
Signer Verifier

Revocation Authority

Central Authority

Attribute Authority

2-c
2-a

1-bJoin
In

Opener
2-d

(b) Dynamic ABA schemes with traceability

Figure 3.3: Workflow of dynamic ABA Schemes

21

Cryptographic Enforcement of Attribute-based Authentication

criteria in [13] to divide ABA schemes into “static” and “dynamic”. In this thesis,
however, we will use the term “dynamic” in a different context to indicate whether
attribute trees [25] are changeable or not, and this approach will be used to construct
CP-ABA schemes. Therefore, when we use the term “dynamic ABA schemes” in
this dissertation, it means those with the structure illustrated in Fig. 3.3 unless we
clearly mention “dynamic attribute trees”.

3.1.4 U-HABA Schemes

In both core and traceable ABA schemes, all users are authorized by the central
authority. For some applications, however, it could be beneficial to utilize user-
related hierarchical structure to some application domains. First of all, authorities
may have different trust and privilege levels. Secondly, users should only be allowed
to access data in a specific domain rather than the whole system. To satisfy these
two requirements, a hierarchical structure of authorities and users illustrated in Fig.
3.4 can be used.

As shown in Fig. 3.4, a U-HABA scheme has only one top authority and the
remaining authorities are domain authorities. Assume there are N levels of domain
authorities and the following assumptions apply to the scheme.

1. The level 0 authority has the highest privilege and authorities of level N have
the lowest privilege.

2. Authorities of level i (1≤ i≤N) can only be authorized by authorities of level
i−1.

3. The top authority can only authorize domain authorities rather than users,
while all domain authorities are able to authorize both users and domain au-
thorities of a lower trust level.

4. Users can be authorized by different domain authorities and they can only
access data in these authorized domains instead of the whole system.

Based on the above assumptions, we can see that the main difference between
the U-HABA schemes and the core ABA schemes is that user keys are generated
by their domain authorities rather than the central authority in U-HABA schemes.
Therefore, when a verifier wants to authenticate a user from a specific domain, he
or she needs to specify the domain in addition to the required attributes. Except for

22

Categorization of ABA Schemes

0

1

2

N

Level 0

Level 1

Level 2

Level N

users

Level 3...

Figure 3.4: Structure of authorities and users in U-HABA schemes

the difference described above, the workflow of U-HABA schemes is the same as
of the core ABA schemes.

3.1.5 A-HABA Schemes

Instead of demanding a hierarchical structure of authorities and users as in U-HABA
schemes, some applications may require that attribute keys should be combined with
different trust levels. For instance, data are classified by trust levels in some systems
and users can access data as follows. For data of low trust levels, as long as users
have the required attributes, they are allowed to access the data. However, for highly
secret data, users should prove that their attribute keys are authorized by attribute
authorities of a high trust level.

To meet the requirements of applications such as in the situation described
above, an approach illustrated in Fig. 3.5 can be used. Assume that there are N +1
levels of attribute authorities. Difference in this case from the hierarchical author-
ities in Fig. 3.4 is that the attribute authorities are responsible for attribute keys
generations instead of users’ keys and users keys are generated by a central author-
ity. For this approach (Fig. 3.5), the following assumptions have to be satisfied.

1. The level 0 attribute authority has the highest trust level and the level N at-
tribute authorities have the lowest trust level.

23

Cryptographic Enforcement of Attribute-based Authentication

0

1

2

Level 0

Level 1

Level 2

Level 3

Level NN

...

Figure 3.5: Structure of A-HABA schemes

2. Attribute authorities of trust level i (1 ≤ i ≤ N) can only be authorized by
authorities of trust level i−1.

3. The top authority can only authorize domain attribute authorities rather than
attribute keys, while all domain authorities are able to authorize both attribute
keys and domain authorities of a lower trust levels.

4. Domain attribute authority of trust level i (1 ≤ i ≤ N) can only authorize
attribute keys of the same or lower trust levels.

5. The trust levels of attribute keys are partly determined by the trust levels of
their authorizing domain attribute authorities. The lower trust levels of the
attribute authorities are, the lower trust levels the authorized attribute keys
may be.

6. Users that hold attribute keys of trust level i (1≤ i≤ N) can only access data
that requires attributes keys of the same or a lower trust level.

In such ABA schemes, users register themselves in the central authority as in
the core ABA schemes and users’ keys are also generated by the central authority,
while users’ attribute keys are generated by domain attribute authorities. Except
for these differences, the workflow and system structure are the same as in the core
ABA schemes.

24

Categorization of ABA Schemes

3.2 Categorization of ABA schemes: Criterion 2

In Section 3.1, we divided ABA schemes into five types according to the properties
of traceability, dynamic and hierarchy. In this section, we will use another crite-
rion to categorize ABA schemes, which is the relation between attribute keys and
attribute requirements. To our best knowledge, there are no publications that clearly
categorizes ABA schemes by this criterion.

This categorization originates from attribute-based encryption (ABE) schemes
[26–32]. ABE schemes aim at encrypting plaintext based on a set of attributes
and only users who possess the required attributes are able to decrypt the cipher-
text. According to the way how plaintext is encrypted, ABE schemes can be di-
vided into two types, i.e., key-policy attribute-based encryption (KP-ABE) [33] and
ciphertext-policy attribute-based encryption (CP-ABE) [34]. For KP-ABE schemes
[35–38], attribute keys are generated based on a specific attribute predicate. More
specifically, a set of attributes with fixed relations is chosen first, where relations
among these attributes usually represent policies which are represented by attribute
trees [25] or access trees [39]. Then attribute keys are generated based on this set
of attributes together with their relations. Therefore, ciphertext generated by this
set of attribute keys can only be decrypted by users who own attributes with the
same relations. For CP-ABE schemes [40–43], the generation of attribute keys are
comparatively independent of specific policies. Plaintext is encrypted by a set of at-
tributes, the relation between which does not have to be fixed. Therefore, as long as
users possess the attributes used during encryption, they can decrypt the ciphertext.
Compared with KP-ABE schemes, CP-ABE schemes are more flexible.

ABA schemes have some overlaps with ABE schemes but differ mainly in two
aspects. First of all, the goals to be achieved are different. ABE schemes aim at the
secrecy of data and the anonymity of attributes, more precisely, the encryption and
decryption of data. Secondly, its security requirement is that an adversary cannot
forge a valid ciphertext [44]. Differently, ABA schemes focus on user authentica-
tion, to confirm that the one to be authenticated possess a set of required attributes.
The security requirement “anonymity” of ABA schemes emphasizes more on hiding
the identity information of the one to be authenticated from the authenticator.

Despite of the two main differences described above, ABE and ABA schemes
share a lot in common in their cryptographic construction, for example, how to
generate attribute keys based on a set of attributes. Even though there is no cipher-
text, encryption or decryption in ABA schemes, we still borrow the abbreviations

25

Cryptographic Enforcement of Attribute-based Authentication

“KP” and “CP” from ABE schemes to divide ABA schemes into two categories in
this dissertation, named as KP-ABA and CP-ABA respectively. Attribute keys of
KP-ABA schemes are generated based on a set of attributes with fixed relations.
Only users owning the required attributes with this fixed relations can be authenti-
cated. For example, all ABA schemes proposed in [13] are KP-ABA based. On the
contrary, the generation of attribute keys in CP-ABA schemes are independent from
their relations. Given an attribute set, related attribute keys in CP-ABA schemes can
be generated without pre-defining relations of the attributes, which will be defined
by an authenticator later during authentication. These relations among attributes
are usually represented by attribute trees [39]. As long as users own the attributes
required in the attribute tree, they can be authenticated. All ABA schemes proposed
in this dissertation are CP-ABA based, so we will not mention it when we introduce
ABA schemes in the following chapters.

We will use Fig. 3.6 as an example to explain the main differences between
KP-ABA and CP-ABA schemes. Suppose there are two users named as Alice and
Bob, and both of them want to be authenticated by the authenticator. As illustrated
in Fig. 3.6a, the authenticator requires that users own a set of attributes (denoted
by I) satisfying relations represented by access structure A. Both Alice and Bob
own the attribute set I. The difference is that Alice’s attribute keys are generated
based on access structure A but Bob’s attribute keys are generated based on access
structure B. We use A(I) = 1 and B(I) = 0 to denote whether the access structure
based on attribute set I satisfying the requirement of the authenticator or not. Since
Alice possesses attribute keys generated according to access structure A, she will
be successfully authenticated. On the contrary, even though Bob owns the required
attribute set I, his attribute keys are generated according to access structure B, so
unfortunately Bob will be authenticated eventually.

From Fig. 3.6b, we can see that different from KP-ABA schemes, the access
structure T is bound to the required attribute set rather than users’ attribute keys in
CP-ABA schemes. In this case, the authenticator requires that users should hold a
set of attributes that satisfy the access structure T . Alice owns attribute set A and
Bob owns attribute set B, and we use T (A)= 1 and T (B)= 0 to express that attribute
set A satisfies the access structure T while B does not. Therefore, Alice will pass the
authenticator’s authentication but the poor Bob will fail the authentication again.

26

Categorization of ABA Schemes

Y

N

KP-ABA Attribute relation A
A(I) = 1

Attribute relation B
B(I) = 0 A set of required

attributes I

Alice

Bob

Authenticato
r

(a) KP-ABA schemes

Y

N

Authenticator

Attribute set A
T(A) = 1

Attribute set B
T(B) = 0

A set of required attributes
under structure T

Alice

Bob

CP-ABA

(b) CP-ABA schemes

Figure 3.6: Two categories of ABA schemes

27

Cryptographic Enforcement of Attribute-based Authentication

3.3 Security Requirements of ABA Schemes

Authors of [13, 20] have summarized the security requirements of ABA schemes.
Since the security requirements in [13] are more detailed and systematic compared
with those in [20], we will utilize them and briefly introduce the summarized prop-
erties in the following, including no previous knowledge, unforgeability, unlinka-
bility, traceability, anonymous identities, anonymous attributes, coalition resistance
and separability.

• No previous knowledge: We assume that the signer and the verifier do not
know each other before, so the authentication cannot depend on any previous
knowledge.

• Unforgeability: It is hard for an adversary to forge a valid signature or the
proof of possessing attributes.

• Unlinkability: Given two signatures, it should be hard to tell whether they
are generated by the same signer or not.

• Traceability: Given a valid signature, there should be an authority to “open”
the signature and reveal the identity of the signer.

• Anonymous identities: It should be impossible for a normal user to obtain
any identifying information of the signer.

• Anonymous attributes: It requires least attribute disclosure for an ABA
scheme.

• Coalition resistance: When a single signer does not possess all the attributes
required by the verifier, it should be impossible for a couple of users to coop-
erate and generate a valid signature.

• Separability: Tasks should be separated to different authorities, and each
authority should be able to perform its own task independently except for
gaining some necessary inputs from other authorities.

If we categorize the above properties more precisely, no previous knowledge
assumptions, anonymous attributes and separability can be considered as scheme
properties while the rest are security requirements. The property of “no previous
knowledge assumptions” is an assumption rather than a security requirement that

28

Categorization of ABA Schemes

should be proved formally during scheme design. The property of anonymous at-
tributes is a general requirement for ABA schemes and it is very difficult to express
it formally and precisely. As for “separability”, when we design the system struc-
tures of ABA schemes, we divide the tasks and assign them to different authorities
as described in Fig. 3.1. Therefore, it is straightforward to judge whether an ABA
scheme satisfies separability or not. As a result, when we design new ABA schemes,
we will only formally define and prove the five security requirements, which are
anonymity, traceability, unforgeability, unlinkability and coalition resistance.

29

Cryptographic Enforcement of Attribute-based Authentication

30

Chapter 4

Construction of ABA Schemes

In this chapter we explain how to cryptographically construct ABA schemes. We
start with a survey on recent work on the cryptographic construction of ABA schemes,
including attribute tree building and algorithms for ABA scheme setup. In Section
4.1, we describe how to build attribute trees [45], which are logical statements with
tree structures and are used to express attribute requirements. There are two ap-
proaches to build attribute trees. The most commonly used approach is to build
attribute trees from top to down [13, 46], but there are still some research results on
generating attribute trees from down to top [20, 25].

Based on the research results from [20] and [22], we will study two cases about
how to construct CP-ABA schemes by applying two different approaches to build
attribute trees in Sections 4.4 and 4.5 respectively. In the first case, a big central
attribute tree is built first based on all attributes in the system. When a verifier selects
part of the system attributes as the attribute requirement, he can obtain the attribute
subtree he needs by simplifying the big central attribute tree. In this way, system
parameter regeneration can be avoided for new attribute tree generation such as in
KP-ABA schemes [13]. In the second case, a top-to-down attribute tree generation
approach is utilized, where the generation of new attribute trees will not cause the
regeneration of system parameters. Meanwhile, the computation and storage cost
for a big central attribute tree can also be reduced. For each case study, we will
start with the description of the adversary models and formal definitions of security
requirements. Then we explain the algorithms of ABA system setup as well as the
process of signature generation, verification and possibly opening. Next we analyze
the correctness of the proposed scheme and provide formal proofs of corresponding
security requirements.

31

Cryptographic Enforcement of Attribute-based Authentication

4.1 Related Work

There has already been some work on ABA scheme construction. As far as we
know, [13] is the most systematic research result about ABA schemes. In Khader’s
PhD thesis [13], he built several static ABA schemes based on group signatures
and developed a general approach how to construct static ABA schemes. How-
ever, when it came to dynamic ABA schemes, he only demonstrated how to con-
struct them by a few examples without providing a general approach. All the ABA
schemes presented in [13] are traceable KP-ABA schemes. All signers’ attribute
keys are generated based on signers’ identifying information and an attribute tree.
The approach causes the drawback that the attribute requirement should be fixed.
Once the attribute requirement is changed, all signers’ attribute keys must be regen-
erated. The ABA scheme proposed in [46] is an attribute-based authentication key
exchange protocol, of which the main goal is to gain a shared secret key at the end
of the protocol. Therefore, its security requirement is to prevent adversaries from
learning any information about the secret key, such that it differs from protocols
that mainly focus on authentication. Authors in [47] have proposed an attribute-
based signatures (ABS) scheme for online social networks but its main purpose is
for authenticating. The ABA scheme proposed in [48] aims at saving system re-
sources for multi-networks’ users wireless roaming, and the scheme can resist the
man-in-the-middle attacks, replay attacks and collusions attacks. However, neither
of the ABA schemes in [47, 48] is traceable. Besides, there is no proof in [47, 48]
showing that the signatures used to authenticate the signer cannot be forged by an
adversary, meaning that it cannot be confirmed whether a signature is generated by
the signer or an adversary. The ABA scheme proposed in [20] is traceable and it
builds attribute trees from down to top instead of the most commonly used top-to-
down approach [13], so that attribute trees are changeable. Its flexibility is at the
cost of a big central attribute tree, from which different attribute subtrees can be
extracted.

As for other attribute-based approaches, such as ABAC [8, 49–53], ABS [14, 15,
54] and ABE [16, 55], their cryptographic constructions share a lot in common with
ABA schemes and the way how they build attribute trees are similar with differences
in some aspects. ABAC includes both authentication and authorization, and thus it
covers a wider and sometimes a different scope [56] compared with ABA schemes.
ABE is a type of public key encryption and it was firstly proposed by Amit Sahai
and Brent Waters [17]. In ABE schemes, both users’ secret keys and ciphertext

32

Construction of ABA Schemes

are dependent on users’ attributes. Only those who possess the decryption keys
which are related to the attributes used during encryption can decrypt the ciphertext.
The main goal of ABE is message encryption and decryption, with the security
requirement that an adversary cannot forge valid ciphertext [44]. ABS schemes [14]
are schemes under which a signer attests a message using a set of attributes he
possesses from the authority. Given a predicate or requirement, only those who
satisfy the predicate can generate a valid signature based on some set of attributes
they possess from the authority. Meanwhile, users cannot collude to pool their
attributes together to generate a valid signature. Given a signature, others cannot
gain any knowledge about the identifying information of the signer. Even though
signers’ identifying information should be kept secret, the privacy of ABS schemes
is achieved by using the attribute set to generate signatures rather than signers’
identifying information as in ABA schemes. Moreover, traceability is required in
neither ABE nor ABS schemes.

4.2 Attribute Trees

Attribute trees originate from access trees [39], where they are used to represent
logical access control requirements and usually built from top to down. Another
approach to construct attribute trees is from down to top [20, 25]. In this approach,
a big central attribute tree is built first and attribute subtrees can be obtained by
simplifying this big attribute tree, so it allows dynamic attribute tree construction.
However, the generation and storage costs for such a big attribute tree can be a
waste of resources unless there is a need to change attribute trees frequently. In
Subsections 4.2.1 and 4.2.2, we will use an example to describe in details how to
construct attribute trees in both top-to-down and down-to-top approaches mentioned
earlier.

4.2.1 Top-to-down Attribute Trees

An attribute tree is a tree structure describing the logic relations among required
attributes. In this subsection, we will use Fig. 4.1 as an example to explain attribute
trees and how to build them. Assume the related attribute set of attribute tree in Fig.
4.1 is {att1, · · · ,att5}. We index all leaf nodes and interior nodes from 1 to 9 as
shown in Fig. 4.1. Leaf nodes are indexed from 1 to 5 and interior nodes indexed
from 6 to 9. In an attribute tree, leaves represent attributes and interior nodes are

33

Cryptographic Enforcement of Attribute-based Authentication

Figure 4.1: Attribute tree: an example

threshold gates. Leaf nodes indexed from 1 to 5 correspond to attributes att1 to att5
respectively. For an interior node x, let lx and kx be the numbers of x’s children and
the threshold respectively. If kx is less than lx, the interior node represents logical
“OR”. If kx equals to lx, the interior node represents logical “AND”. For example,
node 7 has two children and its threshold is one, so it represents logical “OR”. The
same for node 9. As for nodes 6 and 8, either the number of their children or the
threshold is two, so both represent logical “AND”.

Suppose Γ is an attribute tree with rt as its root and Ψ as its attribute set. We
use ind(Node) ∈ Z∗p to represent the index of node Node and assume qNode is a
polynomial bound to node Node with degree kNode− 1. To construct Γ, we start
from the root by selecting polynomials over Z∗p, of which degrees equal to kNode−1
for all nodes. Let α ∈ Z∗p be randomly selected and we assign qrt(0) = α , and then
we randomly select a polynomial qrt(x) satisfying qrt(0) = α for root rt. The value
of the remaining nodes are computed by qNode(0) = qpar(Node)(ind(Node)), where
par(Node) is the parent of Node. Then a polynomial qNode(x) is chosen such that
the equation qNode(0) = qpar(ind(Node)) holds. For a leaf node, there is no related
polynomial but only a constant value.

In the following, we use a specific example to demonstrate the generation of an
attribute tree. As explained above, the relations of all leaf (green) nodes in Fig. 4.1
can be represented by equation (att1∨att2)∨ (att3∧ (att4∧att5)). Assume α = 15.

34

Construction of ABA Schemes

We start from the root, i.e., node 9 and the polynomials are set as following:

q9(0) = 15 q9(x) = 15

q7(0) = q9(7) = 15 q7(x) = 15

q8(0) = q9(8) = 15 q8(x) = x+15

q1(0) = q7(1) = 15

q2(0) = q7(2) = 15

q3(0) = q8(3) = 18

q6(0) = q8(6) = 21 q6(x) = 2x+21

q4(0) = q6(4) = 29

q5(0) = q6(5) = 31.

As mentioned before, there is no polynomial rather than a constant value assigned
to a leaf node. Leaves 1, 2, 3, 4, 5 are assigned with values 15, 15, 18, 29 and 31
respectively.

4.2.2 Down-to-top Attribute Trees

There are two phases in down-to-top attribute tree building approach. First of all, a
big central attribute tree is built based on all attributes in the system. Secondly, given
an attribute subset, the big central attribute tree is simplified and what remains after
the simplification is the required attribute subtree. In the rest of this dissertation,
we use Create CTree and Simpli f y CTree to denote the algorithms of “creating a
central attribute tree” and “simplifying a central attribute tree” respectively.

Before describing the down-to-top construction of attribute trees, we first ex-
plain Lagrange interpolating polynomials [57–59] because they will be used to com-
pute polynomials that are bound to interior nodes.

Definition 1. Lagrange Interpolating Polynomial [58] The Lagrange interpolating
polynomial is the polynomial P(x) of degree ≤ (n−1) that passes through the n
points (x1,y1 = f (x1)), (x2,y2 = f (x2)), · · · , (xn,yn = f (xn)), and is given by P(x)=
Σn

j=1Pj(x), where

Pj(x) = y jΠ
n
k=1,k 6= j

x− xk

x j− xk
.

35

Cryptographic Enforcement of Attribute-based Authentication

Written explicitly,

P(x) =
(x− x2)(x− x3) · · ·(x− xn)

(x1− x2)(x1− x3) · · ·(x1− xn)
y1 +

(x− x1)(x− x3) · · ·(x− xn)

(x2− x1)(x2− x3) · · ·(x2− xn)
y2 + · · ·

+
(x− x1)(x− x2) · · ·(x− xn−1)

(xn− x1)(xn− x2) · · ·(xn− xn−1)
yn.

Suppose the system attribute set is Ψ and the corresponding attribute tree is Γ

with rt as its root. Next, we explain the algorithms that will be used to construct at-
tribute trees from down to top. For an interior node Node of Γ, let lNode and kNode be
the numbers of its children and threshold respectively. The algorithm Create CTree
proceeds as follows:

1. Add dummy nodes: For an interior node Node, if kNode < lNode, add lNode−
kNode dummy nodes as Node’s children such that the interior node Node rep-
resents logic “AND” now. Repeat this dummy node adding process for all
“XOR” interior nodes until they all become “AND” nodes.

2. Index nodes: Index all leaf nodes (attribute leaf nodes and dummy leaf nodes)
and interior nodes.

3. Assign leaf nodes: Assign a secret value to each leaf node.

4. Compute polynomials: Each interior node Node should be assigned with a
polynomial denoted by qNode(x), the degree of which should be dNode =

kNode− 1. We start the polynomial computing process from the parents of
leaf nodes. Since each leaf child of node Node is assigned with a secret
value, then the polynomial qNode(x) can be calculated by Lagrange interpo-
lating polynomial [58]. Then assign qNode(0) to Node. The values assigned
to dummy nodes are public.

5. Repeat 4 until every interior node is assigned with a polynomial.

Next we explain how to obtain an attribute subtree by simplifying the central
attribute tree ΓExt . Assume Ψi ⊂ Ψ is an attribute subset and its related attribute
subtree is Γi. The algorithm Simpli f y CTree proceeds as follows:

1. Let Ψi = Ψ−Ψi. Delete all leaf nodes that corresponds to attributes in Ψi.

2. Delete an interior node Node together with its descendants if the number of
Node’s children is less than its threshold. The remaining tree is the required
attribute tree Γi.

36

Construction of ABA Schemes

Figure 4.2: The central attribute tree

Assume the system attribute set is Ψ = {att1, · · · ,att5} and the related attribute
tree Γ is as shown in Fig. 4.1. Now we use the example from Subsection 4.2.1
to describe how to implement the algorithms Create CTree and Simpli f y CTree.
Since the thresholds of nodes 7 and 9 is 1, which is less than 2, i.e., the number of
their children, we need to add a dummy node for each of these nodes. The extended
attribute tree is shown in Fig. 4.2. If we compare Fig. 4.2 with Fig. 4.1, we can see
that there are three differences between these two attribute trees:

1. We add a dummy (blue) node for both nodes 10 and 11 in Fig. 4.2, and these
two dummy nodes are indexed as nodes 3 and 9 respectively.

2. Since we have added dummy nodes, we index all nodes in Fig. 4.1 with
different numbers and the results are illustrated as in Fig. 4.2.

3. The thresholds of nodes 10 and 12 are both changed from 1 to 2. They are
high lightened in blue.

In the following, we demonstrate how to assign values to all nodes and polyno-
mials to all interior nodes of the central attribute tree ΓExt .

1. Assign secret values to leaf nodes: Each attribute (green) node should be
assigned with a random secret value. Let si be secret values, i ∈ {1,2,4,5,6},
where s1 = 15, s2 = 17, s4 = 23, s5 = 52 and s6 = 56.

37

Cryptographic Enforcement of Attribute-based Authentication

2. Compute polynomials: For node 10, the related polynomial q10(x) can be
considered as a line passing two points (1,15) and (2,17). Therefore, ac-
cording to Lagrange’s theorem, q10(x) can be computed as q10(x) = 2x+13.
Similarly, we have q7(x) = 4x+32, q8(x) = 3x+11 and q11(x) = x+3.

3. Assign values to dummy nodes: Assume the values related to dummy nodes
3 and 9 are denoted by d3 and d9. Since q11(x) = x+ 3, we can compute d9

and d9 by d9 = q11(9) = 12 and d3 = q10(3) = 19.

Based on this central attribute tree, we can obtain attribute subtrees according
to different attribute subsets. Assume we have attribute subset Ψi = {att1,att3} and
the related attribute subtree is denoted by Γi. The algorithm Simpli f y CTree pro-
ceeds as follows. First, we delete all leaf nodes that relates to attributes in attribute
subset Ψi = {att2,att4,att5}, which are related to nodes indexed with 2, 5 and 6
respectively. The result of this step is shown as Fig. 4.3a. Since node 7 has no
child now, we delete it and the result is shown in Fig. 4.3b. From Fig. 4.3b, we can
see that the threshold is 2 but it has only one child now. Therefore, we delete node
8 and the remaining part is the required attribute subtree Γi, which is illustrated in
Fig. 4.3c.

4.3 Definitions

The security of all cryptographic schemes is based on certain hard mathematical
problems or mathematical assumptions. The same holds for ABA schemes. Before
formally describing the first scheme, we first explain some notions and preliminaries
as follows.

Definition 2. (Bilinear Maps) [60–62] Let G1, G2 and G3 be cyclic groups of prime
order p, with g1 ∈ G1 and g2 ∈ G2 as the generators. e is an efficient bilinear map
if the following two properties hold.

1. Bi-linearity: equation e(ga
1,g

b
2) = e(g1,g2)

ab holds for any a,b ∈ Z∗p.

2. Non-degenerate: e(g1,g2) 6= 1G3 , where 1G3 is the unit of G3.

Definition 3. (Negligible Functions) [63, 64] Assume Z≥0 and R≥0 are the sets of
integers and real numbers equal or larger than 0 respectively. A function f : Z≥0→
R≥0 is negligible if ∀c > 0, there exists a λ0 > 0 such that for ∀λ > λ0, equation
f (λ)< 1/λ c holds.

38

Construction of ABA Schemes

(a) Simplifying a central attribute tree: a

(b) Simplifying central attribute tree: b

(c) Simplifying central attribute tree: c

Figure 4.3: Simplifying a central attribute tree
39

Cryptographic Enforcement of Attribute-based Authentication

Definition 4. (Discrete Logarithm Problem (DLP)) [65, 66] Let G be a cyclic
group of prime order p with g ∈ G as its generator. Given h = gk, computing k =

loggh is considered as a DLP.

Definition 5. (q-Strong Diffie-Hellman (q-SDH) Problem) [67, 68] Let G be a
(multiplicative) cyclic group of prime order p with g ∈ G as its generator. Given
input (g,gx,gx2

, · · · ,gxq
) ∈ G, outputting a pair (xi,g1/(x+xi)) where xi ∈ Z∗p is con-

sidered as a q-SDH problem.

Definition 6. ([67]) (Decision Linear Diffie-Hellman based Encryption (DLE) in
G) Assume G is a multiplicative cyclic group of order p. In a DLE scheme, a user’s
public key is u,v,h ∈ G and its private key is ε1,ε2 ∈ Z∗q, satisfying uε1 = vε2 = h.
To encrypt a message M, the user randomly chooses α,β ∈ Z∗q and computes the
encryption message as a triple < C1,C2,C3 >, where C1 = uα , C2 = vβ and C3 =

Mhα+β . The decrypted message is calculated by C3/(C
ε1
1 Cε2

2).

Definition 7. (Decision Linear Diffie-Hellman Problem (DeLP)) [20] Let G be a
cyclic group of prime order p, with u,v,h∈G as its generators. Given ua,vb,hc ∈G
(a,b,c ∈ Z∗p) as the input, deciding whether a+ b = c or not is considered as a
decision DeLP.

4.4 ABA Scheme with Dynamic Attribute Trees

In this section, we provide an example that demonstrates how to construct an ABA
scheme with dynamic attribute trees by using the down-to-top attribute tree building
approach. This scheme is called Scheme 1. Scheme 1 is a traceable CP-ABA
scheme. Our main focus is to use a specific example to provide more details on how
to cryptographically construct an ABA scheme as illustrated in Fig. 3.2.

4.4.1 Security Requirements

In Section 3.3, we discussed eight properties of ABA schemes, including no previ-
ous knowledge assumptions, unforgeability, unlinkability, traceability, anonymous
identities, anonymous attributes, coalition resistance and separability. However, in
this thesis, we will only focus on the five security requirements listed as below.

Anonymity To achieve basic anonymity, identities of signers should be pro-
tected. Furthermore, even signers’ attributes should be protected, and signers only

40

Construction of ABA Schemes

have to prove that they possess the required attributes. This property is the main
security requirement of an ABA scheme and is mandatory.

Unforgeability A signer’s signature should not be able to be forged by an out-
sider that does not belong to the system. In some systems, a signature is even re-
quired to be unforgeable for authorities in the system. However, in a system where
authorities generate all keys and secrets, the authorities obviously can forge all sig-
natures. Therefore, “unforgeable” is defined differently in different ABA schemes.
However, all ABA systems should provide at least the basic level of “unforgeabil-
ity”, i.e, for the outsiders.

Unlinkability Given two signatures, if it should be impossible to decide whether
they are generated by the same signer, the ABA scheme is unlinkable. If a system
does not satisfy it, given enough signatures, there may exist a possibility to reveal
the signer’s identity.

Coalition resistance A signer can only generate the required signature if he or
she has all the required attributes. It should be impossible for different users to pool
their attributes together to generate a valid signature together. If a system satisfies
this security requirement, it is coalition resistant.

Traceability Given a valid signature, if the opener can successfully trace the
signer’s identity and the signer is a valid user in the ABA system, the ABA scheme
is traceable. It is a useful security requirement for some applications, such as ob-
taining evidence for legitimate issues and so on.

Based on the above descriptions, we will give formal definitions when analyz-
ing the security requirements of each scheme. Descriptions of these five security
requirements apply for all ABA schemes proposed in this dissertation unless the
scheme does not satisfy the security requirements. Therefore, we will not repeat-
edly express them later.

4.4.2 Building Blocks: Algorithms

To describe the cryptographic construction of Scheme 1, we need the following
algorithms serving as building blocks. More details about the meanings of notation
are given in Table. 4.1.

• Scheme1.spg(k0)→ {MPK,MSK}: This algorithm provides system pa-
rameter generation. It takes system security parameter k0 as its input and
outputs the system public and private key sets MPK and MSK respectively.

41

Cryptographic Enforcement of Attribute-based Authentication

• Scheme1.ukg(MPK,MSK,Ui)→ bski: This algorithm provides user key
generation. It takes the system public key set MPK, private key set MSK and
the identity of Ui as input and outputs Ui’s private key base bski =< Ai,xi >,
where xi is a secret based on which Ui’s secret key Ai is generated.

• Scheme1.akg(MPK,Ψ)→ {APKΨ,ASKΨ}: This algorithm provides at-
tribute key generation. It takes the system public key set MPK and the at-
tribute set Ψ as input to generate the public attribute key set APKΨ and the
private attribute key set ASKΨ.

• Scheme1.uakg(MPK, Ai, Ψi)→ USKi: This algorithm provides user at-
tribute key generation. It takes the system public key set MPK, Ui’s private
key Ai and attribute subset Ψi as input to generate Ui’s private attribute key
set USKi.

• Scheme1.atg(MPK, Ψ, ASKΨ, APKΨ,ASKΨ)→ {Γ,PTreeΨ}: This al-
gorithm provides attribute tree generation. It takes the system public key
set MPK, attribute set Ψ, system public and private attribute key sets APKΨ

and ASKΨ as input and generates the attribute tree Γ and related parameters
PTreeΨ.

• Scheme1.ars()→ Ψ′: This algorithm provides attribute requirement selec-
tion. The verifier selects the required attribute set Ψ′ based on which the
signer will generate a signature later.

• Scheme1.sg(MPK,MSK, Γ, Ψ′, USKi, M)→ δ : This algorithm provides
signature generation. It takes the system public and private key sets MPK and
MSK, attribute tree Γ, the selected attribute set Ψ′, Ui’s private key set USKi

and the message M as input to generate the signature δ .

• Scheme1.sv(M,δ , Ψ′)→ b: This algorithm provides signature verification.
It takes message M with its signature δ and the selected attribute set Ψ′ as
input to check whether the signature is valid or not. The checking result is
denoted by b ∈ {0,1}, where 0 and 1 mean YES and NO respectively.

• Scheme1.so(M,δ , Ψ′, tk)→ Ui: This algorithm provides signature open-
ing. It takes the message M with its signature δ , the selected attribute set Ψ′

and the opener’s tracing key tk as the input to trace the identity information
of the signer Ui, which is Ui’s index i here.

42

Construction of ABA Schemes

4.4.3 Scheme 1 Construction

The design of Scheme 1 is presented below with related notation explained in Table
4.1.

System setup includes two phases: 1) system setup and 2) signature generation,
verification and opening. System setup is the preparation phase and it includes
system parameter generation, user key generation, attribute key generation, user
attribute key generation and attribute tree generation.

1. System parameter generation (Scheme1.spg) This algorithm is performed
by the central authority. Assume k0 is the system security parameter. G1, G2

and G3 are three multiplicative groups of prime order p and e : G1×G2→G3

is a bilinear map. ϕ is a computable isomorphism between G1 and G2.
H : {0,1}∗→Z∗p is a hash function. Randomly select a generator g2 ∈G2 and
γ,ξ1,ξ2,∈ Z∗p. Let g1 = ϕ(g2), u = hξ1 and v = hξ2 . Then the system private
parameter set is MSK =< γ, tk >, where tk =< ξ1,ξ2 > is the tracking key.
The system public parameter set is MPK =<G1,G2,G3,e,H,g1,g2,h,u,v,w>,
where w = gγ

2.

2. User key generation (Scheme1.ukg) This algorithm is performed by the cen-
tral authority. Take γ as input and generate a private key base bski =< Ai,xi >

for each user Ui, where xi ∈ Z∗p is randomly selected by the central authority

and Ai = g1/(γ+xi)
1 is the output of a q-SDH pair (g1,g2,g

r0
2 ,g

r2
0

2 , · · · ,grq
0

2). Ai

should be registered in the opener’s database for the purpose of tracing if
necessary.

3. Attribute key generation (Scheme1.akg) This algorithm is run by the at-
tribute authority. Assume Ψ = {att1, · · · ,attNa} is the system attribute set
and NA = |Ψ| is the number of the attributes. To generate a system attribute
key, the attribute authority randomly selects a number t j ∈ Z∗p for each at-
tribute att j first, where 1 ≤ j ≤ Na. Then the private and public attribute
key pair for att j is denoted by ask j = t j and apk j = gt j

2 respectively. Let
h j = ht j (1≤ j ≤ Na). The public key set related to Ψ is denoted by APKΨ =

{h1, · · · ,hNa,apk1, · · · , apkNa} and the private key set related to Ψ is denoted
by ASKΨ =< t1, · · · , tNa >.

4. User attribute key generation (Scheme1.uakg) This algorithm is run by
the attribute authority. Assume that user Ui is valid and not included in the

43

Cryptographic Enforcement of Attribute-based Authentication

Table 4.1: Notation for Scheme 1

Notation Description
k0 The system security parameter.
Z∗p The set of integers modulo p, where p is a large prime number.
Gi (Multiplicative) cyclic group of prime order p, where 1≤ i≤ 3.
e e : G1×G2→ G3 is a bilinear map.
ϕ A computable isomorphism between G1 and G2.
H H : {0,1}∗→ Z∗p is a hash function [69].
Ui User i in the system.
Ψ System attribute set.
Ψi Ψi ⊂Ψ, attribute subset owned by Ui.
Ψ′ Ψ′ ⊂Ψi, attribute subset owned by Ui and used to generate the signature.
Na Na = |Ψ|, the number of attributes in set Ψ.
Ni Ni = |Ψi|, the number of attributes in set Ψi.
N′a N′a = |Ψ′|, the number of attributes in set Ψ′.
MPK The system public parameter set.
MSK The system private parameter set.
bski The private key base of Ui and bski = {Ai,xi}.
apk j Public attribute key related to attribute att j, where 1≤ j ≤ Na.
ask j Private attribute key related to attribute att j, where 1≤ j ≤ Na.
Ti, j Ui’s private attribute key related to attribute att j.
APKΨ Public attribute key set related to attribute set Ψ.
ASKΨ Private attribute key set related to attribute set Ψ.
USKi Private key set of Ui.
Γ Attribute tree generated based on attribute set Ψ.
ΓExt The central attribute tree extended from Γ.
Γ′ Attribute tree generated based on attribute set Ψ′.
Nd The number of dummy nodes in attribute tree ΓExt .
rt Root of attribute tree Γ.
rt ′ Root of attribute tree Γ′.
LAtt Leaf node set related to attribute set Ψ.
L′Att Leaf node set related to attribute set Ψ′.
LDum Dummy node set of attribute tree Γ.
L′Dum Dummy node set of attribute tree Γ′.
L Leaf node set of attribute tree Γ, where L= LAtt +LDum.
L′ Leaf node set of attribute tree Γ′, where L′ = L′Att +L′Dum.
V The verifier.
M The message based on which Ui generates the signature.
δ Signature generated by user Ui based on attribute subset Ψ′ and message M.

44

Construction of ABA Schemes

revocation list. Let Ψi ⊂ Ψ be the attribute set owned by Ui and Ni = |Ψ|
be the number of attributes in Ψi. When Ui wants to obtain the attribute key
related to attribute att j (1 ≤ j ≤ Ni), the attribute authority interacts with Ui

to calculate Ti, j = At j
i and sends it to Ui. Then Ui’s private key set is USKi =<

Ai,xi,Ti,1, · · · ,Ti,Ni >.

5. Attribute tree generation (Scheme1.atg) This algorithm is carried out by
the attribute authority. Assume Ψ is the system attribute set. Then a cen-
tral attribute tree Γ based on Ψ can be created by applying the algorithm
Create CTree described in Subsection 4.2.2. Let rt be the root of attribute
tree Γ, LAtt (|LAtt | = |Ψ| = Na) be the attribute leaf node set and LDum

(Nd = |LDum|) be the dummy leaf node set. Compared with the algorithm
Create CTree, the only difference is the leaf node value assigning process.
Instead of using random secret numbers, the attribute authority assigns t j to
the related leaf node. The numbers assigned to dummy nodes are computed
the same as described in Subsection 4.2.2 and denoted by d j. Then the at-
tribute authority calculates gt j

2 based on all t j (1 ≤ j ≤ Na), and gdk
2 based on

all dk (1 ≤ k ≤ Nd). The public parameter set related to the central attribute
tree Γ is denoted by PTreeΓ =< gd1

2 , · · · ,gdND
2 >.

Signature generation and verification After the system setup phase, signers
and verifiers can generate and verify signatures now. Suppose M is the message
to be signed. The algorithm of signature generation and verification proceed as
follows:

1. Verifier: attribute requirement selection (Scheme1.ars) Let V be the ver-
ifier. V selects the attribute requirements and sends the selection result to
Ui.

2. Signer: signature generation (Scheme1.sg) After receiving the attribute re-
quirements from V , Ui first checks whether he or she possesses the required
attributes or not. If so, Ui decides the attribute set to use and continue. Oth-
erwise, the algorithm aborts. Assume the attribute set to be used is Ψ′ ⊂ Ψi

and N′a = |Ψ′|. Based on Ψ′, Ui runs algorithm Simpli f y CTree as described
in Subsection 4.2.2 and obtains the attribute subtree Γ′. Assume the attribute
and dummy leaf sets of attribute subset Γ′ are L′Att and L′Dum respectively and
L′ = L′Att +L′Dum. Then Ui computes 4 j, 4d j and its root value rt ′ as de-
scribed in Subsection 4.2.2. Next Ui calculates gd = ∏dk∈L′Dum(gdk

2)4dk . Then

45

Cryptographic Enforcement of Attribute-based Authentication

Ui randomly selects ζ ,α,β ,ε,rζ ,rα ,rβ ,rε ,rx, rδ1,rδ2 ∈ Z∗p and performs the
following calculations

C1 = uζ ,C2 = vβ ,C3 = Aihζ+β ,C4 = Aiwε ,CTj = Ti, jhα
j ,

δ1 = xiζ ,δ2 = xiβ ,R1 = urζ ,R2 = vrβ ,R4 =Crx
1 u−rδ1 ,

R5 =Crx
2 v−rδ2 ,R3 = e(C3,g2)

rxe(h,w)−rζ−rβ e(h,g2)
−rδ1

−rδ2 ,

RAtt =
e(∏att j∈Ψ′ h

4 j
j ,g2)

rα

e(w,rt ′/gd)rε
,

c = H(M,C1,C2,C3,C4,R1,R2,R3,R4,R5,RAtt) ∈ Z∗p,

sζ = rζ + cζ ,sβ = rβ + cβ ,sα = rα + cα,sε = rε + cε,sx = rx + cxi,

sδ1 = rδ1 + cδ1,sδ2 = rδ2 + cδ2.

Then the signature is δ =< M,C1,C2,C3,C4, c,CT1, · · · ,CT|N′a|,sζ ,sβ ,sα ,sε ,

sx,sδ1,sδ2,Ψ
′ >.

3. Verifier: signature verification (Scheme1.sv) After receiving the signature
δ from Ui, the first step for V is to check whether Ui and Ψ′ are revoked
or not. If not, V continues and otherwise it rejects the signature. Based on
Ψ′, V runs algorithm Simpli f y CTree described in Subsection 4.2.2 to get
the simplified tree Γ′. Then V computes the root value rt ′, 4 j, 4dk and
gd = ∏dk∈L′Dum(gdk

2)4dk . Next it calculates

R′1 = usζ C−c
1 ,R′2 = vsβ C−c

2 ,R′4 = u−sδ1Csx
1 ,R′5 = v−sδ2Csx

2 ,

R′3 = e(C3,g2)
sxe(h,w)−sζ−sβ e(h,g2)

−sδ1
−sδ2 (

e(C3,w)
e(g1,g2)

)c,

R′Att =
e(∏att j∈Ψ′ h

4 j
j ,g2)

sα

e(w,rt ′/gd)sε

 e(C4,rt ′/gd)

e(∏att j∈Ψ′CT4 j
j ,g2)

c

.

Finally, V checks whether c=H(M,C1,C2,C3,C4,R′1,R
′
2,R
′
3,R
′
4, R′5,R

′
Att) holds.

If so, V accepts the signature and Ui is authenticated. Otherwise V rejects the
signature.

Signature opening (Scheme1.so) Before opening the signature, the opener needs
to check whether the signature is valid or not. If it is valid, it computes Ai =

C3/(C
ε1
1 Cε2

2), where Ai is considered as Ui’s identity information.

46

Construction of ABA Schemes

4.4.4 Correctness Analysis

In this subsection, we analyze the correctness of Scheme 1.

Theorem 1. (Correctness) The construction of Scheme 1 proposed in Subsection
4.4.3 is correct, which means:

1. Tuple < R1,R2,R3,R4,R5,RAtt > equals to < R′1,R
′
2, R′3,R

′
4,R
′
5,R
′
Att >.

2. Ai =C3/(C
ε1
1 Cε2

2) holds.

Proof. 1) As described in the construction algorithm in Subsection 4.4.3, the veri-
fier computes the tuple < R′1,R

′
2,R
′
3,R
′
4, R′5,R

′
Att > as follows.

R′1 = usζ C−c
1 = urζ+cζ (uζ)−c = urζ = R1

R′2 = vsβ C−c
2 = vrβ+cβ (vβ)−c = vrβ = R2

R′3 = e(C3,g2)
sxe(h,w)−sα−sβ e(h,g2)

−sδ1
−sδ2 (

e(C3,w)
e(g1,g2)

)c

= e(C3,g2)
rx+cxie(h,w)−(rα+cα)−(rβ+cβ)e(h,g2)

−(rδ1
+cδ1)−(rδ2

+cδ2)(
e(C3,w)
e(g1,g2)

)c

= R3

(
e(C3,g2)

xie(h,w)−(α+β)e(h,g2)
−(δ1+δ2)

e(C3,w)
e(g1,g2)

)c

= R3

(
e(C3h−(α+β),wgxi

2)e(C3,w)−1 e(C3,w)
e(g1,g2)

)c

= R3
(
e(Ai,wgxi

2)(g1,g2)
−1)c

= R3

R′4 = u−sδ1Csx
1 = u−rδ1

−cδ1(uζ)rx+cxi = u−rδ1
−cζ xi(uζ)rx+cxi = u−rδ1 uζ rx

=Crx
1 u−rδ1 = R4

R′5 = v−sδ2Csx
2 = v−rδ2

−cδ2(vβ)rx+cxi = v−rδ2
−cβxi(vβ)rx+cxi = v−rδ2 vβ rx

=Crx
2 v−rδ2 = R5

In the following, we prove that

R′Att = RAtt

 e(Ai,rt ′/gd)

e(∏att j∈Ψ′ A
t j4 j
i ,g2)

c

.

For a leaf node x, let ind(x) be its index and Insib(x) be the index set of all x’s siblings
including x. We define Lx = ∏l∈Insib(x),l 6=ind(x)

−l
ind(x)−l , Pathx = {x,x1, · · · ,xn} and

4x = ∏z∈{Pathx−rt}Lz, where x1 = par(x), xi+1 = par(xi) (1≤ i≤ n−1) and xn =

47

Cryptographic Enforcement of Attribute-based Authentication

rt. Then for attribute tree Γ, equation ∑ j∈LAtti4 jt j +∑ j∈LDumi4d jd j = qrt(0) holds.
Therefore, we know that equations ∑ j∈L′Att4 jt j +∑ j∈L′Dum4d jd j = rt ′ and gd =

∏d j∈L′Dum(g
d j
2)
4d j hold, so we have

e(∏
j∈L′Att

At j4 j
i ,g2)e(∏

j∈L′Dum

Ad j4 j
i ,g2) = e(Art ′

i ,g2)

⇐⇒ e(∏
j∈L′Att

At j4 j
i ,g2)e(Ai,gd) = e(Ai,rt ′)

⇐⇒ e(∏
j∈L′Att

At j4 j
i ,g2) = e(Ai,rt ′/gd).

Based on the above equation, we have

R′Att =
e(∏att j∈Ψ′ h

4 j
j ,g2)

sα

e(w,rt ′/gd)sε

 e(C4,rt ′/gd)

e(∏att j∈Ψ′CT4 j
j ,g2)

c

=
e(∏att j∈Ψ′ h

4 j
j ,g2)

rα

e(w,rt ′/gd)rε

e(∏att j∈Ψ′ h
4 j
j ,g2)

cα

e(w,rt ′/gd)cε

 e(C4,rt ′/gd)

e(∏att j∈Ψ′CT4 j
j ,g2)

c

= RAtt

e(∏att j∈Ψ′ h
4 j
j ,g2)

α

e(w,rt ′/gd)ε

e(C4,rt ′/gd)

e(∏att j∈Ψ′CT4 j
j ,g2)

c

= RAtt

e(∏att j∈Ψ′ h
α4 j
j ,g2)

e(wε ,rt ′/gd)

e(wε ,rt ′/gd)

e(∏att j∈Ψ′ h
α4 j
j ,g2)

c e(Ai,rt ′/gd)

e(∏att j∈Ψ′ T
4 j

i, j ,g2)

c

= RAtt

 e(Ai,rt ′/gd)

e(∏att j∈Ψ′ T
4 j

i, j ,g2)

c

= RAtt

 e(Ai,rt ′/gd)

e(∏att j∈Ψ′ A
t j4 j
i ,g2)

c

.

Since e(∏ j∈LAtti At j4 j
i ,g2) = e(Ai,rt ′/gd), equation RAtt = R′Att holds. Therefore,

the tuple < R1,R2,R3,R4,R5,RAtt > equals to < R′1,R
′
2,R
′
3, R′4,R

′
5,R
′
Att >.

2) C3/(C
ε1
1 Cε2

2) = Aihζ+β/((uζ)ε1(vβ)ε2) = Ai.
From the above proof, we can see that Theorem 1 holds and thus the algorithm
presented in Subsection 4.4.3 is correct.

48

Construction of ABA Schemes

4.4.5 Adversary Model

Before describing and proving the security requirements of Scheme 1, we need to
introduce the adversary model. In this dissertation, we use random oracle [70–73]
to express the security requirements of all proposed ABA schemes formally. We
will use Scheme1 and .Oracle as the prefix and the suffix respectively to represent
the names of oracles.

• Scheme1.Syspara.Oracle: It represents system parameter oracle and al-
lows an adversary to query all parameters generated by algorithm Scheme1.spg
described in Subsection 4.4.2.

• Scheme1.Userkey.Oracle: It represents the user key oracle and allows an
adversary to query the secret key base bski of a user Ui by sending Ui’s index
i.

• Scheme1.Attkey.Oracle: It represents the attribute key oracle. An adver-
sary can send an attribute att j ∈Ψ (1 ≤ j ≤ Na), to query the system private
attribute key ask j related to att j. There is no need to query about apk j because
it is public.

• Scheme1.UserAttkey.Oracle: It represents the user attribute key oracle.
An adversary can send Ui’s index i and an attribute att j ∈ Ψ (1 ≤ j ≤ Na),
to query about Ui’s attribute key Ti, j related to attribute att j. If Ui does not
own the attribute att j, the oracle will reply with NULL. Otherwise, the oracle
replies with Ti, j.

• Scheme1.Signature.Oracle: It represents the signature oracle and allows
an adversary to obtain a user’s signature. The adversary sends message M,
Ui’s index i and the required attribute set Ψ′ to the signature oracle and will
be replied with a valid signature δ based on {M, i,Ψ′}.

• Scheme1.Opening.Oracle: It represents the signature opening oracle and
allows an adversary to obtain the signer’s index i by sending {M,δ ,Ψ′} to the
opening oracle.

In the following, we will use these oracles to describe the adversary’s abili-
ties and define the security requirements of anonymity and traceability. To define
anonymity, we first introduce a game named Scheme1.Game.Anonymity as fol-
lows.

49

Cryptographic Enforcement of Attribute-based Authentication

Scheme1.Game.Anonymity Assume A is an adversary with polynomially bounded
computational abilities [74]. This game consists of the following steps:

1. System setup: The system setup should be completed in this step by running
the algorithms Scheme1.spg, Scheme1.ukg, Scheme1.akg, Scheme1.uakg,
Scheme1.atg and Scheme1.ars. The adversary can obtain all public param-
eters.

2. Phase 1: In this phase, the adversary A is allowed to query all oracles de-
scribed above but is forbidden from querying Scheme1.Syspara.Oracle about
the tracing key tk. Otherwise, A can use tk to open signatures in the challenge
phase, which will make this game meaningless.

3. Challenge: The adversary A selects two indexes i0 and i1, a message M to-
gether with a selected attribute set Ψ′, and then sends them to the system. The
system replies with δb which is the signature generated based on {ib,M,Ψ′},
b ∈ {0,1}. One thing to notice is that this challenge should not have been
queried before.

4. Phase 2: The adversary A performs the same as described in phase 1 and A is
not allowed to query about the challenge described above.

5. Guess: The adversary A outputs its guess b′ ∈ {0,1}. If b equals to b′, A wins
the game. Otherwise, A fails.

Definition 8. (Anonymity of Scheme 1) Assume A is an adversary with polyno-
mially bounded computational abilities. If the probability that A wins the game
Scheme1.Game.Anonymity is negligible, then Scheme 1 provides anonymity.

Scheme1.Game.Traceability Assume A is an adversary with polynomially bounded
computational abilities. This game consists of the following steps:

1. System setup: The system setup should be completed in this step by running
the algorithms Scheme1.spg, Scheme1.ukg, Scheme1.akg, Scheme1.uakg,
Scheme1.atg and Scheme1.ars. The adversary can obtain all public param-
eters, the tracing key tk, users’ private key base list, the system private at-
tribute key set ASK and users’ private attribute keys. This adversary A is very
powerful. A can trace signers’ identity information as long as it is given valid
signatures.

50

Construction of ABA Schemes

2. Phase 1: In this phase, the adversary A is able to query all oracles described
above.

3. Challenge: The adversary decides to challenge now. It chooses the required
attribute set Ψ′, message M to be singed and Ui’s index i. Here Ui is the user
the adversary wants to impersonate.

4. Phase 2 The adversary A repeats phase 1, but A cannot query about the chal-
lenge described above.

5. Output: The adversary A forges a valid signature δ and sends it to the opener.
The opener opens the signature δ and gets the signer’s index i′. If Ui′ is not
registered in the system, the opener outputs 1 and A wins the game. Otherwise
the opener outputs 0 and A fails the game.

Definition 9. (Traceability of Scheme 1) Assume A is an adversary with polyno-
mially bounded computational abilities. If the probability that A wins the game
Scheme1.Game.Traceability is negligible, then Scheme 1 provides traceability.

4.4.6 Security Analysis

In this subsection, we prove that Scheme 1 satisfies the five security requirements
described in Subsection 4.4.1, i.e., anonymity, unforgeability, unlinkability, coali-
tion resistance and traceability. Before the proof, we first introduce some assump-
tions on which we base our proof.

Assumption 1. ([67, 68]) (q-SDH Assumption) Assume G1 and G2 are (multi-
plicative) cyclic groups with prime order p and |G1|= |G2|. For an algorithm A, if
|Pr[A(g1, g2,g

γ

2,g
γ2

2 , · · · ,gγq

2) = (g1/γ+x
1 ,x)]−1/|G1|| ≤ ε holds, we say that A has

a negligible advantage to solve q-SDH in (G1,G2) and then we can assume q-SDH
is hard.

Assumption 2. (DeLP Assumption) [20] Assume G is a (multiplicative) cyclic
group with prime order p. For an algorithm A, if |Pr[A(uα , vβ ,hα+β)= (uα ,vβ ,hc)]−
1/|G|| ≤ ε holds, we say that A has a negligible advantage to solve DeLP in G and
then we can assume DeLP is hard.

Assumption 3. (DLE Assumption) ([67]) If DeLP holds, we say that DLE is se-
mantically secure against chosen plaintext attack (CPA) or in-distinguishable cho-
sen plaintext attack (IND-CPA) secure.

51

Cryptographic Enforcement of Attribute-based Authentication

Assumption 4. (Forking Lemma) ([13]) Given only public data as input, if an
adversary A with polynomially bounded computation ability can find a valid sig-
nature (M,δ0,c,δ1) with non-negligible probability, then there exists a replay with
a different oracle, which can output a new valid signature (M,δ0,c′,δ ′1) with non-
negligible probability where c 6= c′.

Theorem 2. (Anonymity) Scheme 1 is fully anonymous if DLE is IND-CPA secure
under the same attribute set. More specifically, given Ai(0) and Ai(1) and the corre-
sponding signature δ1 and δ2, where δb =< M,C1,C2,C3(b),C4, c,CT1, · · · ,CT|N′A|,
sζ ,sβ ,sα ,sε ,sx,sδ1,sδ2,Ψ

′ >, b ∈ {0,1}. Given a random toss b ∈ {0,1}, if the
probability that an adversary A with polynomially bounded computation ability has
non-negligible advantage to guess the correct b, we say that Scheme 1 is not fully
anonymous. Otherwise, Scheme 1 is fully anonymous.

Proof. Suppose that adversary A can break the anonymity of Scheme 1. Then it
means A has a non-negligible advantage to guess the correct b in the above state-
ment. More precisely, given Ai(0) and Ai(1), the adversary A has a non-negligible
advantage to distinguish the tuple < C1,C2,C3(0) > from < C1,C2,C3(1) >, where
C1 = uζ , C2 = vβ , C3(0) = Ai(0)hζ+β and C3(1) = Ai(1)hζ+β . From Definition 6,
we know that < C1,C2,C3(b > is a DLE tuple. If A has the ability to distinguish
<C1,C2,C3(0) > from <C1,C2,C3(1) >, it means A can break DLE problem, and it
contradicts with Assumption 3. Thus it is impossible for A to distinguish δ0 from
δ1 with a non-negligible probability, and Scheme 1 is fully anonymous.

Theorem 3. (Traceability) Scheme 1 is fully traceable if q-SDH is hard in G1 and
G2. More specifically, if an adversary A with polynomially bounded computation
ability can find a valid signature δ =< M,C1,C2,C3,C4, c,CT1, · · · ,CT|N′A|,sζ ,sβ ,

sα ,sε ,sx,sδ1,sδ2,Ψ
′ >, then it can find a find a SDH pair and thus break the q-SDH

problem.

Proof. The proof is based on Forking Lemma. Suppose adversary A can forge a
valid signature δ =<M,δ0,c,δ1,δ2 >, where δ0 = {C1,C2,C3,C4}, c=H(M,C1,C2,

C3,C4,R1,R2,R3,R4,R5,RAtt) as computed during signature generation procedure
described in Subsection 4.4.3, δ1 = {sζ ,sβ , sα ,sε ,sx,sδ1,sδ2,Ψ

′}, and δ2 = {CT1, · · · ,
CTN′A

}. According to Assumption 4, we can extract a tuple < δ0,c′,δ ′1,δ2 > from
δ =< δ0,c,δ1,δ2 >, where c′ 6= c and δ ′1 6= δ ′2. Then based on < δ0,c′,δ ′1,δ2 > and
c′ 6= c and δ ′1 6= δ1, we can create a new SDH tuple denoted by < A′i,x

′ >, which is

52

Construction of ABA Schemes

presented as Theorem 5.3.5 in details in [13] and we will not repeat it here. If ad-
versary A can create a q-SDH pair without the knowledge of γ , it can break q-SDH
problem. It contradicts to Assumption 1 and thus Theorem 3 holds.

Among the above security requirements, unforgeability and coalition resistance
can be derived from traceability, and unlinkability can be derived from anonymity.
The general idea is as follows. Suppose S is a system that provides both anonymity
and traceability. If S is not secure against unforgeability, it means that an adversary
A can forge a valid signature δ on behalf of a valid user Ui. Similarly, if S is not
coalition resistant, an adversary A can corrupt a few users and then use their private
keys to generate a valid signature δ . In both cases, when δ is handed over to an
opener, the identity revealed is Ui instead of the real signer A. It contradicts with
“traceability” (Theorem 3) and thus both unforgeability and coalition resistance can
be inferred by traceability. Anonymity means that the system does not leak any
useful information about signers given their signatures. From the description of
unlinkability, we can see that it is also a kind of user identity information, meaning
that anonymity is a stronger security requirement than unlinkability. Therefore,
unlinkability can be deduced from anonymity.

4.5 ABA Scheme with One-time Attribute Trees

Scheme 1 proposed in Section 4.4 has brought the flexibility of generating different
attribute trees without regenerating attribute keys. However, Scheme 1 still has two
drawbacks. First of all, the flexibility described above is achieved by increasing
the costs of storage and computation for a big central attribute tree. The second
drawback is related to the representation ability of its attribute trees. Even though
different attribute subtrees can be obtained by simplifying the central attribute tree,
the simplified attribute trees have to be based on the central attribute tree.

To make it more clear, consider the example from Subsection 4.2.2. The central
attribute tree ΓExt is based on attribute set {att1, · · · ,att5} and the logic representa-
tion (att1∨att2)∨ (att3∧ (att4∧att5)). As shown in Fig. 4.3, based on the attribute
subset Ψi = {att1,att3} and the logic representation att1∨att3, the central attribute
tree ΓExt has been simplified and attribute subtree Γi has been built. Similarly, other
attribute subtrees based on different logic representations can also be achieved by
simplifying ΓExt , but there exists a limitation here. For instance, we can never get an
attribute subtree based on logic representation att1∧ att3 from ΓExt , which is built

53

Cryptographic Enforcement of Attribute-based Authentication

from the logic presentation (att1∨att2)∨ (att3∧ (att4∧att5)). As a result, we have
to rebuild another central attribute tree to get an attribute subtree related to logical
representation att1∧att3. This of course will require more storage and computation
resources.

In order to solve both of the above problems, we will propose an efficient ABA
scheme in this section such that it will be possible to generate new attribute trees
at any time point without regenerating attribute keys or other system parameters.
Since there is no need to store attribute trees that are built by this approach, we can
call this type of attribute trees one-time attribute trees.

4.5.1 General Idea of One-time Attribute trees

In Subsection 3.2, we discussed two types of ABA schemes, i.e., KP-ABA and
CP-ABA. Attribute keys generated in KP-ABA schemes partly depend on the re-
lations among attributes, while attribute keys in CP-ABA schemes are only based
on the attributes and independent of their relations. Scheme 1 proposed in Sec-
tion 4.4 has gained some flexibility and independence between attributes keys and
their relations, but this flexibility is still restricted as discussed at the beginning of
this chapter. If we go deeper into the technical details about how attribute trees
are generated, we can summarize the differences among attribute trees in KP-ABA
schemes, Scheme 1 and Scheme 2 (will be proposed later in this section) into the
following three aspects:

1. In KP-ABA schemes [13], an attribute tree Γ with root value rt is built first.
Attribute keys are generated based on the root value rt such that attribute keys
are bound to both attributes and their relations.

2. In KP-ABA schemes, attribute keys are generated based on an attribute tree.
However, attribute keys are generated first in Scheme 1, and then based on
these attribute keys, a large central attribute tree Γ is built. Next, different
attribute subtrees (denoted by Γi) can be obtained by simplifying this big cen-
tral attribute tree. Assume f and fi represent the logical statements expressed
by attribute trees Γ and Γi respectively. Then fi cannot be a random logical
statement but has to be deduced from f . Therefore, the flexibility of attribute
tree generation is limited.

3. In Scheme 2, attribute keys are also generated first (as in Scheme 1). The
difference is that we do not need to build a central attribute tree first and then

54

Construction of ABA Schemes

simplify it to obtain attribute subtrees later. Each time before authentication,
verifiers build a fresh attribute tree and it will be used only once. Therefore,
there is no need to store attribute trees and related parameters in the system.
This flexibility is achieved by using different underlying cryptographic primi-
tives during the signature generation and verification phase. More details will
be available in Subsection 4.5.3.

4.5.2 Building Blocks: Algorithms

Before describing the cryptographic construction of Scheme 2, we define its algo-
rithms to give a general idea how the scheme works.

• Scheme2.spg(k0)→ {MPK,MSK}: The algorithm for system parameter
generation takes system security parameter k0 as its input and outputs the
system public key set MPK and private key set MSK.

• Scheme2.akg(MPK,Ψ)→ {APKΨ,ASKΨ}: The algorithm for attribute
key generation takes the system public key set MPK and attribute set Ψ as
input and outputs the public attribute key set APKΨ and the private attribute
key set ASKΨ.

• Scheme2.ukg(MPK,MSK,Ui)→ bski: The algorithm for user key gen-
eration takes the system public key set MPK, private key set MSK and the
identity of Ui as input and outputs Ui’s private key base bski =< Ai,xi >,
where xi is a secret value based on which user Ui’s user key Ai is generated.

• Scheme2.uakg(MPK, Ai, Ψi)→ USKi: The algorithm for user attribute
key generation takes the system public key set MPK, Ui’s private key Ai and
its attribute key set Ψi as input and outputs Ui’s private attribute key set USKi.

• Scheme2.atg(Ψ′)→ {Γ′,PTreeΨ′}: This algorithm provides attribute tree
generation and is carried out by the verifier. It takes attribute set Ψ′ as input
and generates attribute tree Γ′ and related parameters PTreeΨ′ .

• Scheme2.sg(MPK,MSK, Γ, Ψ′, USKi, M)→ δ The algorithm for signa-
ture generation takes the system public and private key sets MPK and MSK,
attribute tree Γ, the selected attribute set Ψ′, Ui’s private key set USKi and
message M as input and outputs the related signature δ .

55

Cryptographic Enforcement of Attribute-based Authentication

• Scheme2.sv(M,δ , Ψ′)→ b: The algorithm for signature verification takes
message M together with its signature δ and the selected attribute set Ψ′ as
input to check whether the signature δ is valid or not. It outputs the checking
result b ∈ {0,1}.

• Scheme2.so(M,δ , Ψ′, tk)→ Ui: The algorithm for signature opening takes
message M together with its signature δ , the selected attribute set Ψ′ and the
tracking key tk as its input to trace the identity information of the signer Ui,
which is Ui’s index i here.

4.5.3 Scheme Construction

In this subsection, we introduce definitions that will be used in the construction of
Scheme 2. We explain important notation in Table. 4.2.

Definition 10. (Secure Keyed One-Way Hash Functions [75]) HK : {0,1}∗→ Z∗p
is a keyed hash function that generates a message digest of length m. HK is a secure
keyed one-way hash function if it satisfies the following properties:

1. Given K and message M, it is easy to compute HK(M).

2. Without the knowledge of K, it is difficult to recover M given HK(M) or to
compute HK(M) given M.

3. Without the knowledge of K, it is hard to find a pair of different messages M1

and M2 such that HK(M1) = HK(M2).

4. Given HK(M1) but without the knowledge of K, it is hard to find a different
message M2 such that HK(M1) = HK(M2).

Now, we provide detailed description of algorithms about how to cryptograph-
ically construct Scheme 2. Scheme 2 follows the workflow as the traceable ABA
schemes described in Subsection 3.2. It includes two phases, i.e., system setup and
signature generation, verification and possibly opening.

System setup First of all, the ABA system should be set up before signature
generation and verification. The system setup phase includes the following four
algorithms.

1. System parameter generation (Scheme2.spg) This algorithm is performed
by the central authority. Assume k0 is the security parameter, G1 and G2 are

56

Construction of ABA Schemes

Table 4.2: Notation for Scheme 2

Notations Description
k0 The system security parameter.
Z∗p The set of integers modulo p, where p is a large prime integer.
Gi (Multiplicative) cyclic group of prime order p, where 1≤ i≤ 2.
e e : G1×G1→ G2 is a bilinear map.
H H : {0,1}∗→ Z∗p is a hash function [69].
HK() A secure keyed one-way hash function with K as the key.
U U =<U1, · · · ,UNu > is the system user set.
Nu Nu = |U |, the number of users in U .
Ψ The system attribute set.
Ψi Ψi ⊂Ψ, attribute subset owned by Ui.
Ψ′ Ψ′ ⊂Ψi, attribute subset required by the signer.
Na Na = |Ψ|, the number of attributes in set Ψ.
Ni Ni = |Ψi|, the number of attributes in set Ψi.
MPK The system public parameter set.
MSK The system private parameter set.
bski The private key base of Ui and bski = {Ai,xi}.
apk j Public attribute key of attribute att j, where 1≤ j ≤ Na.
ask j Private attribute key of attribute att j, where 1≤ j ≤ Na.
Ti, j Ui’s private attribute key related to attribute att j.
APKΨ Public attribute key set related to attribute set Ψ.
ASKΨ Private attribute key set related to attribute set Ψ.
USKi Private key set of Ui.
Γ′ Attribute tree generated based on attribute set Ψ′.
L(Γ′) The leaf node set of attribute tree Γ′.
rt ′ Root of attribute tree Γ′.
ind(x) The index of node x.
V The verifier.
M The message based on which Ui generates the signature.
δ Signature generated by user Ui based on attribute subset Ψ′.
Kv The shared key between the verifier and the signer, computed by the verifier.
Ks The shared key between the verifier and the signer, computed by the signer.

57

Cryptographic Enforcement of Attribute-based Authentication

two multiplicative groups of prime order p and e : G1×G1→G2 is a bilinear
group. Assume DeLP and q-SDH are hard to solve in G1. DLP is hard to solve
in both G1 and G2. Select g1 ∈ G1 and g2 ∈ G2 as their generators. Select a
secure keyed one-way hash function HK : {0,1}∗ → Z∗p. Select h ∈ G1 and
ξ1,ξ2 ∈ Z∗p. Set u,v ∈ G such that uξ1 = vξ2 = h. Select x0 ∈ Z∗p as the top
secret. The system public key is MPK =< G1,G2,g1,g2,h,u,v,w0 = gx0 >

and the system private key is MSK =< x0,ξ1,ξ2 >. The pair < ξ1,ξ2 >

should be handed to the opener and will be used as the tracing key to open
signers’ signatures later.

2. Attribute key generation (Scheme2.akg) This algorithm is run by the at-
tribute authority. Assume the system attribute set is Ψ = {att1, · · · , attNa},
where Na = |Ψ| is the size of Ψ. For all att j (1 ≤ j ≤ Na) randomly se-
lect a value t j ∈ Z∗p as the secret attribute key ask j and compute apk j = gt j

1

as the public attribute key. The system public attribute key set is APKΨ =<

gt1
1 , · · · ,g

tNa
1 > and the system private attribute key set is ASKΨ =< t1, · · · , tNa >.

3. User key generation (Scheme2.ukg) This algorithm is carried out by the
attribute authority. Suppose the system user set is U =<U1, · · · ,UNu >, where
Nu = |U | and 1≤ i≤ Nu. For each user Ui (1≤ i≤ Nu), randomly select xi ∈
Z∗p and compute Ai = g1/(x0+xi)

1 . Then Ui’s private key base is bski =<Ai,xi >.
In a traceable ABA system, Ai should be registered in the opener’s database.

4. User attribute key generation (Scheme2.uakg) Assume Ψi is the attribute
subset owned by Ui and Ni = |Ψi| is the size of Ψi. For an attribute att j ∈Ψi

(1≤ j≤Ni), Ui’s private attribute key is computed as Ti, j = gxi
1 H(att j)

t j . Then
Ui’s private key set is denoted by USKi =< Ai,xi,Ti,1, · · · ,Ti,Ni >.

Signature generation and verification Once the ABA system is setup, the au-
thentication between the verifier and the signer can proceed as follows.

1. Verifier: attribute tree generation (Scheme2.atg) Assume the attribute set
required by the verifier is denoted by Ψ′ and the related attribute tree is
Γ′. The verifier randomly chooses α ∈ Z∗p and computes Kv = e(g1,w0)

α =

e(g1,g1)
αx0 . Based on Ψ′, the verifier builds the attribute tree Γ′ with rt ′ as

its root as described in Subsection 4.2.1 satisfying qrt(0) = α . Let L(Γ′) be
the leaf set of Γ′. For all y ∈ L(Γ′), compute Cy = gqy(0)

1 and C′y = H(y)qy(0).
The verifier sends {Γ′,gα

1 ,∀y ∈ L(Γ′) : Cy,C′y} to the signer.

58

Construction of ABA Schemes

2. Signer: signature generation (Scheme2.sg) Assume the signer is Ui and
Ui possesses all the required attributes, so we have Ψi ⊃ Ψ′. Since y is the
attribute leaf node in Γ′ and therefore there must be an attribute att j ∈ Ψi

(1 ≤ j ≤ Ni), corresponding to it. For the convenience of representation, we
will use y instead of att j in the following. After receiving the message from
the verifier, the signer calculates

DecryptNode(Ti, j,Cy,C′y,y) =
e(Ti, j,Cy)

e(apk j,C′y)
= e(g1,g1)

xiqy(0).

If x is an interior node, the algorithm DecryptNode proceeds as follows: for
all x’ children z, algorithm DecryptNode(Ti, j,Cy,C′y,y) is called and the out-
put is stored as Fz. Assume Sx is the subset of all x’s children z belonging to

Ψi and define ∆Sx,index(z) = ∏l∈{Sx−index(x)}
l

index(z)− l
. Then we have

Fx = ∏
z∈Sx

F
qz(0)∆Sx,ind(z)
z

= ∏
z∈Sx

(e(g1,g1)
xiqz(0))∆Sx,ind(z)

= ∏
z∈Sx

(e(g1,g1)
xiqparent(z)(ind(z)))∆Sx,ind(z)

=e(g1,g1)
xiqx(0).

The signer calls algorithm DecryptNode for the root and gets the result Frt ′ =

e(g1,g1)
αxi . Then it computes Ks = e(A−1

i ,gα
1)/Frt ′ = e(g1,g1)

x0α and uses
Ks to in signature generation later. Then the signer randomly selects ζ ,α,β ,rζ ,

rα ,rβ ,rx,rδ1 , rδ2 ∈ Z∗p and calculates

C1 = uζ ,C2 = vβ ,C3 = Aihζ+β ,δ1 = xiζ ,δ2 = xiβ ,

R1 = urζ ,R2 = vrβ ,R4 =Crx
1 u−rδ1 ,R5 =Crx

2 v−rδ2 ,

R3 = e(C3,g1)
rxe(h,w0)

−rζ−rβ e(h,g1)
−rδ1

−rδ2 ,

c = HKs(M,C1,C2,C3,R1,R2,R3,R4,R5) ∈ Z∗p,

sζ = rζ + cζ ,sβ = rβ + cβ ,sα = rα + cα,

sx = rx + cxi,sδ1 = rδ1 + cδ1,sδ2 = rδ2 + cδ2.

In the end, the signer sends the signature σ =< M,C1,C2,C3,c,sζ ,sβ ,sα ,

59

Cryptographic Enforcement of Attribute-based Authentication

sδ1,sδ2 > to the verifier.

3. Verifier: signature verification (Scheme2.sv) After receiving σ , the verifier
computes

R′1 =usζ C−c
1 ,R′2 = vsβ C−c

2 ,R′4 = u−sδ1Csx
1 ,R′5 = v−sδ2Csx

2 ,

R′3 =e(C3,g1)
sxe(h,w0)

−sζ−sβ e(h,g1)
−sδ1

−sδ2 (
e(C3,w0)

e(g1,g1)
)c.

At last, it checks whether the equation c=HKv(M,C1,C2,C3,R′1, R′2,R
′
3,R
′
4,R
′
5)

holds. If so, the verifier believes that the signer owns the required attributes
and accepts the signature, otherwise rejects it. In the above algorithms, the
verification of the signer’s attributes is realized by the security of the keyed
one-way hash function.

Signature opening (Scheme2.so) The opener uses its tracing key {ε1,ε2} to
compute Ai = C3/(C

ε1
1 Cε2

2), where Ai is considered as the identity information of
Ui.

4.5.4 Correctness Analysis

Theorem 4. (Correctness) The cryptographic construction of Scheme 2 proposed
in Subsection 4.5.3 is correct, which means:

1. Kv=Ks.

2. Ai =C3/(C
ε1
1 Cε2

2) holds.

3. Ri = R′i, where 1≤ i≤ 5.

Proof. 1) From the algorithm descriptions, we know that Kv = e(g1,g1)
x0α . As long

as the signer has the required attributes expressed by attribute tree Γ′, it can compute
Ks which also equals to e(g1,g1)

x0α .
2) C3/(C

ε1
1 Cε2

2) = Aihζ+β/((uζ)ε1(vβ)ε2) = Ai.
3) R′i (1≤ i≤ 5) are calculated as follows:

R′1 = usζ C−c
1 = urζ+cζ (uζ)−c = R1

R′2 = vsβ C−c
2 = vrβ+cβ (vβ)−c = R2

R′3 = e(C3,g1)
sxe(h,w0)

−sα−sβ e(h,g1)
−sδ1

−sδ2 (
e(C3,w0)

e(g1,g1)
)c

60

Construction of ABA Schemes

= e(C3,g1)
rx+cxie(h,w)−(rα+cα)−(rβ+cβ)e(h,g1)

−(rδ1
+cδ1)−(rδ2

+cδ2)(
e(C3,w)
e(g1,g1)

)c

= R3

(
e(C3,g1)

xie(h,w0)
−(α+β)e(h,g1)

−(δ1+δ2)
e(C3,w0)

e(g1,g1)

)c

= R3

(
e(C3h−(α+β),w0gxi

1)e(C3,w0)
−1 e(C3,w0)

e(g1,g1)

)c

= R3
(
e(Ai,w0gxi

1)(g1,g1)
−1)c

= R3

R′4 = u−sδ1Csx
1 = u−rδ1

−cδ1(uζ)rx+cxi = u−rδ1
−cζ xi(uζ)rx+cxi =Crx

1 u−rδ1 = R4

R′5 = v−sδ2Csx
2 = v−rδ2

−cδ2(vβ)rx+cxi = v−rδ2
−cβxi(vβ)rx+cxi =Crx

2 v−rδ2 = R5

From the above proof, we can come to the conclusion that Theorem 4 holds and the
cryptographic construction of Scheme 2 is correct.

4.5.5 Adversary Model

In this subsection, we introduce the adversary model for Scheme 2, and it is based
on random oracle. We will use Scheme2. as prefix and .Oracle as suffix to represent
these oracles. Details of these oracles are as follows.

• Scheme2.Syspara.Oracle: The system parameter oracle allows an adver-
sary to query parameters generated by algorithm Scheme2.spg described in
Subsection 4.5.2.

• Scheme2.Userkey.Oracle: An adversary can send Ui’s index i to query the
user key oracle about Ui’s secret key base bski.

• Scheme2.Attkey.Oracle: The attribute key oracle allows an adversary to
query private attribute keys. To query about the private attribute key of at-
tribute att j ∈Ψ (1≤ j≤Na), an adversary simply sends att j to the oracle and
the attribute key oracle will reply with ask j. There is no need to query about
apk j because it is public and is already known to the adversary.

• Scheme2.UserAttkey.Oracle: The user attribute key oracle allows an ad-
versary to query about a user’s private attribute keys. Assume the user and
the attribute the adversary wants to query are Ui and att j respectively, where
1≤ j ≤ Ni. To query about the private attribute key, the adversary sends Ui’s
index i and attribute att j to the oracle. The oracle will reply with Ti, j.

• Scheme2.Signature.Oracle: The signature oracle allows an adversary to
obtain a user’s signature. Assume the user is Ui, the message to be signed is M

61

Cryptographic Enforcement of Attribute-based Authentication

and the required attribute set is Ψ′. To query a signature based on {Ui,M,Ψ′},
the adversary sends {i,M,Ψ′} to the oracle and the signature oracle and it will
be replied with a valid signature δ based on {M, i,Ψ′}.

• Scheme2.Opening.Oracle: This oracle allows an adversary to query a
signer Ui’s index i. Assume the signature δ is generated by Ui based on
{M,Ψ′}. To query the index of Ui, the adversary sends {M,δ ,Ψ′} to the
opening oracle and it will be replied with i.

First, we define a game called Scheme2.Game.Anonymity. Next we will use
the above oracles to describe the adversary’s abilities and provide definitions of the
security requirements anonymity and traceability.

Scheme2.Game.Anonymity Assume A is an adversary with polynomially bounded
computational abilities. This game proceeds as follows.

1. System setup: At the very beginning, the system runs the algorithms Scheme2.
spg, Scheme2.akg, Scheme2.ukg and Scheme2.uakg to initiate the system. At
this stage, adversary A can obtain all public parameters.

2. Phase 1: At this phase, the adversary A is allowed to query all oracles de-
scribed above, with the exception that the tracing key tk should be kept secret
to the adversary. Otherwise, given a signature, the adversary can trace the
identity information of the signer and this game will make no sense at all.

3. Challenge: The adversary A decides to challenge now. It randomly selects
two indexes ib, b ∈ {0,1}, a message M and a attribute set Ψ′. The adversary
sends {ib,M,Ψ′} to the system. The system replies with signature δb, which
is computed based on {ib,M,Ψ′}, b ∈ {0,1}. This challenge should have not
been queried in phase 1.

4. Phase 2: The adversary A performs the same as described in phase 1. How-
ever, A is not allowed to query about the challenge described above.

5. Guess: The adversary A output its guess b′ ∈ {0,1}. If b equals to b′, A wins
the game. Otherwise, A fails.

Definition 11. (Anonymity of Scheme 2) Assume A is an adversary with polynomi-
ally bounded computational abilities. If the chance that A wins game Scheme2.Game.
Anonymity is negligible, then Scheme 2 provides anonymity.

62

Construction of ABA Schemes

Scheme2.Game.Traceability Assume the adversary is denoted by A with poly-
nomially bounded computational abilities. The game proceeds as follows.

1. System setup: This is the system initiation phase, which is performed by run-
ning the algorithms Scheme2.spg, Scheme2.akg, Scheme2.ukg and Scheme2.
uakg. The adversary can obtain all public parameters, the tracing key tk,
users’ private key base list, the system private attribute key set ASK and users’
private attribute keys. Since adversary A has obtained the tracing key in this
stage, it can behave like an opener now. Therefore, given a signature, A can re-
veal the identity information of the signer which is represented as the signer’s
index here.

2. Phase 1: In this phase, the adversary A is allowed to query all oracles that
have been described above.

3. Challenge: The adversary decides to challenge now. It chooses an attribute
requirement set Ψ′, message M to be singed and the index i of user Ui whom
it wants to impersonate.

4. Phase 2: The adversary A repeats phase 1, but A cannot query about the
challenge.

5. Output: The adversary tries to forge a valid signature δ based on {i,M,Ψ′}
and then sends it to the opener. The opener opens the signature δ and gets
the signer’s index i′. If Ui′ has not been registered in the system, the opener
outputs 1 and A wins the game. Otherwise the opener outputs 0 and A fails
the game.

Definition 12. (Traceability of Scheme 2) Assume A is an adversary with polyno-
mially bounded computational abilities. If the chance that the adversary A wins the
game Scheme2.Game.Traceability is negligible, then Scheme 2 provides traceabil-
ity.

4.5.6 Security Analysis

Theorem 5. (Anonymity) Scheme 2 is fully anonymous if DLE is IND-CPA se-
cure under the same attribute set. More specifically, given Ai(b) with their cor-
responding signatures σb =< M,C1,C2, C3(b),c,sζ ,sβ ,sα ,sδ1,sδ2 > and a random
toss b ∈ {0,1}, if an adversary A with polynomially bounded computation ability

63

Cryptographic Enforcement of Attribute-based Authentication

has a non-negligible advantage to guess the correct b, we say that the proposed
scheme is not fully anonymous. Otherwise, the scheme is fully anonymous.

Proof. If adversary A can break the anonymity of the proposed scheme, A should
have a non-negligible advantage to guess the correct b in the above statement. Given
Ai(0) and Ai(1), one of which is the real signer’s key, the adversary A has a non-
negligible advantage to differentiate two signatures σ0 and σ1 which are related to
Ai(0) and Ai(1) respectively. Therefore, A can distinguish the tuple <C1,C2,C3(0) >

from the tuple <C1,C2,C3(1) > with non-negligible advantage. From the construc-
tion of the proposed scheme, we know that < C1,C2,C3 > can be considered as a
DLE scheme with Ai as the message to be encrypted. According to Assumption 3,
we know that < C1,C2,C3 > is secure against a chosen-plaintext attack. However,
A can distinguish the tuple < C1,C2,C3(0) > from the tuple < C1,C2,C3(1) > with
non-negligible advantage. It contradicts with each other. Therefore, the proposed
scheme is fully anonymous.

Theorem 6. (Traceability) As long as the keyed one-way hash function H is colli-
sion resistant, Scheme 2 is fully traceable if given a valid signature σ =< M,C1,C2,

C3,c,sζ ,sβ ,sα ,sδ1, sδ2 >, 1) the opener can trace the identity of the signer and 2)
an adversary A cannot forge a valid signature σ ′.

Proof. We first prove the statement 1). According to the correctness analysis, we
know 1) can be proven. Next we prove the statement 2). It can be divided into
two situations: a) the adversary uses {M,C1,C2,C3,c, sζ ,sβ ,sα ,sδ1,sδ2} to gen-
erate c to obtain the same signature σ ; b) the adversary uses a different tuple
{M′,C′1,C′2,C′3,c′,s′ζ ,s

′
β
,s′α ,s

′
δ1
,s′

δ2
} to generate a valid but different signature σ ′.

For situation a), the adversary needs the right Kv or Ks. Since DLP is hard to solve
in G1, the adversary cannot compute α from gα

1 , and therefore it cannot compute Kv

via e(g1,g
x0
1)α . The only way left is to compute as the signer does. However, from

the algorithm described in Subsection 4.5.3, we can see that without the required
attribute keys, it is impossible to recover Ks either. Therefore, it is impossible for A
to generate the same signature σ . As a conclusion for situation b), without know-
ing the shared secret key Kv or Ks and given the security of keyed one-way hash
function, it is out of the ability of the adversary A to forge a valid signature σ ′.

64

Construction of ABA Schemes

4.6 Conclusions

In this chapter, we have proposed two cases, i.e., Scheme 1 and Scheme 2, to demon-
strate how cryptographically construct CP-ABA schemes. Both schemes are trace-
able and provides the possibility to build attribute trees dynamically. In Scheme
1, the dynamic is realized by the down-to-top attribute tree building approach ex-
plained in Subsection 4.2.2. In this approach, a big central attribute tree is built
first, based on which specific attribute subtrees can be obtained by simplifying the
central attribute tree. However, the storage and computation cost for this big cen-
tral attribute tree is high, which makes this approach more valuable in a dynamic
environment where attribute requirements change frequently. In addition, since the
specific attribute subtrees are based on the central attribute tree, not all specific at-
tribute subtrees can be obtained as described in the beginning of Subsection 4.5. To
overcome both disadvantages, Scheme 2 was proposed. It is different from Scheme
1, since the dynamic of Scheme 2 is based on the signature generation and verifi-
cation mechanism rather than merely the attribute tree building approach. By us-
ing this approach, different attribute trees can be generated for each authentication.
Therefore, there is no need to store attribute trees and thus it can save the storage
cost.

For both Scheme 1 and Scheme 2, we first defined necessary algorithms used
in both schemes and then demonstrated how to construct them. Next, we provided
correct analysis and the proofs of their security requirements. They are based on
random oracles and game theory. We begun with the introduction of necessary ora-
cles and then based on these oracles, we described the games related to anonymity
and traceability respectively. Finally, we presented the security requirements of
anonymity and traceability in both schemes as theorems with detailed proofs.

65

Cryptographic Enforcement of Attribute-based Authentication

66

Chapter 5

HABA Schemes

In Chapter 3, we discussed different types of ABA schemes, including HABA
schemes [24, 45]. In this chapter, we will focus on the hierarchies and their cryp-
tographically enforcement in HABA schemes. This chapter can be considered as
future development of the results from [22]. We start with reviewing related work
on attribute-related hierarchy. Since the use of hierarchies in ABA schemes is com-
paratively new but has already been well studied in ABE schemes [76–78], we will
survey recent research results on hierarchical attribute-based encryption (HABE),
compare it with ABA hierarchies and discuss how ABE hierarchies can be adopted
and implemented in HABA schemes. Next, we will demonstrate the construction
of two HABA schemes, of which one utilizes user-related hierarchies and the other
utilizes attribute-related hierarchies. In addition, we provide detailed analysis of
both schemes with respect to correctness and security requirements.

5.1 Related Work

To our best knowledge, research results on HABA schemes are quite limited so far.
Most work related to attribute-related hierarchies are based on HABE, and there
are only few results in hierarchical attribute-based access control (HABAC) [79].
ABE is a special type of public key encryption, where data are encrypted by a set
of attribute keys and only users with related decryption attribute keys can decrypt
the ciphertext. One goal of ABE is fine-grained data access and it is widely used
in cloud based services. Even though ABE and ABA schemes are different with
respect to, for example, their main goals and security requirements, they still have a
lot in common, such as attribute tree building and their fundamental cryptographic

67

Cryptographic Enforcement of Attribute-based Authentication

primitives.
In this subsection, we will survey on recent research on HABE [80] in the rest

of this section. ABE schemes can be divided into two types, KP-ABE [81–83] and
CP-ABE [84, 85]. As shown in Fig. 5.1a, attribute keys generated in KP-ABE are
associated with AC policies and data are encrypted according to descriptive sets of
attributes [86]. Therefore, only users possessing attribute keys required by specific
policies can decrypt the ciphertext. The situation for CP-ABE is different and can
be described as Fig. 5.1b. Attribute keys are merely associated with attributes while
data are encrypted according to access policies. HABE can be built either based on
KP-ABE or CP-ABE schemes, so we will not classify whether the surveyed HABE
schemes are KP-ABE or CP-ABE in the following.

(a) KP-ABE

(b) CP-ABE

Figure 5.1: CP-ABE and KP-ABE

There are mainly four types of hierarchies in ABE schemes, including delega-
tion [45, 87–89], hierarchical structures of attributes [90], hierarchical structures of
users [91] and hierarchical security classes [77]. In a delegation ABE system [88],

68

HABA Schemes

users are allowed to have the ability to generate attribute secret keys for other users,
which can enable a more fine-grained access control in a large scale system. The
hierarchical HABE scheme proposed in [90] is based on a hierarchical structure of
attributes. It has introduced the concept of attribute “cover”. In a system with n at-
tribute trees, all attributes are divided into n trees with roots ω10, · · · , ωn0. Assume
that an attribute ω is from the ith tree and its depth is k, which means that the path
from root ωi0 to ω is of length k. The path can be denoted by (ωi0,ωi1, · · · ,ωik),
where ωik = ω . It is said that ω covers ω ′ with the path (ω ′j0,ω

′
j1, · · · ,ω ′jk) if

ωiδ = ω ′jδ holds for 0 ≤ δ ≤ k. Based on this tree hierarchy, the technology of
hierarchical identity-based encryption (HIBE) is brought in and combined with se-
cret sharing to achieve the proposed HABE scheme. Refer to [90] for more details.
In [91], authors proposed a hierarchical attribute-set-based encryption (HASBE)
scheme for cloud computing. In this scheme, users are organized in a hierarchi-
cal structure. There is a trust authority by which several domain authorities can
be authorized. Both data owners and users are authorized by domain authorities
with several discrete attributes or sets of attributes or both. By implementing this
compound attribute authorization approach and user hierarchy structure, the scheme
can gain more flexibility in attributes authorization as well as user revocation. Au-
thors in [77] have described a scenario in the cloud as follows. As described in
Fig. 5.2, documents are encrypted by key K2 and then the encrypted documents
are outsourced on the cloud servers. When general managers edit the documents,
the edited segments are encrypted by key K1. Similarly, document segments edited
by bosses are encrypted by key K0. Assume the hierarchical relation of these three
keys can be represented by K2 ≤ K1 ≤ K0, where K2 is a child node of K1 and sim-
ilar for K1 and K0. According to the hierarchical relations described above, bosses
can browse all content of the document, while general managers can only access
those encrypted documents by either K2 or K1. The situation described above can
be viewed as an application of classed security for attribute keys. Based on this sce-
nario, authors of [77] proposed a practical document sharing scheme by combining
ABE and hierarchical key management.

Except for HABE schemes, hierarchies have also been studied in several other
attribute-based schemes, for example, a combination of HABAC with ABA in [24].
The schemes proposed in [24, 55] can be considered as a modified version of
user-related HABE schemes. Authors of [79] proposed a hierarchical group and
attribute-based access control (HGABAC) model, which is a combination of hier-
archical group authentication and ABAC. The object group hierarchy allows users

69

Cryptographic Enforcement of Attribute-based Authentication

Figure 5.2: A scenario of classed security

to be categorized into collections of similar objects. Meanwhile, common attributes
can be applied to the whole groups, which can therefore reduce work overhead. In
addition, the model provides novel approaches to represent traditional models in an
ABAC framework, such as discretionary access control (DAC) [92–94], mandatory
access control (MAC) [95–97] and RBAC [98–102]. However, this work provides a
definition of a HABAC model rather than cryptographic construction, which differs
from our main focus in this chapter.

5.2 Motivations

There are some large-scaled virtual organizations which are collections of co-
operating organizations. For the convenience of data sharing and better cooperation,
they are united as a large-scaled virtual organization. However, on the one hand, or-
ganizations still need to manage and have control over their own departments and
employees. On the other hand, it is more natural that employees in the same de-
partment are authorized with several common attributes. In addition, the chance
that they can access the same resources is comparatively high. Given the above rea-
sons, we can divide different organizations as different domain authorities, which
can also authorize lower-leveled domain authorities. All domain authorities can
authorize and manage users. This idea is practical and quite intuitive.

Another scenario is similar to the classed security (described in Fig. 5.2) for at-

70

HABA Schemes

tribute keys. Data are not always of the same importance or credential levels. Some
data are public and can be viewed by every user on the Internet. However, some
may be highly classified. For some highly classified data, before a user is allowed
to access them, it is not enough to merely show that he possesses the required at-
tributes but also he should show that his attribute keys are authorized with a certain
privilege level. Only if the privilege level is equal to or above the required privilege
level of the data, he can be granted with the right to access the data.

Based on the above two types of usage scenarios, we will study two types of
HABA schemes and their cryptographic construction in this chapter, which are user-
related and attribute-related HABA respectively. However, the meanings of user-
and attribute-related for ABA schemes described in this dissertation differ from
those we have discussed above for ABE schemes. The details will be explained
later. In Sections 5.3 and 5.4, we will provide one example for each type of HABA
schemes to demonstrate how to cryptographically construct them. Moreover, we
will thoroughly analyze both schemes, including correctness and security analysis.

5.3 Case Study 1: A User-related HABA Scheme

In the rest of this dissertation, we will use Scheme 3 to denote the user-related
HABA scheme presented in this section. In Scheme 3, users are organized in a
hierarchical structure. Similar to organizations and departments in a large-scaled
virtual organization, authorities that manage users are divided into different domain
authorities of different levels. Authorities of a higher level can authorize authorities
of a lower level. Scheme 3 follows the workflow described in Subsection 3.1.4. Its
main idea can be illustrated as Fig. 5.3 and the details are expressed as follows.

1. The authority of level 0 is a trusted authority and the rest are domain authori-
ties.

2. The trusted authority has the highest privilege and the level N authorities have
the lowest privilege.

3. Authorities of level i (1 ≤ i ≤ N) can only be authorized by an authority of
level i−1.

4. The trusted authority can only authorize domain authorities rather than users,
while all domain authorities are able to authorize both users and domain au-
thorities of a lower level.

71

Cryptographic Enforcement of Attribute-based Authentication

Figure 5.3: Structure of user-related HABA schemes

5. Users can be authorized by different domain authorities only in their autho-
rization domains.

6. We will use Auth0 and Authi (1≤ i≤ N) to denote the trusted authority (level
0) and domain authorities of level i respectively.

By implementing the HABA structure described above, data owners cannot only
define authentication attribute requirements but also specify that only users belong-
ing to a specific domain authority can be authenticated. Therefore, the authentica-
tion can be more fine-grained and more flexible.

5.3.1 Building Blocks: Algorithms

To gain a big view of Scheme 3, we will first define all building blocks.

• Scheme3.spg(k0)→ {MPK,MSK}: This algorithm is performed by the
trusted authority to generate system parameters. Its input is the system secu-
rity parameter k0 and its output consists of the system public key set MPK
and private key set MSK.

72

HABA Schemes

• Scheme3.akg(MPK,Ψ)→ {APKΨ,ASKΨ}: This algorithm is performed
by the attribute authority to generate system attribute keys. Its input is the
system public key set MPK and the system attribute set Ψ. Its output is the
public attribute key set APKΨ and the private attribute key set ASKΨ.

• Scheme3.auth1(MPK)→ {PKAuth1,SKAuth1}: This algorithm is per-
formed by the trusted authority to authorize domain authorities of level 1, i.e.,
Auth1. Its input is the system public key set MPK and its output is Auth1’s
public key set PKAuth1 and private key set SKAuth1 .

• Scheme3.authi(MPK, PKAuthi−1,SKAuthi−1) → {PKAuthi,SKAuthi}: This
algorithm is performed by domain authority Authi−1 (1≤ i≤ N) to authorize
domain authorities of level i (Authi). When i equals to 1, it means that domain
authority Auth1 is authorized by the trusted authority Auth0. Its input is the
system public key set MPK, Authi−1’s public key set PKAuthi−1 and private
key set SKAuthi−1 . Its output is Authi’s public key set PKAuthi and private key
set SKAuthi .

• Scheme3.ukg(MPK,PKAuthi,SKAuthi,Uk)→ bskk: This algorithm is per-
formed by domain authority Authi to generate user keys for Uk. Its input is the
system public key set MPK, public key set PKAuthi and private key set SKAuthi

of domain authority Authi and the identity of Uk. Its output is Uk’s private key
base bskk =< Ai,k,uk >.

• Scheme3.uakg(MPK,Ai,k, Ψk)→ USKk: This algorithm is performed by
the attribute authority to generate users’ attribute keys. Its input is the system
public key set MPK, Uk’s private key Ai,k and its attribute set Ψk. Its output
is Uk’s private attribute key set USKk.

• Scheme3.atg(Ψ′)→{Γ′,PTreeΨ′}: This algorithm is performed by the ver-
ifier to generate an attribute tree based on the selected attribute set Ψ′. Its in-
put is attribute set Ψ′. Its output is attribute tree Γ′ with its related parameters
PTreeΨ′ .

• Scheme3.sg(MPK,MSK, Γ′, Ψ′, USKk, M)→ δ This algorithm is per-
formed by the user Uk to generate a signature. Its input is the system public
and private key sets MPK and MSK, attribute tree Γ′, selected attribute set Ψ′,
Uk’s private key set USKk and the message M. Its output is signature δ .

73

Cryptographic Enforcement of Attribute-based Authentication

• Scheme3.sv(M,δ , Ψ′)→ b (b ∈ {0,1}): This algorithm is performed by
the verifier to check whether the signature δ is valid. Its input is message M
together with its signature δ and the selected attribute set Ψ′. Its output is the
checking result b ∈ {0,1}.

• Scheme3.so(M,δ , Ψ′, tk)→Uk: This algorithm is performed by the opener
to retrieve the signer’s identity out of the signature δ . Its input is the message
M together with its signature δ , the selected attribute set Ψ′ and the opener’s
tracing key tk. Its output is the signer Uk’s index k.

5.3.2 Scheme Construction

The basic cryptographic primitives for which Scheme 3 are the same for Scheme 1
and Scheme 2. We will utilize the top-to-down approach to generate attribute trees
as explained in Subsection 4.2.1. More details can be found in Chapter 4. In the
rest of this subsection, we will use the user-related structure described in Fig. 5.3
to explain the cryptographic construction of Scheme 3. The whole process consists
of two parts: 1) system setup and 2) signature generation, verification and opening.
Important notations in Scheme 3 and their meanings are listed in Table 5.1. The
algorithm details are given below.

System setup There are five types of authorities in the system: the trusted
authority, domain authorities, the attribute authority responsible for attribute key
generation, the revocation authority that manages revocation information and the
opener that traces signers’ identities. The path from the authority of level N to the
top authority (illustrated in Fig. 5.3) will be used as an example to demonstrate how
to construct a user-related HABA scheme. The system setup includes five phases
and can be described as follows.

1. System parameter generation (Scheme3.spg) This phase is performed by
the trusted authority Auth0. Assume k0 is the system security parameter,
and G1, G2 are two multiplicative groups of prime order p with g1 ∈ G1

and g2 ∈ G2 as their generators respectively. Let e : G1 ×G1 → G2 be a
bilinear mapping. Assume DeLP is hard to solve in G1. DLP is hard to
solve in both G1 and G2. Select h ∈ G1 and ξ1,ξ2 ∈ Z∗p and set u,v ∈ G1

such that uξ1 = vξ2 = h. Select x0,β0 ∈ Z∗p as the top secret and com-

pute w0 = gx0
1 , f0 = g1/β0

1 and h0 = gβ0
1 . The public key set of Auth0 is

MPK =<G1,G2,g1,g2,h,u,v, f0,h0,w0 > and the private key set is MSK =<

74

HABA Schemes

Table 5.1: Notation for Scheme 3

Notations Description
k0 The system security parameter.
Z∗p The set of integers modulo p, where p is a large prime integer.
Gi (Multiplicative) cyclic groups of prime order p, where 1≤ i≤ 2.
e e : G1×G1→ G2 is a bilinear map.
H H : {0,1}∗→ Z∗p is a hash function [69].
HK() A secure keyed one-way hash function with K as the key.
N The total number of levels of domain authorities.
Auth0 The trusted authority and its level is 0.
Authi Domain authority of level i (1≤ i≤ N).
U U =<U1, · · · ,UNu > is the system user set.
Nu Nu = |U |, the number of users in U .
Ψ System attribute set.
Ψk Ψk ⊂Ψ, attribute subset owned by Uk (1≤ k ≤ Na).
Ψ′ Ψ′ ⊂Ψi, attribute subset required by the signer.
Na Na = |Ψ|, the number of attributes in attribute set Ψ.
Nk Nk = |Ψk|, the number of attributes in attribute set Ψk.
MPK The system public parameter set, or the public key set of the trusted authority.
MSK The system private parameter set, or the private key set of the trusted authority.
PKAuthi The public key set of domain authority Authi, 1≤ i≤ N.
SKAuthi The private key set of domain authority Authi, 1≤ i≤ N.
bskk The private key base of Uk. It is authorized by domain authority Authi and denoted

by bskk = {Ai,k,uk}.
apk j Public attribute key of attribute att j, where 1≤ j ≤ Na.
ask j Private attribute key of attribute att j, where 1≤ j ≤ Na.
Tk, j Uk’s private attribute key of attribute att j.
APKΨ Public attribute key set related to attribute set Ψ.
ASKΨ Private attribute key set related to attribute set Ψ.
USKk Private key set of user Uk.
Γ′ Attribute tree generated based on attribute set Ψ′.
L(Γ′) The leaf node set of attribute tree Γ′.
rt ′ The root of attribute tree Γ′.
ind(x) The index of node x.
par(z) The parent node of node z.
V The verifier.
M The message based on which Ui generates the signature.
δ Signature generated by user Ui based on attribute subset Ψ′.
Kv The shared key between the verifier and the signer, computed by the verifier.
Ks The shared key between the verifier and the signer, computed by the signer.

75

Cryptographic Enforcement of Attribute-based Authentication

x0,β0,ξ1,ξ2 >, where the pair < ξ1,ξ2 > is handed to the opener as its tracing
key tk.

2. Attribute key generation (Scheme3.akg) Assume the system attribute set
is Ψ = {att1, · · · , attNa}, where Na = |Ψ|. For each attribute att j, the at-
tribute authority selects a random value t j ∈ Z∗p as the private attribute key
ask j and computes apk j = gt j

1 . The system public attribute key is APKΨ =<

gt1
1 , · · · ,g

tNa
1 > and the system private attribute key is ASKΨ =< t1, · · · , tNa >.

3. The authorization of domain authorities (Scheme3.authi) This phase is
carried out by domain authority Authi−1. Suppose the domain authority to
be authorized is denoted by Authi (1 ≤ i ≤ N). To authorize Authi, Authi−1

randomly selects xi ∈Z∗p and computes Ai =Ai−1 f xi
0 = g(x0+···+xi)/β0

1 and wi =

gxi
1 . The public key set of Authi is PKAuthi =< G1,G2,g1,g2,wi > and the

private key set of Authi is SKAuthi =< xi,Ai >.

4. User key generation (Scheme3.ukg) Suppose the user group Authi manager
is U =< U1, · · · ,UNu >, where Nu = |U | and 1 ≤ k ≤ Nu. For each user Uk

(1 ≤ k ≤ n), Authi randomly selects uk ∈ Z∗p and computes Ai,k = Ai f uk
0 =

g(x0+···+xi+uk)/β0
1 . In a traceable ABA scheme, Ai,k should be registered in the

opener’s database. Uk’s private key base is uskk =< uk,Ai,k >.

5. User attribute key generation (Scheme3.uakg) In this phase, the user inter-
acts with the attribute authority to generate its private attribute keys. For
att j ∈ Ψk owned by Uk, Uk’s private attribute key is computed as Tk, j =

AiH(att j)
t j = g(x0+···+xi+uk)/β0

1 H(att j)
t j .

Signature generation and verification Once the system is set up, data owners
can define their own authentication requirements, which will be implemented by
cloud servers to authenticate users who want to access data.

1. Verifier: attribute tree generation (Scheme3.atg) Assume the attribute set
the verifier requires is Ψ′ and the signer to be authenticated should be autho-
rized by Authi (1≤ i≤N), which is authorized by Authi−1 and so forth until it
reaches the trusted authority Auth0. To generate an attribute tree, the verifier
first randomly selects a secret α ∈Z∗p. Then the verifier constructs an attribute
tree Γ′ with α as its root value as described in Subsection 4.2.1. Assume the
root of Γ′ is rt ′. Let L(Γ′) be the leaf node set of the attribute tree Γ′. The
verifier computes ∀y ∈ L(Γ′),Cy = gqy(0)

1 and C′y = H(y)qy(0). Meanwhile, the

76

HABA Schemes

verifier computes Ks = (e(f0,g
x0
1) · · ·e(f0,g

xi
1))

α
= e(g1,g1)

(x0+···+xi)α/β0 . In
the end, the verifier sends {Γ′,gα

1 ,∀y ∈ L(Γ′) : Cy,C′y} to the signer.

2. Signer: signature generation (Scheme3.sg) Assume the attribute set owned
by the signer is Ψk and it satisfies Ψ ⊃Ψk ⊃Ψ′. For each leaf node y of Γ′,
there must be an attribute att j ∈ Ψk (1 ≤ j ≤ Nk) corresponding to it. After
the signer receives the message from the verifier, it computes

DecryptNode(Tk, j,Cy,C′y,y)

=
e(Tk, j,Cy)

e(apk j,C′y)

= e(g1,g1)
(x0+···+xi+uk)qy(0)/β0,

where we use y instead of att j for simplicity.

If x is an interior node, algorithm DecryptNode(Tk, j,Cy,C′y,y) proceeds as
follows: for all x’ children z, algorithm DecryptNode(Tk, j,Cy,C′y,y) is called
and the output is stored as Fz. Assume Sx is the subset of all x’s children z

belonging to Ψk. We define ∆Sx,ind(z) = ∏l∈{Sx−ind(x)}
l

ind(z)− l
. Then we

have

Fx = ∏
z∈Sx

F
qz(0)∆Sx,ind(z)
z

= ∏
z∈Sx

(e(g1,g1)
(x0+···+xi+uk)qz(0)/β0)∆Sx,ind(z)

= ∏
z∈Sx

(e(g1,g1)
(x0+···+xi+uk)qparent(z)(ind(z))/β0)∆Sx,ind(z)

=e(g1,g1)
(x0+···+xi+uk)qx(0)/β0.

The signer calls algorithm DecryptNode(Tk, j,Cy,C′y,y) for the root rt ′ and
gets the result Frt ′ = e(g1,g1)

(x0+···+xi+uk)α/β0 . Next the signer computes
Ks = Frt ′/e(f uk

0 ,gα
1) = e(g1,g1)

(x0+···+xi)α/β0 = Kv. Then the signer randomly
selects ζ ,α,β ,rζ ,rα ,rβ , rk,rδ1 ,rδ2 ∈ Z∗p and calculates

C1 = uζ ,C2 = vβ ,C3 = Ai,khζ+β ,

δ1 = ukζ ,δ2 = ukβ ,

R1 = urζ ,R2 = vrβ ,R4 =Crk
1 u−rδ1 ,R5 =Crk

2 v−rδ2 ,

R3 = e(C3,g1)
rke(h,wi)

−rζ−rβ e(h,g1)
−rδ1

−rδ2 ,

77

Cryptographic Enforcement of Attribute-based Authentication

c = HKs(M,C1,C2,C3,R1,R2,R3,R4,R5) ∈ Z∗p,

sζ = rζ + cζ ,sβ = rβ + cβ ,sα = rα + cα,

sk = rk + cuk,sδ1 = rδ1 + cδ1,sδ2 = rδ2 + cδ2.

Finally, the signer sends the signature σ =< M,C1,C2, C3,c,sζ ,sβ ,sα ,sk,

sδ1,sδ2 > to the verifier.

Verifier: signature verification (Scheme3.sv) The verifier computes

R′1 =usζ C−c
1 ,R′2 = vsβ C−c

2 ,

R′4 =u−sδ1Csk
1 ,R′5 = v−sδ2Csk

2 ,

R′3 =e(C3,g1)
ske(h,wi)

−sζ−sβ e(h,g1)
−sδ1

−sδ2 (
e(C3,wi)

e(g1,g1)
)c

and checks whether c = HKv(M,C1,C2,C3,R′1,R
′
2,R
′
3, R′4,R

′
5) holds. If so, the

verifier believes that the signer owns the required attributes and accepts the
signature, or otherwise rejects it.

Signature Opening (Scheme3.so) This phase is performed by the opener. If the
revealing of signer’s identity is required, the opener computes Ai,k = C3/(C

ε1
1 Cε2

2).
Next the opener searches items in its database and compare them with Ai,k. If there
is an item that equals to Ai,k, it returns the index k of user Uk.

5.3.3 Correctness Analysis

In this subsection, we analyze the correctness of Scheme 3.

Theorem 7. (Correctness) The construction of Scheme 3 proposed in Subsection
5.3.2 is correct, that is, the following three equations are satisfied:

1. Kv=Ks,

2. Ri = R′i, where 1≤ i≤ 5, and

3. Ai,k =C3/(C
ε1
1 Cε2

2) holds.

Proof. 1) From the construction algorithm in Subsection 5.3.2, we know that as
long as the signer has the required attributes described in attribute tree Γ′, it can
compute Ks which also equals to Kv = e(g1,g1)

(x0+···+xi)α/β0 .

78

HABA Schemes

2) R′i (1≤ i≤ 5) are calculated as follows:

R′1 = usζ C−c
1 = urζ+cζ (uζ)−c = R1

R′2 = vsβ C−c
2 = vrβ+cβ (vβ)−c = R2

R′3 = e(C3,g1)
ske(h,wi)

−sα−sβ e(h,g1)
−sδ1

−sδ2 (
e(C3,wi)

e(g1,g1)
)c

= e(C3,g1)
rk+cuke(h,wi)

−(rα+cα)−(rβ+cβ)e(h,g1)
−(rδ1

+cδ1)−(rδ2
+cδ2)(

e(C3,wi)

e(g1,g1)
)c

= R3

(
e(C3,g1)

uke(h,wi)
−(α+β)e(h,g1)

−(δ1+δ2)
e(C3,wi)

e(g1,g1)

)c

= R3

(
e(C3h−(α+β),wig

uk
1)e(C3,wi)

−1 e(C3,wi)

e(g1,g1)

)c

= R3
(
e(Ai,wig

uk
1)(g1,g1)

−1)c
= R3

R′4 = u−sδ1Csk
1 = u−rδ1

−cδ1(uζ)rk+cuk

= u−rδ1
−cζ uk(uζ)rk+cuk =Crk

1 u−rδ1 = R4

3) C3/(C
ε1
1 Cε2

2) = Ai,khζ+β/((uζ)ε1(vβ)ε2) = Ai,k.

5.3.4 Adversary Model

Similar to presentation in Chapter 4, the adversary model for Scheme 3 is also
based on random oracle and game theory. A is an adversary with polynomi-
ally bounded computational abilities and is allowed to query oracles in games
Scheme3.Game.Anonymity and Scheme3.Game.Traceability that are to be de-
scribed later in this subsection. We use Scheme3. as prefix and .Oracle as suffix to
represent these oracles.

• Scheme3.Syspara.Oracle: This oracle allows the adversary A to query pa-
rameters generated by algorithm Scheme3.spg described in Subsection 5.3.2.

• Scheme3.Userkey.Oracle: This oracle allows the adversary A to query
about users’ secret key base. To query Uk’s secret key base uskk, A simply
sends Uk’s index k to the oracle and the oracle will reply with Uk’s user key
base bskk.

• Scheme3.Attkey.Oracle: This oracle allows the adversary A to query pri-
vate attribute keys by sending the attribute att j ∈Ψ (1≤ j≤Na) to the oracle,

79

Cryptographic Enforcement of Attribute-based Authentication

and the oracle will reply with ask j. It is unnecessary to query apk j because it
is a public parameter.

• Scheme3.Auth.Oracle: This oracle allows the adversary A to query pa-
rameters about domain authority Authi by sending the index of the domain
authority, which is denoted by i here.

• Scheme3.UserAttkey.Oracle: This oracle allows the adversary A to query
users’ private attribute keys. To query Uk’s private key related to attribute att j

(1 ≤ j ≤ Ni), A sends Uk’s index k and attribute att j to the oracle, and the
oracle will reply with Tk, j.

• Scheme3.Signature.Oracle: The signature oracle allows the adversary A
to obtain a user Uk’s signature by sending Uk’s index k, message M to be
encrypted and the selected attribute set Ψ′. The oracle will reply with a valid
signature δ based on {M,k,Ψ′}.

• Scheme3.Opening.Oracle: This oracle allows the adversary A to query the
signer’s index by sending {M,Ψ′,δ}, where M is the message to be signed,
Ψ′ is the selected attribute set and δ is the signature generated based on M
and Ψ′. The oracle will reply with the signer’s index k.

Based on the above oracles, we have the following game which is named as
Scheme3.Game.Anonymity and the game proceeds as follows.

1. System setup: The system is initiated by running the algorithms
Scheme3.spg, Scheme3.akg, Scheme3.authi, Scheme3.ukg, and
Scheme3.uakg. The adversary A can obtain all public parameters after
the system initiation is completed.

2. Phase 1: The adversary A can queries all oracles described above in phase
1, but A cannot gain any knowledge of the tracing key tk. Otherwise, A
can behave like an opener and trace signers’ identities, which will make this
anonymity game meaningless.

3. Challenge: The adversary A randomly selects two indexes ib (b ∈ {0,1}),
a message M and an attribute set Ψ′. Next A sends {ib,M,Ψ′} to start the
challenge. Then A gets response with a signature δb (b ∈ {0,1}) which is
computed based on {ib,M,Ψ′} (b ∈ {0,1}). The most important is that this
challenge cannot have been queried in phase 1.

80

HABA Schemes

4. Phase 2: The behavior of adversary A in this phase is the same as described in
phase 1, with the exception that A is not allowed to query about the challenge
described above.

5. Guess: The adversary A shows its guess b′ ∈ {0,1}. If b = b′ holds, A wins
the game and otherwise it fails.

Definition 13. (Anonymity of Scheme 3) Scheme 3 provides anonymity if the prob-
ability that an adversary A with polynomially bounded computational abilities can
win the game Scheme3.Game.Anonymity is negligible.

Next we introduce the traceability game of Scheme 3, which is denoted by
Scheme3.Game.Traceability and the game proceeds as follows.

1. System setup: The system initiation is performed by running the al-
gorithms Scheme3.spg, Scheme3.akg, Scheme3.Authi, Scheme3.ukg and
Scheme3.uakg. The adversary can gain all public parameters. Moreover,
the adversary A can obtain the tracing key, so it can act as an opener in this
game.

2. Phase 1: The adversary A is allowed to query all oracles described above.

3. Challenge: The adversary decides to challenge now. It selects an attribute set
Ψ′, message M and the index k of user Uk whom it wants to impersonate.

4. Phase 2: The adversary A repeats phase 1 with the exception that A cannot
query about the challenge described above.

5. Output: The adversary A tries to forge a signature δ based on {k,M,Ψ′} and
sends it to the opener. The opener checks the validity of the signature δ . If it
is valid, the opener opens the signature and retrieves the signer’s index which
is denoted by k′ here. If Uk′ is not a registered user, the opener outputs 1 and
A wins this game. Otherwise the opener outputs 0 and A fails this game.

Definition 14. (Traceability of Scheme 3) Scheme 3 provides traceability if the
probability that an adversary A with polynomially bounded computational abilities
can win the game Scheme4.Game.Traceability is negligible.

81

Cryptographic Enforcement of Attribute-based Authentication

5.3.5 Security Analysis

The security analysis in this subsection is based on Assumptions 2 and 3 described
in Subsection 4.4.6 in Chapter 4 (please refer to Subsection 4.4.6 for more details).

Theorem 8. (Anonymity) Scheme 3 is anonymous if DLE is IND-CPA secure. More
specifically, given Ai,k(b) with related signatures σb =<M,C1,C2,C3(b),c,sζ ,sβ ,sα ,

sk,sδ1,sδ2 > with a random toss b ∈ {0,1}, if an adversary A with polynomially
bounded computation abilities has a non-negligible advantage to guess the correct
b, we say that the Scheme 3 is not anonymous. Otherwise, Scheme 3 is anonymous.

Proof. Suppose that the adversary A has a non-negligible advantage to guess the
correct b, and then A should also have a non-negligible advantage to differentiate
σ0 from σ1. More precisely, given Ai,k(0) and Ai,k(1), the adversary A can distinguish
tuple <C1,C2,C3(0)> from tuple <C1,C2,C3(1)>. According to Definition 6, tuple
<C1,C2,C3(b) > can be considered as the ciphertext of Ai,k(b) based on DLE. Thus,
if the adversary A has a non-negligible advantage to guess the guess b, it means
A can break DLE, which contradicts to Assumption 3. Therefore, the proposed
scheme is thus anonymous.

Theorem 9. (Traceability) Assume the keyed x hash function H is collision
resistant. Scheme 3 is fully traceable if 1) given a valid signature σ =<

M,C1,C2,C3,c,sζ ,sβ ,sα ,sk,sδ1,sδ2 >, the opener can trace the identity of the signer
and 2) an adversary A with polynomially bounded computation ability cannot forge
a valid signature σ ′ that can pass the verifier’s verification.

Proof. From the correctness proof, we know that statement 1) is correct. Next
we prove the correctness of statement 2). One the one hand, since DLP is hard
to solve in G1, it is impossible for the adversary A to compute α from gα

1 , so
the adversary cannot compute Kv by (e(g1,g1)

x0+···+xi)α . On the other hand, A
doesn’t own the secret value Tk, j, so it is also impossible for A to recover Ks

as the signer does. As a result, the only chance for the adversary is either to
compute the correct hash value based on < M,C1,C2,C3,c,sζ ,sβ ,sα ,sk,sδ1,sδ2 >

or to find a different pair (< M′,C′1,C
′
2,C
′
3,s
′
ζ
,s′

β
,s′α ,s

′
k,s
′
δ1
,s′

δ2
>,c′) satisfying

c′ = HKs(M
′,C′1,C

′
2,C
′
3,R
′
1,R
′
2,R
′
3,R
′
4,R
′
5) without the knowledge of either Ks or Kv.

Since we assume H is collision resistant, neither of these two solutions is possible.
Therefore, Scheme 3 is traceable.

82

HABA Schemes

Figure 5.4: Structure of attribute-related HABA schemes

5.4 Case Study 2: An Attribute-related HABA
Scheme

In this section, we will demonstrate how to construct an attribute-related HABA
scheme. We refer to the scheme proposed in this subsection Scheme 4. Scheme 4
follows the workflow of attribute-related HABA schemes described in Subsection
3.1.5. The main idea of Scheme 4 is as shown in Fig. 5.4 and can be explained as
follows.

1. All authorities in Fig. 5.4 are attribute authorities.

2. There are N +1 levels attribute authorities.

3. The authority of level 0 is the trusted authority (denoted by Auth0) in the
system and it has the highest trust level.

4. The domain authorities of level N have the lowest trust level.

5. Attribute authorities of trust level i (1≤ i≤ N) are denoted by Authi and they
should only be authorized by an authority of trust level i−1.

83

Cryptographic Enforcement of Attribute-based Authentication

6. The trusted authority can only authorize domain attribute authorities.

7. Attribute keys should only be authorized by domain authorities.

8. Attribute keys can be authorized by different domain authorities.

9. Trust levels of attribute keys should be no higher than the trust level of their
authorization domain authorities.

5.4.1 Building Blocks: Algorithms

In this subsection, we define all algorithms of Scheme 4 before we formally describe
its cryptographic constructions to better understand the scheme. Important notations
and their meanings are given in Table 5.2 and assumptions of algorithms are as
follows.

• Scheme4.spg(k0)→ {MPK,MSK,bskAuth0}: The central authority runs
this algorithm to generate system parameters and secret keys for the top at-
tribute authority Auth0, with the system security parameter k0 as its input and
the system public key set MPK, private key set MSK and the top authority
Auth0’s private key base bskAuth0 as its output.

• Scheme4.ukg(MPK,MSK,Uk)→ bskk: The central authority runs this al-
gorithm to generate user keys, with the system public key set MPK, the sys-
tem private key set MSK and user identity information Uk as its input and the
user Uk’s private key base bskk =< Dk,uk > as its output.

• Scheme4.akg(MPK,Ψ)→ {PKAuth0,SKAuth0}: The top attribute authority
Auth0 runs this algorithm to generate its own attribute keys, with the system
public key set MPK and attribute set Ψ as the input and its public attribute
key set PKAuth0 and private attribute key set SKAuth0 as the output.

• Scheme4.authi(MPK, PKAuthi−1,SKAuthi−1) → {PKAuthi,SKAuthi}: The
domain attribute authority Authi−1 (1 ≤ i ≤ N) runs this algorithm to autho-
rize domain attribute authority Authi with the attribute set Ψ. Its input is
MPK, Authi−1’s public key set PKAuthi−1 and private key set SKAuthi−1 . Its
output is Authi’s public key set PKAuthi and private key set SKAuthi .

• Scheme4.uakg(MPK,Uk,bskk,SKAuthi,PKAuthi , Ψk)→ USKk: The do-
main attribute authority Authi runs this algorithm to authorize user Uk with

84

HABA Schemes

attribute keys based on the attribute set Uk owned by Uk. Its input is is the sys-
tem public key set MPK, Uk’s private key Dk, Authi’s public key set PKAuthi ,
private key set PKAuthi and the attribute set Ψk owned by Uk. Its output is Uk’s
private attribute key set USKk.

• Scheme4.atg(Ψ′)→{Γ′,PTreeΨ′}: The verifier runs this algorithm to gen-
erate an attribute tree based on the selected attribute set Ψ′. Its input is
attribute set Ψ′. Its output is attribute tree Γ′ and the related parameters
PTreeΨ′ .

• Scheme4.sg(MPK,MSK, Γ′, Ψ′, USKk, M)→ δ The signer or user Uk

runs this algorithm to generate a signature. Its input is the system public and
private key sets MPK and MSK, attribute tree Γ′, a selected attribute set Ψ′,
Uk’s private key set USKk and the message M. Its outputs is signature δ .

• Scheme4.sv(M,δ , Ψ′)→ b: The verifier runs this algorithm to check
whether the signature δ is valid or not. Its input is message M together with
its signature δ and the selected attribute set Ψ′. Its output is the checking
result b ∈ {0,1}.

• Scheme4.so(M,δ , Ψ′, tk)→Uk: The opener runs this algorithm to retrieve
a signer Uk’s index from the signature δ . Its input is the message M together
with its signature δ , the selected attribute set Ψ′ and the opener’s tracing key
tk. Its output is Uk’s index k.

5.4.2 Scheme Construction

The construction of our attribute-related HBA scheme includes two phases: 1) sys-
tem setup and 2) signature generation, verification and possibly opening. We will
use the path from AuthN to Auth0 illustrated in Fig. 5.4 as an example to demon-
strate how to build Scheme 4. Important notation utilized in the construction is
included in Table 5.2.

System setup This phase is performed by a central authority (not Auth0) as
described in the core ABA structures in Subsection 3.1.1. For simplicity, we can
assume that all users are managed by this central authority. System setup includes
five steps.

85

Cryptographic Enforcement of Attribute-based Authentication

Table 5.2: Notation for Scheme 4

Notations Description
k0 The system security parameter.
Z∗p The set of integers modulo p, where p is a large prime integer.
Gi (Multiplicative) cyclic group of prime order p, where 1≤ i≤ 2.
e e : G1×G1→ G2 is a bilinear map.
H H : {0,1}∗→ Z∗p is a hash function [69].
HK() A secure keyed one-way hash function with K as the key.
N The total number of levels of domain authorities
Auth0 The trusted authority and its level is 0.
Authi Domain authority of level i (1≤ i≤ N).
U U =<U1, · · · ,UNu > is the system user set.
Nu Nu = |U |, the number of users in U .
Ψ System attribute set.
Ψk Ψk ⊂Ψ, attribute subset owned by Uk (1≤ k ≤ Na).
Ψ′ Ψ′ ⊂Ψi, attribute subset required by the signer.
Na Na = |Ψ|, the number of attributes in set Ψ.
Nk Nk = |Ψk|, the number of attributes in set Ψk.
MPK The system public parameter set of the central authority.
MSK The system private parameter set of the central authority.
PKAuthi The public key set of attribute authority Authi, 0≤ i≤ N.
SKAuthi The private key set of attribute authority Authi, 0≤ i≤ N.
apk j Public attribute key of attribute att j, where 1≤ j ≤ Na.
ask j Private attribute key of attribute att j, where 1≤ j ≤ Na.
Ai The private key of domain authority Authi.
Dk The private key of user Uk.
bskAuthi The private key base of attribute authority Authi (0≤ i≤ N) and denoted by

bskAuthi =< Ai,xi >.
bskk The private key base of Uk. It is authorized by domain authority Authi and denoted

by bskk = {Dk,uk}.
Ti, j The private attribute key of domain authority Authi for attribute att j, authorized by

domain attribute authority Authi,−1.
Ti, j,k Uk’s private attribute key of attribute att j, authorized by domain authority Authi.
APKΨ The public attribute key set related to attribute set Ψ.
ASKΨ The private attribute key set related to attribute set Ψ.
USKk The private key set of Uk.
Γ′ Attribute tree generated based on attribute set Ψ′.
L(Γ′) The leaf node set of attribute tree Γ′.
rt ′ Root of attribute tree Γ′.
ind(x) The index of node x.
par(z) The parent node of node z.

86

HABA Schemes

1. System parameter generation (Scheme4.spg) This algorithm is performed
by the central authority. Assume k0 is the system security parameter. G1,
G2 are two multiplicative groups of prime order p with g1 and g2 as their
generators respectively. Let e : G1×G1→ G2 be a bilinear group. Assume
DeLP is hard to solve in G1. DLP is hard to solve in both G1 and G2. Select
h ∈ G1, ξ1, ξ2 ∈ Z∗p and set u, v ∈ G1 such that uξ1 = vξ2 = h. Select u0, β0 ∈
Z∗p as the top secret and compute h0 = gβ0

1 and f0 = g1/β0
1 . The master public

key set of the central authority is MPK =< G1,G2,g1,g2,h,u,v,g
u0
1 ,h0, f0 >

and the master private key set of MSK =< u0,β0,ξ1,ξ2 >, where the pair of
< ξ1,ξ2 > is handed to the opener as its tracing key tk.

Next the central authority randomly chooses x0 ∈ Z∗p for Auth0 and computes

A0 = g(u0+x0)/β0
1 . The pair bskAuth0 =< A0,x0 > is Auth0’s private key and A0

should be registered in the opener’s database if there is a necessity to trace
the identity information of the trusted authority Auth0.

2. User key generation (Scheme4.ukg) This algorithm is performed by the cen-
tral authority. Assume U is the system user group and Nu = |U | is its size. For
a user Uk ∈U (1≤ k≤Nu), the central authority randomly selects uk ∈Z∗p and

computes Dk = g(u0+uk)/β0
1 . Uk’s private key base is the pair bskk =<Dk,uk >.

Dk should be registered in the opener’s database for tracing its identity infor-
mation later.

3. Attribute key generation (Scheme4.akg) This algorithm is performed
by the trusted attribute authority Auth0. Assume that attribute set Ψ =

{att1, · · · ,attNa} (Na = |Ψ|) is owned by all authorities on the path in Fig.
5.4, i.e., from AuthN to Auth0. For attribute att j ∈Ψ (1≤ j ≤ Na), Auth0 se-
lects a random value t0, j ∈Z∗p and computes apk0, j = g

t0, j
1 . The system public

attribute key published by Auth0 is PKAuth0 =< e(g1,g
x0
1),gt0,1

1 , · · · ,gt0,NA
1 >

and the system private attribute key set owned by Auth0 is SKAuth0 =<

t0,1, · · · , t0,NA >.

4. Domain authority authorization (Scheme4.authi) The authorization of Ψ

to Authi (1 ≤ i ≤ N) is performed by domain authority Authi−1. Assume
T0, j = g(u0+x0)/β0

1 H(att j)
t0, j is the private attribute key owned by Auth0 re-

lated to attribute att j. To generate the private key for domain authority Authi,
Authi−1 randomly selects xi ∈ Z∗p and computes wi = gxi

1 as well as Ai =

Ai−1 f xi
0 = g(u0+x0+···+xi)/β0

1 . The private key for Authi is bskAuthi =< Ai,xi >

87

Cryptographic Enforcement of Attribute-based Authentication

and Ai should be registered in the opener’s database. For each att j ∈Ψ owned
by Authi, Authi−1 randomly chooses ti, j and computes

Ti, j = Ti−1, j f xi
0 H(att j)

ti, j = g(u0+x0+···+xi)/β0
1 H(att j)

t0, j+···+ti, j .

The public attribute key of Authi related to att j is apki, j = gti, j
1 . The public key

set published by Authi is PKAuthi =< e(g1,xi),g
ti,1
1 , · · · ,gti,Na

1 > and the private
key set owned by Authi is SKAuthi =< ti,1, · · · , ti,Na >.

5. User attribute key generation (Scheme4.uakg) Suppose Uk ∈U (1 ≤ k ≤
N) wants to obtain attribute keys related to Ψ from Authi. Uk interacts with
the domain authority Authi and generates Uk’s private attribute key related to
att j as Ti, j,k = guk

1 Ti, j = g(u0+ui+x0+···+xi)/β0
1 H(att j)

t0, j+···+ti, j , where ti, j ∈ Z∗p
is randomly selected by the domain authority Authi.

Signature generation and verification Suppose a verifier requires that the at-
tributes held by the signer should be authorized by Authi and the attribute set de-
manded is Ψ′. The signature generation and verification proceeds as follows.

1. Verifier: attribute tree generation (Scheme4.atg) Assume the required at-
tribute set selected by the verifier is Ψ′. The verifier randomly selects a secret
α ∈ Z∗p and constructs an attribute tree Γ′ with rt ′ as its root. Next the ver-
ifier computes Cy and C′y in the same way as described in Subsection 5.3.2.
Meanwhile, the verifier computes

Kv = (e(f0,g
x0
1) · · ·e(f0,g

xi
1))

α = e(g1,g1)
(x0+···+xi)α/β0.

Then the verifier sends the message {Γ′,gα
1 ,∀y ∈ Lea f (Γ′) : Cy,C′y} to the

signer.

2. Signer: signature generation (Scheme4.sg) Assume the attribute set owned
by Uk is denoted by Ψk (Nk = |Ψk|) and it satisfies the relation Ψ⊃Ψk ⊃Ψ′.
Therefore, there should exist an attribute att j ∈Ψk (1≤ j ≤ Nk) correspond-
ing to every leaf node in attribute tree Γ′, so we will use y to replace the
symbol att j in the following for simplicity. Once the signer receives message
{Γ′,gα

1 ,∀y ∈ Lea f (Γ′) : Cy,C′y} from the signer, it computes

DecryptNode(Ti, j,k,Cy,C′y,y)

88

HABA Schemes

=
e(Ti, j,k,Cy)

e(Apk0, j · · ·Apki, j,C′y)

= e(g1,g1)
(u0+uk+x0+···+xi)qy(0)/β0.

The verifier’s goal in the next step is to compute compute Frt ′ by calling algo-
rithm DecryptNode(Ti, j,k,Cy,C′y,y) for the root node rt ′. The process is the
same as algorithm Scheme3.sg described in Subsection 5.3.2. Then it singer
computes Ks by

Ks = Frt ′/e(f uk
0 ,gα

1) = e(g1,g1)
(x0+···+xi)α/β0.

From the above equation, we can see that Ks = Kv holds. Next the signer
selects ζ ,α,β ,rζ ,rα ,rβ , rk,rδ1,rδ2 ∈ Z∗p randomly and calculates

C1 = uζ ,C2 = vβ ,C3 = Dkhζ+β ,

δ1 = ukζ ,δ2 = ukβ ,

R1 = urζ ,R2 = vrβ ,R4 =Crk
1 u−rδ1 ,R5 =Crk

2 v−rδ2 ,

R3 = e(C3,g1)
rke(h,wi)

−rζ−rβ e(h,g1)
−rδ1

−rδ2 ,

c = HKs(M,C1,C2,C3,R1,R2,R3,R4,R5) ∈ Z∗p,

sζ = rζ + cζ ,sβ = rβ + cβ ,sα = rα + cα,

sk = rk + cuk,sδ1 = rδ1 + cδ1,sδ2 = rδ2 + cδ2.

Then the signer sends the signature σ =< M,C1,C2,C3,c,sζ ,sβ ,sα ,sk,

sδ1,sδ2 > to the verifier. From the way how the signature σ is generated,
we can see that it is almost the same as the the signature generation phase
described in Subsection 5.3.2 for Scheme 3. The only difference is that here
C3 is generated based on Dk instead of Ai,k in Scheme 3.

3. Verifier: signature verification (Scheme4.sv) The verifier first computes
R′1, R′2, R′3, R′4 and R′5 the same as described in Subsection 5.3.2 for Scheme
3. The next step is to compute c′ = HKv(M,C1,C2,C3,R′1,R

′
2,R
′
3, R′4,R

′
5) and

checks whether c′ equals to c that it has received. If so, the signer is success-
fully authenticated and otherwise the authentication fails.

Signature Opening This algorithm is carried out by the opener. If there is a
necessity to reveal the identity information of a signature δ generated by Uk based
on {M,Ψ′}, the opener computes Dk =C3/(C

ε1
1 Cε2

2). Then the opener compares Dk

with items in its database. If there exists an item matching it, the opener returns k

89

Cryptographic Enforcement of Attribute-based Authentication

as the index of user Uk.

5.4.3 Correctness Analysis

In this subsection we provide proof of correctness of Scheme 4.

Theorem 10. (Correctness) The construction of Scheme 4 proposed in Subsection
5.3.2 is correct, that is, the following properties are satisfied:

1. Kv=Ks,

2. Ri = R′i, where 1≤ i≤ 5, and

3. Dk =C3/(C
ε1
1 Cε2

2) holds.

Proof. 1) From the detailed description of algorithm Scheme4.atg in the phase
of signature generation and verification in Subsection 5.4.2, we can see that
since the signer possesses the attribute set Ψk ⊃ Ψ′, it can compute Kv =

e(g1,g1)
(x0+···+xi)α/β0 which equals to Ks.

2) R′i (1≤ i≤ 5) can be computed as follows:

R′1 = usζ C−c
1 = urζ+cζ (uζ)−c = R1

R′2 = vsβ C−c
2 = vrβ+cβ (vβ)−c = R2

R′3 = e(C3,g1)
ske(h,wi)

−sα−sβ e(h,g1)
−sδ1

−sδ2 (
e(C3,wi)

e(g1,g1)
)c

= e(C3,g1)
rk+cuke(h,wi)

−(rα+cα)−(rβ+cβ)e(h,g1)
−(rδ1

+cδ1)−(rδ2
+cδ2)(

e(C3,wi)

e(g1,g1)
)c

= R3

(
e(C3,g1)

uke(h,wi)
−(α+β)e(h,g1)

−(δ1+δ2)
e(C3,wi)

e(g1,g1)

)c

= R3

(
e(C3h−(α+β),wig

uk
1)e(C3,wi)

−1 e(C3,wi)

e(g1,g1)

)c

= R3
(
e(Ai,wig

uk
1)(g1,g1)

−1)c
= R3

R′4 = u−sδ1Csk
1 = u−rδ1

−cδ1(uζ)rk+cuk

= u−rδ1
−cζ uk(uζ)rk+cuk =Crk

1 u−rδ1 = R4

3)C3/(C
ε1
1 Cε2

2) = Dkhζ+β/((uζ)ε1(vβ)ε2) = Dk.

90

HABA Schemes

5.4.4 Adversary Model

In this subsection, we describe the adversary model based on random oracle and
game theory. Assume that the adversary (denoted by A) has polynomially bounded
computational abilities. In this model, there are several different oracles that the
adversary can query and then based on these queries, the adversary will take a chal-
lenge. If the adversary A succeeds in the challenge, it wins the game. Otherwise, A
fails the game. We will use Scheme4. as prefix and .Oracle as suffix to represent
these oracles. The details of these oracles are as follows.

• Scheme4.Syspara.Oracle: Adversary A can query this oracle about system
parameters generated and the top attribute authority Auth0’s private key base.

• Scheme4.Userkey.Oracle: Adversary A can query this oracle about user
Uk’s secret key base by sending the user’s index k and the oracle will reply
with bskk.

• Scheme4.Attkey.Oracle: Adversary A can query this oracle about attribute
private keys related to attribute authority Authi (1 ≤ i ≤ N) by sending the
attribute att j and the index i of the attribute authority. The oracle will reply
with Ti, j.

• Scheme4.UserAttkey.Oracle: Adversary A can query this oracle about
user Uk’s private attribute keys that are authorized by domain attribute au-
thority Authi. To query, A needs to send the attribute att j, the user’s index k
and the domain authority’s index i. The oracle will reply with Ti, j,k.

• Scheme4.Signature.Oracle: Adversary A can query this oracle to obtain
user Uk’s signature by sending the user’s index k, message M and the selected
attribute set Ψ′. The oracle will reply with a signature δ that is generated
based on {M,k,Ψ′}.

• Scheme4.Opening.Oracle: Adversary A can query this oracle about a
signer Uk’s index of signature δ . A needs to send {M,Ψ′,δ} to the oracle,
where M is the message to to signed, Ψ′ is the selected attribute set and δ is
the signature generated based on M and Ψ′. The oracle will reply with the
signer’s index k.

Next we describe the game Scheme4.Game.Anonymity as follows.

91

Cryptographic Enforcement of Attribute-based Authentication

1. System setup: Run algorithms Scheme4.spg, Scheme4.ukg, Scheme4.akg,
Scheme4. authi, Scheme4.uakg to generate the system public and private
key sets MPK and MSK, the top attribute authority Auth0’s private key based
bskAuth0 , domain attribute authority Authi’s private key base bskAuthi , domain
attribute authority Authi’s public and private key sets PKAuthi and SKAuthi and
users private attribute key. The adversary A can obtain all public parameters
after the system initiation is completed.

2. Phase 1: The adversary A can query all oracles described above in this phase,
but A cannot query the tracing key tk. Otherwise, A can trace the identity
information of every signature, which contracts to anonymity.

3. Challenge: After certain rounds of queries in phase 1, the adversary A de-
cides to take the challenge in this phase. A randomly selects two indexes ib
(b ∈ {0,1}), a message M and an attribute set Ψ′ and sends {ib,M,Ψ′} to
the system. A will be replied with a signature δb (b ∈ {0,1}), which is com-
puted based on {ib,M,Ψ′} (b ∈ {0,1}). This challenge should have not been
queried in phase 1.

4. Phase 2: In this phase, the adversary A behaves the same as in phase 1 but A
is not allowed to query about the challenge.

5. Guess: After certain rounds of queries in phase 2, the adversary A output its
guess b′ ∈ {0,1}. A wins the game only if b = b′ holds.

Definition 15. (Anonymity of Scheme 4) If an adversary A with polynomially
bounded computational abilities can win the game Scheme4.Game.Anonymity with
non-negligible probability, we say that Scheme 4 is not anonymous. Otherwise,
Scheme 4 is anonymous.

The game Scheme4.Game.Traceability proceeds as follows.

1. System setup: Run algorithms Scheme4.spg, Scheme4.ukg, Scheme4.akg,
Scheme4.authi, Scheme4.uakg to generate system parameters as described
in the game “Scheme4.Game.Anonymity”. The adversary has access to all
public parameters as tracing key tk.

2. Phase 1: The adversary A can query all oracles described above.

92

HABA Schemes

3. Challenge: The adversary decides to challenge now. It chooses the attribute
requirement set Ψ′, message M to be singed and the index k of user Uk whom
it plans to impersonate.

4. Phase 2: The adversary A continues to queries oracles in this phase as de-
scribed in phase 1, but still A is not allowed to query about the challenge.

5. Output: The adversary A forges a signature δ based on {k,M,Ψ′}. The
opener first checks the validity of A’s challenge δ . If it is invalid, it aborts the
game and output 0 means that the adversary A fails. Otherwise, the opener
continues to reveal the signer’s index k. Next the opener searches its database
to check whether there is any item matching index k. If so, the opener out-
puts 0 and A fails the game. Otherwise, the opener outputs 1, which means
that A has successfully impersonated an unregistered signer to forge a valid
signature.

Definition 16. (Traceability of Scheme 4) If an adversary A with polynomially
bounded computational abilities can win the game Scheme4.Game.Traceability
with non-negligible probability, we say that Scheme 4 is not traceable. Otherwise,
Scheme 4 is traceable.

5.4.5 Security Analysis

From the signature generation and verification procedures of Scheme 3 and Scheme
4, we can see that they share a lot in common, only with two minor differences. The
first difference is algorithms DecryptNode(Tk, j,Cy,C′y,y) and DecryptNode(Ti, j,k,

Cy,C′y,y), where the first input parameters are Tk, j and Ti, j,k in these two algorithms
respectively. In algorithm DecryptNode in Scheme 3, the first parameter Tk, j is
related to both the signer Uk and the attribute att j. The algorithm DecryptNode
in Scheme 4, the first parameter Ti, j,k is related to the attribute authorized domain
authority Authi, the attribute att j and the signer Uk. Even though the ways how Tk, j

and Ti, j,k are generated are different, they have similar representations and are both
the signer’s private attribute key based on attribute att j. The second difference is
the representation of C3, which are denoted by Ai,khζ+β and Dkhζ+β respectively.
Ai,k means that the signer Uk’s private key is generated by domain authority Authi,
while Dk means that it is generated by a central authority, so both Ai,k and Dk have
the same meaning and represent Uk’s private keys.

93

Cryptographic Enforcement of Attribute-based Authentication

Based on this, we can draw two conclusions. The first conclusion is that
Scheme 4 provides both anonymity and traceability as stated in Definitions 15
and 16. The second conclusion is that the way how to prove both anonymity
and traceability of Scheme 4 is the same as the proof of Scheme 3, with
the exception that DecryptNode(Tk, j,Cy,C′y,y) and Ai,k should be replace with
DecryptNode(Ti, j,k,Cy,C′y,y) and Dk respectively. As a result, we will only state
the formal descriptions of anonymity and traceability of Scheme 4 as Theorems 11
and 12 in the following without repeating the proof here.

Theorem 11. (Anonymity) Scheme 4 is anonymous if DLE is IND-CPA se-
cure. More specifically, given Dk with related signatures σb =< M,C1,C2,C3(b),

c,sζ ,sβ ,sα , sk,sδ1,sδ2 > with a random toss b∈ {0,1}, if an adversary A with poly-
nomially bounded computation ability has a non-negligible advantage to guess the
correct b, we say that the Scheme 4 is not anonymous. Otherwise, the scheme is
anonymous.

Theorem 12. (Traceability) Assume the keyed one-way hash function H is col-
lision resistant. Scheme 4 is fully traceable if 1) given a valid signature σ =<

M,C1,C2,C3,c,sζ ,sβ ,sα ,sk,sδ1,sδ2 >, the opener can trace the identity of the signer
and 2) an adversary A with polynomially bounded computation ability cannot forge
a valid signature σ ′ that can pass the verifier’s verification.

5.5 Conclusions

In this chapter we have studied construction of hierarchical ABA schemes. As men-
tioned in Section 5.1, there have only been some work dealing with hierarchies in
ABE schemes. However, to our best knowledge, there are no results related to
HABA schemes. In this chapter, we have discussed two types of hierarchy in ABA
schemes: user-related and attribute-related. Scheme 3 is an example of user-related
HABA schemes. Users are managed by different hierarchical domain authorities,
while all their attributes are authorized by the trusted attribute authority. As a result,
fine-grained ABA can be implemented by requiring the authorizing domain author-
ity in addition to the attribute requirements, so only users managed by a specific
domain authority can be authenticated. Scheme 4 is an example of attribute-related
HABA schemes. It is different from Scheme 3, where all users are managed and
authorized by the same central authority, but their attributes are authorized by differ-
ent domain authorities. In Scheme 4, attribute authorities are divided into different

94

HABA Schemes

levels with different privileges. Users can obtain different attribute keys from dif-
ferent domain attribute domain authorities, but the attribute keys will be bound with
different privileges. Therefore, user authentication can be carried out by checking
not only attributes but also the privilege levels of attributes.

95

Cryptographic Enforcement of Attribute-based Authentication

96

Chapter 6

ABA Schemes without Traceability

All ABA schemes discussed in Chapter 4 and Chapter 5 are traceable. Traceability
is a very useful property in a system where there is a need to resolve disputes by
revealing signers’ identity information, for examples, as legal evidence. However,
as described in the structure of core ABA schemes in Fig. 3.1, traceability is not
a mandatory security requirement for ABA schemes. Even though all schemes we
have proposed till now can be adopted to systems that do not need traceability by
not installing an opener, the implementation of traceable ABA schemes will still
be more expensive than untraceable ones. There are three main reasons. First of
all, the cryptographic construction of traceable ABA schemes is definitely more
complicated than untraceable ones, which will need more computations and storage
space. Secondly, if we take a closer look, we can find that parameters C1, C2 and C3

in all schemes are used for traceability. Moreover, we may need more parameters
to guarantee the property that an adversary cannot forge a valid signature on behalf
of an unregistered user. The third reason relates to security. Intuitively, the more
complicated a scheme is, the more difficult to guarantee its security requirements.

For the above reasons, we will use this whole chapter to discuss untraceable
ABA schemes and how they can be cryptographically constructed based on trace-
able ABA schemes. To make the situation simpler and the untraceable ABA
schemes easier to understand, we will modify Scheme 1 and Scheme 2 proposed
in Chapter 4 to build two untraceable ABA schemes. The work we plan to do in
this chapter is not to provide a general framework how to design and construct un-
traceable ABA schemes, because it demands more and deeper research and it can
be considered as future research directions. We will use two specific examples to
show the differences in cryptographic construction between traceable and untrace-

97

Cryptographic Enforcement of Attribute-based Authentication

able ABA schemes, and how to achieve untraceable ABA schemes from traceable
ones.

This chapter is organized as follows. First of all, we will review and compare
related work on untraceable ABA schemes in Section 6.1. Next we describe in
details how to construct untraceable ABA schemes based on Scheme 1 and Scheme
2. At last, we conclude the results of this chapter in Section 6.4.

6.1 Related Work

As explained in Section 4.1, researchers have already conducted some research on
both traceable and untraceable ABA schemes [11, 103–108] as well as how to con-
struct ABA schemes from attribute-based schemes [13]. To our best knowledge,
however, there have not been any publications discussing the way how to transform
traceable ABA schemes into untraceable ones or vise versa. Since we have already
reviewed traceable ABA schemes in Section 4.1, we will only survey recent work
on untraceable ABA schemes in this chapter.

As far as we know, the earliest untraceable ABA protocol was proposed in [46].
The protocol is based on bilinear groups [109–114] and a shared secret key will be
established at the end of the protocol if the party to be authenticated possesses a set
of attributes required by the other party. Its main focus is key sharing rather than
authentication. Another ABA and key sharing protocol was proposed later in [115]
with traceability. Cao etc. proposed an untraceable authentication scheme with at-
tributes for online social networks in [47]. To protect users’ privacy in eHealth net-
work, Guo etc. [116] built a privacy-preserving ABA scheme without traceability.
The authors divided privacy into four different levels to satisfy different privacy re-
quirements in different scenarios, and different solutions were provided for all four
privacy levels. The scheme proposed in [105] is an improved version of the scheme
proposed in [116], aiming at adjusting to the adoption of mobiles in eHealth net-
work. A proxy-based ABA scheme was proposed in [117] for the situation when
the original signer was not available to sign a specific document and the scheme
was untraceable as well.

A fuzzy ABA scheme was built based on an ABE scheme in [48]. Authors
in [48] first described a fuzzy ABE scheme, based on which a fuzzy ABA scheme
was built. Different from other attribute-based schemes, the scheme used Lagrange
polynomial interpolation [118–120] instead of attribute trees to represent the pos-
sessing of a set of attributes. Therefore, the scheme can only present the relation

98

ABA Schemes without Traceability

“possessing” rather than logical “AND” or “OR” among possessed attributes. The
most significant difference between [105] and the untraceable ABA schemes to be
proposed in this chapter is the authenticator. The authenticator in [105] can be con-
sidered as the central authority in the core ABA schemes described in Fig. 3.1 and
knows the top secret, but authenticators in our schemes are normal users who only
know the public parameters. This property can make our schemes more widely
applicable.

6.2 Case Study 1: An Untraceable ABA Scheme
Based on Scheme 1

In this section, we will build an untraceable ABA scheme (Scheme 5) based on
Scheme 1 by removing the part dealing with traceability. Scheme 5 consists of al-
gorithms Scheme5.spg, Scheme5.ukg, Scheme5.akg, Scheme5.uakg, Scheme5.ars,
Scheme5.sg and Scheme5.so. Compared with the algorithms included in Scheme 1,
the only difference is that Scheme 5 does not have the signature opening algorithm
which is denoted by Scheme1.so. All algorithms of Scheme 5 can be defined in
the same way as in Scheme 1, so we will omit this part. For more details, refer to
Subsection 4.4.2.

6.2.1 Scheme Construction

Since Scheme 5 is built based on Scheme 1, they share a lot in common. The most
significant difference between these two schemes lies in the signature generation
and verification phase. Scheme 5 consists of system setup as well as signature
generation and verification. We will use the structure and workflow of the core
ABA schemes in Fig. 3.1 to describe Scheme 5. In the phase of system setup, the
system is initiated by generating system parameters, users’ keys and attribute keys,
and it proceeds as follows.

1. System parameter generation (Scheme5.spg) This algorithm is carried out
by the central authority. Assume k0 is the security parameter. G1, G2 and G3

are multiplicative groups of prime order p, e : G1×G2→G3 is a bilinear map
and ϕ is a computable isomorphism between G1 and G2. H : {0,1}∗→ Z∗p is
a one-way hash function. First of all, the central authority randomly selects
a generator g2 ∈ G2 and γ ∈ Z∗p. Let g1 = ϕ(g2) and w = gγ

2. The system

99

Cryptographic Enforcement of Attribute-based Authentication

private parameter set is MSK =< γ > and the system public parameter set is
MPK =< G1,G2,G3,e,H,g1,g2,w >.

2. User key generation (Scheme5.ukg) This algorithm is carried out by the
central authority. It takes γ as the input and outputs user Ui’s secret key base
bski =< Ai,xi >. Since it proceeds exactly as Scheme1.ukg, so refer to Sub-
section 4.4.3 for more details.

3. Attribute key generation (Scheme5.akg) This algorithm is carried out by
the attribute authority. For each attribute att j ∈Ψ (1≤ j ≤ Na,Na = |Ψ|), the
attribute authority randomly chooses a number t j ∈ Z∗p as its private key ask j

and computes its public key as apk j = gt j
1 . Let w j = wt j . The public and pri-

vate key sets related to Ψ can be denoted by APKΨ =<w1, · · · ,wNa,apk1, · · · ,
apkNa > and ASKΨ =< t1, · · · , tNa > respectively.

4. User attribute key generation (Scheme5.uakg) This algorithm is car-
ried out by the attribute authority. It proceeds the same as the algorithm
Scheme1.uakg (refer to Subsection 4.4.3 for more details).

5. Attribute tree generation (Scheme5.atg) This algorithm proceeds the same
as Scheme1.atg (refer to Subsection 4.4.3 for more details).

Signature generation and verification This is the second phase of Scheme 5
and it proceeds as follows.

1. Verifier: attribute requirement selection (Scheme5.ars) This algorithm
proceeds the same as Scheme1.ars (refer to Subsection 4.4.3 for more de-
tails).

2. Signer: signature generation (Scheme5.sg) If the signer owns the required
attributes selected by the verifier in algorithm Scheme5.ars, this algorithm
proceeds as follows. Assume the attribute set to be used by the signer is Ψ′

(N′a = |Ψ′|). First of all, the signer runs the algorithm Simpli f y CTree as
described in Subsection 4.2.2 to obtain the simplified attribute tree Γ′. As-
sume the leaf node set of Γ′ is L′ = L′Att +L′Dum, where L′Att is the attribute
leaf set and L′Dum is the dummy leaf set. Based on Γ′, Ui computes 4 j

(att j ∈ L′Att), 4d j (d j ∈ L′Dum), its root value rt ′ as described in Subsection
4.2.2 and gd =∏dk∈L′Dum(gdk

2)4dk . Next Ui randomly chooses α,ε,rα ,rε ∈Z∗p

100

ABA Schemes without Traceability

and calculates

C = Aiwε ,CTj = Ti, jwα
j ,RAtt =

e(∏att j∈Ψ′w
4 j
j ,g2)

rα

e(w,rt ′/gd)rε
,

c = H(M,C,RAtt) ∈ Z∗p,sα = rα + cα,sε = rε + cε.

Then Ui sends the signature δ =< M,c,C,CT1, · · · ,CTN′a,RAtt ,sα ,sε ,Ψ
′ > to

the signer.

3. Signature verification (Scheme5.sv) After receiving the signature δ from
the signer, the verifier runs the algorithm Simpli f y CTree, obtains the re-
lated attribute tree Γ′ and computes the root value rt ′, 4 j (att j ∈ L′Att), 4dk

(dk ∈ L′Dum) and gd = ∏dk∈L′Dum(gdk
2)4dk as the verifier does in algorithm

Scheme5.sg. Next the verifier computes

R′Att =
e(∏att j∈Ψ′ h

4 j
j ,g2)

sα

e(w,rt ′/gd)sε

 e(C4,rt ′/gd)

e(∏att j∈Ψ′CT4 j
j ,g2)

c

.

Then the verifier calculates c′ = H(M,C,R′Att) and checks whether c′ equals
to c. If so, the verifier believes that the signer owns the required attributes and
the authentication succeeds.

The correctness of the scheme holds if R′Att = RAtt , which has already been
proved in Theorem 1 in Subsection 4.4.4.

6.3 Case Study 2: An Untraceable ABA Scheme
Based on Scheme 2

In this section, we propose another untraceable ABA scheme (Scheme 6) based on
Scheme 2 proposed in Section 4.5. The new scheme keeps the property of one-time
attribute tree generation but removes the property of traceability. Scheme 6 is sim-
ilar to Scheme 2, but it is less complicated and its signature is shorter. Moreover,
Scheme 6 consists of all algorithms in Scheme 2 except for the signature opening
algorithm Scheme2.so, and these descriptions remain the same. Therefore, we will
skip the algorithm descriptions and move directly to the descriptions of the crypto-
graphic construction in the following subsection.

101

Cryptographic Enforcement of Attribute-based Authentication

6.3.1 Scheme Construction

Since Scheme 6 is built based on Scheme 2, they have many common stages in
cryptographic construction in the system setup phase but differ in the phase of sig-
nature generation and verification. The system setup phase includes four algorithms
which are described as follows.

1. System parameter generation (Scheme6.spg) This algorithm is carried out
by the central authority. Assume k0 is the security parameter, G1 and G2

are two multiplicative groups of prime order p and with g1 and g2 as their
generators. e : G1×G1→G2 is a bilinear group. DeLP and q-SDH is hard to
solve in G1 and DLP is hard to solve in both G1 and G2. HK : {0,1}∗→ Z∗p
is a secure keyed one-way hash function where K is the key. Select x0 ∈ Z∗p
as the top secret and compute w0 = gx0 . The system public key is MPK =<

G1,G2,g1,g2,w0 > and the system private key is MSK =< x0 >.

2. Attribute key generation (Scheme6.akg) This algorithm is the same as
Scheme2.akg.

3. User key generation (Scheme6.ukg) This algorithm is the same as
Scheme2.ukg.

4. User attribute key generation (Scheme6.uakg) This algorithm is the same
as Scheme2.uakg.

Signature generation and verification This is the second phase of Scheme 6
and it proceeds as follows.

1. Verifier: attribute tree generation (Scheme6.atg) Assume the attribute set
the verifier requires is Ψ′ and the related attribute tree is Γ′. This algorithm
runs the same as Scheme2.atg.

2. Signer: signature generation (Scheme6.sg) This algorithm proceeds the
same as Scheme2.sg until the computation of Ks. Next the signer computes
c = HKs(M) and σ =< M,c > and then sends σ to the verifier.

3. Verifier: signature verification (Scheme2.sv) After receiving σ , the verifier
calculates c′ = HKv(M) and checks whether c′ equals to c. If so, the verifier
believes that the signer owns the required attributes and accepts the signature,
otherwise rejects it.

102

ABA Schemes without Traceability

The same as in Scheme 2, the verification of the signer’s attributes is realized by
the way how Ks is computed and the security of the keyed one-way hash function HK

in the above algorithm. To successfully generate a valid signature σ , an adversary
has two choices, i.e., to generate the hash value c out of a different message M′

without the knowledge of Ks, or compute Ks and then the MAC [121–123] value
c. For the first choice, given the security of the keyed one-way hash function HK ,
it is impossible to compute the correct value c without knowing the shared secret
key Ks. For the second choice, since DLP is hard to solve in G1, the adversary
cannot compute α from gα

1 , and therefore it cannot compute Kv via e(g1,g
x0
1)α . The

only way left is to behave like the signer does. However, from the description of
the algorithm Scheme6.sg or Scheme2.sg (described in Subsection 4.5.3), we can
see that without the required attribute keys, it is impossible to recover Ks either.
Therefore, it is impossible for an adversary to generate c or the same signature σ .

6.4 Conclusions

In this chapter, we have described how to build untraceable ABA schemes based
on two traceable ABA schemes, i.e., Scheme 1 and Scheme 2 proposed in Chapter
4. The main idea is to remove the part responsible for traceability in the signa-
ture together with other supporting parameters. If we compare the cryptographic
constructions described in Chapter 4 with those in this chapter, we can see that
the parameters for traceability in Scheme 1 and Scheme 2 are C1, C2, C3 and Ri

(1 ≤ i ≤ 5), where Ri are used to ensure the unforgeability of the signature σ . In
order to achieve untraceable attribute-based schemes, the most important part here
is the recovery of RAtt based on CTi, j or the computation of Ks. The reason is that
without the knowledge of required attributes, it is impossible for a user to compute
either RAtt or Ks.

103

Cryptographic Enforcement of Attribute-based Authentication

104

Chapter 7

Discussion, Conclusions and Future
Work

This chapter first summarizes research contributions of this dissertation in Sec-
tion 7.1. Next in Section 7.2, future work will be discussed, including attribute
tree building, general framework of constructing ABA schemes, hierarchy, security
models, traceability and revocation. The work in this subsection is based on [23].

7.1 Conclusions

This dissertation addresses several security and privacy issues in ABA schemes. As
we have summarized in related work in Subsections 4.1, 5.1 and 6.1, there have
already been many published research results about ABA schemes. Based on these
results and our own, we first categorize ABA schemes according to two criteria
such that we can gain a general understanding about ABA schemes and their prop-
erties. The first criterion is properties of ABA schemes. According to this criterion,
we have divided ABA schemes into core ABA schemes, traceable and untraceable
ABA schemes, dynamic and static ABA schemes and hierarchical ABA schemes.
The core ABA schemes only consist of main parts and functions, while the others
are extended versions of core ABA schemes by adding specific properties. The sec-
ond criterion is the relation between attribute keys and attribute requirements. If
the generation of attribute keys is bound to a specific attribute structure, the ABA
schemes are considered as KP-ABA. However, if the generation of attribute keys
is only based on a set of attributes and independent from attribute structures, these
ABA schemes are CP-ABA. All ABA schemes proposed in this dissertation are CP-

105

Cryptographic Enforcement of Attribute-based Authentication

ABA. In this dissertation, we have proposed six different ABA schemes according
to the first categorization, and the details how they are constructed are included in
Chapter 4, Chapter 5 and Chapter 6.

Scheme 1 proposed in Chapter 4 is the first example that demonstrates how to
construct a CP-ABA scheme, and its dynamic of attribute tree generation is realized
by the introducing of a big central attribute tree. More specifically, Scheme 1 uti-
lizes a down-to-top approach to build attribute trees. A big central attribute tree is
first built, based on which different attribute subtrees can be obtained by simplify-
ing the big central attribute tree. In this way, the same attribute keys can be used for
scenarios where different attributes are required without regenerating attribute keys
as in KP-ABA schemes [13]. Therefore, this scheme can provide more flexibility
and save system resources for regenerating and storing different attribute keys, so
it can be implemented in a dynamic environment. However, the application of the
big central attribute tree still costs a lot of computation and storage resources. In
addition, this approach of attribute tree building has a limitation. Since all attribute
subtrees are obtained by simplifying the central attribute tree, the logical relations
between these attributes are restricted by the relations of attributes in the central
attribute tree. As a result, in order to get an attribute tree where attributes are of a
totally different relation, it is still unavoidable to generate new attribute trees and
attribute keys.

These two issues are solved in Scheme 1, Scheme 2 by introducing a one-time
attribute tree combined with a different approach of cryptographic construction for
the signature generation and verification. Another innovation of Scheme 2 is that it
reduces the signature size. In Scheme 1, parameters related to required attributes are
part of the signature. However, these parameters are replaced by the usage a shared
key and a secure keyed one-way hash function in Scheme 2, where this shared key
is computed based on the required attributes.

The main focus of both Scheme 1 and Scheme 2 is the dynamic and flexibility
of attribute trees and the property of traceability. In Scheme 3 and Scheme 4 pro-
posed in Chapter 5, we introduced hierarchies. We have discussed two hierarchical
situations, user-related and attribute-related. Scheme 3 is a U-HABA scheme. In
this scheme, all attributes are organized by an attribute authority, while users are
managed by different security levels of domain authorities. In this example, there
are authorities from level 0 to level N, with the privilege from the highest to the
lowest accordingly. There is only one authority of level 0, named Auth0, and the re-
maining authorities are domain authorities. Domain authorities of a lower privilege

106

Discussion, Conclusions and Future Work

level are authorized by authorities of a higher level and users are authorized by dif-
ferent domain authorities. By applying this type of hierarchy, attributes are utilized
together with users’ privilege for authentication. In addition, this mechanism has
also brought in the chance of specifying which group users should belong to, and
thus it increases the flexibility of the scheme.

Scheme 4 is an A-HABA scheme, different from Scheme 3. All users in Scheme
4 are organized by a central authority while attributes are managed by domain au-
thorities of different privileges. In this case, attribute authorities are divided into
N + 1 levels, from level 0 to level N with the highest and the lowest privileges.
The authority of the highest privilege is denoted by Auth0 and the rest are domain
authorities. Domain authorities of a higher level can authorize domain authorities
of a lower level as well as users’ attributes, but Auth0 can only authorize domain
authorities of level 1. By implementing this type of attribute-related hierarchy, the
authentication requirements can also consist of the privileges of attributes instead
of merely attributes.

All ABA schemes from 1 to 4 discussed above are traceable. In order to gain
some knowledge about how to construct untraceable ABA schemes and the relation
between traceable and untraceable schemes, we have constructed two untraceable
ABA schemes based on Scheme 1 and Scheme 2. The basic idea is as follows.
Signatures in traceable ABA schemes consist of two parts, one for attribute au-
thentication and the other for providing traceability. To obtain an untraceable ABA
scheme from a traceable one, the main task is to remove the part for traceability
in the signature together with related supporting parameters and processes in the
scheme. Therefore, we cut the part for traceability in Scheme 1 and Scheme 2,
more specifically, parameter Ci (1≤ i≤ 3) and Ri (1≤ i≤ 5). Meanwhile, we have
kept the part for attribute authentication, which are CTi, j, RAtt and related param-
eters in Scheme 1 and the algorithm of computing Ks in Scheme 2. The purpose
of discussing these two cases is not to provide a general framework how to build
untraceable ABA schemes from traceable ones, but to provide a guideline for the
transformation between these two types of ABA schemes.

7.2 Discussion and Future Work

Except for the contributions summarized above, there are still a lot of interesting is-
sues for future research. In this section, we will survey recent work in ABA schemes
and point out several interesting research topics. Publications on ABA schemes can

107

Cryptographic Enforcement of Attribute-based Authentication

be roughly divided into several fields, including system structures [11, 103, 124],
cryptographic construction and security requirements [13, 116], policy specifica-
tion [12] and so on. In this section, we mainly focus on ABA scheme construction.
First of all, we review recent work on ABA construction, with focus on attribute
tree building, cryptographic construction, security models, hierarchy, traceability
and revocation, with analysis of their advantages and disadvantages. Secondly, we
discuss some of open problems in these fields and propose potential directions how
to solve them.

7.2.1 Attribute Tree Building

As mentioned earlier in Section 4.2, attribute trees can be built either from top
to down [13] or from down to top [20]. Both approaches have been detailedly
described in Section 4.2. The top to down approach can be applied to construct
both KP-ABA and CP-ABA schemes. For example, all attribute trees built in [13]
are from top to down and related schemes are KP-ABA, while all schemes proposed
in this dissertation except for schemes 1 and 5 have implemented the top to down
approach. On the contrary, to our best knowledge, the only down-to-top based
approach in ABA schemes was proposed in [20] from which Scheme 1 originates.

A challenge for current attribute trees is that constrains are not designed to ex-
press logical relations like “≤” and so on. For example, if a system divides 24 hours
into three intervals, 0:01 to 8:00, 8:01 to 16:00 and 16:01 to 24:00, it needs three
attribute elements to express each. As a result, the system needs to generate more
attribute keys and use more resources. In [12], this issue is dealing with by using
attribute predicates, but it is an approach based on a specification language instead
of using attribute trees.

7.2.2 General Framework of Constructing ABA Schemes

In Subsection 3.1.3, we divided ABA schemes into two types, i.e., static and dy-
namic. This definition was first proposed in [125] to describe different group signa-
tures [126–128]. The main difference is whether the system has the ability to add
members into the group at any point of time. If all members in the group are decided
during an ABA system’s setup, it is static. Otherwise it is dynamic. In most recent
work, however, “dynamic” is used to describe systems where users are involved
in the generation of their secret keys to prevent key escrow, and it is realized by a

108

Discussion, Conclusions and Future Work

“join in” protocol. Compared with dynamic schemes, all keys are generated by the
authority in static ABA schemes and thus there is no need for a “join in” protocol.

Despite of some research on ABA scheme construction, to the best of our knowl-
edge, there is only one publication [13] in which a general framework to construct
static ABA schemes is presented. The general framework proposed in [13] can
be used to construct ABA schemes from group signature schemes, for example,
similar to the work done by Boneh and Shacham [129] and BMW group signature
scheme [128]. We will not explain the details of the general framework but only
the general idea. To construct an ABA scheme, two necessary parts are needed:
an attribute tree and a signature or encryption scheme on which an ABA scheme
can be built. To simplify explanations, we call these signature or encryption “base
schemes”. Attribute trees are used to represent attribute requirements and to au-
thenticate whether the user owns required attributes. The base scheme is used to
generate signatures for anonymous authentication. As long as the base scheme
is fully anonymous and traceable, the output ABA scheme is also fully anony-
mous and traceable. To achieve only anonymity, base schemes can be group sig-
natures [130–134], ring signatures [135–142], ABS [14, 143, 144] and ABE [39]
schemes. However, ring signatures and ABE schemes usually do not provide trace-
ability and thus can only be utilized to construct untraceable ABA schemes rather
than traceable ones. The way how to construct ABA schemes based on either group
signatures, ring signatures or ABE schemes are based on pairings. As far as we
know, there is only one ABS scheme [145] that is constructed without pairings. The
scheme proposed in [145] is obtained by applying Fiat-Shamir transform [146] to
the attribute-related identification (ABID) proposed by the authors [145]. There-
fore, it gains an advantage in efficiency without pairings. Currently, there are three
open issues in the area of general framework of ABA scheme construction.

1. In the general framework to construct static ABA schemes, only anonymity
and traceability are discussed. How to achieve other security requirements
and what requirements a base scheme should satisfy to build an ABA scheme
with different security requirements are still not solved.

2. There is no general framework to build a dynamic ABA scheme from base
schemes.

3. From the summary of recent work in Table 7.1, we can see that most schemes
are static. As explained before, the “join in” protocol in dynamic schemes

109

Cryptographic Enforcement of Attribute-based Authentication

can prevent group members and authorities from impersonating honest users
and is thus more privacy preserving. Therefore, more dynamic ABA schemes
rather than static ones are preferable considering security and privacy reasons.

7.2.3 Security Models

ABA schemes are built on bilinear groups [11] and their security is based on hard
problems in groups or bilinear groups, such as Diffie-Hellman problem (DH) [3],
DLP [19] and q-SDH [3]. Moreover, the security requirements of ABA scheme
are usually proved under some models, such as random oracle model [15], generic
model [20] and standard model [21]. The dilemma in cryptographic application
is that there is always a gap between theory and practice, and the same for ABA
schemes. The proving of their security requirements is based on these hard prob-
lems, cryptographic assumptions and security models. However, using too many
assumptions constrains the usability of these schemes. Some schemes are proved
secure in random oracles, but their security is still questionable once they are im-
plemented in real systems [38]. Some schemes are even unpractical because of
too many assumptions and too complicated computations. Security requirements of
most ABA schemes are proved under random oracle model. Compared with random
model, the gap between assumptions in generic and standard model and implemen-
tations is comparatively more narrow and thus more preferable models to design
more practical ABA schemes.

Considering the cryptographic constructions and assumptions used in ABA
schemes, attribute-related authorization, ABS and ABE share something in com-
mon. In the following, we summarize and compare some recent work to gain an
understanding of the usage of security models. The results are shown in Table 1.
Before that some explanations are needed for better understanding.

1. Four ABA schemes from [13] are analyzed, from Chapters 5.3.3, 5.4.3, 5.5.3
and 6.4.1 respectively, and we denote them by [13]-1, [13]-2, [13]-3 and [13]-
4 accordingly.

2. Two schemes are proposed in [15] and we denote them by [15]-1 and [15]-2
respectively.

3. “CR” is for collision resistant, “D” is for dynamic and “S” is for static.

110

Discussion, Conclusions and Future Work

Table 7.1: Security Comparisons

Anonymous Unforgeable Unlinkable Traceable CR D/S Model
[13].1 Y Y Y Y Y S RM
[13].2 Y Y Y Y Y S RM
[13].3 Y Y Y Y Y D RM
[13].4 Y Y Y Y Y S RM
[24] Y - - - Y S RM&GM
[143] Y Y - N - S SM
[144] Y Y Y - - S GM
[25] Y Y - Y Y D RM
[116] Y - Y - Y S -
[15].1 Y Y - N - S RM
[15].2 Y Y - N - S SM
[143] Y Y - N - S SM
Scheme 1 Y Y Y Y Y S RM
Scheme 2 Y Y Y Y Y S RM
Scheme 3 Y Y Y Y Y S RM
Scheme 4 Y Y Y Y Y S RM
Scheme 5 Y - Y N N S RM
Scheme 6 Y - Y N N S RM

4. SM, RM and GM are short for standard model, random oracle model and
generic model respectively.

5. “-” means no information in the referenced paper.

7.2.4 Hierarchy

Hierarchies have been discussed in Chapter 5 and been divided into the types of
delegation [87, 88], hierarchical structure of attributes [90], a hierarchical structure
of users [91] and hierarchical security class [77]. Scheme 3 and Scheme 4 proposed
in this dissertation are an example of user-related and attribute-related hierarchies
respectively.

As discussed in Subsection 7.2.2, since ABA schemes can be built on base
schemes such as ring signatures, group signatures or ABE schemes, these base
schemes have some similarities with ABA schemes in the organization of hierar-
chies. First of all, there should be a group of signers in ABA, group or ring signature
schemes, no matter the group is real or abstract. Signers in a group or ring signature

111

Cryptographic Enforcement of Attribute-based Authentication

scheme generate signatures by a group based private key. However, signers in ABA
schemes sign by their own attribute private keys, but the verification is based on
the group based public key. This is how they can hide their identities in a signature
in ABA, group or ring signature schemes. If tracing is required, there should be a
group manager or an authority that has the identity information of all the signers
in the group. Besides, identity information should be contained in the signature,
so that it can be used by the opener to reveal the signer’s identity. However, the
identity information cannot be extracted by a verifier.

There are mainly four advantages for using hierarchical structures [24, 45]. First
of all, authorities are structured in more fine-grained trust levels, which are closer to
applications in real life. Secondly, the property of different trust levels or privileges
allows more fine-grained requirements from the verifier. Thirdly, the decentralized
structure distributes the workload of the system so that a specific authority will not
become the system bottleneck. Finally, the compromise of one non-top authority
will not lead to the compromise of the whole system. However, the work on HABA
is quite limited, and how to build ABA schemes which combine different hierarchies
together is still unsolved.

7.2.5 Traceability

The main purpose of ABA schemes is to achieve anonymity, which promises anony-
mous authentication, or more specifically, the verifier cannot get any identifying
information about the signer during authentication. However, for some systems,
traceability is of great importance. When disputes happen and the signers’ identi-
ties are treated as legitimate evidence, tracing is useful. Because of the property of
anonymity in ABA schemes, the verifier itself cannot trace signers’ identities, so it
has to ask an authority (the “opener”) to reveal signers’ identities. Whether the sys-
tem has traceability or not greatly depends on the way how signatures are generated
and what is included in the signature. For a traceable signature, it should have at
least two parts, one for proving that the signer has the required attributes and one
for identity tracing.

Based on whether the ABA schemes are traceable or not, we can divide most of
the recent work into two parts. In general, ABA schemes based on group signatures
are usually traceable. A typical example is the schemes proposed in [13], where
some schemes are based on results from [129, 147]. If ABA schemes are based
on ring signatures [148], it is quite possible that they are not traceable, such as

112

Discussion, Conclusions and Future Work

the scheme proposed in [149]. As for using ABE as base schemes, it differs. For
example, both Scheme 2 and Scheme 6 are based on ABE schemes, but Scheme 2
is traceable and Scheme 6 is untraceable. However, an ABA scheme with tracing
ability usually has longer signatures compared with those untraceable systems. The
signature sizes in schemes 2, 3, 4 proposed in this dissertation are comparatively
short because of the use of keyed one-way hash function with the key computed
based on the required attributes. More approaches about how to design shorter or
even constant size signature [143] for a traceable ABA schemes should be an active
research area.

7.2.6 Revocation

Revocation is an important feature of ABA systems. There has not been much
work focused on ABA revocation, but it is well studied in group signatures [129],
identity-based encryption (IBE) [29] and ABE [16, 49, 76] schemes. We will dis-
cuss revocation methods that can be used in ABA schemes.

Generally, there are two types of methods for revocation, a revocation list with
revoked users or expiration time related attribute keys. The scheme proposed in
[129] uses a revocation list, which contains a token representing each revoked user.
During system setup, each user should be registered in an authority’s database and
be known only to the authority. Once they are revoked, they can be found in the
database and then added into the revocation list. For this method, the revocation list
should be public and available all the time. Thus the biggest disadvantage for this
method is that verifiers should have access to the Internet or at least to the server
where the revocation list is stored.

The second method is to use expiration time. When signers’ attribute keys are
generated, they are usually combined with a time expiration date [144]. Compared
with the first approach, verifiers do not have to have access to the revocation list,
and what they have to do is to check whether the signature is generated by expired
keys or not. There are two main drawbacks for this approach. The first one is that
when the keys are expired, they need to be updated even though the users are still
legitimate, which consumes extra system resources. The other drawback is that it
is impossible to revoke either a certain user or an attribute key before they become
expired, unless the system has an extra revocation mechanism.

What has been discussed above is categorized by the methods of revocation. If
we consider the coarse- or fine-grained revocation approaches, then they can be di-

113

Cryptographic Enforcement of Attribute-based Authentication

vided into user-leveled [150] and attribute-leveled [76] revocation as stated in [144].
If the revocation is user-leveled, then once a user is revoked, all his or her attribute
keys are revoked. However, if only an attribute of a user is revoked, the other at-
tributes of the user are still usable. In an ABA system, the users are supposed to
be dynamic, new members joining and old members leaving or being revoked. We
have already discussed two methods based on revocation lists and expiration time,
which can be either user- or attribute-leveled. Revocation list based mechanism
cannot work in an off-line environment while expiration time mechanism is not
flexible enough to revoke either a signer or an attribute at arbitrary point. There is
still a need for methods that combine user-leveled with attribute-leveled revocation
together to provide more efficiency and flexibility.

114

References

REFERENCES

[1] N. Li, L. Zhang, P. Xu, L. Wang, J. Zheng, and Y. Guo, “Research on pricing
model of cloud storage,” in 2013 IEEE Ninth World Congress on Services
(SERVICES), June 2013, pp. 412–419.

[2] D. Slamanig and C. Hanser, “On cloud storage and the cloud of clouds ap-
proach,” in 2012 International Conference for Internet Technology And Se-
cured Transactions, Dec 2012, pp. 649–655.

[3] S. Rahaman and M. Farhatullah, “PccP: A model for preserving cloud com-
puting privacy,” in 2012 International Conference on Data Science Engineer-
ing (ICDSE), July 2012, pp. 166–170.

[4] S. Hamouda, “Security and privacy in cloud computing,” in 2012 Interna-
tional Conference on Cloud Computing Technologies, Applications and Man-
agement (ICCCTAM), Dec 2012, pp. 241–245.

[5] C. M. Yu, C. Y. Chen, and H. C. Chao, “Privacy-preserving multikey-
word similarity search over outsourced cloud data,” Systems Journal, IEEE,
vol. PP, no. 99, pp. 1–10, 2015.

[6] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Zhao, C. Jin, Z.-L. Zhang, and Y. Dai,
“Efficient batched synchronization in dropbox-like cloud storage services,”
in Middleware 2013, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, vol. 8275, pp. 307–327.

[7] M. Privat and R. Warner, “Talking to services: iCloud and dropbox,” in Pro
iOS Persistence. Apress, 2014, pp. 259–286.

[8] C. H. Vincent, F. David, K. Rick, S. Adam, S. Kenneth, and
S. Karen, “NIST special publication 800-162: Guide to attribute based
AC (ABAC) definition and considerations,” 2014. [Online]. Available:
http://dx.doi.org/10.6028/NIST.SP.800-162

[9] M. Benantar, “Foundations of security and ac in computing,” in AC Systems.
Springer US, 2006, pp. 1–39.

[10] H. Vincent C., F. F. David, and D. R. Kuhn, “Assessment of ac systems,”
2006.

115

Cryptographic Enforcement of Attribute-based Authentication

[11] C. Schlger, M. Sojer, B. Muschall, and G. Pernul, “Attribute-based authen-
tication and authorisation infrastructures for e-commerce providers,” in E-
Commerce and Web Technologies, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2006, vol. 4082, pp. 132–141.

[12] J. Camenisch, M. Dubovitskaya, A. Lehmann, G. Neven, C. Paquin, and
F.-S. Preiss, “Concepts and languages for privacy-preserving attribute-based
authentication,” in Policies and Research in Identity Management, ser. IFIP
Advances in Information and Communication Technology. Springer Berlin
Heidelberg, 2013, vol. 396, pp. 34–52.

[13] D. D. Khader, “Attribute-based authentication scheme,” Ph.D. dissertation,
University of Bath, 2009.

[14] H. Maji, M. Prabhakaran, and M. Rosulek, “Attribute-based signatures,” in
Topics in Cryptology CT-RSA 2011, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2011, vol. 6558, pp. 376–392.

[15] J. Li, M. H. Au, W. Susilo, D. Xie, and K. Ren, “Attribute-based signature
and its applications,” in Proceedings of the 5th ACM Symposium on Informa-
tion, Computer and Communications Security, ser. ASIACCS ’10. ACM,
2010, pp. 60–69.

[16] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing with
attribute revocation,” in Proceedings of the 5th ACM Symposium on Informa-
tion, Computer and Communications Security, ser. ASIACCS ’10. ACM,
2010, pp. 261–270.

[17] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances in
Cryptology EUROCRYPT 2005, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2005, vol. 3494, pp. 457–473.

[18] M. De Soete, “Pki,” in Encyclopedia of Cryptography and Security.
Springer US, 2011, pp. 935–936.

[19] “Pki trust relationships,” in Encyclopedia of Cryptography and Security.
Springer US, 2011, pp. 939–939.

[20] H. Yang and A. Oleshchuk, Vladimir, “A dynamic attribute-based authenti-
cation scheme,” in Codes, Cryptology, and Information Security. Springer
International Publishing, 2015, vol. 9084, pp. 106–118.

116

References

[21] H. Yang and V. A. Oleshchuk, “An efficient traceable attribute-based authen-
tication scheme with one-time attribute trees,” in Secure IT Systems, ser. Lec-
ture Notes in Computer Science. Springer International Publishing, 2015,
vol. 9417, pp. 123–135.

[22] ——, “Traceable hierarchical attribute-based authentication for the cloud,”
in 2015 IEEE Conference on Communications and Network Security (CNS),
Sept 2015, pp. 685–689.

[23] H. Yang and A. Oleshchuk, Vladimir, “A survey on the security and privacy
of attribute-based authentication schemes,” International Journal of Comput-
ing, vol. 14, no. 2, 2015.

[24] X. Liu, Y. Xia, S. Jiang, F. Xia, and Y. Wang, “Hierarchical attribute-based
access control with authentication for outsourced data in cloud computing,”
in 2013 12th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), July 2013, pp. 477–484.

[25] K. Emura, A. Miyaji, and K. Omote, “A dynamic attribute-based group sig-
nature scheme and its application in an anonymous survey for the collection
of attribute statistics,” in 2009 International Conference on Availability, Re-
liability and Security (ARES ’09), March 2009, pp. 487–492.

[26] K. N. Saravana, L. G. Rajya, and B. Balamurugan, “Enhanced attribute based
encryption for cloud computing,” Procedia Computer Science, vol. 46, pp.
689 – 696, 2015.

[27] M. Surya and N. N. Anithadevi, “Single sign on mechanism using attribute
based encryption in distributed computer networks,” Procedia Computer Sci-
ence, vol. 47, pp. 441 – 451, 2015.

[28] N. Attrapadung, J. Herranz, F. Laguillaumie, B. Libert, E. de Panafieu, and
C. Rafols, “Attribute-based encryption schemes with constant-size cipher-
texts,” Theoretical Computer Science, vol. 422, pp. 15 – 38, 2012.

[29] S. Arita, “Flexible attribute-based encryption,” in Information and Commu-
nications Security, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, vol. 7618, pp. 471–478.

117

Cryptographic Enforcement of Attribute-based Authentication

[30] T. Naruse, M. Mohri, and Y. Shiraishi, “Provably secure attribute-based
encryption with attribute revocation and grant function using proxy re-
encryption and attribute key for updating,” Human-centric Computing and
Information Sciences, vol. 5, no. 1, 2015.

[31] K. Kaushik, V. Varadharajan, and R. Nallusamy, “Multi-user attribute based
searchable encryption,” in 2013 IEEE 14th International Conference on Mo-
bile Data Management (MDM), vol. 2, June 2013, pp. 200–205.

[32] R. Manjusha and R. Ramachandran, “Comparative study of attribute based
encryption techniques in cloud computing,” in 2014 International Confer-
ence on Embedded Systems (ICES), July 2014, pp. 116–120.

[33] X. Liu, H. Zhu, J. Ma, J. Ma, and S. Ma, “Key-policy weighted attribute
based encryption for fine-grained access control,” in 2014 IEEE International
Conference on Communications Workshops (ICC), June 2014, pp. 694–699.

[34] H. Wang, B. Yang, and Y. Wang, “Server aided ciphertext-policy attribute-
based encryption,” in 2015 IEEE 29th International Conference on Advanced
Information Networking and Applications Workshops (WAINA), March 2015,
pp. 440–444.

[35] Y. Shi, Q. Zheng, J. Liu, and Z. Han, “Directly revocable key-policy attribute-
based encryption with verifiable ciphertext delegation,” Information Sci-
ences, vol. 295, pp. 221 – 231, 2015.

[36] N. Attrapadung and S. Yamada, “Duality in ABE: Converting attribute based
encryption for dual predicate and dual policy via computational encodings,”
in Topics in Cryptology - CT-RSA 2015, ser. Lecture Notes in Computer Sci-
ence. Springer International Publishing, 2015, vol. 9048, pp. 87–105.

[37] Y. Wang, K. Chen, Y. Long, and Z. Liu, “Accountable authority key pol-
icy attribute-based encryption,” Science China Information Sciences, vol. 55,
no. 7, pp. 1631–1638, 2012.

[38] C. Wang and Y. Liu, “A secure and efficient key-policy attribute based key
encryption scheme,” in 2009 1st International Conference on Information
Science and Engineering (ICISE), Dec 2009, pp. 1601–1604.

118

References

[39] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption
for fine-grained access control of encrypted data,” in Proceedings of the 13th
ACM Conference on Computer and Communications Security, ser. CCS ’06.
New York, NY, USA: ACM, 2006, pp. 89–98.

[40] Z. Zhou, D. Huang, and Z. Wang, “Efficient privacy-preserving ciphertext-
policy attribute based-encryption and broadcast encryption,” IEEE Transac-
tions on Computers, vol. 64, no. 1, pp. 126–138, Jan 2015.

[41] J. Xu, Q. Wen, W. Li, and Z. Jin, “Circuit ciphertext-policy attribute-based
hybrid encryption with verifiable delegation in cloud computing,” IEEE
Transactions on Parallel and Distributed Systems, no. 99, pp. 1–1, 2015.

[42] X. Liang, Z. Cao, H. Lin, and D. Xing, “Provably secure and efficient
bounded ciphertext policy attribute based encryption,” in Proceedings of the
4th International Symposium on Information, Computer, and Communica-
tions Security, ser. ASIACCS ’09. New York, NY, USA: ACM, 2009, pp.
343–352.

[43] J. Li, Q. Huang, X. Chen, S. S. M. Chow, D. S. Wong, and D. Xie, “Multi-
authority ciphertext-policy attribute-based encryption with accountability,”
in Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, ser. ASIACCS ’11. New York, NY, USA: ACM,
2011, pp. 386–390.

[44] M. Horvth, “Attribute-based encryption optimized for cloud computing,” in
SOFSEM 2015: Theory and Practice of Computer Science, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2015, vol. 8939,
pp. 566–577.

[45] Z. Wan, J. Liu, and R. Deng, “HASBE: A hierarchical attribute-based so-
lution for flexible and scalable access control in cloud computing,” IEEE
Transactions on Information Forensics and Security, vol. 7, no. 2, pp. 743–
754, April 2012.

[46] M. Gorantla, C. Boyd, and J. Gonzlez Nieto, “Attribute-based authenticated
key exchange,” in Information Security and Privacy, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, vol. 6168, pp. 300–
317.

119

Cryptographic Enforcement of Attribute-based Authentication

[47] D. Cao, B. Zhao, X. Wang, J. Su, and Y. Chen, “Authenticating with at-
tributes in online social networks,” in 2011 14th International Conference on
Network-Based Information Systems (NBiS), Sept 2011, pp. 607–611.

[48] S. Zhu, L. Zhan, H. Qiang, D. Fu, W. Sun, and Y. Tang, “A fuzzy attribute-
based authentication scheme on the basis of lagrange polynomial interpola-
tion,” in Human Centered Computing, ser. Lecture Notes in Computer Sci-
ence. Springer International Publishing, 2015, vol. 8944, pp. 685–692.

[49] J. Hur and D. K. Noh, “Attribute-based access control with efficient revoca-
tion in data outsourcing systems,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 22, no. 7, pp. 1214–1221, July 2011.

[50] Y. Zhang, M. Wu, L. Wu, and Y. Li, “Attribute-based access control secu-
rity model in service-oriented computing,” in Proceedings of the 2012 In-
ternational Conference on Cybernetics and Informatics, ser. Lecture Notes
in Electrical Engineering. Springer New York, 2014, vol. 163, pp. 1473–
1479.

[51] S. Ruj, “Attribute based access control in clouds: A survey,” in 2014 Inter-
national Conference on Signal Processing and Communications (SPCOM),
July 2014, pp. 1–6.

[52] H. Shen, “A semantic-aware attribute-based access control model for web
services,” in Algorithms and Architectures for Parallel Processing, ser. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2009, vol.
5574, pp. 693–703.

[53] A. Armando, R. Carbone, E. G. Chekole, and S. Ranise, “Attribute based
access control for APIs in spring security,” in Proceedings of the 19th ACM
Symposium on Access Control Models and Technologies, ser. SACMAT ’14.
ACM, 2014, pp. 85–88.

[54] S. Ding, Y. Zhao, and Y. Liu, “Efficient traceable attribute-based signature,”
in 2014 IEEE 13th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), Sept 2014, pp. 582–589.

[55] P. P. Chandar, D. Mutkuraman, and M. Rathinrai, “Hierarchical attribute
based proxy re-encryption access control in cloud computing,” in 2014 In-

120

References

ternational Conference on Circuit, Power and Computing Technologies (IC-
CPCT), March 2014, pp. 1565–1570.

[56] E. Caprin and Y. Zhang, “Negotiation based framework for attribute-based
access control policy evaluation,” in Proceedings of the 7th International
Conference on Security of Information and Networks, ser. SIN ’14. ACM,
2014, pp. 122–127.

[57] L. D. Kudryavtsev and M. Samarin, “Lagrange interpolation formula,” Last
modified in 2011. [Online]. Available: http://www.encyclopediaofmath.org/
index.php?title=Lagrange interpolation formula&oldid=17497

[58] B. Archer and E. W. Weisstein, “Lagrange interpolation formula,” Last
accessed in July, 2015. [Online]. Available: http://mathworld.wolfram.com/
LagrangeInterpolatingPolynomial.html

[59] M. M. Jahani Yekta, “Equivalence of the lagrange interpolator for uniformly
sampled signals and the scaled binomially windowed shifted sinc function,”
Digit. Signal Process., vol. 19, no. 5, pp. 838–842, sep 2009.

[60] T. Okamoto, “Cryptography based on bilinear maps,” in Applied Algebra, Al-
gebraic Algorithms and Error-Correcting Codes, ser. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2006, vol. 3857, pp. 35–50.

[61] R. Sahu and S. Padhye, “Efficient ID-based signature scheme from bilinear
map,” in Advances in Parallel Distributed Computing, ser. Communications
in Computer and Information Science. Springer Berlin Heidelberg, 2011,
vol. 203, pp. 301–306.

[62] Y. Qin, D. Feng, and X. Zhen, “An anonymous property-based attestation
protocol from bilinear maps,” in 2009 International Conference on Compu-
tational Science and Engineering (CSE ’09), vol. 2, Aug 2009, pp. 732–738.

[63] M. Bellare, “A note on negligible functions,” Journal of Cryptology, vol. 15,
no. 4, pp. 271–284, 2002.

[64] O. Goldreich, The Foundations of Cryptography: Volume 1, Basic Tools (1st
Edition). Cambridge, United Kingdom: Cambridge University Press, 2007.

[65] D. M. Gordon, “Discrete logarithm problem,” in Encyclopedia of Cryptogra-
phy and Security. Springer US, 2005, pp. 164–168.

121

Cryptographic Enforcement of Attribute-based Authentication

[66] K. Nyberg and R. A. Rueppel, “Message recovery for signature schemes
based on the discrete logarithm problem,” Designs, Codes and Cryptography,
vol. 7, no. 1-2, pp. 61–81, 1996.

[67] D. Boneh and X. Boyen, “Short signatures without random oracles,” in Ad-
vances in Cryptology - EUROCRYPT 2004, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2004, vol. 3027, pp. 56–73.

[68] D. Jao and K. Yoshida, “Boneh-boyen signatures and the strong diffie-
hellman problem,” in Pairing-Based Cryptography Pairing 2009, ser. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2009, vol.
5671, pp. 1–16.

[69] R. S. Winternitz, “Producing a one-way hash function from DES,” in Ad-
vances in Cryptology. Springer US, 1984, pp. 203–207.

[70] J. Katz, “The random oracle model,” in Digital Signatures. Springer US,
2010, pp. 135–142.

[71] L. Granboulan, “Short signatures in the random oracle model,” in Advances
in Cryptology ASIACRYPT 2002, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2002, vol. 2501, pp. 364–378.

[72] R. Hady and A. Agranovsky, “Crypto miracles with random oracle,” in IEEE-
2001 Siberian Workshop of Students and Young Researches (SIBCOM-2001)
Modern Communication Technologies, 2001, pp. 20–22.

[73] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodology,
revisited,” J. ACM, vol. 51, no. 4, pp. 557–594, Jul. 2004.

[74] M. Bellare and O. Goldreich, “Proving computational ability,” in Studies
in Complexity and Cryptography: Miscellanea on the Interplay between
Randomness and Computation, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2011, vol. 6650, pp. 6–12.

[75] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk, “Keyed hash functions,” in
Cryptography: Policy and Algorithms, ser. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 1996, vol. 1029, pp. 201–214.

122

References

[76] T. Naruse, M. Mohri, and Y. Shiraishi, “Attribute-based encryption with at-
tribute revocation and grant function using proxy re-encryption and attribute
key for updating,” in Future Information Technology, ser. Lecture Notes in
Electrical Engineering. Springer Berlin Heidelberg, 2014, vol. 276, pp.
119–125.

[77] D. Xu, F. Luo, L. Gao, and Z. Tang, “Fine-grained document sharing us-
ing attribute-based encryption in cloud servers,” in 2013 Third International
Conference on Innovative Computing Technology (INTECH), Aug 2013, pp.
65–70.

[78] J. Lai, R. H. Deng, Y. Li, and J. Weng, “Fully secure key-policy attribute-
based encryption with constant-size ciphertexts and fast decryption,” in Pro-
ceedings of the 9th ACM Symposium on Information, Computer and Commu-
nications Security, ser. ASIA CCS ’14. New York, NY, USA: ACM, 2014,
pp. 239–248.

[79] D. Servos and S. Osborn, “HGABAC: Towards a formal model of hierarchi-
cal attribute-based access control,” in Foundations and Practice of Security,
ser. Lecture Notes in Computer Science. Springer International Publishing,
2015, vol. 8930, pp. 187–204.

[80] R. Bobba, H. Khurana, and M. Prabhakaran, “Attribute-sets: A practically
motivated enhancement to attribute-based encryption,” in Computer Security
ESORICS 2009, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, vol. 5789, pp. 587–604.

[81] F. Han, J. Qin, H. Zhao, and J. Hu, “A general transformation from KP-ABE
to searchable encryption,” in Cyberspace Safety and Security, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012, vol. 7672,
pp. 165–178.

[82] S. Yu, K. Ren, W. Lou, and J. Li, “Defending against key abuse attacks in
KP-ABE enabled broadcast systems,” in Security and Privacy in Communi-
cation Networks, ser. Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering. Springer Berlin
Heidelberg, 2009, vol. 19, pp. 311–329.

123

Cryptographic Enforcement of Attribute-based Authentication

[83] Z. Liu, Z. Cao, and D. Wong, “Fully collusion-resistant traceable key-policy
attribute-based encryption with sub-linear size ciphertexts,” in Information
Security and Cryptology, ser. Lecture Notes in Computer Science. Springer
International Publishing, 2015, vol. 8957, pp. 403–423.

[84] M. Padhya and D. Jinwala, “A novel approach for searchable CP-ABE
with hidden ciphertext-policy,” in Information Systems Security, ser. Lecture
Notes in Computer Science. Springer International Publishing, 2014, vol.
8880, pp. 167–184.

[85] A. Xiong, C. Xu, and Q. Gan, “A CP-ABE scheme with system attributes
revocation in cloud storage,” in Wavelet Active Media Technology and Infor-
mation Processing (ICCWAMTIP), 2014 11th International Computer Con-
ference on, Dec 2014, pp. 331–335.

[86] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based
encryption,” in 2007 IEEE Symposium on Security and Privacy (SP ’07),
May 2007, pp. 321–334.

[87] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters, “Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner
product encryption,” in Advances in Cryptology EUROCRYPT 2010, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010, vol.
6110, pp. 62–91.

[88] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for
fine-grained access control in cloud storage services,” in Proceedings of the
17th ACM Conference on Computer and Communications Security, ser. CCS
’10. New York, NY, USA: ACM, 2010, pp. 735–737.

[89] M. Asim, T. Ignatenko, M. Petkovic, D. Trivellato, and N. Zannone, “Enforc-
ing access control in virtual organizations using hierarchical attribute-based
encryption,” in 2012 Seventh International Conference on Availability, Reli-
ability and Security (ARES), Aug 2012, pp. 212–217.

[90] J. Li, Q. Wang, C. Wang, and K. Ren, “Enhancing attribute-based encryption
with attribute hierarchy,” Mobile Networks and Applications, vol. 16, no. 5,
pp. 553–561, 2011.

124

References

[91] J. Liu, Z. Wan, and M. Gu, “Hierarchical attribute-set based encryption for
scalable, flexible and fine-grained access control in cloud computing,” in In-
formation Security Practice and Experience, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011, vol. 6672, pp. 98–107.

[92] N. Li, “Discretionary access control,” in Encyclopedia of Cryptography and
Security. Springer US, 2011, pp. 353–356.

[93] S. Dranger, R. Sloan, and J. Solworth, “The complexity of discretionary ac-
cess control,” in Advances in Information and Computer Security, ser. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2006, vol.
4266, pp. 405–420.

[94] D. Slamanig, “Dynamic accumulator based discretionary access control for
outsourced storage with unlinkable access,” in Financial Cryptography and
Data Security, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, vol. 7397, pp. 215–222.

[95] M. Benantar, “Mandatory-access-control model,” in AC Systems. Springer
US, 2006, pp. 129–146.

[96] L. Tian, X. Rong, and T. Liu, “Design and implementation of linux file
mandatory access control,” in Network Computing and Information Security,
ser. Communications in Computer and Information Science, J. Lei, F. Wang,
M. Li, and Y. Luo, Eds. Springer Berlin Heidelberg, 2012, vol. 345, pp.
15–22.

[97] J. Jafarian, M. Amini, and R. Jalili, “A dynamic mandatory access control
model,” in Advances in Computer Science and Engineering, ser. Communi-
cations in Computer and Information Science. Springer Berlin Heidelberg,
2009, vol. 6, pp. 862–866.

[98] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli,
“Proposed NIST standard for role-based AC,” ACM Trans. Inf. Syst. Secur.,
vol. 4, no. 3, pp. 224–274, Aug. 2001.

[99] S. Osborn, “Role-based access control,” in Security, Privacy, and Trust in
Modern Data Management, ser. Data-Centric Systems and Applications.
Springer Berlin Heidelberg, 2007, pp. 55–70.

125

Cryptographic Enforcement of Attribute-based Authentication

[100] D. Ferraiolo and R. Kuhn, “Role based AC,” in Proceddings of 15th NIST-
NCSC National Computer Security Conference, 1992, pp. 554–563.

[101] V. Alturi and D. Ferraiolo, “Role-based access control,” in Encyclopedia of
Cryptography and Security. Springer US, 2011, pp. 1053–1055.

[102] Y. Zhang and J. Joshi, “Role based access control,” in Encyclopedia of
Database Systems. Springer US, 2009, pp. 2447–2452.

[103] M. Covington, M. Sastry, and D. Manohar, “Attribute-based authentication
model for dynamic mobile environments,” in Security in Pervasive Comput-
ing, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2006, vol. 3934, pp. 227–242.

[104] S. Ruj, M. Stojmenovic, and A. Nayak, “Privacy preserving access control
with authentication for securing data in clouds,” in Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (Ccgrid 2012), ser. CCGRID ’12. IEEE Computer Society, 2012,
pp. 556–563.

[105] L. Guo, C. Zhang, J. Sun, and Y. Fang, “A privacy-preserving attribute-based
authentication system for mobile health networks,” IEEE Transactions on
Mobile Computing, vol. 13, no. 9, pp. 1927–1941, Sept 2014.

[106] H. Wang and Y. Ren, “An attribute-based anonymous authentication
scheme,” in 2013 Fourth International Conference on Emerging Intelligent
Data and Web Technologies (EIDWT), Sept 2013, pp. 569–573.

[107] S. Dolev, L. Krzywiecki, N. Panwar, and M. Segal, “Dynamic attribute based
vehicle authentication,” in 2014 IEEE 13th International Symposium on Net-
work Computing and Applications (NCA), Aug 2014, pp. 1–8.

[108] H. a Park, D. H. Lee, and J. Zhan, “Attribute-based access control using
combined authentication technologies,” in IEEE International Conference on
Granular Computing (GrC 2008), Aug 2008, pp. 518–523.

[109] Z. Wang, Q. Wu, D. Ye, and H. Chen, “Practical identity-based aggregate
signature from bilinear maps,” Journal of Shanghai Jiaotong University (Sci-
ence), vol. 13, no. 6, pp. 684–687, 2008.

126

References

[110] M. Gagn, S. Narayan, and R. Safavi-Naini, “Threshold attribute-based sign-
cryption,” in Security and Cryptography for Networks, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, vol. 6280, pp. 154–
171.

[111] T. Pandit and R. Barua, “Efficient fully secure attribute-based encryption
schemes for general access structures,” in Provable Security, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012, vol. 7496,
pp. 193–214.

[112] Y. Rouselakis and B. Waters, “Practical constructions and new proof methods
for large universe attribute-based encryption,” in Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security, ser.
CCS ’13. New York, NY, USA: ACM, 2013, pp. 463–474.

[113] L. Nwosu, A. Thompson, B. Alese, and O. Obe, “An attribute-based signature
using rivest shamir adleman scheme,” in 2014 9th International Conference
for Internet Technology and Secured Transactions (ICITST), Dec 2014, pp.
380–386.

[114] D. Khader, “Attribute based search in encrypted data: ABSE,” in Proceed-
ings of the 2014 ACM Workshop on Information Sharing & Collaborative
Security, ser. WISCS ’14. New York, NY, USA: ACM, 2014, pp. 31–40.

[115] F. Zeng, C. Xu, X. Zhang, and J. Liu, “Strongly secure attribute-based au-
thenticated key exchange with traceability,” in Web Information Systems and
Mining, ser. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2012, vol. 7529, pp. 231–238.

[116] L. Guo, C. Zhang, J. Sun, and Y. Fang, “PAAS: A privacy-preserving
attribute-based authentication system for ehealth networks,” in 2012 IEEE
32nd International Conference on Distributed Computing Systems (ICDCS),
June 2012, pp. 224–233.

[117] W. Hongbin and R. Yan, “An attribute-based anonymous authentication
scheme,” in 2013 Fourth International Conference on Emerging Intelligent
Data and Web Technologies (EIDWT), Sept 2013, pp. 569–573.

[118] C. Solares, E. Vieira, and R. Mnguez, “Functional networks and the lagrange
polynomial interpolation,” in Intelligent Data Engineering and Automated

127

Cryptographic Enforcement of Attribute-based Authentication

Learning IDEAL 2006, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2006, vol. 4224, pp. 394–401.

[119] X. Song, H. Deng, and Z. Xiong, “Using piecewise hashing and lagrange
interpolation polynomial to preserve electronic evidence,” in Advances in
Information Technology and Education, ser. Communications in Computer
and Information Science. Springer Berlin Heidelberg, 2011, vol. 201, pp.
472–480.

[120] H. Lin, D. Pan, X. Zhao, and Z. Qiu, “A rapid and efficient pre-deployment
key scheme for secure data transmissions in sensor networks using lagrange
interpolation polynomial,” in 2008 International Conference on Information
Security and Assurance (ISA 2008), April 2008, pp. 261–265.

[121] M. Blanton, “Message authentication codes,” in Encyclopedia of Database
Systems. Springer US, 2009, pp. 1715–1716.

[122] F. Yang, C. Zhong, and D. Lu, “Cross message authentication code based
on multi-core computing technology,” in Advances in Future Computer and
Control Systems, ser. Advances in Intelligent and Soft Computing. Springer
Berlin Heidelberg, 2012, vol. 159, pp. 181–186.

[123] R. Alosaimy, K. Alghathbar, A. Hafez, and M. Eldefrawy, “NMACA ap-
proach used to build a secure message authentication code,” in Security Tech-
nology, Disaster Recovery and Business Continuity, ser. Communications in
Computer and Information Science. Springer Berlin Heidelberg, 2010, vol.
122, pp. 290–298.

[124] T. Priebe, W. Dobmeier, C. Schlger, and N. Kamprath, “Supporting attribute-
based access control in authorization and authentication infrastructures with
ontologies,” Journal of Software, vol. 2, no. 1, 2007.

[125] J. Camenisch and M. Stadler, “Efficient group signature schemes for large
groups,” in Advances in Cryptology CRYPTO’97, ser. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 1997, vol. 1294, pp. 410–424.

[126] A. Giuseppe, C. Jan, H. Susan, and d. M. Breno, “Practical group signatures
without random oracles,” 2006.

128

References

[127] D. Chaum and E. van Heyst, “Group signatures,” in Advances in Cryptology
EUROCRYPT 91, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1991, vol. 547, pp. 257–265.

[128] M. Bellare, D. Micciancio, and B. Warinschi, “Foundations of group signa-
tures: Formal definitions, simplified requirements, and a construction based
on general assumptions,” in Advances in Cryptology EUROCRYPT 2003,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003,
vol. 2656, pp. 614–629.

[129] D. Boneh and H. Shacham, “Group signatures with verifier-local revocation,”
in Proceedings of the 11th ACM Conference on Computer and Communica-
tions Security, ser. CCS ’04. New York, NY, USA: ACM, 2004, pp. 168–
177.

[130] G. Bleumer, “Group signatures,” in Encyclopedia of Cryptography and Se-
curity, H. van Tilborg and S. Jajodia, Eds. Springer US, 2011, pp. 526–528.

[131] S. Zhou and D. Lin, “Unlinkable randomizable signature and its application
in group signature,” in Information Security and Cryptology, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2008, vol. 4990,
pp. 328–342.

[132] S. Mohanty, B. Majhi, and V. Iyer, “A strong designated verifiable group
signature scheme,” in 2013 International Multi-Conference on Automation,
Computing, Communication, Control and Compressed Sensing (iMac4s),
March 2013, pp. 518–523.

[133] B. Libert, T. Peters, and M. Yung, “Scalable group signatures with revoca-
tion,” in Proceedings of the 31st Annual International Conference on The-
ory and Applications of Cryptographic Techniques, ser. EUROCRYPT’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 609–627.

[134] B. Libert and M. Yung, “Dynamic fully forward-secure group signatures,”
in Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, ser. ASIACCS ’10. New York, NY, USA: ACM,
2010, pp. 70–81.

[135] F. Zhang and K. Kim, “ID-based blind signature and ring signature from
pairings,” in Advances in Cryptology ASIACRYPT 2002, ser. Lecture Notes

129

Cryptographic Enforcement of Attribute-based Authentication

in Computer Science. Springer Berlin Heidelberg, 2002, vol. 2501, pp.
533–547.

[136] J. Herranz and G. Sez, “Forking lemmas for ring signature schemes,” in
Progress in Cryptology - INDOCRYPT 2003, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2003, vol. 2904, pp. 266–279.

[137] J. Herranz and G. Sez, “New identity-based ring signature schemes,” in Infor-
mation and Communications Security, ser. Lecture Notes in Computer Sci-
ence, J. Lopez, S. Qing, and E. Okamoto, Eds. Springer Berlin Heidelberg,
2004, vol. 3269, pp. 27–39.

[138] J. Lee and J. Chang, “Strong designated verifier ring signature scheme,” in In-
novations and Advanced Techniques in Computer and Information Sciences
and Engineering. Springer Netherlands, 2007, pp. 543–547.

[139] J. Ren and L. Harn, “Generalized ring signatures,” IEEE Transactions on
Dependable and Secure Computing, vol. 5, no. 3, pp. 155–163, July 2008.

[140] X. Zhou, “Study on ring signature and its application,” in 2009 Chinese Con-
trol and Decision Conference (CCDC’09), June 2009, pp. 1388–1393.

[141] T. H. Yuen, J. K. Liu, M. H. Au, W. Susilo, and J. Zhou, “Threshold ring sig-
nature without random oracles,” in Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, ser. ASIACCS’11.
New York, NY, USA: ACM, 2011, pp. 261–267.

[142] S. S. M. Chow, V. K. Wei, J. K. Liu, and T. H. Yuen, “Ring signatures with-
out random oracles,” in Proceedings of the 2006 ACM Symposium on Infor-
mation, Computer and Communications Security, ser. ASIACCS’06. New
York, NY, USA: ACM, 2006, pp. 297–302.

[143] A. Ge, C. G. Ma, and Z. F. Zhang, “Attribute-based signature scheme with
constant size signature in the standard model,” Information Security, IET,
vol. 6, no. 2, pp. 47–54, June 2012.

[144] Y. Lian, L. Xu, and X. Huang, “Attribute-based signatures with efficient re-
vocation,” in 2013 5th International Conference on Intelligent Networking
and Collaborative Systems (INCoS), 2013, pp. 573–577.

130

References

[145] H. Anada, S. Arita, and K. Sakurai, “Attribute-based signatures without pair-
ings via the fiat-shamir paradigm,” in Proceedings of the 2nd ACM Workshop
on ASIA Public-key Cryptography, ser. ASIAPKC ’14. New York, NY,
USA: ACM, 2014, pp. 49–58.

[146] M. Abdalla, J. An, M. Bellare, and C. Namprempre, “From identification to
signatures via the fiat-shamir transform: Minimizing assumptions for secu-
rity and forward-security,” in Advances in Cryptology EUROCRYPT 2002,
ser. Lecture Notes in Computer Science, L. Knudsen, Ed. Springer Berlin
Heidelberg, 2002, vol. 2332, pp. 418–433.

[147] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in Ad-
vances in Cryptology CRYPTO 2004, ser. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2004, vol. 3152, pp. 41–55.

[148] R. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret: Theory and ap-
plications of ring signatures,” in Theoretical Computer Science, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2006, vol. 3895,
pp. 164–186.

[149] W. Wenqiang and C. Shaozhen, “Attribute-based ring signature scheme with
constant-size signature,” Information Security, IET, vol. 4, no. 2, pp. 104–
110, June 2010.

[150] J. Ye, W. Zhang, S. Wu, Y. Gao, and J. Qiu, “Attribute-based fine-grained ac-
cess control with user revocation,” in Information and Communication Tech-
nology, ser. Lecture Notes in Computer Science, Linawati, M. Mahendra,
E. Neuhold, A. Tjoa, and I. You, Eds. Springer Berlin Heidelberg, 2014,
vol. 8407, pp. 586–595.

131

Appendices A

List of Publications

The purpose of this preface is to record all the articles published, accepted
and submitted by the author of this dissertation. The followings are the papers
included in this dissertation:

1. Huihui Yang, Vladimir A. Oleshchuk and Andreas Prinz, “Verifying Group
Authentication Protocols by Scyther (accepted)”, the Journal of Wireless
Mobile Networks, Ubiquitous Computing, and Dependable Applications
(JoWUA), Vol. 7, 2016.

2. Mohamed Abomhara and Huihui Yang, “Attribute-Based Authenticated Ac-
cess for Secure Sharing of Healthcare Records in Collaborative Environ-
ments”, The Eighth International Conference on eHealth, Telemedicine, and
Social Medicine (eTELEMED 2016), pp. 138-144, 2016.

3. Huihui Yang, Andreas Prinz and Vladimir A. Oleshchuk, “Formal Analysis
and Model Checking of a Group Authentication Protocol by Scyther”, 24th
Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP), pp. 553-557, 2016.

4. Huihui Yang and Vladimir A. Oleshchuk, “Traceable Hierarchical Attribute-
based Authentication for the Cloud”, 2015 IEEE Conference on Communica-
tions and Network Security (CNS), pp. 685-689, 2015.

5. Huihui Yang and Vladimir A. Oleshchuk, “An Efficient Traceable ABA
Schemes with One-time Attribute Trees”, 20th Nordic Conference, NordSec
2015, Vol. 9417, pp. 123-135, LNCS, 2015.

132

6. Huihui Yang and Vladimir A. Oleshchuk, “A Survey on the Security and
Privacy of Attribute-based Authentication Schemes”, International Journal
of Computing, Vol. 14, Issue 2, 2015.

7. Huihui Yang and Vladimir A. Oleshchuk, “A Dynamic Attribute-Based Au-
thentication Scheme”, International Conference in “Codes, Cryptology and
Information Security”, Vol. 9085, pp. 106-118, LNCS, 2015.

8. Huihui Yang and Vladimir A. Oleshchuk, “An improvement of the batch-
authentication and key agreement framework for P2P-based online social net-
works”, 2014 International Conference on Privacy and Security in Mobile
Systems (PRISMS), pp. 1-4, 2014.

9. Huihui Yang, Lei Jiao and Vladimir A. Oleshchuk, “A General Framework
for Group Authentication and Key Exchange Protocols”, 6th International
symposium on foundations & Practice in security FPS’ 2013, Vol. 8352, pp.
31-45, LNCS, 2014.

133

134

