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Abstract 
 

The government in Norway aims to double the bioenergy use from 14 TWh to 28 

TWh between the year 2008 and 2020. This calls for major changes in the current 

energy practice and an increase in the biomass based energy applications in the 

total energy mix. One effort to this end is the replacement of existing space 

heating oil burners with heat from biomass combustion. However, this strategy 

alone could not be able to adequately meet the target of further bioenergy 

expansion. Neither will it help in achieving the Kyoto aim of reducing CO2 

emission. So an alternative such as gasification could be a part of the solution. 

Gasification offers many advantages, but a major concern towards this 

technology is the logistics. A highly efficient gasification process would mean 

very little to a technical viability if efficient biomass supply is not guaranteed. 

Thus maintaining a smooth biomass supply to the conversion plant is important 

in perspective of which local lignocellulosic biomass could be an interesting 

option. In terms of the availability of lignocellulosic biomass, Norway is 

strategically well placed due thanks to its abundant forest reserves. Norway and 

forest are the two sides of the same coin which makes this country ever attractive 

in developing and practicing local bioenergy research, which is partly why this 

study is conducted.  

 

The main objective of the present project was to utilize local forest crops birch, 

oak and spruce and energy crops like poplar and willow as feedstocks for lab-

scale fixed bed downdraft gasification. Further to evaluate the gasification 

performance interaction with biomass characteristics and process parameters, 

experimental work consisted of series of gasification tests was optimized over a 

range of air equivalence ratio (ER) between 0.19 and 0.45. The key results in 

terms of gas lower heating value (LHV), gas yield, cold gas efficiency (CGE) 

and carbon conversion efficiency (CCE) indicated that the producer gas obtained 

from all types of woodchips species gasification exhibited a great potential to be 

utilized for further downstream applications.     

 

Besides wood, in many places of the world the lion’s share of the biomass is 
contributed from herbaceous biomass. Hence this research also focused on two 
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local herbaceous biomasses, alfalfa and wheat straw (in pellets) from Spain and 

one local herbaceous biomass common reed (in briquettes) from Norway for 

investigating gasification via two fluidized bed configurations being pilot-scale 

and lab-scale, and one fixed-bed downdraft gasifier respectively. Pilot-scale 4.7 

kg/h air-blown gasification of sole alfalfa pellets was carried out at a variable ER 

between 0.25 and 0.30.  The resulting bed temperature was ca 780 C and the 

maximum producer gas lower heating value (LHV) was ca 4.2 MJ/Nm3 which 

suits for combined heat and power application. Pilot-scale test also yielded 

producer gas composition rich in H2 composition (around 13 % dry basis vol.), 

indicating the potential of this gas to be utilized for hydrogen production.  

 

In addition to the pilot-scale tests, a series of lab-scale fluidized bed gasification 

on alfalfa and wheat straw pellets were conducted for a wide range of ER (0.20-

0.35) achieved by varying both fuel and air input.  The optimized gasification 

performance attained for the two feedstocks differed in respect to the operational 

ER with a higher ER (0.35) for alfalfa and a lower ER (0.30) for wheat straw 

respectively. At the optimum condition, the gas produced from both the 

feedstocks exhibited a good LHV value above 4.1 MJ/Nm3 which can be 

recommended for engine or, turbine application. However, owing to the poor H2 

composition of 4 %, this technology may not suit downstream H2 production. 

 

The fixed bed gasification on common reed briquettes on the other hand is a very 

recent addition to the current project which is not fully developed yet. Therefore 

the preliminary results obtained from a solitary test run were not representative. 

The measured parameters so far indicated that the gas LHV, bed temperature and 

ER range of 2.9 MJ/Nm3, 498 C and 0.35-0.86 respectively can be achieved.     

 

Last but not the least, a techno-economic modeling considering a producer gas 

generator in a 100 % renewable energy hybrid plant was performed for a 

standalone household in Grimstad by using HOMER (a commercial hybrid 

energy optimization tool). The results showed that producer gas generator 

together with the other renewable energy options is capable of fulfilling the 

annual electricity demand of a remote household with a constraint of a producer 
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gas price less than 0.1$/Nm3. This system also provided environmental gain 

worth ~22,000 kg/year of CO2 equivalent savings. 

 

All in all, the influence of diverse local biomass feedstock on diverse gasification 

techniques is proved to be feasible in aspects of technology, economy and 

sustainability.   
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1 Introduction 
 

 

 

1.1 Motivation 

 

 

Three familiar developments such as continuously depleting fossil fuels, rapidly 

rising energy demand and the progressively increasing greenhouse gas emissions 

best describe the world’s energy outlook at present. With the population growth, 

the energy consumption is proportionally rising and expected to increase 56 % by 

the year 2040 (Sieminski, 2013) compared to the year 2000. Moreover, 

greenhouse gases (GHG), particularly CO2 emission, have already exceeded its 

safe limit and accelerated to ca. 400 ppm (González et al., 2015), owing mainly 

to the excessive use of fossil fuels. Escalated emissions are also observed from 

other potential gases (e.g., CH4, N2O, etc.).  Against this backdrop, it is thus a 

common consensus among scientists that an urgent replacement of fossil fuels 

with renewable energy would be necessary so that the incumbent environmental 

challenges are safely negotiated and the energy security is sustainably achieved. 

There exist various forms of renewable energy such as wind, solar, hydro, 

biomass, geothermal, tidal and wave energy which all can be incorporated in a 

sustainable development of energy exploitation. However, the availability of 

wind and solar is not completely reliable and is characterized with seasonal 

variability (Chow et al., 2003); further, expansion of large hydro power is limited 

due to the detrimental societal and environmental impact (Abbasi & Abbasi, 

2011); and the technology toward extracting energy from tidal power is still in 

the early days (Sleiti, 2015). Therefore biomass can emerge as one of the most 

interesting renewable energy options, because of its diverse usage, storability and 

wide spread availability, to serve as a reliable alternative to future energy.  

 

Over the centuries, ever since human beings learnt to make fire by using wood, 

biomass for producing energy has been in use. Since then biomass utilization has 

been catapulted and diversified in various directions through a number of 

conversion pathways such as biochemical and thermochemical (McKendry, 
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2002b).  Although biological conversion has shown a tremendous success in the 

recent past primarily towards producing engine fuels (bioethanol and biogas), 

this conversion lacks in several areas such as: requirement of long processing 

time, enzymatic pretreatment (only for starch and celluloses for bioethanol 

production), low product yield, etc. (Brown, 2011; Maurya et al., 2015). In 

addition, a conflict between food vs. feed as a result of utilizing conventional 

biomasses (mainly grain and oilseed crops, and grasses) for producing liquid 

biofuel exists. A significant effort is thus placed on thermochemical conversion, 

particularly towards gasification which allows to transform all forms of biomass 

(through partial oxidation) to high energy content gas that subject to downstream 

applications can yield further products such as heat, electricity and chemicals. 

Within gasification, lignocellulosic biomass, i.e., agricultural and biological 

waste, residues and wood etc. is greatly favored. This biomass is abundant, non-

competing with agricultural lands and suitable for high temperature treatment 

and therefore is considered as key material to contribute towards bioenergy under 

which the motivation of this work is deeply rooted.  Further, a special emphasis 

is also placed on local lignocellulosic biomass which in the scenario of producing 

decentralized power is even more appealing since this mode of application can 

fulfill the energy demand of a given community independently without requiring 

the access to national grid electricity.  

 

 

1.2 Hypothesis and objectives 

 

 

The overall hypothesis of the thesis was that by regulating the input parameters, 

the gasification performance of various woody (birch, oak, spruce, willow and 

poplar) and herbaceous (alfalfa, wheat straw and common reed) biomasses can 

be widely varied and the resulting optimized conditions can be used as reference 

for future local bioenergy research.  

 

Broadly, the aim was to gain insight of the local lignocellulosic biomasses in 

terms of their potential of fixed and fluidized bed gasification. The overall 

objectives can further be broken into the following steps of work: 
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 Characterization of selected biomass for thermochemical conversion 

 Investigating the feasibility of selected woody biomass for gasification 

 Examining the potential of local herbaceous biomass for gasification 

 Determining the techno-economic feasibility of gasification application 

 

 

1.3 Thesis organization 

 

 

The thesis organization is presented in Figure 1.1. Overall the thesis consists of 

five chapters. The study motivation, hypothesis, objectives and the thesis 

organization are outlined in Chapter 1. Chapter 2 gives the background of 

biomass and its suitability of gasification. Chapter 3 deals with materials and 

methods and covers background, pre-treatment and characterization (proximate, 

ultimate, TGA, fusion temperature, kinetics, etc.) of selected feedstocks; 

experimental set-up, test protocol, analytical procedures of fixed and fluidized 

bed gasification; and, modeling set-up of techno-economic analysis using 

HOMER.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Thesis organization 
 
 
Chapter 4 is devoted to describing results and discussions. In this chapter, the 

obtained results from fixed and fluidized bed gasification on woody and 
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herbaceous biomasses are discussed in light of operational parameters, quality of 

biomasses and to the performance of gasification. The feedstocks characteristics 

results are also presented and finally the techno-economic analysis covering 

simulation, optimization and sensitivity assessment of a gasification based hybrid 

plant model are given. In Chapter 5, the major conclusions drawn from this 

project are stated and the recommendations and future research possibilities are 

proposed.     

 

 

1.4 Scientific contribution of the thesis 

 

 
The scientific contribution of this research work can be summarized below: 

 Thermal characterization and kinetics modeling of the selected biomass was 

performed and some of the results were compared against the gasification 

tests using lab scale fixed bed and fluidized bed gasifiers (paper III).  

 Gasification performance of five local woody biomasses (birch, oak, spruce, 

poplar and willow) on fixed-bed downdraft gasification was optimized for a 

number of operating conditions (paper IV). 

 Alfalfa pellets were successfully gasified in a continuous feeding pilot scale 

fluidized bed reactor and gasification performance was optimized under a 

range of operating conditions (paper II).   

 Alfalfa pellets were further gasified in a semi-continuous lab-scale fluidized 

bed reactor and the gasification performance was optimized under a wide 

range of operating conditions. Same processing steps were repeated for wheat 

straw pellets and the obtained results between the two feedstocks were 

compared (paper III).  

 A preliminary test investigating the feasibility of local herbaceous biomass 

(common reed) using fixed-bed downdraft reactor was conducted and the 

results were discussed. Also, the scope of future research was suggested.  

 Modeling work assessing the techno-economic viability of a gasification 

generator based renewable hybrid energy plant satisfying a standalone 

household electricity demand in Grimstad was established by using 

simulation tool HOMER (paper V). 
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2 Background of biomass and gasification 
 

 

 

2.1 Biomass 

 

 

Biomass has been a major source of energy for humans since historic times and it 

has been estimated that biomass resources cover approximately 10 % of the total 

global primary energy supply (REN 21, 2015). Every year a vast amount of 

biomass grows through photosynthetic reactions out of which approximately 200 

billion tons are annually available for energy conversion (McKendry, 2002a). All 

the plants that capture sunlight for photosynthesis are called biomass. A 

generally acceptable definition of biomass by EU directive 2001/77/EC (RES-E) 

is: “Biomass shall mean the biodegradable fraction of products, waste and 

residues from agriculture (including vegetal and animal substances), forestry 

and related industries, as well as the biodegradable fraction of industrial and 

municipal waste.” The amount of CO2 released during the combustion of 

biomass is almost equal to the amount of CO2 utilized for plant growth. This 

justifies the reason why biomass is considered a renewable source. In a broader 

term, biomass includes all the living species-plants and animals that are now 

alive or was a short time ago (Basu, 2010). Fossil-fuels, in fact, are also the 

product of organic materials (plants and living species) which after exposing 

millions of years of transformation leading to fuels. Unlike biomass, they 

however do not reproduce and thereby are not renewables.  

 

 

2.2 Biomass classification 

 

 

In terms of origin, the type of biomass varies, which with reference to (Cuadros 

et al., 2013), can be classified as:  
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 Natural biomass: It is the biomass that occurs spontaneously in nature 

without human intervention (i.e.; resources generated in the natural pruning 

of a forest, some woody and herbaceous biomasses, etc.)  

 

 Residual biomass: It is the biomass generated by human activity. Residual 

biomass can be distinguished between dry residual biomass (which comes 

from resources generated in agricultural and forestry activities in agribusiness 

and wood processing industries) and wet waste biomass such as 

biodegradable discharges formed by urban and industrial wastewater, 

livestock wastes (usually manure) and the residues from urban solids. 

 

 Energy crops: They are the crops (such as sunflower, sugar cane, maize, 

beet, thistle, willow, poplar, switch grass, etc.) grown on agriculture and 

forestry land, dedicated exclusively to the production of non-food biomass for 

energy production. They are divided into woody and herbaceous. 

 

 Marine biomass: The aquatic biomass resources namely algae, sea weeds, 

etc. are part of this group. Marine biomass is increasingly gaining popularity 

as feedstock for energy conversion. 

 

In this work, the conversion of lignocellulosic biomass mainly the forest crops, 

energy crops, herbaceous crops and agricultural wastes will be discussed. 

 

 

2.3 Lignocellulosic biomass 

 

 

Lignocellulosic, being cellulose, hemicellulose and lignin are the three main 

components of biomass. Unlike carbohydrates or starch, lignocellulose is not 

easily digestible by humans and therefore its utilization to energy production 

does not pose a great threat to the world's food supply (Lim et al., 2012). The 

lignocellulosic plant biomass consists of a complex cell wall composed of micro-

fibrils network of celluloses on which layers of hemicelluloses and lignin are 

subsequently deposited. Of all the compounds forming the lignocellulosic 
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materials, almost half are cellulose and around 5 - 30 % is lignin (McKendry, 

2002a). The bond between cellulose and lignin can occur directly or, through 

hemicelluloses as shown in Figure 2.1. For a plant biomass, cellulose and 

hemicellulose give structure while lignin glues them together. The properties of 

these components as of relevance are briefly discussed below:   

 

Cellulose 

 

Cellulose is a linear polysaccharide crystalline polymer consists of thousands of 

monomeric units of anhydro-D-glucose units with a β-(1→4) linkage (Mohan et 

al., 2006; Pasangulapati et al., 2012) which allows the micro-fibril structure to 

develop a stronger inter and intra-molecular hydrogen bonding. During thermal 

conversion, cellulose degrades to a moderate temperature between 240 C and 

350 C and yields volatiles, tar and char (Robbins et al., 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Lignocellulose structures of biomass, adapted from (Potters et 

al., 2010) 

 

 

Hemicellulose 

 

Unlike celluloses, hemicelluloses have less branched chains polymerization and 

have therefore crystalline regions. Furthermore, hydrogen bonds are less 
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effective, making this polysaccharide more accessible to attack by chemical 

reagents. Hemicellulose is thermo-chemically unstable and decomposed between 

temperature 200 C and 260 C resulting volatiles and less tar and char than 

those from cellulose (Robbins et al., 2012).  

 

Lignin 

 

Lignin acts as a gluing material and gives elasticity and mechanical strength to 

the biomass. It is a complex three dimensional branched polymer of phenyl-

propane consisting with 4-propylene phenol, 4-propylene-2-methoxy phenol, 4-

propylene-2.5-dimethoxyphenol (Bridgwater & Boocock, 1996). These phenyl-

propane units are cross linked between themselves and insoluble both in water 

and sulfuric acid (Basu, 2010; Klass, 1998), making them thermally more stable 

than cellulose (Ramiah, 1970). As highly stable, lignin degrades over a broad 

range of temperature, typically, between 280 C and 500 C and yields a higher 

amount of char than those of cellulose and hemicellulose (Serapiglia et al., 2009).           

 

Besides cellulose, hemicellulose and lignin, biomass also contains secondary 

components called water and organic solvent solubles and insolubles. Fatty acids, 

alcohols, phenols etc. are water or organic solvent soluble components, while 

ashes, starches, proteins etc. are insolubles (Basu, 2010).       

 

 

2.4 Selection of biomass  

 

 

Thousands of biomass can be identified as feedstocks for gasification. These 

huge resources represent varying characteristics which under a single framework 

of study is difficult to apprehend. Hence a common approach to select biomass 

for gasification is to develop interest to a particular group or, a number of 

feedstocks that in-terms of physical and chemical properties (moisture, volatiles, 

ash, carbon, hydrogen and oxygen, etc.) are attractive and can potentially meet 

the desired characteristics of producer gas (high heating value, less tars and 

particulates etc.) and its intended application (Vaezi et al., 2012). Since the 
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present study emphasizes on generating producer gas that is potentially 

applicable to generate distributed power, the feedstocks available around the 

local areas were selected. Moreover, to meet the economic, environmental and 

sustainability requirement, the biomass having negligible environmental, 

technical and societal impact was considered. To this end, lignocellulosic 

biomasses appear to be a good option and hence these biomasses from among 

various distinctive families were undertaken as feedstocks given below:  

 Long rotation forest crops (birch, oak, spruce) 

 Short rotation woody energy crops (poplar and willow) 

 Herbaceous biomass (alfalfa, wheat straw and common reed)  

 

Knowing the physical or chemical properties, the suitability of a solid fuel for 

thermal conversion can be predicted by locating it on a ternary diagram, which 

has been a popular approach for many years. Thus the current fuels, based on the 

given proximate analysis data in literatures (Boateng et al., 2008; Demirbas, 

2004; Phyllis2), are plotted in a ternary diagram (Figure 2.2) below.       

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2.2: Ternary diagram of the selected biomasses (yellow dots: woody 

feedstocks; red dots: herbaceous feedstocks; FC: Fixed carbon; VM: 

Volatile matters)    
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As seen (Figure 2.2), based on literature, the selected biomasses used in the 

current project have high volatile matter (>70 %) and fixed carbon contents 

which are the desirable properties for gasification (Basu, 2010). Alfalfa has ash 

content over 5 % which albeit high is fairly typical for herbaceous biomass 

considered for gasification.    

 

 

2.5 Biomass application 

 
 
Several conversion methods exist for the use of biomass as fuel for thermal 

energy production, electricity production, or as raw material for the production of 

liquid and gaseous biofuel:   

 

 Thermal energy production: Thermal energy or heat is mainly obtained via 

direct combustion of forest biomass and waste from agriculture, wood 

processing industries and solid wastes from municipalities. The heat 

generated is mainly used both for domestic and industrial needs. 

 

 Electricity production: Electricity is also obtained primarily by the 

combustion of different types of biomass such as those utilized for the 

production of thermal energy, but biogas and syngas produced via anaerobic 

digestion and gasification respectively are also in practice. The electricity 

yield employing biomass is not very high due to the inherent fuel 

characteristics such as high moisture. 

 

 Liquid biofuels production: There are mainly two types of liquid biofuels: 

bioethanol, which is generally produced from fermentation with yeast of 

starch and sugary crops, such as sugar cane, sugar beet, corn and grain, etc., 

and biodiesel, which is produced from vegetable oil crops, such as sunflower, 

rape, etc., and animal fats. Liquid biofuels can be utilized for propulsion, heat 

and power. 

 

 Gaseous biofuels production: In this application, gaseous biofuels are 

produced by an anaerobic biological process using primarily wet waste 
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biomasses. This gas consists largely of methane having a reasonably good 

calorific value that can either be used for generating both electricity and heat, 

or for transportation fuels through direct utilization. Gaseous biofuels can also 

be produced via gasification, generating energy rich fuel gas composed 

largely of hydro-carbon gases, CO, CO2, H2 and H2O.  

 

 

2.6 Energetic utilization of biomass 

 

 

Energy from biomass can be obtained by means of a number of processes, e.g.; 

biochemical, thermochemical, etc., some of which are outlined in Figure 2.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2.3: Biomass energy conversion pathways (modified from 

(Maghanaki et al., 2013)) 
 
 
The present work focuses on the energy use of biomass through thermochemical 

conversion; hence only this process is overviewed in the following sub-sections. 
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2.7 Thermochemical conversion of biomass 

 

 

Thermochemical conversion means transforming biomass by a series of chemical 

reactions using heat.  During thermochemical conversion, normally three types of 

processes namely pyrolysis, combustion and gasification are distinguished by the 

amount of oxygen supplied. This is briefly discussed below.   

 

 

2.7.1 Pyrolysis    

 

Pyrolysis can be defined as the decomposition of biomass by heat in absence of 

an oxidizing agent, resulting in the production of solid carbonaceous materials 

(soot or char), liquids and gases through four thermal stages (Basu, 2010), e.g.; 

drying (ca. 100 °C), initial stage (ca. 100-300 °C), intermediate stage  (> 200 °C) 

and final stage (ca. 300-900 ºC). Some of the pyrolysis reactions start at around 

300 C (InnoFireWood's, 2015) but the reactions become more rapid and 

progressive in the temperature ranging between ca. 400 and ca. 700 C (Sharma 

et al., 2015).  Depending on the temperature and residence time, ranging from 

few seconds to days, pyrolysis can be differed and accordingly, the type of 

yields. Slow pyrolysis with low heating rate results in solid char as a main 

product, while fast pyrolysis as a result of high heating rates produces mainly 

liquid oils (Tanger et al., 2013).  

 

2.7.2 Combustion 

 

Perhaps the most commonly used thermal conversion is combustion. In theory, 

combustion is an exothermal process (> 1000 C) completely oxidizing the 

organic matter of biomass with enough oxygen (oxygen amount higher than 

stoichiometric) to sustain thermal reactions yielding carbon dioxide, water, ashes 

and heat. Despite the apparent simplicity, combustion is a complex process from 

a technological point of view, where high reaction rates end into a large amounts 

of heat and many different products. Any type of biomass (under a certain level 

of moisture) can be effectively combusted to generate heat. However, to produce 
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electricity via a Rankine cycle, 100 % biomass combustion is still challenging 

and co-combustion with coal is practiced for that matter. So far, maximum 

throughput of 10 %  biomass (Van Loo & Koppejan, 2008) is achieved across the 

existing plants undertaken co-combustion of biomass and fossil fuel.   

 

2.7.3 Gasification 

 

Gasification is a complex thermochemical process in which normally a 

carbonaceous feedstock is heated (i.e.; allothermal, autothermal, etc.) to high 

temperature by partial oxidation of feedstock with the help of an oxidation 

medium such as air, steam, CO2, oxygen, or combination of these (Kumar et al., 

2009).  Through series of chemical reactions (McKendry, 2002a) the process 

generates producer gas which typically consists of CO, CO2, H2, CH4, H2O and 

CnHn etc.(Hindsgaul et al., 2000).  

 

Thermochemical gasification usually occurs at temperatures of ca. 800-1000 ⁰C 

and involves following processing steps (Boerrigter & Rauch, 2006; Rollinson & 

Karmakar, 2015) which are shortly described and illustrated by Figure 2.4 below. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: A generalized scheme representing the steps of biomass 

gasification 
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o Heating and drying (ca. 0-250 C): In this step (100-200 C) the moisture 

from the biomass is removed with the help of heat (Puig-Arnavat et al., 

2010). Low moisture in biomass means less heat for drying and thus higher 

gasification efficiency (Hughes & Larson, 1997).  

 

o Thermal decomposition or, pyrolysis (ca. 250-500 C): Pyrolysis is a 

thermal degradation process occurred in oxygen scarce environment, 

decomposing biomass into combined solids, liquids and gases.   

 

o Reduction and gas phase reactions (ca. 800-1100 C): In reduction, 

primarily the char is converted into gas through heterogeneous gas-solid 

reactions while the resulted gaseous products from pyrolysis are gasified 

completely to form the permanent gases (CO, CO2, H2, CH4 etc.). The 

reactions in this step are generally endothermic and thus require sufficient 

heat to occur. 

 

o Combustion (ca. 800-1100 C): Through combustion in general the 

oxidation of char takes place. Char oxidation is exothermic in nature and 

provides necessary heat for sustaining endothermic gasification reactions. In 

directly heated gasifiers, ignition is first started up most frequently with char 

combustion which produces the necessary heat to establish the other steps of 

thermal conversion. Besides char, gases and liquids can also participate into 

combustion, yielding gases composed of: CO and CO2, etc. 

 

A number of important reactions (Basu, 2010) taking place during gasification is 

shown in Figure 2.5. 

 

The arrows in these reactions indicate that the reactions are in equilibrium and 

can move in any directions, depending on temperature, pressure and 

concentration of the reacting species. Moreover, as seen (in Figure 2.5), the 

product gas from the gasification is a mixture of gas components like carbon 

monoxide, carbon dioxide, methane, hydrogen and water vapor. 
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Figure 2.5: Some important gasification reactions (Basu, 2010) 

 

 

Gasification reactors  

 

Biomass gasification can be performed using a number of reactors which on the 

basis of transport process are generally categorized as: fixed bed, fluidized bed, 

entrained bed and plasma reactors (Basu, 2010). Within this classification, the 

choice of the reactors is primarily depended on physio-chemical properties of 

biomass and the desired scale (or size) of conversion. Typically, fluidized bed 

reactors are more frequently available for medium to large scale application, in 

contrast to fixed bed reactors which are particularly suited for small scale 

applications with some exceptions. Unlike these two reactors, entrained flow and 

plasma reactors are primarily devoted to treat (usually at temperature > 1500 C) 

aggressive and difficult fuels, which by conventional reactors otherwise would be 

difficult to deal with.  

 

Regardless of the types and configurations, the gasification reactors usually 

operate at high temperature (ca. 1000-1200C) and follow the four processing 

steps as described in section 2.7.3. The variation in gasification properties of 

existing gasification technologies are illustrated in Table 2.1. 
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Table 2.1: Variation in gasification properties among the existing 

gasification technologies, modified from (Belgiorno et al., 2003) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gasification product and its utilization  

 

The producer gas is the main product obtained from biomass gasification and 

char, tar and ash are the least desirable by-products. Coupled with high quality 

producer gas, minimum generation of tar and char ensures high gasification 

efficiency. However, raw gas generated often includes impurities in the form of 

tars (or, tarry liquids), solids, particulates, alkali materials, sulfur materials and 

others which need to be cleaned before it can be directed to the intended 

downstream applications. Producer gas cleaning can be achieved by employing a 

variety of techniques summarized in Table 2.2. 

 

The cleaned producer gas depending on composition and quality can be used for 

a range of applications, like production of biofuels or direct utilization in internal 

combustion engines, turbines and boilers, etc. (Ahrenfeldt et al., 2013; Clausen et 

al., 2010). Figure 2.6 shows the various possibilities of producer gas usage.  

 

 

 

 

Updraft Downdraft Bubbling Circulating
Oxidant requirement Low Low Moderate Moderate High
Coarse feedstock input Very good Very good Good Good Poor
Fine feedstock input Limited Limited Good Good Excellent
Reaction zone temperature High High Medium High Very high
Applicability range Medium Low High High Very high
Producer gas LHV Poor Poor Poor Fair Poor
Tar content Very high Very low Medium Medium Negligible
Particulates content Very low High High High Low
Cold gas efficiency Excellent Good Good Excellent Good
Carbon conversion efficiency Good Good Fair Very good Good
Thermal efficiency Excellent Very good Good Very good Good

Properties
Fixed bed Fluidized bed Entrained 

bed
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Table 2.2: Producer gas cleaning methods, modified from (Hasler et al., 
1998) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Producer gas applications  
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2.7.4 Hydrothermal upgrading and hydro-thermal liquefaction 

 
Hydrothermal upgrading (HTU) and hydro-thermal liquefaction (HTL) are the 

other thermochemical processes. However, in contradiction to gasification, in 

these processes wet biomass is transformed into bio-oil at elevated temperature 

(ca. 150 to 370 C) and pressure (ca. 4 to 22 MPa) within the sub-critical and 

super-critical zones of water (Brown, 2011). High pressure maintains liquid state 

and thus facilitates biomass slurries to be converted into useful products at high 

temperature. Generally, HTL uses higher temperature and pressure than those of 

HTU. Both of these techniques, however, are expensive and still in the 

demonstration scale.   
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3 Materials and experimental methods 

 
 
 
In order to investigate the gasification potential of different biomass across 

different gasification technologies, the present work used various woody and 

herbaceous biomasses in fixed and fluidized bed reactors. Moreover, a modeling 

study concerning the utilization of producer gas in a renewable hybrid energy 

plant powering a remote household was also aimed. To this end, thus the various 

aspects of feedstock preparation, experimental set-up, analytical measurement 

and modeling technique are given in the following sub-sections.  

 

 

3.1 Feedstock and its preparation 

 

 

3.1.1 Woody biomasses (Paper I and IV) 

 

Forest crops: birch (Betula pendula), oak (Quercus petraea) and spruce (Picea 

abies), and energy crops: poplar (Populus trichocarpa) and willow (Salix sp.) 

representative of two categories of local biomass were considered as feedstocks 

for gasification using fixed-bed downdraft reactor. The forest crops (birch, oak 

and spruce) were harvested from a local forest at Dømmesmoen, Grimstad 

(coordinate: 58 21’ 8.6” N, 8 34’ 32.78” E), while the energy crops (poplar and 

willow) were cultivated and harvested from an agricultural land (area: ~0.3 ha) 

located in proximity to Dømmesmoen, Grimstad. The variation in classification, 

age and harvesting periods of different woody biomasses is reflected to Table 1 

of paper IV. Further, Figure 3.1 below illustrates some snapshots of different 

harvesting and pre-treatment phases of local biomasses in Southern Norway.  

 

Woody biomasses for gasification tests were prepared by following the three 

processing steps, e.g.; harvesting, drying and in field wood chipping. Harvesting 

of the forest crops was achieved by using a chain saw while the energy crops 

were harvested by means of a brush saw.  After harvesting, woody biomasses of 
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all types were dried in two different techniques: natural drying (outdoor) and 

artificial drying (indoor by using a batch dryer). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  Harvesting, collection and pre-treatment of biomass; a) & b): 

willow (Dømmesmoen, Grimstad), c) & d): common reed (Hisøy, Arendal) 

 

 

The woody energy crops (poplar and willow) received natural drying. After 

harvest in late winter, trees were left exposed on-field for a particular period to 

allow moisture evaporation followed by chipping, storing (some of these steps 

are shown in the Figure 3.1 above), and further in-house drying. These altogether 

contributed to decrease overall moisture from > 50 % to < 15 %.  The forest 

crops (birch, oak and spruce) were chipped in the forest and afterwards dried (at 

ca. 60 C air temperature) in a batch dryer (Figure 3.2a).  

 

In the biomass dryer, an electrical heating element of about 2.4 kW capacity 

provides necessary heat while a blower (Lindab CK 160 C, Sweden) with a 

rating of ca. 4 kW transmits the hot air throughout the feedstocks placed inside 

the drying chamber. A batch of ca. 80 kg wet biomass was loaded for each drying 

a) b)

c) d)
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instance that remains for about 40 h, after which a desired level of moisture was 

generally achieved. Generally, moisture content down to 3 % could be attained as 

a result of batch drying by using the current dryer.  

 

 

 

 

 

 

 

 

 

Figure 3.2:  Some available options for biomass pre-treatment; a): batch 

dryer, b): hammer mill, c): briquetting press  

 

 

Prior to gasification tests, woody biomass of all types was chipped to a size 

between ca. 2 and 50 mm by employing a disc chipper (NHS 7201E 4, 

Denmark). Once produced, the woodchips were stored in big fertilizer bags. 

Dried woodchips were sieved through a 10 x 10 mm mesh screen (chicken mesh) 

in order to reduce fine particles. The chips which passed through the screen were 

removed while the remaining was used for conducting experiments.   

 

3.1.2 Herbaceous biomasses (Paper II and III) 

 

As herbaceous biomass crops, alfalfa (Medicago sativa L.) and wheat straw 

(Triticum aestivum L.) was selected as feedstocks for fluidized bed gasification. 

These biomasses were locally grown and harvested from around the area of Ebro 

valley, Spain. Alfalfa was grown and harvested from the surroundings of Pina de 

Ebro, 40 km Southeast of Zaragoza (Aragón, Spain) and wheat straw was 

harvested from Tordesillas, 70 km south of Valladolid (Castilla y León, Spain). 

In addition to alfalfa and wheat straw, one other herbaceous biomass namely 

common reed (Phragmites autralis) was selected for fixed-bed downdraft 

 
a) b) c) 
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gasification in Grimstad. Common reed (CR) was harvested (Figure 3.1) from a 

field at Hisøy located ca. 20 km Northeast of Grimstad.  

 

Herbaceous biomasses for gasification were prepared by following the processes 

harvesting, drying and pelletizing or, briquetting. For alfalfa and wheat straw 

harvesting was followed by combined drying and pelletizing (detailed in paper II 

& III) resulting in pellets of approximately 6 mm Ø x 25 mm and 8 mm Ø x 20 

mm size respectively. Common reed, on the other hand, was naturally dried in-

field to moisture level of ca. 10 % before manual harvest by a scythe and then 

hammer milled (ARP- safe APS, Denmark, Figure 3.2b) with a screen size of 5 

mm before briquetting to 45 mm  briquettes by employing a piston press 

briquetting machine (Mythos 45, Comafer, Italy, Figure 3.2c). Due to the 

pelletizing and briquetting, the density of the herbaceous feedstocks greatly 

enhanced allowing improved fuel feeding to the gasification reactors. The images 

of the produced pellets and briquettes are shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 

Figure 3.3:  Biomass pellets and briquettes for gasification tests (a): alfalfa 

pellets, b): wheat straw pellets, c): common reed briquettes  

 

 

Approximately 100 kg pellets of alfalfa and wheat straw pellets was supplied to 

the gasification facility at UNIZAR by Molinos Afau S.L. (Zaragoza, Spain), 

while approximately 50 kg of common reed briquettes were produced by using 

in-house briquetting machine. After receipt, pellets and briquettes were stored at 

room condition for further usage.  

 

   
a) b) c) 
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3.2 Biomass characterization 

 

 

In order to understand the differences in gasification properties, it is relevant to 

know biomass characteristics. Characterization can be achieved by using several 

methods, such as analytical (proximate, ultimate, chemical etc.) (Basu, 2010), 

structural (cellulose, hemicellulose and lignin) and graphical (Van-krevelen 

diagram, ternary diagram, etc.). Due to the relevance of the current project, only 

analytical and thermal analyses are briefly discussed in this thesis.   

 

3.2.1 Physiochemical analysis 

 

Proximate analysis 

 

Proximate analysis is an important method used for physical characterization 

related to thermogravimetric analysis. It gives biomass composition as ratios of 

moisture content (MC), volatile matter (VM), fixed carbon (FC) and ash.  The 

proximate analysis results of the present biomasses are presented in Table 4.1 

(section 4.1.1). For a detailed discussion, the readers are however referred to 

paper I through IV, enclosed in the appendix.    

 

Moisture 

Moisture is an important property of biomass. Average moisture content of 

biomass can vary between 3 % and 90 % (Vassilev et al., 2010). In general, 

high moisture in biomass can negatively influence thermo-chemical conversion 

such as production of char, tar, ash and efficiency, but the presence of some can 

show positive contribution towards gasification (Acharjee et al., 2011). In the 

current work, moisture was mainly determined based on oven dried method by 

following the standards ASTM D-871-72 (Materials, 1975) (paper II) and EN 

14774: 2009 (EN14774:2009, 2009a) (paper III & IV). In a special instance 

(paper I), moisture analyzer (Metler Toledo LJ16, Switzerland) was used to 

evaluate the moisture content of birch.  
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Volatiles 

Volatiles are normally released when biomass is heated between the temperatures 

150 and 500 C. Biomass typically contains 70 to 90 % volatiles (Basu, 2010), 

which albeit high makes it more reactive than conventional fossil fuels. Volatiles 

in this work were evaluated based on the protocol EN 15148:2009 

(EN15148:2009, 2009).  

 

Ash  

Ash is an inorganic solid left after fuel combustion. List of inorganic materials 

that compose ash include Ca, Na, K, Si, P, Al, Fe, Mg, Cl, S etc. Ash 

composition in biomass is fairly diverse and influenced by the type of feedstock, 

soil, climate and cultivation (Van Loo & Koppejan, 2008). Usually, ash in woody 

biomass is rich in alkali compounds (Na, K, Ca, Mg), while in herbaceous 

biomass (straw, reed, rice husk etc.) the ash in addition is rich in silicon 

(Umamaheswaran & Batra, 2008) content. The presence of the type of alkali 

materials can dictate ash melting temperature which eventually can cause process 

difficulties due to the fouling and slagging in units for high temperature 

combustion or, gasification, e.g.; turbine, engine, boiler etc. (Wang et al., 2008). 

Likewise, silicon can also be responsible for process failure as a result of 

agglomeration to the conversion units. Ash thus needs to be carefully accounted 

concerning thermochemical application.    

 

Ash in biomass can be measured by following a range of standards and 

procedures. In the present work, the protocols CEN/TS15403 (CEN/TS15403, 

2006), EN 15403:2011(EN15403:2011, 2011) and EN 14775:2009 

(EN14774:2009, 2009b) were primarily used. Herbaceous biomass alfalfa was 

analyzed according to the standard EN 15403:2011 (EN15403:2011, 2011) 

(paper II), while an external lab Eurofins Environmental Testing Sweden AB 

utilized protocol CEN/TS15403 (CEN/TS15403, 2006) for measuring the ash 

content of birch (paper I), and EN 14775:2009 (EN14774:2009, 2009b) for 

measuring  all the woody biomasses (birch, oak, spruce, poplar and willow). 
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Heating value 

Heating value is another important fuel property directly linked to process and 

conversion efficiency. Owing to the low density and higher atomic ratio (O:C 

and H:C), heating value of biomass is in generally lower compared to that of 

fossil fuels. Typically, two types of heating values are reported: higher heating 

value (HHV) and lower heating value (LHV) which between themselves is 

differed depending on the inclusion and exclusion of latent heat of water vapor. 

The measurement of LHV does not take latent heat of water vapor into account 

and thus lower in magnitude than that of HHV. To determine the heating value of 

fuels, a number of techniques, i.e.; empirical (Pieratti, 2011) and analytical, can 

be employed.  

 

In this project, an analytical method involving in-house bomb calorimeter (IKA 

C 2000, Germany) was used for herbaceous biomasses (alfalfa and wheat straw) 

which further were compared to the empirical correlation (Gaur & Reed, 1995) 

below (eq. 1). LHV of all the woody biomasses including common reed, on the 

other hand, were measured by an external lab Eurofins AB, Gothenburg, Sweden, 

according to the standard SS-EN 14918/15400 ISO 1928. 

 

HHV = 0.3491* C + 1.1783* H + 0.1005* S – 0.0151*N – 0.1034*O – 0.0211*   

Ash [MJ/kg, d.b.]         (1) 

 

where,  

C, H, S, N and O are in [ %] of carbon, hydrogen, sulfur, nitrogen and oxygen 

respectively.    

 

LHV = HHV (1- w/100) – 2.444* (w/100) – 2.444* (H/100)*8.936* (1-(w/100)) 

[MJ/kg, w.b.]         (2) 

 

where,  

2.444 is the enthalpy difference between gaseous and liquid water at 25C; 8.936 

is the molar ratio between H2O and H2 and w is the moisture content of the fuel in 

wt % (d.b.).    
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Ultimate analysis 

 

The elemental composition of the studied biomass was determined by ultimate 

analysis using an in-house elemental analyzer, Leco TrueSpec Micro (USA) for 

herbaceous biomass alfalfa and wheat straw and by an external analyzer 

(Eurofins Environmental testing AB, Gothenburg, Sweden) for the rest of the 

samples. To conduct ultimate analysis, there exists several modes of instrumental 

set-up i.e.; C-H-N, C-H-N-S or, oxygen mode, which can be chosen depending 

on the desired analysis elements (García et al., 2012). In this work, C-H-N-S 

mode was applied and thus the oxygen was evaluated by difference. The 

protocols used for the measurement of each elements and the obtained results are 

stated in the footnote of Table 4.1 (section 4.1.1). 

 

Ash melting behavior analysis 

 

Besides ash content, ash fusion temperature was measured by employing a 

heating microscope with a Rhodium furnace (HR18) set-up developed by Hesse 

Instruments, Germany, as shown in Figure 3.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Heating microscope used for analyzing melting behavior of ash 

at University of Agder 
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The sample preparation for the analysis was conducted as according to the 

standard CEN/TS 15370-1:2006 (CEN/TS15370-1:2006, 2006), which is detailed 

in paper III. By this analysis, important temperatures such as shrinking 

temperature (ST), deformation temperature (DT), hemisphere temperature (HT) 

and flow temperature (FT) was measured and reported for further interpretation.  

 
3.2.2 Thermogravimetric analysis 

 

Thermogravimetric analysis gives quantitative evaluation of thermal 

decomposition of biomass over time as a result of chemical reactions (Carrier et 

al., 2011) occurred in presence of air or, inert environment or both. Simple 

experimental set-up that includes a precision balance and a furnace allowing 

constant (isothermal or static) or linear temperature rise, or the combination of 

both, can produce thermogravimetric analysis (TGA). Typical TGA curve shows 

a relation between mass versus temperature or time while a differential 

thermogravimetric (DTG) curve illustrates a relation between mass-loss rate and 

temperature or time. Both of these curves can provide a good basis for 

understanding the physical and structural properties of biomass and hence are 

important in this context. 

 

TGA instruments and methods  

 

In the present study, both TGA and DTG analyses were performed that 

investigated the thermal behavior of woody and herbaceous biomasses under a 

controlled heating so that obtained results can be used to compare gasification 

results of fixed bed and fluid-bed (chapter 4 & 5) experiments.  

 

To carry out thermogravimetry tests, two different TGA instruments were used. 

For alfalfa and wheat straw, Thermal analyzer NETZCH STA 449 F3 Jupiter 

(Germany), was used; while for woody feedstocks (birch and willow), Thermal 

analyzer TA Instruments Q500 (USA), was employed.  

 

Herbaceous samples (approximately 17-35 mg weight and < 5 mm particle size) 

were heated (at a heating rate of 10 C/min) from room temperature until 950 C 
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in three stages of heating (room to 110 C, 110 C to 600 C, 600 C to 950 C) 

with variable dwelling using nitrogen as carrier gas.  The heating program and 

the test protocol are detailed in paper III.   

 

Wood samples (approx. 10-25 mg weight and < 5 mm particle size) were first 

heated from room temperature to 110 C at 3 C/min and kept at that temperature 

(110 C) for 30 min so that moisture was evaporated. Samples were further 

heated and pyrolyzed to 900 C at a heating rate of 20 C/min and kept at the 

final temperature for 45 min to allow volatiles to be released. At pyrolysis stage, 

nitrogen was used as carrier gas with a flow rate of 100 normal mL/min. The 

samples were switched to combustion 20 minutes after holding at temperature 

900 C with air as oxidizing agent flowing at the same rate as of N2 (during 

pyrolysis). To achieve repeatability, duplicate analysis of each sample was 

conducted.  

 

Kinetics 

 

The TGA and DTG results were further analyzed for kinetics. The knowledge 

gained from TGA kinetics help interpreting gasification and thus included in the 

present context. Kinetics of TGA data can be primarily obtained by the modeling 

techniques namely differential and integral (White et al., 2011), which are further 

classified as: 

 Non-isothermal modeling (The differential method), and  

 The Flynn-Wall-Ozawa modeling (Integral iso-conversional method)   

The present work utilized the integral iso-conversional method or the Flynn-

Wall-Ozawa (FWO) method.  FWO involves the measurement of temperatures 

corresponding to fixed values of conversion fraction () from experiments at 

different heating rates (), which is determined from the equation below: 

 

      (3) 

 

 

where,  

A is pre-exponential factor, [1/s] 
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T is pyrolysis/gasification temperature [K] 

E is activation energy in [kJ/mol] 

R is the universal gas constant = 8.314 [Jg/mol K] 

 

 

3.3 Fixed-bed downdraft gasification experiment  

 

 

3.3.1 Gasification system 

 

Once the feedstocks were prepared, woodchips and common reed briquettes were 

gasified by using an air-blown lab-scale fixed-bed downdraft gasifier.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.5: A generalized scheme of the actual fixed-bed downdraft 

gasification system 
 
 

The gasifier (Victory Gasworks, Washington, USA) was a part of a gasification 

system (as shown in Figure 3.5) which, besides the reactor, composed of hopper, 

gas cooling and conditioning filters, heat exchangers, several pressure and 

temperature sensors, tar sampling point, ash handling chamber, U-scale (placed 

underneath the entire gasification system), flaring point, power generation unit 
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and gas sampling unit (Figure 3.6) that further employed series of devices to 

enable continuous measurement of evolved gas and data logging (via a 

LabVIEW module).  

 

 
 

 

 

 

 

 

 

 
 

Figure 3.6: Flow diagram of the gas sampling unit 
 
 

The gas produced as a result of gasification exited at the side of the gasifier and 

immediately cooled and conditioned. A close view of the gas cooling and 

conditioning devices is shown by Figure 3.7. 

 

Clean tap water flow of ~2.8 kg/min was continuously supplied through the heat 

exchanger to cool the produced gas while hanging ribbons in the settling 

chamber and glass wool in the dry filter captured soot and particles. After 

cooling and conditioning, the gas was either directed to flare or engine depending 

on the needs. Noticeably, due to the lack of representative data, engine test 

results are not reported in this thesis although some successful runs were 

achieved.  

 

The operation of the gasification system along with the gas sampling unit is 

discussed at length in paper I & paper IV. Here, only a short overview is 

presented. Further, the description of lists of individual parts composing the 

entire gasification unit is illustrated by Table 3.1 below. 
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Figure 3.7: Gas cooling and conditioning devices 

 

 

3.3.2 Test protocol 

 

During start up, the gasifier was fed (batch fed, i.e.; fed only once) with charcoal 

(ca. 2 kg) and successively woodchips (7-12 kg) until a hopper height of ~ 0.2 m 

(from tip). The hopper lid was closed and air supply valve was opened allowing 

air to enter through the center of the reactor via 6 air supply nozzles (located just 

above an exchangeable restriction ring, 100 mm ). A draft fan, located 

downstream of the producer gas exit, created suction which caused the air to flow 

through the reactor. After feeding, the gasifier was ignited resulting the 

combustion of charcoal (generating necessary heat for gasification) followed by 

thermal conversion of input fuels. 

 

Once ignition started, process achieved stabilization after slightly over half an 

hour which continued for another 5 - 6 h to allow data collection and process 

optimization. Periodic vibration of a shaker, placed at the side of the hopper, and 

reciprocal oscillation of a grate, located at the bottom of the reactor, assisting 

downward movement of the fuel as well as discharge of ash through perforated 

openings of the grate. 
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Table 3.1: Technical specifications and list of various components in the 
Fixed-bed gasification system and their usage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item Specification Use
Gasifier

Hopper
Material: AISI 304 & 316, Size: 0.5 mf, 0.13 

m3 Solid feeding (fuel + charcoal)

Reactor
Material: AISI 304 & 316, Size: 0.26 mf x 
0.60 m

Thermochemical conversion

Restriction ring 100 mmf
Allowing concentrated high-temperature 
zone

Grate 0.26 mf, perforated Fuel movement and ash disposal

Shaker motor Avoiding bridging and chanelling
Air supply system

Variable speed induced fan
Ventur SC 10A 055T (0.55 kW, 400 V), 
Sweden 

Creating draft

Nozzle
Six pieces; size: ~ 5 mmf; position: 0.2 m 
height of the reactor (above the restriction 
ring)

Supplying gasification agent

Air diaphragm meter 0.04 - 6 m3/h (BK-G4, Elster, Germany) Registering air input

Filtration and cleaning system

Gas-water heat exchanger Gas cooling, tar + particulate collection

Settling chamber Dry filter with hanging ribbons Reducing raw gas particulates
Dry filter Standard glass wool for insulation Further raw gas cleaning
Ash chamber Collecting residual char+ash
Instrumentation

Balancing scale DINI ARGEO, Italy; capacity: 1500 kg max.
Tracking weight change during fuel 
conversion

Temperature sensors (T1 through 

T5)
K-type (T1: downstream gas, T2: reduction, 
T3: gas exit, T4: combustion, T5: air inlet)

Measuring temperature at various zones

Pressure sensors (P1 and P2)
DCM/SN Diff, Fema, Germany (P1: before 

filter, P2: after filter)
Evaluating pressure difference before and 
after filtration

Sampling point at hot gas exit Brass septum connector Tar sampling based on SPA protocol

Gas sampling equipment 

Hot filter
Material: ceramic, FE2, ABB, Germany; 
working temperature: 150 °C

Reducing particulates from sampled gas 

Cotton filter Made of twist filter Reducing aerosols from the sampling gas

Dew-point analyzer (chilled 
mirror)

Omega, RHB-1500, USA Determining the gas moisture

Membrane pump 4N, ABB, France Providing flow in the sampling line
Gas cooler SCC-C, ABB, Germany Drying the sampling gas at c. 3 C

Non-dispersive infrared sensor
Advance optima, AO2020 (URAS 26); 
ABB, Germany

Analyzing CO, CO2 & CH4

Thermal conductivity detector
Advance optima, AO2020 (CALDOS 27); 
ABB, Germany

Analyzing H2

Paramagnetic analyzer
Advance optima, AO2020 (MAGNUS 206); 
ABB, Germany

Analyzing O2

Lab view module National Instruments
Extracting real-time measurement to a 
stand alone PC for record and further 
analysis 

Power generation unit

Reciprocating Internal 
Combustion Engine

Kubota DG972-E2 (USA), Verticle 4-cycle (3-
cylinder) liquid cool natural gas, 17.6 kW

Producing heat and power by using the 
producer gas
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Once stabilization was achieved, the gasification performance was optimized by 

varying air supply between the range 3 and 8 m3/h (by regulating the speed of the 

draft fan). The change in air supply simultaneously resulted in the change in feed 

flow, typically between the range 1.7 and 2.4 kg/h, the combined impact of 

which is usually expressed by a term called equivalence ratio (ER) - a ratio 

between actual air and stoichiometric air. The various aspects of gasification 

were analyzed with respect to this ratio which was calculated by following the 

equations stated elsewhere in paper IV. Moreover, the several other process 

parameters such as lower heating value (LHV), gas yield (Vg), cold gas 

efficiency (CGE) and carbon conversion efficiency (CCE) were calculated based 

on the equations given elsewhere in paper II & paper III. The further two process 

parameters namely tar (with liquids and particulates) and char were also 

determined analytically by accounting condensate from the gas cooler and the 

char residue left in the ash bin respectively. Residual char was further muffled at 

550 C (muffle furnace, Nabertherm P330) for approximately 20 h to precisely 

estimate the ratio between char and ash. 

 

3.3.3 Analytical measurement 

 

Temperature and pressure  

 

To allow R&D, the gasification system was featured with a number of sensors 

and instruments located at raw gas line and sampling gas line respectively. In the 

raw gas stream, five K type thermocouples were used to determine the 

temperature profile at various gasification zones (located 150 mm apart along the 

reactor height), air input and gas exit respectively. Two pressure sensors 

measured the differential pressure before and after the gas filtration while air 

diaphragm meter registered the volumetric air input through the gasifier. 

 

Gas sampling unit 

 

During the gasification experiment, parts of the raw gas were continuously 

diverted through a gas sampling line (Figure 3.6) where further measuring 

instruments were located. Sample gas was first cleaned from particles by a hot 
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ceramic filter then passed through a diaphragm pump, a cotton filter, a chilled 

mirror dew point analyzer (for the measurement of gas moisture), a gas cooler 

and finally though different analyzer sensors measuring gas composition in terms 

of five principle components CO, CO2, CH4, H2 and O2 respectively. All the 

instruments were further connected to a stand-alone PC through a Labview 

(National Instruments, USA) module to facilitate data collection and storage. It is 

to be noted that cotton filter (indicated in Figure 3.6) was a new addition to the 

gas sampling line after the work for paper I was completed. Hence that device 

did not reflect to the gas sampling figure (Figure 3) of that publication. 

Additionally, wet teflon filter was replaced with a dry glass wool filter, the 

description of which logically was non-existent in the experimental section of 

paper I. Besides cotton filter and dry filter, a strategic sampling point (Figure 3.7) 

located at the hot gas exit was added to allow gas sampling for compositional 

analysis of tar, which complies with the SPA protocol detailed elsewhere at 

(Brage et al., 1997) and paper IV.   

 

3.3.4 Mass balance 

 

During gasification, the total weight of the gasification system was continuously 

monitored and to identify the measurement sensitivity and system reliability, the 

mass balance was conducted by considering the material inputs and outputs. For 

accounting inputs, dry air, biomass and moisture from both air and biomass were 

used, while for outputs, dry producer gas, dry char, tar, condensates, and 

moisture in the gas and char were considered. However, the particulates 

accumulated in the settling filter were not included in the total output 

calculations. The mass balance equations given elsewhere in the study by (Rao et 

al., 2004) was used as reference for the present calculation.      

 

 

3.4 Bubbling fluidized bed gasification 

 

 

To process local herbaceous biomasses from Spain, i.e.; alfalfa and wheat straw, 

two different bubbling fluidized bed (BFB) gasifier configurations namely a pilot 
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plant and a lab-scale plant was used. The pilot plant was mainly employed to 

treat alfalfa pellets while both alfalfa and wheat straw pellets were used for lab-

scale gasification. The experimental set-up of the two gasification systems is 

succinctly discussed in the forthcoming sub-sections.         

 

3.4.1 Pilot-scale bubbling fluidized bed gasification 

 

Gasification system 

 

The pilot scale atmospheric BFB gasification system at University of Zaragoza, 

Spain consisted of a feeding system, fluidized bed reactor, gas cleaning, tar 

sampling, ash disposal and gas measuring equipment including with a number of 

pressure and temperature sensors. The detailed description of the individual 

segment of the gasification system can be found elsewhere in paper II. Here, only 

their key features are given. The entire gasification unit is illustrated by Figure 

3.8. Additionally, some of the important sections of the gasification system are 

shown by Figure 3.9. 

 

The pilot scale gasifier operated with air as gasifying agent and processed 

biomass with a throughput capacity of approximately 10 kg/h (GPT, 2015). The 

reactor was made of AISI 310 refractory stainless steel with a diameter and 

height of 0.36 m and 3.5 m respectively, stepped vertically in two sections called 

bed and freeboard.  

 

Along the height of the reactor seven temperature sensors (T1-T7) were spaced 

equally apart (140 mm) around the bed (T2-T6) and one each located at the 

bottom (T1) and at the freeboard respectively (see figure 1, paper II). 

Additionally, two pressure sensors were positioned around the bed, spaced 0.115 

m apart along the reactor height. To minimize heat loss and to reduce operational 

risk the entire reactor was covered from top to bottom with glass wool insulation 

blanket of 0.3 m thickness on the reactor’s outer wall.  

 

Air utilized for gasification was supplied to the bottom of the reactor through air 

nozzles and regulated by a mass flow controller operating between the range of 
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0.5 Nm3/h and 100 Nm3/h. Biomass and bed-material (silica-sand, avg. size: 367 

m) was continuously fed to the reactor via two augers attached to the 

corresponding hoppers of 40 kg each (one each for biomass and bed-material 

respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Pilot scale gasification system at University of Zaragoza, Spain 

 

 

Augers were independently driven by variable speed control motors and 

calibrated for a desired feeding rate before the start of a particular experiment.  

 

The resulting raw gas from the gasification was conditioned and cleaned by a 

series of devices (such as cyclone, wet scrubber and char bin) located at various 

gas streams and solid recovery points respectively (refer figure 1, paper II). The 

cyclone removed the particles from the producer gas, wet scrubbers stripped 

condensable tars and cooled the gases while ash and char bin collected the solid 

residues left after the gasification tests. The solid and liquid residues obtained 

after each gasification operation were measured to account mass balance.  
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Figure 3.9: Close view of some important sections in gasification system (c) 

control panel for displaying operational parameters e) -GC standalone PC 

storing gas data; the rest of the figures are marked) 
 
 
Test protocol 

 

Test protocol of the current gasification facility followed several operational 

phases identified as pre-heating, combustion and gasification. During pre-

Air preheater Gas sampling line

Temperature & 

pressure sensors

Wet scrubber Gas flaring unit
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heating, hot air from an air-preheater (Figure 3.9a) was delivered to the reactor to 

increase bed temperature around 450 – 500 C which was achieved 

approximately 3 h after start-up. As soon as the bed temperature reached to ca. 

500 C, a small amount of biomass was combusted, contributing to further 

increase temperature to a desired ca. 800 C in about 20 to 30 min. The high 

temperature at this point set the gasifier in an auto-thermal regime at which 

gasification was initiated. Gasification was usually achieved by adjusting air flow 

rate (4.16 to 4.99 Nm3/h), but keeping fuel flow rate constant at 4.7 kg/h. Present 

gasification tests were primarily investigated for two different stints 

characterized with two different values of equivalence ratio, namely 0.25 and 

0.30. Each stint lasted for about 3 h during which stable data in terms of gas 

quality were collected and analyzed. After the end of an experimental run, the 

solid and liquid residues were recovered and accounted for mass balance. 

Further, to determine the proportional distribution of char and ash, the collected 

solid residues were muffled as according to the standard CEN/TS 15403:2006 

(CEN/TS15403, 2006) and by-differenced. The expressions used to calculate 

various gasification parameters such as ER, gas LHV, gas yield, CGE and CCE 

are given in paper II (eq. 1 through 4).        

 

Analytical measurement 

 

Part of the gas from the main gas stream was diverted through a sampling line 

(Figure 3.9b) containing options for tar measurement and gas compositional 

analysis. By such analyses, performance of gasification was monitored 

continuously. The gas passing through the main exit was mixed with propane and 

flared outside the gasification unit (Figure 3.9g).  

 

Tar measurement 

The tar sampling section was located close to the gas exit in the gas sampling 

line, which served both as tar recovery and sampling gas cleaning. The entry of 

the gas sampling line was kept heated by an electric heating element (ca. 400 C) 

to avoid tar condensation before the tar train. In the tar train, the sampling gas 

was first cooled through two cold condensers (~ 0.75 L each, filled with ice) 

from where tar was recovered and measured (Figure 3.10). Afterwards, the gas 
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was further cleaned by a cotton filter and then directed to the gas analysis system 

through a flow meter monitoring the quantity of the gas sampled. Fractions of the 

tar recovered from the condensers were analyzed for composition by using a GC-

MS (Gas chromatography mass spectrometry) (Agilient 7890 A, USA).   

 

Gas analysis 

Gas quality, in terms of composition, was analyzed every two minutes by means 

of a micro-gas chromatograph (Agilient 3000A GC, Model G2801A, USA) 

located downstream of the gas sampling line. The GC consisted of two modules 

(Plot U and Molsieve 5A) which were calibrated for measuring different gas 

species prior experiments. Plot U determined gas components CO2, C2H4, C2H6, 

C2H2 and H2S while Molsieve analyzed gas species in terms of H2, N2, CH4, CO 

and O2 respectively. GC data were recorded in a standalone PC (Figure 3.9e) 

for data analysis and interpretation.     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Real-time tar sampling  
 
 
 
3.4.2 Lab-scale bubbling fluidized bed gasification 

 

Likewise the pilot plant, a small scale BFB gasification facility also consisted of 

units for feeding, gas conditioning, gas analyzing, solid removal and gas and tar 
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sampling. The extended discussions of each of these components are presented in 

paper III. Below, only the important aspects are briefly covered.  

 

Gasification system 

 

The gasification facility (situated at UNIZAR) and its essential components are 

depicted by Figure 3.11.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: A generalized scheme of the actual lab-scale bubbling fluidized 

bed gasification system  
 
 
The reactor is a fluidized bed gasifier made of AISI 310 refractory austenitic 

stainless steel cylindrical pipe with an inner diameter and height of 0.04 m and 

1.5 m respectively. The entire reactor, including a cyclone and an ash hopper 

(located at the gas exit and the bottom of the reactor respectively), was enclosed 

to an electrical furnace providing start-up heat. At different access points 

(furnace, fluid bed, cyclone and gas exit) of the reactor, the temperature was 

monitored via a set of K-type thermocouples. The fluidized bed in the reactor 
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was made of silica sand constituted around 150 mm of static depth above the 

distributor plate (located close to the bottom of the reactor). The reactor operated 

with atmospheric pressure and air as gasifying agents, introduced at the bottom 

of the reactor in the range between 0.16 Nm3/h and 0.25 Nm3/h controlled via a 

flow controller system. The fuel feeding was achieved by directly introducing the 

fuel pellets (9-15 g) at the top of the reactor once in every three minutes (semi-

continuous feeding) through a two-valve assembly. The operational procedure of 

the two-valve assembly together with the feeding strategy is described in detail in 

paper III. Here, only the feeding strategy corresponding to each ER is 

summarized in Table 3.2.  

 
 

Table 3.2: Variation in batch feeding corresponding to ER 
 

 

 

 

 

 

The gas produced after gasification was cleaned by employing standard 

equipment: cyclone, char pot and hot filter (cartridge filter) where the char pot 

collected the unconverted char, the hot filter removed particulates and kept exit 

gas hot at ca. 400 C (to avoid tar condensation in the gas stream). In the lab-

scale installation, all the gas produced was used for sampling and hence no 

separate sampling train was required.  

 

Test protocol 

 

At gasification start-up, the furnace was electrically heated from room 

temperature up to a desired gasification temperature of ca. 850 C, achieved in 3 

- 4 h. A gasifying agent was introduced during pre-heating and continued until 

the end of the gasification so that necessary fluidization bubbling was kept. As 

soon as the gasification temperature was achieved, the semi-continuous manual 

biomass feeding was started after 10-20 min of which the gasification stability in 

terms of temperature (± 10 C) and gas quality (LHV: ±0.5 MJ/Nm3) were 

    Alfalfa pellets   Wheat straw pellets 
Equivalence ratio   0.23 0.30 0.35   0.20 0.25 0.30 0.35 
Feed, gram  per 3 
min   

10 10 10   15 12 9 9 
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reached. After stabilization, gas sampling was started and lasted for about 45-60 

min to facilitate operational data collection for further analysis. The operational 

parameters such as ER, gas LHV, CGE and CCE were determined by following 

the equations stated elsewhere in paper II & paper III. It is to be noted that the 

feeding scheme for two different fuels was different primarily to compensate the 

size of the pellets during manual feeding as well as to maintain theoretical 

minimum fluidization velocity (1.6 cm/s). Since the ER was the primary 

parameter varied and was aimed to keep between the range 0.20 and 0.35, 

accordingly, the air flow and the fuel feeding adjusted. For alfalfa, only the air 

flow was varied between the range of 0.16 Nm3/h and 0.25 Nm3/h, while for 

wheat straw pellets both air (0.21 Nm3/h and 0.25 Nm3/h) and feed flow (0.18 

kg/h and 0.30 kg/h) were varied. Once a gasification test corresponding to fixed 

ER values ended, the solid residues and tar were collected and analyzed. 

 

Analytical measurement 

 

Analytical measurement of lab-scale plant such as quantitative and qualitative 

evaluation of tar, producer gas, ash, char, temperature etc. is fairly comparable to 

that of the pilot-plant. For pertinent discussion, readers are thus referred to the 

section 3.4.1 and paper III.    

 

 

3.5 Techno-economic analysis of a producer gas generator in 

a standalone renewable hybrid plant  

 

 

Including the optimization of gasification performance by using fixed bed 

downdraft and fluidized bed gasifier experiments, this research work aimed to 

evaluate techno-economic feasibility of a gasification-based renewable hybrid 

energy plant. To do so, an approach here was to develop a series of concepts for 

renewable hybrid energy plants with an option of producer gas generator, wind, 

photovoltaic, natural gas generator and diesel generator which potentially is able 

to meet a typical annual electricity demand of a standalone house located in 

Grimstad, Norway. Commercially, many simulation tools such as HOMER 
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(HOMER), Hybrid2 (HYBRID2, 2012), HOGA (HOGA, 2012) etc. provide 

options to build and optimize hybrid energy plants in terms of technical and 

economic feasibility. Among these tools, for convenience, HOMER (Hybrid 

Optimization Modeling Software) was chosen in this study.  

 
By HOMER, the series of plant configurations using producer gas generator, 

wind, solar, natural gas generator and diesel generator was first optimized based 

on net present cost (NPC). Then a sensitivity analysis as a result of varying 

producer gas/fossil fuel price was performed to investigate the impact of fuel cost 

on the performance of hybrid system. Last, the best combination of sources 

forming the optimized hybrid plant in terms of technical and economic feasibility 

was chosen and proposed.     

 

3.5.1 Model set-up 

 

Based on the standard demographic data provided by the Statistical bureau, 

Norway  (SSB, 2015), it was identified that a 2 kWe of base load power plant 

would be adequate to meet standalone electricity demand of a house remotely 

located in Grimstad. Considering this, first an energy model (see Figure 2, paper 

V) was built based on natural gas* or, diesel power generator (DG) of 2 kW 

capacity (for specifications see Table 3, paper V) each to power a remote house. 

Then a feasibility analysis of this model was performed in aspects of NPC, 

emissions and sensitivity of the fuel price.  

 

In the next step, the natural gas/diesel generator was replaced by a producer gas 

generator and two other renewable sources such as photovoltaic (PV) (for 

specifications refer to Table 4, paper V) and wind (specifications: Table 4, paper 

V) to construct a hybrid plant facilitating the same amount of power as that of a 

fossil generator alone. For PV module simulation, the capacity of the device was 

allowed to vary between the range 1 and 3 kW and the annual variation of both 

temperature and solar irradiation was taken into account. The wind energy 

model, on the other hand, was simulated for the maximum wind turbine capacity 

                                                 
* Natural gas is scarce in Norway and hence propane is instead used in real applications. However, due to 
complexities of modeling propane sources in HOMER, natural gas (characteristically close to propane) 
resource was assumed as an available option for the present economic analysis.  



 44 

of 1 kW. Besides PV and wind, battery and capacitor (for specifications, see 

Table 6 & 7, paper V) were also added to the model to facilitate power storage 

and power conversion. Power storage enhances energy reliability whereas power 

conversion transforms power according to the need of the end users. In the 

simulations, scenarios with or without battery, or capacitor were considered to 

evaluate their impact on the optimum configurations.  

 

Once system configurations utilizing different renewable sources were 

completed, feasibility analysis followed by sensitivity analysis was performed. 

This resulted in a list of system configurations in the increasing order of NPC 

and levelized cost of energy (LCOE) from which an optimum renewable energy 

system was determined and proposed.  

 

During the model set up, a range of energy-economic and system data used are 

shortly discussed in the forthcoming sub-sections and detailed in paper V, while 

the simulation steps are indicated by Figure 3.12 below.           

 
3.5.2 Load data and energy sources 

 
Load data (as shown in Figure 1, paper V) for the Grimstad household was 

presented with reference to the information provided by Statistics Bureau (SSB, 

2015). According to this data, a single household in southern Norway consumes 

average 54 kWh/day of electricity with a peak load of 2.8 kW. Both mono and 

hybrid system models were developed in such a way that this demand was 

reliably met. 

 

In regards to the energy sources, producer gas, natural gas, solar irradiation and 

average wind speed for the local condition were considered. The producer gas 

was assumed to be supplied from fixed-bed downdraft gasifier of the current 

project. Hence the production and price of the producer gas was considered to be 

influenced by the processing of biomass and the operating cost of the gasifier.  

 

The solar radiation data for the studied site was extracted from the NASA 

meteorological dataset (NASA, 2015). Based on the data from NASA (NASA, 

2015), the annual average solar radiation and clearness index of 2.84 
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kWh/m2/day and 0.489 was assumed for the simulation (also shown in Figure 4, 

paper V). Moreover, the influence of annual ambient temperature was also 

included and shown by Figure 5, paper V.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Simulation set-up and modeling steps 

 

 

Likewise solar data, wind energy data were also adapted from the NASA 

meteorological dataset (NASA, 2015). Surrounded by the coast of the Skagerrak 

sea, the wind varying between the range 2.7 and 7.2 m/s throughout the year, is a 

potential renewable source of Grimstad. The monthly average wind profile in 

Grimstad can be viewed from Figure 6, paper V.           

 

3.5.3 Emission parameters 

 

In addition to energy and economic feasibility, HOMER also evaluates the 

viability of a model energy system in terms of emissions. Basically, six 

pollutants CO2, CO, unburned hydrocarbon (UHC), particulate matter (PM), SO2 

and NOx are accounted. In the present simulations, the annual CO2 equivalent 
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emissions from all the modeled plants were calculated and compared in 

evaluating system performance corresponding to the environmental impacts.   
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4 Results and discussions 

 

 

 

4.1 Biomass characterization  

 

 

4.1.1 Physiochemical analysis 

 

Results obtained from proximate and ultimate analyses are tabulated in Table 4.1 

and the ash fusion temperature analysis results of herbaceous feedstocks are 

illustrated by Figure 4.1.   

  

Table 4.1: Proximate, ultimate and LHV analysis of the studied feedstocks 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proximate analysis 

 

Moisture content 

Moisture content of all the biomasses ranged from ca. 8 % to 11 %. In general, 

the reasonably low moisture from the biomasses in the current laboratories suits 

well to the requirement of gasification principles.  

Birch Oak Spruce Poplar Willow Alfalfa Wheat straw Common reed
Moisture, % w.b. 9.15 8.47 9.05 11.38 8.6 8 7.5 7.9
Volatiles;% d.b. 82.2 82.9 82.6 83.9 80.7 74.4 78.8 81.8
Ash, % d.b. 0.5 1.4 0.7 0.9 1.3 15.5 5.2 3.1
Fixed carbon, % d.b. 17.15 15.59 16.56 15 17.87 10.03 15.91 15
LHV, MJ/kg (d.b.) 20.0 18.9 20.3 19.7 19.8 16.7 18.4 17.7
LHV, MJ/kg (daf) 20.1 19.2 20.4 19.9 20.1 19.8 19.4 18.3

Birch Oak Spruce Poplar Willow Alfalfa Wheat straw Common reed

Carbon (C)* 50.4 48.9 50.7 49.4 49.9 41.6 46.2 47.5

Hydrogen (H)* 5.6 6.0 6.0 6.0 5.9 4.9 5.4 5.6

Oxygen (O)** 43.4 43.5 42.4 43.5 42.4 33.9 42.6 43.3

Nitrogen (N)* 0.12 0.2 0.1 0.2 0.53 2.39 0.38 0.3

Sulfur (S)*** 0.017 0.0 0.0 0.0 0.038 0.25 0.06 0.04

Chlorine (Cl)**** 0.019 <0.011 <0.011 <0.011 <0.011 1.43 0.15 0.11
Analysis standard
*:EN 15104:2011; **: EN14918:2010; ***: SS 187177:1991; ****: EN 15289/15408; d.b.: dry base; daf: dry & ash free

Proximate analysis
Properties

Elements (%)
Ultimate analysis

Herbacious biomass

Herbaceous biomass

Woody biomass

Woody biomass
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Ash 

Ash content in the two groups of biomasses i.e.; woody and herbaceous, were 

significantly different with the obvious highest from herbaceous and the lowest 

from woody feedstocks respectively. Among herbaceous biomasses, alfalfa 

resulted in ca. 16 % (d.b.) ash (paper II & III, Table 3.1), and wheat straw 

resulted in ca. 5 % (d.b.) (paper II and Table 4.1) ash respectively. The ash level 

of alfalfa in the present study is slightly higher than that of the past study 

(Boateng et al., 2008), but this did not reflect to the gasification difficulties in 

terms of agglomeration, sintering etc., as bed temperature was kept below the 

melting point of ash. Ash in the woodchips, on the other hand, ranged from 0.5 % 

to 1.4 % with the highest from oak and the lowest from birch respectively (paper 

IV and Table 4.1). Among the forest and the energy crops, generally, the latter 

showed a slightly higher ash content than that of the former, presumably because 

of the higher bark proportion in their wood due to the higher surface to volume 

ratio for the shoots compared to the bigger trees (Serapiglia et al., 2013).  

 

Volatile combustible matter 

The volatiles of all the biomasses ranged from ca. 74 % to ca. 84 % (Table 4.1) 

with expectedly higher values in wood than that of herbaceous ones.  The 

obtained results in general showed a good agreement with the past study by 

(Boateng et al., 2008; Demirbas, 2004; Jenkins et al., 1998) for similar 

biomasses. As a rule of thumb, the higher the volatiles, the better the gasification, 

as fuel combustibility is enhanced (Basu, 2010).  

 

Heating value 

The LHV of all the investigated biomass is presented in Table 4.1. With some 

negligible exception, the observed values ranged from ~17 MJ/kg to ~20 MJ/kg 

(d. b.) which generally showed an inverse relationship to that of the level of ash. 

Expectedly, the actual woody biomasses owing to their higher carbon content 

resulted in higher LHV (Moka, 2012) than herbaceous ones (Table 4.1). 

However, in case of dry and ash free analysis, the LHV of all the samples was 

found fairy similar (Table 4.1), meaning the combustible part of the biomasses 

has fairly the equal LHV regardless the type.  
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Ultimate analysis 

 

Ultimate analysis revealed that the chemical compositions of woodchips were 

superior in terms of C and H and inferior in terms of Cl, S and N to herbaceous 

biomass. C and H positively contribute to the quality of producer gas from 

gasification and hence their high value is desirable. Conversely, Cl, S and N, are 

the ash indicating elements and thus their high value in herbaceous biomass is 

less suitable to gasification. Based on these facts, woody feedstocks had the 

chemical characteristics more favorable towards gasification.   

 

Ash fusion temperature analysis 

 

The ash fusion temperature analysis results for herbaceous biomasses are 

illustrated by Figure 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Characteristic temperatures during ash melting test of 

herbaceous biomass samples in oxidizing atmosphere. DT is deformation 

temperature, HT hemisphere and FT flow temperature 
 
 

As can be seen, alfalfa resulted in the highest DT and HT, while wheat straw 

resulted in the highest FT. Common reed yielded lower DT and HT than those of 

alfalfa, but the FT between these two samples was fairly similar. Ash melting 

temperature is generally a function of the composition of various metals and 
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oxides present in biomass ash (Li et al., 2013). Generally, the higher the presence 

of alkali metals (such as K), the lower the melting temperature of ash (Wang et 

al., 2008). However, this could differ if the proportionate composition of other 

metals/minerals varies. It is worthwhile to note that the correlation between ash 

melting temperature and composition is not covered in the scope of the present 

research and hence melting temperature from the present results cannot be 

utilized to predict composition of ash. Nevertheless, from the present analysis it 

is clear that at reactor bed temperature exceeding ca. 1200 C, wheat straw ash is 

less likely to start melting compared to that of alfalfa and common reed. It is 

worthwhile to note that agglomeration as a result of ash melting and such was not 

encountered in the present gasification experiments.  

           

4.1.2 Thermogravimetric analysis   

 

TGA and DTG plots 

 

The weight loss curves of birch and willow for a heating rate of 20 K/min to 900 

°C, and of alfalfa and wheat straw for a constant heating rate of 10 K/min 600 °C 

is shown by Figure 4.2. The samples showed three steps of mass loss, occurring 

at the stages of moisture evaporation, devolatilization and finally char conversion 

to ash. Although moisture evaporation for all the feedstock resulted in similar 

amount of degraded mass, distinctive differences exhibited due to the 

devolatilization and char conversion. Expectedly, a greater extent of mass loss 

was obtained from woody feedstocks during devolatilization and char conversion 

stages due to the presence of higher level of volatiles and less amount of ash 

(Table 4.1). However, the onset of devolatilization from the woody biomass was 

delayed and occurred at ca. 200 C in contrast to ca. 170 C from herbaceous 

feedstock (see Fig. 4.3). This was presumably due to the difference in the 

structural composition. Wood in general contains higher level of cellulose 

(Shahzadi et al., 2014) which may in turn contribute to increase thermal stability 

and as such the start of devolatilization at a relatively higher temperature.  

 

As far as differential thermogravimetric, DTG profiles (Figure 4.3) are 

concerned, maximum rate of weight loss for all the investigated biomass fell 
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between the range ca. 293  C and ca. 380 C. For the woody biomass, especially 

for birch, the peak was identified at the highest of ca. 378 C.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2: TGA plots of two classes of biomass (top: wood; bottom: 

herbaceous) 
 

0

200

400

600

800

1000

0

20

40

60

80

100

120

0 50 100 150

Te
m

pe
ra

tu
re

 [
C

]

m
/m

o
[%

]

Time [min]

Birch
Willow
Temp.

 

0

200

400

600

800

1000

0

20

40

60

80

100

120

0 50 100 150 200

Te
m

pe
ra

tu
re

 [


C
]

m
/m

o
[%

]

Time [min]

Alfalfa
Wheat straw
Temperature

 



 52 

Moreover, this biomass showed a second peak at around 316 C, which was 

expected, due to the partial degradation of hemicellulose; as theoretically this 

component decomposes at a lower temperature than that of cellulose (Varhegyi et 

al., 1989). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: DTG plots of two classes of biomass (top: wood; bottom: 

herbaceous) 
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Despite woody biomass of the same class (hardwood), this peak however was not 

distinctive from willow. The shoulder-like hemicellulose peak for birch was also 

observed in a past study by (Shen et al., 2009). Additionally, that study (Shen et 

al., 2009) also encountered no-shoulder hemicellulose peak from softwood 

comparing to that of hardwood due to the difference in the degree of 

hemicellulose decomposition between these two wood species (Ramiah, 1970). 

The reduced hemicellulose peak from the present willow might have been a 

result of its higher ash content compared to that of birch (Table 4.1). 

 

In regards to the DTG curves for the samples of herbaceous biomass, wheat 

straw exhibited a peak at a slightly higher temperature than that of alfalfa. 

However, the second peak characterizing hemicellulose degradation was not 

discernible from this feedstock (Pasangulapati et al., 2012) although an evidence 

of slight evolution was noticed from alfalfa. The hemicellulose decomposition is 

likely to be influenced by the presence of inorganic components like alkali 

metals such as potassium and sodium which perhaps contributed to diminishing 

the appearance of hemicellulose shoulder from the DTG curve of wheat straw 

(Greenhalf et al., 2012). However, since the analysis of alkali metals was outside 

the scope of this work such relationship cannot be precisely compared. It is also 

noticed from DTG plots that both woody and herbaceous biomass degraded over 

a broad range of temperature probably due to the presence of lignin (Shahzadi et 

al., 2014), which by far is the most thermally stable structural components of 

biomass. Noticeably, part of the DTG curve covering the stage of combustion 

(illustrating char conversion) has not been discussed here, since char combustion 

was already mentioned along with TGA results above.  By using eq. (3) from 

Section 3.2.2 the log vs. 1/T plots for the feedstocks alfalfa, wheat straw, birch 

and willow is shown in Figure 4.4.   

 

Based on these plots and using the data of the slopes of eq. (3) (Chapter 3), 

obtained kinetic analysis data from devolatilization is summarized in Table 4.2. 

As can be seen (Table 4.2), the conversion ranges of kinetic data for the two 

herbaceous and woody biomass types differed with the lower range for 

herbaceous biomass, 0-40 % and the higher range for the woody biomass, 0-60 % 

respectively. This was due to the fact that mass conversion rate of the herbaceous 
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biomasses was much faster beyond 40% degradation, leading to unstable kinetic 

data beyond that range. The activation energy (E), on the other hand, varied 

between the ranges from 52 to 106 kJ/mol., being lower for herbaceous and 

higher for woody biomass respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: log vs. 1/T plots for kinetic analysis of TGA data 

 
 

Table 4.2: Kinetic analysis results for the selected biomass based on Flynn-
Wall-Ozawa method  

 
 
 

 

 

 

 

 

 

 

Activation energy of 106 kJ/mol. for birch was in good agreement with the study 

by Shen et al. (Shen et al., 2009) while for wheat straw, the activation energy was 

dramatically different than that of by (Cai & Bi, 2009). The past work, however, 

used a different conversion range (10-85 %). Literature studies devoted to 

examine the activation energy of alfalfa and willow are scarce and hence clear 
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Feedstock E, kJ/mol A, [s-1] r2 
Conversion 
range, % 

Temperature 
range, K 

Birch 106.06 6.23E+27 0.8687 0-60 % 294-651 

Willow 102.23 2.21E+17 0.9014 0-60 % 294-647 

Alfalfa 52.44 2.01E+06 0.9907 0-40 % 294-575 
Wheat 
straw 

85.23 7.75E+09 0.9890 0-40 % 294-578 
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comparison of these feedstocks cannot be made. One property that perhaps 

further explains activation energy is structural composition which due to the 

relevance is depicted in Table 4.3, referring the data presented in paper II & IV 

and in Phyllis database (Phyllis2) for wheat straw.    

 

Between the two group of biomass, herbaceous biomass in general contained less 

lignin and somewhat lower cellulose which potentially was the reason 

contributing to the variation in activation energy (see Tables 4.2 & 4.3). 

Theoretically, higher presence of which would potentially enhance activation 

energy as lignin is thermally stable at higher temperature. Further, the 

degradation behavior of hemicellulose might also influence the magnitude of 

activation energy.  

 

Table 4.3: Variation in structural composition between herbaceous and 
woody biomass 

 

 

 

 

 

 

 

 

From the DTG analysis curves in Figure 4.3, it can be recalled that hemicellulose 

peaks for the herbaceous biomasses were not distinctive compared to those for 

the woody feedstocks and therefore the dissimilarity in activation energy 

between these two biomass types.  

 

 

4.2 Fixed-bed downdraft gasification   

 

 

Summary results of the biomasses regarding downdraft gasification are discussed 

in the forthcoming sub-sections. For elaborated discussions, readers are however 

referred to the published papers (I & IV), attached at the end of this thesis.    

Feedstock Cellulose*, % Hemicellulose*, % Lignin*, % 

Alfalfa 30.0 13.0 15.0 
Wheat straw 37.9 26.8 18.3 
Birch 40.6 29.6 26.3 
Willow 38.5 17.6 26.3 
* Phyllis 2 database     
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4.2.1 Gasification of woody forest crops 

 

Gasification of birch (paper I & IV) 

 

Birch was the first forest crop used in this study. The preliminary test on this 

biomass was complemented with more tests at the later stage with a modified 

experimental set-up. Primarily, the design in regards to the draft fan, grate and 

gas purification filters were altered and as a result, the obtained parameters 

differed. The results of both these tests were individually discussed in paper I & 

IV. Below, only the comparison of their performance is briefly discussed. 

 

Performance comparison: preliminary test (paper I) vs. recent tests (paper IV) 

The summarized results from paper I (Sarker & Nielsen, 2014) in terms of 

important gas compositions, ER, LHV, Vg, Qair, mfeed, CGE, and bed temperature 

is shown in Table 4.4.  

 

From Table 4.4 it appears that the preliminary gasification was immature, 

especially because of the fact that the gas LHV, bed temperature and air flow 

were lower than the acceptable range of typical gasification. For example, it is 

known that gas LHV less than 4 MJ/Nm3 is not suitable for downstream 

utilization (Arjharn et al., 2012). Also, low H2 and low CO in the gas 

composition reduce the possibility of using gas either for Fischer-Tropsch 

synthesis (Buragohain et al., 2010) or, for fuel cell conversion (Buragohain et al., 

2010). The low bed temperature and simultaneously the low CO2 most likely was 

a result of limited exothermic combustion reactions (providing heat for 

gasification). This further explains that the endothermic Boudouard, water-gas 

and shift reactions (Figure 2.5) could not fully establish, and as such, the low 

ratio of H2, CO and CH4 in the producer gas composition. Imbalanced interaction 

between exothermic and endothermic reactions possibly contributed to technical 

difficulties in the form of bridging, abrupt change in air flow resistance and 

degraded quality of the producer gas and therefore revealed poor gasification 

performance in the preliminary test.   
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Table 4.4: Comparison of average gasification results between two different 
tests on birch woodchips 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nevertheless, the experience gained from this experiment provided a good 

foundation to incorporate future modification in various areas i.e.; air supply fan, 

grate movement pattern, wet filter, etc. which eventually resulted in improved 

gasification performance for the later runs reported in paper IV. 

 

Concerning later tests, the gasification performance was evaluated based on three 

similar runs with identical feedstocks. The gasification tests were primarily 

conducted for a varied ER ranging between 0.19 and 0.80, which affected the 

evolution trend of different operational parameters (Table 4.4). The average gas 

composition by volume % dry base for the four main gas species CO, CO2, H2 and 

CH4 were 19.2 ± 0.62, 9.93 ± 0.40, 11.07 ± 0.80 and 2.07 ± 0.25 respectively. 

These values, especially the amount of combustible components demonstrated a 

Properties 
Preliminary 

test 
Recent tests 

(avg. of 3 runs) 

Test year 2013 2014-2015 

Average air flow rate, Nm3/h 1.8 3.8 

Biomass feed rate, kg/h (as received) 0.7 2.1 
ER range ca. 0.25-0.80 ca. 0.19-0.80 
Total operation time, min/run ca. 350 ca. 320 
Average gas composition     
CO, % wt. 12.3 19.2 

CO2, % wt. 5.5 9.9 

H2, % wt. 6.7 11.1 

CH4, % wt. 0.5 2.1 

LHV, MJ/Nm3 2.4 4.4 

Avg. bed temperature, °C 434 634 

Avg. gas yield, Nm3/kg 2.92 2.1 

CGE, % 35.5 44.5 
Char yield, g/kg N.D. 131.6 
Tar +liquid yield, g/kg N.D. 16.6 
Ash yield, g/kg N.D. 16.2 
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good potential to producer gas downstream utilization as the gas LHV reached to 

mean 4.37 ± 0.15 MJ/Nm3. The average air flow, fuel flow and bed temperature 

reached to 3.83 ± 0.26 Nm3/h, 2.06 ± 0.09 kg/h and 634 ± 46 C respectively and 

were significantly higher than those obtained from the preliminary operation. 

These values may have improved thermal decomposition and as such enhanced 

performance in regards to CGE (44.5 ± 0.53 %), char (131.6 ± 99.79 g/kg), tar 

(16.64 ± 8.92 g/Nm3) and ash (16.2 ± 9.56 g/kg), which to some extent comply 

with the literature (Sheth & Babu, 2009) for similar biomass. Moreover, the 

optimum ER range (0.37-0.43) coincides with the past study (Zainal et al., 2002) 

on gasification of woody biomass. It can therefore be concluded that gasification 

of birch under the present reactor configuration is feasible and suitable to 

contribute to local bioenergy expansion. 

   

Gasification of forest and energy crops (paper IV) 

 

Gasification tests using forest crops birch, oak and spruce and energy crops SRC 

poplar and willow were performed under a similar experimental condition for a 

variable ER between 0.19 and 0.80. The ER affected the evolution of number of 

process parameters: producer gas compositions, LHV, Vg, CGE, CCE etc., 

which in light of each experimented feedstock are discussed and illustrated by 

Figures 4.5 through 4.8 below.       

 

Effect of ER on producer gas compositions  

Producer gas from the gasification of woody feedstock, mainly composed of the 

major species CO, CO2, H2, CH4 and N2 whose distribution varied as input 

feedstocks and process conditions, varied.  

 

As the ER gradually increased, the evolution of different gas species differed and 

exhibited different tendencies (see Figures 4.5 & 4.6). CO for example showed a 

varying upward and downward trend for most of the biomass except poplar for 

which the trend was increasing throughout (statistically insignificant; p = 0.05). 

The CO trend increased between ER 0.32 and 0.50, and thereafter decreased. 

Expectedly, due to the influence of Boudouard reaction (Sarker et al., 2015), the 

evolution of CO2 was inverse (downward and upward) to that of CO. Likewise 
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CO, the other combustible species such as CH4 and H2 showed varying 

tendencies with ER as the feedstock differed (see section 3.2.1, paper IV).  

 

Effect of feedstock on gas composition 

Woody energy crops in general yielded a lower average CH4 and higher H2 than 

those of forest crops. This may primarily be due to the enhanced reforming 

reactions at an expense of CH4 (Ni et al., 2006), or, due to the enhanced 

endothermic water gas and shift reactions (Sarker et al., 2015). For CH4 alone, 

willow contributed higher values than that of poplar likely due to the enhanced 

methanation. Among all the biomasses, spruce by far had the lowest average H2 

which was likely due to the compromised water-gas reaction (Purdon, 2010).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4.5: Effect of ER on gas compositions and gasification performance 

of forest crops 
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The balance of the mentioned reactions maybe influenced by the bigger forest 

woodchips with thicker bark in contradiction to much smaller chips from young 

shoots from willow and poplar. 

 

Effect of ER on performance of gasification  

As the ER varied, the gas compositions and the gasification performance in 

regards to gas LHV, gas yield (Vg), CGE and CCE were affected as the ER. The 

relationship between these parameters and ER are detailed in paper IV. Below, 

only their key points are discussed.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Effect of ER on gas compositions and gasification performance 

of energy crops 
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First, in terms of the producer gas LHV for forest crops (birch, oak and spruce), 

the trend was increasing and decreasing (with ER) with mean value ranging 

between ca. 4.0 MJ/Nm3 and ca. 4.5 MJ/Nm3. Spruce yielded the lowest average 

LHV (ca. 4.0 MJ/Nm3) corresponding to the highest (of 4.5 MJ/Nm3) from oak, 

while birch showed a somewhat similar (~2 % lower) yield to that of oak. Since 

spruce had the lowest average yield of H2 and CH4 (see Figure 5, paper IV) this 

biomass produced the lowest average LHV. On the other hand, the production of 

total combustible gases between birch and oak was pretty similar and thus the 

similar yield in terms of average producer gas LHV.  

 

Between the energy crops, the average gas LHV from poplar was found higher 

than that of willow presumably because of the increased level of average CO and 

H2. Interestingly, in this group of biomass, the higher CH4 yield from willow 

(Figure 4.6) could not compensate for the concurrent decrease in CO and H2 and 

therefore obtained at lower gas LHV than that of poplar.Noticeably, among the 

individual gas species measured, CH4 has the highest LHV and thus a little 

variation of this component could lead to a greater variation in gas LHV.  

 

Second, in terms of mean gas yield (Vg) most of the feedstocks (except spruce) 

followed the similar increasing and decreasing tendencies to that of gas LHV as 

the ER stepwise rose. Generally, the average Vg for the studied woodchips 

varied between 1.76 Nm3/kg and 2.17 Nm3/kg, with the highest from oak and the 

lowest from spruce respectively. The lower H2 content in the producer gas from 

spruce was thought to decrease gas yield while higher combustible quantities 

might be the reason why oak resulted higher amount of producer gas. 

Theoretically, the factors such as devolatilization, air input, fuel input and type, 

fuel moisture, etc. dictate the gas yield from gasification. Typically, at optimized 

ER, the strength of devolatilization increases (Gómez-Barea et al., 2005) and 

accordingly, the increased quantities of producer gas.   

 

Third, the trend of the efficiencies (CGE and CCE) was expectedly influenced by 

the combined effect of gas LHV and Vg.  Average CGE of all biomasses ranged 

between ca 35 % and ca 45 % while CCE averaged between 62 % and 72 % 

respectively. These values (CGE and CCE) assess the main performance of 
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gasification in respect to all the measured input and output parameters. In 

addition, LHV and Vg are also closely linked to the factors such as bed 

temperature, char yield, tar yield, etc. The interrelationships between these 

parameters are however not discussed here and covered in the following sub-

section (also in section 3.3, paper IV), as of relevance.  

 

In short, the optimized ER at which the gasification performance in respect to 

various process parameters (gas compositions, gas yield, gas LHV, CGE and 

CCE) of all the woodchips maximized ranged between 0.29 and 0.45 which are 

in good agreement with a past study (Zainal et al., 2002) related to gasification of 

wood.    

 

Effect of bed temperature on performance of gasification  

Together with the ER, bed temperature is also an important parameter affecting 

gasification. The bed temperature is correlated to the ER (see Figure 4.7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.7: Effect of bed temperature on gas compositions and gasification 

performance of forest crops 
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Noticeably, the measured bed temperature for the present experiment might not 

reflect exact temperature during operation as temperature sensor was positioned 

slightly away from the reactor bed. Nevertheless, for simplicity the temperature 

correction was not performed and measured temperature is considered as bed 

temperature.  In general, the maximum bed temperature for all the fuels ranged 

between ca. 600 C and ca. 770 C with the highest from willow and the lowest 

from spruce respectively. Among the forest crops, birch and oak achieved the 

maximum bed temperature of 700 C corresponding to 600 C for spruce. Energy 

crops in general exhibited higher bed temperature than that of forest crops, being 

ca. 750 C for poplar and ca. 770 C for willow respectively.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Effect of bed temperature on gas compositions and gasification 

performance of energy crops 
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With the evolution of these temperatures, the process parameters varied and 

exhibited different trends. For example, the average gas LHV, regardless of the 

type of biomass, showed a simultaneous increasing and decreasing trend as the 

bed temperature increased (Figures 4.7 & 4.8).  

 

This is consistent with the theory: the higher the bed temperature, the higher the 

exothermic oxidation reactions and lower the production of combustible gas, and 

thus lower the gas LHV.  The average gas yield (Vg), on the other hand, did not 

show any clear trend. Apparently, Vg for most of the crops tended to optimize 

within the bed temperature of 550 C and 600 C beyond which the trend was 

either increasing or decreasing. The higher gas yield at higher bed temperature is 

a result of combustion reactions as for birch while the lower gas yield at higher 

bed temperature was caused due to the dilution of gas with enhanced N2 (as for 

oak, spruce and energy crops). With the concurrent effect of gas LHV and Vg, 

the average CGE for all the biomasses resulted in a varying upward and 

downward trend. Noticeably, among all the crops, spruce yielded the lowest 

average CGE owing to its combined lowest average gas LHV and gas yield, 

while oak resulted in the highest average CGE due to the contrasting reasons to 

that of spruce. Likewise CGE, average CCE followed the similar increasing and 

decreasing tendency with bed temperature, although the absolute value for 

willow reached its maximum at a higher bed temperature 700 C than that of the 

rest of the crops. This might have been caused by the difference in physical 

properties such as bulk density, proportion of bark in wood, etc.  

     

4.2.2 Preliminary gasification of common reed briquettes  

 

In addition to the gasification of woodchips, a fixed bed downdraft gasifier was 

recently (date: 02.07.2015) tested on common reed briquettes (Figure 4.8). The 

sole experiment ran for about 330 minutes and followed the same test procedure 

as of woodchips experiments (see section 4.2.1). The operational data, i.e.; gas 

composition, temperature, ER, air flow, fuel flow etc. evolved as a result of the 

gasification test. This is summarized in Table 4.5. Additionally, the time-

averaged (each 10 minutes) evolution of gas composition and air flow is 

presented by Figure 4.9.   
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As can be seen (Figure 4.9), throughout the experimental run (~5 h) the evolution 

of the gas data was not stable and characterized with distinctive peaks and 

troughs throughout. This may have been due to the process abnormalities linked 

to the phenomena of bridging, unsteady production of charcoal, deposition of ash 

around air flow nozzles, etc.  The evolved gas species (dry basis) obtained from 

the experiments can be seen in Table 4.5.  

 

 
Table 4.5: Summary results obtained from the preliminary test of common 

reed briquettes 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

This gas LHV, as far as engine or turbine application is considered,  is 

substantially lower than the desirable minimum 4 MJ/Nm3 (Arjharn et al., 2012) 

and thus is not recommended for further application of such. Observing the 

profiles of different temperatures (Figure 4.10), on the other hand, the average 

bed temperature ca 498 C was found unsatisfactory and thus not completely 

representative to gasification. This can also be confirmed from a past study 

Properties Values 

Test date 02.07.2015 
Average air flow rate, Nm3/h 4.3 
Biomass feed rate, kg/h 1.3 
ER range 0.35-0.86 
Total operation time, hrs. ca 330 
Average gas composition   
CO, % wt. 11.5 
CO2, % wt. 13.6 

H2, % wt. 7.3 

CH4, % wt. 0.7 

LHV, MJ/Nm3 (wt.) 2.5 
Avg. bed temperature, °C 498 
Avg. gas yield, Nm3/kg 3.9 
CGE, % 54.6 
Char yield, g/kg (wt.) 60.7 
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(Dogru, 2004), where bed temperature for an optimum gasification of non-woody 

biomass using fixed-bed downdraft gasifier was found to range between 1000 

and 1100 C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Evolution of gas composition and air and fuel feed over time on 

stream 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Evolution of various temperatures for different zones over time 

on stream 
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From the above discussion, it is thus obvious that the preliminary test requires 

extended research. Nevertheless, as yet, some of the positive findings that 

encourage future research are: 

 LHV maximized to 3.5 MJ/Nm3 corresponding to ER = 0.45 

 CGE reasonably averaged and maximized at 55 % and ~83 % respectively  

 Operational time moderately reached to 330 min 

 Char yield reasonably amounted to 60 g/kg  

 

4.2.3  Mass balance 

 

As stated in paper IV, mass balance accuracy of maximum ca. 95 % was 

achieved from all the woodchips gasification tests reported in this work. 

However, in many cases a reasonable balance closure could not be attained, 

presumably due to the gas leakages, particulates accumulation in the settling 

filter and uncaptured tars. The possible sources of minor errors as discussed in 

paper IV could alternatively be the reason of major errors for the insensible mass 

balances. One or two cases mass balance went over 100 % accuracy which may 

sometimes be expected  (Siedlecki et al., 2011).     

 

  

4.3 Pilot-scale fluidized bed gasification experiment   

 

 

As already mentioned, only alfalfa and wheat straw were selected as local 

herbaceous biomasses for fluidized bed gasification. Compared to wheat straw, 

the fluidized-bed gasification on alfalfa is relatively scarce. Hence, the current 

work focused on evaluating gasification potential of alfalfa across two different 

gasifier configurations. Additionally, a novel feeding system enabling direct 

feeding of both biomass pellets to a small scale unit was emphasized. The 

following sub-sections briefly overview the results obtained from the gasification 

tests using pilot and lab scale reactors. The results are further discussed at length 

in paper II & III, annexed at the end of this thesis.      
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4.3.1 Gasification performance of alfalfa pellets 

 

As a local herbaceous crop, alfalfa is widely available around the area of Ebro 

river valley and exhibits wealth of possibilities for being converted into energy 

through gasification as well being used as fodder crop. Considering this, a part of 

this thesis is devoted to examine the potential of alfalfa as a feedstock for pilot 

scale fluidized bed gasification. The gasification approach involved was to vary 

one of the basic parameters such as ER and to observe the corresponding effect 

on a range of other operational parameters namely gas yield, gas LHV, CGE, 

CCE etc. which is discussed below.  

 

Producer gas quality: composition, LHV and yield 

 

The producer gas resulting from the gasification of alfalfa pellets, mainly 

composed of the gas species CO, H2, CO2, N2, CH4, C2H4, C2H6 the evolution of 

which as an effect of ER at 0.25 and 0.30 was investigated. As the results from 

paper II revealed, these gases did not present much of a variation as the ER 

varied. Two reasons might attribute to this fact. First, the ER change might have 

occurred between a very narrow margin which perhaps was not indicative 

enough to observe the changes in gas composition; and second, due to the 

feedstock properties (low volatile, high ash, etc.) the conversion behavior was 

probably not influenced by the region of the narrow variation in ER, and hence 

the less impact on evolved gas. Generally herbaceous biomass produces the best 

quality gas, while the operational ER is kept low, primarily between the range 

0.20 and 0.36 (Alauddin et al., 2010).  

 

Observing the trend of gas components as depicted by Figure 4.11, the CO yield 

showed an upward tendency in contrast to that of CO2, H2 and CH4 dropped as 

the ER increased. The increase in CO possibly indicates the increasing extent of 

Boudouard reaction, while the concurrent drop in H2 and CO2 presumably 

implies the compromised water-gas shift reaction at higher ER. The other minor 

species such as C2H4 and C2H6 remained fairly unaffected despite the modified 

ER (data presented in paper II).    
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The producer gas composition is an excellent indicator for the producer gas 

quality based on which further gas utilization may be recommended. For 

example, the effect of total combustible quantity in the producer gas influences 

the quantity of gas LHV, which is indicative to judge the suitability of gas for 

specific downstream application. In the present case, increasing ER contributed 

to increase the overall combustible composition of gas from ca 25.3 % to 26.0 %, 

which directly affected the gas LHV that slightly increased from ~4.19 MJ/Nm3 

to ~4.21 MJ/Nm3. This implies that enhancing ER improved the quality of 

produced gas which may in turn increase the usefulness of gas for further energy 

conversion via engine or, turbine. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Effect of ER on operational parameters of pilot plant 

gasification 
 
 
Additionally, the producer gas components are also of interest depending on their 

amount. For example producer gas high in CH4 content may suit for bio-

methanation (van der Meijden et al., 2009). Similarly high mixture of CO/H2 

(Carpenter et al., 2010) favors further processing of producer gas into hydrogen, 

biodiesel, SNG (synthetic natural gas) application.  

 

Another parameter representing the characteristics of the producer gas is the 

yield. Theoretically, the higher the ER the higher the bed temperature (T2, as 

indicated in Figure 5.4) and consequently, the higher the gas yield as a result of 

strengthening combustion, reforming, devolatilization etc. In the present case, the 
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severity of reforming reaction perhaps increased as a result of decreased 

production of CH4 at escalated ER and thus the increase in gas yield. The 

increased gas yield in general improves the performance of gasification. 

However, if the quantitative increase does not translate to the qualitative increase 

in terms of gas LHV, less energy is available from gas for further utilization. 

This can be evidenced when a large proportion of a given amount of producer 

gas consists of incombustible species, i.e.; N2, CO2, etc., than those of the 

combustible species contributing to LHV. 

 

Temperature profile, tar and char yield 

 

The temperature profiles evolved from five equidistant sensors (T2-T6) are shown 

in Figure 4.12. One distant sensor (T7) located at the far top of the freeboard is 

not covered in Figure 4.12. The position of the equidistant sensors along the 

gasifier is also displayed by an image embedded to Figure 4.12.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Various temperature profiles and sensors location; left: 

evolution of temperatures over time, right: location of temperature probes 

(except T7) along the reactor  
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As can be seen, the average temperatures of all the probes were slightly higher or 

constant in case of higher ER. Besides the short period of start-up and 

changeover of ER from 0.25 to 0.30, the temperature profiles shown by all the 

sensors were rather stable throughout. The temperatures, especially the 

temperatures around the bed (T2-T6) dictated various parameters of the 

gasification the effect of which is broadly discussed in paper II. Reiterating some 

of the key points from that discussion: the higher the bed temperature the higher 

the combustible species CO, CH4, C2H4 and higher the gas yield, gas LHV and 

CGE as opposed to the lower H2 and CO2, due to the interactions and extent of 

several thermochemical reactions namely Boudouard, water-gas shift, 

combustion etc., as explained further in paper II.         

 

Two other parameters influencing the quality of gasification are tar and char. 

High production of tar and char cost both energy and efficiency, and hence their 

high yield is least desirable in gasification. Typically, high gasification 

temperature leads to reduced tar and char production through enhanced 

reforming and shift reactions (Aznar et al., 2006). The effect of ER and the 

derived bed temperature on tar and char production could not be concluded from 

the present study because of the two reasons, namely: each experiment was 

conducted at two subsequent ERs; and char and tar were collected at the end of 

an experiment representing the effect of total ER range instead of an individual 

ER. It is evident that the total tar yielded after all runs averaged at 1.12 ± 0.04 

g/Nm3. This value is in agreement with the previous study on fixed bed 

gasification of the similar feedstock, but surprisingly low for the actual 

conventional fluidized bed gasification used in our experiment without catalyst. 

For example, a fluidized bed gasification study carried out by Ref. (Narvaez et 

al., 1996) reported that for an optimum operational ER, the tar yield ranged 

between 3 and 7 g/m3. Also, Turn et al. (Turn et al., 1998) found the resulted tar 

yield from bagasse and banagrass to lie between 12 g/m3 and  19 g/m3. Unlike, 

the lower tar yield from the present study is not clearly known.   

 

While the tar yield showed a significant deviation from the literature values at the 

similar gasification condition, char yield (281.7 ± 28 g/kg) showed a slightly 

higher value than that of the past study by Ref. (Aznar et al., 2006). For a typical 



 72 

fluidized bed gasification, char yield is expected to keep in the range between 10 

% and 20 % mass (Xiao et al., 2007) of the feed input compared to ours at 28 %. 

This, however, can exhibit a signification deviation depending on process 

characteristics in relation to fuel conversion, extent of gasification reactions, bed 

temperature etc.  

 

In addition to gravimetric analysis, tar was also studied for compositional 

analysis, the results of which are presented in paper II. As reported, 

approximately 12 tar compounds representing various groups of phenols, 

pyridine, benzenamine and heavy tar quinoline, indole etc. were detected. 

Phenols are secondary tar, primarily deriving from lignin decomposition (Li et 

al., 2015) and generally appear when the gasification temperature exceeds 500 

C. Moreover, their production peaks at around 700 – 800 C at the expense of 

primary tar (comprising of alcohols, ketones, aldehydes etc.) (Basu, 2010). Since 

the gasification tests of alfalfa occurred between the temperatures 700 and 800 

C, the higher abundance of phenols was expected. It was also noticed that a few 

of the tar compounds identified were nitrogen containing molecules (amino-

pyridine, benzonitrile, benzenamine, etc.) which were thought to be originated 

from fuel nitrogen. As alfalfa contained high nitrogen in its chemical 

composition this result is logically justified.   

 

Gasification efficiencies  

 

The effectiveness of gasification is generally expressed by the two common 

terms called cold gas efficiency (CGE) and carbon conversion efficiency (CCE). 

These efficiencies determine the performance of a given gasification plant based 

on input biomass and output products. Overall, the CGE from present alfalfa 

feedstock was low ( ~39 %) and below that of typical lignocellulosic biomass 

(Alauddin et al., 2010). The combined effect of low combustible gas quantity 

especially the low CO, gas and char yield was primarily the reason for low CGE. 

Moreover, some technical issues such as gas leakage and dimension of gasifier 

are also reported to negatively influence CGE (Gómez-Barea et al., 2005). 

Coupled with CGE, the CCE - representing the degree of utilization of carbon 

was also low and found as average ca 60 % for the ER at 0.30 (CCE data is not 
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presented in paper II). The low CCE was possibly a result of the low amount of 

gas CO (~8 % to ~9 % throughout ER) and high amount of char in the 

gasification by-products. Generally, CCE value can be enhanced by minimizing 

the production of tar and char and by increasing the carbonaceous species in the 

producer gas. Additionally, increasing the freeboard height of reactor leads to 

increase in residence time of fuel during gasification which could also contribute 

to increase the value of CCE, as mentioned in the study by (Gómez-Barea et al., 

2005).   

 

 

4.4 Small-scale fluidized bed gasification   

 

    

4.4.1 Comparison of gasification between alfalfa and wheat straw 

pellets: semi-continuous feeding   

 

In the small scale configuration, alfalfa and wheat straw pellets were considered 

as feedstocks for gasification. Likewise pilot plant test, here the ER, was allowed 

to vary by modifying the air and fuel flow and correspondingly the trend of other 

operational parameters (gas composition, gas LHV, gas yield, CGE and CCE) 

between the two different feedstocks were compared. The obtained gasification 

results are extensively discussed in paper III. In the forthcoming sub-sections 

some of the key features are only presented.    

 

Effect of ER on producer gas compositions and gas LHV    

 

Typical gas species found in producer gas of alfalfa and wheat straw were CO, 

CO2, H2, CH4, C2H4, C2H6, C2H2 and N2 the evolution of which was continuously 

monitored and the average data are illustrated by Figure 4.13 & 4.14.  

 

As the results showed in paper III, with the rise in ER, the total combustible 

quantities, i.e.; total percent amount of CO, H2, CH4, C2H4, C2H6 and C2H2 for 

alfalfa linearly increased from 19.8 % (ER = 0.23) to 22.3 % (ER = 0.35) in 
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contrast to wheat straw which decreased from 22.8% (ER = 0.20) to 17.4 % (ER 

= 0.35) with some variations in between.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
Figure 4.13: Evaluation of gas compositions and LHV as an effect of ER for 

alfalfa 
 
 

Among the gas components identified from both the biomass, expectedly, CO2 

increased throughout, while the other components showed varied patterns 

(detailed in paper III).  

 

In general, the average gas LHV from alfalfa peaked when ER maximized at 0.35 

due to the increase in total combustibles. On the other hand, for wheat straw, at 

ER=0.30, the combustible components CO and H2 dropped, but the light 

hydrocarbons (CH4, C2H4, C2H6 and C2H2) increased, which as theoretically have 

a stronger influence on gas LHV than the rest of the combustible components,  

the average gas LHV increased (from 3.97 MJ/Nm3 to 4.1 MJ/Nm3). However, 

ER exceeding 0.30 reduced the total combustibles from wheat straw due to 

enhanced combustion, resulting in reduced average gas LHV.     
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Figure 4.14: Evaluation of gas compositions and LHV as an effect of ER for 

wheat straw 

 
 
Effect of ER on gasification performance 

 

The gasification performance results of alfalfa and wheat straw in terms of gas 

yield, char yield, tar yield, CGE and CCE are presented in detail in paper III and 

summarized in the Figures 4.15 and 4.16 below.  

 

As can be seen in Figure 4.15, the gas yield and gas LHV from alfalfa increased 

with ER and maximized when ER reached to the highest 0.35. The combined 

effect of these two parameters reflected to CGE and CCE which correspondingly 

increased and displayed similar patterns as those of LHV and gas yield. The 

increase in gas yield for alfalfa was perhaps due to the enhanced reforming and 

tar cracking, as implied by the quantitative decrease in char and tar. Clearly, the 

continued increase in air supply contributed to the continued enhancement of 

gasification performance, allowing to increase ER further. However, due to the 

constraint in regards to feeding, as well as the possibility of losing fluidization, 

the ER was not possible to exceed the level of 0.35 which eventually appeared to 

be optimum under the conditions investigated in the present experiments.           

0

1

2

3

4

5

0 %

20 %

40 %

60 %

80 %

100 %

0.2 0.25 0.3 0.35

L
H

V
, M

J/
N

m
3

G
as

 c
om

po
si

ti
on

, v
ol

. (
d.

b.
)

ER

H2

CO

N2

CO2

CH4

C2H4

C2H6

C2H2

LHV

 



 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Average performance parameters from the gasification of 

alfalfa 

 

 

As far as the wheat straw is concerned, first, the rise in ER between 0.20 and 

0.25 contributed to increase the quantity of the producer gas, but the quality 

(LHV, tar, char, CGE and CCE) dropped or remained unaffected (Figure 4.16). 

The increased gas yield with the rise in ER was likely due to enhanced 

devolatilization (Gómez-Barea et al., 2005). Further, as the ER increased up to 

0.30, there was a dramatic improvement in all the major parameters of 

gasification, including efficiencies, LHV, gas quality, gas yield and tar yield, 

apart from char which showed a higher yield. The interplay of several chemical 

reactions such as reforming, water gas shift, devolatilization, etc. perhaps favored 

gasification and as such the improvement in process parameters at ER = 0.30. 

However, the increase in char is surprising. One explanation for this could be the 

influence of higher contribution of ash and particulates in char than the char 

alone. Finally, maximizing the ER at highest 0.35 was not reflective to the 
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performance of gasification for which most of the parameters degraded, except 

gas yield and CCE. The gas yield at this level of ER was mainly boosted by the 

enhanced quantity of CO2 which ultimately contributed to raising the quantity of 

carbonaceous gas, and eventually the CCE. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Average performance parameters from the gasification of 

wheat straw 

 

 

It can thus be concluded that the variation in the optimized ER was mainly due to 

the dissimilarities in physical and chemical properties between the two 

feedstocks (Table 4.1), as the gasification condition was kept fairly similar.      

 

Effect of ER on bed temperature 

 

Like other process parameters, the evolution of bed temperature was also 

observed as a result of modified ER which is demonstrated by Figure 4.17. 

Typically, the higher the level of ER is the higher the bed temperature. Although 

this trend followed in the present case of gasification, the bed temperature did not 
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profoundly vary and hovered between the range 868 C and 873 C for both 

feedstocks as ER modulating between 0.20 and 0.35.  

 

In regards to alfalfa, the highest bed temperature of ~873 C was achieved at ER 

= 0.35 at which gasification performance optimized in respect to the most of the 

operational parameters, including the increased conversion of char and tar. This 

is clearly the effect of increased supply of oxygen contributing to increase the 

severity of reforming and cracking. 

 

 

 

 

 

 

 

 

 

 
Figure 4.17: Evolution of temperature profiles at various ER (left: alfalfa, 

right: wheat straw) 
 
 
As far as wheat straw is concerned, the trend of temperature was upward as with 

ER. However, the process performance waned significantly as the bed 

temperature exceeded 869 C (corresponding to the ER > 0.30) primarily owing 

to the decreased level of gas LHV and increasing content of volumetric tar. At 

higher bed temperature, as the strength of combustion increased, the gas LHV 

degraded, while the accelerated deposition of tar might have resulted in the 

contribution of heavier tar molecules at an expense of primary and secondary tar.   

 

Compositional analysis of tar  

 

The influence of each ER change on composition of tar from both alfalfa and 

wheat straw is presented in Figure 4.18 and 4.19. 
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Figure 4.18: Influence of ER on tar composition from alfalfa 
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Noticeably, for all operational ER and both feedstocks, phenols are the most 

abundant tar compounds observed from the analyzed samples. Phenols are 

secondary tar typically derived from the decomposition of lignin (Li et al., 2015) 

and potentially stable over a wide range of operating temperature. In addition to 

phenols, tertiary tar 5-methyl, 2,4-Imidazolidinedione and nitrogen containing 

species methenamine, benezenamine, etc. were also identified in the peaks 

detected from the GC-MS.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Influence of ER on tar composition from wheat straw (ER = 

0.20 & 0.25) 
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The tertiary tars generally appear at an expense of primary and secondary tar at a 

relatively higher temperature (ca. 650 C) and potentially last around the 

temperature exceeding 900 C (Basu, 2010), while the nitrogen in N2-containing 

tars are mainly originated either from fuel or, from gasification agent or, from 

both (Li et al., 2015). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: Influence of ER on tar composition from wheat straw (ER = 

0.30 & 0.35) 
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Particularly for alfalfa, at the individual ER 0.23 and 0.30 (Figure 4.18), the tar 

compounds identified were pretty comparable where the highest peak resulting 

from tertiary tar 5-methyl, 2,4-Imidazolidinedion. As the ER increased further up 

to maximum 0.35, phenols were still the major contributors in the tar spectra with 

increasing abundance primarily from the derivatives of methyl. However, the 

tertiary tar 5-methyl, 2,4-Imidazolidinedione greatly diminished at this stage 

while the appearance of phenol 1,2-benzenediol became stronger.  

 

Clearly, the higher the ER, the higher was the presence of secondary and tertiary 

tars in the samples from the tests of alfalfa.              

 

Likewise alfalfa, the tar compositions identified from the samples of wheat straw 

represented similar abundance frequencies in terms of phenol and its derivatives, 

see Figure 4.19. Moreover, at the lower ER (between 0.20 and 0.25) some 

nitrogen containing tars such as 2-Pyridinemethanol and 1 H Pyrazole, 1,3,5-

trimethyle- were detected, which however tended to degrade as the ER rose 

further at 0.30. At ER = 0.30, the presence of furan (furfural) was identified, 

which is expected due to the chemical composition of agricultural waste 

(Budinova et al., 2003). 

 

Including phenols and the various forms of tertiary tars, at ER = 0.35, the 

nitrogen containing tars reappeared. Since wheat straw contains negligible 

amounts of nitrogen in its chemical composition, the nitrogen containing tars are 

primarily thought to originate from air, which was used as gasifying agent for the 

present gasification tests. In paper III it was stated that the content of volumetric 

tar rose when the ER rose from 0.30 to 0.35. Thus according to the tar results for 

ER = 0.35 in Figure 4.20, the hypothesis extra tar might have contributed to the 

development of tertiary tars seems to be validated now.   
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4.5 Techno-economic analysis of a gasification plant based 

renewable hybrid energy system 

 

 

The techno-economic analysis using HOMER followed three steps of 

methodology, i.e.; simulation, optimization and sensitivity, the results of which 

are briefly presented below.  

 

 

4.5.1 System performance: simulation and optimization  

 

To determine system performance, both simulation and optimization results for 

mono and hybrid energy plants were used.  

 

First, in regards to the mono energy plant, the optimized system consisted of a 

diesel generator (DG) or, a natural gas generator (NG) with a rated capacity of 

2.5 kW, two units of batteries and one capacitor of 1 kW capacities respectively. 

By keeping the fuel price as realistic as possible, the economic viability of the 

mono energy plant was assessed based on the diesel and natural gas price of 0.8 

$/L and 0.6 $/m3 respectively (EIA, 2015).  

 

The results revealed that according to both economic and environmental aspects, 

an NG system is preferable over DG. Optimum net present cost (NPC) and 

LCOE of NG system was found to be 90,420 $ and 0.365 $/kWh both of which 

were ca. 12 % less than those of a DG system. Moreover, the CO2 equivalent 

emission from the former was 17 % less than that of the latter, indicating a clear 

environmental advantage in regards to greenhouse gas emission. Comparison of 

different economics and emission parameters between the mono and hybrid 

energy plants are illustrated by Table 4.6. 

 

Second, in regards to the hybrid energy plant, as much as five energy 

components namely PV, wind turbine, diesel/natural gas/producer gas generator, 

battery and capacitor with various combinations were used. The simulation 

results produced total eight possible power plant configurations out of which 
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three were composed solely of renewable sources. Among the renewable hybrid 

plants, which was the interest of the present investigation, Bio / PV / wind / 

battery / capacitor were found optimum based on lowest NPC and LCOE at 

72,232 $/year and 0.306 $/kWh. According to the simulation this plant is able to 

produce total 19,886 kWh/year of electricity, with a contribution of 15628 

kWh/year (ca. 79 %) from the producer gas generator, 2886 kWh/year (ca. 15 %) 

from the wind turbine and the rest (1366 kWh/year) from the PV arrays 

respectively. Comparing to the total energy demand of a selected single 

household, the total electricity generated by the optimized plant closely satisfies 

the demand. Apart from the feasibility in terms of meeting energy demand, 

renewable hybrid plants are also advantageous in terms of fulfilling the 

commitment towards the environment. For example, if the mono-energy plant 

running with fossil diesel is replaced with the current optimized hybrid plant of 

Bio/PV/wind configuration, the annual CO2 reduction of 22,626 kg could be 

achieved. 

 

Table 4.6: Economics and emission parameters among the different modeled 
energy plants 

 
 

 

 

 

 

 

 

 

 

 

 

 

4.5.2 Sensitivity analysis 

 

Sensitivity for both types of plant configuration was evaluated based on 

fluctuated fuel prices so that the international price uncertainties can be 

Plant configuration
Total 

NPC ($)
COE 

($/kWh)
Emissions 

(CO2), 
Diesel unit 
cost ($/L)

Natural gas 

cost ($/m3)

Wood gas unit 

cost ($/m3)
Mono energy plant
Disel generator 101,254 0.408 22,626 0.8 - -
Natural gas generator 90,420 0.365 19,302 - 0.6 -
Hybrid energy plant
Bio/PV/wind/battery/converter 72,232 0.306 26,894* - - 0.1
Bio/wind/battery/converter 77,949 0.332 27,390* - - 0.1
Bio/PV/battery/converter 79,589 0.341 28,453* - - 0.1
Bio/PV/diesel/battery/converter 83,210 0.336 28,325 0.8 - 0.1
NG/PV/battery/converter 77,947 0.334 13,509 - 0.6 -
Bio/PV/NG 77,230 0.312 27,589 - 0.6 0.1
NG/wind/battery/converter 74,382 0.300 15,164 - 0.6 -
Bio/wind/NG/battery/converter 75,101 0.303 25,778 - 0.6 0.1
*: No net environmental impact  
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considered into the modeling. For a mono energy system with a diesel generator 

(DG) it was found that due to the fuel price varying from 0.1 $/L to 1 $/L (in 

space of 0.1 $/L), the NPC varied almost linearly between the range $ 26,300 and 

$122,669 corresponding to the LCOE of 0.106 $/kWh and 0.495 $/kWh 

respectively. Additionally, the growth rate of LCOE was found much faster than 

that of NPC when the diesel cost exceeded to 0.52 $/L. Mono energy systems for 

natural gas (NG) for the similar interval of price variation (0.1 $/m3 to 1$/m3) 

resulted in the LCOE and NPC to vary between the range 0.113 $/kWh and 0.566 

$/kWh, and $28,063 and $140,312 respectively. Since the simulation and 

sensitivity parameter was kept identical, the higher NPC and LCOE of natural 

gas generator were thought to be caused by the difference in the efficiency of the 

generator, chosen to 20.4 % for NG and 23.8 % for DG respectively.  

 

The sensitivity of the hybrid energy plants was mainly assessed with respect to 

the variable producer gas price between 0.1 $/m3 and 1$/m3. The simulation 

results of which are summarized in Table 4.7.  

 

Table 4.7: Sensitivity analysis of the optimum hybrid plant 

(Bio/PV/wind/battery/converter) as an effect of producer gas unit price 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Expectedly, the value of NPC and LCOE was affected by the increasing producer 

gas price. More interestingly, each step of increase in fuel price hugely 

Wood gas 

($/m3)
Total 

NPC ($)
COE 

($/kWh)
0.1 72,232 0.306
0.2 128,489 0.544
0.3 184,746 0.782
0.4 241,002 1.020
0.5 297,258 1.259
0.6 353,515 1.497
0.7 409,553 1.734
0.8 465,494 1.971
0.9 521,436 2.208
1.0 577,378 2.444  
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contributed to the increase in cost values. The NPC ranged between $72,232 and 

$ 5,77,378 corresponding to the LCOE between 0.306 $/kWh and 2.444 $/kWh. 

With the 9 steps increase in producer gas price both the NPC and LCOE showed 

overall 8 times increase from the values at start.  

 

In conclusion, hybrid plants with PV/wind and an option of producer gas 

generator in terms of economics is competitive over mono fossil energy plants 

under the constraint of producer gas unit price keeping below 0.1 $/m3.    
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5 Conclusions and future recommendations 

 

 

 

The major conclusions drawn from the each phase of the current research work 

and the potential future perspective is given below.              

 

 

5.1 Fixed-bed downdraft gasification of woody biomass    

 

 

The experiments with fixed-bed downdraft gasification revealed that a maximum 

benefit of the present technology in terms of reasonable gas composition could 

be achieved with a wide range of equivalence ratio (0.29 to 0.45). Some of the 

key findings of fixed-bed downdraft gasification of five different woodchips is 

illustrated by Figure 5.1 and listed in bullet points below:  

 

   Average gasification performance obtained from the hardwood forest crops 

birch and oak closely agreed in terms of the major operational parameters: 

LHV and Vg, but oak gave better CGE and CCE compared to those of birch. 

 Gasification performance of softwood spruce was found little inferior to that 

of hardwoods in regards to LHV, Vg, CGE and CCE yield.  

 Between two woody energy crops, the gasification performance of poplar in 

aspects of important process parameters was revealed superior to those of 

willow. 

 Woody energy crops provided better reactor bed temperature and higher H2 

yield compared to the preliminary experiment with common reed briquettes. 

 The gasification performance of the five studied woodchips species was 

ranked as: oak > birch > poplar > willow > spruce, when the given 

operational conditions in terms of ER varied from 0.19 to 0.80.    
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Figure 5.1: Comparison of fixed-bed downdraft gasification performance 

among different woodchips species (error bars representing the deviation 

from the average of all runs)   
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Overall, the small scale gasification of all the woody feedstocks showed a good 

potential for being converted into useful gas and ultimately to contribute to the 

local bioenergy expansion which in the long-run is beneficial both for securing 

environment goals and for achieving energy sustainability.   

 

 

5.2 Fluidized bed gasification of herbaceous biomass 

 

 

In the present fluidized bed gasification study, two novel initiatives was 

undertaken: the fodder crop alfalfa was investigated in a pilot-plant gasifier, and 

herbaceous biomass pellets were directly fed to a lab-scale fluidized bed reactor.  

 

From the pilot scale test runs, gasification of alfalfa was found feasible over the 

selected ER range of 0.25-0.30. Further, quantitative analysis revealed that the 

obtained producer gas had a high H2 content (of 13 % dry basis vol.) which is 

promising for this gas to utilize for hydrogen production. Moreover, the producer 

gas had a reasonably high LHV value of ca. 4.2 MJ/Nm3which could also be a 

plus for recommending this technology for CHP applications based on 

combustion engine or turbine. In-regards to the lab scale gasification, the same 

feedstock (alfalfa), nevertheless, demonstrated different results, where CO yield 

was found higher than that of H2. Dissimilarities also existed in the other process 

parameters: Vg, LHV and CGE, as displayed in Figure 5.2 for ER = 0.30. 

Overall, the gasification characteristics of alfalfa were influenced by the type of 

feeding and the type of the gasifiers.  

 

Lab scale gasification tests of alfalfa and wheat straw uncovered that both the 

feedstocks yielded similar producer gas characteristics with a potential of gas 

utilization to the CHP application, since average gas LHV kept within the range 

of 4 MJ/Nm3. This value, however, is somewhat lower than that of the pilot 

scale, see Figure 5.2. Over the ER ranges used, gasification performance of 

alfalfa optimized at ER = 0.35 as opposed to wheat straw at ER = 0.30. 

Throughout the operational ranges, the major drawbacks of using this technology 
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were the low yield of H2, CGE and CCE due to high production of tar, 

particulates and char. This could perhaps be improved by conducting further 

studies on biomass residence time and redesign of gasifier which is beyond the 

scope of this work.  

 

 

 

 

 

 

 

 

 

Figure 5.2: Comparison of gasification performance of alfalfa between Pilot-

scale and lab-scale plant at ER = 0.30 (error bars representing the deviation 

from the average of all runs)   

 

All in all, the results obtained from both the gasification units are expected to 

pave the way for promoting gasification in regards to other potential local 

herbaceous biomass for which further optimization of operational conditions may 

be recommended.    

 

 

5.3 Techno-economic evaluation of renewable hybrid plant 

operating with producer gas generator 

 

 

Prior to market penetration of a new technology, a techno-economic evaluation is 

needed. There is no exception for gasification plants. In the present research, the 

techno-economic evaluation of a producer gas generator operating with a fixed 

bed downdraft gasifier on woodchips in a renewable hybrid plant was assessed 

for operational feasibility in terms of technology, economy and environment. The 

model case considered was an arbitrary standalone house in Grimstad 

municipality utilizing average electricity complying with the average demand 
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within the community. The results showed that a renewable hybrid plant 

consisting of producer gas generator (2 kW), PV (1 kW), wind (1 kW), battery (1 

unit) and capacitor (1kW) is optimum in terms of net present cost (NPC), 

levelized cost of energy (LCOE) and an environmental gain worth 22,626 

kg/year. CO2 savings, under the constraint that producer gas production price 

does not exceed the cost 0.1 $/m3.  

 

Since a gasification plant in a renewable hybrid energy configuration gives 

obvious economic and environmental advantages, the current finding is 

interesting as far as application of fixed-bed downdraft gasifier in a local 

renewable hybrid plant is concerned. 

 

 

5.4 Future recommendation 

 

 

The present thesis has addressed a few challenges within the area of local 

bioenergy exploitation by suggesting optimized process parameters for diverse 

biomass feedstocks in two contemporary gasification configurations. However, 

based on the author’s experience and understanding, some of the crucial aspects 

still remain to be investigated, potentially forming the topics for future research.     

 

First, prior to gasification, all the biomasses were thoroughly examined for 

physical and chemical quality by employing thermogravimetry, ultimate analysis, 

ash melting behavior and so on, whereas the structural analysis values were 

obtained from the existing literature results. Knowing the precise structural 

composition of a specific biomass from a specific site would be more 

representative in assessing the current results in the context of distribution of 

primary biomass components. Especially, the thermogravimetric graphs could be 

better explained and the gasification phenomenon would probably be better 

predicted. Nonetheless, because the study is solely based on the constraint of 

theoretical structural values, there is a window of opportunity to develop future 

perspectives in this regard. 
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Second, this thesis lacks with information of ash composition. Compositional 

analysis of ash allows to understanding the contribution of specific materials on 

behavior of sintered ash. Since the current research did not experience any 

melting or agglomerated ash during the gasification tests, determining ash 

composition was perhaps not an essential requirement to fulfill the objectives of 

the end interest. However, in global perspective, the priori knowledge on 

compositional ash helps determining the suitability of a particular biomass for a 

particular thermochemical conversion application for which a substantial part of 

the relevant future work may be devoted.   

 

Third, in regards to the compositional analysis of tar, this study is not 

comprehensive. No doubt tar is an important parameter of the gasification study 

whose estimation is the key not only to know the gasification technology but also 

to develop process parameters regarding the technology. Two methods namely 

tar condensation and SPA, were employed to report the compositional tar. The 

compositional analysis using offline condensation produced successful tar 

characterization results with GC-MS for herbaceous biomass. However, the 

attempts in regards to the SPA sampling for woody biomass were not completely 

successful and representative, except a few samples of oak. Thus to propel the 

current research a step ahead, developing a sampling protocol allowing to collect 

representative samples suiting the successful SPA analysis where a wide scope 

clearly exists is imperative.    

 

Finally, the fixed-bed downdraft gasification of herbaceous biomass (common 

reed) is still underdeveloped. From the operational experience, it is well 

established that the present fixed-bed gasification system is feasibly suited for 

woody biomass for a wide range of operating conditions. However, to increase 

the fuel flexibility, this gasification reactor should also be made tolerant for 

herbaceous biomass which can very well be a topic for future work.  
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Abstract This paper investigated the possibilities of

using birch wood chips for fixed-bed downdraft gasifica-

tion. The preliminary air gasification resulted producer gas

with an average composition of 11.5 % CO, 5.4 % CO2,

5.9 % H2, 0.38 % CH4 corresponding to a mean lower

heating value of about 2 MJ/kg. The approximate size of

woodchips used for gasification was around 11.5 mm for a

maximum solid throughput of 0.65 kg/h. The obtained

equivalence ratio (ratio between actual air fuel ratio and

stoichometric air fuel ratio) as a result of air and biomass

feed was close to 0.45 which was stable throughout the test.

Producer gas left the gasifier at ca. 150 �C and was

diverted for flaring owing to the level of low energy con-

tent. Despite availability, the option for gas to generate

heat and electricity via integrated gas engine has not been

utilized in the present case and remained for further

ongoing research.

Keywords Birch wood � Fixed-bed � Downdraft �
Gasification � Producer gas

Introduction

The global energy is running the risk of scarcity and phase

out of fossil fuel in the coming future (Shafiee and Topal

2009; Zainal et al. 2002). This will cause the utilization of

various energy sources including with the renewables in all

aspects of societies and industries. Mobilizing energy

sectors toward sustainable and renewable technologies are

a revolutionary stride expected to yield pronounced bene-

fits in the context of energy security, reliability and envi-

ronmental emissions (Ahmed et al. 2011). Gasification of

biomass is one promising candidate to successfully achieve

this transformation. By gasification, solid biomass gets

converted into combustible gas with a typical composition

of CO, CO2, H2, CH4, N2 and a trace amount of inert

components (Hindsgaul et al. 2000; Barman et al. 2012),

which has enormous potential to be utilized into range of

applications (Brown and Brown 2013; Gautam 2010).

Biomass with many different types is viable for gasifica-

tion, but wood is particularly preferred due to its charac-

teristics superior over coal and many grassy biomass as

exemplified by high volatiles, low sulfur and low ash

content (Janajreh and Al Shrah 2013; Shul’ga et al. 2012).

Graphically, the convenient properties of wood in respect

of other solid fuels has been depicted in popular Van

krevelen diagram and cited by number of researchers

(Janajreh and Al Shrah 2013; Basu 2010; Barrio 2002).

Considering that, present work is based on one class of

wood such as birch (Betula Pendula), as a feedstock for

gasification.

Birch is abundant in northern European climate (Grønli

1996), but predominantly used for household applications

as firewood to meet the heat demand. So far, utilizing birch

for combustion contributed to a number of emissions

leading to environmental and health hazards (Hedberg

et al. 2002). These drawbacks pose a great concern trig-

gering in search for alternative that could sustainably be

applied for energy production. Gasification in that direction

consequently emerged as a viable solution to diminish

much of the issues associated with combustion. Unlike

combustion which requires equal or higher amount of

stoichiometric air, gasification occurs at oxygen scarce
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condition and hence contributes to a significant reduction

in pollutant emissions. For this study, therefore, gasifica-

tion of birch woodchips is proposed which to date has not

been exploited to the knowledge of the authors.

In general, thermochemical conversion of biomass is

performed into three different types of gasifiers commonly

known as fixed-bed, fluid-bed and entrained flow reactors

(Kotowicz et al. 2013; Couto et al. 2013). Fixed-bed

reactors are further categorized into updraft, downdraft and

cross-draft gasifiers based on the way feedstock and gas

move through the system. Within the fixed-bed reactors,

downdraft technologies offer several advantages that

include: simplicity in construction (Wei 2010), suitability

for small scale applications (Asadullah 2014) and the

possibilities of generating less tar (McKendry 2002; Son

et al. 2011; Chopra and Jain 2007) as a result of hot gas

passing through the high-temperature zone of the reactor.

Based on these premises, the present work investigated air

gasification of fixed-bed downdraft gasifier utilizing wood

as feedstock.

Experimental investigation of fixed-bed downdraft

gasification of woodchips has been explored in many

contemporary works. Lenis et al. (Lenis et al. 2013), for

example, focused on five different wood species (Acacia

mangium, Eucalyptus sp., Pinus sp., Pinus patula and

Gmelina arborea) for which first the gasification model

was formulated which was further validated in a lab

scale reactor. Lee et al. (2013) developed their studies

based on fixed-bed air gasification and further to elec-

tricity generation via spark ignition internal combustion

(IC) engine using pine and red oak as feeding materials.

Fixed-bed downdraft gasification of woodchips with air

as gasifying agent was performed by a comprehensive

research conducted by Zainal et al. (2002) who estab-

lished the effect of operational parameters on the quality

and quantity of producer gas. Published research (Yoon

et al. 2011) also included the influence of several

parameters on fixed-bed gasification of woodchips

(German Conifer) using air and steam mixtures as the

gasifying medium.

In line with those previous contributions, biomass

energy research group at University of Agder is facilitating

the fundamental components necessary for gasification and

subsequently for energy production. This paper only

reports the preliminary work which was devoted to

examine the possibilities of utilizing birch wood chips for

fixed-bed gasification with air as gasifying agent.

Materials and methods

Date and location of the study: 08/08/2013, University of

Agder, Grimstad, Norway.

Feedstock

Birch wood was cut down by a chain saw and further

chipped by a disk chipper (NHS 720 IE 4, Denmark) with a

nominal cutting length of about 11.5 mm during the winter

2012–2013 at Grimstad, Norway. Produced wood chips

were then placed indoor, stacked with a 20 cm thick layer

for natural drying, which was promoted by repeated mixing

with shovel. The photograph of birch woodchips is illus-

trated in Fig. 1.

Characterization of birch woodchips

Birch woodchips was characterized for moisture, proxi-

mate, ultimate and heating value analysis prior to gasifi-

cation. Moisture was determined in situ gravimetrically

with a moisture analyzer (Metler Toledo LJ16, Switzer-

land) programmed for 105 �C temperature. By this

instrument, total weight loss of a sample is measured with

corresponding increase in temperature until no further

weight measurement at the set temperature. Volatiles were

determined by the external lab Eurofins Environmental

Testing Sweden AB according to the protocol EN

15148/15402. Ash was measured complying with the

standard CEN/TS 15403, whereas fixed carbon was eval-

uated by difference. Calorific value of feedstock was

measured in situ employing bomb calorimeter (LECO AC

500, USA) that followed the standard CEN/TS

14918/15400 ISO. Likewise volatiles, elemental analysis of

birch wood was also conducted externally by Eurofins

Environmental Testing Sweden AB according to the pro-

tocol EN 15104/15407 for carbon, hydrogen, oxygen and

nitrogen and according to the protocol EN 15289/15408 for

chlorine (Cl) and sulfur (S). The characterization of birch

woodchips in respect of proximate and ultimate analysis is

presented in Table 3.

Fig. 1 Birch woodchips used for gasification
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Experimental setup

Gasifier and engine

The experimental setup consists of a fixed-bed downdraft

Victory gasifier unit with integrated hopper, producer gas

cooling and cleaning system. The specification of gasifier is

given by the Table 1, whereas Fig. 2 shows the structure of

the gasifier system. The gasification unit comprises with a

0.13-m3 cone structure feeding hopper above the reactor.

Main body of this structure is made from a 500-mm

outer diameter steel pipe with an internal air jacket and

refractory insulation in reaction zone. Total height of the

gasifier including with the hopper is around 1.7 m. The

inclined shape of the hopper ensures the smooth gravita-

tional flow of feeding material into the throat for better

gasification and tar reduction. Biomass is fed from the top,

while the air is induced through six nozzles above an

exchangeable restriction ring (100 mm). Nozzles are

equidistantly located around the circumference of pipe

above the throat of the gasifier. To provide a sufficient draft

necessary for the air to pass through the system, a fan is

located at the end of gas exit and powered by a battery

bank charged by a gas engine (for this experimental set up).

In a typical case, producer gas exiting from gasifier runs

the engine and gets converted into heat and electricity

which is subsequently stored in a lead-acid battery for

further usage (Fig. 2).

Biomass as moves downward from the top of the gasifier

is dried and devolatilized by the heat carried from the

combustion zone. High-temperature gas from the com-

bustion zone is gasified by the gas and solid phase reactions

and exits from the bottom of the gasifier. After passing the

gasifier, the producer gas is cooled in a gas–water heat

exchanger, resulting in condensation of a portion of water

vapor. Additional gas cleaning is achieved in a settling

chamber filled with hanging ribbons while final cooling

and filtration is conducted by a water sprayed Teflon filter

screen sieve. While leaving the gasifier, the producer gas

also comes into contact with the glowing char and the ashes

and as a result provides the additional cleaning effect. Char

produced through the thermochemical reaction is also

Table 1 Specifications of the gasification unit: source Victory

Gasworks

Item Description

Gasifier Victory super CHP

Type Air blown downdraft gasifier

Input *1.13 kg/kWh

Maximum speed 4–90 m3/h (adjustable)

Output with engine 5–15 kWe, 3 kW hot water

Operating temperature 1,050–1,250 �C

Table 2 Specifications of the gas engine: source Kubota Engine

America Corporation

Item Description

Engine Kubota DG972-E2

Type Vertical 4-cycle liquid cool natural gas

No. of cylinders 3

Maximum speed 3,600 rpm

Volume 0.962 m3

Output (natural gas) 17.6 kW

Fig. 2 Flaring of fixed-bed

downdraft gasifier integrated

with a natural gas engine

(University of Agder)
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gasified by high temperature (*900–1,000 K) (Jayah et al.

2003) and generates necessary heat to propagate the gasi-

fication steps throughout the reactor. Ash, the final solid

product of gasification with a very little value for com-

bustion and gasification, is collected from the grate, posi-

tioned beneath the combustion chamber. Cleaned producer

gas is by-passed for flaring to identify the quality before

diverting to the gas engine. Flame in the flare turns from

bright yellow to bluish (corresponding to the high energy

content gas) once the producer gas is ready for consump-

tion in the gas engine.

The gasifier is also featured with a vibrating mechanism,

a shaker, driven by an electric motor to generate the

vibration motions at a regular interval. Such vibrations

reduce the risk for channeling and bridging of biomass

inside the gasifier and sustain the continuous downward

movement of feedstock. The grate is reciprocally rotated

by adjustable intervals for a smoother and easier ash

discharge.

Further downstream, the gasifier is coupled with a

0.962 L three cylinder natural gas engine rated with

17.6 kW mechanical power. The engine is capable to run at

a wide range of speed up to 3,600 rpm. In the present case,

the engine generates electricity in two DC generators with

a total capacity of 5 kW. The electricity is stored in the

battery which with the help of an inverter subsequently

transforms DC power into AC which is further utilized by

an adjustable load of 5.3 kW (electric heaters). The

specifications of engine as per Kubota Engine America

Coroporation is illustrated in Table 2.

Gas sampling

In order to measure and monitor the composition of the

producer gas, a part of the gas is bypassed at a maximum

flow rate of 50 L/h through the state-of-the art gas sampling

facility consisting with hot filter, dew point analyzer,

membrane pump, rotameter, gas cooler and gas analyz-

ers as demonstrated in Fig. 3. In the first step, dust particles

are removed from gas by the hot filter (FE2, ABB, Ger-

many) operating at a temperature of around 150 �C. The
relatively cleaned gas is then flown through a dew point

analyzer (Omega, RHB-1500, USA) for determining the

dew point, necessary for evaluating dryness of the gas.

Subsequently, gas is partially dried by supplying through a

gas cooler (SCC-C Sample gas cooler, ABB, Germany),

maintaining about 3 �C temperature at outlet. Flow into the

sampling line is maintained by a diaphragm pump (Mem-

brane pump 4 N, ABB, France) and controlled by a rota-

meter (0–50 L/h), governing the flow at a desired level.

After cleaning and drying via hot filter and gas cooler, the

gas is finally sent to the analyzers. In principle, gas ana-

lyzer detects the gas composition within the flow range of

20–40 L/h which is monitored by the rotameter located

into the flow line. Two analyzer units (Advance optima,

AO2020; ABB, Germany) mounting three different sensors

Rotameter

Sample gas in, 
30-50 L/h, max.

FE2 Hot 

Condensate 
collector

CO + CO
2
 + CH

4
 analyzer (Non-

dispersive infrared photometer)

H
2
 + O

2
 + N

2
 analyzer (Silicon and 

magneto- mechanical sensor)

Membrane 
pump

Gas cooler, 3° C

Chilled mirror dew 
point analyzer

Analogue output to data 
acquisition device (Labview)

Fig. 3 Components used in gas sampling and data acquisition
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(URAS 26, CALDOS 27 and MAGNOS 206) measure

various composition of producer gas. Gas analyzer unit 1

houses analyzer component URAS 26, working with the

principle of non-dispersive infrared photometer and mea-

sures percent composition of CO, CO2 and CH4 in the

producer gas. Analyzer unit 2 contains two sensors CAL-

DOS 27 and MAGNOS 206 and determines the percent

amount of H2 and O2 in the sample gas content. Sensor

CALDOS 27 uses the concept of high thermal conductivity

of H2 for gas measurement, while paramagnetic nature of

oxygen is utilized in MAGNOS 206 to analyze oxygen in

the sample gas flow.

Analytical

Produced gas composition after gasification was evaluated

in situ by the ABB gas analyzers as specified in ‘‘Gas

sampling’’ section, whereas the lower heating value was

calculated based on the procedure set by ISO 6976. Tem-

perature at different locations of gasifier, air and gas was

measured by the number of K-type thermocouples mounted

in and around the gasifier. Two pressure sensors (Smart

DCM/SN Diff, Fema, Germany) measure the pressure

difference in the process as a result of filtration (hot and

wet) and obstruction in the gas and biomass. Figure 4

shows the location of four temperature sensors: T1 (at

reduction), T2 (gas exit), T3 (combustion) and T5 (air inlet)

and one pressure sensor, p1 within the gasifier. T4 (filtered

gas) and p2 are located in the downstream of the gas flow

and therefore are not covered in Fig. 4. Degradation of feed

during gasification was monitored by a scale (Dini Argeo,

DGT PK, Italy) installed beneath the gasifier assembly.

The values registered in the scale, gas analyzers, temper-

ature sensors, pressure sensors and dew point analyzer

were acquired through Labview data acquisition software

(National Instruments, LabVIEW 2010, USA) for further

interpretation. Screen shot of Labview programming is

given in the ‘‘Appendix’’.

Results and discussion

Feedstock characterization

Results of feedstock characterization (Table 3) demon-

strated that the level of moisture in birch woodchips is

acceptably low which in terms of gasification is very

attractive (Atnaw et al. 2014; Gautam 2010). Additionally,

birch has low ash, low sulfur, low chlorine and high cal-

orific value and high volatile matter content as reflected in

Table 3. Woody biomass exhibiting such composition

possibly yields less or no tar in the produced gas within the

operating scale that does not exceed 30 kW as evidenced

by (Son et al. 2011; Warren et al. 1995). Moreover, low ash

offers substantial advantages in reducing the potential of

slagging and slow biomass conversion, as discussed by

(Rajvanshi 1986). High carbon content (50.4 %) further-

more suggests why the calorific value of this biomass is

rather high (Moka 2012). Knowing the physical and

chemical composition of biomass is of great importance to

understand the gasification phenomena associated with

reaction chemistry, gas composition and tar characteristics

further can be extrapolated for energy and mass balance of

the entire system.

Gasification of birch wood chips

Among the range of operations, trial run of gasifier with

100 % birch wood chips (moisture content 15.2 %) that

carried on August 8, 2013, was most interesting in terms of

fuel gas composition and calorific value. The experiment

continued for about 6 h during which period several

experimental parameters such as characteristics of pro-

ducer gas, gas flow, temperature and pressure at different

Fig. 4 Pressure and temperature sensors along the gasifier
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locations and biomass feed degradation pattern are mea-

sured and illustrated in Fig. 5 through 7.

Figure 5 demonstrates the evolution of producer gas

composition and its corresponding LHV (Lower heating

value) throughout the test period. Among the combustible

species of generated gas, CO was found highest with an

average of 11.8 %, followed by hydrogen (5.9 %) and

methane (0.38 %). Gas LHV, a direct function of com-

bustible components, reached to a peak at approximately

2.5 MJ/kg when reasonably higher CO and H2 were pro-

duced after some 4 h of operation. However, the trend was

varying to a great degree, characterized by few unstable

periods close to second, third and fifth h of operation.

These phenomena are perhaps attributed to a several fac-

tors such as bridging, abrupt change in temperature (Zainal

et al. 2002), instability in air supply (Reed et al. 1988). In

fact, the decrease in airflow during the unstable periods was

clearly observed and evidenced by Fig. 6. Generally, the

decrease in battery voltage causes the decrease in fan speed

which ultimately reflects in air flow and in turn in gas

pressure, biomass conversion, temperature and gas char-

acteristics, as indicated by Fig. 5 through 7. While other

parameters were influenced, airflow resulted an average

equivalence ratio (ER) of 0.45 which is arguably high for

gasification. By and large, downdraft gasification was

proved to perform better when operated within the range of

0.25 ER (Reed et al. 1988). The study of (Zainal et al.

2002), however, showed the successful operation even with

an ER up to 0.43. Likewise equivalence ratio, mean cold

gas efficiency for this experiment was relatively low,

approximately to 54 %. Typical cold gas efficiency for

fixed-bed downdraft gasifier lies in the range between 65

and 75 % as reported by (Knoef et al. 2012). Cold gas

efficiency for this work could probably be improved by

increasing airflow eventually contributing to the reaction

chemistry between gas and solid components, causing high

composition of combustible species in the producer gas.

Principally, air is the only external input that can be varied

while gasifier is under operation and thus leaving a wide

scope for further investigation at a numerous air inputs.

Table 3 Proximate and ultimate analysis of birch woodchips

Proximate analysis (dry basis)

Moisture, % 7

Volatiles, % 82.2

Fixed carbon, % 10.45

Ash, % 0.35

LHV (MJ/kg) 17.9

Ultimate analysis (dry basis)

Carbon, % 50.4

Hydrogen, % 5.6

Oxygen, % 43.4

Nitrogen, % 0.12

Sulfur, % 0.017

Chlorine, % 0.019
Fig. 5 Composition of producer gas and its corresponding calorific

value: LHV (Thick solid black line); CO (Solid gray line); CO2

(Dotted gray line); H2 (Thin solid black line); CH4 (Dotted black line)

Fig. 7 Biomass degradation and pressure gradient during gasification

of birch wood: Weight reduction (Solid black line); p1, pressure

before filtration (Dotted black line); p2, pressure after filtration

(Dotted gray line)
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The basic idea of this preliminary study was to evaluate the

performance of measurement system that generates nec-

essary operational and technical data from gasification. So

observing the nature and relation between parameters as

illustrated by Fig. 5 through 7 would provide a solid basis

for further improvement in technical and theoretical

aspects which include optimization of process parameters,

evaluation of tar, experimentation on power production.

Conclusion

This study revealed the performance of a downdraft fixed-

bed gasifier for producing high energy gas by utilizing

birch woodchips as a feedstock. In the preliminary run, the

LHV of the producer gas reached to maximum 2.5 MJ/kg

with a corresponding ER of 0.45. The average product gas

composition (11.5 % CO, 5.4 % CO2, 5.9 % H2, 0.38 %

CH4) and the cold gas efficiency (54 %) were nevertheless

found low, suggesting a wide scope of performing more

research on birch wood gasification. The present research

thus is ongoing and yet to discover the heat and electricity

potential of wood gas by incorporating gas engine as a

downstream energy conversion unit.
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Swietlicki E, Vesely V, Wideqvist U, Westerholm R (2002)

Chemical and physical characterization of emissions from birch

wood combustion in a wood stove. Atmos Environ

36(30):4823–4837

Hindsgaul C, Schramm J, Gratz L, Henriksen U, Dall Bentzen J

(2000) Physical and chemical characterization of particles in

producer gas from wood chips. Bioresour Technol

73(2):147–155

Janajreh I, Al Shrah M (2013) Numerical and experimental investi-

gation of downdraft gasification of wood chips. Energy Convers

Manag 65:783–792

Jayah T, Aye L, Fuller R, Stewart D (2003) Computer simulation of a

downdraft wood gasifier for tea drying. Biomass Bioenergy

25(4):459–469

Knoef HAM, Ahrenfeldt J, Angrill LS, Group NOvT-NOBT (2012)

Handbook biomass gasification. BTG Biomass Technology

Group, Netherlands

Kotowicz J, Sobolewski A, Iluk T (2013) Energetic analysis of a

system integrated with biomass gasification. Energy 52:265–278

Lee U, Balu E, Chung J (2013) An experimental evaluation of an

integrated biomass gasification and power generation system for

distributed power applications. Appl Energy 101:699–708

Lenis Y, Osorio L, Pérez J (2013) Fixed bed gasification of wood

species with potential as energy crops in Colombia: the effect of

the physicochemical properties. Energy Sources, Part A: Recov-

ery, Util Environ Eff 35(17):1608–1617

McKendry P (2002) Energy production from biomass (part 3):

gasification technologies. Bioresour Technol 83(1):55–63

Moka VK (2012) Estimation of calorific value of biomass from its

elementary components by regression analysis. BTech thesis,

NIT Rourkela, India

Rajvanshi AK (1986) Biomass gasification. Altern Energy Agric

2:83–102

Reed T, Reed TB, Das A, Das A (1988) Handbook of biomass

downdraft gasifier engine systems. Biomass Energy Foundation,

USA

Shafiee S, Topal E (2009) When will fossil fuel reserves be

diminished? Energy Policy 37(1):181–189

Shul’ga I, Zelenskii O, Vikhlyaev A (2012) Gasification of wood

chips. Coke Chem 55(8):324–327

Son Y-I, Yoon SJ, Kim YK, Lee J-G (2011) Gasification and power

generation characteristics of woody biomass utilizing a down-

draft gasifier. Biomass Bioenergy 35(10):4215–4220. doi:10.

1016/j.biombioe.2011.07.008

Warren TJB, Poulter R, Parfitt RI (1995) Converting biomass to

electricity on a farm-sized scale using downdraft gasification and

a spark-ignition engine. Bioresour Technol 52(1):95–98. doi:10.

1016/0960-8524(95)00022-7

Wei L (2010) Technical and economic evaluation of small-scale

biomass gasification facilities in Mississippi. PhD Dissertation,

Mississippi State University, USA

Yoon H, Cooper T, Steinfeld A (2011) Non-catalytic autothermal

gasification of woody biomass. Int J Hydrog Energy

36(13):7852–7860

Zainal ZA, Rifau A, Quadir GA, Seetharamu KN (2002) Experimen-

tal investigation of a downdraft biomass gasifier. Biomass

Bioenergy 23(4):283–289. doi:10.1016/s0961-9534(02)00059-4

2126 Int. J. Environ. Sci. Technol. (2015) 12:2119–2126

123

http://dx.doi.org/10.1155/2014/121908
http://dx.doi.org/10.1155/2014/121908
http://dx.doi.org/10.1016/j.biombioe.2011.07.008
http://dx.doi.org/10.1016/j.biombioe.2011.07.008
http://dx.doi.org/10.1016/0960-8524(95)00022-7
http://dx.doi.org/10.1016/0960-8524(95)00022-7
http://dx.doi.org/10.1016/s0961-9534(02)00059-4


 112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 113 

Paper II 

 

 

 

 

 

 

 

Characterization and pilot-scale fluidized bed 

gasification of herbaceous biomass: A case study on 

alfalfa pellets 

 
Shiplu Sarker, Fernando Bimbela, José Luis Sánchez, Henrik Kofoed 

Nielsen  

 

 

Published in Energy Conversion and Management, 2015, 91: 451-458 

 

 

 

 

 

 

 

 

Journal information (ISI web of science): 

 

Publisher: Elsevier 

Impact factor: 4.38 (2014) 

Rank: 14/88 (Energy & Fuels) 



1

3 Characterization and pilot scale fluidized bed gasification of herbaceous
4 biomass: A case study on alfalfa pellets

5

6

7 Shiplu Sarker a,⇑, Fernando Bimbela b, José Luis Sánchez b, Henrik Kofoed Nielsen a

8 aUniversity of Agder, Faculty of Engineering and Science, Serviceboks 509, 4898 Grimstad, Norway
9 bUniversidad Zaragoza, Thermochemical Processes Group (GPT), Aragon Institute of Engineering Research (I3A), I+D+i building, C/Mariano Esquillor s/n, E-50018 Zaragoza, Spain

10
11

1 3
a r t i c l e i n f o

14 Article history:
15 Received 26 August 2014
16 Accepted 13 December 2014
17 Available online xxxx

18 Keywords:
19 Alfalfa pellets
20 Pilot scale fluidized bed
21 Gasification
22 Equivalence ratio
23 Temperature
24

2 5
a b s t r a c t

26Pilot-scale bubbling fluidized bed gasification tests of alfalfa pellets were performed at two different
27operational periods ranged on the basis of two given equivalence ratio (ER) (the ratio between actual
28air and the stoichiometric air) namely as 0.25 and 0.30. During the test, the solid feeding rate was kept
29constant at 4.7 kg/h while the air input was varied and thus the ER. Increasing air from 4.16 to 4.99 N m3/
30h contributed to the evolution pattern of several parameters such as the rise in gas lower heating value
31(LHV) and gas yield, the average maximum of which were 4.2 MJ/N m3 and 1.5 N m3/kg respectively. Gas
32composition was mainly boosted by the concentration of CO, as the rest of the combustible components
33stayed rather unaffected due to the modified air flow rate. The steady state bed temperature agreed with
34the trend of air flow and ranged between 720 and 780 �C, despite gasification start-up occurred at 800 �C.
35Total char (�282 g/kg) and tar yield (�1.1 g/N m3) showed reasonable values while tar composition was
36predominantly led by the amount of phenols.
37� 2014 Published by Elsevier Ltd.
38

39

40
41 1. Introduction

42 In the spectrum of renewable energy, biomass poses as one of
43 the most important alternatives to fossil fuels [1], accounting as
44 the fourth largest energy source [2] in the world after coal, petro-
45 leum and natural gas, and offering substantial advantages includ-
46 ing no net [3] and even negative CO2 emissions [4,5], depending
47 on the use of CO2 capture technologies. In fact, it is the only renew-
48 able source that can feasibly be transformed into various forms of
49 fuels, i.e.: solids, liquids and gases, through different conversion
50 pathways: thermo-chemical, bio-chemical and biological [2,6].
51 Within the thermochemical conversion routes [7] gasification is
52 attractive owing to its flexibility and simplicity. The gas produced
53 from biomass gasification is a clean (once it is adequately condi-
54 tioned) combustible fuel typically consisting of CO, H2, CO2, CH4

55 and C2Hn, [8,9] which is viably used for a number of applications
56 including heat, electricity or as a synthesis gas (or syngas) that
57 can serve as raw-material in the manufacture of other value added
58 products [10]. To achieve gasification, a series of reactors may be
59 implemented, such as fixed-bed, moving bed, fluidized-bed and
60 entrained flow gasifier [6]. For a suitable energy output and oper-
61 ational ranges each of these gasifiers has its own advantages and
62 disadvantages. Fluidized bed (FB) gasifiers for instance are

63relatively less complex, flexible and efficient [11,12] and thus are
64used in numbers in medium and small scale applications [13].
65In addition to the types of the gasifiers, various gasifying agents
66such as air, steam, steam–oxygen and CO2 can significantly influ-
67ence the output quality and performance of gasification [11,14].
68The choice of gasification hence is not only a choice of a gasifier
69but also a choice of the gasifying medium. Air as a gasifying agent
70despite yielding a low heating value gas, has certain advantages
71over others [11]. Air is easily available everywhere and its intro-
72duction to gasification does not incur additional costs for its pro-
73duction, thus as a medium invariably emerges as cheap, easy and
74readily available option for various scales of operations, as does
75this study.
76Although a great deal of biomass feedstocks have already been
77explored in fluidized bed gasification, the work in regards to herba-
78ceous biomass especially to alfalfa (Medicago sativa L.) is poten-
79tially scarce. The majority of efforts for this biomass to date have
80only been paid to pyrolysis [15,16] and characterization [17] with
81a noted investigation primarily toward fixed-bed downdraft gasifi-
82cation [18]. But considering the potential of environmental and
83financial advantages [19] including with lignocellulosic properties,
84alfalfa could be an attractive fuel for distributed power generation
85where the possibility of fluidized bed gasification is enormous [20].
86The focus of the present study thus is to utilize alfalfa pellets (that
87does not compete with the animal feeding) for a pilot-scale fluid-
88ized bed gasification, which can serve as a means of producing

http://dx.doi.org/10.1016/j.enconman.2014.12.034
0196-8904/� 2014 Published by Elsevier Ltd.
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89 renewable energy to the areas de-centralized from the national
90 electricity grid.
91 As a local biomass, alfalfa has vast potential around the Ebro
92 valley area in the Northeast (NE) Spain, constituting the regions
93 of Aragon and Catalunya, with available lands of 107,000 and
94 42,500 ha respectively. Of the total available land for the alfalfa
95 in Spain, 58% is covered by these regions, with average dry matter
96 (DM) yields of about 17 t ha�1 y�1 [19] The majority of this yield is
97 primarily realized through pelletization [21] which in terms of
98 energy production is also interesting, as pellets are easy-to-handle,
99 superior than to other forms of biomass. Alfalfa pellets are thus uti-

100 lized in the present context of gasification.
101 Research in regards to pilot-scale fluidized bed gasifier is exten-
102 sive [13,22–26] and has been conducted for a number of feedstocks
103 operating with a number of experimental conditions. In a recent
104 work by Campoy et al. [13] for example a pilot-scale BFB (Bubbling
105 fluidized bed) gasifier was involved to process five different bio-
106 mass: wood pellets, orujillo, meat and bone meal (MBM), dried
107 sewage sludge (DSS) and municipal solid waste (MSW) for a num-
108 ber of operating conditions, i.e.; bed temperatures (770–870 �C)
109 and ERs (0.23–0.43) for which gasification performance was com-
110 pared among the feedstocks. A comprehensive other research
111 [22] furthermore included ten biomass (ranging from woody to
112 agricultural) to test simultaneous gasification and energy conver-
113 sion by a pilot scale air-blown fixed-bed downdraft gasification
114 power plant unit for which operational parameters was observed
115 as against different syngas flow rates (105–211 N m3/h). Docu-
116 mented researches [27,28] also considered co-gasification of a
117 wide range of biomass for the pilot-scale studies, utilizing different
118 modes of gasification system.
119 In line with these efforts, the preliminary work presented here
120 introduces alfalfa pellets to a pilot-scale bubbling FB reactor with a
121 purpose of evaluating gasification for a range of bed temperatures
122 (720–780 �C) and ER (0.25–0.30).

123 2. Materials and methods

124 2.1. Feedstock

125 Herbaceous biomass alfalfa pellets (average dimensions:
126 approximately 6 mm Ø and 25 mm length) were used as feedstock
127 for this study. Approximately 100 kg of alfalfa pellets with 100%
128 purity from the first harvest (April 2013) were manufactured by
129 Cooperativa Campo San Gregorio and kindly supplied by Molinos
130 Afau S.L., both established on Pina de Ebro (Spain).
131 Alfalfa was grown and harvested around the Ebro valley, in the
132 surroundings of Pina de Ebro, a village located 40 km southeast
133 from Zaragoza (capital of Aragón, a region in the Northeast of
134 Spain, coordinates: 41�390000N, 0�530000W). Generally, alfalfa grown
135 in this region is harvested two/three times per season in the rain-
136 fed areas or six/seven times per season under irrigation [29] areas.
137 To produce pellets, harvested alfalfa was first dried to approxi-
138 mately 10% of moisture by employing a rotary drum dryer, using
139 flue gas as the drying medium. Dried biomass was then sent to a
140 hammer mill equipped with a screen size of 3.2–6.4 mm, grinding
141 the biomass to particles suitable for pelletization. As soon as the
142 alfalfa was ground, it was delivered to the press mill consisting
143 of a roller and heated die drilled with a series of perforated holes
144 (�6 mm) through which biomass was squeezed. No external bind-
145 ers or stabilizing agents were used in the pelletizing process. The
146 raw pellets exiting from the die were hot which was cooled to an
147 ambient temperature of about 5 �C in the cooler and conveyed
148 for further storage. A blade was typically used to cut the pellets
149 to a predefined length, as those proceeded to the exit.

1502.2. Characterization of feedstock

151Alfalfa pellets were characterized in terms of moisture, ash, vol-
152atiles, fixed carbon, calorific values and of elemental compositions
153to examine the possibilities for gasification.
154Moisture content of the alfalfa pellets was analyzed per tripli-
155cate as according to the standard ASTM D-871-82. Volatile matter
156was measured per triplicate based on the protocol suggested by EN
15715148 while the protocol EN 15403:2011 was used for determin-
158ing the ash content. Before the analyses of volatile matter and
159ash, biomass pellets were milled to an average particle size of
160<5 mm by using a lab-scale hammer mill (Mercanofil.Mateu y
161Solè, Spain). The calorific value of the alfalfa pellets was deter-
162mined per triplicate using a calorimetric bomb (IKA C2000, Ger-
163many) complying with the standard ASTM D 4809-95.
164Finally, the ultimate analysis was performed by using an ele-
165mental analyzer (Leco TruSpec Micro, USA) by which a simulta-
166neous determination of C, H, N and S was obtained. As oxygen
167content cannot be analyzed directly by the present instrument, it
168was calculated by-difference.
169In addition to the ultimate and proximate analyses, structural
170analysis in terms of cellulose, hemicellulose and lignin content of
171different sections of alfalfa crop are presented in Table 1 as accord-
172ing to the Refs. [30,16].

1732.3. Pilot scale fluidized bed gasification

174Gasification experiments were carried out by a pilot-scale bub-
175bling fluidized bed gasifier located at Universidad Zaragoza, rated
176with an approximate maximum throughput capacity of 10 kg/h
177and operating at autothermal regime once that the temperature
178inside the reactor rises high enough to maintain gasification condi-
179tions. A global view of the gasifier, along with the associated com-
180ponents is illustrated by Fig. 1while the following sub-sections
181discuss their working principles, as found during the operation of
182the plant.

1832.3.1. Feeding system
184The feeding system is composed of two hoppers of approxi-
185mately 40 kg of capacity each, with their corresponding screw
186feeders that can be regulated independently with variable fre-
187quency drivers, discharging the solids into a third screw feeder
188(from now on, named as shuttle). One of the hoppers contains
189the raw material and the other is filled with silica sand, which is
190used as coadjutant material to aid feeding the raw material into
191the reactor, as well as to constitute the reaction bed.
192Biomass and sand as contained in the hoppers were continu-
193ously introduced at the bottom of the reactor by means of the shut-
194tle. The motion of the shuttle is expressed by the revolution per
195minute (rpm) and controlled by a variable frequency driver,
196adjusted to the necessary set-point in order to achieve the desired
197solids feeding rate. Prior to the tests, a calibration of the screw
198feeders from the hoppers was done.

1992.3.2. Fluidizing agent and preheating
200Air that used for gasification was preheated during the start-up
201by a �15 kW electric heater (Tellsa, Spain). The fluidizing agent is

Table 1
Structural composition of alfalfa.

Cellulose Hemicellulose Lignin References

Alfalfa hay, matured, % (DM) 29.6 14 14 [30]
Alfalfa hay, weathered, % (DM) 30 13 15 [30]
Alfalfa, early bud (g/kg DM) 265 122 141a [16]
Alfalfa, full flower (g/kg DM) 285 123 169a [16]

a Klason lignin.
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202 entered into the reactor through the nozzles located at the bottom
203 of the reactor and is regulated by a thermal mass flow controller
204 operating within the range between 0.5 and 100 N m3/h (Bronk-
205 horst HIGH-TECH, the Netherlands).

206 2.3.3. Reactor and the measurement sensors
207 The body of the reactor is made of AISI 310 refractory stainless
208 steel with a diameter and total height of 0.36 m and 3.5 m respec-
209 tively. The total height is split into two sections, i.e., bed and free-
210 board with the latter slightly bigger in circumferential area
211 (0.23 m), located above the main body of the gasifier. Insulation
212 layers composed of 0.3 m thick insulating blankets (Unifrax
213 Insulfrax S, Spain) cover the entire reactor from top to the bottom,
214 minimizing heat transfer to the surroundings. Seven thermocou-
215 ples (T1–T7) (bottom-up) as shown in Fig. 1 monitor temperature
216 at various heights of the reactor. Temperature probe T1 measures
217 temperature at the inlet of the reactor while equidistant thermo-
218 couples T2 through T6 register temperature variations occurring
219 in and around the bed. Probe T7 is the uppermost sensor located
220 at the freeboard of the reactor, determining the temperature of
221 the gas exit. Besides the temperature sensors, pressure sensors P1
222 and P2 (Fig. 1) are positioned at the side of the reactor to monitor
223 the fluidization condition of the bed.

224 2.3.4. Gas cleaning and conditioning
225 Immediately after the production, gas was cleaned and
226 conditioned by means of a series of devices composed of cyclone,
227 ash hopper and scrubber. First of all, gas leaving from the reactor

228circulated through a cyclone stripping entrained particles and then
229through a scrubber removing condensable tars. Char, ash and
230inactive bed materials were collected in the bins (ash hopper and
231char pot) located at the bottom of the cyclone and side of the
232reactor respectively. After each operation the bins were emptied
233to analyze residue quality and further to account mass balance.

2342.3.5. Gas sampling
235Part of the gas coming out from the main gas exit to flare
236(located outside the gasification unit to avoid hazard), was sam-
237pled in a sampling train consisting of two tar condensers, a particle
238filter, a flowmeter and a gas analysis system. The entry of the sam-
239pling train was continuously heated by an electrical resistance at
240450 ± 5 �C to avoid undesired condensation of condensable prod-
241ucts in the producer gas before the condensers. As passing through
242the sampling line, producer gas was first cooled in the two ice con-
243densers (�0.75 L each) and being washed out of the majority of the
244tars. Cooled gas was then cleaned by a cotton filter before being
245analyzed for permanent gases by the gas analyzer. The quantity
246of the gas used for sampling was measured by a gas flowmeter, sit-
247uated in between cotton filter and the analyzer while the quantity
248of the tar deposited on the condensers was manually recovered at
249the end of the each gasification test. An estimation of the amount
250of tar produced was done based on the manual volumetric mea-
251surement of the collected liquids in the sampling line while its
252composition was evaluated by a GC–MS (Gas chromatography-
253mass spectrometry) (Agilent 7890 A, USA).

Fig. 1. Schematic diagram of the process flow.
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254 2.3.6. Gas analysis equipment
255 Located furthest to the sampling train, a micro-gas chromato-
256 graph (Agilent 3000A lGC, Model G2801A, USA) equipped with
257 two analysis modules (Plot U and Molsieve 5A) and thermal con-
258 ductivity detectors were used to analyze the permanent gases of
259 the sample taken from the producer gas line. Measurement was
260 conducted real-time (once in every two min) based on the calibra-
261 tion of CO2, C2H4, C2H6, C2H2 and H2S for Plot U module, and H2, N2,
262 CH4, CO and O2 for MolSieve 5A module respectively. The gas com-
263 position data continuously produced by the lGC was stored in a
264 computerized data acquisition system for further interpretation.

265 2.4. Experimental protocols

266 During start up, the sand constituting the initial reactor bed was
267 heated by the air delivered from the preheater in order to heat up
268 the reactor until the temperatures of around 450–500 �C. The heat-
269 ing up process using the electric heater generally takes around 3 h
270 because of the size of the reactor and the air flow rate necessary to
271 maintain a bubbling fluidized bed regime inside the reactor.
272 After about 3 h of preheating, bed temperature rose to around
273 500 �C, at which a small amount of biomass was combusted and
274 rapidly increased the bed temperature to a desired level of ca.
275 750–800 �C, high enough to initially sustain autothermal condi-
276 tions during the gasification step. The heat released in the auto-
277 thermal conditions, with the exception of energy losses, was
278 utilized in the endothermic reactions allowing pyrolysis and gasi-
279 fication reactions to endure.
280 The initial gasification temperature in this set of experiments
281 was targeted at 800 ± 10 �C, achieved after some 20 min of com-
282 bustion. Changeover from combustion to gasification conditions
283 and, subsequently, the modification of the ER were obtained by
284 increasing the air flow but keeping the constant biomass feeding
285 rate. For this set of experiments the solids feeding rate was kept
286 stable at 4.7 kg/h whereas air flow rate was varied between 4.16
287 and 4.99 N m3/h such that the corresponding ER could be fixed at
288 0.25 and 0.30 respectively. The ER was calculated by obeying the
289 relationship as follows:
290

ER ¼ Q air

Q alfalfa � 3:54
ð1Þ

292292

293 The stoichiometric amount of air required for complete com-
294 bustion of alfalfa pellets was found to be 3.54 N m3/kgfeedstock
295 based on the elemental composition of the pellets and hence given
296 at the denominator of the Eq. (1). The terms Qair and Qalfalfa in Eq.
297 (1) additionally represent the air and feed flow rates in N m3/h
298 and kg/h respectively.
299 As gasification conditions were reached and the gasification
300 step was initiated, steady state condition could be achieved in
301 about 20 min of time-on-stream, beyond which further data collec-
302 tion was continued to evaluate the evolution profiles of tempera-
303 ture, gas composition, lower heating value, gas yield and cold gas
304 efficiency as an effect of varied ER. The calculation of the producer
305 gas heating value (in MJ/N m3), gas yield and cold gas efficiency
306 (CGE) were performed by employing the Eqs. (2)–(4) [31] while
307 the development of temperature, pressure and air flow rate were
308 registered in a data logger, later transferred to a computer for fur-
309 ther interpretation.
310

LHVproducer gas ¼ 25:7�H2ð Þ þ 30:0� COð Þ þ 85:4� CH4ð Þð

þ 151:3� C2H2 þ C2H4 þ C2H6ð Þð ÞÞ � 4:2
1000

� �
ð2Þ

312312

313

Vproducer gas ¼
Q air � 79

N2 �mfeedstock
ð3Þ

315315

316

CGE ¼ LHVproducer gas � Vproducer gas

LHVfeedstock
� 100% ð4Þ

318318

319where LHVproducer gas is the dry base lower heating value of producer
320gas in MJ/N m3; Vproducer gas is the dry gas yield in N m3/kg_feed-
321stock; Qair is the air supply in N m3/h; mfeedstock is the biomass input
322in kg/h, LHV feedstock is the dry base calorific value of the pellets in
323MJ/kg and CGE is the cold gas efficiency in percent.
324During the test, the gasifier ran through a transition stint of
325some 20 min after which temperature stabilization was achieved
326and continued for about 3 h, followed by the plant shut-down.
327The steady state was mainly divided into two periods based on
328the imposed ER ratios, the effect of which was investigated on var-
329ious operational parameters, i.e., gas composition, LHV, efficiency,
330gas yield, char yield and tar yield, which are described in the fol-
331lowing sub-sections.

3323. Results and discussions

3333.1. Biomass characterization

334Table 2 presents the results obtained from the feedstock
335characterization.
336With regards to moisture, the level found in alfalfa pellets was
337at �8.7% (m/m) which compared to a previous work [32] is lower
338in range. Some amount of moisture helps thermal conversion [33]
339while too much brings negative consequences, such as the reduc-
340tion in fuel energy content and process temperature. The value
341revealed from the present study, as lying below 10%, is expected
342to avoid the issues related to high moisture content and thus mak-
343ing the raw-material suitable for gasification [34].
344Volatiles contents were in the range of 74% (dry fuel basis)
345which albeit a little lower than that from the study by Sharma
346[18] in harmony with another work carried out by Boateng and
347the co-authors [16]. As of ash content, alfalfa pellets displayed an
348average level of �15% (dry basis) which is higher than the past
349study conducted by Boateng et al. [16]. However, since the gasifi-
350cation temperature for the present study did not exceed the melt-
351ing point of ash, the plant operation was not influenced by its high
352quantity.
353Average lower calorific value after analysis amounted as
354�16 MJ/kg (dry base) which can be considered lower than the typ-
355ical for most of the herbaceous biomass including alfalfa as accord-
356ing to the study by Domalski et al. [35]. The LHV value obtained has
357been compared to the theoretical LHV that could be calculated
358according to the empirical correlation proposed by Gaur and Reed

Table 2
Physical and chemical properties of alfalfa pellets.

Proximate and ultimate analyses of alfalfa pellets (n = 3)

Proximate analysis (%)
Moisture 8.73 ± 0.64
Volatile matter 74.4 ± 1.29
Ash 15.5 ± 0.44

Ultimate analysis (dry base, %)
Carbon 41.60 ± 0.44
Hydrogen 4.90 ± 0.07
Oxygena 33.94 ± 0.48
Nitrogen 2.39 ± 0.15
Sulfur 0.25 ± 0.02

Lower heating value (dry basis, kJ/kg)
Analytical 16097.63 ± 98
Theoreticalb 15378.01 ± 10

a Calculated by difference.
b Gaur and Reed [36].
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359 [36]. The value found from the measurements in the bomb calo-
360 rimeter is in good concordance to the value obtained using the
361 abovementioned empirical correlation (�15.4 MJ/kg). The ultimate
362 analysis revealed the mean percentages of C, H, O, N and S in the
363 pellets as 41.6, 4.9, 33.9, 2.4 and 0.25% respectively (Table 2).
364 Except the percentage composition of carbon, this finding showed
365 a good agreement with the literature [32]. Moreover, the low sul-
366 fur, high hydrogen and reasonably acceptable oxygen level make
367 this biomass attractive in the context of gasification.
368 As per structural composition of alfalfa, results obtained from
369 the literatures vary with the maturity and the different forms of
370 the crops [16,30]. In general, the cellulose content constituted
371 the major composition followed by the lignin and hemicellulose
372 (Table 1). The level of lignin in comparison with other similar feed-
373 stocks was found lower in alfalfa [37] which is probably because of
374 high level of nitrogen and low level of carbon containing in its
375 chemical composition. Besides low lignin, the simultaneous varia-
376 tion in cellulose and lignin proportion of different maturities of
377 alfalfa was reported to affect the quality of the oil produced from
378 the pyrolysis of alfalfa in a study conducted by Boateng et al.
379 [16]. Due to the uniformity of the feedstock, corresponding effect
380 of such nevertheless was not observed in the present gasification
381 work.

382 3.2. Pilot scale fluidized bed gasification

383 3.2.1. Effect of ER on gasification of alfalfa pellets
384 The effect of ER on the quality of the producer gas was investi-
385 gated for 0.25 and 0.30. The producer gas was composed of series
386 of gas species CO, CO2, H2, CH4, C2H4, C2H6 and N2 the evolution of
387 which over time is depicted by Fig. 2.
388 As shown, the increase in ER from 0.25 to 0.30 had little effect
389 on the product gas composition where most of the combustible
390 and incombustible components kept stable or reduced. The con-
391 centration of CO2, for example, slightly declined and reached to
392 an average of 19.8 ± 0.2 vol.% at ER = 0.3 compared to the average
393 of 20.2 ± 0.2 vol.% at ER = 0.25 (Figs. 2a and 3h).
394 This was in contrast with that of the CO, which increased from
395 8.4 ± 0.01 to 9.1 ± 0.05 vol.%, mainly at the expense of CO2 and CH4

396 (Table 3).
397 The inverse relationship between CO and CO2, as observed, is a
398 typical phenomenon of the Boudouard reaction ðCþ CO2 ()

þheat

399 2COÞ, evidenced by the many past studies such as the one by Aznar
400 et al. [25]. The extent of such reaction, nonetheless, is not critical in
401 the present findings as the variation of those gas components was
402 rather insignificant for varied ER.
403 Investigating the concentration of other gas species between
404 the two successive ER, the following results were revealed: H2

405 decreased from 13.3 ± 0.3 to 12.8 ± 0.1 vol.%, CH4 decreased from
406 2.73 ± 0.04 to 2.66 ± 0.02 vol.%, C2H4 decreased from 0.88 ± 0.1 to
407 0.87 ± 0.03 vol.% and C2H6 decreased from 0.26 ± 0.03 to
408 0.25 ± 0.02 vol.% respectively (Table 3, Figs. 2 and 3h).
409 As of gas LHV, a positive effect of increasing the ER was
410 observed, displaying an average value of 4.21 ± 0.02 MJ/N m3 (dry
411 base) for the higher ER compared to an average of 4.19 ± 0.08 MJ/
412 N m3 (dry base) for the ER = 0.25 (Figs. 2 and 3g). The LHV is a
413 direct function of the combustible quantity which in the present
414 case rose (from 25.3% to 26.0%) as ER rose, and thus accordingly
415 the LHV. As a rule of thumb, the gas LHV at minimum 4.2 MJ/
416 N m3 (dry base) suits the operation of an internal combustion
417 (IC) engine [38], yielding simultaneous heat and electricity. Based
418 on gas LHV, the present experiments at ER = 0.30 favors that appli-
419 cation and hence promising in terms of fluidized bed gasification.
420 In terms of gas yield, which is an important parameter to deter-
421 mine the productivity of gasification, a similar pattern to that of
422 LHV was observed where the increase in ER from 0.25 to 0.30

423caused the gas yield to rise from 1.36 ± 0.00 to 1.52 ± 0.02 N m3/
424kg (Fig. 3g). This trend is in agreement with several past studies
425that dealt with similar gasification investigations [25,39]. The
426prime reason of this gas yield behavior is possibly related to the
427high rate of devolatilization [24] which was successively greater
428as a result of the higher ER. Several endothermic reactions such
429as char gasification, steam reforming and tar cracking are also sig-
430nificantly favored when air supply is increased and thus contribute
431to augment gas production [25].
432Unlike preceding parameters, the effect of each ER change on
433char and tar yields were impossible to examine as the ER varied
434on-line and the measurement (of tar and char) conducted off-line.
435However, the total char and tar yield for the whole ER range at the
436end of each experiment was analyzed and found as 281.7 ± 28.0 g/
437kg and 1.12 ± 0.04 g/N m3 respectively (Fig. 3i, Table 3), closely
438coinciding with the previous studies dealing with the downdraft
439gasification of alfalfa and fluidized bed co-gasification of coal, bio-
440mass and plastic waste respectively [18,25].
441As a direct function of LHV and producer gas quantity, the cold
442gas efficiency (CGE) exhibited a higher value (38.5 ± 5%) for the
443higher ER, with a difference as much as 10% (Table 3 and Fig. 3g)
444for that of lower ER. Definitely, efficiency in the range of 60% or less
445suggests low productivity which perhaps was associated with the
446lower yield of the combustible gases, i.e.; the yield of CO, H2, CH4

447etc., and the development of lower gasification temperature, that
448peaked slightly below 800 �C at the present investigations. Similar
449phenomenon with regards to the low CGE was also observed by
450Gómez-Barea et al. [24].

4513.2.2. Effect of the equivalence ratio on operational temperatures
452Fig. 3 illustrates the temperature profiles of various sensors (T1–
453T7) and their corresponding effect on ER.
454As observed (Fig. 3f), T7 exhibited the lowest of all the temper-
455atures due to its location close to the gas exit, in vicinity to the top
456of the reactor. This sensor was assigned to record the temperature

Fig. 2. Continuous evolution of gas composition and its lower heating value as a
function of ER.
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457 of the freeboard. Temperatures registered by T3 (Fig. 3b) may be
458 associated with gasification due to its operating range situating
459 nearest to the temperature of combustion, which was likely to be
460 detected by sensor T2 (Fig. 3a). The combustion temperature may
461 also be defined as the temperature of bed. Among all the probes,
462 thermocouple T4 (Fig. 3d) showed the temperature variation in
463 proximity to the overflow – collecting the unburned char and
464 ash, and hence may be assigned to reduction. Being the closest
465 neighbors to the freeboard, pyrolysis may be recognized by ther-
466 mocouples T5 and T6 (Fig. 3d and e) as showing a lower tempera-
467 ture than those of combustion, gasification and reduction.
468 In general, temperatures developed in all the sensors increased
469 with ER and maintained distinctive differences between them-
470 selves (Fig. 3a–f). This is somewhat logical as the energy available
471 to the bed improves with the quantity of oxygen available more
472 heat is supplied to the reactor as a result of enhanced combustion.

473In addition to the rise in temperature, increased oxygen also influ-
474enced the several operational variables, the relations of which with
475the bed temperature are presented in Fig. 4.
476As for gas composition (Fig. 4a–e), CO content increased with
477bed temperature and H2 decreased. This was in contrast with the
478study by Hanping et al. [39] according to which both CO and H2

479increased as the bed temperature increased. However, the increas-
480ing extent of these gases was reported to be tender for the bed
481temperature lower than 800 �C. The development of low bed tem-
482perature in the present study agrees with the past work and hence
483indicates why the effect of temperature was less pronounced in the
484evolution profile of CO and H2. The tendency of variation among
485the other combustible gases (such as, CH4, C2H4 and C2H6) was
486not so significant, although slight increasing and decreasing trends
487were noticed. Theoretically, the severity of several reforming and
488cracking reactions increase as a result of a higher bed temperature

Table 3
Summary of the operational parameters obtained from the gasification of alfalfa pellets.

Operational parameters Run 1 Run 2

ER = 0.25 ER = 0.3 ER = 0.25 ER = 0.3

Air input (N m3/h) 4.16 4.99 4.16 4.99
Biomass feed (kg/h) 4.7 4.7
CO (vol.%) 8.43 ± 0.31 9.08 ± 0.03 8.42 ± 0.35 9.15 ± 0.48
H2 (vol.%) 13.02 ± 0.45 12.91 ± 0.31 13.50 ± 0.60 12.73 ± 0.53
CH4 (vol.%) 2.77 ± 0.11 2.67 ± 0.14 2.70 ± 0.15 2.65 ± 0.27
C2H4 (vol.%) 0.81 ± 0.05 0.89 ± 0.07 0.95 ± 0.07 0.85 ± 0.16
C2H6 (vol.%) 0.25 ± 0.02 0.23 ± 0.02 0.25 ± 0.01 0.26 ± 0.01
CO2 (vol.%) 20.31 ± 0.41 19.6 ± 0.28 20.04 ± 0.48 19.9 ± 0.29
N2 (vol.%) 51.5 ± 0.74 50.6 ± 1.0 54.14 ± 0.96 54.45 ± 0.84
Lower heating value (MJ/N m3) 4.13 ± 0.13 4.21 ± 0.15 4.25 ± 0.17 4.19 ± 0.16
Specific gas yield (N m3/kg_fuel) 1.36 ± 0.02 1.66 ± 0.03 1.35 ± 0.19 1.38 ± 0.03
Cold gas efficiency (%) 33.8 ± 1.05 42.14 ± 1.26 34.76 ± 1.4 34.85 ± 1.56
Char yield (g/kg) 301.52 261.92
Tar yield (g/N m3) 1.15 1.09

Fig. 3. Effect of ER on various operational variables.
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489 and thus participate in the production of higher amounts of H2 and
490 CO. In the present case, the involvement of reforming and cracking
491 reactions are only implied by the trend of CO, but rather unnoticed
492 by H2 as the latter slightly dropped throughout (Fig. 4b).
493 Despite the insignificant effect on individual gas species, the
494 total combustible quantity slightly rose (from 25.3 to 26 vol.%)
495 with temperature and reflected to the gas LHV as shown in
496 Fig. 4g. As the bed temperature rose, the total CO as well as the
497 CH4 content increased, in spite of reduced H2, and thus contributed
498 to a net rise in gas calorific value. Likewise LHV, the average gas
499 yield and the CGE also peaked with a rise in the bed temperature
500 (Fig. 4h and i). The reason of the improved gas yield may be
501 explained by the rate of solid–gas reactions, which increased as a
502 result of the heightened bed temperature.

503 3.3. Tar characterization

504 Although a direct relationship between each ER change and tar
505 yield could not be established, the total tar yield after gasification
506 was measured both for volume and composition. The volumetric

507tar yield data has already been presented in the preceding section.
508This section only discusses compositional tar.
509As already mentioned, GC–MS was employed for evaluating tar
510composition which was grouped as according to the point of sam-
511pling: such as upstream (condenser close to the sample entrance –
512condenser 1) and downstream (condenser further to the sample
513entrance – condenser 2). The tar abundances and their correspond-
514ing peaks with identifications for two sampling points are demon-
515strated by Table 4.
516As observed, the abundance of tar compounds varied with the
517sampling locations. Peaks were in general found more frequent
518and higher for condenser 2 as compared to that of condenser 1.
519Among the twelve identified components, phenol, 3-methyl-
520phenol and 3-methyl pyridine were common between the two
521condensers. Tar of these types, especially the phenols, are the
522organic compounds of 6 carbons, yielded due to pyrolytic degrada-
523tion of lignin [40]. Another reason of the high availability of
524phenols in the tar spectra is the low gasification temperature, the
525increase of which contributes to convert those into gaseous
526products. Apart from the phenols, the other detected compounds

Fig. 4. Influence of bed temperature on the production trend of several operational variables.

Table 4
Identification of the tar components deposited in the condensers.

Run 1 Run 2

Condenser 1 Condenser 2 Condenser 1 Condenser 2

Peaks Compounds Peaks Compounds Peaks Compounds Peaks Compounds

11.548 3-methyl-Pyridine 11.791 3-methyl-Pyridine 11.782 3-methyl-Pyridine 11.801 3-methyl-Pyridine
17.310 Phenol 17.333 Phenol 17.399 Phenol 17.453 Phenol
20.902 2-methyl-Phenol 19.244 Benzonitrile 19.244 Benzonitrile 20.905 2-methyl-Phenol
21.188 2-Aminopyridine 21.825 3-methyl-Phenol 20.886 2-methyl-Phenol 21.335 2-Aminopyridine
21.826 3-methyl-Phenol 24.368 4-ethyle Benzenamine 21.245 2-Aminopyridine 21.897 3-methyl-Phenol
24.379 4-ethyle-Benzenamine 30.076 N-2-propenyl-Benzenamine 21.866 3-methyl-Phenol 23.569 4-ethyle Benzenamine

23.949 2.5-dimethyl-2-Hexane
24.423 4-ethenyl Benzenamine

31.958 Isoquinoline 30.89 N-dimethyl-N Phenylenediamine
36.013 Indole 32.876 Quinoline 36.038 Indole 32.927 Quinoline
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527 were predominantly the nitrogen containing tars specified as 2-
528 aminopiridyne and indole found in condenser 1, and benzonitrile,
529 N-2-propenyl-benzenamine, 2.5 dimethyl – 2-Hexane, N-
530 dimethyl-N-phenylenediamine and quinolone found in condenser
531 2 respectively (Table 4). The presence of nitrogen in the tar sample
532 is perhaps originated from fuel N, the degradation of which in gen-
533 eral increases with the increase in operation temperature [40].
534 High gasification temperature also contributes to the production
535 of PAHs (Poly aromatic hydrocarbons: naphthalene, acenaphthene,
536 anthracene, phenanthrene etc.) which logically was not detected in
537 the present analysis. Among the aromatic compounds identified,
538 quinoline was by far the heaviest (�129 g/mol) molecule poten-
539 tially caused the stringent odor to the nearby environment while
540 indole, a medium sized heterocyclic aromatic compound, appeared
541 to be a major source of fragrances as the analysis revealed.

542 4. Conclusions

543 This work examined the performance of pilot scale bubbling flu-
544 idized bed gasification of alfalfa pellets at varied ER. Most of the
545 important parameters including bed temperature demonstrated
546 an increasing trend as the quantity of input air improved. The aver-
547 age gas LHV for instance reached to a level > 4.2 MJ/N m3 which is
548 interesting in-terms of energy conversion via gas engine. Addition-
549 ally, the cold gas efficiency and the gas yield peaked at �39% and
550 �1.6 N m3/kg (dry basis) respectively as an impact of increased
551 ER. Good gasification properties including with the lignocellulosic
552 nature, which suits for distributed energy, make alfalfa a promising
553 biomass to introduce for FB processing, as the preliminary study
554 thus far revealed.
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27Small scale air-blown fluidized bed gasification of alfalfa and wheat straw pellets were conducted for
28semi-continuous solid feeding and range of operating conditions varied due to the modifications in
29equivalence ratio (ER) (0.20–0.35) achieved both by varying solid and air input. Alfalfa pellets displayed
30an improvement in several gasification variables such as gas lower heating value (�4.1 MJ/Nm3), specific
31gas yield (1.66 Nm3/kg), cold gas efficiency (�42%) and carbon conversion efficiency (�72%) as ER maxi-
32mized to 0.35 which was found optimum for this feedstock for the present course of experiments.
33Gasification parameters of wheat straw pellets on the other hand were characterized by a great degree
34of variation as the ER progressively increased. The optimum performance of this biomass was likely to
35achieve at ER = 0.30 when gas lower heating value and cold gas efficiency maximized to �4 MJ/Nm3

36and �37% respectively. Moreover, a substantial drop in tar yield (58.7 g/Nm3) at this ER was also indica-
37tive to the optimal thermal conversion at this point of operation. Overall, both the feedstocks presented
38promising alternatives for utilization into the small-scale fluidized bed gasification which is increasingly
39emerging as a sustainable solution towards processing lignocellulosic biomass.
40� 2015 Elsevier Ltd. All rights reserved.
41

42

4344 1. Introduction

45 In the worldwide energy policy, renewable energy is of interest
46 based on the fact that fossil fuel is rapidly diminishing and the
47 energy demand is exorbitantly rising due to the imminent surge
48 in population [1]. There is thus an urgent need to integrate all cate-
49 gories of renewable energy where the contribution of biomass is
50 ever increasing. Biomass resource is abundant and covers a wide
51 range, starting from terrestrial to marine, all of which bearing huge
52 potential to get converted into renewable energy by means of the
53 prevailing technologies such as: biological, thermal, and biochemi-
54 cal [2]. Producing liquid biofuel from straw, starch and oil seed
55 crops, one example of biomass utilization, has been a popular
56 approach for the last few decades which however recently brought
57 into a serious attention as a result of controversy towards com-
58 petition to agricultural lands for feed rather than for food, or the
59 dilemma of ‘‘Food vs. Fuel’’ [3]. This therefore shifted a deeper
60 attention towards lignocellulosic biomass, or the biomass deriving
61 from the agricultural wastes and energy crops to contribute to the
62 liquid biofuels as well as to the gases. In line with that, the focus of
63 the present study deals with the gases that can be produced by

64utilizing lignocellulosic biomass, particularly by alfalfa and wheat
65straw pellets, via a process called gasification.
66Gasification basically is a thermochemical process, occurring at
67oxygen (oxidizing agent) suppressed condition, typically trans-
68forming solid biomass into producer gas that subsequently being
69utilized into further energy applications and value added products.
70The emanating gas once dried in general composed of CO, H2, CO2,
71CH4, C2H4, CnHn and minor amounts of tar and particulates [4,5],
72which as a part of renewable energy exploited into the down-
73stream units. Existing gasification technologies (fixed-bed, fluid-
74bed, entrained flow, etc.) differ widely according to the availability,
75type, and form of the fuel, and to the amount of energy that can be
76produced. Among these, fluidized bed gasification is commonly
77utilized because of its flexibility in dealing with a range of biomass
78including difficult fuels such as wastes [6], straw [7], husk [8] and
79bagasse [9], and high conversion efficiency due to the greater solid
80gas contact reactions [10]. This technology also suits operation for
81diverse gasifying agents (air, steam, O2, CO2, etc.) and results
82higher efficiency than a Rankine cycle (a cycle that models the per-
83formance of a steam turbine system), once integrated with I.C.
84(internal combustion) engine for small to medium scale
85(0.5–5 MWe) applications [11].
86As a herbaceous crop, the availability of alfalfa (Medicago sativa L.)
87is primarily dependent on the geographic and climatic conditions
88with a high dry matter yield exhibited in the temperate regions

http://dx.doi.org/10.1016/j.enconman.2015.04.015
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89 [12], such as around the Ebro valley areas in Spain [13], and many
90 places in the USA [14]. This feedstock has historically been used for
91 livestock feed because of the less cell wall carbohydrates and abun-
92 dant protein on its leaves which are suitable for animals’ digestion
93 [15]. However, the stems of alfalfa, sharing as much as 50% of the
94 total biomass, are mostly comparable with the conventional ligno-
95 cellulosic structure – composing mainly of cellulose and hemi-
96 cellulose, and thus least applied as animal diet [16]. This leaves
97 opportunity for this feedstock to exploit into the energy conver-
98 sion, besides as a fodder crop. In fact, many literatures have already
99 evaluated the potential of lignocellulosic alfalfa in several areas,

100 especially towards production of second generation (2G) biofuel
101 [17] in respect to the environmental [15] and to the economic
102 aspects [18], and characterization [19], and scarcely to gasification
103 using fixed bed downdraft gasifier [20] and recently through pilot-
104 scale bubbling fluidized bed gasifier [21]. The motivation of using
105 alfalfa as a feedstock for biofuel production favors predominantly
106 due to the agro-ecological conditions, i.e.; requirement of less N
107 fertilizer, better conversion economics, etc. allowing crop rotation
108 with corn and hence higher final yields [18]. However, the inevita-
109 ble byproducts from the bioethanol industries together with the
110 insignificant net savings from the greenhouse gas emission and
111 the unattractive economic competitiveness with the fossil fuel
112 based oil are still a major concern [22], hindering the rapid expan-
113 sion of this technology. These all therefore lead gasification, espe-
114 cially the small scale technology that can be readily integrated on
115 farm operation [7], a feasible option for thermochemical conver-
116 sion of alfalfa, resulting producer gas with an upgrading possibility
117 to heat, electricity chemicals, bio-oil, etc. and the residual ash
118 potentially be recycled as fertilizer.
119 Wheat straw is another biomass examined in the present work.
120 Unlike alfalfa, wheat (Triticum aestivum L.) straw has been exten-
121 sively studied in many literatures with diverse investigations in
122 several areas, such as: [23–30]. In regards to gasification, this crop
123 residue is interesting as a result of its increasing availability [31],
124 less impact to land use changes since no additional agricultural
125 land is required for its production [32], and superior environmen-
126 tal performances [33]. However, implications such as high tar con-
127 tent, ash agglomeration, and ash slagging [34], are still major
128 drawbacks towards using this feedstock for gasification.
129 Overcoming some of these issues to effectively achieve gasification,
130 significant efforts have already been paid in which modifications of
131 the reactors [35] and pretreatment of feedstock were suggested
132 [36]. This study does not report any modifications of such to the
133 existing technologies, however, proposes to utilize a small scale
134 fluidized bed gasification system which potentially is economically
135 attractive due its easy access to the fuel source together with the
136 opportunity to effectively enhance biomass utilization.
137 Number of documented researches [37,38] has already demon-
138 strated the fluidized bed gasification of lignocellulosic biomass for
139 various operating conditions, i.e.; effect of air ER (Equivalence
140 ratio), effect of bed temperature, etc. but low density, complex fuel
141 handling, feeding, etc. has been a challenge to apply these feed-
142 stocks for gasification as these studies concluded. So far successful
143 utilization of various forms of lignocellulosic biomass starting from
144 raw straw [8] to milled straw [39] has been mentioned. The effect
145 of several feeding locations has also been inspected [40].
146 Nevertheless, direct feeding of biomass pellets to a lab-scale
147 (<10 g/min throughput) reactor and to evaluate the corresponding
148 gasification performance at varying operating conditions has been
149 hardly reported, as far as authors know. Considering this, the pre-
150 sent study focuses on comparing the gasification performance on
151 direct pellet feeding of two different lignocellulosic biomasses
152 (alfalfa and wheat straw) at numerous ER that varies between
153 the range of 0.20 and 0.35 for which corresponding effect in-terms
154 of temperature and other major parameters are also examined.

1552. Materials and methods

1562.1. Biomass feedstock

157Alfalfa and wheat straw pellets with average dimensions of
158£6 mm � 25 mm length and £8 mm� 20 mm length respectively
159were used as feedstocks for the gasification tests conducted in this
160work.
161Alfalfa was grown and harvested around the Ebro valley, in the
162surroundings of the village Pina de Ebro, located 40 km southeast
163from Zaragoza (capital of Aragon, a region in the Northeast of
164Spain). Approximately 100 kg of alfalfa pellets with 100% purity
165(no additives) from the first harvest (April 2013) were manufac-
166tured by Cooperativa Campo San Gregorio and kindly supplied by
167Molinos Afau S.L. (Pina de Ebro, Spain).
168Wheat straw on the other hand was harvested from Castilla y
169Leon fields, in the surroundings of the village Valladolid and
170Tordesillas, located 70 km south from Valladolid (capital of
171Castilla y León, a region in the West of Spain). Pellets of approxi-
172mate amount of 100 kg with 100% purity (no additives) were
173manufactured by Pitesa (on Tordesillas, Spain) and kindly supplied
174by Molinos Afau S.L. (Pina de Ebro, Spain).

1752.2. Assessing physiochemical quality of the feedstock

176Prior to the gasification tests, the pellets were assessed in terms
177of physical and chemical quality by means of proximate and ulti-
178mate analysis. By proximate analysis, several physical variables
179such as moisture, volatiles, ash and lower heating value (LHV) were
180determined for which following standards were used: moisture as
181according to EN 14774-3:2009, volatile matter as according to EN
18215148:2009 and ash as according to EN 14775:2009 respectively.
183To analyze calorific value, an in-situ bomb calorimeter (IKA
184C2000, Germany) set to comply with the protocol ASTM D
1854809-95 was used. Additionally, theoretical LHV was also deter-
186mined based on the empirical correlation (developed from the ulti-
187mate analysis) proposed by Gaur and Reed [41].
188Ultimate analysis determined the chemical composition in-
189terms of the percent amount of C, H, O, Cl, N and S by using an
190in-situ elemental analyzer (Leco TruSpec Micro, USA). C, H and N
191was evaluated based on the standard EN 15104:2011, while S
192was determined following the protocol EN 15289:2011. Oxygen
193was calculated by difference, as direct measurement by the present
194instrument was not possible.
195Prior to the above analyses, the samples were prepared by
196grinding to an average size of <5 mm by using an in-situ hammer
197mill manufactured by Mercanofil.Mateu y Solè, Spain.

1982.3. Determining ash fusion temperature

199Ash fusion temperature of the feedstocks was determined by
200using a Rhodium ash fusion furnace (EM 201-17, Hesse instru-
201ments, Germany) featured with a camera and image processing
202software, capturing images at predefined intervals of temperature.
203For the analysis, the sample ash was first prepared into paste by
204adding a few drops of distilled water to improve stability.
205Afterwards, it was molded into compact cylinder of 3 mm (height)
206and 3 mm (Ø) by using a die and allowed to dry. The cylindrical
207sample was then placed on a Al2O3 slab located inside the furnace
208heated in an oxidizing environment (air) at two steps constant
209heating rate of 30 �C/min between 0 �C (or, the room temperature)
210and 550 �C and 5 �C/min between 550 �C and 1750 �C respectively.
211A thermocouple positioning underneath the slab enabled to trace
212the progress of temperature while a digital probe fitted inside
213the furnace displayed the evolutions of images at every 5 �C rise
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214 in temperature. The sample condition for other important tem-
215 peratures at any point within the 5 �C rise in temperature was also
216 recorded as images. The various phases of the sample such as onset
217 of deformation to the flow were evaluated as according to the
218 European Standard CEN/TS 15370-1:2006. The list of temperatures
219 that can be evaluated by analysis are: sintering temperature (SST),
220 shrinkage temperature (ST), deformation temperature (DT), sphere
221 temperature (ST), hemispherical temperature (HT) and the flow
222 temperature (FT). Here, only the relevant temperatures are
223 presented.

224 2.4. Thermo-gravimetric analysis (TGA)

225 Thermo-gravimetric study of the pellets was conducted by
226 using a thermal analyzer (NETZSCH STA 449 F3 Jupiter,
227 Germany). During experiments, samples between 5 and 10 mg
228 was heated to a maximum temperature of 950 �C, for a constant
229 heating rate of 10 �C/min. The final temperature was achieved after
230 three steps of heating holding for a particular length of time. To
231 this end, sample was first heated up to 110 �C and kept at that tem-
232 perature for 30 min to remove moisture. Subsequently, it was pyr-
233 olized until 600 �C and dwelled at that temperature for 60 min to
234 allow volatiles to be released. Sample was then combusted and
235 heated up to 950 �C in N2/O2 (79/21%) environment and kept at
236 that temperature for 20 min to allow char to be converted into
237 ashes. Nitrogen was used as carrier gas, flowed at a rate of
238 100 normal mL/min to sweep the produced gas away from the
239 instrument. To ensure repeatability, each experiment in each con-
240 dition was performed in duplicate.

241 2.5. Gasification experimental set-up

242 The gasification tests were carried out by means of a lab-scale
243 bubbling fluidized bed reactor, operating at atmospheric pressure
244 and air as a gasifying medium for a fuel throughput capacity up
245 to 10 g/min. Besides gasifier, the gasification system also includes:
246 feeding system, gas cleaning devices (cyclone, ash hopper, etc.),
247 temperature sensors, tar sampling unit and gas analysis compo-
248 nents, providing the required measurement facilities for R&D. A
249 generalized scheme of the gasifier including with the associated
250 components are depicted by Fig. 1.

251 2.5.1. Gasifier and the bed material
252 The gasifier itself is made of an AISI 310 refractory austenitic
253 stainless steel tubular pipe with an inner diameter and height of
254 0.040 m and 1.5 m respectively. The entire reactor together with
255 the cyclone and ash hopper are enclosed to an electrical furnace
256 (�5 kW, 1000 �C) heated by the PID (Proportional-integral-deriva-
257 tive) controllers positioned in the bed and cyclone respectively.
258 The temperature developed in the PID zones (reactor bed and
259 cyclone) is monitored by a couple of K-type thermocouples. The
260 bed in the reactor is made of silica sand (avg. particle size:
261 �367 lm, density: 2200 kg/m3, minimum fluidization velocity:
262 0.016 m/s) and kept at around 150 mm of static depth, which
263 was achieved by pouring sand particles from the top of the reactor
264 via a concentric pipe running through the air distributor plate. The
265 bed material overflows and subsequently deposited in the char pot
266 located at the bottom of the reactor if the corresponding sand fill-
267 ing (typically �40 g) exceeds the level of �150 mm. The residual
268 char, ash and bed-material (Fig. 2) as produced during gasification
269 are also deposited in the char pot. The operation flow of the fluidiz-
270 ing agent through the bed was kept three to seven times of the
271 minimum fluidization velocity (Umf) which is consistent as accord-
272 ing to the study by Mastral et al. [42].

2732.5.2. Feeding system
274Feeding system for biomass is comprised of two mechanisms
275with a provision of either continuous or, semi-continuous input.
276Typically for a continuous feeding, a screw feeder connected to
277the side of the reactor by a sloping pipe, operating with a feeding
278range of 0.5–10 g/min, is used. Continuous feeding while tested
279resulted feeder clogging due to the handling difficulties of pellets,
280as the current feeder was meant to feasibly operate with ground
281biomass only. Present work thus opted for semi-continuous feed-
282ing (manual batch feeding – once in every three minutes) provided
283through a two valve assembly (Fig. 3), the steps of which can be
284described as follows.
285Firstly, ahead of a gasification test a number of batches of pel-
286lets consisting of 9–15 g (depending on operational ER) were pre-
287pared. Then for a given interval, which is three minutes in this
288case, each batch of fuel was introduced manually through the
289two valve assembly: during feeding, first the top valve was opened
290and the bottom valve kept closed and then the valves were alter-
291nated and finally both valves were kept closed. This procedure
292was repeated until the end of the each experiment.
293It is to note that there were some minor variations (±10 s) in
294feeding interval, caused due to the operation of the manual valves
295and inspection of the data. This nevertheless did not influence the
296evolution pattern of the operational parameters. In general, ther-
297mal conversion of biomass pellets is affected by several operational
298factors including with the conditions applied during pelletizing.
299Biswas et al. [43] reported that conversion time of a single pellet
300(oven dried) can extend to as much as >200 s when pelletizing
301temperature exceeds 200 �C with average 150–180 s for pelletizing
302temperature at around 200 �C. Based on this fact and considering
303the feeding of multiple pellets at a time the feeding interval of
304three minutes has been chosen for this study.

3052.5.3. Gas conditioning and tar recovery
306Producer gas, as leaving from the reactor, first came in contact
307with a hot cyclone separating dust particles and then with a hot
308cartridge filter, removing further impurities. Subsequently, the
309gas was stripped of tar by the two cold condensers placed in series
310on the gas exit train. The majority of the tar present in the gas was
311condensed in the condensers and quantified off-line for determin-
312ing volumes. After passing through the tar condensers, the gas was
313further cleaned by a cotton filter, located at the far end of the exit
314train. Finally the gas headed to a gas analysis system – composing
315of a gas meter and a lGC, facilitating volumetric and compositional
316analysis of the permanent gases. After each gasifier operation, ash
317hopper and char bin were cleaned and emptied while the cartridge
318(for the cartridge filter) and cotton (for the cotton filter) were
319replaced. The gas train starting from the cartridge filter until the
320condenser was covered by a 0.050 m thick insulation blanket
321(Unifrax Insulfrax S, Spain) to reduce heat loss to the surrounding
322environment.

3232.5.4. Analytical methods
324During test runs, several operational variables were monitored
325and analyzed. For example, temperature in the reactor, cyclone
326and gas exit was measured real-time by means of K-type
327thermocouples and displayed in a control panel.
328Flow of fluidizing agent (air) was monitored and controlled by a
329flow controller (operating range: 0.5–100 Nm3/h, Bronkhorst
330HIGH-TECH, the Netherlands) and was introduced through the dis-
331tributor plate to the bottom of the reactor.
332Char and ash amount was measured from the solid residues col-
333lected after each operation complying with the procedure as fol-
334lows: first to collect all the solid residues from all the possible
335locations, then to subtract the known amount of bed-material from
336the total collected residues, afterwards to incorporate muffling at
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337 550 �C (according to the standard CEN/TS 15403:2006) for dis-
338 counting the percent amount of ash, and finally to employ by dif-
339 ference for determining the fraction of each material (typically
340 char, ash and sand) contributing the total residues.
341 Producer gas analysis was conducted by a series of equipment
342 composed of a gas flow meter (domestic diaphragm gas meter,
343 operating range: 0.01–10 m3/h) and a micro-GC (Agilent 3000A

344 lGC, Model G2801A, USA) itself equipped with two analyses mod-
345 ules (Plot U and Molsieve 5A) and thermal conductivity detectors.
346 By the gas flow meter, volumetric flow of the gas was measured
347 real-time and recorded manually once in every two/three minutes
348 while the compositional analysis was carried out once in every two

349minutes of operation by the two lGC module calibrated for mea-
350suring CO2, C2H4, C2H6, C2H2 and H2S (Plot U module), and H2,
351N2, CH4, CO and O2 (MolSieve 5A module) respectively. The con-
352tinuous measurement performed by the lGC was acquired to a
353computer facilitating the data analysis.

3542.5.5. Experimental protocol and gasification conditions
355Before initiating the experiment, the reactor was electrically
356pre-heated by the PID controllers. The heating of the reactor bed
357up to the gasification temperature of �850 �C took approximately
3583–4 h. Air supply was started as soon as the pre-heating initiated
359so that necessary fluidization bubbling (in the bed) was

Fig. 1. A generalized scheme of the lab-scale gasification system.

Fig. 2. Residual char, ash and bed-material from the gasification tests (left: alfalfa, right: wheat straw).
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360 maintained both during gasification and pre-gasification stages. As
361 soon as the gasification condition was achieved, the biomass feed-
362 ing was introduced and given once in every three minutes. After
363 the solid feeding was commenced, the gasifier reached to a station-
364 ary state in about 10 min of time-on-stream, as indicated by the
365 evolution of stable temperature (±10 �C variation) and producer
366 gas energy content (±0.5 MJ/Nm3 variation), which continued for
367 further 45–60 min to facilitate steady state measurement of sev-
368 eral parameters such as temperature, gas quantity, composition,
369 lower heating (LHV), cold gas efficiency (CGE), and carbon conver-
370 sion efficiency (CCE). The expressions used to calculate some of
371 these variables are given as follows:
372

LHVgas ¼ ð25:7� H2Þ þ ð30:0� COÞ þ ð85:4� CH4Þð

þ 151:3� ðC2H2 þ C2H4 þ C2H6Þð ÞÞ � 4:2
1000

� �
½MJ=Nm3�

ð1Þ374374

375

CGE ¼ LHVgas � Vgas

LHVfeedstock
ð2Þ

377377

378

CCE¼Y�1000ðCO%þCH4%þCO2%þ2ðC2H4%þC2H6%þC2H2%ÞÞ�12
m�ð1�XashÞ�22:4�C%

ð3Þ380380

381 where Vgas is the dry gas yield in Nm3/kg_feedstock; Qair is the air
382 supply in Nm3/h; m is the biomass input in kg/h; LHVgas is the lower
383 heating value of dry producer gas in MJ/Nm3; LHVfeedstock is the dry
384 base calorific value of the pellets in MJ/kg; Y is the producer gas out-
385 put in Nm3/h; Xash is the ash content of the feed biomass and C% is
386 the elemental carbon percentage of feedstock.
387 Except the bed temperature, which was aimed at �850 �C for
388 both the feedstocks, the experimental conditions in respect to ER
389 range was kept slightly different between the two feedstocks to
390 compensate the difference in size influencing the manual feeding;
391 for example ER = 0.23 could not be achieved for wheat straw

392pellets. The ER change was generally achieved either by varying
393the air flow, which was done for alfalfa pellets, or, by varying both
394the air and the solid flow, which was done for the wheat straw pel-
395lets respectively. The reason of such ER change scheme was purely
396based on the convenience of feeding as well as on keeping the
397gasification operation within the limit of minimum fluidization
398velocity (see Section 2.5.1 and Table 3). In case of alfalfa pellets,
399the ER varied in the range between 0.23 and 0.35 by adjusting
400the air flow rate between 0.16 Nm3/h and 0.25 Nm3/h at a constant
401solid flow rate of 0.20 kg/h. On the other hand, wheat straw pellets
402saw the ER modification between the range of 0.20 and 0.35 as a
403result of simultaneous modification in air and biomass input
404between 0.21 and 0.25 Nm3/h, and 0.18 and 0.30 kg/h respectively.
405The ER values for this study were chosen from among the ranges
406found in the relevant literatures [8,22,44–46] and calculated by
407using Eq. (5).
408

ER ¼ Actual weight oxygen from air=weight dry biomass
stoichiometric air=biomass

ð4Þ
410410

4113. Results and discussions

4123.1. Feedstock physiochemical properties

413The results of the physical and chemical properties of alfalfa and
414wheat straw pellets in-terms of proximate, ultimate and other
415analyses are illustrated in Table 1.
416As found, the average specific density of individual pellets for
417each feedstock varied between the range of �1000 and 1200 kg/
418m3 which are fairly typical for most of the biomass [47] and desir-
419able for gasification [20].
420As far as the proximate analysis is considered, the variation in
421amount of moisture and volatiles between the two feedstocks were
422not so substantial (Table 1) as opposed to the amount of ash which
423was remarkably different with a level exceeding 15% (dry basis) for
424alfalfa pellets (Table 1). The higher ash content in alfalfa was pre-
425sumably because of the higher level of phosphorous, potassium
426and nitrogen, as found in its chemical composition (Table 1).
427Although higher level of ash, earlier pilot scale experiments on
428the same feedstock (alfalfa pellets) did not encounter operational
429difficulties [21] in regards to agglomeration, sintering, etc. and
430hence provided the motivation to extend the investigation in-re-
431gards to the small scale application, such as the investigation in
432the context of the present study.

Table 1
Physiochemical properties of alfalfa and wheat straw pellets.

Properties of the feedstocks

Alfalfa pellets Wheat straw pellets

Proximate analysis (%)
Moisture 8 7.5
Volatile Matter, dry base 74.4 78.8
Ash, dry base 15.5 5.2

Ultimate analysis (dry base, %)
Carbon 41.6 46.2
Hydrogen 4.9 5.4
Oxygena 33.9 42.6
Chlorine 1.43 0.15
Nitrogen 2.39 0.38
Sulfur 0.25 0.06

Lower heating value (dry basis, MJ/kg)
Analytical 16.7 18.41

Theoreticalb 17.62 19.45
Specific pellet density, kg/m3 1198 1015

a Calculated by difference.
b Gaur and Reed, Ref. [41].

Fig. 3. Semi-continuous feeding with two valve assembly.
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433 In terms of the measured average lower heating value, the
434 amount found in wheat straw pellets (�18 MJ/kg) was superior
435 than that of alfalfa pellets (�17 MJ/kg) (Table 1). This was presum-
436 ably because of the effect of ash and of the amount of carbon which
437 is approximately 12% lower in alfalfa, as compare to that of wheat
438 straw (Table 1). Theoretical LHV calculation based on the empirical
439 correlation revealed the similar results agreeing with the measure-
440 ments with a maximum deviation of �±5%.
441 As for ultimate analysis, both feedstocks showed varied
442 compositions in regards to the percent amount of C, H, O, Cl, N
443 and S (Table 1). C, H and O composition of alfalfa amounted to
444 41.6%, 4.9% and 33.9% respectively which compared to the
445 corresponding amount of wheat straw pellets (46.2%, 5.4% and
446 42.6% respectively) were lower (Table 1) and less than the average
447 for the similar biomass investigated in the past [48]. Conversely, in
448 regards to the level of Cl, N and S, higher values were obtained
449 from alfalfa than those from the wheat straw as a result of the dif-
450 ference in the amount of ash.

451 3.2. Thermo-gravimetric analysis

452 Fig. 4(a and b) depicts the TGA and DTG (Differential
453 thermo-gravimetric) plots of alfalfa and wheat straw pellets for a
454 constant heating rate of 10 �C/min. As observed (red and green
455 curves for alfalfa and wheat straw respectively), pyrolysis (until
456 600 �C) followed by combustion (600–950 �C) led to a greater mass
457 loss from wheat straw than that of alfalfa. This is in agreement
458 with the proximate analysis results, particularly, those in-terms

459of volatiles and ash (Table 1). Lower ash and higher volatiles are
460the desirable properties for gasification which perhaps would favor
461wheat straw over alfalfa, as the TGA study in this work revealed.

4623.3. Ash fusion temperature

463Table 2 demonstrates three important temperatures during the
464period of melting biomass ash. Melting temperature may be used
465to roughly predict the characteristics of ash which is mainly com-
466posed of the inorganic metals and their oxides.
467One important element indicating the melting properties of ash
468is K. In general, the increasing amount of K contributes to decrease
469the melting temperature liable to cause several operational
470difficulties such as agglomeration, melting, and slagging.
471Analyzing the ash melting results from the present study, alfalfa
472exhibited lower temperature than that of wheat straw (Table 2)
473which possibly indicating higher K in its (alfalfa) ash content.
474This however could not be confirmed from the obtained analysis.
475Hence, a pertinent literature survey based on the available dataset
476provided by Phyllis2 [49] was conducted and contradictory results
477were obtained. Despite the higher flow temperature, the average
478amount of K in alfalfa (�34%) was found higher than that of wheat
479straw (�18%) which basically opposes the hypothesis as developed
480on the basis of the theoretical correlation between the level of K
481and ash melting temperature. Similar phenomenon was observed
482in an earlier work conducted by Rizvi et al. [50]. It can thus be con-
483cluded that besides K, ash melting temperature is also influenced
484by the presence of other metals whose combined effect should

Fig. 4. TG and DTG diagram of alfalfa and wheat straw in nitrogen environment (heating rate: 10 �C/min); (a) TGA plots and (b) DTG plots.
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485 be thoroughly considered while predicting the melting tempera-
486 ture of biomass ash.

487 3.4. Impact of ER on product gas composition

488 ER in general affects several gasification properties including
489 producer gas quality. In the present study, the producer gas
490 composition as a result of varied ER in the range of 0.20–0.35
491 was investigated for alfalfa and wheat straw pellets; the average
492 results of some of which are depicted by Fig. 5(a–d); where error
493 bars representing the deviation of the average values for each run.
494 As observed, the stepwise increase in ER for alfalfa pellets con-
495 tributed to improve most of the combustible gas quantities (H2,
496 CH4, C2H6, C2H2) which maximized while ER peaked at 0.35
497 (Fig. 5a and b). Conversely, the concentration of CO first increased
498 from 14.30% to 15.03% between ER 0.23 and 0.30 then decreased to
499 14.4% when ER climbed to 0.35 (Fig. 5a). The individual gas concen-
500 tration which rose between the ER 0.23 and 0.35 are listed as: CO2

501 from 13.56% to 15.0%, H2 from 2.89% to 3.77%, CH4 from 1.70% to
502 2.62%, C2H6 from 0.16% to 0.245% and C2H2 from 0.09% to 0.17%
503 respectively (Fig. 5a and b). Increasing ER definitely favored the
504 net effect of gasification reactions and as a result enhanced product
505 gas compositions in-terms of H2, CH4, C2H6, C2H2, and partly to CO
506 up to the value at 0.30. The rising trend of CO within ER 0.23–0.30
507 was likely to be prompted by the extent of endothermic Boudouard
508 (Eq. (5)) and exothermic carbon partial oxidation (Eq. (7)) which

509agree with the recent pilot-scale study [21] conducted for the same
510feedstock. However, ER > 0.30 perhaps concurrently decreased the
511severity of Boudouard reaction (Eq. (5)) and increased the rate of
512combustion (Eq. (6)) as a result yielded lower CO and higher CO2

513in the product gas composition (Fig. 5a). The set of pertinent reac-
514tions involve in gasification is given below:
515

Boudouard reaction : Cþ CO2 ¼ 2CO; DH ¼ þ172 kJ ð5Þ 517517

518
Combustion reaction : Cþ O2 ¼ CO2; DH ¼ �408:8 kJ ð6Þ 520520

521
Carbon partial reaction : 2Cþ O2 ¼ 2CO; DH ¼ �246:4 kJ ð7Þ 523523

524
Water gas shift reaction : COþH2O¼ CO2 þH2; DH ¼þ41:98 kJ

ð8Þ 526526

527
Water gas reaction : CþH2O ¼ COþH2; DH ¼ þ131 kJ ð9Þ 529529

530Unlike alfalfa pellets, the mean producer gas compositions obtained
531from the gasification of wheat straw pellets exhibited no clear
532trend, except the concentration of CO2 which rose throughout
533(Fig. 5c). As for combustible components particularly there was a
534significant decrease in the amount of H2, dropping from 4.1% to
5353.0% as the ER varied between the range of 0.20 and 0.35. CO like-
536wise declined too until ER = 0.25 then followed the similar increas-
537ing and decreasing pattern that of alfalfa pellets within the ER
538between 0.25 and 0.35 (Fig. 5c). The simultaneous decrease in H2

539and CO along with the increase in CO2 perhaps implies the combus-
540tion reactions to dictate over gasification as long as the supply oxy-
541gen is enhanced. In regards to the hydrocarbon products, the
542concentration of CH4 and C2H4 displayed a rising tendency up until
543ER = 0.30, peaked at 2.97% and 1.08% respectively (Fig. 5d). This
544phenomenon is perhaps attributed to the reforming reactions that
545improved as the input oxygen rose [51]. Such reactions however
546weakened as those two gas species declined rapidly with further
547rise in ER at highest 0.35. At this point perhaps the combustion
548reaction (Eq. (6)) became stronger and hence escalating CO2 in the
549average product gas together with the reduction in CH4 and C2H4

550content (Fig. 5c and d). The trend of C2H2 meanwhile increased in
551contrast to that of C2H6 which decreased as the level of ER gradually

Fig. 5. Influence of ER on product gas composition of alfalfa and wheat straw pellets gasification; (a) syngas composition of alfalfa, (b) light hydrocarbon composition of
alfalfa, (c) syngas composition of wheat straw, (d) light hydrocarbon composition of wheat straw.

Table 2
Analysis of ash fusion temperatures.

Ash fusion temperatures

Present analysis Phyllis 2a

Alfalfa Wheat straw Alfalfab Wheat strawc

DT (�C) 1173 941 870 932
HT (�C) 1178 1067 1323 1106
FT (�C) 1201 1273 1514 1298

a Ref. [49].
b Average of 20 samples.
c Average of 94 samples.
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552 rose (Fig. 5d). The C2H6 trend obtained from this study complies
553 with the past research by Xue et al. [45] while the concurrent effect
554 of both (C2H2 and C2H6) perhaps be explained by the effect of
555 inverse hydrogenation, expressed as:
556

C2H2 þH2 $ C2H6; DH > 0 ð10Þ558558

559 3.5. Impact of ER on the performance of gasification

560 Effect of ER on several aspects of gasification such as lower
561 heating value (LHV), gas yield, tar yield, cold gas efficiency (CGE)
562 and carbon conversion efficiency (CCE) are illustrated by
563 Fig. 6(a–f), whereas Table 3 demonstrates the average results as
564 obtained from the individual gasification experiments. It should
565 be noted that the error bars in Fig. 6 representing the deviation
566 of the average values for each run.
567 In regards to alfalfa pellets, average LHV increased as ER
568 increased (Fig. 6a). The strength of reforming reactions perhaps
569 enhanced as ER rose and hence the increase in light hydrocarbons
570 and consequently the improved gas LHV. This was also confirmed
571 by the yielding pattern of tar, as induced by the cracking reactions,
572 declined from mean 53 g/Nm3 to 34 g/Nm3 corresponding to the
573 ER at 0.30 and 0.35 respectively (Fig. 6c). Likewise LHV, the gas
574 yield (Nm3/kg) showed an upward trend (Fig. 6b) and hence the
575 increase in CGE and CCE, peaking to average 42% and 72% respec-
576 tively for the ER reaching highest at 0.35 (Fig. 6e and f). Char yield
577 (g/kg) meanwhile dropped significantly with a difference as much
578 as 50% between the lowest and the highest ER (Fig. 6d). Decrease in
579 char yield together with the impact of other parameters (as already
580 explained) was likely to improve the performance of alfalfa
581 gasification for the level of ER augmented up to 0.35 which appears
582 to be optimum for the present case of experiments.
583 As far as wheat straw pellets are concerned, the performance of
584 gasification varied to a great degree as ER varied. For instance,
585 when ER slightly increased from 0.20 to 0.25 the dry gas LHV (in
586 MJ/Nm3, dry basis) decreased (Fig. 6a) as a result of the reduction
587 in combustible gases such as the drop in the amount of CO, H2, CH4

588 and C2H4. Conversely, the specific gas yield (Nm3/kg biomass) rose

589(Fig. 6b) likely due to the enhancement of the rate of devolatiliza-
590tion [44]. This however did not reflect to the percent yield of CGE
591and CCE which kept fairly constant (Fig. 6e and f) presumably
592due to the development of higher char (Fig. 6d). Similar phe-
593nomenon was observed by the past work conducted by Xue et al.
594[45]. Further rise in ER at 0.30 positively contributed to several
595parameters such as gas LHV, specific gas yield, CGE and CCE while
596decreased the value of tar and char (Fig. 6(a–f)). At higher ER, the
597yield of CH4 and other hydrocarbons (C2H6, C2H2) increased,
598despite the lower CO, resulting the obvious rise in total gas LHV
599(Fig. 6c and d). Moreover, the rate of several endothermic reactions
600such as cracking and reforming increased; leading to improvement
601in efficiencies in-terms of CCE and CGE (Fig. 6e and f). The trend of
602most of these parameters however declined as ER further increased
603to the highest 0.35, except the amount of tar, which rose to �71 g/
604Nm3 from the level of �59 g/Nm3 (at ER = 0.30) (Fig. 6c), and the
605gas yield, which jumped to all time maximum at 1.74 Nm3/kg
606(dry basis) (Fig. 6b). As the combustible quantities diminished, this
607gas yield was mainly boosted by the increased amount of CO2 con-
608tributed due to the rise in combustion reactions (Eqs. (6) and (7)).
609The enhanced CO2 also resulted improved CCE despite the deteri-
610oration of the other major parameters such as the amount of gas
611LHV and CGE.

6123.6. Impact of ER on bed temperature and gasification parameters

613Increase in ER in general leads to improve the bed temperature
614influencing several gasification parameters the corresponding rela-
615tion of which is demonstrated by Fig. 7(a–h).
616For alfalfa pellets it was observed that the bed temperature var-
617ied to a narrow margin of 869–873 �C for the ER varied between
618the range of 0.23 and 0.35 (Fig. 7(a–d)). The maximum tempera-
619ture was achieved corresponding to the ER at max. 0.35. When
620bed temperature peaked, the quantity of LHV, gas yield, CCE and
621CGE rose and the tar and char yield fell mainly due to the enhanced
622water gas shift reaction (Eq. (8)), combustion (Eq. (6)), tar reform-
623ing (refer Ref. [52] for equations) and water gas reaction (Eq. (9)).
624These observations coincide with the earlier works reported by

Fig. 6. Gasification performance of alfalfa and wheat straw pellets; (a) comparison of producer gas LHV between alfalfa and wheat straw, (b) comparison of producer gas
yield, (c) comparison of tar yield, (d) comparison of char yield, (e) comparison of CGE, (f) comparison of CCE.
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625Refs.[7,52]. Among the parameters investigated, it is also interest-
626ing to note that the yield of char corresponding to lower ER value
627(0.23–0.30) differed to a great degree amongst the trial runs, caus-
628ing high standard deviation of the obtained results (Fig. 7c). These
629however were likely to stabilize at higher ER (namely at 0.35) indi-
630cating improved thermal conversion as a result of improved supply
631of air.
632Likewise alfalfa pellets, maximum bed temperature was
633achieved when ER reached maximum at 0.35. The bed temperature
634for this feedstock varied to a range between 868 and 873 �C
635corresponding to the ER at 0.20–0.35 (Fig. 7(e–h)). The trend of
636gas yield and CCE followed with the increase in ER and thus with
637the temperature (Fig. 7h). Conversely, in-terms of quality (for
638example, gas LHV) and CGE the trend of the producer gas appeared
639to degrade, especially beyond the temperature of �869 �C when ER
640exceeded the level of 0.30 (Fig. 7e). This is consistent with the
641theoretical correlation as logically the higher the air supply, the
642higher the bed temperature, and higher the extent of combustion
643(Eq. (6)), resulting lower the energy from the producer gas and ulti-
644mately lower the efficiency in-terms of CGE. As for tar yield on the
645other hand the level rose and amounted to �71 g/Nm3 at bed tem-
646perature of 873 �C (Fig. 7f) potentially due to the development of
647heavy tar molecules (such as naphthalene and quinolone) in its
648total composition at the expense of light tars. It is worthwhile here
649to note that the heavy tar, especially the content of naphthalene
650and similar is potentially stable over a wide range of temperature
651and thus can continue to develop for temperature that exceeds
652850 �C, as evidenced by the Refs. [28,53] for the similar feedstock.
653The compositional analysis of tar nevertheless was not in the scope
654of the present work and thus that literature results cannot be pre-
655cisely compared. In regards to the un-combusted char yield, this
656feedstock did not exhibit a high standard deviation above bed tem-
657perature of 869 �C unlike alfalfa pellets and tended to stabilize at
658higher temperature corresponding to the ER range between 0.30
659and 0.35 (Fig. 7g). This clearly indicates the stable char conversion
660as a consequence of elevated temperature in the fluid bed. Based
661on the present discussion it can thus be concluded that the
662parameters such as LHV, CGE and tar established as optimum at
663ER = 0.30 when the corresponding bed temperature reached to a
664level of ca. 869 �C (Fig. 7e, f and h). This ER value is reasonably close
665as far the as the past study [39] is concerned, indicating operating
666parameters to be optimum at ER = 0.25.

6673.7. Comparison with the relevant literature results

668The results obtained from the present gasification tests have
669been compared to the existing literature (Table 4) dedicated to
670the similar investigation in the past.
671As can be seen (Table 4), the studies ranged from small scale to
672pilot scale fluidized bed and fixed bed gasification. The literature
673work entirely devoted to the gasification of alfalfa is scarce, and
674thus not many relevant data are available. Hence just the two
675important recent works [20,21] including the present work are
676considered for comparison. As clearly shown in Table 4, significant
677differences in-terms of gas compositions and other parameters are
678established among these studies. Particularly, pronounced differ-
679ence in-terms of the level of tar, char, H2 and CO are observed
680between the pilot-plant study [21] and this study, despite the
681gas LHV which is fairly similar. This perhaps is attributed due to
682the contrasting solid feeding mechanism; being continuous for
683pilot-scale and semi-continuous for lab-scale (this study) respec-
684tively. As it appeared, semi-continuous feeding caused a dramatic
685impact in the H2 production which reduced to approximately four
686times than that of the pilot-scale experiments. Among the various
687char conversion reactions governing the evolution of product gas
688composition, char oxidation is the fastest [54] and hence requiresTa
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689 least residence time, whereas, char steam gasification (water–gas
690 reaction), which contributes to boost product gas with H2 is three
691 to five orders of magnitude slower [54] than that of char oxidation
692 and hence higher residence time is required to allow this reaction
693 to occur. Maintaining an optimal residence time balancing the
694 interactions of various reactions is important to improve the
695 gasification phenomenon as well as the overall efficiency which

696appeared to be established by the process itself in case of continu-
697ous reactor. While for semi-continuous feeding, this parameter
698might be optimized by carrying out experiments for number of
699residence time which however was not in the scope of the present
700study and hence effect of such cannot be discussed here. It is how-
701ever can be hypothesized that the residence time required to
702achieve efficient water–gas reaction could not be matched by the

Fig. 7. Simultaneous effect of ER and bed temperature on gasification performance of alfalfa and wheat straw pellets; (a) producer gas LHV or, gas yield from alfalfa (b) tar
yield from alfalfa (c) char yield from alfalfa (d) CGE or, CCE from gasification of alfalfa (d) producer gas LHV or, gas yield from wheat straw (b) tar yield from wheat straw (c)
char yield from wheat straw (d) CGE or, CCE from gasification of wheat straw.
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703 present semi-continuous feeding and thus the lower H2 in the pro-
704 duct gas composition. Worthwhile also to note that the difference
705 in the size of the operating plants might also result dissimilarity in
706 the product gas composition in spite of the similarity in residence
707 time and thereby the results obtained among the various scales of
708 plants are not completely exchangeable. Generally, small scale
709 plants are less efficient compared to pilot or, commercial scale
710 plants [55].
711 Meanwhile, as compare to semi-continuous feeding, continuous
712 feeding to pilot-plant [21] resulted higher char yield as a result of
713 the lower operating temperature (�780 �C) which concurrently
714 negatively affected the product gas composition in terms of CO.
715 Conversely, despite the lower bed temperature, in-terms of CO2,
716 the level in the pilot-plant was higher which might due to the
717 effect of several endothermic reactions namely water–gas shift
718 reaction (Eq. (8)) and the reverse Boudouard reaction (Eq. (5)) con-
719 tributing to the indirect production of CO2 at the expense of tem-
720 perature. As of tar, on the other hand, current work exhibited
721 significantly higher yield than that of pilot-plant [21], implying
722 the presence of weaker cracking reactions unable to convert liquids
723 into useful gases.
724 Opposed to the fixed-bed gasification study [20], the present
725 work revealed higher gas LHV due to the high level of methane
726 in the product gas composition, but exhibited lower H2 which
727 probably because of the poor water–gas shift reaction (Eq. (8)).
728 The rate of water–gas shift reaction in general increases with tem-
729 perature, but the conversion of reactants to products (CO2 and H2)
730 decreases [56]. Higher operating temperature is thus the reason
731 why hydrogen yield from the present study was lower in contrast
732 to the study by Sharma [20]. Fixed-bed downdraft gasifier inher-
733 ently results less tar than the fluidized bed gasifier, and thus logi-
734 cally yielded the lowest tar among all the technologies compared
735 here.
736 Likewise alfalfa, the study solely dedicated to air gasification of
737 wheat straw is limited. This is mainly because of the physical and
738 chemical properties of this feedstock causing several operational
739 difficulties in terms of ash agglomeration, slagging, etc. Knowing
740 the process difficulties, thus a common approach to treat this bio-
741 mass is to use either steam or, CO2 as gasifying agent, and catalyst
742 as the reducer to minimize tar and ash content. In this regard, thus,
743 study by Ref. [53] dealing with air gasification of wheat straw in
744 BFB gasifier has been selected to allow comparison. As observed
745 (Table 4), the gas composition substantially differs in-terms of

746the level of H2 and CO, in spite of a fairly comparable LHV.
747Particularly for the earlier work [53], H2 is found higher, which is
748perhaps due to the increased water gas shift reaction (Eq. (8)),
749and CO is found lower which is probably due to the weaker
750Boudouard reaction (Eq. (5)) as a result of the lower bed tempera-
751ture (�850 �C) compared to that (>850 �C) from this study.
752Comparison in regards to other parameters cannot be made due
753to the lack of the available data.

7544. Conclusions

755After the series of gasification trial runs of alfalfa and wheat
756straw pellets following conclusions can be drawn. Over the range
757of the test conditions investigated, the gasification performance
758of alfalfa pellets maximized at ER = 0.35 which reflected to the
759gas LHV peaking to �4.1 MJ/Nm3, gas yield to �1.7 Nm3/kg, CGE
760to �42% and CCE to �72% respectively. The gasification perfor-
761mance of wheat straw pellets on the other hand erratically varied
762as the operating conditions varied with optimized performance
763apparently achieved at ER = 0.30 corresponding to the bed tem-
764perature of �870 �C. At this ER, the level of important parameters
765such as gas LHV, tar yield, CGE and CCE reached to �4 MJ/Nm3,
76658.7 g/Nm3, �39% and 49% respectively which however tended to
767degrade as the ER rose further.
768In general, the average hydrogen content in the producer gas
769composition of the two biomasses was low and thus these feed-
770stocks may not be suitable to utilize for hydrogen production.
771The average CGE and CCE values were also low to recommend
772the present technology for a commercial scale application.
773Process characteristics such as low combustible quantity in the
774producer gas, low char conversion, carbon losses with tar, particu-
775lates in cyclone, and particulate and carbon in hot filters, appeared
776to contribute to decrease these efficiencies. However, owing to the
777fairly attractive gas LHV, the producer gas may be recommended to
778utilize in a small scale combined heat and power (CHP) plant appli-
779cation where heat and electricity are simultaneously generated by
780the direct firing of gas through engine or, turbine.
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Table 4
Comparison of alfalfa and wheat straw gasification among the similar literature studies.

Reference Alfalfa Wheat straw

This work [20] [21] This work [53]

Gasifier specifications (air as
gasifying agent)

Lab-scale BFB, 0.5–10 g/min.
biomass feed

Pilot scale Fixed-bed downdraft,
18–23 kg/h

Pilot-scale BFB,
10 kg/h

Lab-scale BFB, 0.5–10 g/min.
biomass feed

BFB,
�2.37 kg/h

ER 0.23–0.35 Not given 0.25–0.30 0.20–0.35 0.15–0.35

Average gas composition (% vol., dry base)
H2 3.4 7.88 13.05 3.57 9b

CO 14.58 11.36 8.75 12.55 7b

CH4 2.12 1.39 2.7 2.47 3b

CO2 14.38 16.89 20 15.24 Not given
LHV, MJ/Nm3 3.71 2.78 4.2 3.67 2.93b

Bed temp. �C (at start) �850 �700 �780 �850 800b

Freeboard temp.
Gas yield, Nm3/kg 1.33 Not given 1.44 1.43 Not given
Cold gas efficiency 32.78 Not given 36.39 31.48 Not given
Carbon conversion efficiency 55.65 Not given N.D. 50.59 Not given
Tar yield, g/Nm3 43.96 0.5 1.12 66.46 7.69a

Char yield, g/kg 122.13 Not given 281.72 43.75 Not given
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Abstract 
 

 

This paper is aimed to assess the performance of air blown fixed-bed downdraft 

gasification of local lignocellulosic biomasses which in perspective of Southern 

Norway are both available and sustainable. Long rotation forest crops birch, oak 

and spruce, coupled with energy crops poplar and willow were used as 

feedstocks. The gasification conditions undertaken were widely varied in-terms 

of air (~3.20 to 4.20 Nm3/h) and fuel flow (~1.70 to 2.10 kg/h) so that the 

corresponding equivalence ratio (ER) differed (0.19 to 0.80) and ultimately 

reflected to other operational parameters such as bed temperature (~550 C to 

760 C maximum), producer gas yield (~1.50 Nm3/kg to 2.30 Nm3/kg, wet base), 

cold gas efficiency (~35% to 51 %), carbon conversion efficiency ( ~61% to 

76%) and so on. An emphasis was also placed on evaluating material balance by 

accounting the by-products (such as tar, char) of gasification so that the system 

reliability is identified. Overall, the gasification performance of different woody 

biomass was found viable over a broad range of operating condition which is 

appealing in contributing this technology in the context of regional bioenergy and 

thus towards the renewable energy.             

 

Keywords: Fixed-bed downdraft gasification, Forest crops, Energy crops, 

Southern Norway, Equivalence ratio, Operating parameters. 
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1. Introduction 
 

 

The post oil era is approaching and there is an urgent need to achieve energy 

reliability and sustainability. This therefore results biomass, one of the most 

abundant and renewable sources, to consider as fuel for today and for the coming 

days in future. Technology towards biomass conversion is advanced and 

transformation into range of fuels such as solids, liquids and gases are 

successfully achieved through various conversion pathways (thermochemical, 

biochemical and biological) (Zhang et al., 2013). Bio-based feedstocks  are 

furthermore CO2 neutral (Albertazzi et al., 2005), environmentally beneficial and 

economically advantageous, allowing to continuously increase (3.7%/yr until 

2030 (2015))  their usage worldwide. At present, biomass accounts over 10% of 

the total global primary energy supply (2014) and more is expected to appear in 

the near future.    

 

As a part of thermochemical conversion, gasification has been practiced since 

World War II (Kirkels & Verbong, 2011) and offers substantial advantages in 

efficiently converting bio-materials into useful products. Contrary to combustion, 

gasification (Grover & Mishra, 1996) takes place at a reduced oxidant 

environment and thus allows to greatly reduce the emission precursors from the 

emanating gases. Technologies propelling gasification are numerous and can 

broadly be classified as fluidized bed, fixed-bed, entrained-bed and plasma 

gasifiers (Heidenreich & Foscolo, 2015). As far as operational performance, total 

product yield and type of feedstocks are concerned, these technologies are 

inherently different. Mainly, fluidized-bed gasifiers suit for small size feedstocks 

and operate with high temperature while fixed bed gasifiers operate with lower 

temperature and suit for coarse size feedstock as feeding materials (McKendry, 

2002). Although high quality gas can be produced from any of the prevailing 

configurations, fixed-bed downdraft reactors offer additional advantages of 

yielding less tar and lenient requirements for producer gas cleaning and thus 

economically and technically more sound and attractive (Warnecke, 2000). 

Considering these, present paper focuses on fixed-bed downdraft gasification that 



 

 

processed five different woody biomasses (birch, oak, spruce, poplar and willow) 

collected from the local areas of Southern Norway.   

Likewise most other Scandinavian countries, woody biomass are abundant in 

Norway. Thanks to its large productive forest resource which covers 

approximately 24% of the total land area (Bright et al., 2010) from where a vast 

supply of woody-materials is guaranteed primarily through harvest and standing 

stocks. Among the woody species available in the Southern Norwegian forests: 

birch, pine, spruce and oak are dominating and have been attractive for multiple 

uses including space heating. Space heating by utilizing biomass resources is one 

of the priorities in Norwegian future target for bioenergy expansion (Trømborg et 

al., 2011). However, the progress in bio-based space heating is hindered owing to 

the low electricity price and thus the widespread utilization of electrical heaters; 

over 75% households in Norway are for example currently relying on electricity 

for meeting their space heating demand, and the use of fossil oil in the heating 

burners (Trømborg et al., 2011). . Hence, to meet the future target of bioenergy 

increase, a sustainable approach is necessary where gasification can be a 

promising alternative which not only offers to direct utilization of producer gas 

for heat production but also provides opportunity to use liquid bio-oil as a readily 

available fuel to the existing infrastructures, for example, to the oil-burners that 

are used as space heating options.  Besides, gasification can also be directed 

towards various other applications, for instance, to produce steam for the process 

industries or, to provide raw gas to  FT (Fischer-Tropsch) conversion unit for 

upgrading gas into easily handled liquids and chemicals (Bridgwater, 2003). The 

gasification potential thus is huge and versatile and to gain full advantage of 

which integration of different feedstocks with many different suitable 

characteristics are necessary.  

 

Present paper is an effort towards that direction investigating the feasibility of 

several woody (e.g. woodchips) biomass including forest trees and energy crops 

(poplar and willow) as feedstocks for fixed-bed downdraft gasification which 

under the local scenario can emerge as a viable alternative for combustion and 

for other potential applications. Further, to examine the sensitivity of the 

proposed gasification, the operating conditions especially the equivalence ratio 

(ER) is widely varied (0.19 - 0.80) so that the operational margin and the 



 

 

threshold is determined which in turn may provide a good basis under which 

operational conditions for the real-life applications within the local perspective 

can be chosen.     

 

Thus far studies devoted to examine the effect of several operational parameters 

on fixed-bed gasification performance (qualitative and quantitative analysis of 

producer gas) of various woodchips include but not limited to are (Balu & 

Chung, 2012; Lenis et al., 2013; Sheth & Babu, 2009; Zainal et al., 2002). 

However, a single study evaluating the fixed-bed gasification potential of both 

forest biomass and energy crops is scarce. Additionally, such investigation within 

the context of local area of Southern Norway is none and therefore the purpose of 

this work is unique as far as local bioenergy research is concerned.        

 

 

  

2. Materials and methods 
 

 

2.1. Woodchips feedstock 

 

Five local tree species namely: birch (Betula pendula), oak (Quercus petraea), 

spruce (Picea abies), poplar (‘Spirit’ Populous trichocarpa) and willow short 

rotation coppice, SRC (Salix Sp.) was considered as feedstocks for this study.  

Birch, oak and spruce was harvested from the local forest at Dømmesmoen, 

Grimstad (coordinate: 58 21’ 8.6” N, 8 34’ 32.78” E) whereas willow and 

poplar SRC were cultivated and harvested from a dedicated agricultural land 

(area: ca. 0.30 ha), located around the same place as that of forest biomass. The 

harvesting of the feedstocks ranged at various periods between the year 2012 and 

2015 (refer to Table 1). To produce woodchips (size ~1-10 mm thick.) from the 

forest crops, trees were cut by a chain saw and then chipped by a disc chipper 

(NHS 720 IE 4, Denmark). The chips were afterwards dried either by indoor air 

drying or by an in-situ batch dryer, using hot air as a drying medium. For the 

energy crops on the other hand, two steps drying was undertaken. First, after 

harvesting, trees were left outdoor for sun drying and then wood chips were 



 

 

made by employing a bush saw. Afterwards, the woodchips were dried by 

following the same procedure as that of the forest crops. After drying, 

equilibrium moisture in the woodchips upon storage is strongly affected by the 

relative humidity than to the air temperature. Hence, the moisture content in the 

woodchips was re-assessed before utilizing to any gasification tests, so that 

precise estimation can be made. Table 1 lists the average moisture content of the 

woodchips using for gasification and the different properties associated with the 

biomass harvest, drying and pre-treatment. The images of the different wood 

chips are shown in Figure 1. 

 

 

 

 

 

 

 

Figure 1: Photographs of the woodchips used in this study 

 

 

2.2. Physiochemical analysis 

 

Physiochemical properties in-terms of moisture, volatiles, ash, lower heating 

value (LHV) and of chemical elements were carried out by the external lab  

Eurofins Environmental Testing Sweden AB, Gothenburg, Sweden. Each 

individual properties reported in the proximate analysis was evaluated based on 

the standards given in Table 2.  

 

Ultimate analysis determined the percent composition of carbon (C), hydrogen 

(H), nitrogen (N) sulfur (S), chlorine (Cl) and Oxygen (O) complying with the 

protocols stated in Table 2.  

 

 



 

 

Table 1: Tree harvesting period and pre-treatment 

 

 

 

 

 

 

 

 

 

 

 
        

              

Tree species Tree type Age 
[yrs] 

Bulk density, 
kg/m3 (n=3) Harvest period Drying method Moisture, % 

(after drying)* 

Birch (Betula pendula) Forest crop (hardwood) N.D. 252 ± 3.5 Summer, 2013 Open air (wood chips) 9.15 

Oak (Quercus petraea) Forest crop (hardwood) N.D. 208 ± 3.2 Summer, 2014 Batch dryer (wood chips) 8.47 

Spruce (Picea abies) Forest crop (hardwood) ~ 47 133 ± 4.4 Winter, 2015 Batch dryer (wood chips) 9.05 
Poplar (Populous tremula) Energy crop (softwood) 3 138 ± 4.2 Spring, 2012 Open air (stem), in-door (wood chips) 11.38 

Willow (Salix Sp.) Energy crop (softwood) 2 or, 3 145 ± 2.6 Spring, 2012 Open air (stem), in-door (wood chips) 8.60 

N.D.: Not determined; *: Analysis standard EN 14774-1:2009            
 



 

 

 

2.3. Experimental facility 

 

Fixed-bed downdraft gasification system  

 

A schematic of fixed-bed downdraft gasifier including gasification system is 

presented by Figure 2. The gasification system comprised of a fixed-bed 

downdraft gasifier (Victory Gasworks, Vancouver, Washington, USA), a hopper, 

producer gas cooling and cleaning units (cooling water line, settling chamber and 

dry filter), a reciprocating grate, a weighing scale, a shaker, gas flaring line, a 

blower, producer gas sampling unit (hot filter, pump, cooler and gas analyzers) 

and a gas engine (Kubota, USA, 14.5 kW max.). Hopper is a conical shape (0.13 

m3) stainless steel (0.5 m Ø; AISI 304 & 316) double-walled structure, through 

which biomass was fed. An electrical shaker is attached at the side wall of the 

hopper, giving periodic vibrations (15 sec/min) so as to reduce bridging and 

channeling (Gai & Dong, 2012). A condensate drain valve is also found at the 

bottom of the hopper between the two walls to manually drain any collected 

moisture; drain valve is normally closed and made open after each gasification 

test.   

 

The reactor itself is made of AISI 304 & AISI 316 stainless steel cylinder with an 

internal diameter of 0.26 m and a height of 0.60 m assembled below the hopper 

by a coupling consisting of a gasket and a series of nuts and bolts (bolt size: 5 × 

13 mm). At the mid-height (0.30 m height) of the reactor a constriction is found 

which is made of an exchangeable restriction ring of 100 mm Ø (5 mm). Air 

supply system is consisted of six equidistant nozzles of ~5 mm Ø, located at 0.2 

m height (from top) of the reactor and a speed control induced draft fan placed at 

the end of the gas exit. With suction from the fan, air is introduced to the reactor 

through an air-diaphragm meter (0.04 – 6 m3/h; BK-G4, Elster, Germany), 

registering the flow into the gasifier.  

 

Below the reactor there is a circular perforated grate, oscillating reciprocally (30 

sec/min) to ensure flow of the material from the top and dispose of ash to the 

bottom. A weighing scale (DINI ARGEO, Italy, 1500 kg max.) placed 



 

 

underneath the gasifier assembly monitors fuel mass loss during gasification. 

Throughout the reactor there are provisions for several measuring ports allowing 

the access of different sensors. Using these ports, five K-type thermocouples and 

two differential pressure sensors (Smart DCM/SN Diff, Fema, Germany) were 

installed (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Experimental facility using fixed-bed downdraft gasification 

system (Top: fixed bed downdraft gasifier; bottom: gasification system) 

 



 

 

 

Three thermocouples are equidistantly (150 mm apart) located around the bed 

and one each is placed at the air input and at the sampling line respectively 

(Figure 2). It is worthwhile to note that the temperatures measured by the sensors 

located close to the bed might experience discrepancies from the real temperature 

due to the position of the sensor tips which were kept slightly away from the bed 

to avoid bending and wear and tear. During gasification, as the woodchips 

thermally degraded, the producer gas exited from the reactor and cooled, cleaned 

and conditioned via a gas-water heat exchanger, and two series of filters: settling 

chamber (dry filter with hanging ribbons) and dry filter (comprised of standard 

glass wool for insulation).  The relatively cleaned and conditioned gas 

subsequently was either diverted to the engine or to the flare depending on the 

gas quality and needs.  Focusing on the objective of the present study (which is 

qualitative and quantitative analysis of producer gas), engine tests was not 

considered and produced gas was only flared and continuously analyzed real time 

by analyzers located at the downstream of the gas sampling train (described in 

section 2.2.3). The analyzers, air diaphragm meter, pressure and temperature 

sensors, scale, all are connected to a data acquisition module (LabView, National 

Instruments, USA), transferring real time continuous data to a stand-alone PC for 

further analysis and record.  

 

Test procedure 

 

In gasification start up, reactor was initially filled with barbeque charcoal until 

above the height of air supply nozzles. This corresponded to about 2 kg of 

charcoal with minor variation of ± 0.1 kg. After charcoal input, woodchips were 

fed from the top of the hopper between the amount 7 - 12 kg, depending on the 

density and type of the fuel. Once fed, hopper was closed by a lid and inspected 

for air leakages. Gasifier was then ignited and simultaneously air supply valve 

and sampling line was opened and data logger was also started. Generally, the 

heat required to develop gasification condition is established by the combustion 

of charcoal (exothermic reaction). Hence, the ignition started up with charcoal, 

which gradually transferred to woodchips, as the process stabilized (in respect to 

temperature and fuel flow) in about half an hour. The stationary condition 



 

 

continued for another 5-6 h until the complete conversion of the given biomass 

was achieved. Throughout each experiment, air supply was manually varied by 

adjusting the range 3-8 m3/h to attain optimization in terms of equivalence ratio 

(ER) and temperature. In some cases, air supply was also regulated by the 

process itself attributed due to the transition of conversion from charcoal to fresh 

biomass, bridging, variation in the quantity of flow of solid mass (fuel, charcoal, 

ash), etc. The woodchips in the gasifier was flown downward by gravity which 

was mainly influenced by the rate of conversions and the quantity of input air. 

Typically, process optimization was achieved for biomass flow rate of ~1.7- 2.4 

kg/h and the resulting ER was determined from the following expression (Eq. 1):  

 �� = �௖௧௨௔௟ ௔�� ௙௨௘௟ �௔௧���௧��௖ℎ�௠௘௧��௖ ௔�� ௙௨௘௟ �௔௧��                                                                                       (1) 

 

where the actual air fuel ratio was calculated from the ratio of air and fuel supply 

rate used during gasification tests and the stoichiometric air fuel ratio was 

determined based on the chemical formula (m/m) (Eq. 2), as follows:    

 �௔�௕ ௖ܱ + x ሺܱ2 + ͵.ʹͷ 2ܰሻ = 2ܱ�ݕ +   ሺʹሻ                                                          2ܱ�ݖ

 

where a, b and c are the values calculated by using the ultimate analysis results 

and the corresponding molecular weight of the elements C, H and O.  It is to be 

noted that the ER calculation did not account unconverted residual carbon 

resulted after gasification  test run.    

 

The other parameters relevant to gasification such as producer gas yield, lower 

heating value (LHV), cold gas efficiency (CGE) and carbon conversion 

efficiency (CCE) were evaluated based on the relevant equations given elsewhere 

in the study (Sarker et al., 2015b).  

 

After any given test, the gasifier was emptied from residual char and condensate 

that were deposited along the main and sampling line and quantified to account 

mass balance. Residual char was additionally analyzed for determining fractional 

ash through muffling (Muffling furnace, Nabertherm P330, Germany) at 550 C 



 

 

according to the standard CEN/TS 15403:2006. Afterwards, char fraction 

contributing to the solid residue was determined by-difference.    

  Producer gas analysis 

 

To perform quantitative and qualitative analysis, the part of the producer gas was 

sampled  in a gas sampling line consisting of hot filter, cotton filter, dew-point 

analyzer, cooler, pump and gas analyzers. The gas was first cleaned from 

particles by using a ceramic hot filter (FE2, ABB, Germany) electrically heated 

to a temperature of about 150 ˚C. Gas was further cleaned from aerosols and 
suspended particles by a cotton filter before passing through a dew-point 

analyzer (Omega, RHB-1500, USA) measuring the dew point of the produced 

gas, further used to determine the gas moisture content (Petersson, 2004). Gas 

was then circulated through a cooler (SCC-C Sample gas cooler, ABB, Germany) 

which reduces the sample gas temperature to ~3 ˚C. The flow throughout the 
entire sampling unit was provided by a membrane pump (4N, ABB, France), 

operated between the range of 0 and 50 L/h. The cleaned and conditioned gas 

after the filters and the cooler was finally directed to gas analyzers (Advance 

optima, AO2020; ABB, Germany), quantifying the gas in-terms of CO, CO2 , H2, 

O2 and CH4.  Gas analyzer URAS 26 (non-dispersive infrared sensor) evaluates 

CO, CO2 and CH4; CALDOS 27 (thermal conductivity detector) determines H2; 

and MAGNOS 206 (paramagnetic analyzer) measures the composition in terms 

of O2 respectively. To provide real-time data, gas was continuously sampled 

throughout the period of gasification and the analyzers’ values were transferred 
to a LabView acquisition module. 

         

2.4. Tar sampling  

 

After each gasification test, condensates deposited at various gas cooling 

locations (bottom of the gas cooler and between the hopper walls) were measured 

for determining weight and collectively called as gravimetric tar. Tar 

composition on the other hand  was determined as according to the Solid Phase 

Adsorption (SPA) method developed by KTH (The Royal Institute of 

Technology, Sweden).  To this end, first of all, sampling of the gas was 

conducted during the stable period of gasification through a sampling point 



 

 

located in the vicinity of the hot gas exit. Sampling apparatus was consisted of 

two series of syringes and a needle. First syringe (SUPELCO, USA) was packed 

with 3-mL solid phase extraction (SPE) adsorption cartridge with 500 mg of 

aminopropyl-bonded silica adsorbent and connected with a needle (11.5 mm 

length, 1.09 mm Ø) the tip of which passed through a septum located at the entry 

of the sampling point. The second syringe (100 mL, BD Plastipak, USA) was 

fitted at the back of the first syringe, drawing the air through the assembly. 

During sampling, approximately 100 mL of air was manually drawn by the 

second syringe, allowing tar vapors to trap and adsorb on the bed of aminopropyl 

silica adsorbent.  The tar laden cartridge syringe was then sealed from the both 

ends by stoppers, wrapped by aluminium foil papers and stored in a refrigerator 

(< 4 C) before carrying out for compositional analysis. During the 

compositional analysis, first the sampled cartridges were desorbed into aromatic 

and phenol fractions and then undergone for gas chromatographic (GC) 

measurement according to the protocol as described elsewhere by (Brage et al., 

1997).  External lab Verdant chemical technologies affiliated to KTH, Sweden 

performed this analysis and kindly provided the results afterwards which have 

been reported in this paper. 

 

 

 

3. Results and discussions  
 

 

3.1. Biomass characterization 

 

Dry base proximate and ultimate analysis of the feedstocks in-terms of volatiles, 

ash and the chemical elements are depicted in Table 2.  

 

As expected, the level of volatiles irrespective of the type of woody biomass by 

and large was similar, except for willow (80.7 %) which was slightly different. 

Volatiles within the margin of 80 % are typical for most of the woody biomass, 

as documented in the comprehensive database (Phyllis2). Unlike volatiles, ash 



 

 

Table 2: Physical and chemical properties of the different biomass 

 

 

 

 

 

 

 

 
      

                

  Birch Oak Spruce Poplar Willow   Test standard 

Proximate analysis (dry basis)               

Volatile matter, % 82.2 82.9 82.6 83.9 80.7   EN 15148 : 2009 

Ash, % 0.5 1.4 0.7 0.9 1.3   EN 14775 : 2009 

Ultimate analysis (dry basis)               

Carbon, % 50.4 48.9 50.7 49.4 49.9   EN 15104 : 2011 

Hydrogen, % 5.6 6.0 6.0 6.0 5.9   EN 15104 : 2011 

Oxygen, % 43.4 43.5 42.4 43.5 42.4   EN 14918 : 2010 

Nitrogen, % 0.12 0.20 0.14 0.22 0.53   EN 15104 : 2011 

Sulphur, % 0.017 0.018 0.011 0.019 0.038   SS 187177: 1991 

Chlorine, % 0.019 <0.011 <0.011 <0.011 <0.011   EN 15289/15408 

Lower heating value, MJ/kg  20.005 18.896 20.271 19.673 19.803   SS EN 14918 

Structural analysis (dry basis)* a b c d e     

Cellulose, % 40.6 38.1 44.5 46.2 38.5   N/A 

Hemicellulose, % 29.6 26.1 20.6 24.4 17.6   N/A 

Lignin, % 26.3 25.9 27.8 24.5 26.3   N/A 
*: Ref (Gai & Dong, 2012); a: avg. 7 samples; b: avg. 3 samples; c: avg. 4 samples; d: avg. 5 samples; e: avg. 1 sample; N/A: not applicable 

 



 

 

amount among the woody fuels was dissimilar and ranged between 0.5 % and 1.4 

% with the highest from oak and willow, and the lowest from birch respectively 

(Table 2). Besides oak, energy crops (poplar and willow) in general presents 

higher ash than those of the forest crops due to relatively more bark content 

compared to the older trees. For oak this perhaps can be attributed due to several 

factors such as fertilization, soil quality, environmental conditions, high bark in 

wood and so on (Serapiglia et al., 2013). The LHV on the other hand seemed to 

present an inverse relationship with ash being highest and lowest for spruce and 

oak respectively (Table 2). In general, the LHV for all the biomass ranged 

between ~19 MJ/kg and ~20 MJ/kg (Table 2).      

 

Observing elemental analysis results, no clear difference among carbon, 

hydrogen and oxygen composition was noticed the average of which more or less 

kept at ~50 %, ~ 6 % and ~ 43 % respectively, with a slightly lower amount of C 

for oak. Unlike, the percent amount in-terms of N and S varied and the highest 

values for both the elements were observed from willow. The N and S content in 

the fuel is normally influenced by the fertilization and by the increased fraction 

of bark in the wood (Adler et al., 2005; Klasnja et al., 2002). However, as the 

energy crops poplar and willow underwent similar fertilization, the difference in 

N and S might have occurred due to the higher amount of bark. Among the 

energy crops willow in general has higher bark to wood ratio than that of the 

forest biomass (Adler et al., 2005).   

 

In regards to the structural composition as obtained from the Phyllis database, no 

clear trend of cellulose, hemicellulose and lignin were observed between the two 

classes of biomass (forest crops and energy crops). Noticeably, cellulose was the 

highest components found across the feedstocks in contrast to that of lignin for 

the higher density biomass birch and oak. Nevertheless, for the lower density 

woodchips (spruce, poplar and willow) the content of hemicellulose was found 

lower than that of lignin (Table 2). 

 

            

 



 

 

3.2. Gasification of woodchips 

 

Fixed-bed downdraft gasification on five different woody biomasses (three long 

rotation and two short rotation crops) was carried out to examine the evolution of 

operational parameters in regards to product gas composition, LHV, cold gas 

efficiency, carbon conversion efficiency and temperature the effect of which as a 

result of varied ER, temperature and time are presented in Figure 3 through 8. 

Further, the results are discussed in the following sub-sections.   

 

Effect of ER on gas composition 

 

The producer gas resulted from the gasification of woodchips was mainly 

composed of CO, CO2, O2, N2, H2, H2O and CH4. The distribution of these gas 

species varied according to the type of the fuel and to the operating conditions 

such as ER the effect of which is illustrated by Figure 3. Moreover, linear 

regression results as an effect of ER on various gasification characteristics are 

included in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Variation in gas compositions as an effect of ER 

 

 

 



 

 

As for combustible gas species, increasing ER contributed to increase CO up to a 

certain level of ER and then decreased for birch, oak, spruce and willow (Figure 

3). This trend of CO coincides with the similar study by (Zainal et al., 2002) and 

was presumably attributed due to the combined effect of Boudouard (Eq. 3) and 

combustion reactions (Eqs. 4 & 5). At higher ER theoretically the strength of 

combustion reactions (Eqs. 4 & 5) increase which results the increased 

conversion of CO into CO2 while at lower ER the extent of Boudouard (Eq. 3) 

reaction increase as a result contributing the enhanced production of CO at an 

expense of CO2 (Sarker et al., 2015a). 

 

Boudouard reaction:             � + �ܱ2 ↔ ʹ�ܱ;  � =  +ͳ͹ʹ ݇� ݉�݈⁄      ሺ͵ሻ  

Combustion reaction:           � + ܱ2 ↔ �ܱ2;  � =  −ͶͲͺ.ͺ ݇� ݉�݈⁄      ሺͶሻ  

Carbon partial reaction:  ʹ� + ܱ2 ↔ ʹ�ܱ;  � =  −ʹͶ͸.Ͷ ݇� ݉�݈⁄      ሺͷሻ   

  

Dry reforming :                ��4 + �ܱ2 ↔ ʹ�ܱ +  ʹ�2;  � =  −͹ͻ͵ ݇� ݉�݈⁄  ሺ͸ሻ 

Hydrogasification:            � + ʹ�2 ↔ ��4;  � =  +͹ͷ ݇� ݉�݈⁄                       ሺ͹ሻ 

Methanation:                    �ܱ + ͵�2 ↔ ��4 +  �2ܱ;  � =  −ʹʹ͹ ݇� ݉�݈⁄   ሺͺሻ    

Steam reforming:               ��4 + �2ܱ ↔ �ܱ +  ͵�2;  � =  +ʹͲ͸ ݇� ݉�݈⁄   ሺͻሻ 

Water-gas reaction:          � + �2ܱ ↔ �ܱ +  �2;  � =  +ͳ͵ͳ ݇�/݉�݈       ሺͳͲሻ    

Water-gas shift :                �ܱ + �2ܱ ↔ �ܱ2 + �2;  � =  +Ͷͳ.ͻͺ ݇� ݉�݈⁄ ሺͳͳሻ   

  

 

The CO trend for poplar unlike other biomasses was increasing as the ER rose. 

This trend however was statistically insignificant (p = 0.05) (Table 3).  

 

In regards to CH4, the trend of birch and spruce was increasing and decreasing in 

contrast to that of oak, poplar and willow which were decreasing. The pattern of 

H2 followed the similar trend of CH4 for birch, oak, spruce and poplar, except for 

willow for which the tendency was increasing and decreasing; this trend however 

was statistically insignificant (p = 0.31) (Table 3). In general, energy crops 

willow and poplar yielded less CH4 and higher H2 than that of the forest biomass 

(Figure 5). This perhaps can be due to the higher level of inherent moisture 

(Table 4) strengthening the reforming reactions to enhance the production of H2 

at an expense of CH4 (Ni et al., 2006).  



 

 

Table 3: Regression analysis of gasification performance (all runs) 

 

 

 
                                          

    Birch   Oak   Spruce   Poplar   Willow 
    R2   p   R2   p   R2   p   R2   p   R2   p 

CO fraction, vol.   0.21   0.02   0.41   < 0.01   0.30   0.04   0.11   0.05   0.30   0.02 
CO2 fraction, vol.   0.09   0.07   0.04   0.01   0.10   0.18   0.31   < 0.01   0.08   0.05 

H2 fraction, vol.   0.63   < 0.01   0.19   0.01   0.38   < 0.01   0.14   < 0.01   0.14   0.31 

CH4 fraction, vol.   0.50   < 0.01   0.20   0.01   0.29   < 0.01   0.28   < 0.01   0.06   0.03 

Gas LHV, MJ/Nm3   0.63   < 0.01   0.27   < 0.01   0.36   < 0.01   0.20   0.04   0.17   0.19 

Vg, Nm3/kg   0.13   0.03   0.12   0.02   0.07   0.02   0.03   0.07   0.09   0.09 
CGE fraction   0.43   < 0.01   0.24   0.03   0.14   0.04   0.15   0.03   0.06   0.05 
CCE fraction   0.31   < 0.01   0.13   0.06   0.09   0.06   0.13   0.05   0.15   0.04 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Real-time evolution of producer gas composition from a 

representative test run on each feedstock 

 

 

 

 

 

 

 

 

Figure 5: Average performance of gasification for all runs (three tests per 

woodchips species) 

 

As of incombustible species in the producer gas CO2, O2 and H2O was measured 

and only the evolution of CO2 is discussed.  Expectedly, the CO2 trend for most 

of the biomass was found inverse to that of CO except for birch and poplar which 

was decreasing. The trend of birch however was not statistically significant (p > 

0.05) (Table 3) while the trend of poplar showed a large statistical deviation at 

higher value of ER, believed to be caused due to the bridging evidenced in Figure 

 

 



 

 

4. Bridging has been one of the challenges in the present gasification tests, 

encountered for number of instances. Zainal et al.(Zainal et al., 2002) termed 

bridging as a normal phenomenon in fixed bed downdraft gasification likely to 

be prompted due to the variation in wood chips size,air flow and temperature, 

etc.. In another study (Purdon, 2010), wood chips size less than ~19 mm  was 

considered vulnerable to cause process difficulties in-terms of bridging and such. 

As the present work used wood chips of 1-10 mm size, bridging formation was 

expected and eventually experienced which however did not reportedly cause a 

complete process failure.          

 

Noticeably, the H2 yield from all the tests conducted on spruce was by far the 

lowest (Figure 5) which perhaps indicates that the water-gas reaction (Eq. 10) 

compromised to other endothermic reactions aiding to sustain gasification. A 

similar phenomenon for low density softwoods alike spruce was also observed by 

the past study (Purdon, 2010).     

 

Effect of ER on performance of gasification 

 

As ER varied (0.19 – 0.80), several gasification parameters such as gas LHV, 

specific gas yield (Vg, Nm3/kg, wet base), CGE and CCE also varied, the 

evolution of which corresponding to each woody feedstock was illustrated by the 

Figure 6 while the summary results obtained from each gasification test are given 

in Table 4.  

 

In regards to birch, increase in ER between the range 0.15 and 0.41 contributed 

to increase the average gas LHV which however decreased as the ER rose further 

to the end (0.80). As observed from the Figure 3, lower ER contributed to 

increase the trend of the combustible gas species (CO, CH4 and H2) and therefore 

the obvious increase in LHV which however logically decreased in case of 

higher ER, as the contributing gas species fell.  Noticeably, peak LHV for this 

feedstock reached to ~5.2 MJ/Nm3 (wet base) corresponding to the ER at 0.33. 

The peak and the average LHV (~4.37 MJ/Nm3, wet base) saw a dramatic 

improvement in this work since the last work by the same authors (Sarker & 

Nielsen, 2015)  due mainly to the improvement in operational parameters in 



 

 

regards to the ER, air flow and temperature (Table 4). As for Vg (wet base), the 

similar pattern of LHV was observed which increased and decreased as the ER 

gradually increased. The Vg averaged at ~2.06 Nm3/kg (wet base) (Table 4 & 

Figure 5) with maximum at ~2.65 Nm3/kg (wet base) corresponding to the ER = 

0.38. Increased gas yield during the lower ER was perhaps due to the enhanced 

volatilization (Gómez-Barea et al., 2005) during the state of gasification while 

the decreased gas yield during the higher ER was due to the dilution caused by 

the proportional increase in N2 as an effect of proportional rise in air supply. 

Since the similar increasing and decreasing trend was obtained both from LHV 

and gas yield, the simultaneous effect of these has been reflected to the evolution 

of CGE and CCE, averaging to ~45% and ~68% that further maximized at ~63% 

and ~90% corresponding to the ER at 0.37 and 0.38 respectively (Table 4).  

 

Likewise birch, the trend of LHV for oak was also increasing and decreasing and 

peaked to ~5.1 MJ/Nm3 corresponding to the ER = 0.41 (T = ~546 °C) (Fig.6).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Average performance of gasification for all runs in relation to ER 

 

 



 

 

Table 4: Operational conditions and summary results from the gasifier test runs 

 

 

 

 

Biomass type
Run ID R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15
Test date 19.12.2014 20.02.2015 25.02.2015 03.12.2014 09.12.2014 30.01.2015 10.01.2015 13.01.2015 04.03.2015 05.02.2015 06.02.2015 10.02.2015 20.11.2014 24.11.2014 16.02.2015

Avg. Air flow rate, Nm3/h 3.53 ± 0.40 3.95 ± 0.72 4.00 ± 1.22 3.59 ± 0.67 3.64 ± 0.43 3.70 ± 0.48 3.18 ± 0.57 3.31 ± 0.25 3.22 ± 0.52 4.06 ± 0.77 3.37 ± 0.61 5.26 ± 0.95 2.91 ± 0.77 2.82 ± 0.82 4.09 ± 0.82

Air density, kg/m3 1.22 1.21 1.21 1.22 1.22 1.21 1.22 1.22 1.22 1.23 1.23 1.20 1.22 1.21 1.21
Avg. Room temp., °C 16.4 ± 0.7 18.4 ± 0.7 18.0 ± 0.6 16.1 ± 0.7 16.0 ± 0.9 17.8 ± 1.1 16.1 ± 1.1 17.1 ± 1.1 17.0 ± 0.6 15.0 ± 0.3 19.2 ± 0.6 20.6 ± 0.7 17.3 ± 1.4 19.1 ± 0.8 17.4 ± 0.8
Biomass feed rate, kg/h 2.52 ± 0.51 2.80 ± 0.91 2.50 ± 0.49 2.38 ± 0.53 2.61 ± 0.65 2.36 ± 0.60 2.47 ± 0.45 2.43 ± 0.18 2.49 ± 0.25 2.50 ± 0.55 2.26 ± 0.34 4.49 ± 0.63 2.69 ± 0.74 2.70 ± 0.97 2.51 ± 0.41
Biomass moisture content, % 6.6 8.6 8.3 7.4 6.7 6.7 6.3 6.6 11.0 9.8 10.0 10.5 6.9 7.7 9.8
Total biomass+charcoal feed, kg 6.39 10.615 12.29 9.837 9.602 13.1 9.251 8.643 7.217 11.923 7.366 12.902 9.272 6.5 10.9
Total biomass + charcoal converted, kg 4.67 9.37 11.59 8.76 8.65 9.90 8.21 7.33 5.66 11.11 5.99 12.05 8.54 5.70 8.70
Tar + condensate output (hopper),g 130 N.D. 120 115.8 162 N.D. 122 160 11 126.29 85 22 115 146 0
Tar + liquid output (cooler), g 120 250 130 302 535 710 416 636 262 174 171 200 417 275 265
Total operational time, min. 255 366 336 282 250 347 250 283 241 403 297 275 325 275 346
Avg. Room temp., °C 16.4 18.4 18.0 16.1 16.0 18.0 16.1 17.1 17.0 15.0 19.2 20.6 17.3 19.1 17.4
CO composition (producer gas), wt.% 19.7 ± 1.7 19.4 ± 3.8 18.5 ± 3.7 21.7 ± 5.1 20.3 ± 3.4 16.4 ± 4.7 18.3 ± 4.3 20.6 ± 2.4 20.5 ± 2.4 19.0 ± 3.3 19.5 ± 3.8 19.7 ± 2.6 19.0 ± 2.7 16.9 ± 3.8 17.3 ± 3.0
CO2 composition (producer gas), wt.% 10.0 ± 2.1 10.3 ± 1.1 9.5 ± 1.6 9.1 ± 1.8 11.1 ± 1.3 9.73 ± 2.2 9.4 ± 1.5 7.9 ± 0.6 8.6 ± 1.1 8.8 ± 2.4 7.90 ± 1.8 9.6 ± 2.4 10.2 ± 2.2 9.6 ± 1.6 11.0 ± 2.3

H2 composition (producer gas), wt.% 11.9 ± 2.3 10.3 ± 3.3 11.0 ± 4.3 9.0 ± 2.3 11.1 ± 2.3 8.5 ± 4.5 9.2 ± 3.2 10.0 ± 1.5 8.4 ± 3.0 14.2 ± 3.0 10.9 ± 3.0 15.3 ± 2.8 12.9 ± 4.2 12.1 ± 3.5 11.4 ± 3.6

CH4 composition (producer gas), wt.% 2.1 ± 0.8 2.3 ± 1.0 1.8 ± 1.1 2.2 ± 0.8 2.5 ± 0.6 1.6 ± 1.2 1.7 ± 0.8 1.8 ± 0.5 1.6 ± 0.4 0.8 ± 0.5 0.9 ± 0.7 1.3 ± 0.9 1.2 ± 1.0 1.5 ± 0.6 1.6 ± 1.2

LHV, MJ/Nm3 (wet basis) 4.5 ± 0.4 4.4 ± 1.1 4.2 ± 1.1 4.5 ± 1.1 4.6 ± 0.9 4.3 ± 1.0 3.9 ± 1.1 4.3 ± 0.5 4.0 ± 0.7 4.2 ± 0.5 3.9 ± 0.8 4.6 ± 0.5 4.2 ± 0.7 3.95 ± 1.0 3.97 ± 0.9

Avg gas yield, Nm3/kg (wet basis) 2.00 ± 0.29 2.02 ± 0.42 2.17 ± 0.54 2.13 ± 0.32 2.05 ± 0.38 2.32 ± 0.86 1.89 ± 0.30 1.81 ± 0.23 1.67 ± 0.26 2.30 ± 0.45 1.91 ± 0.38 1.93 ± 0.25 2.03 ± 0.46 1.45 ± 0.40 2.22 ± 0.38
CGE, % (wet basis) 45.1 ± 7.8 44.1 ± 14.8 44.3 ± 14.1 52.5 ± 13.4 50.9 ± 15.1 50.0 ± 14.1 34.9 ± 12.6 38.6 ± 7.8 32.8 ± 8.2 49.3 ± 12.2 39.0 ± 12.6 40.3 ± 6.3 42.9 ± 11.2 28.9 ± 11.2 43.1 ± 10.4
CCE, % (wet basis) 67.3 ± 11.0 68.5 ± 16.6 68.5 ± 18.4 79.5 ± 17.4 76.5 ± 17.5 72.3 ± 14.2 56.0 ± 13.4 58.2 ± 10.0 70.0 ± 20.5 71.6 ± 16.4 59.2 ± 15.8 68.6 ± 18.1 65.8 ± 14.7 50.4 ± 26.4 69.6 ± 11.6
Avergae producer gas dew point,  °C 11.3 ± 0.5 13.6 ± 0.4 13.0 ± 0.2 11.7 ± 0.7 11.4 ± 0.5 11.8 ± 0.4 10.7 ± 0.5 11.3 ± 0.6 12.3 ± 0.9 13.2 ± 0.6 14.3 ± 0.5 16.1 ± 0.8 11.5 ± 0.8 14.5 ± 0.4 12.0 ± 0.8
ER range 0.20-0.78 0.20-0.77 0.20-0.80 0.25-0.79 0.19-75 0.19-0.64 0.20-0.77 0.25-0.67 0.25-0.60 0.22-0.83 0.25-0.71 0.22-0.64 0.25-0.81 0.14-0.58 0.23-0.81
Bed temperature,  °C 594 684 625 647 600 575 565 602 553 711 620 668 609 667 755
aMoisture, producer gas % 10.21 11.78 11.35 10.47 10.28 11.35 9.83 10.21 10.87 11.49 12.30 13.72 10.34 12.45 10.67
Char yield, g/kg (wet basis) 242.25 104.15 48.41 93.06 82.99 220.34 102.74 140.07 201.72 63.41 175.43 60.32 62.37 102.15 180.64
Ash yield, g/kg (wet basis) 26.92 13.14 8.54 16.42 16.16 23.94 9.79 11.85 14.02 4.77 11.60 5.75 16.58 20.92 21.19

Tar+liquid yield, g/Nm3 (wet basis) 26.77 13.21 9.94 22.41 39.32 30.91 34.67 60.00 28.88 11.75 22.38 9.55 30.68 50.95 13.72

N.D.: Not detected; a: determined based on Ref. (Phyllis 2) by using a correlation between dew point and gas moisture

Birch Oak Spruce Poplar Willow



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Variation in gasification compositions as an effect of bed 

temperature 

 

 

The peak LHV for this biomass seemed to establish at a higher ER than that of 

birch while the average (~4.47 MJ/Nm3, wet base) kept little higher (Figure 5). 

This perhaps can be explained by the effect of bulk density (Table 1) the lower 

the value of which typically contributes to increase the supply air to the reactor 

and thus the increased operational ER (Purdon, 2010). The Vg meanwhile 

showed the similar trend as of birch and averaged at ~2.17 Nm3/kg (wet base) 

with a peak reaching to ~2.52 Nm3/kg (wet base) corresponding to the ER = 0.42 

(Figure 6); these values (average and peak) however are little inferior than those 

of birch. With the concurrent effect of the trend of LHV and gas yield, the CGE 

and CCE showed obvious increasing and decreasing tendencies averaging to 

46% and 72% respectively, maximized at 68% and 97% corresponding to the 

same ER at 0.42 (Figure 6).  

 

As far as gasification performance of spruce is concerned, the gas LHV 

demonstrated a similar trend to that of birch and oak. This value however 

 



 

 

averaged a little lower at ~4.1 MJ/Nm3 (wet base) and peaking to ~5.2 MJ/Nm3 

(wet base) corresponding to the ER = 0.36. By and large, the trend of gasification 

properties of this wood chips is pretty comparable to that of birch, expect the 

pattern of Vg showing a decreasing and increasing tendency throughout. 

Noticeably, the average specific gas yield for this crop reached to ~1.76 Nm3/kg 

(wet base) which maximized at ~2.45 Nm3/kg (wet base) corresponding to the 

ER = 0.36. These yields however were lower than those of birch and oak and 

attributed due to the presence of less H2 in its product gas (Figure 6). As a 

consequence of less average H2, the CGE of this biomass was also lower and 

reached to ~35% which maximized to ~63% corresponding to the ER = 0.36 

(Table 4, Figures 6 & 7). CCE on the other hand averaged to ~61% and 

maximized to 95% corresponding to the ER = 0.41. Likewise CGE, this yield 

was also found lower which presumably due to the presence of less amount of 

carbonaceous gas in the producer gas components. It is worthwhile to note that 

unlike CGE, the level of CCE is essentially affected by the amount of carbon 

containing species in the producer gas and thus in spite of the presence of less 

amount of combustible quantities, greater CCE value can be achieved due to the 

higher abundance of CO2.  

 

In addition to the forest biomass, gasification performance of energy crops poplar 

and willow has also been investigated where the performance in-regards to the 

former was found superior than that of the latter. For instance, the average gas 

LHV, Vg, CGE and CCE obtained from poplar were: ~4.2 MJ/Nm3 (wet base), 

~2.05 Nm3/kg (wet base), ~43% and ~66% respectively, in contrast to those 

obtained from willow as: ~4.0 MJ/Nm3 (wet base), ~1.93 Nm3/kg (wet base), 

~38% and ~62% respectively (Table 4 & Figure 5). The peak LHV and Vg for 

poplar was by far the highest among all the wood chips tested here, reaching to 

~5.3 MJ/Nm3 (wet base) (at ER = 0.31) and ~2.68 Nm3/kg (wet base) (at 

ER=0.42) respectively (Figure 6). In regards to willow on the other hand, the 

peak LHV amounted to ~5.1 MJ/Nm3 (wet base) corresponding to the ER = 0.29 

which was the lowest among all the feedstocks discussed here (Figure 6). The Vg 

on the other hand appeared to maximize at ER = 0.45 to 2.66 Nm3/kg (wet base) 

which is comparable to that of poplar. However, owing to the lower average Vg 



 

 

and LHV, the CGE and CCE of this biomass demonstrated lower average values 

as compared to those of birch, oak and poplar (Figure 5, Table 4).  

 

From the above discussion, it can thus be concluded that optimum gasification on 

studied wood chips was achieved when the ER operated between the range 0.29 

and 0.42.    

 

3.3. Effect of bed temperature  

 

The gasification performance of the woodchips were affected by the variation in 

bed temperature and reflected to the major operational parameters such as gas 

composition, gas yield, LHV, CGE and CCE the corresponding relationship of 

which are depicted by Figures 7 & 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Performance of gasification as an effect of bed temperature 

 

 

Among the several biomass investigated, two extreme peak temperatures - being 

highest (~770C) and lowest (~600C), were observed from willow and spruce 

respectively. The other crops achieved maximum temperature of around 700C, 

 



 

 

with a slightly higher value attained from poplar.  For a given biomass, bed 

temperature is a direct function of air and typically high air flow leads to high 

bed temperature. However, for a given air flow rate, the bed temperature is a 

function of type of fuel (its physical and chemical characteristics) and the type of 

gasification reactors. As the chemical composition among the woodchips used in 

this study did not present much of a variation and the controlling parameter (such 

as air flow) kept fairly stable, the difference in maximum bed temperature was 

likely to occur due to the variation in physical properties (Lenis et al., 2013), i.e.; 

the size of woodchips, the ratio between bark and wood, density etc. Lower 

density fuel typically contributes higher bed temperature as more air is drawn 

into the reactor resulting enhanced combustion (Purdon, 2010). This seemed to 

be established in case of willow and poplar. However, despite the lower density 

fuel, the lower bed temperature from the gasification of spruce is surprising. One 

possible reason for this could be the higher extent of endothermic reactions 

contributing gasification to sustain at an expense of heat. The lower gasification 

temperature of this biomass directly impacted the thermal conversion and as a 

result the highest yield of char and tar (Figure 5). Conversely, the higher 

temperature contributed to enhance the extent of cracking char and tar and hence 

the lower production of these substances in case of gasification of willow and 

poplar (Figure 5).  On the other hand, birch and oak although yielded reasonable 

char and tar (Figure 5), showed better performance in terms of gasification 

efficiencies (i.e.; CGE, CCE), as the gas LHV and specific yield from these fuels 

kept higher.       

 

Meanwhile, observing Figure 7, with the rise in bed temperature the gas 

compositions among the wood chips birch, oak, spruce, poplar and willow 

exhibited the following tendencies: CO and H2 increased, CO2 increased and 

decreased except for poplar for which only increased, CH4 increased except for 

poplar and birch for which both increased and decreased. As already mentioned, 

the phenomenon of increasing CO and decreasing CO2 at higher bed temperature 

could probably be attributed due to the enhanced Boudouard (Eq. 3) reaction, 

while the increasing hydrogen might be prompted due to the increased water-gas 

(Eq. 10) or, water-gas shift reaction (Eq. 11) (Cao et al., 2006). The decreased 

methane at higher bed temperature was on the other hand likely influenced 



 

 

through steam reforming (Eq. 9) (Pinto et al., 2002) which tended to establish in 

case of birch and poplar. However, in case of other biomass this trend was 

perhaps inversed and associated with the reverse reforming or, dry reforming 

(Eq. 6).  

 

Along with the gas compositions, the other parameters influencing the 

gasification performance established the following tendencies (Figure 8): gas 

LHV increased and decreased except for oak and willow for which only 

increased; Vg increased except for poplar and spruce for which decreased and 

increased; CGE increased except for birch, oak and poplar for which increased 

and decreased; CCE increased except for birch and poplar for which decreased 

and increased and for oak increased and decreased respectively. For birch and 

most other crops, expectedly, the increasing and decreasing tendency of LHV 

were resulted due to the similar tendency of CH4, the minor variation of which 

greatly affects the magnitude of LHV (Xue et al., 2014). For the rest of the 

feedstock, the trend of LHV was increasing which was mainly because of the 

greater contribution of CO that linearly rose as the bed temperature rose. In 

regards to the specific gas yield theoretically the yield enhances as the bed 

temperature rises since the extent of tar cracking and combustion reactions (Eqs. 

4 & 5) strengthen. This appeared to establish for all the crops but for poplar and 

spruce for which the gas yield gradually decreased and increased as the bed 

temperature augmented. The decreased gas yield during the higher bed 

temperature was likely to be caused due to the dilution of product gas with N2 

when the air supply increased while the higher product gas at higher bed 

temperature was due to the increased combustion leading to escalate CO2 and as a 

result the enhanced level of specific gas. The combined effect of gas LHV and 

Vg reflected to the evolution of CGE, the patter of which was either increasing 

or, increasing and decreasing. The maximum CGE ranged between ~53% and 

~82%, achieved between the corresponding temperature of ~483C and ~670C 

respectively. Noticeably, the highest CGE was obtained from birch at ~82% 

corresponding to the bed temperature of 483C in contrast to the lowest from 

willow at ~53% corresponding to the bed temperature of ~670C. In general, the 

excessive bed temperature led to decrease the CGE, as the product gas 

composition was degraded by the higher amount of incombustible components 



 

 

such as the enhanced amount of CO2. In contrary, the level of CCE increases as 

the level of bed temperature rises, since this efficiency is positively affected by 

the enhanced amount of carbonaceous gas, for example, the increased 

concentration of CO, CH4, CO2 and so on. Thus the peak CCE for all the biomass 

was achieved at a relatively higher temperature despite the evolution trend 

demonstrated different pattern as the type of the feedstocks differed.  

 

Concluding from the above discussion, the gasification performance in-terms of 

LHV, Vg, CGE and CCE of the studied biomass can decisively be ranked as: oak 

> birch > poplar > willow > spruce, which can be also confirmed by the data 

presented in Figure 5.      

 

3.4. Tar recovery and composition 

 

Tar is a complex mixture of chemical compounds consisting of series of aromatic 

hydrocarbons which can remain stable over a wide range of gasification 

temperatures and thus to some extent their presence in the producer gas is 

unavoidable. In the present study, the gravimetric tar was sampled in 

combination with water and analyzed for the evaluation of gasification 

performance and mass balance as shown in Tables 6 & Figure 5.  

 

As observed, among all the biomass investigated, spruce resulted the highest 

amount of tar + liquids at ~41 g/Nm3 in contrast to poplar at ~12 g/Nm3. Spruce 

by far achieved the lowest gasification temperature which might be the reason 

why this biomass yielded the highest tar. In general, the lower temperature leads 

to yield higher amount of primary tar (Basu, 2010) as opposed to secondary and 

tertiary tar and therefore the majority of the tar in this feedstock might have been 

the primary tar.  In contrary, due to the higher gasification temperature, a 

substantial fraction of primary tar convert into gas and other form of tars and thus 

less total tar from the gasification of poplar. In regards to oak and willow on the 

other hand the level of gravimetric tar were found fairly similar (at ~30 g/Nm3) 

although the gasification temperature between these two biomasses were 

different being willow to be higher than that of oak (Figures 7 & 8). This perhaps 

could be due to the variation in the amount of liquid condensates between the 



 

 

two samples rather than the tar itself since these two components were 

collectively called tar.   

 

Table 5: Tar composition results obtained from the SPA tests conducted for 

the sample  of oak (Run R5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to the gravimetric tar, the compositional tar exclusively for oak was 

measured as according to the SPA protocol and the results are illustrated in Table 

5.  The tar samples collected for other feedstocks did not produce representative 

results due to the technical and analytical constraints and hence is not reported 

here. As observed in Table 5, aromatics such as benzene, toluene and xylene are 

the most abundant tars detected from the present analysis followed by the 

       

Tar components 
Chemical 
formula 

Amount 
[g] 

Aromatics     

Benzene C6H6 25.60 

Toluene C7H8 13.78 

m/p-Xylene C8H10 1.67 

o-Xylene C8H10 2.39 

tert-Butylcyclohexane C10H20 N.D. 

Indan C9H10 N.D. 

Indene C9H8 N.D. 

Naphthalene C10H8 N.D. 

Phenolics     

Phenol C6H6O 10.59 

o-Cresol C7H8O 4.44 

m-Cresol C7H8O 5.97 

p-Cresol C7H8O 2.42 

2,4-Xylenol C8H10O 1.23 

2,5/3,5-Xylenol C8H10O 1.92 

2,6-Xylenol C8H10O 0 

2,3-Xylenol C8H10O 0.95 
 



 

 

phenolics such as phenols, cresols and xylenols. These spectra of tar are 

predominantly originated from the structural composition of biomass (Li et al., 

2014) and can appear over a broad range of operating conditions, particularly, 

when the gasification temperature is low (between the range 400 and 850 C) 

(Hernández et al., 2013; Morf et al., 2002). However, when the gasification 

temperature is higher, the pattern of tar may differ and mainly dominated by the 

presence of secondary and tertiary tar, i.e.; the PAHs (Siedlecki & De Jong, 

2011), at an expense of primary tar (Carpenter et al., 2010). Nevertheless, owing 

to the low gasification temperature this tar was not logically identified in the 

current analysis.      

 

3.5. Mass balance 

 

The mass balance calculation by incorporating the plant inputs (fuel flow and air 

flow) and outputs (gas, char, tar, liquids and particulates) for runs R3, R5, R7, 

R12 and R13 corresponding to the woody biomass birch, oak, spruce, poplar and 

willow are presented in Table 6. As can be seen, the lowest magnitude of error 

was found from the gasification of oak followed by spruce, birch, poplar and 

willow. By and large, the balance closure gave over 95% accuracy for all the 

cases which coincide with the existing literature (Li et al., 2004) and hence can 

be considered acceptable.  

 

However, the resulted minor errors might have been occurred due to the several 

factors such as: minor gas leakages – possibly encountered from the 

circumference of the temperature sensors, gasifer lid and from several joints in 

piping; systematic and precision errors– discrepancies resulted by the instruments 

incorporated for acquiring data; analytical errors during calculations – the values 

which were instead obtained from the instruments, analytically determined by 

using the formulas and based on some assumptions (Siedlecki & De Jong, 2011); 

rounding-off errors during data analysis; mass losses during sampling and 

feeding; uncaptured tar and accumulation of particulates, etc.  

 

 

 



 

 

4. Conclusions 
 

 

 

Long rotation forest crops (birch, oak and spruce) and short rotation energy crops 

(poplar and willow) exhibited a great potential for being converted into useful 

gas via fixed-bed downdraft gasification. In terms of most of the operational 

parameters, the gasification performance of birch and oak closely agreed with 

oak giving the highest average LHV (~4.5 MJ/Nm3, wet base), CGE (~51%) and 

Vg (~2.2 Nm3/kg, wet base). These biomasses nevertheless yielded higher char 

than that from their counterpart others. Energy crops poplar and willow on the 



 

 

Table 6: Estimation of mass balance for the selected gasification tests 

            

  Mass balance 
Test date 25.02.2015 09.12.2014 10.01.2015 10.02.2015 20.11.2014 
Test ID R3 R5 R7 R12 R13 
Feedstock type Birch Oak Spruce Poplar  Willow 
Total solid (biomass+charcoal) input, kg 12.29 9.60 9.25 12.90 9.27 
Air input, kg 22.40 15.47 13.25 19.53 15.71 
Producer gas output, kg 32.70 23.05 20.17 30.23 22.54 
Char output, kg 0.70 0.95 1.04 0.85 0.73 
Liquid, tar and particulates output, kg 0.25 0.70 0.54 0.22 0.53 
Error, kg 1.04 0.37 0.75 1.12 1.18 
Error, % 3.01 1.48 3.33 3.45 4.72 

 



 

 

other hand displayed higher bed temperature, being willow to be the highest, 

which favored to reduce tar, char and ash, and to greatly enhance H2 content. On 

an average, the results obtained from the above biomasses (birch, oak, poplar and 

willow) are interesting in aspects of utilizing product gas to transform into H2, 

liquid biofuel and heat and electricity through arrays of downstream conversion 

units. Meanwhile, the performance of spruce in various aspects of gasification 

was revealed poor, although this fuel provided the highest average CO (vol.) and 

higher average CH4 (vol.) than that of the energy crops.  The degraded 

performance of spruce may be associated with its physical properties such as low 

bulk density andlow bark to wood ratio, etc. Worthwhile also to note, unlike 

other crops, spruce was the only softwood in this study presumably contributed 

to develop thermal conversion inherently different than that of the hardwoods. 

Nonetheless, the mean gas quality (LHV: ~4.1 MJ/Nm3, Vg: ~1.8 Nm3/kg, wet 

base) and the process performance obtained from this feedstock still in the 

acceptable range to meet the requirement of the downstream applications such as 

energy production via gas engine or, turbine. All in all, considering the overall 

performance, the wood species examined in this study may be ranked as: oak > 

birch > poplar > willow > spruce for which the optimized ER appeared to 

establish between the range 0.29 and 0.42.    
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a b s t r a c t

Hybrid energy system is increasingly emerging as an option to produce energy for the remote areas. This
paper presented an economic feasibility analysis of a single standalone house operating with a hybrid
power plant consisting of a fixed capacity producer gas generator (2 kWe) and other renewable energy
sources (Photovoltaic and wind). The National Renewable Energy Laboratory's Hybrid Optimization
Model for Electric Renewable (HOMER) model was employed which evaluated the techno-economic
analysis based on the criteria of net present cost and levelized cost of electricity. Taking the site spe-
cific daily average solar radiation, average wind speed and load data into account, renewable hybrid
model consisting of Bio/PV (Photovoltaic)/wind/battery/capacitor was found feasible giving 19,866 kWh/
year of energy with a levelized cost of electricity of 0.306 kWh/yr. While comparing the hybrid system
with a diesel or, natural gas generator alone, the maximum savings from CO2 emissions worth 22,626 kg/
yr. was achieved. The sensitivity analysis over a range of diesel/natural/producer gas price (0.1 $/L to 1 $/L
or, 0.1 $/m3 to 1.0 $/m3) showed that in addition to the environmental benefits hybrid energy configu-
ration could result economic advantages when the producer gas price does not exceed the threshold of
0.1 $/m3.

© 2015 Published by Elsevier Ltd.

1. Introduction

Energy is a single most commodity mankind deals every day.
Yet, its ceaseless availability is not always guaranteed and the
production is often associated with familiar issues like carbon
footprint, low efficiency and resource depletion. To reverse these
challenges and to enhance reliability, energy needs be produced
from alternative sources such as fromwind, solar and biomass and
the access should be achieved through viable pathways so that
demands both at centralized and decentralized levels are feasibly
met.

As a country, Norway has an exemplary share of renewable
energy worth ~95% of the total production capacity due thanks to
its wealth of hydroelectricity [1]. Although hydropower is one of
the most promising sectors of renewable energy, the nation is also
blessed with other potential sources such as wind and biomass [2].
With the availability of blend of renewable resources, Norway as a
Kyoto ratified country is nicely shaped to fulfill its commitment

towards reducing 30% CO2 emissions by the year 2020 [3]. The drive
towards meeting the targeted CO2 reduction could be directed in
multiple areas at several scales and levels where the integration of
various forms of renewable energy would be the key.

In-terms of the availability of various forms renewable energy,
Southern Norway, especially Grimstad (58� 200 2500 N, 8� 350 3600 E)
is particularly attractive. Due to the preferential geographical lo-
cations, this area is heavily endowed with high solar irradiation
with annual horizontal insolation of around 900 kW h/m2 [4]. It
also has wide range of forest resources [5] as well as abundant wind
[6]. However, the electricity production from solar energy in
Grimstad, likewise entire Norway, is not significant [7]. Total elec-
tricity generation from wind is also far too small compare to the
demand because of the lack of initiative and investment. Although
solar and wind contain a huge potential to be converted into en-
ergy, themajor constraints regarding these sources are unreliability
and unpredictability [8]. A stand-alone renewable energy plant
operating 100% with solar energy may be unrealistic, as power
cannot be produced during the cloudy days when sunlight is un-
available. Alternatively, a stand-alone system operating solely with
wind turbine is also infeasible throughout the year due to theE-mail address: shiplu.sarker@uia.no.
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unusable production of power when wind speed goes below 3 m/s
or, above 20 m/s (for the wide range of wind turbine capacity) [9].
Thus, to avoid this problem, hybrid energy system can offer a
valuable alternative which involves two or, more sources of energy
for fulfilling a particular demand. Typical hybrid energy system for
instance can combine a fossil fuel generator either with solar or,
wind energy or, both. A number of documented researches have
demonstrated that hybrid energy systems are more suitable than
single source energy systems in-terms of economic feasibility and
reliability. In fact, renewable hybrid energy systems have been a
topic of investigation in many contemporary works. For example, a
Biomass gasification/PV hybrid energy system was modeled and
validated by Ref. [10] for power supply to a decentralized section of
a renewable energy research building in Congo for which the op-
timum size and cost of the power plant units were determined. The
results indicated that hybrid energy system as an isolated unit is
feasible to satisfy the power demand of an independent research
center in Congo. In another work [11], a standalone hybrid system
consisting of wind/PV/fuel cell (FC) was modeled to determine the
power demand management of a remote area in a Pacific North-
west region in the USA using real climatic data both for winter and
summer scenarios. The results showed that the proposed hybrid
system is effective for regulating round the year power demand of
the remote municipalities. In addition to the small scale plants,
hybrid energy systems of large scale capacity providing power for a
remote hotel located in subtropical coastal area of Queensland,
Australia, was assessed in a study by Ref. [12] for several combi-
nations of renewable energy system. Feasibility analysis revealed
that hybrid plant based on wind energy conversion system (WECS)
exhibited potential long-term advantages in terms of Net Present
Cost (NPC) for tourist resorts requiring stand-alone electricity.
Further, Ashok K [13] modeled and analyzed the several configu-
rations of renewable hybrid systems capable to provide electricity
demand of a remote village in south Kerala, India. The main
objective of the study was to find an optimum combination of
energy sources which are attractive in-terms of least life cycle cost.
It was concluded that micro-hydro-wind was optimum in terms of
both economics and environments, provide electrification to the
rural remote community at a unit cost of 6.5 R s/kWh. Lately, Khan
et al. [14] proposed a technique where renewable hybrid configu-
ration featuring PV/biogas digester/membrane distillation (MD)
was considered for a purpose of producing energy as well as of
supplying pure drinkingwater to the inhabitants of a remote village
(Panipara) located in Bangladesh. After feasibility analysis it has
been concluded that hybrid energy plant offers a clear economic
advantage in a case when including with the utilization of renew-
able electricity the by-products from the biogas digester is used as
fertilizers for on-farm application.

Based on these facts, techno-economic analysis of a renewable
hybrid energy system meeting energy demand of a standalone
house in Southern Norway is proposed in this paper which, to the
best of the author's knowledge, has not been investigated in the
past. The other aspect of this work which is the addition of wood
gas generator in the hybrid system has been scarcely explored in
the previous literature and hence making the context of this study
interesting both in regard to the local bioenergy as well as to the
standalone renewable electricity.

2. Methods

To evaluate the suitability of producer gas (PG) generator in
meeting a single household electricity demand, first an energy
system comprised of a fossil fuel generator was designed followed
by analysis in-terms of cost, energy and emissions. Subsequently, a
series of hybrid configurations consisting of producer gas generator

and one or, two other renewable energy optionswas developed and
the techno-economic parameters were evaluated. The results ob-
tained from all the configurations afterwards were compared and
the optimum solution was identified.

The average consumption of electricity for a typical household
in Norway was assumed as according to the data provided by the
study [15] and presented in Fig. 1 while the demographic and the
energy data as relevant to calculation were used from a reliable
statistical reference such as Statistics Norway [16] and the cost of
energy devices were carefully estimated as according to the current
market prices and pertinent literature sources. The design, simu-
lation and optimization of the energy systems were carried out by
using a simulation tool HOMER (Hybrid Optimization Model for
Electric Renewables) developed by the National Renewable Energy
Laboratory (NREL) which allowing free access to the users over a
definitive period. HOMER analyzes feasible energy system config-
urations from among number of possibilities based on the
ascending net present cost (NPC).

The details of the energy systems including cost and other pa-
rameters as considered in this study are given in the following sub-
sections.

2.1. System architecture

2.1.1. Mono energy system
Mono energy system model was developed based on the con-

ventional energy devices such as diesel or, natural gas generator
capable of supplying the entire household electricity demand
round the year. One configuration for each fuel with a generator
(2.5 kW), battery (2 units, 2.16 kW h each) and a converter (1 kW)
was designed and corresponding simulation was performed. The
simulation results were subsequently optimized based on the least
plant cost and best match energy supply scenarios.

The sensitivity analysis was additionally performed as against
the range of diesel and natural gas prices between 0.1 and 1.0 $/
kWh with a step of 0.1 $ increase. The design of mono-energy
system in the HOMER platform is presented by Fig. 2.

2.1.2. Hybrid energy system
Hybrid energy model for several combinations was formulated

by keeping producer gas generator as a mandatory option. The
producer gas generator was assumed to be integrated with an
existing gasification plant capable to produce minimum 2 kW of
electricity. In this case, the gasification facility available in the
University of Agder was considered as a model gasification plant

Fig. 1. Average electricity consumption of a typical household in Southern Norway.
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which can produce maximum 5 kW of electricity.
Besides producer gas generator, the other components added to

the hybrid systems include PV arrays, wind turbine, diesel gener-
ator, natural gas generator, battery and capacitor, an example of
which is demonstrated by Fig. 3. The several hybrid systems used
for present modeling is listed in Table 1. After system design was
accomplished, the hybrid models were simulated and afterwards
the results were optimized as an effect of the sensitivity of fuel cost,
i.e., the variable price of diesel, natural gas and wood gas.

2.2. Input resources

2.2.1. Load data
Based on the open access data [16], it is reported that the total

private annual household electricity consumption at Grimstad,
Norway was 153.8 GW h/yr. in 2013. The total number of private
houses in Grimstad is 9995 [16] and hence per household electricity
consumption can be determined as 15387.67 kW h/yr. which in-
terms of daily consumption corresponds to 42.16 kW h/d. The

estimated distribution of electricity consumption during the
workdays for an average household in Norway is illustrated by Fig.1
[15]. According to the segment-base end-user demand, domestic
electricity consumption is mostly contributed by the space heating
(45%) followed by the demand for residual (19%), hot water (12%),
lighting (5%) and other appliances (19%). Space heating together
with the consumption for lighting and entertaining devices is
maximized when people return from work and hence the load
curve hit to peak during the evening (Fig. 1). There is also high
space heating and lighting demand during the morning resulting a
short peak of electricity consumption at that particular time of the
day (Fig. 1).

The present techno-economic evaluation is carried out based on
the assumption that the average electricity requirement for a
particular household is 54 kW h/d with a load factor of 80%,
meaning that the possible peak load electricity is 2.8 kW.

2.2.2. Generator fuels
Both natural and wood gas is proposed as generator fuel for this

study. Since the wood gas is assumed to be produced and delivered
by the in-situ fixed-bed downdraft gasification combined heat and
power plant (CHP), the cost associatedwith the production of wood
gas is considered as the cost at which wood gas is available. Hence,
the total wood gas price is expected to be influenced by the price of
woodchips, capital cost and the operation and maintenance cost of
the gasification CHP facility, calculated based on the equation (1)
through (5) [17].

Table 2 shows the technical data used in calculating the pro-
ducer gas price ($/m3).

Gc ¼ NPV þ CF þ Cp (1)

NPV ¼ I
At;r

(2)

Fig. 2. Mono energy system design in HOMER.

Fig. 3. System architecture of a hybrid energy plant.

Table 1
Hybrid plants used for HOMER simulation.

Total components Hybrid plant type

4 Bio/PV/battery/converter
4 Bio/Wind/battery/converter
4 Diesel/PV/battery/converter
4 NG/PV/battery/converter
4 NG/wind/battery/converter
5 Bio/PV/wind/battery/converter
5 Bio/Diesel/PV/battery/converter
5 Bio/NG/PV/battery/converter
5 Bio/NG/wind/battery/converter

Bio: Producer gas generator.
PV: Photo voltaic arrays.
NG: Natural gas generator.

Table 2
Gasification plant data.

Specifications

Capital cost $ 1500/kWe
Interest 5%
Life time 20 yrs.
Unit cost of biomass $ 0.20/kg
Biomass consumption 2.4 kg/h
Gas production 5 m3/h
Gas density 1.3 kg/m3

Internal energy requirement 1.3 kW
Unit electricity price $ 0.14/kWh
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At;r ¼
1� 1

ð1þrÞt

r
(3)

CF ¼ Cu*Cf (4)

Cp ¼ internal plant consumptionðkWhÞ
*unit electricity costð$=kWhÞ (5)

where NPV is the annual cost of the plant in $/yr., r is the annual
interest rate in %, t is the plant life time in years, CF is the total cost
of the biomass in $/yr., Cu is the unit cost of biomass in $/kg, Cf is the
total biomass consumption in kg/yr. and Cp is the cost due to the
internal power consumption in $/yr.

Unlike producer gas, natural gas or, diesel is expected to be
supplied from the local market and thus is likely to be affected by
the market constraints such as international price fluctuations,
sudden spike in production cost etc. To account such changes into
investigations sensitivity analysis as an effect of varied natural gas
price was conducted. The range of natural gas/diesel price consid-
ered for assessment varied between 0.10 $/m3 and 1.0 $/m3 in the
interval of 0.10 $ each. Wood gas price is also foreseen to be varied
depending on the technology and the type of wood used for gasi-
fication. Hence, sensitivity effect for range of wood gas price at the
same price interval of fossil fuels was also evaluated.

2.2.3. Solar irradiation and ambient temperature
The selected site is known for its high availability of solar irra-

diation and hence attractive for the application of solar energy.
The monthly solar radiation data of this site were acquired

through NASA [18] for 22 years average and presented by Fig. 4. As
observed, available global solar radiation exhibits seasonal as well
as monthly variation with average maximum for June (5.78 kW h/
m2/day) and average minimum for December (0.31 kW h/m2/day)
respectively. Likewise solar radiation, clearness index peaks close to
the mid of the year in the month of May (0.532) and then reaches
plateau by the end of the year in the month of December (0.363).
The average daily solar radiation and clearness index for Grimstad
is expected to 2.84 kW h/m2/day and 0.489 respectively.

In addition to the solar radiation, the ambient temperature was
also considered for this work. The temperature data was obtained
from NASA database [18] and presented in Fig. 5. As expected, due
to the geographic location, the average temperature in Grimstad
peaks during themonth of July and diminishes in December. By and
large the annual temperature varies between the range 1.2 �C and
19.6 �C.

2.2.4. Average wind speed
The annual wind speed variation for Grimstad is presented by

Fig. 6. This data is based on the statistics of NASA database [18]
which reports average monthly wind speed for the last 10 years.

The wind speed was measured in 3 h intervals at 10 m height of
the earth's surface varied between the range 2.664 and 7.195 m/s.
Generally, higher wind speed is available at the later part of the year
between the month October and December. Overall, wind has a
high potential in the proposed location.

2.3. Energy components

2.3.1. Generator
Three types of fuel namely diesel, natural gas and producer gas

were used for the configurations modeled in this work. Thus, an
existing generator available in the international market capable of
operating both with liquid and gaseous fuel were selected, the
specification of which along with the cost data is presented in
Table 3.

Performance of the generator is generally evaluated based on its
efficiency expressed by the ratio between output power and input
fuel consumption.

Corresponding to each fuel, this efficiency was calculated by
following the equation (6) and displayed as an example in Fig. 7.

hg ¼ 3600 Pe
rf
�
PgenF0 þ PeF1

� (6)

where hg is the generator efficiency in %, Pe is the output power in
kW, rf is the density of the fuel in kg/m3, Pgen is the rated generator
power in kW, Fo is the generator fuel curve intercept co-efficient in
L/h/rated kWor, m3/h/rated kWand F1 is the fuel curve slope in L/h/
output kW or, m3/h/output kW respectively.

Fig. 4. Annual global horizontal solar radiation at Grimstad.

Fig. 5. Monthly average temperature profile at Grimstad.

Fig. 6. Seasonal variation in wind resources at Grimstad.
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The DG/NG/PG fuel intercept co-efficient and slope, as required
for efficiency calculation, were determined from the performance
data given in the specifications (Table 3), resulted the corre-
sponding values as: 0.1494 L/h/rated kW & 0.2643 L/h/output kW
for diesel; 0.0525 m3/h/rated kW & 0.44 m3/h/output kW for nat-
ural gas and 0.02823 m3/h/rated kW & 2.857 m3/h/output kW for
producer gas respectively.

2.3.2. PV array
PVmodules in the hybrid configurationwere set for meeting the

peak load demand that cannot be achieved by the PG generator
alone (operating at a rate of 2 kWe output). While simulating, the
sizes of the PV arrays were allowed to vary within the given range
(1e3 kW) so that an optimum configuration depending on fulfilling
the electricity demand at low energy costs can be attained. Design
of PV array in HOMER is influenced by the two parameters such as
solar radiation and atmosphere temperature which primarily is the
user defined parameters adjusted according to the location and
time. By default, HOMER considers PV power to be directly pro-
portional to the solar radiation and as a result uses the equation (7)
for power calculation. However, apart from solar radiation, tem-
perature can also affect the PV output; for example to reduce the PV
efficiency at a corresponding rise in atmosphere temperature. Thus
the PV module in this work accounted both radiation and tem-
perature and accordingly below equation (8) was used for calcu-
lation. Additionally, the annual solar radiation profile for the
studied location (Grimstad, Norway) found from HOMER is depic-
ted by Fig. 4.

PPV ¼ PPVS fPV
GI

GIS
(7)

PPV ¼ PPVS fPV
GI

GIS

�
1þ apðTc � TsÞ (8)

where, PPV is the power output from the module in kW, PPVS is the
rated power output at test condition, in kW, fPV is the PV derating
factor (%), GI is the solar radiance incident on the PV array in current
hour in kW/m2, GIS is the solar radiance incident on the PV array in
the test condition, in kW/m2, ap is the temperature co-efficient in
%/�C, Tc is the PVmodule temperature in current hour, in �C and Ts is
the PV module temperature in the test condition, in �C.

The technical specification of PV module considered in this
simulation study is provided in Table 4.

2.3.3. Wind turbine
Wind turbine is one of the renewable energy options included in

the hybrid energy configuration of this work. Power producing
capacity of wind turbine is generally characterized by the power
curve displaying relationship betweenwind speed and rated power
and hence highly dependent on the studied location. In the present
site, the available average annual wind speed is 6.445 m/s which is
potentially suitable to generate sufficient power for meeting single
household electricity demand.

Hence wind turbine could be an attractive alternative in the
present combined energy system. The detail of the turbine as
proposed here can be viewed in Table 5.

2.3.4. Storage battery
To ensure reliable supply of power in the case when no wind,

solar or, producer gas energy is available, battery storage is
required.

Current study thus considers a battery (Trojan L16P, 6 V) both for
mono and hybrid energy configurations. The technical data of the
battery is given in Table 6.

2.3.5. Converter
Hybrid system often needs a power converter to exchange en-

ergy between AC and DC devices that allow matching the final load
in its type of requirement.

Table 3
Generator technical sheet [19].

Specifications

Rated power 2.8 kW
Investment $ 1200
Cost of replacement $ 1000
Cost of operation and maintenance $ 0.05/h
Operating hours 15,000
Minimum load ratio 30%
Fuel lower heating value & density
Diesel 43.2 MJ/kg, 820 kg/m3

Natural gas 45 MJ/kg, 0.79 kg/m3

Producer gas 3.52 MJ/kg, 1.3 kg/m3

Fuel consumption
Gasoline: 1/2, 3/4 & full load 0.25,0.32 & 0.39 gal/h
LP gas: 1/2, 3/4 & full load 0.19,0.26 & 0.31 gal/h
Natural gas: 1/2, 3/4 & full load 29, 32 & 42 cu. ft/h

Fig. 7. Modeled efficiency of generators: (a) Producer gas (b) Diesel (c) Natural gas.

Table 4
PV cell technical data.

Specifications

Rated power 1e3 kW
Investment $ 1750/kW
Cost of replacement $ 1200/kW
Cost of operation and maintenance $ 20/year
Life time 30 years
Derating factor 90%
Temperature co-efficient of power �0.5%/�C
Nominal operating cell temperature 47 �C
Efficiency at standard test condition 13%
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Due to the presence of several AC and DC components, the
current hybrid set-up is designed with a converter the technical
specifications of which are illustrated by Table 7.

2.4. Output power, economics and emissions calculation

For techno-economic assessment HOMER uses two steps. First it
evaluates technical feasibility of a model based on the best possible
energy demand that can be fulfilled. Then it ranks the range of
obtained solutions according to the ascending order of the net
present cost (NPC) [20,21]. NPC is the determination of the plant
costs present value minus all profits gained over the expected life
time. The annual value of the NPC is determined from the value of
total annual cost which is expressed by the eq. (9)

Cann;tot ¼ CRF
�
i;Rproj

�
CNPC;tot (9)

where CNPC, tot is the total net present cost, i is the annual real in-
terest rate (%), Rproj is the project life time and CRF (i, N) is the
capital recovery factor.

The annual real interest rate, and the capital recovery factor are
further calculated by the equations (10) and (11).

i ¼ i0 � f
1þ f

(10)

CRFði;NÞ ¼ ið1þ iÞN
ð1þ iÞN � 1

(11)

where i0 is the nominal interest rate, f is the annual inflation rate
and N is the number of years.

Coupled with NPC, HOMER also calculates cost of energy (COE)
as a part of economic analysis. COE is defined as a ratio between
annual electricity cost and the total electricity load served by the
system, expressed by the eq. (12) below:

COE ¼ Cann;tot
Eserved

(12)

where Eserved is the total electrical load served (kWh/yr.)
Levelized cost of energy (LCOE) incorporates capital costs,

depreciation, operation, maintenance, management etc. into ac-
count and allows a direct comparison of the costs of all forms of
energy system.

Emissions are the important criteria under which environ-
mental feasibility of an energy system can be assessed. For emis-
sions calculation HOMER takes six pollutants CO2, CO, unburned
hydrocarbon (UHC), particulate matter (PM), SO2 and NOX into
account and tabulates their annual emissions per kilogram of fuel
input. In this case the quantity of emissions among the studied
configurations was evaluated and compared to justify environ-
mental performance.

3. Results and discussions

To perform feasibility and economic analysis, first HOMER
simulation was conducted for a standalone household in the
Southern area of Norway by using a mono energy system
comprising of diesel or, natural gas resource. Then hybrid system
comprising with various combinations of energy components were
used to perform another set of simulation fromwhich an optimum
solution comprising only of renewable options was identified. The
results from the both case was compared and finally the sensitivity
analysis in regard to the variable fuel cost was performed. The
forthcoming sub-sections discuss the various aspects of these re-
sults in perspective of energy, economics and environment.

3.1. Mono-energy system

An optimized mono-energy system obtained from the simula-
tion of HOMER consisted of diesel or, natural gas generator of
2.5 kW, two batteries of 2.16 kW h and one capacitor of 1 kW ca-
pacities respectively.

The economic viability of the energy plant is sensitive to the fuel
cost and based on current diesel and natural gas price of 0.8 $/L and
0.6 $/m3, the optimized solutions of the two plants are presented in
Table 8. As observed, initial investment of both the plants was
found similar as the similar generator cost data was used for
simulation. In-terms of NPC and LCOE on the other hand, natural
gas system was found economically more suitable than diesel
generator system although both the plants were able to produce
same amount of electricity throughout the year. In regard to the
emissions, expectedly, NG system produced less amount of CO2

than DG system. However, corresponding to the other pollutants
(CO, UHC, PM, SO2 and NOX) the emissions from the NG systemwas
found little higher than that of DG. This difference in emission
properties was likely to be caused due to the difference in fuel
properties, type of conversion generator and consumption of fuel.
NG used for modeling was assumed to have lower percentage
content of carbon than that of diesel which possibly was the reason

Table 5
Wind turbine technical data.

Specifications

Rated power 1 kW
Investment $ 1000/kW
Cost of replacement $ 800/kW
Cost of operation and maintenance $ 10/year
Life time 15 years
Hub height 25 m
Rotor diameter 2.5 m
Number of rotor blades 3
Cut-in wind speed 2.5 m/s
Cut-out wind speed none
Furling wind speed 13 m/s

Table 6
Battery technical specification.

Specifications

Type L16P
Nominal voltage 6 V
Nominal capacity 360 A h (2.16 kW h)
Investment $ 300/quantity
Cost of replacement $ 300/quantity
Cost of operation and maintenance $ 20/year
Float life 10 years
Round trip efficiency 85%
Maximum charge rate 1 A/Ah
Maximum charge current 18 A

Table 7
Converter technical data.

Specifications

Rated power 1 kW
Investment $ 300/kW
Cost of replacement $ 300/kW
Cost of operation and maintenance $ 10/Kw/year
Life time 15 years
Efficiency 90%
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why completely burned pollutant (i.e., CO2) from this fuel was
found less than the unburned pollutants than those of diesel.

In addition to find an optimum solution based on fixed fuel
price, the sensitivity of the plant was determined for the diesel
price between the range 0.1 $/L and 1 $/L and natural gas price
between the range 0.1 $/m3 and 1 $/m3 respectively. As the Fig. 8
shows, LCOE varied almost linearly with the price of the diesel.
The LCOE value ranged between 0.106 $/kWh and 0.495 $/kWh and
the NPC ranged between $26,300 and $122,669, as the fuel price
increased from 0.1 $/L to 1 $/L. Both LCOE and NPC reaches to
breakeven corresponding to the unit fuel cost of ca ~0.52 $/L
beyond which LCOE increases faster than NPC. Likewise diesel
system, LCOE for NG system also showed linear relationship with
the cost of fuel. The LCOE and NPC for this configuration ranged
between 0.113 $/kWh and 0.566 $/kWh, and $28,063 and $140,312
which compared to diesel operating system is a bit higher. Since the
simulation and sensitivity analysis condition for both the systems
were kept identical, the difference in LCOE and NPC was likely to be
caused due to the difference in the generator efficiencies. The ef-
ficiency of the diesel and NG generator as per HOMER simulation
was found as 20.4% and 23.8% respectively.

3.2. Hybrid energy system

3.2.1. Optimum solutions
With the given parameters and assumptions based on the

average solar radiation of 2.84 kW h/m2/day, wind speed of
6.445 m/s, primary load of 54 kW h/d, natural gas, wood gas and
diesel price of 0.6 $/m3, 0.1 $/m3 and 0.8 $/L respectively, eight
power plant configurations were simulated the categorical opti-
mized solution of which is tabulated in Table 9 and the variation in
LCOE vs. NPC is depicted in Fig. 9.

As observed, based on NPC, Bio/PV/Diesel is the least suitable
solution while Bio/PV/Wind is the most economic. In total three
renewable hybrid energy plants were identified and among the
renewable/fossil hybrid configurations, contribution of renewable
energy varied from 11% to 78% with the highest for Bio/NG/Wind
and lowest for PV/NG respectively. The LCOE varied between 0.106
and 2.526 with the lowest for diesel and highest for the case of Bio/
PV. Since the present standalone house is expected to be self-
sufficient by utilizing all the available power from the producer
gas generator and the rest from the other renewable sources, the
forthcoming discussion only considers the hybrid energy systems
comprised solely of the renewable sources.

As already mentioned, among the renewable energy options
three optimized hybrid plants were identified namely Bio/PV/wind,
Bio/PV and Bio/wind where the hybrid plant Bio/wind/PV/battery/
capacitor systemwith 1 kW of PV arrays (5.1% PV penetration), one
wind turbine of 1 kW (14.5% wind penetration), 4 unit batteries
each of 2.16 kW h each, and 1 kW sized power converter was
appeared to be optimum for the household. Compare to Bio/PV and
Bio/Wind the optimum configuration contributed to reduce the
NPC of about 10% and 8% respectively with a similar impact for
LCOE. This systemwas also found to have an initial capital cost of $
4,207, an annual operating cost of $ 5459/year, a total NPC of $
72,232 and a LCOE of 0.306 $/kWh. The monthly average electric
production from the optimized hybrid wind/PV/battery power
system is depicted by Fig. 10. It can be observed that the wood gas
generator serves most of the electricity demand followed by the
wind turbine and the PV array. This implies that the wood gas
generator satisfies the base load. The contribution from other small
capacity units such as battery storage however did not reflect to
Fig. 10 [22]. In general, the monthly average electricity production
matches with the monthly load with higher production between

Table 8
Optimized mono-energy system for the diesel price of 0.8 $/L and natural gas price of 0.6 $/m.3.

Generator
(kW)

Battery Converter
(kW)

Initial capital
($)

Operating cost
($/yr)

Total NPC
($)

COE
($/kWh)

Renewable
fraction

Diesel
(L)

Natural gas
(m3)

Operation
(hrs)

Emissions (CO2),
kWh/y

2.5 2 1 1971 7967 101,254 0.408 0 8592 e 8760 22,626
2.5 2 1 1971 7097 90,420 0.365 0 e 10,007 8760 19,302

Fig. 8. Effect of diesel price on NPC and LCOE.
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September and March (Fig. 10). The total annual electricity gener-
ation from the optimized system is 19,866 kWh/yr. in which
15,628 kW h/year (~79%) was contributed from the producer gas
generator, 2886 kW h/yr. (~15%) comes from the wind turbine
while the rest (1366 kW h/year) was met by the PV arrays
respectively. The optimized system produced an unmet electric
load of 6 kW h/year (~0%) and excess electricity, which is the sur-
plus electricity, of ~48 kW h/year (0.2%). Typically, the excess
electricity produced by the hybrid system is always expected,
which can further be reutilized as heating or cooling load for the
household [23].

3.2.2. Economic and emission analysis
The cash flow summary of the various equipment in the hybrid

Bio/PV/wind/battery power system, including the power con-
verters with the breakup of capital, replacement, O &M, fuel, and
salvage costs is illustrated by Fig. 11. As found, the majority of the
total NPC is incurred for the producer gas generator and the least of
the NPC is resulted for the power converters.

The capital cost of the suggested hybrid power system (54 kWh/
day of primary load, 2.84 kW h/m2/day of global solar radiation,
6.445 m/s of wind speed, 1 kW of PV capacity, one 1 kW of wind
turbine, 1 unit of battery and 1 kW of power converter capacity) is
worth $ 72,232 with a replacement cost of $ 7093 and O&M cost of
$ 5145 respectively.

The cost of the optimum systemwas further analyzed in regard
to the variation in the size of some energy components such as the
variation in the amount of batteries and capacitors. Fig. 12 shows
the NPC and LCOE values against the number of batteries and ca-
pacitors in the optimal hybrid Bio/PV/wind/battery system. It can
be seen that the NPC values of the system increase from $ 72,000 to
$ 80,000 with an increase in number of batteries with the lowest
and highest for 1 and 5 unit batteries respectively. The LCOE values
followed the similar trend that of NPC and noticeably these values
increase from 0.306 $/kWh to 0.326 $/kWhwith the increase in the
number of batteries. The lowest and highest LCOE values are found
corresponding to the battery units of 1 and 5 respectively. Likewise
variation in the number of batteries, Fig. 12 shows the NPC and
LCOE values against the number of power converters in the optimal
system. As observed, the NPC and LCOE values of the system in-
crease with the increasing number of converters. The NPC values
range between $ 72,232 and $ 75,886, while the LCOE values range
between $ 0.306 and $ 0.321 corresponding to the converter
amounts varying from 1 to 5 units respectively. The economics ofTa
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Fig. 9. Variation in levelized cost of energy as an effect of fuel price.
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optimum hybrid system configurations is clearly sensitive to the
variation in the size of the power plant components, particularly, in
terms of the numbers of batteries or, converters.

From the emission analysis it can be seen that the total CO2
emissions resulted at 26,894 kg/yr. which corresponding to that of
the diesel only plant was somewhat higher (Table 8). However, it is
to be noted that the CO2 emission from the hybrid energy plant
since resulted from the biomass fueled generator will not
contribute to the net GHG emissions, as biomass is renewable. A
study by Ref. [24] mentioned that the biomass energy crops can
potentially fix 5992 kg/ha of annual CO2 emission, if used for energy
conversion.

3.2.3. Sensitivity analysis
In the present HOMER simulation, the effect of different fuel cost

such as diesel, natural gas and wood gas are used as sensitivity
variables.

Since the optimum renewable energy solution was not
comprised of the option of diesel or, natural gas generator, the ef-
fect of diesel and natural cost will not be discussed. Fig. 13 shows
the NPC and LCOE values of the optimized configuration as against
the variable wood gas price ranged between 0.1 $/m3 and 1 $/m3.
Clearly, the higher thewood gas price, the higher the NPC and LCOE
values. The NPC of the optimized plant varied between the range of
$72,232 and $ 577,378 while LCOE ranged between 0.306 $/kWh
and 2.444 $/kWh. Noticeably, each 0.1 $/m3 increase in fuel price
greatly affected the value of both NPC and LCOE. Overall, nine steps
increase in wood gas price contributed to about eight times in-
crease in both NPC and LCOE. It is thus important that the cost of
producer gas keeps as low as possible so that the proposed hybrid
plant stays competitive in comparison to the plants operating only
with fossil or, with the combination of fossils and renewables.

4. Conclusions

This study examined the techno-economic viability of using
producer gas generator (2 kWe) in a hybrid energy system for a
distributed power generation suitable for a single household in
Norway. Assuming the average solar radiation and wind data from
NASA [18] and the cost of equipment based on the standard liter-
ature values, the HOMER modeling revealed eight economically
feasible hybrid configurations, out of which three were completely
renewables. From the renewable hybrid configurations, hybrid
plant consisting of Bio/PV/wind/battery/capacitor with annual daily
average global solar radiation of as 2.84 kW h/m2/day and annual
average wind speed of 6.445 m/s was found optimum. The total
annual electricity produced by the optimumhybrid system resulted
to 19866 kW h/yr. with NPC and LCOE as $ 72,232 and 0.306 $/kWh
respectively. Comparing to the mono diesel or, natural gas config-
uration, the hybrid systemwas in generally not found cost effective.
However, the net emissions savings worth 22,626 kg/yr. was
potentially achieved while fossil fuel sources was replaced with
producer gas generator and other renewable sources.

Fig. 10. Monthly average electricity production from the optimum hybrid plant.

Fig. 11. Summary of component specific cash flow in hybrid system.

Fig. 12. Effect of the battery and capacitor units on NPC and LCOE of hybrid system.
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The sensitivity analysis as an effect of change in diesel/NG/
producer gas price showed that hybrid energy configuration Bio/
PV/wind can appear as economically feasible solution compare to
diesel only/NG only when producer gas price does not exceed the
limit of 0.1 $/m3.With the global tension over fossil fuel sources and
the ever vacillating gasoline price, the arrival of expensive fossil
fuel scenario is more than likely in the coming years when
renewable hybrid energy configuration is expected to be an
instrumental option in ensuring energy security and reliability.
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