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Abstract. The problem of clustering, or unsupervised classification, has
been solved by a myriad of techniques, all of which depend, either directly
or implicitly, on the Bayesian principle of optimal classification. To be
more specific, within a Bayesian paradigm, if one is to compare the test-
ing sample with only a single point in the feature space from each class,
the optimal Bayesian strategy would be to achieve this based on the dis-
tance from the corresponding means or central points in the respective
distributions. When this principle is applied in clustering, one would
assign an unassigned sample into the cluster whose mean is the clos-
est, and this can be done in either a bottom-up or a top-down manner.
This paper pioneers a clustering achieved in an “Anti-Bayesian” man-
ner, and is based on the breakthrough classification paradigm pioneered
by Oommen et al. The latter relies on a radically different approach for
classifying data points based on the non-central quantiles of the distribu-
tions. Surprisingly and counter-intuitively, this turns out to work equally
or close-to-equally well to an optimal supervised Bayesian scheme, which
thus begs the natural extension to the unexplored arena of clustering.
Our algorithm can be seen as the Anti-Bayesian counter-part of the well-
known k-means algorithm (The fundamental Anti-Bayesian paradigm
need not just be used to the k-means principle. Rather, we hypothesize
that it can be adapted to any of the scores of techniques that is indirectly
based on the Bayesian paradigm.), where we assign points to clusters
using quantiles rather than the clusters’ centroids. Extensive experimen-
tation (This paper contains the prima facie results of experiments done
on one and two-dimensional data. The extensions to multi-dimensional
data are not included in the interest of space, and would use the corre-
sponding multi-dimensional Anti-Näıve-Bayes classification rules given
in [1].) demonstrates that our Anti-Bayesian clustering converges fast
and with precision results competitive to a k-means clustering.

John Oommen—Chancellor’s Professor; Fellow: IEEE and Fellow: IAPR. This
author is also an Adjunct Professor with the University of Agder in Grimstad, Nor-
way.

c© Springer International Publishing Switzerland 2015
M. Ali et al. (Eds.): IEA/AIE 2015, LNAI 9101, pp. 536–545, 2015.
DOI: 10.1007/978-3-319-19066-2 52



Anti-Bayesian Clustering 537

1 Introduction

Clustering is a key task in data analysis [2] [3]. There exist a range of differ-
ent clustering methods that vary in the understanding of what a cluster is. For
instance, density models, such as OPTICS [4] and DBSCAN [5], find the most
dense regions in the space. As opposed to this, in hierarchical clustering [6] [7],
the aim is to arrange the data points in an underlying hierarchy. A third group
of clustering algorithms constitute the so-called “centroid” methods where each
cluster is represented by a single point. The most prominent example of a scheme
within this family is the k-means clustering algorithm where a centroid is rep-
resented by the mean value of the points in the cluster. The central strategy
motivating these clustering schemes involves classifying data points to the dif-
ferent clusters based on the distances to the means (or centroids) of the clusters.

In this paper we introduce a novel alternative to the k-means clustering
algorithm. We shall demonstrate that we can obtain excellent clustering per-
formance by operating in a diametrically opposite way, i.e., a so-called “Anti-
Bayesian manner. Indeed, we shall show the completely counter-intuitive result
that by working with a few points distant from the ”mean (centroid), one can
obtain remarkable clustering performances. While the clustering algorithm in
this paper follows the steps of a typical k-means clustering algorithm, it assigns
the data points to the already-formed clusters using completely different criteria
– by invoking the concepts of Anti-Bayesian Pattern Recognition (PR). Rather,
unlike the k-means clustering strategies which rely on centroid-based criteria,
our paradigm advocates the association of points to clusters based on quantiles
distant from the cluster means [8] [1] [9], which is a concept that is unreported
in the literature. Indeed, it is actually both un-intuitive and non-obvious.

We consider the non-parametric clustering problem where the distribution
of each cluster is unknown. This is in contrast to the work in [8] [9] reported
in the area of classification where the distributions are known, and more in the
directions of [1], where a non-parametric case is considered. In [1] the quantiles
are estimated by assuming that the data points are sampled from Gaussian
distributions. In this paper we work with a totally distribution-free model which
is more natural when the aim is to achieve flexible and robust clustering.

In this paper, in the interest of space and brevity, we merely propose the Anti-
Bayesian clustering strategy for one and two-dimensional data. This is because
the aim of the paper is to introduce the paradigm in a prima facie setting.
Although the extensions to multi-dimensional data are still open, they would
not be too complicated – they would use the corresponding multi-dimensional
Anti-Näıve-Bayes classification rules given in [1].

2 Anti-Bayesian Clustering

Let x1, x2, . . . , xn represent n points in R
p. In this paper we present an algorithm,

which is based on the Anti-Bayesian classification framework [8] [1] [9], to cluster
these points into k clusters. The present algorithm follows the same steps as a
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k-means clustering algorithm. To motivate this discussion, we start this section
with a short review of the classical k-means algorithm. Then, in Section 2.2 we
briefly review the Anti-Bayesian classification framework which forms the basis
for the Anti-Bayesian clustering algorithm presented in Section 2.3. Before we
proceed, we re-iterate our earlier comment: Since the fundamental Anti-Bayesian
paradigm need not just be used to the k-means principle, our paradigm can be
adapted to any of the scores of techniques that are inherently Bayesian.

2.1 k-means Clustering

Let m1,m2, . . . ,mk ∈ R
p represent the respective centroids of each of the k

clusters currently described, C1, . . . , Ck. The algorithm starts by associating an
initial value to each centroid. A simple approach is to assign each of centroids
to some of the points x1, x2, . . . , xn. The algorithm then consists of two steps:

1. Assignment: Assign each point xi to the nearest1 centroid.
2. Update: When all points are assigned to a cluster, update the centroid value

of each cluster as the average of all the points in the cluster:

mj =
1

|Cj |
|Cj |∑

i=1

xj(i), j = 1, . . . , k,

where |Cj | is the number of points in cluster Cj and j(1), j(2), . . . , j(|Cj |)
represent the points assigned to cluster Cj .

3. Loop: Repeat the above two steps until no points switch their clusters.

2.2 Anti-Bayesian Classification

The following classification method is based on the “Anti-Bayesian” methodol-
ogy described and proven in [8] [1] [9]. To explain how it works, we start with
the uni-dimensional case.

Let x1, x2, . . . , xn1 and y1, y2, . . . , yn2 be random samples from some unknown
probability distributions fX(x) and fY (y), respectively. Our task is to classify a
new point z to see whether it is a sample from fX(x) or fY (y). If we assume that
the variances of fX(x) and fY (y) are equal, the optimal classification strategy is
to assign z to fX(x) or fY (y) if z is closer to the means of X or Y respectively.
This, in turn, assigns z to fX(x) if the average of the samples x1, x2, . . . , xn1 is
closer to z than the average of y1, y2, . . . , yn2 . It is otherwise assigned to fY (y).
The reader should observe this is precisely how points are assigned to clusters
in the k-means paradigm.

In the Anti-Bayesian classification approach, classification is achieved based
on quantile-based comparisons rather than comparisons with regard to the mean.
To render this formal, we denote the quantiles as follows: qXp = P (X > p).

1 It should be mentioned that the concept of “nearest” can be based on the specific
metric being used, for example, a simple Euclidean metric.
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Although, in practice, the quantiles have to be, estimated (or learned), for ease of
clarification, in the descriptions below, we assume that the quantiles are known.
We also assume that qX1−p < Median(X) so that qXp is always greater than qX1−p.
In such a case, the Anti-Bayesian classification method operates as follows:

1. Determine which of the distributions fX(x) or fY (y) is to the left by using
the quantiles of the distributions. We have three possible cases:

Case 1: If qXp < qYp and qX1−p < qY1−p =⇒ fX(x) is to the left of fY (y).
Case 2: If qXp > qYp and qX1−p > qY1−p =⇒ fY (y) is to the left of fX(x).
Case 3: Else, we determine their relative positions by comparing the
averages of the quantiles as follows:

If qXp +qX1−p

2 <
qYp +qY1−p

2 =⇒ fX(x) is to the left of fY (y).
Else2 fY (y) is to the left of fX(x).

Figure 1 depicts the above three cases. We see that for Cases 1 and 2, fX(x)
and fY (y) is the distribution to the left, respectively. In the bottom figure
(Case 3), the decision is not that obvious because the classes are highly
overlapping.

Fig. 1. This figure depicts Cases 1, 2 and 3 – arranged from left to right and from top
to bottom respectively

2. Once the relative positions of the distributions are determined, the classifica-
tion rule must now be specified. For simplicity, we describe this just for Case
1 since the rules for the “mirrored” cases are analogous. The Anti-Bayesian
rule classifies using the right quantile of the left distribution and the left

quantile of the right distribution. If B = qXp +qY1−p

2 , we classify as follows:
If z < B, classify z to fX(x).
Else, classify z to fY (y).

This approach works even when the distributions overlap such that qY1−p is
to the left of qXp as shown in Figure 2.

The theoretical motivation for this algorithm is given in [8] and [9] and not
repeated here.
2 This case occurs rarely in practice except when the classes are highly overlapping,

in which case the PR problem is often meaningless.
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Fig. 2. The left panel shows the standard situation under Case 1, while the right panel
shows a situation when qY1−p is to the left of qXp

We now go over to the case where the points are two dimensional. Let
x11, . . . , xn11 and x12, . . . , xn12 be 2n1 independent samples from fX(x) and
define the points (xi1, xi2), i = 1, 2, . . . n1. Similarly, define the points (yi1, yi2),
i = 1, 2, . . . n2 based on samples from fY (y). Again we want to classify a point
z to fX(x) or fY (y). The classification is done as per the ideas in [1] and [9].
It is a natural generalization of the one dimensional case above and follows two
steps.

1. Define the rectangle with corners (qX1−p, q
X
1−p), (qX1−p, q

X
p ), (qXp , qX1−p) and

(qXp , qXp ) for fX(x), and the analogous rectangle corners for Y . Locate the
corners in the two rectangles that are closest to each other.

2. If z is closer to the corner of the quantile rectangle of fX(x), classify z to
fX(x). Else classify z to fY (y).

Figure 3 shows the classification procedure for two typical cases.

Estimation of the Quantiles. As described above, throughout this discussion,
we have assumed that the distributions fX(x) and fY (y) are unknown. Thus, in
reality, the quantiles must be estimated from the samples. Let x(1), x(2), . . . , x(n1)

be n1 samples from fX(x) sorted by value. To achieve this estimation, we adapt
the method recommended in [10] where the cumulative distribution function
of fX(x) is estimated with a linear interpolation (spline) through the points
(x(i), pi), i = 1, 2, . . . , n1, and where pi is defined as:

pi =
i − 1/3
n1 + 1/3

, i = 1, 2, . . . , n1.

The estimate of qXp can then be easily read (or rather, inferred) from this curve.

2.3 Clustering Based on Anti-Bayesian Classification

We now present a clustering algorithm that uses that Anti-Bayesian classification
methodology presented in Section 2.2 combined with the assignment/update
steps in the k-means clustering algorithm. Suppose that we have a set of points
x1, x2, . . . , xn that we want to group into k clusters denoted by C1, C2, . . . , Ck.
Let qj1−p and qjp represent the (1-p)-valued and p-valued quantiles of the data
in cluster Cj . The algorithm starts by associating values to the quantiles of all
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Fig. 3. Classification in the two dimensional scenario for two typical cases. The gray
dashed line shows the border of the discriminant regions when z is classified to fX(x)
or to fY (y).

the clusters (qj1−p, q
j
p), j = 1, 2, . . . , k. One way to achieve this is by randomly

selecting 2k points and by associating the quantiles to the values of these points.
To prevent an excessive initial overlapping of the clusters, it is natural to first
sort the points before associating them to the quantiles. Similar to the k-means
scheme, the present algorithm now consists of two steps:

1. Assignment: Assign each point to a cluster. For each point, xi, we do the
following by repeated classifications using the methodology in Section 2.2.
We start to determine if xi is most likely to belong to C1 or C2. Assume
that xi is most likely to belong to C2. We then say that C2 is the current
candidate cluster for xi. Next we do an evaluation between C2 and C3 and
repeat this for all the remaining clusters C4, . . . , Ck. In the last step we do an
evaluation with the current candidate cluster from the previous evaluations,
say Ca, and Ck. If xi is more likely to belong to Ca, we assign xi to this
cluster, else we assign xi to Ck.

2. Update: When all the points are assigned to clusters, we estimate the quan-
tiles of all the clusters, i.e., (qj1−p, q

j
p), j = 1, 2, . . . , k, using the estimator

presented at the end of Section 2.2.

2.4 Evaluation of Clustering Performance

The question of how to measure the performance of a clustering algorithm is far
from being obvious or trivial. Consider the following simple example. Suppose



542 H.L. Hammer et al.

that six points {A1, A2, A3, B1, B2, B3} are to be clustered into two clusters,
with the goal that the elements {Ai} and {Bi} are located in the same cluster.
Consider now the case when the results of a specific clustering algorithm are:

Cluster C1: {A1, B2, B3},
Cluster C2: {A2, A3, B1}.

If the requirements of the clustering problem required that all the elements {Ai}
are to be in cluster C1, and that all the elements {Bi} are to be in cluster C2, we
could immediately see that the number of errors incurred by the above clustering
is 4. On the other hand, if the clustering problem merely stipulated that the
{Ai}’s were to be in one cluster and that the {Bi}’s in another (irrespective of
whether it is C1 or C2), the number of errors is 2. Since the latter is the more
meaningful issue, in the experiments below, we evaluate the performance of a
clustering algorithm by assuming that the cluster index is irrelevant as long as
the elements that should belong together do, indeed, get clustered together.

3 Experiments

In this section we compare the performance of the k-means and Anti-Bayesian
clustering algorithms when the data to be clustered was generated from a range
of different distributions. For all the experiments we considered k = 3 clusters.
The parameters of the distributions are shown in Table 1.

Table 1. Distributions used in the experiments. The second column shows the param-
eters of the distributions of the leftmost cluster. The third and the fourth columns
show how much the distribution is shifted to the right for cluster two and three for the
one and two dimensional experiments.

Distribution Parameters Used Shift: 1D Case Shift 2D Case

Normal μ = 0, σ = 1 3, 6 2, 4
Uniform a = 0, b = 1 9/10, 9/5 4/3, 8/3
Laplace μ = 0, λ = 1/4 4/5, 8/5 2/3, 4/3

Beta (symmetric) a = 2, b = 2 5/8, 5/4 5/11, 10/11
Beta (asymmetric) a = 3, b = 1 0.65, 1.29 0.42, 0.84

Gamma a = 3, s = 3 2.13, 4.27 1.67, 3.33

A plot of all the distributions in the one dimensional experiment are shown
in Figure 4. The distributions are the same for the two dimensional experiment,
except that the distributions are less separated (shifted) from each other.

We considered two cases: In the first case, we generated N = 10 independent
samples from each distribution, i.e. a total of 30 samples, and in the second
where we generated N = 1, 000 independent samples from each distribution.
To evaluate the performance of the clustering algorithms, we first generated
the synthetic data, performed the clustering and then measured the portion of
samples that were classified to wrong cluster. This procedure was repeated a
large amount of times to minimize the Monte Carlo error. In all the cases, we
set p = 1/3 in the computation of the quantiles for the Anti-Bayesian clustering.
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Fig. 4. Plot of all the distributions presented in Table 1 for the one dimensional case

Tables 2 and 3 show the results for the one and two dimensional cases respec-
tively. It is appropriate to mention that similar to the k-means algorithm, in some
rare cases, the Anti-Bayesian algorithm did not converge, but cycled between a
few different configurations. In such cases, we terminated it after 100 iterations
and reported the final clusters. We also computed the 95% confidence intervals
for the portions in Tables 2 and 3 and the width of these intervals were ≈ 0.002,
implying that the Monte Carlo error was almost completely removed. These were
thus not included in the tables.

There are many factors that distinguish the performances of the k-means
and Anti-Bayesian clustering algorithms.

1. The k-means scheme needs to estimate the means (centroids) of the clusters,
while the Anti-Bayes scheme estimates the quantiles from the samples.
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Table 2. Results from the one dimensional clustering experiment. The values show
the portion of sample points that were classified to the wrong clusters. The values in
parentheses represent the 95% confidence interval.

N = 10 N = 1000

Distribution k-means Anti-Bayes k-means Anti-Bayes

Normal 0.105 0.105 0.090 0.089
Uniform 0.116 0.104 0.106 0.157
Laplace 0.149 0.163 0.136 0.135

Beta (symmetric) 0.145 0.138 0.125 0.139
Beta (asymmetric) 0.081 0.087 0.074 0.098

Gamma 0.143 0.170 0.113 0.132

Table 3. Results from the two dimensional clustering experiment. The values show
the portion of sample points that were classified to the wrong clusters. The values in
parentheses represent the 95% confidence interval.

N = 10 N = 1000

Distribution k-means Anti-Bayes k-means Anti-Bayes

Normal 0.140 0.145 0.106 0.107
Uniform 0.102 0.102 0.074 0.078
Laplace 0.139 0.156 0.108 0.108

Beta (symmetric) 0.145 0.147 0.108 0.109
Beta (unsymmetric) 0.114 0.168 0.081 0.121

Gamma 0.141 0.202 0.102 0.124

2. The performance of the Anti-Bayes clustering is remarkably accurate consid-
ering the fact that it operates from a completely counter-intuitive perspec-
tive, i.e., by comparing samples to elements of the clusters that are distant
from the means.

3. Overall we see that both methods perform better when N = 1000 compared
to N = 10. This is as expected since we are able to estimate centroids
and quantiles with better precision. For N = 10, the k-means performs
marginally better than Anti-Bayes for the symmetric distributions, but there
are exceptions. For the one dimensional case, the Anti-Bayes performs the
best for the Uniform and the Beta (symmetric) distributions.

4. When the distributions are asymmetric, it is known that the Anti-Bayes
classification does not perform as well as the Bayes’ bound [1] [9]. For these
asymmetric distributions, the differences between the k-means and Anti-
Bayes schemes is larger, but these difference are, really, quite small.

5. As mentioned in the introduction, in this paper, we have merely concentrated
on the Anti-Bayesian clustering strategy for one and two-dimensional data.
The extensions to multi-dimensional data are still open, but they would
not be too complicated. Indeed, they would use the corresponding multi-
dimensional Anti-Näıve-Bayes classification rules given in [1].
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4 Conclusions

In this paper we have demonstrated how the “Anti-Bayesian” pattern classifica-
tion framework formulated earlier in [8] [1] [9] can be used to build an efficient
clustering algorithm competitive with the k-means clustering algorithm. The
algorithm documents impressive clustering performance for a range of different
distributions.

The k-means algorithm associates points to the clusters relying on the mean
values (centroids) of the clusters which is known to be the optimal Bayesian
bound. In contrast, the clustering algorithm presented in this paper associates
points to clusters using quantiles distant from the cluster mean. Intuitively, one
would thus expect a poor clustering performance and even serious convergence
problems for the algorithm. But as demonstrated in [8] [1] [9], impressive clas-
sification precision can be achieved for the Anti-Bayesian approach which, thus,
lays the foundation for the efficient clustering algorithm presented here.

The problems that are open are many. First of all, it would be interesting
to demonstrate the power of such a strategy for multi-dimensional and real-life
data. But more interestingly, we believe that the fundamental “Anti-Bayesian”
paradigm can be applied to any clustering technique (apart from the k-means)
that is inherently dependent on a Bayesian philosophy. We thus believe that this
paper opens the doors to a host of unresolved problems.
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