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Abstract. We study oscillatory behavior of a class of fourth-order quasilinear differential
equations without imposing restrictive conditions on the deviated argument. This allows
applications to functional differential equations with delayed and advanced arguments, and
not only these. New theorems are based on a thorough analysis of possible behavior of
nonoscillatory solutions; they complement and improve a number of results reported in the
literature. Three illustrative examples are presented.
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1. Introduction

This paper is concerned with the oscillation of a fourth-order quasilinear differen-

tial equation

(1.1) (r(t)[x′′′(t)]α)′ + q(t)xβ(g(t)) = 0,

where t ∈ I = [t0,∞), t0 ∈ R, r ∈ C1(I,R+), r
′(t) > 0, q ∈ C(I,R0), q(t) does

not vanish eventually, g ∈ C(I,R), and lim
t→∞

g(t) = ∞. Here R+ = (0,∞) and

R0 = [0,∞). We also assume that α, β ∈ R, where R is the set containing all ratios

of odd natural numbers.
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By a solution of (1.1) we mean a function x ∈ C3([Tx,∞),R), Tx > t0, which has

the property r(t)[x′′′(t)]α ∈ C1([Tx,∞),R) and satisfies (1.1) on [Tx,∞).We consider

only those solutions x of (1.1) which do not vanish eventually; we tacitly assume that

(1.1) possesses such solutions. As usual, a solution x(t) of (1.1) is called oscillatory

if it does not have the largest zero on [Tx,∞); otherwise, it is called nonoscillatory.

Equation (1.1) is called oscillatory if all its solutions are oscillatory.

Fourth-order differential equations are quite often encountered in mathematical

models of various physical, biological, and chemical phenomena. Applications in-

clude, for instance, problems of elasticity, deformation of structures, or soil settle-

ment; see [6]. In mechanical and engineering problems, questions related to the

existence of oscillatory and nonoscillatory solutions play an important role. As a re-

sult, many theoretical studies have been undertaken during the last decades. We

refer the reader to the monographs [1], [3], [12], [15], papers [2], [4]–[11], [13], [14],

[16]–[23], and the references cited therein.

In what follows, we briefly comment on the results that motivated the research in

this paper. For a compact presentation of conditions, we use the notation

R(t) :=

∫ ∞

t

r−1/α(s) ds.

To the best of our knowledge, papers by Onose [17], [18] published in the late sev-

enties were among the first contributions dealing with the oscillation of fourth-order

functional differential equations. In these papers, two classes of functional differential

equations,

(r(t)x′′(t))′′ + f(t, x(g(t))) = 0

and

(r(t)x′′(t))′′ + p(t)f(x(g(t))) = q(t),

were studied under the assumption that
∫∞
T (s/r(s)) ds = ∞ for some T > 0.

Since then, many authors were concerned with the oscillation and nonoscillation

of fourth-order and higher-order functional differential equations. Properties of so-

lutions to different classes of equations were explored by using a wide spectrum of

approaches. In particular, interesting results for the fourth-order functional differ-

ential equations

(( 1

r3(t)

(( 1

r2(t)

(( 1

r1(t)
x′(t)

)α1
)′)α2

)′)α3
)′
± q(t)f(x(g(t))) = 0

were obtained by Agarwal et al. [2]. Grace et al. [7] considered the oscillation prop-

erties of a fourth-order nonlinear differential equation

(r(t)[x′(t)]α)′′′ + q(t)f(x(g(t))) = 0.
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Kamo and Usami [10], [11], Kusano et al. [14], and Wu [20] studied the oscillation

of a fourth-order nonlinear differential equation

(r(t)[x′′(t)]α)′′ + q(t)xβ(t) = 0,

whereas a more general equation

(r(t)[x′′(t)]α)′′ + q(t)f(x(g(t))) = 0

was considered by Agarwal et al. [5].

Agarwal et al. [4] and Zhang et al. [23] investigated the oscillatory behavior of

a higher-order differential equation

(1.2) (r(t)[x(n−1)(t)]α)′ + q(t)xβ(τ(t)) = 0,

considering separately the cases where

lim
t→∞

R(t) = ∞

and

(1.3) lim
t→∞

R(t) < ∞.

In particular, assuming that τ(t) < t, α > β, and (1.3) holds, Zhang et al. [23]

obtained results which ensure that every solution x of (1.2) is either oscillatory or

satisfies lim
t→∞

x(t) = 0.

Recently, oscillation of all unbounded solutions to (1.1) was established by Li et

al. [16], who assumed that α = β = 1 and g(t) 6 t, whereas Zhang et al. [22] derived

oscillation criteria for equation (1.1) under the assumptions that α = β = 1 and

g(t) = t. Finally, Zhang et al. [21] analysed oscillation of equation (1.2) for α > β

and g(t) < t.

Our principal goal in this paper is to derive new oscillation criteria for equation

(1.1) without imposing restrictive conditions on the deviated argument g(t). Our

methods are based on a thorough analysis of possible behavior of nonoscillatory

solutions and comparison with oscillation theorems that are available in the litera-

ture. We conclude the paper by providing three illustrative examples that explain

advantages of the new oscillation results.
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2. Main results

We need the following auxiliary result extracted from Agarwal et al. [3], Lem-

ma 2.2.3.

Lemma 2.1. Let f ∈ Cn(I,R+). Assume that f
(n)(t) is eventually of one sign for

all large t, and there exists a t1 > t0 such that

f (n−1)(t)f (n)(t) 6 0,

for all t > t1. If

lim
t→∞

f(t) 6= 0,

then, for every λ ∈ (0, 1), there exists a tλ ∈ [t1,∞) such that

f(t) >
λ

(n− 1)!
tn−1f (n−1)(t),

for all t ∈ [tλ,∞).

Observe that if x(t) is a solution of (1.1), then −x(t) is also a solution. Therefore,

without loss of generality, we can assume from now on that nonoscillatory solutions

of (1.1) are eventually positive. In what follows, it is tacitly supposed that all

functional inequalities are satisfied for all t large enough and we use the following

notation: given a solution x(t) of (1.1), we define

(2.1) y(t)
def
= −z(t)

def
= r(t)[x′′′(t)]α.

Theorem 2.1. Assume that (1.3) holds and there exist a number γ ∈ R, γ >

α > β and two functions τ, σ ∈ C(I,R) such that

(2.2) τ(t) 6 g(t) 6 σ(t), τ(t) < t < σ(t), lim
t→∞

τ(t) = ∞.

Suppose further that

(2.3)

∫ ∞

t0

q(t)

(

τ3(t)

r1/α(τ(t))

)β

dt = ∞

and

(2.4)

∫ ∞

t0

q(t)g2β(t)Rγ(σ(t)) dt = ∞.
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If, in addition, either

(2.5)

∫ ∞

t0

R(t) dt = ∞,

or

(2.6)

∫ ∞

t0

∫ ∞

u

R(s) ds du = ∞,

or

(2.7)

∫ ∞

t0

q(t)

(
∫ ∞

σ(t)

∫ ∞

u

R(s) ds du

)γ

dt = ∞

holds, equation (1.1) is oscillatory.

P r o o f. Let x(t) be a nonoscillatory solution of equation (1.1) which is eventually

positive. It follows from (1.1) that

(r(t)[x′′′(t)]α)′ = −q(t)xβ(g(t)) 6 0.

Hence, we have either x′′′(t) > 0 or x′′′(t) < 0. Assume first that x′′′(t) > 0. Then

there exists a t1 > t0 such that, for all t > t1,

(2.8) x(t) > 0, x′(t) > 0, x′′′(t) > 0, x(4)(t) 6 0, (r(t)[x′′′(t)]α)′ 6 0.

On the other hand, if we assume now that x′′′(t) < 0, then, for all t > t1, either

(2.9) x(t) > 0, x′(t) < 0, x′′(t) > 0, x′′′(t) < 0, (r(t)[x′′′(t)]α)′ 6 0,

or

(2.10) x(t) > 0, x′(t) > 0, x′′(t) > 0, x′′′(t) < 0, (r(t)[x′′′(t)]α)′ 6 0.

Assume that (2.8) holds. Taking into account that lim
t→∞

x(t) 6= 0 and also

x′′′(t)x(4)(t) 6 0 and applying Lemma 2.1, we have, for every λ ∈ (0, 1) and for all

sufficiently large t,

(2.11) x(t) >
λt3

6r1/α(t)
r1/α(t)x′′′(t).
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Let y be defined by (2.1). It follows from (1.1) and (2.11) that y(t) is a positive

solution of a differential inequality

(2.12) u′(t) + q(t)

(

λτ3(t)

6r1/α(τ(t))

)β

uβ/α(τ(t)) 6 0.

However, using (2.3) and [13], Theorem 2, we conclude that delay differential in-

equality (2.12) has no positive solutions, which is a contradiction.

Assume now that (2.9) holds. Taking into account the fact that the function

r(t)[x′′′(t)]α is nonincreasing, we deduce that

(2.13) r1/α(s)x′′′(s) 6 r1/α(t)x′′′(t), s > t > t1.

Dividing both sides of (2.13) by r1/α(s) and integrating the resulting inequality from

t to l, we obtain

x′′(l) 6 x′′(t) + r1/α(t)x′′′(t)

∫ l

t

r−1/α(s) ds.

Passing to the limit as l → ∞, we conclude that

(2.14) x′′(t) > −r1/α(t)x′′′(t)R(t).

Hence, by the monotonicity of r1/α(t)x′′′(t), there exists a constant k > 0 such that

(2.15) x′′(t) > kR(t).

Integrating (2.15) from t0 to t, we obtain

(2.16) x′(t)− x′(t0) > k

∫ t

t0

R(s) ds.

Inequality (2.16) yields

−x′(t0) > k

∫ t

t0

R(s) ds,

which contradicts assumption (2.5). Integrating (2.15) from t to ∞, we arrive at the

inequality

−x′(t) > k

∫ ∞

t

R(s) ds.

Another integration from t0 to t yields

−x(t) + x(t0) > k

∫ t

t0

∫ ∞

u

R(s) ds du,
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which implies that

x(t0) > k

∫ t

t0

∫ ∞

u

R(s) ds du.

But the latter inequality contradicts (2.6).

Integrating (2.14) twice from t to ∞, we obtain

(2.17) −x′(t) >

∫ ∞

t

−r1/α(s)x′′′(s)R(s) ds > −r1/α(t)x′′′(t)

∫ ∞

t

R(s) ds

and

(2.18) x(t) >

∫ ∞

t

−r1/α(u)x′′′(u)

∫ ∞

u

R(s) ds du

> −r1/α(t)x′′′(t)

∫ ∞

t

∫ ∞

u

R(s) ds du.

It follows from the fact that x′(t) < 0 that there exists a constant c1 > 0 such that

xβ(g(t)) > xβ(σ(t)) = xγ(σ(t))xβ−γ(σ(t)) > c1x
γ(σ(t)).

Therefore, it follows from (1.1) and (2.17) that the function z(t) defined by (2.1) is

a positive solution of a differential inequality

(2.19) u′(t)− c1q(t)

(
∫ ∞

σ(t)

∫ ∞

u

R(s) ds du

)γ

uγ/α(σ(t)) > 0.

On the other hand, using (2.7) and [13], Theorem 1, we conclude that advanced

differential inequality (2.18) has no positive solutions. This is a contradiction.

Assume that (2.10) holds. We have already established that (2.14) holds. Note

that lim
t→∞

x(t) 6= 0 and x′′(t)x′′′(t) < 0. Therefore, by virtue of Lemma 2.1, we

conclude that

(2.20) x(t) >
λ

2
t2x′′(t),

for every λ ∈ (0, 1) and for all sufficiently large t. It follows now from (2.14) and

(2.19) that

(2.21) x(t) > −λ

2
t2R(t)r1/α(t)x′′′(t),

for every λ ∈ (0, 1) and for all sufficiently large t. Using conditions (2.10) and a well-

known result in [12], we deduce that, for all t large enough, x(t)/x′(t) > t/2, and thus
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(x/t2)′ 6 0 eventually. Hence, there exists a constant c2 > 0 such that x(t)/t2 6 c2

for all sufficiently large t. Consequently,

xβ(g(t))

g2β(t)
>

xβ(σ(t))

σ2β(t)
=

xγ(σ(t))

σ2γ(t)

xβ−γ(σ(t))

σ2(β−γ)(σ(t))
> c3

xγ(σ(t))

σ2γ(t)
,

where c3 = cβ−γ
2 . Writing the latter inequality in the form

xβ(g(t)) > c3
g2β(t)

σ2γ(t)
xγ(σ(t))

and using (1.1) and (2.20), we observe that y(t) is a negative solution of a differential

inequality

u′(t)− c3q(t)g
2β(t)

(λ

2
R(σ(t))

)γ

uγ/α(σ(t)) 6 0.

Hence, the differential inequality

(2.22) v′(t)− c3q(t)g
2β(t)

(λ

2
R(σ(t))

)γ

vγ/α(σ(t)) > 0

has a positive solution z(t). Note that in view of (2.4) and [13], Theorem 1, ad-

vanced differential inequality (2.21) has no positive solutions, which is a contradic-

tion. Therefore, we established that in all possible cases equation (1.1) is oscillatory.

�

Theorem 2.2. Assume that (1.3) holds and there exist a number γ ∈ R, γ <

α < β, and two functions τ, σ ∈ C(I,R) such that (2.2) holds. Assume further that

(2.23)

∫ ∞

t0

q(t)

(

τ3(t)

r1/α(τ(t))

)γ

dt = ∞

and

(2.24)

∫ ∞

t0

q(t)(g2(t)R(σ(t)))β dt = ∞.

If either (2.5), (2.6), or

(2.25)

∫ ∞

t0

q(t)

(
∫ ∞

σ(t)

∫ ∞

u

R(s) ds du

)β

dt = ∞

holds, equation (1.1) is oscillatory.
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P r o o f. Assume that equation (1.1) has a nonoscillatory solution x(t). Without

loss of generality, we may assume that x is eventually positive. As in the proof of

Theorem 2.1, the structure of equation (1.1) implies three possible cases described

by (2.8), (2.9), and (2.10).

We start by assuming that (2.8) holds. It has been established in the proof of

Theorem 2.1 that (2.11) is satisfied for every λ ∈ (0, 1) and for all sufficiently large t.

It follows from the condition that x′(t) > 0 that there exists a constant c4 such that

xβ(g(t)) > xβ(τ(t)) = xγ(τ(t))xβ−γ (τ(t)) > c4x
γ(τ(t)).

Hence, by (1.1) and (2.11), we observe that the function y(t) is a positive solution

of a differential inequality

(2.26) u′(t) + c4q(t)

(

λτ3(t)

6r1/α(τ(t))

)γ

uγ/α(τ(t)) 6 0.

However, (2.22) and [13], Theorem 2, imply that delay differential inequality (2.25)

has no positive solutions, which is a contradiction.

Assume now that (2.9) holds. Proceeding as in the proof of Theorem 2.1, we

obtain a contradiction with our assumptions (2.5) and (2.6). On the other hand, we

established in Theorem 2.1 that (2.17) is satisfied. Hence, applying (1.1), (2.17), and

using the property x(g(t)) > x(σ(t)), we conclude that a differential inequality

(2.27) u′(t)− q(t)

(
∫ ∞

σ(t)

∫ ∞

u

R(s) ds du

)β

uβ/α(σ(t)) > 0

has a positive solution z(t). On the other hand, (2.24) and [13], Theorem 1, im-

ply that advanced differential inequality (2.26) has no positive solutions. This is

a contradiction.

Finally, assume that (2.10) holds. Following the same lines as in the proof of

Theorem 2.1, we deduce that, for every λ ∈ (0, 1) and for all sufficiently large t,

(2.20) holds. Furthemore,

x(g(t))/g2(t) > x(σ(t))/σ2(t).

Consequently, it follows from (1.1) and (2.20) that a differential inequality

(2.28) u′(t)− q(t)
(λ

2
g2(t)R(σ(t))

)β

uβ/α(σ(t)) > 0

has a positive solution z(t). However, (2.23) and [13], Theorem 1, imply that ad-

vanced differential inequality (2.27) has no positive solutions. This contradiction

completes the proof. �
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Theorem 2.3. Suppose that α = β and (1.3) holds. Assume that there exist two

functions τ, σ ∈ C(I,R) such that (2.2) holds. Furthermore, assume that

(2.29)
1

6β
lim inf
t→∞

∫ t

τ(t)

q(s)

(

τ3(s)

r1/α(τ(s))

)β

ds >
1

e

and

(2.30)
1

2β
lim inf
t→∞

∫ σ(t)

t

q(v)(g2(v)R(σ(v)))β dv >
1

e
.

If either (2.5), (2.6), or

(2.31) lim inf
t→∞

∫ σ(t)

t

q(v)

(
∫ ∞

σ(v)

∫ ∞

u

R(s) ds du

)β

dv >
1

e

holds, equation (1.1) is oscillatory.

P r o o f. Suppose that equation (1.1) has a nonoscillatory solution x(t) which,

without loss of generality, may be assumed to be eventually positive. As above,

differential equation (1.1) “induces” three possible cases described by conditions

(2.8), (2.9), and (2.10).

Assume that (2.8) holds. We know from the proof of Theorem 2.1 that, for every

λ ∈ (0, 1) and for all sufficiently large t, (2.11) is satisfied. Hence, by (1.1) and (2.11),

we conclude that y(t) is a positive solution of a differential inequality

(2.32) u′(t) + q(t)

(

λτ3(t)

6r1/α(τ(t))

)β

u(τ(t)) 6 0.

Application of (2.28) and [15], Theorem 2.1.1, yields that delay differential inequality

(2.31) has no positive solutions, which is a contradiction.

Assume now that (2.9) holds. As in the proof of Theorem 2.1, we obtain first

a contradiction with (2.5) and then with (2.6). On the other hand, by (1.1) and

(2.17), a differential inequality

(2.33) u′(t)− q(t)

(
∫ ∞

σ(t)

∫ ∞

u

R(s) ds du

)β

u(σ(t)) > 0

has a positive solution z(t). Using [15], Theorem 2.4.1, and (2.30), we see that ad-

vanced differential inequality (2.32) has no positive solutions, which is a contradic-

tion.
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Finally, suppose that we have the case (2.10). In the proof of Theorem 2.1, we

established that, for every λ ∈ (0, 1) and for all sufficiently large t, (2.20) holds

and thus, x(g(t))/g2(t) > x(σ(t))/σ2(t). By virtue of (1.1) and (2.20), a differential

inequality

(2.34) u′(t)− q(t)
(λ

2
g2(t)R(σ(t))

)β

u(σ(t)) > 0

has a positive solution z(t). Using (2.29) and [15], Theorem 2.4.1, we conclude that

advanced differential inequality (2.33) has no positive solutions. This contradiction

completes the proof of the fact that equation (1.1) is oscillatory. �

3. Examples and discussion

In this section, we provide three examples that illustrate the main results reported

in this paper. Using these examples, we compare the efficiency of our oscillation

theorems to that of the criteria reported recently in the papers by Li et al. [16],

Zhang et al. [21], [22], and Zhang et al. [23].

E x am p l e 3.1. Consider an advanced differential equation

(3.1) (t2α(x′′′(t))α)′ + tγ0−2β−1xβ(2t) = 0, t > 1.

Here the numbers α, β, γ0 ∈ R are such that γ0 > α > β, and, in the notation

adopted in the paper, r(t) = t2α, q(t) = tγ0−2β−1, g(t) = 2t, τ(t) = t/2, and

σ(t) = 2t. Let γ = γ0, then R(t) = t−1. Then

∫ ∞

t0

R(t) dt =

∫ ∞

1

t−1 dt = ∞.

Since γ0 > β, a straightforward calculation yields

∫ ∞

t0

q(t)

(

τ3(t)

r1/α(τ(t))

)β

dt =
1

2β

∫ ∞

1

tγ0−β−1 dt = ∞

and
∫ ∞

t0

q(t)g2β(t)Rγ(σ(t)) dt = 22β−γ0

∫ ∞

1

t−1 dt = ∞.

Hence, equation (3.1) is oscillatory by Theorem 2.1. Note that the oscillatory nature

of this equation cannot be deduced from the results reported in the papers by Li

et al. [16], Zhang et al. [21], [22], and Zhang et al. [23] because in our example

g(t) = 2t > t.
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E x am p l e 3.2. For t > 2, consider a differential equation with an argument

g(t) = t− sin t that alternates between advanced and delayed,

(3.2) (t2α(x′′′(t))α)′ + t−1−γ0xβ(t− sin t) = 0.

We assume that α, β, γ0 ∈ R are such that γ0 < α < β. Here r(t) = t2α, q(t) =

t−1−γ0 , g(t) = t− sin t, τ(t) = t/2, and σ(t) = 2t. Then R(t) = 1/t and

∫ ∞

t0

R(t) dt =

∫ ∞

2

t−1 dt = ∞.

Let γ = γ0. Then

∫ ∞

t0

q(t)

(

τ3(t)

r1/α(τ(t))

)γ

dt =

∫ ∞

t0

q(t)

(

τ3(t)

r1/α(τ(t))

)γ0

dt =
1

2γ0

∫ ∞

2

t−1 dt = ∞

and, since β > γ0,

∫ ∞

t0

q(t)(g2(t)R(σ(t)))β dt > 2−3β

∫ ∞

2

tβ−γ0−1 dt = ∞.

Therefore, we conclude that equation (3.2) is oscillatory by Theorem 2.2. Note that

results reported by Zhang et al. [23] cannot be applied to (3.2), since all results in

the cited paper require that β 6 α and g(t) < t.

E x am p l e 3.3. For t > 1, consider a delay differential equation

(3.3) (etx′′′(t))′ + 2
√
10 et+arcsin(

√
10/10)x

(

t− arcsin
(
√
10/10

))

= 0.

Let α = β = 1, r(t) = et, q(t) = 2
√
10 et+arcsin(

√
10/10), g(t) = t − arcsin

(√
10/10

)

,

τ(t) = t/2, and σ(t) = t+ arcsin
(√

10/10
)

. Then R(t) = e−t,

lim inf
t→∞

∫ t

τ(t)

q(s)

(

τ3(s)

r1/α(τ(s))

)α

ds =

√
10

4
lim inf
t→∞

∫ t

t/2

es/2+arcsin(
√
10/10)s3 ds = ∞,

lim inf
t→∞

∫ σ(t)

t

q(v)(g2(v)R(σ(v)))α dv >
1

4
lim inf
t→∞

∫ t+arcsin(
√
10/10)

t

v2 dv = ∞,

and

lim inf
t→∞

∫ σ(t)

t

q(v)

(
∫ ∞

σ(v)

∫ ∞

u

R(s) ds du

)α

dv

= 2
√
10 lim inf

t→∞

∫ t+arcsin(
√
10/10)

t

dv = 2
√
10 arcsin

√
10

10
>

1

e
.
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Hence, equation (3.3) is oscillatory by Theorem 2.3, and x(t) = et sin t is one such

solution. Note that results in the paper by Zhang et al. [23] ensure that every solution

of (3.3) is either oscillatory or lim
t→∞

x(t) = 0 and cannot guarantee oscillatory nature

of the equation. Our result is stronger since it excludes existence of solutions x(t)

satisfying lim
t→∞

x(t) = 0.

R em a r k 3.1. In this paper, employing a number of known comparison theo-

rems, we derived three new oscillation theorems for a class of fourth-order quasilinear

functional differential equations (1.1). These criteria supplement and improve the

results obtained by Li et al. [16], Zhang et al. [21], [22], and Zhang et al. [23]. A dis-

tinguishing feature of our results is that we do not impose specific restrictions on

the deviating argument g, that is, g may be delayed, advanced, or change back and

forth from advanced to delayed, as in Example 3.2.

R em a r k 3.2. As fairly noticed by the referee, equation (1.1) can be viewed as

a particular case of a more general class of equations

(3.4) (r(t)ϕα(x
′′′(t)))′ + q(t)ϕβ(x(g(t))) = 0,

where ϕγ(u) = |u|γ−1
u, γ > 0. However, techniques used in this paper do not allow

a straightforward extension of our results to equation (3.4); this remains an open

problem for further research.
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