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The problem of fuzzy-based direct adaptive tracking control is considered for a class of pure-feedback stochastic nonlinear systems.
During the controller design, fuzzy logic systems are used to approximate the packaged unknown nonlinearities, and then a novel
direct adaptive controller is constructed via backstepping technique. It is shown that the proposed controller guarantees that all the
signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood
around the origin in the sense ofmean quartic value.Themain advantages lie in that the proposed controller structure is simpler and
only one adaptive parameter needs to be updated online. Simulation results are used to illustrate the effectiveness of the proposed
approach.

1. Introduction

During the past decades, many control methods have been
developed to control design of nonlinear systems, such
as adaptive control [1–3], backstepping control [4], and
fault tolerant control [5–9]. Particularly, backstepping-based
adaptive control has been an effective tool to deal with the
control problem of nonlinear strict-feedback systemswithout
satisfyingmatching condition. So far,many interesting results
have been obtained for deterministic nonlinear systems in
[4, 10–21] and for stochastic cases in [22–35]. In the afore-
mentioned papers, however, the existing results required that
the nonlinear functions be in the affine forms; that is, systems
are characterized by input appearing linearly in the system
state equation.

Pure-feedback nonlinear systems, which have no affine
appearance of the state variables that can be used as virtual
control and the actual control input, stand for a more repre-
sentative form than strict-feedback systems. Many practical
systems are in nonaffine structure, such as biochemical pro-
cess [4] andmechanical systems [36].Therefore, the study on

stability analysis and controller synthesis for pure-feedback
nonlinear system is important both in theory and in practice
applications [37–42]. By combining adaptive neural control
and backstepping, in [37, 38], a class of pure-feedback systems
was investigated, which contained only partial nonaffine
functions and at least a control variable or virtual control
signal existed in affine form. In [39], an “ISS-modular”
approach combined with the small-gain theorem was pre-
sented for adaptive neural control of completely nonaffine
pure-feedback systems. Recently, in [41], an adaptive neural
tracking control schemewas presented for a class of nonaffine
pure-feedback systems with multiple unknown state time-
varying delays. On the other hand, it is well known that
stochastic disturbance often exists in practical systems and is
usually a source of instability of control systems. So, the con-
sideration of the control design for pure-feedback nonlinear
systems with stochastic disturbance is a meaningful issue and
has attracted increasing attention in the control community
in recent years [43–45]. In [43], the problem of adaptive fuzzy
control for pure-feedback stochastic nonlinear systems has
been reported. Then, Yu et al. [44] presented an adaptive
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neural controller to guarantee the four-moment boundedness
for a class of uncertain nonaffine stochastic nonlinear system
with time-varying delays. However, the considered systems
in [43–45] are of a special kind of pure-feedback stochastic
nonlinear systems in which only the last equation was viewed
as nonaffine equation.

Motivated by the above observations, we will develop a
novel fuzzy-based direct adaptive tracking control scheme for
a class of pure-feedback stochastic nonlinear systems. The
presented controller guarantees that all the signals in the
closed-loop system remain bounded in probability and the
tracking error converges to a small neighborhood around the
origin in the sense of mean quartic value. The main contri-
butions of this paper lie in that the structure of the proposed
controller is simpler and only one adaptive parameter needs
to be updated online. As a result, the computational burden is
significantly alleviated and the control scheme may be more
implemented in practice.

The remainder of this paper is organized as follows. The
problem formulation and preliminaries are given in Section
2. An adaptive fuzzy tracking control scheme is presented in
Section 3. The simulation example is given in Section 4, and
it is followed by Section 5 which concludes the work.

2. Problem Formulation and Preliminaries

To introduce some useful conceptions and lemmas, consider
the following stochastic system:

𝑑𝑥 = 𝑓 (𝑥, 𝑡) 𝑑𝑡 + ℎ (𝑥, 𝑡) 𝑑𝑤, ∀𝑥 ∈ 𝑅
𝑛

, (1)

where 𝑥 ∈ 𝑅
𝑛 is state vector, 𝑤 is a 𝑟-dimensional inde-

pendent standard Brownian motion defined on the complete
probability space (Ω, 𝐹, {𝐹

𝑡
}
𝑡≥0
, 𝑃) with Ω being a sample

space, 𝐹 being a 𝜎-field, {𝐹
𝑡
}
𝑡≥0

being a filtration, and 𝑃 being
a probability measure, and 𝑓 : 𝑅

𝑛

× 𝑅
+

→ 𝑅
𝑛, ℎ : 𝑅

𝑛

×

𝑅
+

→ 𝑅
𝑛×𝑟 are locally Lipschitz functions in 𝑥 and satisfy

𝑓(0, 𝑡) = 0, ℎ(0, 𝑡) = 0.

Definition 1 (see [25]). For any given 𝑉(𝑥, 𝑡) ∈ 𝐶
2,1,

associated with the stochastic differential equation (1), define
the differential operator 𝐿 as follows:

𝐿𝑉 =
𝜕𝑉

𝜕𝑡
+
𝜕𝑉

𝜕𝑥
𝑓 +

1

2
Tr{ℎ𝑇 𝜕

2

𝑉

𝜕𝑥2
ℎ} , (2)

where Tr(𝐴) is the trace of 𝐴.

Remark 2. The term (1/2)Tr{ℎ𝑇(𝜕2𝑉/(𝜕𝑥2)ℎ} is called Itô
correction term, in which the second-order differential
𝜕
2

𝑉/𝜕𝑥
2 makes the controller design much more difficult

than that of the deterministic system.

Definition 3 (see [46]). The trajectory {𝑥(𝑡), 𝑡 ≥ 0} of
stochastic system (1) is said to be semiglobally uniformly
ultimately bounded in 𝑝th moment, if, for some compact set
Ω ∈ 𝑅

𝑛 and any initial state 𝑥
0
= 𝑥(𝑡
0
), there exist a constant

𝜀 > 0 and a time constant 𝑇 = 𝑇(𝜀, 𝑥
0
) such that 𝐸(|𝑥(𝑡)|𝑝) <

𝜀, for all 𝑡 > 𝑡
0
+𝑇. Particularly, when𝑝 = 2, it is usually called

semiglobally uniformly ultimately bounded in mean square.

Lemma 4 (see [46]). Suppose that there exist a 𝐶2,1 function
𝑉(𝑥, 𝑡) : 𝑅

𝑛

× 𝑅
+

→ 𝑅
+, two constants 𝑐

1
> 0 and 𝑐

2
> 0, and

class 𝐾
∞
-functions 𝛼

1
and 𝛼

2
such that

𝛼
1
(|𝑥|) ≤ 𝑉 (𝑥, 𝑡) ≤ 𝛼

2
(|𝑥|) ,

𝐿𝑉 (𝑥, 𝑡) ≤ −𝑐
1
𝑉 (𝑥, 𝑡) + 𝑐

2
,

(3)

for all 𝑥 ∈ 𝑅𝑛 and 𝑡 > 𝑡
0
.Then, there is a unique strong solution

of system (1) for each 𝑥
0
∈ 𝑅
𝑛 and it satisfies

𝐸 [𝑉 (𝑥, 𝑡)] ≤ 𝑉 (𝑥
0
) 𝑒
−𝑐
1
𝑡

+
𝑐
2

𝑐
1

, ∀𝑡 > 𝑡
0
. (4)

In this paper, we consider a class of pure-feedback
stochastic nonlinear systems described by

𝑑𝑥
𝑖
= 𝑓
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) 𝑑𝑡 + ℎ

𝑇

𝑖
(𝑥
𝑖
) 𝑑𝑤, 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑑𝑥
𝑛
= 𝑓
𝑛
(𝑥
𝑛
, 𝑢) 𝑑𝑡 + ℎ

𝑇

𝑛
(𝑥
𝑛
) 𝑑𝑤,

𝑦 = 𝑥
1
,

(5)

where 𝑥 and 𝑤 are defined in (1), 𝑢 ∈ 𝑅 and 𝑦 ∈ 𝑅 represent
the control input and the systemoutput, and respectively,𝑥

𝑖
=

[𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
]
𝑇

∈ 𝑅
𝑖, 𝑓
𝑖
(⋅) : 𝑅

𝑖+1

→ 𝑅, ℎ
𝑖
(⋅) : 𝑅

𝑖

→ 𝑅
𝑟

(𝑖 = 1, 2, . . . , 𝑛) are unknown smooth nonlinear functions.
The control objective is to design a fuzzy-based adaptive

tracking control law 𝑢 for system (5) such that the system
output 𝑦 follows a desired reference signal 𝑦

𝑑
in the sense of

mean quartic value, and all signals in the closed-loop system
remain bounded in probability. To this end, define 𝑦(𝑖)

𝑑
=

[𝑦
𝑑
, 𝑦
(1)

𝑑
, . . . , 𝑦

(𝑖)

𝑑
]
𝑇, 𝑖 = 1, 2, . . . , 𝑛, where 𝑦(𝑖)

𝑑
denotes the 𝑖th

time derivative of 𝑦
𝑑
.

For the system (5), define

𝑔
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) =

𝜕𝑓
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
)

𝜕𝑥
𝑖+1

, 𝑖 = 1, 2, . . . , 𝑛, (6)

where 𝑥
𝑛+1

= 𝑢.

Assumption 5 (see [42]). The signs of 𝑔
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
), 𝑖 =

1, 2, . . . , 𝑛, are known, and there exist unknown constants 𝑏
𝑚

and 𝑏
𝑀
such that for 1 ≤ 𝑖 ≤ 𝑛,

0 < 𝑏
𝑚
≤
󵄨󵄨󵄨󵄨𝑔𝑖 (𝑥𝑖, 𝑥𝑖+1)

󵄨󵄨󵄨󵄨 ≤ 𝑏𝑀 < ∞, ∀ (𝑥
𝑖
, 𝑥
𝑖+1
) ∈ 𝑅
𝑖

× 𝑅.

(7)

Assumption 6 (see [17]). The reference signal 𝑦
𝑑
(𝑡) and its 𝑛th

order derivatives are continuous and bounded.

In this note, fuzzy logic system will be used to approxi-
mate a continuous function 𝑓(𝑥) defined on some compact
sets. Adopt the singleton fuzzifier, the product inference, and
the center-average defuzzifier to deduce the following fuzzy
rules:

𝑅
𝑖
: IF 𝑥
1
is 𝐹𝑖
1
and 𝑥

2
is 𝐹𝑖
2
and . . . and 𝑥

𝑛
is 𝐹𝑖
𝑛
.

Then 𝑦 is 𝐵𝑖 (𝑖 = 1, 2, . . . , 𝑁),
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where 𝑥 = [𝑥
1
, . . . , 𝑥

𝑛
]
𝑇

∈ 𝑅
𝑛 and 𝑦 ∈ 𝑅 are the input and

output of the fuzzy system, respectively. 𝐹𝑗
𝑖
and 𝐵𝑖 are fuzzy

sets in 𝑅. Since the strategy of singleton fuzzification, center-
average defuzzification, and product inference is used, the
output of the fuzzy system can be formulated as

𝑦 (𝑥) =

∑
𝑁

𝑗=1
𝑊
𝑗
∏
𝑛

𝑖=1
𝜇
𝐹
𝑗

𝑖

(𝑥
𝑖
)

∑
𝑁

𝑗=1
[∏
𝑛

𝑖=1
𝜇
𝐹
𝑗

𝑖

(𝑥
𝑖
)]

, (8)

where 𝑊
𝑗
is the point at which fuzzy membership function

𝜇
𝐵
𝑗(𝑊
𝑗
) achieves its maximum value, which is assumed to be

1. Let

𝑠
𝑗
(𝑥) =

∏
𝑛

𝑖=1
𝜇
𝐹
𝑗

𝑖

(𝑥
𝑖
)

∑
𝑁

𝑗=1
[∏
𝑛

𝑖=1
𝜇
𝐹
𝑗

𝑖

(𝑥
𝑖
)]

, (9)

𝑆(𝑥) = [𝑠
1
(𝑥), . . . , 𝑠

𝑁
(𝑥)]
𝑇, and 𝑊 = [𝑊

1
, . . . ,𝑊

𝑁
]
𝑇. Then,

the fuzzy logic system can be rewritten as

𝑦 (𝑥) = 𝑊
𝑇

𝑆 (𝑥) . (10)

If all memberships are chosen as Gaussian functions, the
lemma below holds.

Lemma 7 (see [47]). Let 𝑓(𝑥) be a continuous function
defined on a compact setΩ. Then, for any given constant 𝜀 > 0,
there exists a fuzzy logic system (10) such that

sup
𝑥∈Ω

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥) − 𝑊

𝑇

𝑆 (𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜀. (11)

The following lemma will be used in this note.

Lemma 8 (Young’s inequality [23]). For ∀(𝑥, 𝑦) ∈ 𝑅
2, the

following inequality holds:

𝑥𝑦 ≤
𝜀
𝑝

𝑝
|𝑥|
𝑝

+
1

𝑞𝜀𝑞
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑞

, (12)

where 𝜀 > 0, 𝑝 > 1, 𝑞 > 1, and (𝑝 − 1)(𝑞 − 1) = 1.

3. Adaptive Fuzzy Control Design

In this section, a fuzzy-based adaptive tracking control
scheme is proposed for the system (5). The backstepping
design procedure contains 𝑛 steps and is developed based on
the coordinate transformation 𝑧

𝑖
= 𝑥
𝑖
− 𝛼
𝑖−1

, 𝑖 = 1, 2, . . . , 𝑛,
where 𝛼

0
= 𝑦
𝑑
. The virtual control signal and the adaption

law will be constructed in the following forms:

𝛼
𝑖
= −

1

2𝑎2
𝑖

𝑧
3

𝑖
𝜃, (13)

̇̂
𝜃 =

𝑛

∑

𝑖=1

𝜎

2𝑎2
𝑖

𝑧
6

𝑖
− 𝛾𝜃, (14)

where 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛), 𝜎, and 𝛾 are positive design

parameters and 𝑍
1
= [𝑥
1
, 𝑦
𝑑
, ̇𝑦
𝑑
]
𝑇

∈ Ω
𝑍
1

⊂ 𝑅
3, 𝑍
𝑖
=

[𝑥
𝑇

𝑖
, 𝜃, 𝑦
(𝑖)𝑇

𝑑
]
𝑇

∈ Ω
𝑍
𝑖

⊂ 𝑅
2𝑖+2

(𝑖 = 2, . . . , 𝑛). 𝜃 is the estimation
of unknown constant 𝜃 which is specified as

𝜃 = max{
𝑏
2

𝑀

𝑏
𝑚

󵄩󵄩󵄩󵄩𝑊𝑖
󵄩󵄩󵄩󵄩
2

; 𝑖 = 1, 2, . . . , 𝑛} . (15)

Specially, 𝛼
𝑛
is the actual control input 𝑢(𝑡).

For simplicity, in the following, the time variable 𝑡 and the
state vector 𝑥

𝑖
are omitted from the corresponding functions,

and let 𝑆
𝑖
(𝑍
𝑖
) = 𝑆
𝑖
.

Step 1. Since 𝑧
1
= 𝑥
1
− 𝑦
𝑑
, the error dynamic satisfies

𝑑𝑧
1
= (𝑓
1
(𝑥
1
, 𝑥
2
) − ̇𝑦
𝑑
) 𝑑𝑡 + ℎ

𝑇

1
𝑑𝑤. (16)

Consider a Lyapunov function candidate as

𝑉
1
=
1

4
𝑧
4

1
+
𝑏
𝑚

2𝜎
𝜃
2

, (17)

where 𝜃 = 𝜃 − 𝜃 is the parameter error. By (2) and the
completion of squares, one has

𝐿𝑉
1
≤ 𝑧
3

1
(𝑓
1
(𝑥
1
, 𝑥
2
) − ̇𝑦
𝑑
) +

3𝑧
2

1

2
ℎ
𝑇

1
ℎ
1
−
𝑏
𝑚

𝜎
𝜃
̇̂
𝜃

≤ 𝑧
3

1
(𝑓
1
(𝑥
1
, 𝑥
2
) − ̇𝑦
𝑑
+
3

4
𝑙
−2

1
𝑧
1

󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩
4

)

+
3

4
𝑙
2

1
−
𝑏
𝑚

𝜎
𝜃
̇̂
𝜃,

(18)

where 𝑙
1
is a constant. Define a new function

𝑤
1
= − ̇𝑦
𝑑
+
3

2
𝑧
1
+ 𝑘
1
𝑧
1
+
3

4
𝑙
−2

1
𝑧
1

󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩
4

, (19)

then (18) can be rewritten as

𝐿𝑉
1
≤ 𝑧
3

1
(𝑓
1
(𝑥
1
, 𝑥
2
) + 𝑤
1
)

− (𝑘
1
+
3

2
) 𝑧
4

1
+
3

4
𝑙
2

1
−
𝑏
𝑚

𝜎
𝜃
̇̂
𝜃.

(20)

Based on Assumption 5 and the fact of 𝜕𝑤
1
/𝜕𝑥
2
= 0, one has

𝜕 [𝑓
1
(𝑥
1
, 𝑥
2
) + 𝑤
1
]

𝜕𝑥
2

≥ 𝑏
𝑚
> 0. (21)

According to Lemma 1 in [37], for each value of 𝑥
1
and 𝑤

1
,

there exists a smooth ideal control input 𝑥
2
= 𝛼
1
(𝑥
1
, 𝑤
1
) such

that

𝑓
1
(𝑥
1
, 𝛼
1
) + 𝑤
1
= 0. (22)

Applying mean value theorem [48], there exists 𝜇
1
(0 < 𝜇

1
<

1) which makes

𝑓
1
(𝑥
1
, 𝑥
2
) = 𝑓
1
(𝑥
1
, 𝛼
1
) + 𝑔
𝜇
1

(𝑥
2
− 𝛼
1
) , (23)

where 𝑔
𝜇
1

:= 𝑔
1
(𝑥
1
, 𝑥
𝜇
1

) = (𝜕𝑓
1
(𝑥
1
, 𝑥
2
)/𝜕𝑥
2
)|
𝑥
2
=𝑥
𝜇1

, 𝑥
𝜇
1

=

𝜇
1
𝑥
2
+ (1 − 𝜇

1
)𝛼
1
.
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Apparently, Assumption 5 on 𝑔
1
(𝑥
1
, 𝑥
2
) is still valid for

𝑔
𝜇
1

. Substituting (23) into (20) and applying the result (22)
and 𝑧
2
= 𝑥
2
− 𝛼
1
results in

𝐿𝑉
1
≤ 𝑧
3

1
𝑔
𝜇1
(𝑥
2
− 𝛼
1
) − (𝑘

1
+
3

2
) 𝑧
4

1
+
3

4
𝑙
2

1
−
𝑏
𝑚

𝜎
𝜃
̇̂
𝜃

≤ 𝑧
3

1
𝑔
𝜇
1

𝑧
2
+ 𝑧
3

1
𝑔
𝜇
1

(𝛼
1
− 𝛼
1
)

− (𝑘
1
+
3

2
) 𝑧
4

1
+
3

4
𝑙
2

1
−
𝑏
𝑚

𝜎
𝜃
̇̂
𝜃.

(24)

Since 𝛼
1
contains the unknown function ℎ

1
, 𝛼
1
cannot be

directly implemented in practice. According to Lemma 7,
there exists a fuzzy logic system𝑊

𝑇

1
𝑆
1
(𝑍
1
) which can model

the unknown function 𝛼
1
over a compact set Ω

𝑍
1

⊂ 𝑅
3, such

that, for any given 𝜀
1
> 0,

𝛼
1
= 𝑊
𝑇

1
𝑆
1
(𝑍
1
) + 𝛿
1
(𝑍
1
) ,

󵄨󵄨󵄨󵄨𝛿1 (𝑍1)
󵄨󵄨󵄨󵄨 ≤ 𝜀1,

(25)

where 𝛿
1
(𝑍
1
) is approximation error.Then, based on Young’s

inequality, it follows that

−𝑧
3

1
𝑔
𝜇
1

𝛼
1
≤
𝑏
𝑚
𝑧
6

1

2𝑎2
1

󵄩󵄩󵄩󵄩𝑊1
󵄩󵄩󵄩󵄩
2

𝑏
𝑚

𝑆
𝑇

1
𝑆
1
+
𝑎
2

1

2
+
3

4
𝑧
4

1
+
𝑏
4

𝑀

4
𝜀
4

1

≤
𝑏
𝑚

2𝑎2
1

𝑧
6

1
𝜃 +

1

2
𝑎
2

1
+
3

4
𝑧
4

1
+
1

4
𝑏
4

𝑀
𝜀
4

1
,

(26)

where the unknown constant 𝜃 is defined in (15) and the
property of 𝑆𝑇

1
𝑆
1
≤ 1 is used in (26). By choosing virtual

control signal 𝛼
1
in (13) with 𝑖 = 1, and using the property

of 𝜃 ≥ 0 and Assumption 5, the following result holds:

𝑧
3

1
𝑔
𝜇
1

𝛼
1
≤ −

𝑏
𝑚

2𝑎2
1

𝑧
6

1
𝜃. (27)

Substituting (26) and (27) into (20) and using Young’s
inequality to the term 𝑧

3

1
𝑔
𝜇
1

𝑧
2
produces

𝐿𝑉
1
≤ −𝑘
1
𝑧
4

1
+
1

4
𝑏
4

𝑀
𝑧
4

2
+ 𝜌
1
+
𝑏
𝑚

𝜎
𝜃(

𝜎

2𝑎2
1

𝑧
6

1
−

̇̂
𝜃) , (28)

with 𝜌
1
= (1/2)𝑎

2

1
+ (1/4)𝑏

4

𝑀
𝜀
4

1
+ (3/4)𝑙

2

1
.

Step 2. Based on the coordinate transformation 𝑧
2
= 𝑥
2
− 𝛼
1

and Itô formula, one has

𝑑𝑧
2
= (𝑓
2
(𝑥
2
, 𝑥
3
) − ℓ𝛼

1
) 𝑑𝑡 + (ℎ

2
−
𝜕𝛼
1

𝜕𝑥
1

ℎ
1
)

𝑇

𝑑𝑤 (29)

with

ℓ𝛼
1
=
𝜕𝛼
1

𝜕𝑥
1

𝑓
1
(𝑥
1
, 𝑥
2
) +

1

∑

𝑗=0

𝜕𝛼
1

𝜕𝑦
(𝑗)

𝑑

𝑦
(𝑗+1)

𝑑
+
𝜕𝛼
1

𝜕𝜃

̇̂
𝜃 +

1

2

𝜕
2

𝛼
1

𝜕𝑥2
1

ℎ
𝑇

1
ℎ
1
.

(30)

Take the following Lyapunov function:

𝑉
2
= 𝑉
1
+
1

4
𝑧
4

2
. (31)

Then, by using a similar procedure as Step 1, it follows that

𝐿𝑉
2
= 𝐿𝑉
1
+ 𝑧
3

2
(𝑓
2
(𝑥
2
, 𝑥
3
) − ℓ𝛼

1
)

+
3

2
𝑧
2

2
(ℎ
2
−
𝜕𝛼
1

𝜕𝑥
1

ℎ
1
)

𝑇

(ℎ
2
−
𝜕𝛼
1

𝜕𝑥
1

ℎ
1
) .

(32)

It is noticed that

3

2
𝑧
2

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
2
−
𝜕𝛼
1

𝜕𝑥
1

ℎ
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
3

4𝑙2
2

𝑧
4

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
2
−
𝜕𝛼
1

𝜕𝑥
1

ℎ
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4

+
3𝑙
2

2

4
, (33)

where 𝑙
2
is a constant.

Furthermore, it can be verified by substituting (28) and
(33) into (32) that

𝐿𝑉
2
≤ −𝑘
1
𝑧
4

1
+
𝑏
𝑚

𝜎
𝜃(

𝜎

2𝑎2
1

𝑧
6

1
−

̇̂
𝜃)

+ 𝑧
3

2
(𝑓
2
(𝑥
2
, 𝑥
3
) − ℓ𝛼

1
+
3𝑧
2

4𝑙2
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
2
−
𝜕𝛼
1

𝜕𝑥
1

ℎ
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4

+
1

4
𝑏
4

𝑀
𝑧
2
) + 𝜌
1
+
3

4
𝑙
2

2
.

(34)

From the definition of ̇̂
𝜃 in (14), we have

𝜕𝛼
1

𝜕𝜃

̇̂
𝜃 =

𝜕𝛼
1

𝜕𝜃
(

2

∑

𝑗=1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
− 𝛾𝜃) +

𝜕𝛼
1

𝜕𝜃

𝑛

∑

𝑗=3

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
. (35)

By combining (30), (34), and (35), the following result holds:

𝐿𝑉
2
≤ −𝑘
1
𝑧
4

1
+ 𝜌
1
+ 𝑧
3

2
(𝑓
2
(𝑥
2
, 𝑥
3
) + 𝑤
2
)

− (𝑘
2
+
3

2
) 𝑧
4

2
+
𝑏
𝑚

𝜎
𝜃(

𝜎

2𝑎2
1

𝑧
6

1
−

̇̂
𝜃)

−
𝜕𝛼
1

𝜕𝜃
𝑧
3

2

𝑛

∑

𝑗=3

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
+
3

4
𝑙
2

2
,

(36)

where

𝑤
2
=
𝑏
4

𝑀

4
𝑧
2
−
𝜕𝛼
1

𝜕𝑥
1

𝑓
2
(𝑥
1
, 𝑥
2
)

−

1

∑

𝑗=0

𝜕𝛼
1

𝜕𝑦
(𝑗)

𝑑

𝑦
(𝑗+1)

𝑑
−
1

2

𝜕
2

𝛼
1

𝜕𝑥2
1

ℎ
𝑇

1
ℎ
1

+
3

4
𝑙
−2

2
𝑧
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
2
−
𝜕𝛼
1

𝜕𝑥
1

ℎ
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4

−
𝜕𝛼
1

𝜕𝜃
(

2

∑

𝑗=1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
− 𝜎𝜃) + (𝑘

2
+
3

2
) 𝑧
2
.

(37)

It can be seen from (37) that 𝜕𝑤
2
/𝜕𝑥
3
= 0. Then, from

Assumption 5, we have

𝜕 [𝑓
2
(𝑥
2
, 𝑥
3
) + 𝑤
2
]

𝜕𝑥
3

≥ 𝑏
𝑚
> 0. (38)
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According to Lemma 1 in [37], there exists a smooth ideal
control input 𝑥

3
= 𝛼
2
(𝑥
2
, 𝑤
2
) such that

𝑓
2
(𝑥
2
, 𝛼
2
) + 𝑤
2
= 0. (39)

By applying mean value theorem [48], there exists 𝜇
2
(0 <

𝜇
2
< 1) such that

𝑓
2
(𝑥
2
, 𝑥
3
) = 𝑓
2
(𝑥
2
, 𝛼
2
) + 𝑔
𝜇
2

(𝑥
3
− 𝛼
2
) , (40)

where 𝑔
𝜇
2

= (𝜕𝑓
2
(𝑥
2
, 𝑥
3
)/𝜕𝑥
3
)|
𝑥
3
=𝑥
𝜇2

, 𝑥
𝜇
2

= 𝜇
2
𝑥
3
+(1−𝜇

2
)𝛼
2
.

Assumption 5 on 𝑔
2
(𝑥
2
, 𝑥
3
) is still valid for 𝑔

𝜇
2

.
Substituting (39) and (40) into (36) produces

𝐿𝑉
2
≤ −𝑘
1
𝑧
4

1
+ 𝜌
1
+ 𝑧
3

2
𝑔
𝜇
2

𝑧
3
+ 𝑧
3

2
𝑔
𝜇
2

(𝛼
2
− 𝛼
2
)

− (𝑘
2
+
3

2
) 𝑧
4

2
+
𝑏
𝑚

𝜎
𝜃(

𝜎

2𝑎2
1

𝑧
6

1
−

̇̂
𝜃)

−
𝜕𝛼
1

𝜕𝜃
𝑧
3

2

𝑛

∑

𝑗=3

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
+
3

4
𝑙
2

2
,

(41)

where 𝑧
3
= 𝑥
3
− 𝛼
2
.

Further, fuzzy logic system 𝑊
𝑇

2
𝑆(𝑍
2
) is used to approxi-

mate the desired unknown virtual signal 𝛼
𝑖
over a compact

set Ω
𝑍
2

⊂ 𝑅
6 such that, for any given positive constant 𝜀

𝑖
, 𝛼
2

can be shown as

𝛼
2
= 𝑊
𝑇

2
𝑆
2
(𝑍
2
) + 𝛿
2
(𝑍
2
) ,

󵄨󵄨󵄨󵄨𝛿2 (𝑍2)
󵄨󵄨󵄨󵄨 ≤ 𝜀2,

(42)

with 𝛿
2
(𝑍
2
) being the approximation error.

Then, constructing the virtual control signal𝛼
2
in (13) and

repeating the same methods used in (26) and (27), one has

−𝑧
3

2
𝑔
𝜇
2

𝛼
2
≤

𝑏
𝑚

2𝑎2
2

𝑧
6

2
𝜃 +

1

2
𝑎
2

2
+
3

4
𝑧
4

2
+
1

4
𝑏
4

𝑀
𝜀
4

2
,

𝑧
3

2
𝑔
𝜇
2

𝛼
2
≤ −

𝑏
𝑚

2𝑎2
2

𝑧
6

2
𝜃.

(43)

By taking (43) into account and using Young’s inequality to
the term 𝑧

3

2
𝑔
𝜇
2

𝑧
3
, (41) can be rewritten as

𝐿𝑉
2
≤

2

∑

𝑗=1

(−𝑘
𝑗
𝑧
4

𝑗
+ 𝜌
𝑗
) +

𝑏
𝑚
𝜃

𝜎
(

2

∑

𝑗=1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
−

̇̂
𝜃)

−
𝜕𝛼
1

𝜕𝜃
𝑧
3

2

𝑛

∑

𝑗=3

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
+
1

4
𝑏
4

𝑀
𝑧
4

3
,

(44)

where 𝜌
𝑗
= (1/2)𝑎

2

𝑗
+ (1/4)𝑏

4

𝑀
𝜀
4

𝑗
+ (3/4)𝑙

2

𝑗
, 𝑗 = 1, 2.

Remark 9. The adaptive law ̇̂
𝜃 defined in (14) is a func-

tion of all the error variables. So, unlike the conventional
approximation-based adaptive control schemes, (𝜕𝛼

1
/𝜕𝜃)

̇̂
𝜃 in

(30) cannot be approximated directly by fuzzy logic system
𝑊
𝑇

2
𝑆
2
(𝑍
2
). To solve this problem, in (35), (𝜕𝛼

1
/𝜕𝜃)

̇̂
𝜃 is

divided into two parts. The first term in the right hand side

of (35) is contained in 𝛼
2
to be modeled by 𝑊𝑇

2
𝑆
2
(𝑍
2
), and

the last term in (35) which is a function of the latter error
variables, namely, 𝑧

𝑗
, 𝑗 = 3, 4, . . . , 𝑛, will be dealt with in

the later design steps. This design idea will be repeated at the
following steps.

Step i (3 ≤ 𝑖 ≤ 𝑛 − 1). From 𝑧
𝑖
= 𝑥
𝑖
− 𝛼
𝑖−1

and Itô formula, we
have

𝑑𝑧
𝑖
= (𝑓
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) − ℓ𝛼

𝑖−1
) 𝑑𝑡 + (ℎ

𝑖
−

𝑖−1

∑

𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

ℎ
𝑗
)

𝑇

𝑑𝑤,

(45)

where

ℓ𝛼
𝑖−1

=

𝑖−1

∑

𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

𝑓
𝑗
(𝑥
𝑗
, 𝑥
𝑗+1
) +

𝑖−1

∑

𝑗=0

𝜕𝛼
𝑖−1

𝜕𝑦
(𝑗)

𝑑

𝑦
(𝑗+1)

𝑑

+
𝜕𝛼
𝑖−1

𝜕𝜃

̇̂
𝜃 +

1

2

𝑖−1

∑

𝑝,𝑞=1

𝜕
2

𝛼
𝑖−1

𝜕𝑥
𝑝
𝜕𝑥
𝑞

ℎ
𝑇

𝑞
ℎ
𝑝
.

(46)

Choose a Lyapunov function as

𝑉
𝑖
= 𝑉
𝑖−1

+
1

4
𝑧
4

𝑖
. (47)

Then, it follows that

𝐿𝑉
𝑖
= 𝐿𝑉
𝑖−1

+ 𝑧
3

𝑖
(𝑓
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) − ℓ𝛼

𝑖−1
)

+
3

2
𝑧
2

𝑖
(ℎ
𝑖
−

𝑖−1

∑

𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

ℎ
𝑗
)

𝑇

× (ℎ
𝑖
−

𝑖−1

∑

𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

ℎ
𝑗
) ,

(48)

where the term 𝐿𝑉
𝑖−1

in (48) can be obtained in the following
form by straightforward derivations as those in former steps:

𝐿𝑉
𝑖−1

≤

𝑖−1

∑

𝑗=1

(−𝑘
𝑗
𝑧
4

𝑗
+ 𝜌
𝑗
) +

𝑏
𝑚
𝜃

𝜎
(

𝑖−1

∑

𝑗=1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
−

̇̂
𝜃)

−

𝑖−2

∑

𝑚=1

𝜕𝛼
𝑚

𝜕𝜃
𝑧
3

𝑚+1

𝑛

∑

𝑗=𝑖

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
+
𝑏
4

𝑀

4
𝑧
4

𝑖
,

(49)

where 𝜌
𝑗
= (1/2)𝑎

2

𝑗
+ (1/4)𝑏

4

𝑀
𝜀
4

𝑗
+ (3/4)𝑙

2

𝑗
.

According to the definition of ̇̂
𝜃 in (14), one has

𝜕𝛼
𝑖−1

𝜕𝜃

̇̂
𝜃 =

𝜕𝛼
𝑖−1

𝜕𝜃
(

𝑖

∑

𝑗=1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
− 𝛾𝜃) +

𝜕𝛼
𝑖−1

𝜕𝜃

𝑛

∑

𝑗=𝑖+1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
.

(50)



6 Abstract and Applied Analysis

Then, substituting (49) into (48) and taking (50) into account,
(48) can be rewritten as

𝐿𝑉
𝑖
≤

𝑖−1

∑

𝑗=1

(−𝑘
𝑗
𝑧
4

𝑗
+ 𝜌
𝑗
) + 𝑧
3

𝑖
(𝑓
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) + 𝑤
𝑖
)

− (𝑘
𝑖
+
3

2
) 𝑧
4

𝑖
+
𝑏
𝑚
𝜃

𝜎
(

𝑖−1

∑

𝑗=1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
−

̇̂
𝜃)

−

𝑖−1

∑

𝑚=1

𝜕𝛼
𝑚

𝜕𝜃
𝑧
3

𝑚+1

𝑛

∑

𝑗=𝑖+1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
+
3

4
𝑙
2

𝑖
,

(51)

where

𝑤
𝑖
=
𝑏
4

𝑀

4
𝑧
𝑖
−

𝑖−1

∑

𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

𝑓
𝑗
(𝑥
𝑗
, 𝑥
𝑗+1
)

−

𝑖−1

∑

𝑗=0

𝜕𝛼
𝑖−1

𝜕𝑦
(𝑗)

𝑑

𝑦
(𝑗+1)

𝑑
−
1

2

𝑖−1

∑

𝑝,𝑞=1

𝜕
2

𝛼
𝑖−1

𝜕𝑥
𝑝
𝜕𝑥
𝑞

ℎ
𝑇

𝑝
ℎ
𝑞

+
3

4
𝑙
−2

𝑖
𝑧
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

ℎ
𝑖
−

𝑖−1

∑

𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

ℎ
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4

−
𝜕𝛼
𝑖−1

𝜕𝜃
(

𝑖

∑

𝑗=1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
− 𝜎𝜃)

−
𝜎

2𝑎2
𝑖

𝑧
3

𝑖

𝑖−2

∑

𝑚=1

𝜕𝛼
𝑚

𝜕𝜃
𝑧
3

𝑚+1
+ (𝑘
𝑖
+
3

2
) 𝑧
𝑖
.

(52)

Noting 𝜕𝑤
𝑖
/𝜕𝑥
𝑖+1

= 0, it follows that

𝜕 [𝑓
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) + 𝑤
𝑖
]

𝜕𝑥
𝑖+1

≥ 𝑏
𝑚
> 0. (53)

Based on Lemma 1 in [37], there exists a smooth ideal control
input 𝑥

𝑖+1
= 𝛼
𝑖
(𝑥
𝑖
, 𝑤
𝑖
) which makes

𝑓
𝑖
(𝑥
𝑖
, 𝛼
𝑖
) + 𝑤
𝑖
= 0. (54)

In addition, applying mean value theorem [48], there exists
𝜇
𝑖
(0 < 𝜇

𝑖
< 1) such that

𝑓
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) = 𝑓
𝑖
(𝑥
𝑖
, 𝛼
𝑖
) + 𝑔
𝜇
𝑖

(𝑥
𝑖+1

− 𝛼
𝑖
) , (55)

where 𝑔
𝜇
𝑖

= (𝜕𝑓
𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
)/𝜕𝑥
𝑖+1
)|
𝑥
𝑖+1
=𝑥
𝜇𝑖

, 𝑥
𝜇
𝑖

= 𝜇
𝑖
𝑥
𝑖+1

+ (1 −

𝜇
𝑖
)𝛼
𝑖
. Assumption 5 on 𝑔

𝑖
(𝑥
𝑖
, 𝑥
𝑖+1
) is still valid for 𝑔

𝜇
𝑖

. Com-
bining (51)–(55) yields

𝐿𝑉
𝑖
≤

𝑖−1

∑

𝑗=1

(−𝑘
𝑗
𝑧
4

𝑗
+ 𝜌
𝑗
) + 𝑧
3

𝑖
𝑔
𝜇
𝑖

𝑧
𝑖+1

+ 𝑧
3

𝑖
𝑔
𝜇
𝑖

(𝛼
𝑖
− 𝛼
𝑖
)

− (𝑘
𝑖
+
3

2
) 𝑧
4

𝑖
+
𝑏
𝑚
𝜃

𝜎
(

𝑖−1

∑

𝑗=1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
−

̇̂
𝜃)

−

𝑖−1

∑

𝑚=1

𝜕𝛼
𝑚

𝜕𝜃
𝑧
3

𝑚+1

𝑛

∑

𝑗=𝑖+1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
+
3

4
𝑙
2

𝑖
,

(56)

where 𝑧
𝑖+1

= 𝑥
𝑖+1
−𝛼
𝑖
. Subsequently, using fuzzy logic system

𝑊
𝑇

𝑖
𝑆(𝑍
𝑖
) to model 𝛼

𝑖
over a compact set Ω

𝑍
𝑖

⊂ 𝑅
2𝑖+2 such

that for any given 𝜀
𝑖
> 0, 𝛼

𝑖
can be expressed as

𝛼
𝑖
= 𝑊
𝑇

𝑖
𝑆
𝑖
(𝑍
𝑖
) + 𝛿
𝑖
(𝑍
𝑖
) ,

󵄨󵄨󵄨󵄨𝛿𝑖 (𝑍𝑖)
󵄨󵄨󵄨󵄨 ≤ 𝜀𝑖,

(57)

with 𝛿
𝑖
(𝑍
𝑖
) being the approximation error. Furthermore,

constructing virtual control signal 𝛼
𝑖
in (13) and following the

same line as the procedures used from (26) to (27), one has

−𝑧
3

𝑖
𝑔
𝜇
𝑖

𝛼
𝑖
≤

𝑏
𝑚

2𝑎2
𝑖

𝑧
6

𝑖
𝜃 +

1

2
𝑎
2

𝑖
+
3

4
𝑧
4

𝑖
+
1

4
𝑏
4

𝑀
𝜀
4

𝑖
,

𝑧
3

𝑖
𝑔
𝜇
𝑖

𝛼
𝑖
≤ −

𝑏
𝑚

2𝑎2
𝑖

𝑧
6

𝑖
𝜃.

(58)

By substituting (58) into (56) and using Young’s inequality, we
have

𝐿𝑉
𝑖
≤

𝑖

∑

𝑗=1

(−𝑘
𝑗
𝑧
4

𝑗
+ 𝜌
𝑗
) +

𝑏
𝑚
𝜃

𝜎
(

𝑖

∑

𝑗=1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
−

̇̂
𝜃)

−

𝑖−1

∑

𝑚=1

𝜕𝛼
𝑚

𝜕𝜃
𝑧
3

𝑚+1

𝑛

∑

𝑗=𝑖+1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
+
1

4
𝑏
4

𝑀
𝑧
4

𝑖+1
,

(59)

where 𝜌
𝑗
= (1/2)𝑎

2

𝑗
+ (1/4)𝑏

4

𝑀
𝜀
4

𝑗
+ (3/4)𝑙

2

𝑗
.

Step n. In this step, the actual control input signal 𝑢 will be
obtained. By 𝑧

𝑛
= 𝑥
𝑛
− 𝛼
𝑛−1

and Itô formula, we have

𝑑𝑧
𝑛
= (𝑓
𝑛
(𝑥
𝑛
, 𝑢) − ℓ𝛼

𝑛−1
) 𝑑𝑡 + (ℎ

𝑛
−

𝑛−1

∑

𝑗=1

𝜕𝛼
𝑛−1

𝜕𝑥
𝑗

ℎ
𝑗
)

𝑇

𝑑𝑤,

(60)

where ℓ𝛼
𝑛−1

is defined in (46) with 𝑖 = 𝑛. Choosing the
Lyapunov function

𝑉
𝑛
= 𝑉
𝑛−1

+
1

4
𝑧
4

𝑛
, (61)

then, the following inequality can be easily verified by using
(2), the completion of squares, and taking (59) with 𝑖 = 𝑛 − 1
into account:

𝐿𝑉
𝑛
≤

𝑛−1

∑

𝑗=1

(−𝑘
𝑗
𝑧
4

𝑗
+ 𝜌
𝑗
) +

𝑏
𝑚
𝜃

𝜎
(

𝑛−1

∑

𝑗=1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
−

̇̂
𝜃)

+ 𝑧
3

𝑛
(𝑓
𝑛
(𝑥
𝑛
, 𝑢) + 𝑤

𝑛
) − (𝑘

𝑛
+
3

4
) 𝑧
4

𝑛
+
3

4
𝑙
2

𝑛
,

(62)

where

𝑤
𝑛
= ℓ𝛼
𝑛−1

−

𝑛−2

∑

𝑚=1

𝜕𝛼
𝑚

𝜕𝜃
𝑧
3

𝑚+1

𝜎

2𝑎2
𝑛

𝑧
3

𝑛
+
1

4
𝑏
4

𝑀
𝑧
𝑛

+
3

4
𝑙
−2

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

ℎ
𝑛
−

𝑛−1

∑

𝑗=1

𝜕𝛼
𝑛−1

𝜕𝑥
𝑗

ℎ
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4

+ (𝑘
𝑛
+
3

4
) 𝑧
𝑛
.

(63)
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From the definition of𝑤
𝑛
, Assumption 5 andLemma 1 in [37],

for every value 𝑥
𝑛
and𝑤

𝑛
, there exists a smooth ideal control

input 𝑢 = 𝛼
𝑛
(𝑥
𝑛
, 𝑤
𝑛
) such that 𝑓

𝑛
(𝑥
𝑛
, 𝛼
𝑛
) + 𝑤
𝑛
= 0. By using

mean value theorem [48], there exists 𝜇
𝑛
(0 < 𝜇

𝑛
< 1) such

that

𝑓
𝑛
(𝑥
𝑛
, 𝑢) = 𝑓

𝑖
(𝑥
𝑛
, 𝛼
𝑛
) + 𝑔
𝜇
𝑛

(𝑢 − 𝛼
𝑛
) , (64)

where 𝑔
𝜇
𝑛

= (𝜕𝑓
𝑛
(𝑥
𝑛
, 𝑢)/𝜕𝑢)|

𝑢=𝑥
𝜇𝑛

, 𝑥
𝜇
𝑛

= 𝜇
𝑛
𝑢 + (1 − 𝜇

𝑛
)𝛼
𝑛
.

Furthermore, (62) can be rewritten as

𝐿𝑉
𝑛
≤

𝑛−1

∑

𝑗=1

(−𝑘
𝑗
𝑧
4

𝑗
+ 𝜌
𝑗
) +

𝑏
𝑚
𝜃

𝜎
(

𝑛−1

∑

𝑗=1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
−

̇̂
𝜃)

+ 𝑧
3

𝑛
𝑔
𝜇
𝑛

(𝑢 − 𝛼
𝑛
) − (𝑘

𝑛
+
3

4
) 𝑧
4

𝑛
+
3

4
𝑙
2

𝑛
.

(65)

Next, using fuzzy logic system 𝑊
𝑇

𝑛
𝑆(𝑍
𝑛
) to approximate the

unknown function 𝛼
𝑛
on the compact set Ω

𝑍
𝑛

⊂ 𝑅
2𝑛+2,

constructing the actual control 𝑢 in (13) with 𝑖 = 𝑛, and
repeating the same procedures as (58)-(59), one has

𝐿𝑉
𝑛
≤

𝑛

∑

𝑗=1

(−𝑘
𝑗
𝑧
4

𝑗
+ 𝜌
𝑗
) +

𝑏
𝑚
𝜃

𝜎
(

𝑛

∑

𝑗=1

𝜎

2𝑎2
𝑗

𝑧
6

𝑗
−

̇̂
𝜃) . (66)

Further, choosing the adaptive law ̇̂
𝜃 in (14) and using the

inequality (𝛾𝑏
𝑚
/𝜎)𝜃𝜃 ≤ −(𝛾𝑏

𝑚
/2𝜎)𝜃

2

+ (𝛾𝑏
𝑚
/2𝜎)𝜃

2 result in

𝐿𝑉
𝑛
≤ −

𝑛

∑

𝑗=1

𝑘
𝑗
𝑧
4

𝑗
−
𝛾𝑏
𝑚

2𝜎
𝜃
2

+

𝑛

∑

𝑗=1

𝜌
𝑗
+
𝛾𝑏
𝑚

2𝜎
𝜃
2

, (67)

where 𝜌
𝑗
= (1/2)𝑎

2

𝑗
+ (1/4)𝑏

4

𝑀
𝜀
4

𝑗
+ (3/4)𝑙

2

𝑗
, 𝑗 = 1, 2, . . . , 𝑛.

Now, the actual control signal 𝑢 is constructed. The main
result will be summarized by the following theorem.

Theorem 10. Consider the pure-feedback stochastic nonlinear
system (5), the controller (13), and adaptive law (14) under
Assumptions 5 and 6. Assume that there exists sufficiently large
compacts Ω

𝑍
𝑖

, 𝑖 = 1, 2, . . . , 𝑛, such that 𝑍
𝑖
∈ Ω
𝑍
𝑖

, for all
𝑡 ≥ 0; then, for bounded initial conditions [𝑧

𝑛
(0)
𝑇

, 𝜃(0)]
𝑇

∈ Ω
0

(where Ω
0
is an appropriately chosen compact set),

(i) all the signals in the closed-loop system are bounded in
probability;

(ii) there exists a finite time 𝑇
1
such that the quartic mean

square tracking error enters inside the area for all 𝑡 >
𝑇
1
,

Ω
1
= {𝑦 (𝑡) ∈ 𝑅 | 𝐸 [

󵄨󵄨󵄨󵄨𝑦 − 𝑦𝑑
󵄨󵄨󵄨󵄨
4

] ≤ 8𝜌, ∀𝑡 > 𝑇
1
} , (68)

where the time 𝑇
1
will be given later.

Proof. (i) For the stability analysis of the closed-loop system,
choose the Lyapunov function as𝑉 = 𝑉

𝑛
. From (67), it follows

that

𝐿𝑉 ≤ −𝑎
0
𝑉 + 𝑏
0
, (69)

where 𝑎
0
= min{4𝑘

𝑗
, 𝛾, 𝑗 = 1, 2, . . . , 𝑛} and 𝑏

0
= ∑
𝑛

𝑗=1
𝜌
𝑗
+

(𝛾𝑏
𝑚
/2𝜎)𝜃

2. Therefore, based on Lemma 4 in [37], 𝑧
𝑗
and 𝜃

remain bounded in probability. Because 𝜃 is a constant, 𝜃 is
bounded in probability. It can be further seen that 𝛼

𝑗
is a

function of 𝑧
𝑗
and 𝜃. So, 𝛼

𝑗
is also bounded in probability.

Hence, we conclude that all the signals 𝑥
𝑗
in the closed-loop

system (5) remain bounded in the sense of probability.
(ii) From (69), the following inequality can be obtained

directly by [24, Theorem 4.1]

𝑑𝐸 [𝑉 (𝑡)]

𝑑𝑡
≤ −𝑎
0
𝐸 [𝑉 (𝑡)] + 𝑏

0
. (70)

Let 𝜌 := 𝑏
0
/𝑎
0
> 0, then (70) satisfies

0 ≤ 𝐸 [𝑉 (𝑡)] ≤ 𝑉 (0) 𝑒
−𝑎
0
𝑡

+ 𝜌. (71)

Then, it can be easily verified that there exists a time 𝑇
1
=

max{0, (1/𝑎
0
) ln(𝑉(0)/𝜌)} such that

𝐸 [
󵄨󵄨󵄨󵄨𝑦 − 𝑦𝑑

󵄨󵄨󵄨󵄨
4

] ≤ 4𝐸 [𝑉 (𝑡)] ≤ 8𝜌, ∀𝑡 > 𝑇
1
. (72)

4. Simulation Results

In this section, to illustrate the effectiveness of the proposed
control scheme, we consider the following second-order
pure-feedback stochastic nonlinear system:

𝑑𝑥
1
= (𝑥
2
+ 0.05 sin (𝑥

2
)) 𝑑𝑡 + 0.1 cos (𝑥

1
) 𝑑𝑤,

𝑑𝑥
2
= ((2 +

𝑥
2

1

1 + 𝑥2
1
+ 𝑥2
2

)𝑢 + 0.1𝑢
3

)𝑑𝑡

+ 0.2 sin (𝑥
1
𝑥
2
) 𝑑𝑤,

𝑦 = 𝑥
1
.

(73)

The control objective is to design an adaptive controller for
the system such that all the signals in the closed-loop system
remain bounded and the system output 𝑦 tracks the given
reference signal 𝑦

𝑑
= 0.5(sin(𝑡) + sin(0.5𝑡)). According to

Theorem 10, choose the virtual control law 𝛼
1
in (13), actual

control input 𝑢 in (13) with 𝑖 = 2, and adaptive law in (14).
The design parameters are taken as follows: 𝑎

1
= 𝑎
2
= 0.06,

𝛾 = 0.0015, and 𝜎 = 25. The initial conditions are given by
[𝑥
1
(0), 𝑥
2
(0)]
𝑇

= [0.2, 0.5]
𝑇 and 𝜃(0) = 0.

The simulation results are shown in Figures 1–4. Figure 1
shows the system output 𝑦 and the reference signal 𝑦

𝑑
. Figure

2 and Figure 3 show that the state variable 𝑥
2
and adaptive

parameter 𝜃 are bounded. Figure 4 displays the control input
signal 𝑢.

5. Conclusions

In this paper, a novel fuzzy-based adaptive control scheme
has been presented for pure-feedback stochastic nonlinear
systems. The proposed controller guarantees that all the
signals in the closed-loop systems are bounded in probability
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Figure 1: System output 𝑦 and reference signal 𝑦
𝑑
.
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Figure 2: The state variable 𝑥
2
.

and tracking error eventually converges to a small neighbor-
hood around the origin in the sense of mean quartic value.
The main advantages of this control scheme are that the
controller is simpler than the existing ones and only one
adaptive parameter needs to be estimated online for an
𝑛-order system. Numerical results have been provided to
show the effectiveness of the suggested approach. Our future
research will mainly focus on the multi-input and multi-
output (MIMO) pure-feedback stochastic nonlinear systems
based on the result in this paper.
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