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A Mahalanobis hyperellipsoidal learning machine class incremental learning algorithm is proposed. To each class sample, the
hyperellipsoidal that encloses as many as possible and pushes the outlier samples away is trained in the feature space. In the
process of incremental learning, only one subclassifier is trained with the new class samples.The old models of the classifier are not
influenced and can be reused. In the process of classification, considering the information of sample’s distribution in the feature
space, the Mahalanobis distances from the sample mapping to the center of each hyperellipsoidal are used to decide the classified
sample class. The experimental results show that the proposed method has higher classification precision and classification speed.

1. Introduction

Incremental learning is an intelligent technology of data
mining and knowledge discovery.There are already some key
methods of incremental learning, such as KNN, principal
component analysis, Bayesian network, and Boosting and
support vector machines (SVM), and this idea in the control
theory, such as data driven [1–5], promotes the development
of control method. Among these methods, SVM has a good
generalization performance, because it does not depend on
all the training data, but a subset named support vector. The
number of support vectors is very small compared with the
training data set, so SVM is a powerful tool to the incremental
learning.

Many incremental learning algorithms based on SVM
have been proposed, and they received better results, such as
the incremental learning Batch SVM [6, 7], on-line recursive
algorithm [8], divisional training SVM algorithm [9], fast
incremental learning algorithm [10], and 𝛼-SVM algorithm
[11]. However, these algorithms are only suitable to the case
that the new incremental samples belong to old classes.When
a new class was added to the classification system, the above

methods could not be fully accommodated to this situation
and the old models became useless. Reference [12] proposed
a class incremental learning algorithm. The algorithm reuses
the old models of the classifier and trains only one binary
subclassifier when a new class comes. But it is not suitable to
large data set, because all samples participate in the training
in the process of each incremental learning. For the disad-
vantage, [13] proposed a class incremental learning algorithm
based on hyper sphere support vectormachine (HS-CIL), but
the algorithm is only suitable to the case that the sample’s
distribution is hyper sphere shaped and the density is higher.
For the disadvantage, [14] proposed a hyperellipsoidal class
incremental learning algorithm (HE-CIL), but the algorithm
does not consider the influence of the outlier samples.There-
fore, a Mahalanobis hyperellipsoidal learning machine class
incremental learning algorithm (MHE-CIL) is proposed in
this paper. To every class sample, the smallest hyperellipsoidal
that encloses asmuch samples as possible and pushes the out-
lier samples away is trained in the feature space. Mahalanobis
distances are used to confirm the classified sample class.

The rest of this paper is organized as follows. In Section 2,
a brief review of Mahalanobis hyperellipsoidal learning
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machine is given. In Section 3, a newMahalanobis hyperellip-
soidal learningmachine class incremental learning algorithm
is discussed in detail. In Section 4, experimental results are
given on Reuters 21578. Finally, conclusion is outlined in
Section 5.

2. Mahalanobis Hyperellipsoidal
Learning Machine

Given a set of training samples of a class {𝑥
𝑖
}
𝑁

𝑖=1
, where

𝑥
𝑖
∈ 𝑅
𝑑 and 𝑁 is the number of samples, let 𝑋 be a 𝑑 ×

𝑁 sample matrix. Training a Mahalanobis hyperellipsoidal
𝐸(𝑎, 𝑅) in the feature space, where 𝑎 is the center of the
hyperellipsoidal and 𝑅 is the radius of the hyperellipsoidal,
the hyperellipsoidal encloses most of the mappings of sample
and the radius 𝑅 is as small as possible. If there are no
remote points, then the hyperellipsoidal will enclose all the
mappings of sample. If there are remote points, allowing part
of the samples outside of the superellipsoid, and searching
for the smallest superellipsoid which can surround the most
samples. When we are uncertain whether there are remote
points, nonnegative slack variables 𝜉

𝑖
(𝑖 = 1, 2, . . . , 𝑁) are

introduced to allow some of the mappings of sample outside
the hyperellipsoidal. Using the method that is similar to
finding optimal hyperplane of SVM to obtain the smallest
hyperellipsoidal [15–17], the formulation is as follows:

min
𝑎,𝑅,𝜉𝑖

𝑅
2
+ 𝐶

𝑁

∑

𝑖=1

𝜉
𝑖

s.t. (𝑥
𝑖
− 𝑎)
𝑇
Σ
−1
(𝑥
𝑖
− 𝑎) ≤ 𝑅

2
+ 𝜉
𝑖

𝜉
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝐶 is used to compromise the number of noises out
of hyperellipsoidal and the radius of hyperellipsoidal, Σ is
covariance matrix of the samples and Σ−1 is the inverse of the
covariance matrix Σ.

To solve the optimization problem above, one can con-
struct the Lagrange function as follows:

𝐿 (𝑅, 𝑎, 𝛽, 𝛾, 𝜉
𝑖
) = 𝑅
2
+ 𝐶

𝑁

∑

𝑖=1

𝜉
𝑖

−

𝑁

∑

𝑖=1

𝛼
𝑖
{𝑅
2
+ 𝜉
𝑖
− (𝑥
𝑖
− 𝑎)
𝑇
Σ
−1
(𝑥
𝑖
− 𝑎)}

−

𝑁

∑

𝑖=1

𝛽
𝑖
𝜉
𝑖
,

(2)

where 𝛼
𝑖
≥ 0 and 𝛽

𝑖
≥ 0 are the Lagrange multipliers.

According to the Kuhn-Tucker theorem (KKT) in opti-
mization theory, the following conditions are satisfied:

𝜕𝐿

𝜕𝑅

= 2𝑅(1 −

𝑁

∑

𝑖=1

𝛼
𝑖
) = 0 󳨐⇒

𝑁

∑

𝑖=1

𝛼
𝑖
= 1,
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𝑖
≤ 𝐶,
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𝛼
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(3)

Substituting (3) into (2), the dual optimal problem is
obtained as follows:

max
𝛼𝑖≥0
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𝛼
𝑖
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= 1 0 ≤ 𝛼
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(4)

The kernel form of (4) is as follows:

max
𝛼𝑖≥0
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= 1 0 ≤ 𝛼
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≤ 𝐶, 𝑖 = 1, 2, . . . , 𝑁,

(5)

where𝐾(⋅) is kernel function and𝐾(𝑥
𝑖
, 𝑥
𝑗
) = 𝑔(𝑥

𝑖
)
𝑇
𝑔(𝑥
𝑗
).

The examples that lie outside or on the margin are the
corresponding 𝛼

𝑖
nonzero.These examples are called support

vectors.
The center of the smallest hyperellipsoidal 𝑎 can be

obtained as follows:

𝑎 = ∑

𝑖

𝛼
𝑖
𝑔 (𝑥
𝑖
) . (6)

The square kernel Mahalanobis distance from the map-
ping 𝑔(𝑥) of sample 𝑥 to the center 𝑎 of the hyperellipsoidal
in the feature space is defined as follows:

𝑑
2
(𝑔 (𝑥) , 𝑎) = (𝑔 (𝑥) − 𝑎)

𝑇
Σ
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𝑁
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𝛼
𝑖
𝑘 (𝑥
𝑖
, 𝑋)) .

(7)
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The radius of the smallest hyperellipsoidal 𝑅 can be
determined by (7), via KKT conditions as follows:

𝑑
2
(𝑥, 𝑎) < 𝑅

2
𝛼
𝑖
= 0,

𝑑
2
(𝑥, 𝑎) = 𝑅

2
0 < 𝛼
𝑖
< 𝐶,

𝑑
2
(𝑥, 𝑎) > 𝑅

2
𝛼
𝑖
= 𝐶.

(8)

3. Incremental Learning Algorithm

We give a set of training samples 𝐴 = {𝑥
𝑖
, 𝐸
𝑖
}
𝑙

𝑖=1
and kernel

function 𝐾(⋅), where 𝑥
𝑖
∈ 𝑅
𝑛, 𝐸
𝑖
∈ {1, 2, . . . , 𝑁}, 𝑁 is the

number of class of the training set 𝐴, 𝑙 is the number of
training samples, and 𝐾 corresponds to inner product in
feature space, namely, 𝐾(𝑥

𝑖
, 𝑥
𝑗
) = 𝑔(𝑥

𝑖
)
𝑇
𝑔(𝑥
𝑗
).

Assume that 𝐴𝑚 is a subset of training samples 𝐴,
where all the samples of the subset 𝐴𝑚 belong to the 𝑚th
class (𝑚 = 1, 2, . . . , 𝑁). For every subset 𝐴𝑚, the smallest
hyperellipsoidal 𝐸(𝑎

𝑚
, 𝑅
𝑚
) is trained in feature space, where

𝑎
𝑚
is the center of the hyperellipsoidal and 𝑅

𝑚
is the radius of

the hyperellipsoidal.
If a new class, which defined 𝐵, is generated, training the

smallest hyper ellipsoidal 𝐸(𝑎
𝑁+1
, 𝑅
𝑁+1
) in the feature space,

and adding the classifier to oldmodels. One time incremental
learning is finished.

For the sample 𝑥 to be classified, compute the Maha-
lanobis distance from the mapping 𝑔(𝑥) of the sample 𝑥 to
the center 𝑎

𝑚
of the hyperellipsoidal according to (7).

If all 𝑑
𝑚
(𝑔(𝑥), 𝑎

𝑚
) satisfy 𝑑

𝑚
(𝑔(𝑥), 𝑎

𝑚
) > 𝑅

𝑚
(𝑚 =

1, 2, . . . , 𝑁), and there is no hyperellipsoidal that encloses the
mapping𝑔(𝑥) of the sample𝑥, then compute themembership
that the sample𝑥 belongs to the𝑚th class according to (9) and
then confirm the class of sample 𝑥 as follows:

𝑟
𝑚
=

𝑅
𝑚

𝑑
𝑚
(𝑔 (𝑥) , 𝑎𝑚

)

, (9)

class = arg max
𝑖

𝑟
𝑖
. (10)

If there are no less than two 𝑑
𝑚
(𝑔(𝑥), 𝑎

𝑚
) (𝑚 ∈

{1, 2, . . . , 𝑁}) that satisfy 𝑑
𝑚
(𝑔(𝑥), 𝑎

𝑚
) ≤ 𝑅

𝑚
, then compute

the membership that the sample 𝑥 belongs to the 𝑚th class
according to (11) and then confirm the class of sample 𝑥 as
follows:

𝑟
𝑖
= 1 −

𝑑 (𝑔 (𝑥) , 𝑎𝑚
)

𝑅
𝑚

. (11)

For the sample 𝑥 to be classified, the classification algo-
rithm is described in detail as follows.

Step 1. Computing 𝑑
𝑚
(𝑔(𝑥), 𝑎

𝑚
) (𝑚 = 1, 2, . . . , 𝑁) according

to (7).

Step 2. If only one 𝑑
𝑚
(𝑔(𝑥), 𝑎

𝑚
) (𝑚 ∈ {1, 2, . . . , 𝑁}) satisfies

𝑑
𝑚
(𝑔(𝑥), 𝑎

𝑚
) ≤ 𝑅
𝑚
, then the sample belongs to the𝑚th class;

go to Step 5; otherwise go to Step 3.

Table 1: Training set and testing set.

Sample Wheat Corn Coffee Soybean Cocoa
Class code 1 2 3 4 5
Training set 204 168 97 79 50
Texting set 101 84 48 40 25

Step 3. If all 𝑑
𝑚
(𝑔(𝑥), 𝑎

𝑚
) (𝑚 = 1, 2, . . . , 𝑁) satisfy

𝑑
𝑚
(𝑔(𝑥), 𝑎

𝑚
) > 𝑅

𝑚
, then compute the membership that

the sample 𝑥 belongs to the 𝑚th class according to (9) and
then confirm the class of sample 𝑥 by (10) and go to Step 5;
otherwise go to Step 4.

Step 4. If more than one 𝑑
𝑚
(𝑔(𝑥), 𝑎

𝑚
) (𝑚 ∈ {1, 2, . . . , 𝑁})

satisfies 𝑑
𝑚
(𝑔(𝑥), 𝑎

𝑚
) ≤ 𝑅

𝑚
, then compute the membership

that the sample 𝑥 belongs to the 𝑚th class according to (11)
and then confirm the class of sample 𝑥 by (10).

Step 5. End.

4. Experiments

Experiments are made on Reuters 21578, in which five
categories and 896 texts are used. 598 texts are used as
training set, and the rest 298 texts are used as testing set (see
Table 1). Information gain is used to reduce feature dimension
and the weight of every word is computed according to TF-
IDF.

To verify the efficiency of the proposed method, the same
tasks are realized by using HS-CIL, HE-CIL, and MHE-CIL
methods. The computational experiments were done on a
Pentium 1.6G with 512MB memory. Liner kernel function
is used for all the experiments. System parameter 𝐶 = 10,
V = 0.01.

The macroaverage precision (MAAP), macro average
recall (MAAR), and macroaverage 𝐹

1
(MAAF) [18] are used

to evaluate the classification performance of the algorithm.
In experiments, the original sample set includes two class

samples (wheat and corn). Three times class incremental
learning is done; the first time increment is the third class
sample (coffee), the second time increment is the forth
class sample (soybean), and the third time increment is
the fifth class sample (cocoa). The macroaverage precision,
macroaverage recall, and macroaverage 𝐹

1
value of three

algorithms are given in Table 2.The training time and testing
time of three algorithms are given in Table 3.

The experimental results show the precision, the recall,
and the 𝐹

1
value of MHE-CIL method which are obviously

higher than the other two methods. The key reasons are
that MHE-CIL method reduces the space that hyperellip-
soidal encloses by pushing the outlier samples away, and
the information of sample’s distribution is considered by
using Mahalanobis distance. The training time of MHE-
CIL method is faster compared with HE-CIL method, and
it is nearly the same as HS-CIL method. The classification
speed of MHE-CIL method is faster compared with HE-CIL
method, and it is nearly the same as HE-CIL method.
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Table 2: The comparison of MAAP, MAAR, and MAAF.

Learning Algorithm MAAP (%) MAAR (%) MAAF (%)

Original
HS-CIL 72.76 72.84 72.79
HE-CIL 76.92 74.52 75.18
MHE-CIL 78.76 76.64 77.82

1st increment
HS-CIL 79.75 78.09 78.85
HE-CIL 80.00 78.53 79.26
MHE-CIL 81.75 79.73 80.39

2nd increment
HS-CIL 74.97 71.53 73.21
HE-CIL 82.56 78.72 80.11
MHE-CIL 83.72 79.63 81.66

3rd increment
HS-CIL 76.64 73.47 75.02
HE-CIL 81.41 76.61 78.40
MHE-CIL 83.56 78.31 81.84

Table 3: The comparison of training time and testing time.

Learning Algorithm Training times (ms) Testing times (ms)

Original
HS-CIL 110 94
HE-CIL 126 83
MHE-CIL 112 88

1st increment
HS-CIL 15 140
HE-CIL 33 132
MHE-CIL 16 135

2nd increment
HS-CIL 32 157
HE-CIL 36 161
MHE-CIL 33 158

3rd increment
HS-CIL 31 204
HE-CIL 48 185
MHE-CIL 32 187

5. Conclusion

A novel class incremental learning algorithm is proposed. In
the process of class incremental learning, only the new class
samples participate in training and the old models of the
classifier can be reused. In the process of classification, the
Mahalanobis distance is used to confirm the class of classified
sample, and the information of the sample’s distribution in
the feature space is considered.The experimental results show
that the proposed algorithm not only improves classification
accuracy obviously, but also ensures training speed and
classification speed. How to use kernel function theory to
increase the density of the samples would be our research
work in the future.
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