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We study asymptotic behavior of solutions to a class of higher-order quasilinear neutral differential equations under the assumptions
that allow applications to even- and odd-order differential equations with delayed and advanced arguments, as well as to functional
differential equations with more complex arguments that may, for instance, alternate indefinitely between delayed and advanced
types. New theorems extend a number of results reported in the literature. Illustrative examples are presented.

1. Introduction

In this paper, we study asymptotic behavior of solutions
to a class of higher-order quasilinear neutral functional
differential equations

(𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼)


+ 𝑞 (𝑡) 𝑥𝛽 (𝜎 (𝑡)) = 0, (1)

where 𝑡 ∈ I := [𝑡0,∞), 𝑡0 ∈ R, 𝑧(𝑡) := 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡)),
𝑟, 𝜏, 𝜎 ∈ C1(I,R), 𝑟(𝑡) ≥ 0, 𝑟(𝑡) > 0, lim𝑡→∞𝜎(𝑡) = ∞,
𝑝, 𝑞 ∈ C(I,R), 𝑞(𝑡) ≥ 0, and 𝑞(𝑡) does not vanish eventually.
We also assume that 𝛼, 𝛽 ∈ R, where R stands for the set
containing all quotients of odd positive integers. Analysis
of qualitative properties of (1) is important not only for the
sake of further development of the oscillation theory, but
for practical reasons too. In fact, a particular case of (1), an
Emden-Fowler type equation

(𝑟 (𝑡) (𝑥(𝑛−1) (𝑡))𝛼)


+ 𝑞 (𝑡) 𝑥𝛽 (𝜎 (𝑡)) = 0, (2)

has numerous applications in physics and engineering; see,
for instance, the papers by Ou and Wong [1] or Wong [2].

As customary, by a solution of (1) we understand a
function 𝑥 ∈ C([𝑇𝑥,∞),R), 𝑇𝑥 ≥ 𝑡0, which has the property
𝑟(𝑧(𝑛−1))𝛼 ∈ C1([𝑇𝑥,∞),R) and turns (1) into identity for all

𝑡 ∈ [𝑇𝑥,∞). We deal only with proper solutions 𝑥 of (1) that
satisfy the condition sup{|𝑥(𝑡)| : 𝑡 ≥ 𝑇} > 0 for all𝑇 ≥ 𝑇𝑥 and
tacitly assume that (1) possesses such solutions. A solution of
(1) is said to be oscillatory if it has arbitrarily large zeros on the
ray [𝑇𝑥,∞); otherwise, it is termed nonoscillatory. Equation
(1) is called oscillatory if all its proper solutions are oscillatory.

For several decades, an increasing interest in obtain-
ing sufficient conditions for oscillatory and nonoscillatory
behavior of different classes of differential equations has been
observed; see, for instance, the monographs [3–6], the papers
[1, 2, 7–25], and the references cited therein. Let us briefly
comment on a number of related results which motivated
our study. Questions regarding the oscillation and asymptotic
behavior of solutions to (2) have been studied by Džurina
and Bacuĺıková [12] and Zhang et al. [23, 25]. In particular,
Zhang et al. [23, 25] derived some results on the oscillation
and asymptotic behavior of solutions to (2) in the case where
𝛼 ≥ 𝛽, 𝜎(𝑡) < 𝑡, and

∫
∞

𝑡0

𝑟−1/𝛼 (𝑡) d𝑡 < ∞. (3)

Oscillation criteria for (1) for 𝑛 = 2, 𝛼 = 𝛽 = 1, and 0 ≤
𝑝(𝑡) ≤ 𝑝0 < ∞ can be found in the papers by Bacuĺıková
and Džurina [8] and Li et al. [18]. A number of oscillation
results for (1) have been established by Bacuĺıková et al. [11]

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 395368, 11 pages
http://dx.doi.org/10.1155/2014/395368

http://dx.doi.org/10.1155/2014/395368


2 Abstract and Applied Analysis

and Xing et al. [22] under the assumptions that 𝛼 = 𝛽, 0 ≤
𝑝(𝑡) ≤ 𝑝0 < ∞, and

∫
∞

𝑡0

𝑟−1/𝛼 (𝑡) d𝑡 = ∞. (4)

We conclude bymentioning that Bacuĺıková andDžurina [10]
studied another particular case of (1) assuming that 𝛼 = 𝛽 =
1, 0 ≤ 𝑝(𝑡) ≤ 𝑝0 < ∞, and

∫
∞

𝑡0

𝑟−1 (𝑡) d𝑡 = ∞. (5)

It should be noted that research in this paper was strongly
motivated by the recent contributions of Bacuĺıková and
Džurina [10], Li et al. [18], and Zhang et al. [23, 25].
Our principal goal is to analyze the asymptotic behavior of
solutions to (1) in the case where condition (3) holds. We
provide sufficient conditions which ensure that solutions to
(1) are either oscillatory or approach zero at infinity. In some
cases, we reveal oscillatory nature of (1). However, we do
not discuss in this paper nonoscillation results referring to
the recent monograph by Agarwal et al. [3] for an excellent
analysis of recent advances in this direction.

As usual, all functional inequalities are supposed to hold
for all 𝑡 large enough.Without loss of generality, we deal only
with positive solutions of (1) since, under our assumptions, if
𝑥(𝑡) is a solution, then −𝑥(𝑡) is a solution of this equation too.

In the sequel, we denote by 𝜏−1 the function which is
inverse to 𝜏. We also adopt the following notation for a
compact presentation of our results:

𝐴 (𝑡) := ∫
∞

𝑡

𝑟−1/𝛼 (𝑠) d𝑠,

𝑄 (𝑡) := min {𝑞 (𝑡) , 𝑞 (𝜏 (𝑡))} ,
𝑅 (𝑡) := max {𝑟 (𝑡) , 𝑟 (𝜏 (𝑡))} ,

𝑄𝛾 (𝑡) := 𝑄 (𝑡) ( (𝜂1 (𝑡))𝑛−1
𝑟1/𝛼 (𝜂1 (𝑡))

)
𝛾

,

𝑄𝛽 (𝑡) := 𝑄 (𝑡) (𝜎𝑛−2 (𝑡))𝛽,

𝑄𝛽 (𝑡) := 𝑄 (𝑡) ( (𝜂1 (𝑡))𝑛−1
𝑟1/𝛽 (𝜂1 (𝑡))

)
𝛽

,

𝑄𝜃 (𝑡) := 𝑄 (𝑡) (∫
∞

𝜂3(𝑡)

(𝜂 − 𝜂3 (𝑡))𝑛−3𝐴 (𝜂) d𝜂)
𝜃

,

𝑄𝛽 (𝑡) := 𝑄 (𝑡) (∫
∞

𝜂3(𝑡)

(𝜂 − 𝜂3 (𝑡))𝑛−3𝐴 (𝜂) d𝜂)
𝛽

,

𝑄𝛽 (𝑡) := 𝑄 (𝑡) ( 𝜎𝑛−1 (𝑡)
𝑟1/𝛽 (𝜎 (𝑡)))

𝛽

,

𝑄𝛾 (𝑡) := 𝑄 (𝑡) ( 𝜎𝑛−1 (𝑡)
𝑟1/𝛼 (𝜎 (𝑡)))

𝛾

,

(6)

where the meaning of 𝛾, 𝜃, 𝜂1, and 𝜂3 will be explained later.

2. Asymptotic Behavior of Solutions to
Even-Order Equations

In what follows, 𝜏(𝑡) can be both a delayed or an advanced
argument. Throughout this section, in addition to the basic
assumptions listed in the introduction, it is also supposed that
(3) holds along with

(𝐻1) 0 ≤ 𝑝(𝑡) ≤ 𝑝0 < ∞, for some constant 𝑝0;
(𝐻2) 𝜏(𝑡) ≥ 𝜏∗ > 0, 𝜏 ∘ 𝜎 = 𝜎 ∘ 𝜏.
We need the following auxiliary results.

Lemma 1 (see [20]). Let 𝑓 ∈ 𝐶𝑛([𝑡0,∞),R+). If the 𝑛th
derivative 𝑓(𝑛)(𝑡) is eventually of one sign for all large 𝑡, then
there exist a 𝑡1 ≥ 𝑡0 and an integer 𝑙, 0 ≤ 𝑙 ≤ 𝑛 with 𝑛 + 𝑙 even
for 𝑓(𝑛)(𝑡) ≥ 0, or 𝑛 + 𝑙 odd for 𝑓(𝑛)(𝑡) ≤ 0 such that

𝑙 > 0 𝑦𝑖𝑒𝑙𝑑𝑠 𝑓(𝑘) (𝑡) > 0 𝑓𝑜𝑟 𝑡 ≥ 𝑡1, 𝑘 = 0, 1, . . . , 𝑙 − 1,

𝑙 ≤ 𝑛 − 1 𝑦𝑖𝑒𝑙𝑑𝑠 (−1)𝑙+𝑘𝑓(𝑘) (𝑡) > 0 𝑓𝑜𝑟 𝑡 ≥ 𝑡1,
𝑘 = 𝑙, 𝑙 + 1, . . . , 𝑛 − 1.

(7)

Lemma 2 (see [5, Lemma 2.2.3]). Let 𝑓 be as in Lemma 1,

𝑓(𝑛) (𝑡) 𝑓(𝑛−1) (𝑡) ≤ 0 (8)

for 𝑡 ≥ 𝑡1, and assume also that

lim
𝑡→∞

𝑓 (𝑡) ̸= 0. (9)

Then, for every constant 𝜆 ∈ (0, 1), there exists a 𝑡𝜆 ∈ [𝑡1,∞)
such that

𝑓 (𝑡) ≥ 𝜆
(𝑛 − 1)! 𝑡

𝑛−1 𝑓
(𝑛−1) (𝑡) , (10)

for all 𝑡 ∈ [𝑡𝜆,∞).

We are in a position now to state and prove principal
results of this paper for even-order equations.

Theorem 3. Let 𝑛 ≥ 2 be even and let 0 < 𝛽 ≤ 1. Assume
that conditions (𝐻1) and (𝐻2) are satisfied, and there exist two
numbers 𝛾, 𝜆 ∈ R such that 𝛾 ≤ 𝛽 ≤ 𝜆 and 𝛾 < 𝛼 < 𝜆. Suppose
further that there exist two functions 𝜂1, 𝜂2 ∈ 𝐶(I,R) such that

𝜂1 (𝑡) ≤ 𝜎 (𝑡) ≤ 𝜂2 (𝑡) , 𝜂1 (𝑡) < 𝑡 ≤ 𝜏 (𝑡) < 𝜂2 (𝑡) ,
lim
𝑡→∞

𝜂1 (𝑡) = ∞. (11)

If

∫
∞

𝑄𝛾 (𝑡) d𝑡 = ∞, (12)

∫
∞

𝑄𝛽 (𝑡) 𝐴𝜆 (𝜂2 (𝑡)) d𝑡 = ∞, (13)

every solution 𝑥(𝑡) of (1) is either oscillatory or satisfies
lim
𝑡→∞

𝑥 (𝑡) = 0. (14)
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Proof. Assume that (1) has a nonoscillatory solution 𝑥(𝑡)
which is eventually positive and such that

lim
𝑡→∞

𝑥 (𝑡) ̸= 0. (15)

Then 𝑧 satisfies

𝑧 (𝜎 (𝑡)) = 𝑥 (𝜎 (𝑡)) + 𝑝 (𝜎 (𝑡)) 𝑥 (𝜏 (𝜎 (𝑡)))
≤ 𝑥 (𝜎 (𝑡)) + 𝑝0𝑥 (𝜏 (𝜎 (𝑡))) .

(16)

In view of (1), we have

0 = 𝑝0𝛽
𝜏 (𝑡)(𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼)



+ 𝑝0𝛽𝑞 (𝜏 (𝑡)) 𝑥𝛽 (𝜎 (𝜏 (𝑡)))

≥ 𝑝0𝛽
𝜏∗

(𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼)


+ 𝑝0𝛽𝑞 (𝜏 (𝑡)) 𝑥𝛽 (𝜎 (𝜏 (𝑡))) .

(17)

Using (16) and [9, Lemma 2], we obtain

𝑞 (𝑡) 𝑥𝛽 (𝜎 (𝑡)) + 𝑝0𝛽𝑞 (𝜏 (𝑡)) 𝑥𝛽 (𝜎 (𝜏 (𝑡)))

= 𝑞 (𝑡) 𝑥𝛽 (𝜎 (𝑡)) + 𝑝0𝛽𝑞 (𝜏 (𝑡)) 𝑥𝛽 (𝜏 (𝜎 (𝑡)))

≥ 𝑄 (𝑡) 𝑧𝛽 (𝜎 (𝑡)) .

(18)

It follows from (1), (17), and (18) that

(𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼 + 𝑝0𝛽
𝜏∗

𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼)


+ 𝑄 (𝑡) 𝑧𝛽 (𝜎 (𝑡)) ≤ 0.
(19)

As in the proof of [25, Theorem 2.1], we conclude that, by
virtue of (1) and Lemma 1, there are two possibilities, either

𝑧 (𝑡) > 0, 𝑧 (𝑡) > 0, 𝑧(𝑛−1) (𝑡) > 0,

𝑧(𝑛) (𝑡) ≤ 0, (𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼)


≤ 0,
(20)

or

𝑧 (𝑡) > 0, 𝑧(𝑛−2) (𝑡) > 0,

𝑧(𝑛−1) (𝑡) < 0, (𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼)


≤ 0,
(21)

for all 𝑡 ≥ 𝑡1, where 𝑡1 ≥ 𝑡0 is large enough.

Case I. Suppose first that conditions (20) hold. Using inequal-
ity (19) and assumption 𝜂1(𝑡) ≤ 𝜎(𝑡), we conclude that

(𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼 + 𝑝0𝛽
𝜏∗

𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼)


+ 𝑄 (𝑡) 𝑧𝛽 (𝜂1 (𝑡)) ≤ 0.
(22)

Furthermore, by the monotonicity of 𝑧(𝑡), there exists a
constant 𝑀 > 0 such that

𝑧𝛽 (𝜂1 (𝑡)) = 𝑧𝛽−𝛾 (𝜂1 (𝑡)) 𝑧𝛾 (𝜂1 (𝑡)) ≥ 𝑀𝛽−𝛾𝑧𝛾 (𝜂1 (𝑡)) .
(23)

Combining (22) and (23), we have

(𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼 + 𝑝0𝛽
𝜏∗

𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼)


+ 𝑀1𝑄 (𝑡) 𝑧𝛾 (𝜂1 (𝑡)) ≤ 0,
(24)

where 𝑀1 = 𝑀𝛽−𝛾. An application of conditions (20) allows
us to deduce that the function

𝑤 (𝑡) := 𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼 (25)

is positive and nonincreasing. By Lemma 2, we have

𝑧 (𝑡) ≥ 𝜆𝑡𝑛−1
(𝑛 − 1)!𝑟1/𝛼 (𝑡) 𝑟

1/𝛼 (𝑡) 𝑧(𝑛−1) (𝑡)

= 𝜆𝑡𝑛−1
(𝑛 − 1)!𝑟1/𝛼 (𝑡)𝑤

1/𝛼 (𝑡) ,
(26)

for every 𝜆 ∈ (0, 1) and for all sufficiently large 𝑡. Using (26)
in (24), we conclude that 𝑤(𝑡) is a positive solution of a delay
differential inequality

(𝑤 (𝑡) + 𝑝0𝛽
𝜏∗

𝑤 (𝜏 (𝑡)))


+ 𝑀1(
𝜆

(𝑛 − 1)!)
𝛾

𝑄𝛾 (𝑡) 𝑤𝛾/𝛼 (𝜂1 (𝑡)) ≤ 0.
(27)

Define now a function 𝑦(𝑡) by

𝑦 (𝑡) := 𝑤 (𝑡) + 𝑝0𝛽
𝜏∗

𝑤 (𝜏 (𝑡)) . (28)

Then, by the monotonicity of 𝑤(𝑡),

𝑦 (𝑡) ≤ 𝑤 (𝑡) (1 + 𝑝0𝛽
𝜏∗

) . (29)

Substituting (29) into (27), we observe that 𝑦(𝑡) is a positive
solution of a delay differential inequality

𝑦 (𝑡)+𝑀1(
𝜆

(𝑛 − 1)!)
𝛾

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝛾/𝛼

𝑄𝛾 (𝑡) 𝑦𝛾/𝛼 (𝜂1 (𝑡)) ≤ 0.
(30)

Then, by virtue of [21, Theorem 1], the associated delay
differential equation

𝑦 (𝑡)+𝑀1(
𝜆

(𝑛 − 1)!)
𝛾

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝛾/𝛼

𝑄𝛾 (𝑡) 𝑦𝛾/𝛼 (𝜂1 (𝑡)) = 0
(31)
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also has a positive solution. However, the result by Kitamura
and Kusano [15, Theorem 2] implies that, under assumption
(12), (31) is oscillatory. Therefore, (1) cannot have positive
solutions.

Case II. Assume now that conditions (21) hold. By virtue of
(15), we have that

lim
𝑡→∞

𝑧 (𝑡) ̸= 0. (32)

An application of Lemma 2 yields

𝑧 (𝑡) ≥ 𝜆
(𝑛 − 2)! 𝑡

𝑛−2𝑧(𝑛−2) (𝑡) , (33)

for any 𝜆 ∈ (0, 1) and for all sufficiently large 𝑡. Hence, by (19)
and (33), we obtain

(𝑟(𝑡)(𝑧(𝑛−1) (𝑡))𝛼 + 𝑝0𝛽
𝜏∗

𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼)


+ ( 𝜆
(𝑛 − 2)!)

𝛽

𝑄𝛽 (𝑡) (𝑧(𝑛−2) (𝜎 (𝑡)))𝛽 ≤ 0.
(34)

Using conditions 𝑧(𝑛−1)(𝑡) < 0, 𝜎(𝑡) ≤ 𝜂2(𝑡), and inequality
(34), we have

(𝑟(𝑡)(𝑧(𝑛−1) (𝑡))𝛼 + 𝑝0𝛽
𝜏∗

𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼)


+ ( 𝜆
(𝑛 − 2)!)

𝛽

𝑄𝛽 (𝑡) (𝑧(𝑛−2) (𝜂2 (𝑡)))
𝛽 ≤ 0.

(35)

Furthermore, by the monotonicity of 𝑧(𝑛−2)(𝑡), there exists a
constant 𝑁 > 0 such that

(𝑧(𝑛−2) (𝜂1 (𝑡)))
𝛽 = (𝑧(𝑛−2) (𝜂1 (𝑡)))

𝛽−𝜆(𝑧(𝑛−2) (𝜂1 (𝑡)))
𝜆

≥ 𝑁𝛽−𝜆(𝑧(𝑛−2) (𝜂2 (𝑡)))
𝜆.

(36)

Combining (35) and (36), we arrive at

(𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼 + 𝑝0𝛽
𝜏∗

𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼)


+ 𝑁1(
𝜆

(𝑛 − 2)!)
𝛽

𝑄𝛽 (𝑡) (𝑧(𝑛−2) (𝜂2 (𝑡)))
𝜆 ≤ 0,

(37)

where 𝑁1 = 𝑁𝛽−𝜆. Using the monotonicity of 𝑤(𝑡), for 𝑠 ≥
𝑡 ≥ 𝑡1, we conclude that

𝑟1/𝛼 (𝑠) 𝑧(𝑛−1) (𝑠) ≤ 𝑟1/𝛼 (𝑡) 𝑧(𝑛−1) (𝑡) . (38)

Dividing (38) by 𝑟1/𝛼(𝑠) and integrating the resulting inequal-
ity from 𝑡 to 𝑙, we obtain

𝑧(𝑛−2) (𝑙)

≤ 𝑧(𝑛−2) (𝑡) + 𝑟1/𝛼 (𝑡) 𝑧(𝑛−1) (𝑡) ∫
𝑙

𝑡

𝑟−1/𝛼 (𝑠) d𝑠.
(39)

Passing to the limit as 𝑙 → ∞, we deduce that

0 ≤ 𝑧(𝑛−2) (𝑡) + 𝑟1/𝛼 (𝑡) 𝑧(𝑛−1) (𝑡) 𝐴 (𝑡) , (40)

which yields

𝑧(𝑛−2) (𝑡) ≥ −𝐴 (𝑡) 𝑟1/𝛼 (𝑡) 𝑧(𝑛−1) (𝑡) = −𝐴 (𝑡) 𝑤1/𝛼 (𝑡) .
(41)

Combining (37) and (41), we have

(𝑟(𝑡)(𝑧(𝑛−1) (𝑡))𝛼 + 𝑝0𝛽
𝜏∗

𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼)


− 𝑁1(
𝜆

(𝑛 − 2)!)
𝛽

𝑄𝛽 (𝑡) 𝐴𝜆 (𝜂2 (𝑡)) 𝑤𝜆/𝛼 (𝜂2 (𝑡)) ≤ 0.
(42)

Using again monotonicity of 𝑤(𝑡), we conclude that

𝑦 (𝑡) ≥ 𝑤 (𝜏 (𝑡)) (1 + 𝑝0𝛽
𝜏∗

) . (43)

Substituting (43) into (42), we observe that 𝑦(𝑡) is a negative
solution of an advanced differential inequality

𝑦 (𝑡) − 𝑁1(
𝜆

(𝑛 − 2)!)
𝛽

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝜆/𝛼

× 𝑄𝛽 (𝑡) 𝐴𝜆 (𝜂2 (𝑡)) 𝑦𝜆/𝛼 (𝜏−1 (𝜂2 (𝑡))) ≤ 0,
(44)

which implies that 𝑢(𝑡) := −𝑦(𝑡) is a positive solution of an
advanced differential inequality

𝑢 (𝑡) − 𝑁1(
𝜆

(𝑛 − 2)!)
𝛽

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝜆/𝛼

× 𝑄𝛽 (𝑡) 𝐴𝜆 (𝜂2 (𝑡)) 𝑢𝜆/𝛼 (𝜏−1 (𝜂2 (𝑡))) ≥ 0.
(45)

Consequently, by [7, Lemma 2.3], the associated advanced
differential equation

𝑢 (𝑡) − 𝑁1(
𝜆

(𝑛 − 2)!)
𝛽

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝜆/𝛼

× 𝑄𝛽 (𝑡) 𝐴𝜆 (𝜂2 (𝑡)) 𝑢𝜆/𝛼 (𝜏−1 (𝜂2 (𝑡))) = 0
(46)

also has a positive solution. However, it follows from [15,
Theorem 1] that if condition (13) holds, (46) is oscillatory.
Therefore, (1) cannot have positive solutions. This contradic-
tion with our initial assumption completes the proof.

Theorem 4. Let 𝑛 ≥ 2 be even, and let 0 < 𝛼 = 𝛽 ≤ 1.
Assume that conditions (𝐻1) and (𝐻2) hold, and there exist
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two functions 𝜂1, 𝜂2 ∈ 𝐶(I,R) satisfying (11). Suppose also that
conditions

𝜏∗
((𝑛 − 1)!)𝛽 (𝜏∗ + 𝑝0𝛽)

lim inf
𝑡→∞

∫
𝑡

𝜂1(𝑡)

𝑄𝛽 (𝑠) d𝑠 > 1
e
, (47)

𝜏∗
((𝑛 − 2)!)𝛽 (𝜏∗ + 𝑝0𝛽)

lim inf
𝑡→∞

∫
𝜏
−1
(𝜂2(𝑡))

𝑡

𝑄𝛽 (𝑠) 𝐴𝛽 (𝜂2 (𝑠)) d𝑠

> 1
e

(48)

are satisfied. Then conclusion of Theorem 3 remains intact.

Proof. Assume that 𝑥(𝑡) is an eventually positive solution of
(1) that satisfies (15). Proceeding as in the proof ofTheorem 3,
one comes to the conclusion that, for every 𝜆 ∈ (0, 1), a delay
differential equation

𝑦 (𝑡) + ( 𝜆
(𝑛 − 1)!)

𝛽 𝜏∗
𝜏∗ + 𝑝0𝛽

𝑄𝛽 (𝑡) 𝑦 (𝜂1 (𝑡)) = 0 (49)

and an advanced differential equation

𝑢 (𝑡) − ( 𝜆
(𝑛 − 2)!)

𝛽 𝜏∗
𝜏∗ + 𝑝0𝛽

𝑄𝛽 (𝑡) 𝐴𝛽 (𝜂2 (𝑡))

× 𝑢 (𝜏−1 (𝜂2 (𝑡))) = 0
(50)

both have positive solutions. On the other hand, condition
(47) and [9, Lemma 4] imply that (49) is oscillatory, a
contradiction. Likewise, by virtue of [6, Theorem 2.4.1],
condition (48) yields that (50) has no positive solutions. This
contradiction completes the proof.

Theorem 5. Let 𝑛 ≥ 2 be even and 0 < 𝛽 ≤ 1. Assume
that conditions (𝐻1) and (𝐻2) are satisfied, and there exist
two numbers 𝛾, 𝜆 ∈ R as in Theorem 3 and two functions
𝜂1, 𝜂2 ∈ 𝐶(I,R) such that

𝜂1 (𝑡) ≤ 𝜎 (𝑡) ≤ 𝜂2 (𝑡) , 𝜂1 (𝑡) < 𝜏 (𝑡) ≤ 𝑡 < 𝜂2 (𝑡) ,
lim
𝑡→∞

𝜂1 (𝑡) = ∞. (51)

If conditions (12) and (13) hold, the conclusion of Theorem 3
remains intact.

Proof. As above, let 𝑥(𝑡) be an eventually positive solution of
(1) that satisfies (15). As in the proof of Theorem 3, we split
the argument into two parts.

Case I. Assume first that (20) is satisfied. It has been
established in the proof of Theorem 3 that the function
𝑤(𝑡) defined by (25) is positive, nonincreasing, and satisfies
inequality (27). Introducing again 𝑦(𝑡) by (28) and using the
monotonicity of 𝑤(𝑡), we conclude that

𝑦 (𝑡) ≤ 𝑤 (𝜏 (𝑡)) (1 + 𝑝0𝛽
𝜏∗

) . (52)

Substitution of (52) into (27) implies that, for sufficiently large
𝑡, 𝑦(𝑡) is a positive solution of a delay differential inequality

𝑦 (𝑡) + 𝑀1(
𝜆

(𝑛 − 1)!)
𝛾

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝛾/𝛼

𝑄𝛾 (𝑡)

× 𝑦𝛾/𝛼 (𝜏−1 (𝜂1 (𝑡))) ≤ 0.
(53)

Then, by virtue of [21, Theorem 1], the associated delay
differential equation

𝑦 (𝑡) + 𝑀1(
𝜆

(𝑛 − 1)!)
𝛾

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝛾/𝛼

𝑄𝛾 (𝑡)

× 𝑦𝛾/𝛼 (𝜏−1 (𝜂1 (𝑡))) = 0
(54)

also has a positive solution. However, [15,Theorem 2] implies
that if (12) holds, (54) is oscillatory.Therefore, (1) cannot have
positive solutions.

Case II. Assume now that (21) is satisfied. It has been
established in the proof of Theorem 3 that the function 𝑤(𝑡)
defined by (25) is negative, nonincreasing, and satisfies the
inequality (42). Introducing again 𝑦(𝑡) by (28) and using the
monotonicity of 𝑤(𝑡), we conclude that

𝑦 (𝑡) ≥ 𝑤 (𝑡) (1 + 𝑝0𝛽
𝜏∗

) . (55)

Substituting (55) into (42), we observe that 𝑦(𝑡) is a negative
solution of an advanced differential inequality

𝑦 (𝑡) − 𝑁1(
𝜆

(𝑛 − 2)!)
𝛽

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝜆/𝛼

𝑄𝛽 (𝑡)

× 𝐴𝜆 (𝜂2 (𝑡)) 𝑦𝜆/𝛼 (𝜂2 (𝑡)) ≤ 0.
(56)

That is, 𝑢(𝑡) := −𝑦(𝑡) is a positive solution of an advanced
differential inequality

𝑢 (𝑡) − 𝑁1(
𝜆

(𝑛 − 2)!)
𝛽

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝜆/𝛼

𝑄𝛽 (𝑡)

× 𝐴𝜆 (𝜂2 (𝑡)) 𝑢𝜆/𝛼 (𝜂2 (𝑡)) ≥ 0.
(57)

Then, by [7, Lemma 2.3], the associated advanced differential
equation

𝑢 (𝑡) − 𝑁1(
𝜆

(𝑛 − 2)!)
𝛽

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝜆/𝛼

𝑄𝛽 (𝑡)

× 𝐴𝜆 (𝜂2 (𝑡)) 𝑢𝜆/𝛼 (𝜂2 (𝑡)) = 0
(58)

also has a positive solution. However, [15,Theorem 1] implies
that, under assumption (13), (58) is oscillatory. Therefore, (1)
cannot have positive solutions. This contradiction with our
initial assumption completes the proof.
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Theorem 6. Let 𝑛 ≥ 2 be even and 0 < 𝛼 = 𝛽 ≤ 1. Assume
that conditions (𝐻1) and (𝐻2) are satisfied, and there exist two
functions 𝜂1, 𝜂2 ∈ 𝐶(I,R) satisfying (51). Suppose also that

𝜏∗
((𝑛 − 1)!)𝛽 (𝜏∗ + 𝑝0𝛽)

lim inf
𝑡→∞

∫
𝑡

𝜏−1(𝜂1(𝑡))
𝑄𝛽 (𝑠) d𝑠 > 1

e
, (59)

𝜏∗
((𝑛 − 2)!)𝛽 (𝜏∗ + 𝑝0𝛽)

lim inf
𝑡→∞

∫
𝜂2(𝑡)

𝑡

𝑄𝛽 (𝑠) 𝐴𝛽 (𝜂2 (𝑠)) d𝑠>
1
e
.

(60)

Then the conclusion of Theorem 3 remains intact.

Proof. Assuming that 𝑥(𝑡) is an eventually positive solution
of (1) that satisfies (15) and proceeding as in the proof of
Theorem 5, one concludes that, for every 𝜆 ∈ (0, 1), a delay
differential equation

𝑦 (𝑡) + ( 𝜆
(𝑛 − 1)!)

𝛽 𝜏∗
𝜏∗ + 𝑝0𝛽

𝑄𝛽 (𝑡) 𝑦 (𝜏−1 (𝜂1 (𝑡))) = 0
(61)

and an advanced differential equation

𝑢 (𝑡) − 𝜏∗
𝜏∗ + 𝑝0𝛽

( 𝜆
(𝑛 − 2)!)

𝛽

𝑄𝛽 (𝑡) 𝐴𝛽 (𝜂2 (𝑡)) 𝑢 (𝜂2 (𝑡)) = 0
(62)

have positive solutions. On the other hand, application of
condition (59) along with [9, Lemma 4] implies that (61)
is oscillatory, a contradiction. Likewise, by virtue of [6,
Theorem 2.4.1], condition (60) yields that (62) has no positive
solutions. This contradiction completes the proof.

Note that Theorems 3–6 ensure that every solution 𝑥(𝑡)
of (1) is either oscillatory or tends to zero as 𝑡 → ∞ and,
unfortunately, cannot distinguish solutions with different
behaviors. In the remaining part of this section, we establish
several results which guarantee that all solutions of (1) are
oscillatory.

Theorem 7. Let 𝑛 ≥ 4 be even and 0 < 𝛽 ≤ 1. Assume that
conditions (𝐻1) and (𝐻2) are satisfied, and there exist three
numbers 𝛾, 𝜆, 𝜃 ∈ R such that 𝛾 ≤ 𝛽 ≤ 𝜆, 𝛾 < 𝛼 < 𝜆, 𝜃 ≥
𝛽, and 𝜃 > 𝛼. Suppose further that there exist three functions
𝜂1, 𝜂2, 𝜂3 ∈ 𝐶(I,R)

𝜂3 (𝑡) ≥ 𝜎 (𝑡) , 𝜂3 (𝑡) > 𝜏 (𝑡) , (63)

and such that (11) holds. Assume that conditions (12), (13), and

∫
∞

𝑄𝜃 (𝑡) d𝑡 = ∞ (64)

hold. Then (1) is oscillatory.

Proof. Without loss of generality, suppose that 𝑥(𝑡) is a
nonoscillatory solution of (1) which is eventually positive. As
in the proof ofTheorem 3, we obtain (19). Applying the same
argument as in the paper by Zhang et al. [23, Theorem 2.1],

we conclude that, by virtue of (1) and Lemma 1, in addition to
the case (20), there are twomore possible types of behavior of
solutions for 𝑡 ≥ 𝑡1, where 𝑡1 ≥ 𝑡0 is large enough in the proof
of Theorem 3. Namely, one can also have

𝑧 (𝑡) > 0, 𝑧 (𝑡) > 0, 𝑧(𝑛−2) (𝑡) > 0,

𝑧(𝑛−1) (𝑡) < 0, (𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼)


≤ 0,
(65)

or

𝑧 (𝑡) > 0, 𝑧(𝑗) (𝑡) < 0, 𝑧(𝑗+1) (𝑡) > 0,

𝑧(𝑛−1) (𝑡) < 0, (𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼)


≤ 0,
(66)

for all odd integers 𝑗 ∈ {1, 2, . . . , 𝑛 − 3}. However, conditions
(12) and (13) yield that neither (20) nor (65) is possible.

Therefore, we have to analyze the only remaining case,
and we assume now that all the conditions in (66) are
satisfied. Then, inequality (41) holds. Integrating (41) from 𝑡
to ∞ 𝑛 − 2 times, we obtain

𝑧 (𝑡) ≥ −
∫∞
𝑡

(𝜂 − 𝑡)𝑛−3𝐴 (𝜂) d𝜂
(𝑛 − 3)! 𝑟1/𝛼 (𝑡) 𝑧(𝑛−1) (𝑡)

= −
∫∞
𝑡

(𝜂 − 𝑡)𝑛−3𝐴 (𝜂) d𝜂
(𝑛 − 3)! 𝑤1/𝛼 (𝑡) ,

(67)

where𝑤(𝑡) is defined by (25). Taking into account that 𝑧(𝑡) <
0, 𝜎(𝑡) ≤ 𝜂3(𝑡), and using (19), we have

(𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼 + 𝑝0𝛽
𝜏∗

𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼)


+ 𝑄 (𝑡) 𝑧𝛽 (𝜂3 (𝑡)) ≤ 0.
(68)

By virtue ofmonotonicity of 𝑧(𝑡), there exists a constant𝑀2 >
0 such that

𝑧𝛽 (𝜂3 (𝑡)) = 𝑧𝛽−𝜃 (𝜂3 (𝑡)) 𝑧𝜃 (𝜂3 (𝑡)) ≥ 𝑀2𝑧𝜃 (𝜂3 (𝑡)) .
(69)

Combining (68) and (69), we obtain

(𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼 + 𝑝0𝛽
𝜏∗

𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼)


+ 𝑀2𝑄 (𝑡) 𝑧𝜃 (𝜂3 (𝑡)) ≤ 0.
(70)

Using (67) in (70), we conclude that in this case, the function
𝑤(𝑡) defined by (25) is negative, nonincreasing, and satisfies
the inequality

(𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼 + 𝑝0𝛽
𝜏∗

𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼)


− 𝑀2
((𝑛 − 3)!)𝜃

𝑄𝜃 (𝑡) 𝑤𝜃/𝛼 (𝜂3 (𝑡)) ≤ 0.
(71)
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Introducing again 𝑦(𝑡) by (28) and using the monotonicity of
𝑤(𝑡), we arrive at (43). Substitution of (43) into (71) leads to
the conclusion that 𝑦(𝑡) is a negative solution of an advanced
differential inequality

𝑦 (𝑡) − 𝑀2
((𝑛 − 3)!)𝜃

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝜃/𝛼

𝑄𝜃 (𝑡) 𝑦𝜃/𝛼 (𝜏−1 (𝜂3 (𝑡)))

≤ 0,
(72)

in which case the function 𝑢(𝑡) := −𝑦(𝑡) is a positive solution
of an advanced differential inequality

𝑢 (𝑡) − 𝑀2
((𝑛 − 3)!)𝜃

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝜃/𝛼

𝑄𝜃 (𝑡) 𝑢𝜃/𝛼 (𝜏−1 (𝜂3 (𝑡)))

≥ 0.
(73)

Then, by [7, Lemma 2.3], the associated advanced differential
equation

𝑢 (𝑡) − 𝑀2
((𝑛 − 3)!)𝜃

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝜃/𝛼

𝑄𝜃 (𝑡) 𝑢𝜃/𝛼 (𝜏−1 (𝜂3 (𝑡)))

= 0
(74)

also has a positive solution. However, [15,Theorem 1] implies
that (74) is oscillatory under assumption (64). Therefore, (1)
cannot have positive solutions. This contradiction with our
initial assumption completes the proof.

Theorem8. Let 𝑛 ≥ 4 be even and 0 < 𝛼 = 𝛽 ≤ 1. Assume that
conditions (𝐻1) and (𝐻2) are satisfied, and there exist three
functions 𝜂1, 𝜂2, 𝜂3 ∈ 𝐶(I,R) as in Theorem 7. Suppose also
that conditions (47) and (48) hold. If

𝜏∗
((𝑛 − 3)!)𝛽 (𝜏∗ + 𝑝0𝛽)

lim inf
𝑡→∞

∫
𝜏
−1
(𝜂3(𝑡))

𝑡

𝑄𝛽 (𝑠) d𝑠 > 1
e
, (75)

(1) is oscillatory.

Proof. Let 𝑥(𝑡) be a nonoscillatory solution of (1) which is
eventually positive. As in the proof of Theorem 7, one can
have either (20) or (65), or (66). However, conditions (47) and
(48) exclude cases (20) and (65). Thus, all the inequalities in
(66) should be satisfied. Along the same lines as in the proof
of Theorem 7, one comes to the conclusion that an advanced
differential equation

𝑢 (𝑡) − 𝜏∗
((𝑛 − 3)!)𝛽 (𝜏∗ + 𝑝0𝛽)

𝑄𝛽 (𝑡) 𝑢 (𝜏−1 (𝜂3 (𝑡))) = 0
(76)

has positive solutions. On the other hand, if condition (75)
holds, a well-known result [6,Theorem2.4.1] implies that (76)
has no positive solutions. This contradiction completes the
proof.

Theorem 9. Let 𝑛 ≥ 4 be even, 0 < 𝛽 ≤ 1, and assume that
conditions (𝐻1) and (𝐻2) are satisfied. Suppose further that
there exist three numbers 𝛾, 𝜆, 𝜃 ∈ R as in Theorem 7 and
three functions 𝜂1, 𝜂2, 𝜂3 ∈ 𝐶(I,R) such that (51) is satisfied,
𝜂3(𝑡) ≥ 𝜎(𝑡), and 𝜂3(𝑡) > 𝑡. If (12), (13), and (64) hold, (1) is
oscillatory.

Proof. Let 𝑥(𝑡) be an eventually positive nonoscillatory solu-
tion of (1). The same argument as in the proof of Theorem 7
yields that (66) holds. Define the function𝑤(𝑡) by (25). From
the proof ofTheorem 7, we already know that𝑤(𝑡) is negative,
nonincreasing, and satisfies the inequality (71). Introducing
then the function 𝑦(𝑡) by (28) and using the monotonicity of
𝑤(𝑡), we arrive at (55). Substituting (55) into (71), we observe
that 𝑦(𝑡) is a negative solution of an advanced differential
inequality

𝑦 (𝑡) − 𝑀2
((𝑛 − 3)!)𝜃

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝜃/𝛼

𝑄𝜃 (𝑡) 𝑦𝜃/𝛼 (𝜂3 (𝑡)) ≤ 0,
(77)

while 𝑢(𝑡) := −𝑦(𝑡) is a positive solution of an advanced
differential inequality

𝑢 (𝑡) − 𝑀2
((𝑛 − 3)!)𝜃

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝜃/𝛼

𝑄𝜃 (𝑡) 𝑢𝜃/𝛼 (𝜂3 (𝑡)) ≥ 0.
(78)

In this case, the result due to Bacuĺıková [7, Lemma 2.3]
allows one to deduce that the associated advanced differential
equation

𝑢 (𝑡) − 𝑀2
((𝑛 − 3)!)𝜃

( 𝜏∗
𝜏∗ + 𝑝0𝛽

)
𝜃/𝛼

𝑄𝜃 (𝑡) 𝑢𝜃/𝛼 (𝜂3 (𝑡)) = 0
(79)

also has a positive solution. However, it has been established
by Kitamura and Kusano [15, Theorem 1] that if condition
(64) is satisfied, (79) is oscillatory. Therefore, (1) cannot
have positive solutions, and this contradiction with the
assumptions of the theorem completes the proof.

Theorem 10. Let 𝑛 ≥ 4 be even and 0 < 𝛼 = 𝛽 ≤ 1. Assume
that conditions (𝐻1) and (𝐻2) are satisfied, and there exist
three functions 𝜂1, 𝜂2, 𝜂3 ∈ 𝐶(I,R) as in Theorem 9. Suppose
further that (59), (60) hold, and

𝜏∗
((𝑛 − 3)!)𝛽 (𝜏∗ + 𝑝0𝛽)

lim inf
𝑡→∞

∫
𝜂3(𝑡)

𝑡

𝑄𝛽 (𝑠) d𝑠 > 1
e
. (80)

Then (1) is oscillatory.

Proof. Assuming that 𝑥(𝑡) is an eventually positive nonoscil-
latory solution of (1) and reasoning as in the proof of
Theorem 7, one concludes that (66) holds. As in the proof of
Theorem 9, we observe that an advanced differential equation

𝑢 (𝑡) − 𝜏∗
((𝑛 − 3)!)𝛽 (𝜏∗ + 𝑝0𝛽)

𝑄𝛽 (𝑡) 𝑢 (𝜂3 (𝑡)) = 0 (81)
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has positive solutions. On the other hand, if condition (80) is
satisfied, a result reported by Ladde et al. [6, Theorem 2.4.1]
yields that (81) has no positive solutions. This contradiction
completes the proof.

3. Asymptotic Behavior of Solutions to
Odd-Order Equations

In this section, in addition to conditions (𝐻1), (𝐻2), and (3),
we also assume that

(𝐻3) 𝜎(𝑡) < 𝑡.

The validity of the following four propositions can be
established in the same manner as it has been done for
Theorems 3–6.Therefore, to avoid unnecessary repetition, we
only formulate counterparts of Theorems 3–6 for the case of
odd-order equations.

Theorem 11. Let 𝑛 ≥ 3 be odd and let 0 < 𝛽 ≤ 1. Assume
that conditions (𝐻1)–(𝐻3) are satisfied, and there exist two
numbers 𝛾, 𝜆 ∈ R as inTheorem 3 and a function 𝜂4 ∈ 𝐶(I,R)
such that 𝑡 ≤ 𝜏(𝑡) < 𝜂4(𝑡). Suppose further that

∫
∞

𝑄𝛾 (𝑡) d𝑡 = ∞,

∫
∞

𝑄𝛽 (𝑡) 𝐴𝜆 (𝜂4 (𝑡)) d𝑡 = ∞.
(82)

Then the conclusion of Theorem 3 remains intact.

Theorem 12. Let 𝑛 ≥ 3 be odd, and let 0 < 𝛼 = 𝛽 ≤ 1. Assume
that conditions (𝐻1)–(𝐻3) are satisfied, and there exists a
function 𝜂4 ∈ 𝐶(I,R) as in Theorem 11. Suppose also that

𝜏∗
((𝑛 − 1)!)𝛽 (𝜏∗ + 𝑝0𝛽)

lim inf
𝑡→∞

∫
𝑡

𝜎(𝑡)

𝑄𝛽 (𝑠) d𝑠 > 1
e
,

𝜏∗
((𝑛 − 2)!)𝛽 (𝜏∗ + 𝑝0𝛽)

lim inf
𝑡→∞

∫
𝜏
−1
(𝜂4(𝑡))

𝑡

𝑄𝛽 (𝑠)

× 𝐴𝛽 (𝜂4 (𝑠)) d𝑠 > 1
e
.

(83)

Then the conclusion of Theorem 3 remains intact.

Theorem 13. Let 𝑛 ≥ 3 be odd and let 0 < 𝛽 ≤ 1. Assume
that conditions (𝐻1)–(𝐻3) are satisfied, and there exist two
numbers 𝛾, 𝜆 ∈ R as inTheorem 3 and a function 𝜂4 ∈ 𝐶(I,R)
such that 𝜎(𝑡) < 𝜏(𝑡) ≤ 𝑡 < 𝜂4(𝑡). Suppose further that con-
ditions (82) are satisfied. Then the conclusion of Theorem 3
remains intact.

Theorem 14. Let 𝑛 ≥ 3 be odd, and let 0 < 𝛼 = 𝛽 ≤
1. Assume that conditions (𝐻1)–(𝐻3) are satisfied, and there
exists a function 𝜂4 ∈ 𝐶(I,R) as in Theorem 13. If

𝜏∗
((𝑛 − 1)!)𝛽 (𝜏∗ + 𝑝0𝛽)

lim inf
𝑡→∞

∫
𝑡

𝜏−1(𝜎(𝑡))

𝑄𝛽 (𝑠) d𝑠 > 1
e
,

𝜏∗
((𝑛 − 2)!)𝛽 (𝜏∗ + 𝑝0𝛽)

lim inf
𝑡→∞

∫
𝜂4(𝑡)

𝑡

𝑄𝛽 (𝑠) 𝐴𝛽 (𝜂4 (𝑠)) d𝑠 > 1
e
,

(84)

the conclusion of Theorem 3 remains intact.

Note that Theorems 11–14 apply only if 𝜎 is a delayed
argument, 𝜎(𝑡) < 𝑡. Hence, it is important to complement
such results with the following theorems that can be applied
in the case where 𝜎 is an advanced argument, 𝜎(𝑡) ≥ 𝑡.

Theorem 15. Let 𝑛 ≥ 3 be odd and let 0 < 𝛽 ≤ 1. Assume
that conditions (𝐻1) and (𝐻2) are satisfied, and there exist two
numbers 𝛾, 𝜆 ∈ R as in Theorem 3 and two functions 𝜂1, 𝜂2 ∈
𝐶(I,R) satisfying (11). Suppose also that

∫
∞

𝑡0

𝜉𝑛−2[ 1
𝑅 (𝜉) ∫

∞

𝜉

𝑄 (𝑠) d𝑠]
1/𝛼

d𝜉 = ∞. (85)

If (12) and (13) are satisfied, the conclusion of Theorem 3
remains intact.

Proof. Assume that (1) has an eventually positive solution𝑥(𝑡)
satisfying (15). Proceeding as in the proof of Theorem 3, we
arrive at (19) and observe that (1) yields that either (20) or
(21) holds.

Indeed, it follows from the condition (𝑟(𝑡)(𝑧(𝑛−1)(𝑡))𝛼) ≤
0 that either 𝑧(𝑛−1)(𝑡) > 0 or 𝑧(𝑛−1)(𝑡) < 0. Assume first that
𝑧(𝑛−1)(𝑡) < 0; this immediately leads us to conditions (21). On
the other hand, if 𝑧(𝑛−1)(𝑡) > 0, then 𝑧(𝑛)(𝑡) ≤ 0 due to the fact
that 𝑟(𝑡) ≥ 0. We claim that 𝑧(𝑡) > 0 eventually. In fact, if
this is not the case, then 𝑧(𝑡) < 0 eventually. Since 𝑧(𝑡) > 0,
𝑧(𝑡) < 0, and (15) holds, there should exist a positive constant
𝑎 such that

lim
𝑡→∞

𝑧 (𝑡) = 𝑎. (86)

On the other hand, if 𝑧(𝑛−1)(𝑡) > 0 and 𝑧(𝑛)(𝑡) ≤ 0, there exists
a constant 𝑏 ≥ 0 such that

lim
𝑡→∞

𝑧(𝑛−1) (𝑡) = 𝑏 ≥ 0. (87)

Hence,

lim
𝑡→∞

𝑧(𝑖) (𝑡) = 0, (88)

for 𝑖 = 1, 2, . . . , 𝑛 − 1. Integrating (19) from 𝑡 to ∞ and using
the fact that the limit

lim
𝑡→∞

𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼 ≥ 0 (89)
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is finite, we have

− 𝑟 (𝑡) (𝑧(𝑛−1) (𝑡))𝛼 − 𝑝0𝛽
𝜏∗

𝑟 (𝜏 (𝑡)) (𝑧(𝑛−1) (𝜏 (𝑡)))𝛼

+ ∫
∞

𝑡

𝑄 (𝑠) 𝑧𝛽 (𝜎 (𝑠)) d𝑠 ≤ 0.
(90)

Consequently,

− 𝑅 (𝑡) [
[
(𝑧(𝑛−1) (𝑡))𝛼 + ((𝑝0𝛽

𝜏∗
)
1/𝛼

)
𝛼

(𝑧(𝑛−1) (𝜏 (𝑡)))𝛼]
]

+ ∫
∞

𝑡

𝑄 (𝑠) 𝑧𝛽 (𝜎 (𝑠)) d𝑠 ≤ 0.
(91)

Assume first that 𝛼 ≤ 1. Using the result due to Bacuĺıková
[7, Lemma 2.2], we obtain

(𝑧(𝑛−1) (𝑡))𝛼 + ((𝑝0𝛽
𝜏∗

)
1/𝛼

)
𝛼

(𝑧(𝑛−1) (𝜏 (𝑡)))𝛼

≤ 21−𝛼[
[
𝑧(𝑛−1) (𝑡) + (𝑝0𝛽

𝜏∗
)
1/𝛼

𝑧(𝑛−1) (𝜏 (𝑡))]
]

𝛼

.

(92)

Substituting (92) into (91), we have

− 21−𝛼𝑅 (𝑡) [
[
𝑧(𝑛−1) (𝑡) + (𝑝0𝛽

𝜏∗
)
1/𝛼

𝑧(𝑛−1) (𝜏 (𝑡))]
]

𝛼

+ ∫
∞

𝑡

𝑄 (𝑠) 𝑧𝛽 (𝜎 (𝑠)) d𝑠 ≤ 0,

(93)

which yields

− [
[
𝑧(𝑛−1) (𝑡) + (𝑝0𝛽

𝜏∗
)
1/𝛼

𝑧(𝑛−1) (𝜏 (𝑡))]
]

𝛼

≤ − 1
21−𝛼𝑅 (𝑡) ∫

∞

𝑡

𝑄 (𝑠) 𝑧𝛽 (𝜎 (𝑠)) d𝑠.

(94)

Therefore,

− [
[
𝑧(𝑛−1) (𝑡) + (𝑝0𝛽

𝜏∗
)
1/𝛼

𝑧(𝑛−1) (𝜏 (𝑡))]
]

+ [ 1
21−𝛼𝑅 (𝑡) ∫

∞

𝑡

𝑄 (𝑠) 𝑧𝛽 (𝜎 (𝑠)) d𝑠]
1/𝛼

≤ 0.

(95)

Integrate (95) 𝑛 − 2 times from 𝑡 to ∞ and then one more
time from 𝑡1 to ∞. Using (88) and changing the order of
integration, we obtain

∫
∞

𝑡1

(𝜉 − 𝑡1)𝑛−2
(𝑛 − 2)! [ 1

21−𝛼𝑅 (𝜉) ∫
∞

𝜉

𝑄 (𝑠) 𝑧𝛽 (𝜎 (𝑠)) d𝑠]
1/𝛼

d𝜉 < ∞.
(96)

Inequality (96) yields

∫
∞

𝑡1

𝜉𝑛−2[ 1
𝑅 (𝜉) ∫

∞

𝜉

𝑄 (𝑠) d𝑠]
1/𝛼

d𝜉 < ∞, (97)

which contradicts (85).
For the case 𝛼 > 1, one arrives at the contradiction with

the assumptions of the theorem by using another auxiliary
result obtained by Bacuĺıková [7, Lemma 2.1]. Thus, we
conclude that 𝑧(𝑡) > 0 eventually. The rest of the proof
follows the same lines as in Theorem 3 and is omitted.

Combining the ideas exploited in the proofs ofTheorems
4–6 and 15, one can derive the following results.

Theorem 16. Let 𝑛 ≥ 3 be odd, and let 0 < 𝛼 = 𝛽 ≤ 1. Assume
that conditions (𝐻1) and (𝐻2) are satisfied, and there exist two
functions 𝜂1, 𝜂2 ∈ 𝐶(I,R) satisfying (11). If (47), (48), and (85)
hold, the conclusion of Theorem 3 remains intact.

Theorem 17. Let 𝑛 ≥ 3 be odd, and let 0 < 𝛽 ≤ 1. Assume
that conditions (𝐻1) and (𝐻2) are satisfied, and there exist
two numbers 𝛾, 𝜆 ∈ R as in Theorem 3 and two functions
𝜂1, 𝜂2 ∈ 𝐶(I,R) satisfying (51). If conditions (12), (13), and (85)
are satisfied, the conclusion of Theorem 3 remains intact.

Theorem 18. Let 𝑛 ≥ 3 be odd, and let 0 < 𝛼 = 𝛽 ≤ 1.
Assume that conditions (𝐻1) and (𝐻2) are satisfied, and there
exist two functions 𝜂1, 𝜂2 ∈ 𝐶(I,R) satisfying (51). If conditions
(59), (60), and (85) are satisfied, the conclusion of Theorem 3
remains intact.

4. Examples and Discussion

The following examples illustrate applications of some of
theoretical results presented in the previous sections. In all
the examples, 𝑝0 is a constant such that 0 ≤ 𝑝0 < ∞.

Example 1. For 𝑡 ≥ 1, consider a fourth-order neutral
differential equation

(e𝑡(𝑥 (𝑡) + 𝑝0𝑥 (𝑡 − 2))) + 1
16 (1 + 𝑝0e) e𝑡−1/2𝑥 (𝑡 − 1) = 0.

(98)

Let 𝜂1(𝑡) = 𝑡−3 and 𝜂2(𝑡) = 𝑡+1. An application ofTheorem 6
yields that every solution 𝑥(𝑡) of (98) is either oscillatory or
satisfies (14). As a matter of fact, 𝑥(𝑡) = e−𝑡/2 is an exact
solution to (98) satisfying (14).

Example 2. For 𝑡 ≥ 1, consider a fourth-order neutral
differential equation

(e𝑡(𝑥 (𝑡) + 𝑝0𝑥 (𝑡 + 2𝜋))) + 2√10 (1 + 𝑝0e2𝜋)

× e𝑡+arcsin√10/10𝑥(𝑡 − arcsin
√10
10 ) = 0.

(99)

Let 𝜂1(𝑡) = 𝑡 − 3 and 𝜂2(𝑡) = 𝜂3(𝑡) = 𝑡 + 3𝜋. UsingTheorem 8,
we deduce that (99) is oscillatory. It is not hard to verify that
one oscillatory solution of this equation is 𝑥(𝑡) = e𝑡 sin 𝑡.
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Example 3. For 𝑡 ≥ 1, consider a third-order neutral differ-
ential equation

(e𝑡(𝑥 (𝑡) + 𝑝0𝑥 (𝑡 − 2))) + 9
8 (1 + 𝑝0e3) e𝑡−3/2𝑥 (𝑡 − 1) = 0.

(100)

Let 𝜂(𝑡) = 𝑡+1. It follows fromTheorem 14 that every solution
𝑥(𝑡) of (100) is either oscillatory or satisfies (14). In fact, one
solution of this equation satisfying (14) is 𝑥(𝑡) = e−𝑡/2.

Remark 4. In the case of (2), oscillation criteria established in
this paper complement theorems reported by Zhang et al. [23,
25] because our criteria apply also in the case where 𝜎(𝑡) ≥ 𝑡
and 𝛽 > 𝛼. On the other hand, our results for (1) supplement
those reported by Bacuĺıková andDžurina [10], Bacuĺıková et
al. [11], and Xing et al. [22] since our theorems can be applied
if 𝛼 ̸= 𝛽 and (3) holds.

Remark 5. By using inequality

𝑥1𝛽 + 𝑥2𝛽 ≥ 21−𝛽(𝑥1 + 𝑥2)𝛽 (101)

which holds for any 𝛽 ≥ 1 and for all 𝑥1, 𝑥2 ∈ [0,∞),
results reported in this paper can be extended to (1) for
all 𝛽 ∈ R which satisfy 𝛽 > 1. In this case, one has to
replace 𝑄(𝑡) := min{𝑞(𝑡), 𝑞(𝜏(𝑡))} with a function 𝑄(𝑡) :=
21−𝛽min{𝑞(𝑡), 𝑞(𝜏(𝑡))} and proceed as above.

Remark 6. Our main assumptions on functional arguments
do not specify whether 𝜏(𝑡) is a delayed or an advanced argu-
ment. Remarkably, 𝜎(𝑡) can even switch its nature between an
advanced and delayed argument. However, as in the paper by
Bacuĺıková and Džurina [10, condition (𝐻3)], such flexibility
is achieved at the cost of requiring that the function 𝜏 is
monotonic and satisfies 𝜏 ∘ 𝜎 = 𝜎 ∘ 𝜏. The question regarding
the analysis of the asymptotic behavior of solutions to (1) with
othermethods that do not require these assumptions remains
open at the moment.
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