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Abstract—Allocating limited resources in an optimal manner 

when rescuing victims from a hazard is a complex and error 

prone task, because the involved hazards are typically evolving 

over time; stagnating, building up or diminishing. Typical error 

sources are: miscalculation of resource availability and the 

victims’ condition. Thus, there is a need for decision support 

when it comes to rapidly predicting where the human fatalities 

are likely to occur to ensure timely rescue.  

This paper proposes a probabilistic model for tracking the 

condition of victims when exposed to fire hazards, using a 

Bayesian Network. The model is extracted from safety 

literature on human physiological and psychological responses 

against heat, thermal radiation and smoke. We simulate the 

state of victims under different fire scenarios and observe the 

likelihood of fatalities due to fire exposure. We show how our 

probabilistic approach can serve as the basis for improved 

decision support, providing real-time hazard and health 

assessments to the decision makers.  

 
Index Terms—Bayesian networks, diagnostic model, 

emergency evacuation, human response in fire. 

 

I. INTRODUCTION 

Human fatalities in fire disasters are undesirable, but over 

the years, they are inevitable [1]. Fire ranks second in 

maritime casualties after stranding and grounding [2]. In the 

wake of a maritime fire disaster, emergency decision makers 

who usually are familiar with the environment can play a 

decisive role in framing the efficient evacuation. However, 

uncertainty in a crisis situation can at times be a reason for 

them to downplay a disaster, or provide affected people with 

excessively optimistic accounts of the severity of an event.    

Safety theory suggests active faults (e.g. committed by e.g. 

operators) and latent faults as the explanation of major 

disasters.  Latent faults can be hidden defects in a design 

product, or can be the attitudes, safety culture and the 

decisions taken at different levels of the organization and 

with external stakeholders. Latent defects have played a key 

role in well-known accidents at sea, and the confidence about 

improved regulations and maritime technology led to lack of 

awareness of intertwined factors and component in 

socio-technical systems [3]. When it comes to risk taking and 

prioritization of issues relating to operational safety, the 

attitudes of management have changed less. While the 

influence of management in maritime accidents has been 

addressed by the International Safety Management (ISM) 
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Code (IMO 1993), specific human factors are still not 

sufficiently considered [3].  

Yet, it is not the intention of this paper to scrutinize the 

cause of maritime disasters, if they are active or latent faults. 

The purpose is rather to suggest the probabilistic thinking 

approach using Bayesian Network (BN) to improve the 

capability of decision makers to rank priority response and 

resources in an uncertain event such as a maritime fire 

disaster. It takes the human behaviors and likelihood of the 

hazard development, severity of hazard to health of victims in 

close proximity to the affected area who may face threats 

from fire effects such as smoke, gas, thermal radiation and 

temperature into consideration.  

The probabilistic approach serves as a basis for future 

development of smartphone-based decision support by 

exploiting sensors in the device. The advanced embedded 

sensors shift the devices into platforms for collecting 

large-scale data-sets. The signals from sensor devices have 

been exploited for monitoring health, sport experiences, as 

well as revealing individual behaviors, activities and context. 

This approach is intended to build a framework that hopefully 

can reduce uncertainties and enhance preparedness of 

organizational emergency response, and the ability of the 

decision makers to accurately appraise the threats and adopt 

effective coping strategies.  

The contributions of this work lie in the following three 

areas: 1) Building an intertwined psychological and 

physiological probabilistic model of a fire disaster; 2) 

Applying diagnostic thinking for assessing the cause of 

probability of human health condition; 3) Revealing possible 

future application of the human health probabilistic model for 

a mobile-based decision support. 

This paper is organized into six sections. Following the 

introduction is the overview of the relevant studies used as a 

basis for model building. Section III describes the Bayesian 

Network approach used in this paper. Section IV presents the 

probabilistic model of human health and condition in fire hazard. 

Section V presents simulations, analysis, and implication for the 

crisis managers. The conclusion summarizes the ideas and 

findings in this paper, and reveals future directions of this work. 

 

II. OVERVIEW OF RELEVANT STUDIES 

Fire safety literature has extensively covered the 

psychological and physiological effects and human response 

in fire hazards, and interactions between psychological and 

physiological effects are likely as indicated by Jin’s 

experiment [4]. Victims suffer both effects from fire and 

smoke, i.e., rapid drop of visual sharpness and emotional 

instability, and thus decrease the thinking ability.  Jin’s study 

also shows that the victims are more psychologically affected, 
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such as being afraid of what was going to happen next, than 

they were physiologically unable to withstand the smoke. 

Nevertheless, study on the interactions of psychological and 

physiological effects on human behavior in fire is scarce. Yet, 

none uses the probabilistic approach for emergency 

management decision support, as proposed in this work.    

In this paper, psychological effects are defined as the state 

of the mind of the victim that results in a variety of behavioral 

responses, performance and decisions. These are distinct 

from physiological effects which stress more on body 

functions. Thus, physiological effects are the effects of 

physical fire parameters such as thermal radiation, heat, toxic 

gases, and smoke on the human body, as opposed to 

parameters affecting the mind. For instance, a physiological 

effect of smoke is that it obscures vision, which may have a 

psychological effect on the tendency of a victim to enter or 

avoid a smoke-filled corridor. This review part provides an 

overview of important psychological and physiological 

effects that have been studied in the literature. 

A. The Behavioral Response   

Numerous studies investigate the psychological factors that 

are critical for survival in fire [5]-[7]. The ability to fulfill 

standard evacuation time given different physiological and 

psychological reasons, has been scrutinized [8]. They reveal 

how people respond in a fire hazard, which can be divided into 

three phases.  

In the perception phase, the victims receive external cues 

from the environment such as hearing announcements, or 

noticing visual signs such as flames, smoke, heat, or debris. It is 

a recognition process and an awareness of a danger. The fire 

cues frequently are ambiguous and people who have limited fire 

knowledge, or have prior fire incidents can easily perceive 

that a threatening fire is present [7]. 

In the fire cues validation and definition phase, the victim 

tries to interpret the consistency of received cues with what 

can be defined as serious fire, and interpret the risk to 

themselves or to others. It is a validation of, and response to, 

danger indicators and a behavioral process that involves 

victims making decisions on what action to take based on 

their perceived risk. Stress are likely to develop in this stage.  

Bryan [7] who compiles victims’ behaviors in fire disasters 

finds that not all follow the evacuation plan; they may try 

re-entry, fire-fighting, moving through the smoke or turning 

back. Non-adaptive behaviors are also apparent. It can be 

people fleeing the fire incident without regards for others, 

and inflicting injuries on themselves or others; it can be 

omission, such as forgetting to close the door; or it can be 

panic. Note that some researchers argue that panic, 

competitive flight for exit type of behavior is not supported in 

the research [9]. The behavior is rather the presence of 

anxiety due to an unanticipated hazardous event, but the 

effect can impair the ability to judge the danger.  

In the movement phase the action is taken and victims 

refuge in a safe place. However, the correct action is often 

influenced by the psychological and physiological responses.  

Individuals tend to become less selective in the risks involved 

in the behavioral response. Victims can be overwhelmed by 

the stress generation and abandon the attempt to formulate a 

response strategy. This situation can lead into a complete 

physical immobility [7].  

There are more complex processes affecting the human 

response performance in fire, such as perceptual or judgment 

ability, and tendency to panic or deny risks. It can be 

demographic factors, e.g. gender, age, disabilities, and health 

status, or social characteristics such as travelling with family 

or in a group. Other factors such as knowledge about fire, 

ship layout; situation and location (inside or outside room, 

awake or asleep, standing or lying on bed), and 

environmental factors (e.g. compartments, size of building, 

crowd density, easy of way-finding), all add to these complex 

processes.  

B. The Physiological Response  

Human are indeed also susceptible to harmful physical 

consequences of fire. There are abundant studies on the 

human physiological response in fire, and the results have 

been adopted in the fire safety guidelines [10], [11], and 

handbook [12]. The literature discusses fatality effects due to the 

exposure from fire parameters such as thermal radiation, heat, 

smoke, toxic gas.   

1) Temperature exposure effects 

Physiological effects on humans in extreme heat conditions 

originate from three sources, i.e., heat stroke (hyperthermia), 

body surface burn, and respiratory tract burn [12]. The high air 

temperature cause gradual increase of body temperature, 

breathing problems, high pulse, and collapse which can lead 

into incapacitation. Purser [12]  documents an experiment on 

human performance when exposed to the hot air, as shown in 

Table I: 

TABLE I: REPORTED TOLERANCE TIMES FOR EXPOSURE [30] 

Temp oC Time (Min) Note 

110 25  

180 3  
205 4 Bare headed, protected 

126 7  

In dry air, when the temperature reaches 120
 o

C, the body 

temperature gradually rises and causes collapse. A victim 

exposed for more than a few minutes in high temperature 

exceeding 120
 o
C may die immediately after exposure owing to 

hyperthermia, severe cardiac irregularities, or burns of the 

upper respiratory tract [12]. Of course, during the evacuation, 

victims may be directly exposed to the fire for the period of 

time, and to thermal radiation which may be more critical 

than the air temperature, and pathological effects will be 

dominant. 

2) Thermal effects 

Thermal radiation is defined as “a hazard because of 

heating effect which can be sufficient to burn the skin, or 

ignite combustible materials such as clothing [10]”. The 

effect usually depends on time exposure, i.e. how extensively 

burned the person is. The severity of an injury from heat is 

determined by the depth of the skin.  The thermal radiation 

required to produce a given level of fatality is commonly 

defined in thermal dose unit (TDU). Dose is calculated using 

the following formula: Dose=I
4/3

×t, where I is the incident 

thermal flux (kW/m
2
), and t is the exposure time (seconds). 

Thus, TDU is Thermal dose=1(kW/m
2
)

4/3
×s.  

We quote the range of thermal doses required to give 

various levels of injuries [10], as seen in Table II, although 

discrepancies exist in the literature concerning the interval of 
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the thermal doses that lead into pain, injury and fatality due to 

the difficulty in determining exact severity. An individual 

suffering either from pain or first degree burns from a thermal 

dose received, can still escape rapidly. The injury should not 

be sufficient to impede movement. An individual with second 

degree burns will experience greater motivation to escape, 

commonly referred to as the fight or flight response [10]. 

However, the pain from the injury may impede people from 

doing simple tasks such as turning door handles or dressing in 

survival equipment.  Individuals with third degree burns will 

be in severe pain and will probably incur further injury as 

skin may fall away from the wound. They are considered as 

casualties who cannot evacuate unassisted. 

TABLE II:  RANGE OF THERMAL DOSES AND FATAL OUTCOME 

Effect Depth of Burn Thermal Dose 
(s*[kW/m2]4/3) 

Pain and Significant Injury  86-103 

First Degree Burn < 0.12 mm 80-130 

Second  Degree Burn  >0.12 - < 2 mm 240-350 

Third Degree Burn  > 2 mm 870-2600 

To assess the severity of thermal radiation, probit is 

normally used. Probit is the percentage of a defined 

population which will suffer a defined level of harm 

(normally death) when it is exposed to a specified dangerous 

load.  The form of the probit equation is: Pr=a+bLn(I
n
×t),  

where Pr is the probit (or the probability measure), a, b and n 

are constants.  I is the radiation intensity given in kW/m2 and t 

is the exposure time in seconds [11].  The fatality rates from 

different thermal doses and exposure time, using the 

following probit function Probit=-12.8+2.56(I
4/3×t

) is shown 

in Table III. 

   

  

Exposure  
(seconds) 

Fatality rate (%) 

10 kW/m2  20 kW/m2  30 kW/m2  

10 0 5 39 

20 1 53 93 

30 11 87 100 
40 31 97 100 

50 53 99 100 

60 71 100 100 

Certainly, there are other factors affecting the fatality and 

capability of occupants to escape from the accident venue, 

such as the effect of the protective measures, e.g. clothes and 

smoke masks. The majority data for the human response in fire 

referred to in this paper are given for lightly clothed people.   

3) Smoke effects 

The hazard of smoke is characterized by three factors: 

reduced visibility due to soot, the hot smoke that causes pain 

and injuries, irritating components, and the concentration of 

toxic gas that can lead into incapacitation. The smoke effects 

will be divided into two, i.e. smoke obscuration and smoke 

inhalation.  

TABLE IV: SMOKE DENSITY AND VISIBILITY [4] 

Degree of familiarity 
with inside building 

Smoke Density 
(extinction coefficient) 

Visibility 

Unfamiliar 0.15 1/m 13 m 

Familiar 0.5 1/m 4 m 

 

Smoke obscuration is a visibility effect, i.e. the maximum 

distance at which an object of defined size can be recognized, 

which is usually EXIT signs. Visibility depends on the 

obscuration along the line of sight. Reduced visibility 

through smoke is caused by two reasons: first, luminous 

fluxes from a sign and its background are interrupted by 

smoke particles and reduced in intensity before reaching the 

eyes of the victim. Second, luminous flux scattered from the 

general lighting of corridors or room by smoke particles in 

the direction of the victim’s eyes. The walking speed of the 

victim decreases as smoke density becomes thicker and they 

find it difficult to walk forward [4]. The allowable smoke 

densities and visibility that permits safe escape can be seen in 

Table IV. 

Smoke inhalation is a result of exposure from hot and 

asphyxiant gases produced during the fire. Loss of 

consciousness caused by the combined effects of carbon 

monoxide, hydrogen cyanide with additional effects from 

decreased oxygen content, increased carbon dioxide content 

in the blood and inhaled irritants are main reasons for 

incapacitation. Loss of consciousness prevents victims from 

escaping, leads to further uptake of asphyxiants, and is likely 

to result in death within some minutes, unless the victims are 

rescued [13]. Toxicity is usually measured by Toxic dose, 

which defined as C
n
×t, where C is the concentration in ppm, t 

is the exposure time in minutes and n is a constant. Table V 

and Table VI respectively show the effect of Carbon 

monoxide exposure and Carbon dioxide on humans. 

TABLE V: EFFECT OF CARBON MONOXIDE EXPOSURE 

CO Level Effects 

1500 ppm Headache after 15 min, collapse after 30 min, death after 1 hour 

2000 ppm Headache after 10 min, collapse after 20 min, death after  45 min 

3000 ppm Maximum "safe" exposure for 5 min, danger of collapse in 10  
min, danger of death in 15 to 45 min 

6000 ppm Headache and dizziness in 1-2 min, danger of death in 10-15 min 

12800 
ppm 

Immediate effect, unconscious after 2-3 min, danger of death in 
1-3 min 

TABLE VI: EFFECT OF CARBON DIOXIDE EXPOSURE 

CO2 Level  
in (000 ppm) 

Effects 

45 ppm / 4.5% Reduced concentration capability for more than 8 hours 

exposure, adaptation possible 

55 ppm / 5.5% Breathing difficulty, headache and increased heart rate 
after 1 hour 

65 ppm / 6.5% Dizziness, and confusion after 15 minutes exposure 

70 ppm / 7.0% Anxiety caused by breathing difficulty, becoming severe 
after 6 min exposure 

100 ppm / 10% Approaches threshold of unconsciousness in 30 minutes 
120 ppm / 12% Limit of unconsciousness reached in 5 min 

150 ppm / 15% Exposure limit 1 minutes 

200 ppm / 20% Unconsciousness occurs in less than 1 min 

 

There are plenty of hazardous gases that are not included in 

the description, depending also on the burned material. The 

two exposures considered in the Tables VI and VII are the 

effects that are almost certain to occur in the fire hazard.   

TABLE VII: SURVIVABILITY CRITERIA 

The Effects Survivability Criteria 

Short term exposure Long term exposure 

Thermal Radiation 

(kW/m2) 

4.0 (< 3 min) 

6.0 (max) (1.5 min) 

1.6 (10 min) 

(no heavy clothing) 

Air temperature 
(ºC) 

140 (5 min) 75-80 (60 min) 

Carbon dioxide 

(ppm) (2) 

30,000 (3%) (15 min) 20,000 (2.0%)  

(30 min) 

Carbon monoxide 
(ppm) 

1000 (5 min) 500 (30 min) 

Smoke obscuration 

visibility (m) 

3 m 

(primary)(compartment) 

10 m (escape route)  
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TABLE III: TNO PROBIT MODEL (NAKED HUMAN SKIN): FATALITY RATE 

AS A FUNCTION OF THERMAL RADIATION AND EXPOSURE TIME 



 

 

 

The authors are aware of different suggested thresholds in 

selected studies that can lead to incapacitation [10], [14], 

depending upon the nature of their experiments, the data, and 

the probit function being used in the calculation. The 

description in this section is rather intended for providing a 

basis to consider when developing our probabilistic model, 

particularly when discretizing the critical values and 

probability values and fatality assessment, and reference for 

survivability criteria  as shown in Table VII. 

 

III. PROBABILISTIC APPROACH: BAYESIAN NETWORK 

Bayesian Network (BN) is a set of variables and a set of 

directed edges between variables that has a finite set of 

mutually exclusive states[15] . The variables together with 

the directed edges form a directed acyclic graph (DAG)”. BN 

allows us to reason and represent an uncertain domain. The 

basis of BN is Bayes’ Theorem as expressed below: 

( ) ( )
( )

( )

p B A p A
p A B

p B


                        (1) 

where p(A|B) is the posterior probability of the hypothesis A, 

given the data B; p(B|A) is the probability of the data B, given 

the hypothesis A; p(A) is the prior probability of the 

hypothesis A; while p(B) is the prior probability of the data B, 

or the evidence.  A probabilistic model may consist of a set of 

variables X=(X1,…,Xn). In a BN, the joint probability 

distribution will be:  

𝑃 𝑋1, … , 𝑋𝑛 =  𝑝 𝑋𝑖𝑝𝑎𝑖 
𝑛
𝑖=1             (2) 

The joint probability distribution contains a table of values 

that captures the probability information of every possible 

combination of a set of variables, and their states.  The BN 

model building is started with a network structure 

development, and determination of the nodes and 

probabilistic relations. The Conditional Probability Table 

(CPT) is then formulated, which defines the conditional 

probability distribution (CPD) of the variables.  

Next, we can implement inference process or probability 

propagation which is triggered by a “flow of information” 

into the network. The posterior probability of one or more 

variables X given a new evidence e (new information about a 

random variable) or p(X|e) can be calculated. It will 

propagate throughout the network and update the network’s 

probability distribution. The procedure described in this 

section serve as basis for our BN model building and 

simulations in Section IV and V.  

Our BN model also includes the diagnostic analysis, i.e. a 

process of finding the root cause of a system failure given a 

set of system observations such as symptoms, sensor readings, 

error codes, test results, historical findings. The technique is 

normally carried out to determine component failure or 

malfunction, given test results. The diagnostic model 

essentially captures how possible defects of a system can 

manifest themselves by error messages, symptoms, and test 

results [16]. In a diagnostic BN model, three types of 

variables are considered: First, faulty variables, i.e. variables 

representing the failures of the system or a specific part of the 

system. Second, variables which have an observable effect if the 

device is in some faulty state. It is performed when the faulty 

part is clear but the effects are obscured so that information 

about the state of the system unfolds in a testing. These 

observation or test variables are known as evidence variables. 

Third, variables which indicate context properties of the 

device that may influence the risk of causing a fault.  

The models, reasoning and diagnosis described in this 

paper were created using the GeNIe modeling environment and 

SMILE library. The BN environment is developed by the 

Decision Systems Laboratory of the University of Pittsburgh 

[17]. 

 

IV. THE MODEL 

 
Fig. 1. BN model for diagnosing human health in fire. 

Fig. 1 depicts the BN model that captures the intertwined 

interactions between human psychological and physiological 

response in fire. The grey nodes represent the human 

cognitive response against fire. The rest capture human 

physiological response. Therefore, the description of the 

model is divided into two sub-sections, to make it easier for 

readers to recognize the elements of the two tracks of 

literature being used in the model (Table VIII).  

Some nodes contain continuous variables. For instance, 

“Exposure Time” can vary from 1, 2, 3, …n minutes; or “Air 

Temperature” can be any values from 0 ºC to 230 ºC.  

However, to make the BN work, we need to discretize 

continuous variables. Discretization is implemented such as 

to divide the states of “Thermal Dose” and Air Temperature 

into low, medium, and high, or to split ”Exposure Time” into 

short, medium, and long. All nodes in the psychological part 

are discrete, such as “yes” and “no”, or “true” and “false” 

values. 

 

V.   SIMULATIONS AND RESULTS 

We simulated the model to assess the human condition 

given different fire effects. Two scenarios were simulated: 

short and long term fire by putting evidence in selected nodes 
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(Table IX). The evidence of the “Distance to Fire” node was 

also varied. We tested these scenarios against two possible 

passenger’s knowledge about fire: if they are aware and 

unaware. Aware means that the passengers hear audio 

announcement, have fire knowledge and know environment 

layout (ship layout). All these variables were set to “true”. By 

contrast with unaware, none of these three nodes are true. 

 
 

TABLE VIII: DESCRIPTION OF NODES IN THE MODEL 

Tables X, XI and XII show the results of probability 

distributions of variables of interest, under scenarios defined 

earlier. Note that 1, 2 and 3 in all the three tables indicate each 

state of the “Distance to Fire” node, i.e. “Room of origin of fire”, 

“Neighboring room” and “Remote location” respectively. 

The results in Table X show no differences when varying 

the victim’s awareness as true and false under the short term 

fire scenario. It means that both knowledge about fire or 

 Node States Description 

H
U

M
A

N
 P

S
Y

C
H

O
L

O
G

IC
A

L
 R

E
S

P
O

N
S

E
 

Audio Cues Yes/No It represents if the victim can hear audio cues such as fire alarms or announcements. 

Cues Consistent/Not Consistent It captures the fire cues validation period, where the victim tries to interpret the received cues to 

evaluate if they are consistent with what can be defined as serious fire. 

Distance to Fire Room of Origin of 
Fire/Neighboring 

Room/Remote Location 

It represents the distance of the victim to the hazard source(s) or hazard cue(s). 

Emotional  

Stability 

Stable/ Unstable It depicts the victim’s steadiness or emotional state of mind when exposed to fire effects. 

Escape True/False It shows the process of transformation from the risk perception to the actual action, i.e. escape.  

Escape With 
Assistant 

True/False It exemplifies the condition of the victim’s immobility because of obscuration and stress.  

Fire Knowledge  Yes/No It represents the pre-event factor, if the victim has pre-knowledge about fire.  

Immobile True/False It illustrates the condition of the victim’s immobility regardless the accuracy of the risk 

judgment due to severe physical fire effects, or even death. 

Layout Familiarity  Yes/No It represents the victim’s familiarity with the environment. 

Perceived Hazard Risky/Inaccurate Risk 

Perception/ Not Risky  

It portrays the process of judgment and definition of the situation as a fire. 

Psychological & 

Mobility 
Incapacitation 

Mild/Medium/ Severe It denotes the victim condition of suffering from visual obscuration, anxiety, stress which cause 

him to be unable to take action in relation to escape. 

Stress Low/High It represents the fear or anxiety due to a sudden hazardous event. Stress can impair the ability to 

judge the danger, i.e. overestimate the danger. 

Visual Cues Yes/No It captures if the victim can see the visual cues such as flame, smoke. 

H
U

M
A

N
 P

H
Y

S
IO

L
O

G
IC

A
L

 R
E

S
P

O
N

S
E
 

Air Temp  >70/From 70- 150/From 150- 
182/From 182-203 

The node captures possible increasing room temperature due to fire. It is measured using degree 
Celsius.  

Burning Effect No or light/ Up to second 

degree/Third degree to fatal 

Burning effect from thermal exposure is determined by the depth of the skin.  The intensity and 

degree of burn injury influence the victim capability to escape from fire. See also Section II. 

CO2 Concentration Up to 5%/From 5-12%/Above 

12% 

It represents the smoke hazard due to increased carbon dioxide concentration in the air.    

CO Concentration > 3000 ppm/ From 3000 to 

12800 ppm/ >12800 ppm 

It describes the smoke hazard due to increased carbon monoxide concentration in the air.    

CO Toxic Effect No-headache/ Collapse/  

Danger of death 

It represents possible physical response to increased carbon monoxide concentration in the air.    

CO2 Toxic Effect Concentration difficulty/ 
Confused-Anxiety-Headache/ 

Unconscious 

It represents possible physical response to increased carbon dioxide concentration in the air.    

Exposure Time From 0- 3 min/From 4-7 
min/From 8-15 min/From 16 - 

30 min/Above 30 min 

Exposure time is the length or duration of fire effects (e.g. smoke or heat) on the victim during 
the hazard. 

Exit Visibility  Long/ Medium/ Short Smoke can have a visibility effect, i.e. the maximum distance at which an object of a defined 

size can be seen and recognized. It represents possible length of exit visibility. 

Fatality toxicity Survive/Not Survive This node represents the fatality caused by smoke toxicity. 

Fatality 
Obscuration 

Survive/Not Survive This node represents the fatality caused by smoke obscuration. 

Fatality Thermal 

Exposure 

Survive/Not Survive This node represents the fatality caused by thermal radiation. 

Fatality Air Temp Survive/Not Survive This node represents the fatality caused by air temperature. 

Inhalation Injury Short/Medium /Long Smoke inhalation can cause pains and injuries and contribute to the incapacitation [10], [12]. 

Optical Density 
(Extinction Coeff) 

From 0- 0.2/From 0.2 - 0.5/ 
From 0.5 - 1 

A visibility through the smoke, which is measured by extinction coefficient. 

Physical 

Incapacitation 

Mild/Medium/ Severe It denotes the victim condition of being deprived of strength or ability, or being disabled. 

Smoke Light/Moderate/ Thick It denotes the thickness of smoke produced during the fire hazard 

Temp Effect No Problem/ 
Uncomfortable/Difficult 

Breathing/Pain to limit 

This node describes the effects caused by elevated temperature, which can vary from 
uncomfortable, difficulty of breathing, pain, to reach the tolerance limit of respiratory system. 

See also Section II. 

Thermal Dose 
(kW/m2)4/3s 

From 0 to 86/ From 86 to 130/ 
From 130 to 870/Above 870 

Hot object emits thermal radiation (kW/m2), and the strength is measured by Thermal Dose.  
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familiarity with the environment are not main factors 

affecting escape capability of the victims and survivability 

from potential fire effects. The reason for these comparable 

results is that the short exposure fire effects (4-7 minutes) in 

principle are not sufficient to incapacitate victims. 

TABLE IX: SCENARIO AND EVIDENCE 

Node Name Short Term Long Term Fire 

 State State 

Air Temp “From 70 to 149” From 150 to 182 
Thermal Dose 

Smoke 

Exposure Time 

From 0 to 86 

Light 

4-7 min 

From 130 to 870 

Thick 

8-15 min 

 
TABLE X: THE PROBABILITY DISTRIBUTIONS OF SHORT TERM FIRE 

SCENARIO, WITH AND WITHOUT AWARENESS 

Nodes States  
Distance to Fire 

1 2 3 

Fatality 

Thermal 

Survive 1 1 1 

Not Survive 0 0 0 

Fatality Air 

Temperature 

Survive 1 1 1 

Not Survive 0 0 0 

Fatality 
Obscuration 

Survive 1 1 1 

Not Survive 0 0 0 

Fatality 

Toxicity 

Survive 1 1 1 

Not Survive 0 0 0 

Escape True 1 1 1 

False 0 0 0 

 

Table XI presents the simulation results of the long term 

fire scenario which yields a thick layer of smoke, increases 

the air temperature and thermal radiation. The passengers are 

assumed to be familiar with the environment, and are aware 

of fire. Table XII is a result from the simulation using the 

same assumptions, except that the passengers are unfamiliar 

with the surrounding area, and don’t notice the fire cues. 
 

TABLE XI: LONG TERM FIRE SCENARIO, WITH AWARENESS 

Nodes States  
Distance to Fire 

1 2 3 

Fatality 

Thermal 

Survive 0 0 0.80 

Not Survive 1 1 0.20 

Fatality Air 
Temperature 

Survive 0 0 0.30 

Not Survive 1 1 0.70 

Fatality 

Obscuration 

Survive 0 0.25 0.75 

Not Survive 1 0.75 0.25 

Fatality 

Toxicity 

Survive 0 0.30 0.40 

Not Survive 1 0.70 0.60 

Escape True 0 0.2 0.11 

False 1 0.98 0.89 

 

TABLE XII: LONG TERM FIRE SCENARIO, WITHOUT AWARENESS 

Nodes States  
Distance to Fire 

1 2 3 

Fatality 
Thermal 

Survive 0 0 0.80 

Not Survive 1 1 0.20 

Fatality Air 

Temperature 

Survive 0 0 0.30 

Not Survive 1 1 0.70 

Fatality 

Obscuration 

Survive 0 0.25 0.75 

Not Survive 1 0.75 0.25 

Fatality 
Toxicity 

Survive 0 0.30 0.40 

Not Survive 1 0.70 0.60 

Escape True 0 0.1 0.60 

False 1 0.99 0.94 

 

The results show that awareness does not improve 

someone’s capability to escape from a fire disaster when 

he/she occupies the affected room, and is exposed to the 

lethal fire effects in quite long time. But there exists a small 

chance for victims in neighboring rooms or remote distance 

to escape from affected areas. Further, well-informed people 

are less likely to have stress than those who are negligent. Yet, 

despite being emotionally more stable, the escape chance is 

not so high due to, particularly, the strong thermal effects 

which in theory can lead to incapacitation faster than other 

fire effects.  

It is worth to mention that the fatality effects remain the 

same in Tables XI and XII, because we did not modify the 

evidence in the nodes in “Air Temp”, “Thermal Dose” and 

“Smoke” when vary the “Distance to Fire” node. 

Besides, we diagnosed factors that were likely to 

contribute to fatalities identified earlier, using the diagnosis 

feature in GeNie [17]. We used the “target type diagnostic” to 

find the faulty components of variables of interests, ranking 

the likely factors that led into incapacitation. The procedure 

was to select the target states to diagnose and to be ranked 

according to the probability they represent. We focus the 

diagnostic of victims in two locations: neighboring and remote 

locations.  All are used to analyze the “Escape” node. We use 

the default Entropy/Cost Ratio, i.e. 1.95, and maximum 10.  

 

 
Fig. 2. Ranked node targets: the passengers occupy neighboring room, 

without “awareness” assumptions. 

 
Fig. 3. Ranked node targets: the passengers occupy neighboring room, 

without “awareness” assumptions. 

 

In Table XI and XII, the escape probabilities of victims 

located in neighboring rooms whether or not they are aware 

of the danger, are very close, i.e. 0.2 and 0.1 respectively. 

Although the results are pretty similar, the reasons for 

incapacitation stem from two slightly different mechanisms, 

as seen in Fig. 2 and 3. In Fig. 2, severe mobility 

incapacitation and psychological condition, short visibility, 

severe physical incapacitation, and unstable emotion are the 

four most likely causes of inability to escape. The first two 

nodes are indisputable, i.e. the probability is 1. On the 

contrary, psychological effects are not a dominant factor 
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affecting people located in remote location. Mostly, it is 

lethal effects that lead them into severe physical 

incapacitation (Fig. 3).  

 

 
Fig. 4. Ranked node targets: the passengers are in remote location—without 

awareness assumptions. 

 

 
Fig. 5. Ranked node targets: the passengers are in remote location—with 

awareness assumptions. 

Similarly, in Fig. 4 and Fig. 5 we illustrate the components 

that go wrong during the hazard in a remote location. Severe 

psychological/mobility incapacitation and unstable emotion 

are apparently influencing people located in a distance from 

the affected area, before finally all lethal effect works (Fig. 4). 

They can also be severely suffered from fire effects, in spite 

of being familiar with the environment, but merely because 

of not noticing the cues (Fig. 5).  

 

VI. CONCLUSION 

We have described an intertwined psychological and 

physiological probabilistic model of a fire disaster. All fire 

effects that influence the ability of victims to escape are 

incorporated. While we have a solid literature base for 

building this model, the model’s confidence can be enhanced 

through expert opinions. Yet, the usefulness of this way of 

thinking for the real-world application need further study. 

In the long run, we want to include “human centric sensing” 

and “mobile sensing” paradigms in the research. 

Combination of sensing and intelligent systems are expected 

to turn this probabilistic thinking into a decision support for 

crises managers so that they can efficiently prioritize the most 

critical spots for  rescue operations. 
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