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Abstract

The thesis is about Eberlein-Šmulian and some its applications. The
goal is to investigate and explain different proofs of the Eberlein-Šmulian
theorem. First we introduce the general theory of weak and weak* topology
defined on a normed space X. Next we present the definition of a basis
and a Schauder basis of a given Banach space. We give some examples
and prove the main theorems which are needed to enjoy the proof of
the Eberlein-Šmulian theorem given by Pelchynski in 1964. Also we
present the proof given by Whitley in 1967. Next there is described the
connection between the weak topology and the topology and the topology
of pointwise convergence in C(K) for K compact Hausdorff. Then we give
a generalization of the Eberlein-Šmulian in the context of C(K) spaces. We
end the thesis by providing some examples of applications of the Eberlein-
Šmulian theorem to Tauberian operators theory.
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1 Introduction

Compactness is a powerful property of spaces, and is used in many ways
in different areas of mathematics. One could think of compactness as
something that takes local properties to global properties and which let
us use finite argument on infinite covers. One of most popular use of
compactness is to locate maxima or minima of a function. Another use
of compactness is to partially recover the notion of a limit when dealing
with non-convergent sequences, by passing to the limit of a subsequence of
the original sequence (Even though different subsequences may converge
to different limits; compactness guarantees the existence of a limit point,
but not uniqueness). Compactness of one object also tends to initiate
compactness of other objects; for instance, the image of a compact set
under a continuous map is still compact, and the product of finally many
or even infinitely many compact sets continues to be compact.
The term compact was introduced in 1904 by Maurice Fréchet to describe
those spaces in which every sequence has a convergent subsequence. Such
spaces are now called sequentially compact. The property of compactness
has a long and complicated history. Basically, the purpose of defining
compactness was to generalize the properties of closed and bounded
intervals to general topological spaces. The early attempts to achieve this
goal included sequential compactness, the Bolzano-Weierstrass property,
and, finally the modern property of compactness, which was introduced by
Pavel Alexandroff and Paul Urysohn in 1923 [2].
Let X be a topological space and A an arbitrary indexed set.

Definition 1. A set K ⊂ X is compact (C) if each of its open covers
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1 Introduction

has a finite subcover i.e. K ⊂
⋃
α∈A

Uα ⇒ ∃ a fnite subset I ⊂ A such that

K ⊂
⋃
i∈I
Ui.

There is another equivalent definition in terms of nets.

Definition 2. A set K ⊂ X is compact if every net in K has a subnet
which converges in K i.e.
∀(xα)α∈A ⊂ K ,∃ a subnet (yβ)β∈B ⊂ (xα)α∈A such that yβ → y ∈ K.

Definition 3. A set K ⊂ X is sequentially compact (SC) if every
sequence in K has a convergent subsequence which converges in K i.e.
∀(xn)n∈N ⊂ K, ∃(xn)k ⊂ (xn)n∈N such that (xn)k → x ∈ K

Definition 4. A set K ⊂ X is countably compact (CC) if every coutable
cover has a finite subcover i.e.
K ⊂

⋃
i∈N

Ui there ∃ a finite number a finite number of sets Ui, i = 1, . . . , n0

such that K ⊂
n0⋃
i=1

Ui.

or equivalently in terms of nets and sequences

Definition 5. A set K ⊂ X is countably compact if every sequence in
K has a subnet which converges in K i.e.
∀(xn)n∈N ⊂ K, ∃(xα)α∈A ⊂ (xn)n∈N such that xα → x ∈ K.

In general topological spaces (C) ⇒ (CC) ⇐ (SC). In metric spaces
three types of compactness are equivalent since every sequence can be
considered as a special case of a net. For Banach spaces with finite
dimensions the weak topology is metrizable so it is quite easy to deal with
compactness in that case. Even though the weak topology of Banach spaces
with infinite dimensions is never metrizable it behaves like a metrizable
topology because in the weak topology the three types of compactness
are still equivalent. This surprising result is called the Eberlein-Šmulian
theorem. In 1940 Šmulian proved that every weakly compact subset of a
Banach space is weakly sequentially compact. In 1947 Eberlein showed the
converse.
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1 Introduction

1.1 Notation and terminology

The notation we use is standard in the theory of Banach spaces.
In a Banach (or normed) space X, we denote the unit sphere by SX and

the closed unit ball by BX . We denote the dual of a normed space X by
X∗ and the bidual by X∗∗. For a set A its closure is denoted by A and the
linear span [A]. For closures with respect to other topologies, we mark the
topology separately, such as Aweak

∗

and Aweak. A C∗ algebra is a complex
algebra B of continuous linear operators on a complex Hilbert space with
two additional properties:

• B is a topologically closed set in the norm topology of operators.

• B is closed under the operation of taking adjoints of operators.

For Banach spaces X and Y , we denote the Banach space of all bounded
linear operators from X to Y by B(X, Y ). For an operator T : X → Y ,
we denote kerT = {x ∈ X : Tx = 0} and imT = {y ∈ Y : ∃x ∈
X with y = Tx}.

1.2 Cornerstones in Functional Analysis

In this section we will present the theorems in Functional Analysis which
will be used during the proofs that will be presented during the thesis.

The Hahn-Banach extension Theorem Let Y be a subspace of a
real linear space X, and p a positive functional on X such that

p(tx) = tp(x) and p(x+ y) ≤ p(x) + p(y) for avery x, y ∈ X, t ≥ 0.

If f is a linear functional on Y such that f(x) ≤ p(x), for every x ∈ Y , then
there is a linear functional F on X such that F = f on Y and F (x) ≤ p(x),
for every x ∈ X.

4



1 Introduction

Normed-space version of the Hahn-Banach theorem Let y∗ be a
bounded linear functional on a subspace Y of a normed space X. Then
there is x∗ ∈ X∗ such that ‖x∗‖ = ‖y∗‖ and x∗ �Y = y∗.

The Closed Graph Theorem Let X and Y be Banach spaces.
Suppose that T : X → Y is a linear mapping of X into Y with the
following property: whenever (xn) ⊂ X is such that both x = lim xn and
y = limTxn exist, it follows that y = Tx. Then T is continuous.
The Uniform Boundedness Principle Suppose (fα)α∈A is a family of

bounded linear operators from a Banach spaceX into a normed linear space
Y . If sup{‖fα(x)‖ : α ∈ A} is finite for each x inX then sup{‖fα‖ : α ∈ A}
is finite.
Hahn-Banach separation Theorem Let A and B be disjoint, non-

empty, convex subsets of a real topological vector space X.

(i) If A is open, then there exists f ∈ X∗ and a real number α such that
supx∈A f(x) ≤ α ≤ infy∈B f(y).

(ii) If A is compact, B is closed and X is a locally topological vector
space, then there exists f ∈ X∗ such that supx∈A f(x) < infy∈B f(y).

Stone-Weierstrass Theorem Let X be a compact Hausdorff space. A
subalgebra A ⊂ C(X) is dense if and only if it separates points.
Gelfand-Naimark Theorem Each C∗ algebra is isometrically-isomorphic

to a closed subalgebra of the algebra B(H) consisting of all bounded
operators acting on a Hilbert space H.
Partial Converse of the Banach-Steinhaus Theorem Let (Sn) be

a sequence of operators from a Banach space X into a normed linear space
Y such that supn ‖Sn‖ <∞. Then, if T : X → Y is another operator, the
subspace {x ∈ X : ‖Sn(x)− T (x)‖ → 0} is normed closed in X.

5



2 Basics of weak and weak*

topologies

The toplogy induced by a norm on a vector space is a very strong topology
in the sense that it has many open sets. This brings advantages to the
functions whose domain is such a space because for them is easy to be
continuous but it brings disadvantages to compactness because the richness
of open sets makes it difficult for a set to be compact. For example, an
infinite dimensional normed space has so many open sets that its closed
unit ball cannot be compact. Because of this, many facts about finite
dimensional normed spaces that are based on Heine-Borel property cannot
be immediately generalized to the infinite-dimensional case.
Compactness is depended on open sets i.e. is depended on the nature of
topology. The weaker the topology is the more compact sets we have, this
fact motivates us to search for a topology defined on a normed space X
which is the weakest topology among all topologies which we can define on
X, so we can have the biggest class of compact sets. The topology which
gives us the desired result is the weak topology defined on X. Another
useful topology is the weak* topology of X∗. These two topologies help
us to characterize properties of topological spaces with infinite dimensions
and provide simple means to check their nature. To present the basics from
these topologies we will use [7] and [3].

6



2 Basics of weak and weak* topologies

2.1 The weak topology

Let X be a normed space and F a scalar field. Usually we will take F = R
unless otherwise stated. We define X∗∗ as the dual of the dual space X∗.
Let x0 be an element of a normed space X and let Jx0 : X∗ → F given by
formula

(J(x0))(x
∗) = x∗(x0). (2.1)

Then it is easy to check that Jx0 is a linear functional on X∗ and

‖Jx0‖ = {sup |Jx0(x∗)| : x∗ ∈ BX∗} = {sup |x∗(x0)| : x∗ ∈ BX∗} = ‖x0‖.

Since Jx0 is linear and bounded then it is continuous so Jx0 ∈ X∗∗. If
J(x) is defined similarly for each x ∈ X, then the resulting J : X → X∗∗

is linear. Since it is also norm preserving and J−1 is continuous, then it
is an isometric isomorhpism. We call the above described function J the
canonical embedding of X into X∗∗.

Definition 6. The weak topology for X is the weakest topology on X

such that every member of the X∗ is continuous. This topology is denoted
σ(X,X∗).

The next result tells us the form of the neighborhoods of a point x ∈ in
the weak topology.

Proposition 2.1. The neighborhood basis at the point x ∈ X is the
collection of sets of the form

W (ε;x∗1, . . . , x
∗
n, x) = {y ∈ X, |x∗i (y − x)| < ε, i = 1, . . . , n},

where n ∈ N, ε > 0 and x∗1, . . . , x∗n ∈ X∗.

Proof. Since x∗1, . . . , x∗n are continuous then W (ε;x∗1, . . . , x
∗
n, x) is open as

it is a finite intersection of open sets. Furthermore it contains x since

|x∗i (x− x)| = 0 < ε.

7



2 Basics of weak and weak* topologies

Now let O be any open set containing x. By definition of the topology
σ(X,X∗), it is a union of finite intersections of preimages of open sets Oi

in R of bounded linear functionals X on i.e.

O =
⋃
n∈N

n⋂
i=1

x∗i
−1(Oi)

Since x ∈ O there exist finitely many bounded linear functionals x∗1, . . . , x∗n
and open subsets O1, . . . , On of R such that

x ∈
n⋂
i=1

x∗i
−1(Oi)⇒ x ∈ x∗i

−1(Oi), ∀i ∈ 1, . . . , n

so x∗i (x) ∈ Oi, i = 1, . . . , n. Since Oi is an open set in R containing x∗i (x)

there exists εi > 0 with(
x∗i (x)− εi, x∗i (x) + εi

)
⊂ Oi

Let ε = min1≤i≤n εi and we will have(
x∗i (x)− ε, x∗i (x) + ε

)
⊂ Oi

Now let y ∈ W (ε;x∗1, . . . , x
∗
n, x) by definition this means

x∗i (y) ∈
(
x∗i (x)− ε, x∗i (x) + ε

)
⊂ Oi, i = 1, . . . , n⇒

y ∈ x∗i
−1(Oi), i = 1, . . . , n⇒ y ∈

n⋂
i=1

x∗i
−1 ⊂ O ⇒ y ∈ O

We proved the implication: y ∈ W (ε;x∗1, . . . , x
∗
n, x) ⇒ y ∈ O which is

equivalent with W (ε;x∗1, . . . , x
∗
n, x) ⊂ O as required.

From Proposition 2.1 we already know the weak neighborhoods of a point
x ∈ so we can define the convergence of a net (xα)α∈A in the weak topology
of X.

8



2 Basics of weak and weak* topologies

Definition 7. We say that the net (xα)α∈A ⊂ X converges weakly to
x0 ∈ X if for each x∗ ∈ X∗ we have

lim
α
x∗(xα) = x∗(x0)

Since the weak topology is linear instead of considering the neighbor-
hoods of arbitrary points we can limit the case to the neighborhoods of 0;
translation will carry these neighborhoods throughout X. A typical basic
neighborhood of 0 is defined for any given arbitrary ε > 0 and x∗1, . . . , x∗n
and it is of the form

W (0;x∗1, . . . , x
∗
n; ε) = {x ∈ X : |x∗1(x)|, . . . , |x∗n(x)| ≤ ε}.

The Hahn-Banach theorem tells us that the dual space X∗ of a normed
space X is a separating family of functions for X and each x∗ maps X into
the field F which is completely regular then the weak topology defined on
X is completely regular.

Theorem 2.2. The weak topology of a normed space is a completely
regular locally convex subtopology of the norm topology.

We will see that even though the weak topology is weaker than the norm
topology they give rise to the same class of linear functionals.

Proposition 2.3. A linear functional on a normed space is weak
continuous if and only if it is norm continuous.

Proof. (⇒) Without loss of generality we can assume that the linear
functional on the normed space X is such that f : X → R. We have to
prove that f is norm continuous knowing that it is weak continuous.Take
a sequence (xn) ∈ X. Assume that xn → x and f(xn) → y in the norm
topology. According to Closed Graph Theorem if we prove that y = f(x)

we are done. Since norm convergence implies weak convergence we have

xn
weakly−−−−→ x and f(xn)

weakly−−−−→ y.

9



2 Basics of weak and weak* topologies

On the other hand f is weakly continuous and xn → x thus

f(xn)
weakly−−−−→ f(x).

Now, we are at the point where the real sequence f(xn) has two limits
f(x) and y. Since R is Hausdorff, these two limits should be the same, so
y = f(x).

(⇐) Assume f is norm continuous i.e., ‖xα−x‖ → 0 and ‖f‖ <∞. We
can write

|f(xα)− f(x)| = |f(xα − x)| ≤ ‖f‖‖xα − x‖ → 0.

Passing to the limit in both sides we get that f(xα) → f(x) whenever
xα → x which means that f is weakly continuous.

Next we will show that norm topology and weak topology have the same
class of bounded sets.

Definition 8. A set A ⊂ X is said to be weakly bounded if for each
x∗ ∈ X∗ we have that x∗(A) is a bounded set of scalars.

Theorem 2.4. A subset of a normed space is bounded if and only if it
is weakly bounded.

Proof. Since every weakly open subset of a normed space is open then
every bounded subset of a normed space is weakly bounded. Conversely,
suppose that A is weakly bounded subset of a normed space X. It may be
assumed that A is nonempty. Let J be the natural map from X to X∗∗.
Then J(A) is a nonempty collection of bounded linear functionals on the
Banach space X∗. For each x∗ in X∗ we have:

sup{|(J(x))(x∗) : x ∈ A} = sup{|x∗x| : x ∈ A} <∞.

From the Uniform Boundedness Principle it follows that

sup{‖x‖ : x ∈ A} = sup{‖Jx‖ : x ∈ A} <∞,

so A is bounded.

10



2 Basics of weak and weak* topologies

From the above theorem very useful observations follow:

Corollary 2.5. Weakly compact subsets of a normed space are bounded.

Corollary 2.6. In a normed space, weakly Caughy sequences, and so
weakly convergent sequences, are bounded.

Corollary 2.7. Every nonempty weakly open subset of an infinite-
dimensional normed space is unbounded.

Proof. Let X be an infinite-dimensional normed space. Then X∗ is also
infinite-dimensional. Since every nonemtpty weakly open subset of X is
weakly unbounded (see [7, proposition 2.4.15]), it must be unbounded.

The following result is known as Mazur’s theorem and shows us that
there is a class of sets, namely convex sets where the norm and the weak
closure agree.

Theorem 2.8. If K is a convex subset of the normed linear space X,
then the closure of K in the norm topology coincides with the weak closure
of K: K‖ ‖ = K

weak

Proof. Since the weak topology is weaker than the norm topology and the
closure of a set is the intersection of all closed sets which contain it then
K
weak ⊂ K

‖ ‖.
Now it remains to prove that K‖ ‖ ⊂ K

weak. Assume the opposite, that
exists x0 ∈ K

weak\K‖ ‖. Then applying the Hahn-Banach separation
theorem for disjoint convex sets K‖ ‖ and {x0} we are guaranteed the
existence of f ∈ X∗ satisfying

f(y)
y∈K‖ ‖ < f(x0). (2.2)

Since x0 ∈ K
weak there exists a net (xα)α∈A ⊂ K such that

(xα)
weakly−−−−→ x0,

11



2 Basics of weak and weak* topologies

therefore by definition of the weak convergence

f(xα)
weakly−−−−→ f(x0)

Since x0 ∈ K
weak then f(x0) ∈ f(K

weak
) ⊂ f(K

‖ ‖
) i.e. f(x0) ≥ inf(K

‖ ‖
)

which is a contradiction to 2.2. This completes the proof.

Theorems 2.3, 2.4 and Mazur’s Theorem tell us that norm and the weak
topology have (define) the same:

(i) Class of continuous linear functions,

(ii) Class of bounded sets,

(iii) Closure of convex sets.

Even though the norm and the weak topology agree in the sense
described above they are different :

Proposition 2.9. The norm and weak topologies are the same if and
only if the space is finite-dimensional.

Proof. (⇐) X Assume X is finite dimensional. We have to show that the
weak and the norm topology coincide. Norm makes all linear functionals
continuous. Since the weak topology is the weakest topology with this
property, it is weaker than the norm topology.
Now we have to show the converse. Since X is finite dimensional, it has a
basis (e1, . . . , en). Any x ∈ X has a unique decomposition along this basis,
which means

∀x ∈ X, ∃(x1, . . . , xn) ∈ Rn : x =
n∑
i=1

xiei,

define
‖x‖∞ = max

1≤i≤n
|xi|.

It is easy to check that it is a norm on X. Recall that, as a consequence of
finite dimensionality of X, all norms are equivalent and the norm topology

12



2 Basics of weak and weak* topologies

defined on X is the topology defined by any norm. So, if O is any norm
open set, it is in particular open for ‖ ‖∞. This means that ∀x ∈ O, ∃εx > 0

such that
B∞(x, εx) ⊂ O,

therefore
O =

⋃
x∈O

B∞(x, εx).

If we show that any norm open ball is weakly open, we get that the norm
open set O is weakly open as the union of weakly open sets. Let x be any
point in X and ε > 0 real number. Then

B∞(x, ε) = {y ∈ X : ‖y − x‖∞ < ε} = {y ∈ X : |yi−xi| < ε, i = 1, . . . , n}.

Define functionals x∗1, . . . , x∗n by

x∗i (x) = xi, ∀x =
n∑
i=1

xiei, i = 1, . . . , n.

These functionals are in X∗, and we can write

B∞(x, ε) = {y ∈ X : |x∗i (y − x)| < ε, i = 1, . . . , n},

which proves that B∞(x, ε) is weakly open by Theorem 2.1. So any norm
open set is weakly open and therefore weak topology and norm topology
coincide.
(⇒) Now we have to prove that if weak and norm topology coincide then X
is finite dimensional. Assume the opposite, that X is infinite dimensional,
if we prove that the weak and norm topology differ then we are done. Let
S be the unit sphere in X, i.e.

S = {x ∈ X : ‖x‖∞ = 1}.

Then S is norm closed and 0 /∈ S‖ ‖ since ‖0‖∞ = 0 6= 1. Let O be any
neighbourhood of 0. By theorem 2.1 there exist ε > 0 and x∗1, . . . , x∗n in X∗

such that
W = {x ∈ X : |x∗i (x) < e, i = 1, . . . , n} ⊂ O.

13



2 Basics of weak and weak* topologies

D the map Φ : X → Rn with Φ(x) =
(
x∗1(x), . . . , x∗n(x)

)
this map is linear

and

ker Φ = {x ∈ X : x∗i (x) = 0, i = 1, . . . , n} =
n⋂
i=1

kerx∗i .

By the Rank Duality Theorem

dim(ker Φ) + dim
(
im(Φ)

)
= dimX =∞.

Since im(Φ) ⊂ Rn then dim( im(Φ)) ≤ n, it follows that ker Φ is infinite
dimensional, and so it is not equal to {0}. Therefore there exists x 6= 0

such that
x∗i (x) = 0, i = 1, . . . , n.

Then ∀λ ∈ R we have

|x∗i (λx)| = |λx∗i (x)| = |λ||x∗i (x)| = 0 i = 1, . . . , n,

which proves that ∀λ ∈ R, λx ∈ W ⊂ O. Now taking λ = 1
‖x‖ we will have

‖λx‖ = |λ|‖x‖ =
1

‖x‖
‖x‖ = 1,

so for λ = 1
‖x‖ , ‖λx‖ = 1 ⇒ λx ∈ S. But on the other hand λx ∈ O,

therefore λx ∈ O ∩ S. We found out that every weak neighbourhood O of
0 has nonempty intersection with S and this means that 0 is in the weak
closure of S i.e. 0 ∈ Sweak, but 0 /∈ S‖ ‖ and as final conclusion

S
weak 6= S

‖ ‖

This completes the proof.

When given a normed space X we may wonder whether the weak
topology is metrizable.

Proposition 2.10. The weak topology of a normed space is metrizable
if and only if the space is finite-dimensional.

14



2 Basics of weak and weak* topologies

Proof. The weak toplogogy of a finite-dimensional normed space is the
same as the norm topology, and so it is induced by a metric. For the
converse, suppose the opposite, that the weak topology of some infinite-
dimensional normed space X is induced by a metric d. For each positive
integer n, let Un be the d -open ball in X centered at 0 and with radius n−1.
By Corollary 2.7 each Un contains some xn such that ‖xn‖ ≥ n which shows
that (xn) is an unbounded sequence. Since xn is in the ball with radius n−1

then xn
weakly−−−−→ 0. So, we have an unbounded sequence converging weakly

to 0 which contradicts Corollary 2.6.

15



2 Basics of weak and weak* topologies

2.2 Weak* topology

If X is a Banach space then X∗ is a Banach space too, so we can define
the weak* topology on X∗

Definition 9. Let X be a normed space and let J : X → X∗∗. Then
the weakset topology defined on X∗ such that every member of J(X) is
continuous is called the weak* topology of X∗ and is denoted σ(X∗, X).

As with the weak topology of a normed space, the results obtained for
a Hausdorff locally convex topology induced by a separating vector space
J(X) of linear functionals hold for the weak* topology of the dual space
X∗ of a normed space X. All properties which are stated for weak topology
of normed space X can be adapted and hold for the weak* topology of X∗

and the proofs are the same in principle.

Proposition 2.11. The neighborhood basis at the point x∗ ∈ X∗ is the
collection of sets of the form

{ y∗ ∈ X∗, |(y∗ − x∗)xi| < 1, i = 1, . . . , n},

where n ∈ N and x1, . . . , xn ∈ X.

The proof is similar to the one given for the weak neighbourhoods.
The weak* topology is linear by definition so it is enough to describe
the neighbourhoods of 0, neighbourhoods of other points in X∗ can be
obtained by translation. Notice that weak* neighbourhoods of 0 are
weak neighbourhoods of 0; in fact they are just the basic neighbourhoods
generated by those members on X∗∗ that are actually in X. A typical
neighbourhood of 0 is defined for any given arbitrary ε > 0 and x1, . . . , xn ∈
X and it is of the form

W (0;x1, . . . , xn; ε) = {x∗ ∈ X∗ : |x∗x1|, . . . , |x∗xn| ≤ ε}.

Now we can introduce the concept of the weak* convergence:

16



2 Basics of weak and weak* topologies

Definition 10. We say that the net (x∗α) ⊂ X∗ converges weak* to
x0 ∈ X∗ if for each x ∈ X,

x∗0(x) = lim
α
x∗α(x).

Let J be the map defined in 2.1. We introduce:

Definition 11. A normed space X is reflexive if the natural map from
X into X∗∗ is into X∗∗.

Proposition 2.12. A Banach space is reflexive if and only if the weak
and the weak* topologies are the same.

Proof. The weak topology of X∗ is the weakest topology on X∗ such that
all members of X∗∗ are continuous and the weak* topology of X∗ is the
weakest topology on X∗ is the weakest topology such that all the members
of J(X) are continuous. Since J(X) ⊂ X∗∗ then the weak* topology of X∗

is weaker than the weak topology of X∗. These topologies are the same if
and only if J(X) = X∗∗, that is if and only if X is reflexive

Even though weak and weak* topologies in general are different, it is
quite interesting and important to know that actually every point in X∗∗

can be approximated by a net (set) of points in X i.e. X is weak* dense
in X∗∗. This is expressed in the following results:

Theorem 2.13 (Goldstine). Let X be a normed space. J(BX) is weak*
dense in BX∗∗ i.e. (J(BX)

weak∗
= BX∗∗.

Proof. Since by definition it is clear that J(BX)
weak∗

⊂ BX∗∗ we concen-
trate to show the converse, that BX∗∗ ⊂ J(BX)

weak∗
. Let x∗∗ ∈ X∗∗ be any

point not in J(BX)
weak∗

, if we prove that ‖x∗∗‖ > 1 i.e. x∗∗ /∈ BX∗∗ then
we are done.
Since J(BX)

weak∗
is closed and convex in weak* topology and {x∗∗}

is convex and compact in weak* topology then applying Hahn-Banach
Separation Theorem we know that there exists a nonzero element x∗ in X∗

such that
sup{y∗∗x∗ : y∗∗ ∈ J(BX)

weak∗
} < x∗∗x∗.
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2 Basics of weak and weak* topologies

Since

sup{|y∗∗x∗| : y∗∗ ∈ J(BX)
weak∗

} ≥ sup{|x∗y| : y ∈ BX} = ‖x∗‖

we have that ‖x∗‖ < x∗∗x∗ which shows that x∗∗x∗ has to be a positive
number and therefore

‖x∗‖ < x∗∗x∗ = |x∗∗x∗| ≤ ‖x∗∗‖‖x∗‖.

Dividing both sides with ‖x∗‖ we get ‖x∗∗‖ > 1, i.e. x∗∗ /∈ BX∗∗

Corollary 2.14. Let X be a normed space. Then X is weak* dense in
X∗∗ i.e., J(X)

weak∗
= X∗∗

Proof. Let x∗∗ be a nonzero element from X∗∗. Then x∗∗

‖x∗∗‖ ∈ BX∗∗ . From
Goldstine’s Theorem there exists a net (xα) ⊂ BX such that

(xα)
weak*−−−−→ x∗∗

‖x∗∗‖
.

Therefore
‖x∗∗‖(xα)

weak*−−−−→ x∗∗.

So we proved that every element x∗∗ ∈ X∗∗ is a weak* limit of a net
(xα) ⊂ X. This completes the proof.

We will need the following result from Topology during the next proof.

Theorem 2.15 (Tychonoff’s Theorem). If (Xα)α∈A is an arbitrary
family of compact spaces, then their product X =

∏
α∈AXα is compact.

As important and useful as Goldstine’s theorem is, the most important
feature of the weak* topology is contained in the following compactness
result.

Theorem 2.16 (Banach-Alaoglu). In any normed space X BX∗ is
weak* compact.
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2 Basics of weak and weak* topologies

Proof. If x∗ ∈ BX∗ , then for each x ∈ BX , |x∗(x)| ≤ 1. Consequently, each
x∗ ∈ BX∗ maps BX into the set D = {α ∈ F, |α| ≤ 1}. We can therefore
identify each member of BX∗ with a point in the product space DBX via
the map F : BX∗ → DBX defined by

F (x∗) = {x∗(x) : x ∈ BX}.

Since D = {α ∈ F, |α| ≤ 1} is compact then by Tychonoff Theorem DBX

is compact. On the other hand, if J is the natural map from X to X∗∗ then
J(BX) is a separating family of functions on BX∗ then the map F defined
above is a homeomorphism from BX∗ onto a topological subspace of DBX

([7, see proposition 2.4.4]). Since the closed subsets of a compact space are
compact, homeomorphism F assures us that we only need to prove that
BX∗ is weak* closed in DBX i.e. we need to show that the linearity (the
property specifying BX∗ within DBX ) preserves the limit. Let (xβ) be a net
in BX∗ converging pointwise on BX to f ∈ DBX . We need f to be linear
and ‖f‖ ≤ 1. It is easy to check that f is linear. Let’s take x1, x2 ∈ BX

and the scalars α1, α2 such that α1x1 + α2x2 ∈ BX , then

f(α1x1 + α2x2) = lim
β
x∗β(α1x1 + α2x2)

= lim
β
x∗β(α1x1) + lim

β
x∗β(α2x2)

= α1 lim
β
x∗β(x1) + α2 lim

β
x∗β(x2)

= α1f(x1) + α2f(x2).

Furthermore since |f(x)| ≤ 1 for x ∈ BX , then f ∈ BX∗ . This completes
the proof.

Corollary 2.17. Every weak* closed bounded subset of X∗ is weak*
compact

.
Now with the power that Banach-Alaouglu and Goldestine provide us,

we can develop another test for reflexivity of Banach spaces.
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2 Basics of weak and weak* topologies

Proposition 2.18. A Banach space X is reflexive if and only if the
closed unit ball BX is weakly compact.

Proof. (⇒) If X is reflexive then J : X → X∗∗ is continuous, injective and
syrjective. Hence J−1 is linear and continuous i.e. J is homeomorphism so
we can identify X with X∗∗ and σ(X∗∗, X∗) and σ(X,X∗) have the same
topological structure. Since

J(BX) = BX∗∗

and by Banach-Alaoglu BX∗∗ is weak* compact then BX is weak compact
as well.
(⇐) Conversely if BX is compact then J(BX) is weak* compact, since
weak* topology is Hausdorff then J(BX) is weak* closed in X∗∗ from
Goldstine’s theorem we will have

J(BX) = J(BX)
weak∗

= BX∗∗ ,

which means that X and X∗∗ have the same topological structure since
their closed unit balls coincide, i.e. X is reflexive.
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3 Schauder Basis Theory

In this chapter we are going to introduce the fundamental notion of a
Schauder basis of a Banach space and the corresponding notion of a basic
sequence. We will use the properties of basis and basic sequences as a tool
to understand the differences and similarities between spaces. Throughout
this chapter we will refer to [7] and [1]. The use of basic sequence arguments
turns out to simplify some classical theorems and among them Eberlein-
Šmulian theorem on weakly compact subsets of a Banach space.

3.1 First Properties

In order to combine the techniques of linear algebra and topological
considerations in the context of functional analysis it is necessary to look
for a concept to extend the notion of a basis of a finite dimensional vector
space.

Definition 12. A sequence (en)∞n=1 in an infinite-dimensional Banach
space X is said to be a basis of X if for each x ∈ X there is a unique
sequence of scalars (an)∞n=1 such that

x =
∞∑
n=1

anen.

This means we require the sequence (
n∑
i=0

aiei)
∞

n=1

converges to x in the norm

topology of X i.e.

lim
n→∞

‖x−
n∑
i=0

aiei‖ = 0.

21



3 Schauder Basis Theory

From the definition we conclude that a basis consists of linearly
independent, and in particular nonzero, vectors. If X has a basis (en)∞n=1,
then its closed linear span, [en], coincides with X and therefore X is
separable. The order of the basis is important; if we permute the elements
of the basis, then the new sequence can very easily fail to be a basis.
We also note that if (en)∞n=1 is a basis of a Banach space X, the maps
x → an are linear functionals on X. Let us write, for now, e#n (x) = an.
It is by no means clear that the linear functionals (e#n )

∞
n=1 are continuous.

Let us make the following definition

Definition 13. Let (en)∞n=1 be a sequence in a Banach space X. Suppose
there is a sequence (e∗n)∞n=1 in X∗ such that

(i) e∗k(ej) =

{
1 , j = k

0 , j 6= k

(ii) x =
∞∑
n=1

e∗n(x)en for each x ∈ X

then (en)∞n=1 is called Schauder basis for X and the functionals (e∗n)∞n=1 are
called the biorthogonal functionals associated with (en)∞n=1.

Now we will give two examples of Schauder basis.

Example 1. The sequence of unit vectors (en)∞n=1 is a Scauder basis for
c0 and lp such that 1 ≤ p < ∞. The vector en has the element 1 at the
n− th coordinate:

e1 = (1, 0, 0 . . . , 0, . . . )

e2 = (0, 1, 0, . . . , 0, . . . )

. . .

en = (0, 0, . . . , 0, 1, 0, . . . )

First of all it is trivial that the sequence en∞n=1 is element of both spaces c0
and lp. Note that if we pick a sequence (an) = (a1, a2, . . . , an, . . . ) then we
have

22



3 Schauder Basis Theory

(an) = (a1, a2, . . . , an, . . . )

= a1(0, 1, 0, . . . , ..) + a2(0, 1, 0 . . . , ..) + . . .

=
∞∑
n=1

anen

.

Let’s show that the decomposition of any (an) ∈ c0 or lp according to
(en)∞n=1 is unique. Assume that there exists another sequence of scalars
(bn) with

(an) =
∞∑
n=1

bnen,

we have

(an) = a1(0, 1, 0, . . . , ..) + a2(0, 1, 0 . . . , ..) + . . .

= b1(0, 1, 0, . . . , ..) + b2(0, 1, 0 . . . , ..) + . . .

= (bn).

Which shows that the sequence of vectors (en)∞n=1 is a Schauder basis for
both c0 and lp when 1 ≤ p <∞.

Example 2. The classical Schauder basis for C[0,1].
Define the sequence (sn)∞n=1 of members of C[0, 1] as follows. Let s0(t) = 1

and s1(t) = t. When n ≥ 2, define sn by letting m the positive integer such
that 2m−1 < n ≤ 2m, then let

sn(t) =


2m
(
t− (2n−2

2m
− 1)

)
if 2n−2

2m
− 1 ≤ t < 2n−1

2m
− 1

1− 2m
(
t− (2n−2

2m
− 1)

)
if 2n−2

2m
− 1 ≤ t < 2n−1

2m
− 1

0 otherwise
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3 Schauder Basis Theory

Take a function f ∈ C[0, 1]. Define a sequence (pn)∞n=1 in C[0, 1] in the
following way. Let

p0 = f(0)s0,

p1 = p0 +
(
f(1)− p0(1)

)
s1,

p2 = p1 +
(
f(

1

2
)− p1(

1

2
)
)
s2,

p3 = p2 +
(
f(

1

4
)− p2(

1

4
)
)
s3,

p4 = p3 +
(
f(

3

4
)− p3(

3

4
)
)
s4,

p5 = p4 +
(
f(

1

8
)− p4(

1

8
)
)
s5,

p6 = p5 +
(
f(

3

8
)− p5(

3

8
)
)
s6,

p7 = p6 +
(
f(

5

8
)− p6(

5

8
)
)
s7,

p8 = p7 +
(
f(

7

8
)− p7(

7

8
)
)
s8,

and so forth. Then p0 is the constant function that agrees with f at 0,
while p1 agrees with f at 0 and 1 and interpolates linearly in between, and
p2 agrees with f at 0, 1 and 1

2
and interpolates linearly in between, and so

forth. For each nonnegative integer n, let αn be the coefficient of sn in the
formula for pn. Then

pm =
m∑
n=0

αnsn

for each m. We have

lim
m→∞

‖pm − f‖∞ = 0,

and therefore

f =
∞∑
n=0

αnsn.
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3 Schauder Basis Theory

Let’s show the uniqueness of scalars now. Let (βn)∞n=0 be any sequence of
scalars such that

f =
∞∑
n=0

βnsn.

Then
∞∑
n=0

(αn − βn)sn = 0, which implies that
∞∑
n=0

(αn − βn)sn(t) = 0 when

t = 0, 1
2
, 1
4
, 3
4
, 1
8
, 3
8
, 5
8
, 7
8
, . . . , from which it quickly follows that αn = βn for

each n. Therefore there is a unique sequence (γn)∞n=0 of scalars such that

f =
∞∑
n=0

γnsn, so the sequence (γn)∞n=0 is a basis for C[0, 1].

If (en)∞n=1 is a Schauder basis for X and x =
∞∑
n=1

e∗n(x)en, the support

of x is the subset of integers n such that e#n (x) 6= 0. We denote it by
supp(x). If supp(x) < ∞ we say that x is finitely supported. The name
Schauder in the previous definition is in honour of Julius Schauder, who
first introduced the concept of a basis in 1927. It turns out that the two
definitions are equivalent in separable Banach spaces.

Theorem 3.1. Let X be a separable Banach space. A sequence (en)∞n=1

in X is a Schauder basis for X if and only if (en)∞n=1 is a basis for X.

Proof. Since it is clear that every Schauder basis is a basis then we
concentrate in showing the converse. Let us assume that (en)∞n=1 is a basis
for X and introduce the partial sum projections (Sn)∞n=1 associated to
(en)∞n=1 defined by S0 = 0 and for n ≥ 2,

Sn(x) =
n∑
k=1

e#k (x)ek.

Let us define a new norm on X given by formula

|||x||| = sup
n≥1
‖sn(x)‖. (3.1)

We have
|||x||| = sup

n≥1
‖sn(x)‖ ≥ lim

n→∞
‖sn(x)‖ = ‖x‖.

25



3 Schauder Basis Theory

Let’s prove that the function : X → R given by (3.1) is a norm. First of all
for each x ∈ X we have |||x||| <∞ since for each n ∈ N, ‖Sn‖ <∞. Since
the two other requirements of the definition are trivial we concentrate in
showing the triangle inequality. Pick two elements x and y in X having

the expansions x =
∞∑
n=1

anen and y =
∞∑
n=1

bnen, then

|||x+ y||| = sup
n≥1
‖Sn(x) + Sn(y)‖

≤ sup
n≥1
{‖Sn(x)‖+ ‖Sn(y)‖}

≤ sup
n≥1
‖Sn(x)‖+ sup

n≥1
‖Sn(y)‖

= |||x|||+ |||y|||.

We will show that (X, |||.|||) is complete. Suppose that (xn)∞n=1 is a Caughy
sequence in (X, ||| . |||). Since ||| . ||| ≥ ‖ . ‖, then (xn)∞n=1 is Caughy in
(X, ‖ . ‖), and therefore convergent to some x ∈ X for the original norm.
Our goal is to prove that limn→∞ |||xn − x||| = 0. For each fixed k ∈ N,
look at the sequence Sk(xn). We can write

‖Sk(xm)− Sk(xm)‖ = ‖Sk(xm − xn)‖

≤ sup
k
‖Sk(xm − xn)‖

= |||xm − xn|||.

Since (xn) is Caughy in (X, ||| . |||) then Sk(xn) is Caughy in (X, || . ||)
and therefore it converges to some yk ∈ X. Note also that (Skxn)∞n=1 is
contained in the finite-dimensional subspace [e1, . . . , en]. The functionals
e#j are continuous on any finite dimensional subspace; hence if 1 ≤ j ≤ k

we have

26



3 Schauder Basis Theory

limn→∞e
#
j (xn) = e#j (yk)

= ej
#(lim

n∞
Skxn)

= ej
#yk

= aj

Next we will argue that
∑∞

j=1 ajej = x for the original norm. Since
(xn)∞n=1 is Caughy in (X, ||| . |||), then for given ε > 0 we can pick an
integer n so that if m ≥ n then |||xm − xn||| < 1

3
ε, which implies

‖xm − xn‖ <
1

3
ε.

On the other hand (Skxn)∞k=1 is convergent to xn in the original norm, now
we take k0 so that k ≥ k0 implies

‖xn − Skxn‖ ≤
1

3
ε.

The sequence (Skxn)∞n=1 is convergent too, so for m ≥ n we can write

‖Skxm − Skxn‖ ≤
1

3
ε.

Therefore

‖yk − x‖ = lim
m→∞

‖Skxm − xm‖

= lim
m→∞

‖Skxm − Skxn + Skxn − xn + xn − xm‖

≤ lim
m→∞

‖Skxm − Skxn‖+ ‖skxn − xn‖+ lim
m→∞

‖xm − xn‖

≤ 1

3
ε+

1

3
ε+

1

3
ε

= ε.

Thus limk→∞ ‖yk − x‖ = 0. Since limk→∞ ‖Sk(x) − x‖ = 0, by the
uniqueness of the expansion of x with respect to the basis, Sk(x) = yk.
Now

|||xn − x||| = sup
n≥1
‖Skxn − Skx‖ ≤ lim

m→∞
sup sup

k≥1
‖Skxn − Skxm‖.
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3 Schauder Basis Theory

So limn→∞ |||xn−x||| = 0 and (X, ||| . |||) is complete. By the closed Graph
Theorem, the identity map i : (X, ‖ .‖)→ (X, ||| . |||) is bounded, i.e., there
exists K so that |||x||| ≤ K‖x‖ for x ∈ X. This implies that

‖Sn(x)‖ ≤ K‖x‖, x ∈ X,n ∈ N.

In particular |e#n (x)|‖en‖ = ‖Sn(x) − Sn−1(x)‖ ≤ 2K‖x‖, hence e#n ∈ X∗

which means that for every n ∈ N e#n is a bounded continuous linear
function on X.

Let (en)∞n=1 be a basis for a Banach space X. The preceding theorem
tells us that (en)∞n=1 is actually a Schauder basis, hence we use (e∗n)∞n=1

for the biorthogonal functionals. As above, we consider the partial sum
operators Sn : X → X, given by S0 = 0, and for n ≥ 1

Sn
( ∞∑
k=1

e∗k(x)ek)
)

=
n∑
k=1

e∗k(x)ek.

Sn is a continuous linear operator since each e∗k is continuous. In Theorem
3.1 we proved that (sn)∞n=1 are uniformly bounded, but we note it for further
reference.

Proposition 3.2. Let (en)∞n=1 be a Schauder basis for a Banach space X
and (Sn)∞n=1 the natural projections associated with it. Then supn ‖Sn‖ <
∞ .

Proof. For a Schauder basis the operators (Sn)∞n=1 are bounded since e∗n
are bounded. Since Sn(x) → x for x ∈ X we have supn ‖Sn(x)‖ < ∞ for
each x ∈ X. By the Uniform Boundedness Principle supn ‖Sn‖ <∞.

Definition 14. If (en)∞n=1 is a basis for a Banach space X, then the
number K = supn ‖Sn‖ is called the basis constant. In the optimal case
that K = 1 the basis (en)∞n=1 is said to be monotone.

Remark 1. We can always renorm a Banach space X with a basis such
that the given basis is monotone. Let K be the basis constant. Just put

|||x||| = sup
n≥1
‖Sn(x)‖.
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3 Schauder Basis Theory

If K is the basis constant then we can write

K ≥ ‖Sn‖ = sup{‖Sn(x)‖
‖x‖

: x 6= 0}

⇒ ‖Sn(x)‖ ≤ K‖x‖ , n ∈ N

⇒ |||x||| = sup
n≥1
‖Sn(x)‖ ≤ K‖x‖.

Therefore
‖x‖ ≤ |||x||| ≤ K‖x‖,

which means that the new norm is equivalent to the old one. On the other
hand

|||Sn||| = sup
|||x|||≤1

|||Sn(x)|||

= sup
|||x|||≤1

sup
m≥1
||SmSn(x)||

≥ sup
|||x|||≤1

sup
m≥n≥n

||SmSn(x)||

≥ sup
|||x|||≤1

sup
m≥n≥n

||Sn(x)||

= sup
|||x|||≤1

sup
n≥1
‖Sn(x)‖

= sup
|||x|||≤1

|||x|||

= 1.

So we have
|||Sn||| ≥ 1. (3.2)

On the other hand by the definition of the norm ||| .||| we have

||SmSn(x)|| ≤ |||x||| for all m,n ∈ N.

Therefore
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3 Schauder Basis Theory

|||Sn(x)||| = sup
m≥1
‖SmSn(x)‖

≤ |||x|||,

which means that
|||Sn||| ≤ 1. (3.3)

Comparing 3.2 and 3.3 we conclude that |||Sn||| = 1 and the basis is
monotone related to the new norm.

In the next result we will see that if we have a family of projections
satisfying the properties of the partial sum operators then we can construct
a basis for a given Banach space X.

Theorem 3.3. Suppose Sn : X → X ,n ∈ N, is a sequence of bounded
linear projections on a Banach space x such that

(i) dimSn(X) = n for each n ∈ N

(ii) SnSm = SmSn = Smin{m,n}, for any integer m and n and

(iii) Sn(x)→ x for every x ∈ X

Then any nonzero sequence of vectors (ek)
∞
k=1 in X chosen inductively so

that e1 ∈ S1(X), and ek ∈ SkX ∩ kerSk−1 if k ≥ 2 is a basis for X with
partial sum projections (Sn)∞n=1.

Proof. Let 0 6= e1 ∈ S1(X) and define e1∗ : X → R by e1∗(x)e1 = S1(x).
Next we pick 0 6= e2 ∈ S2(X)∩S−11 (0) and define the functional e∗2 : X → R
by e2∗(x)e2 = S2(x) − S1(x). This gives us by induction the procedure to
extract the basis and its biorthogonal functionals: for each n ∈ N, we
pick 0 6= en ∈ Sn(X) ∩ Sn−11 (0) and define e∗n : X → R by en

∗(x)en =

30



3 Schauder Basis Theory

Sn(x)− Sn−1(x). Then we have

|e∗n(x)| = ‖Sn(x)− Sn−1(x)‖‖en‖−1

≤ (‖S(x)‖+ ‖Sn−1(x)‖)‖en‖−1

≤ 2 sup
n
‖Sn‖‖en‖−1‖x‖

<∞

hence e∗n ∈ X∗. Also e∗k(ej) = δkj for any two integers k, j. If we let
S0(x) = 0 for all x, we can write

Sn(x) =
n∑
k=1

(
Sk(x)− Sk−1(x)

)
=

n∑
k=1

e∗k(x)ek,

which, by (iii) in the hypothesis, converges to x for every x ∈ X. So the
sequence (en)∞n=1 is a basis and (Sn)∞n=1 its natural projections.

In the next definition we drop the assumption that a basis must span
the entire space X.

Definition 15. A sequence (ek)
∞
k=1 in a Banach space X is called a basic

sequence if it is a basis for [ek], the closed linear span of (ek)
∞
k=1.

Now we develop a test which tells us whether a sequence (ek)
∞
k=1 of

nonzero elements is basic.

Proposition 3.4 (Grunblum’s criterion). A sequence (ek)
∞
k=1 of

nonzero elements of a Banach space X is basic if and only if there is a
positive constant K such that

‖
m∑
k=1

akek‖ ≤ K‖
n∑
k=1

akek‖ (3.4)

for any sequence of scalars (ak)
∞
k=1 and any integers m,n such that m ≤ n.
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Proof. (⇒) Let’s assume that the sequence (ek)
∞
k=1 is basic, and let SN :

[ek] → [ek]
∞
k=1 , N = 1, 2 . . . be its partial sum projections. Then, for

m ≤ n,

‖
m∑
k=1

akek‖ = ‖Sm(
n∑
k=1

akek)‖ ≤
n∑
k=1

‖Sm(akek)‖

≤
n∑
k=1

‖Sm‖‖akek‖ ≤ ‖Sm‖
n∑
k=1

‖akek‖

≤ sup
m
‖Sm‖

n∑
k=1

‖ake.k‖

So if we let K = supm ‖Sm‖, then (3.4) holds.
(⇐) Assume that (ek)

∞
k=1 is a sequence of nonzero elements in X such that

(3.4) holds. Let E be the linear span of (ek)
∞
k=1 and sm : E → [ek]

m
k=1 be

the finite-rank operator defined by

sm(
n∑
k=1

akek) =

min{m,n}∑
k=1

akek m,n ∈ N.

Since E is dense in [ek] and sm is bounded, by Hahn-Banach extension
Theorem we can extend sm to Sm : [ek]→ [ek]

m
k=1 with ‖Sm‖ = ‖sm‖ ≤ K.

Notice that for each x ∈ E we have

SnSm(x) = SmSn(x) = Smin{m,n}, m, n ∈ N (3.5)

so, by density (3.5) holds for all x ∈ [en]. By Partial converse of the
Banach-Steinhaus Theorem the set {x ∈ [en] : Sm(x) → x} is closed. It
also contains E, which is dense in [en], and

[ek] = E ⊂ {x ∈ [en] : Sm(x)→ x}

which implies that Sn(x) → x for all x ∈ [en]. On the other hand, by the
construction of Sn, we have dimSn[ek] = n. By Proposition 3.3 (ek)

∞
k=1 is

a basis for [ek] with partial sum projections (Sm)∞m=1 .
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Every basis in a finite-dimensional vector space defines a system of
coordinates. Bases in infinite-dimensional Banach spaces work in the same
way. Thus, if we have a basis (en)∞n=1 of X then we can identify x ∈ X by
its coordinates

(
e∗n(x)

)∞
n=1

. It is not true that every scalar sequence (an)∞n=1

defines an element of X. Thus X is coordinatized by a certain sequence
space, i.e., a linear subspace of the vector space of all sequences. This leads
us to the following definition.

Definition 16. Two bases (or basic sequences)(xn)∞n=1 and (yn)∞n=1 in
the respective Banach spaces X and Y are equivalent if whenever we take
a sequence of scalars (an)∞n=1, then

∑∞
n=1 anxn converges if and only if∑∞

n=1 anyn converges.

It turns out that if (xn)∞n=1 and (yn)∞n=1 are bases of the Banach spaces
X and Y respectively and they are equivalent then X and Y must be
isomorphic.

Theorem 3.5. Two bases (or basic sequences), (xn)∞n=1 and (yn)∞n=1 are
equivalent if and only if there is an isomorphism T : [xn]→ [yn] such that
Txn = yn for each n.

Proof. (⇒)Let X = [xn] and Y = [yn]. Let us assume that there exists
an isomorphism T from X to Y such that Txn = yn. We want to prove
that (xn)∞n=1 and (yn)∞n=1 are equivalent. Take a sequence of scalars (an)∞n=1

such that
∑∞

n=1 anxn converges to some element x ∈ X i.e.,

n∑
i=1

aixi −−−→
n→∞

x

in the norm of X. Since T is isomorphism T is linear and continuous, so
n∑
i=1

aixi −−−→
n→∞

Tx

in the norm of Y . By the linearity of T we can write

T (
n∑
i=1

aixi) =
n∑
i=1

T (aixi) =
n∑
i=1

aiTxi =
n∑
i=1

aiyi → Tx.

33



3 Schauder Basis Theory

So we have that
∑∞

n=1 anyn converges in the norm of Y . Taking a
sequence of scalars (an)∞n=1 such that

∑∞
n=1 anyn converges and using the

fact that T is isomorphism and thus T−1 is linear and continuous, we
conclude that

∑∞
n=1 anxn converges. By assumption we have

n∑
i=1

aiyi −−−→
n→∞

y,

which implies

T−1(
n∑
i=1

aiyi) −−−→
n→∞

T−1y.

Since T is an isomorphism, there exists an element x ∈ X such that
T−1y = x. Using the linearity of T−1 we can write

T−1
n∑
i=1

aiyi =
n∑
i=1

T−1(aiyi) =
n∑
i=1

aiT
−1yi =

n∑
i=1

aixi −−−→
n→∞

x,

which means that
∑∞

n=1 anxn converges in the norm of X.
(⇐) Assume that (xn)∞n=1 and (yn)∞n=1 are equivalent. Let us define T :

X → Y by

T (
∞∑
n=1

anxn) =
∞∑
n=1

anyn.

T is one-to-one: Take a sequence of scalars (bn)∞n=1 such that T (
∑∞

n=1 anxn) =

T (
∑∞

n=1 bnxn). Then, the way that we have defined T implies

∞∑
n=1

anyn =
∞∑
n=1

bnyn.

by the unicity of expansion according to the basis (yn)∞n=1 we have
(an)∞n=1 = (bn)∞n=1, and therefore

∞∑
n=1

anxn =
∞∑
n=1

bnxn.
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T is onto: Take an element y ∈ Y , then, since (yn) is a basis, there exists
a unique sequence of scalars (an)∞n=1 such that

y =
∞∑
n=1

anyn = T (
∞∑
n=1

anxn).

Since (xn)∞n=1 and (yn)∞n=1 are equivalent and
∑∞

n=1 anyn converges to y,
then

∑∞
n=1 anxn converges to some element x ∈ X and we can write

y =
∞∑
n=1

anyn = T (
∞∑
n=1

anxn) = Tx.

So we proved that ∀y ∈ Y, ∃x ∈ X with Tx = y. To prove that T
is continuous we use the Closed Graph Theorem. Suppose (un)∞n=1 is a
sequence such that uj → u in X and Tuj → v in Y . If we prove that
Tu = v then we are done . Let us write

uj =
∞∑
n=1

x∗n(uj)xn and uj =
∞∑
n=1

x∗n(u)xn (3.6)

Since x∗n and y∗n are continuous, then

uj → u implies x∗n(uj)→ x∗n(u)

and
Tuj → v implies y∗n(Tuj)→ y∗n(v).

Where

y∗n(Tuj) = y∗n

(
T
( ∞∑
i=1

x∗i (uj)xi
))

= y∗n

( ∞∑
i=1

T
(
x∗i (uj)xi

))
= y∗n

( ∞∑
i=1

x∗i (uj)T (xi)
)

= y∗n
( ∞∑
i=1

x∗i (uj)yi
)

=
∞∑
i=1

x∗i (uj)y
∗
n(yi).

Since y∗n(yi) =

{
1 , n = i

0 , n 6= i
we can write
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y∗n(Tuj) =
∞∑
i=1

x∗i (uj)y
∗
n(yi) =

∑
i 6=n

x∗i (uj)y
∗
n(yi) + x∗n(uj)y

∗
n(yn)

= 0 + x∗n(uj) · 1

= x∗n(uj).

Now we have

y∗n(Tuj) = x∗(uj)→ y∗(v) and x∗n(uj)→ x∗(u).

Since R is Hausdorff i.e., the limits are unique, then y∗n(v) = x∗n(u) for
each n. From (3.6) we can write

u =
∞∑
i=1

x∗i (u)xi ⇒

Tu = T (
∞∑
i=1

x∗i (u)xi) =
∞∑
i=1

x∗i (u)yi =
∞∑
i=1

y∗i (v)yi = v.

So we have proved that Tu = v and therefore T is continuous. Since T is
one-to-one and onto then we are sure that ∃T−1 and T−1 : Y → X with

T−1(
∞∑
n=1

anyn) =
∞∑
n=1

anxn.

It is proved in the same way that T−1 is continuous. So T is a linear
bicontinuous function and thus it is an isomorphism. To complete the
proof let’s show that Txn = yn,

xn =
∞∑
i=1

x∗i (xn)xi ⇒ Txn =
∞∑
i=1

x∗i (xn)yi = yn.
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3.2 Constructing basic sequences

We will now present a method for constructing basic sequences. We work
in the dual X∗ of a Banach space for purely technical reasons; ultimately
we will apply Lemma 3.6 and Theorem 3.7 to X∗∗.

Lemma 3.6. Suppose that S is a subset of X∗ such that 0 ∈ Sweak
∗

but
0 /∈ S|| ||. Let E be a finite-dimensional subspace of X∗. Then for any given
ε > 0 there exists x∗ ∈ S such that

|e∗ + λx∗‖ ≥ (1− ε)‖e∗‖ (3.7)

for all e∗ ∈ E and λ ∈ R.

Proof. First of all, recall that during the proof of Proposition 2.9 we proved
that when X is infinite dimensional the weak and the norm topology do
not coincide. Moreover, we found out that if S = {x ∈ X : ‖x‖ = 1},
then 0 ∈ Sweak but 0 /∈ S|| ||. Since X is infinite dimensional X∗ is infinite
dimensional and we adapt this conclusion for the weak* and norm topology
of X∗. So we can say that there exists a set S ⊂ X∗ with 0 ∈ Sweak

∗

but
0 /∈ S|| ||. Recalling that a norm open neighbourhood V (0, α) of 0 is of the
type

V (0, α) = {x∗ ∈ X∗ : ‖x∗‖ < α}

and since
0 /∈ S|| || = {y∗ ∈ Y ∗ : Oy∗ ∩ S 6= ∅}

where Oy∗ is any norm open neighbourhood of y∗ ∈ Y ∗, then there exists
α ∈ R+ such that

V (0, α) ∩ S = {x∗ ∈ X∗ : ‖x∗‖ < α} ∩ S = ∅

which means ‖x∗‖ ≥ α, ∀x∗ ∈ S. For given ε > 0 put
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ε =
αε

2(1 + α)
.

Let UE = {e∗ ∈ E : ‖e∗‖ = 1} which is a norm closed and bounded
set. Since E is a finite-dimensional subspace and in such spaces closed and
bounded sets are compact then UE is norm compact. This means that there
exists N ∈ N such that UE is covered by the union of the nighborhoods of
y1, y2 . . . , yN . So, for each e∗ ∈ Ue we have ‖y∗k − e∗‖ < ε, for some k =

1, . . . , N . Look at the set

W (0; y∗1, . . . , y
∗
N ; ε) = {x ∈ X : y∗k(x) ≤ 1− ε, k = 1, . . . , N},

it is a weak neighbourhood of 0. Since 0 ∈ BX
‖ ‖,

W ∩BX = {x ∈ X : y∗k(x) ≤ 1− ε, k = 1, . . . , N} ∩BX 6= ∅.

Since the sets do not coincide then WC ∩BX 6= ∅ which means

W ∩BX = {x ∈ X : y∗k(x) > 1− ε, k = 1, . . . , N} ∩BX 6= ∅.

So we can pick xk ∈ BX such that y∗k(xk) > 1 − ε. Since 0 ∈ S
weak∗

each neighbourhood of 0 in the weak* topology of X∗ and in particular
U(0;x1, . . . , xN ; ε) = {x∗ ∈ X∗ : |x∗(xk)| < ε, k = 1, . . . , N} contains one
point of S distinct from 0 i.e.

{x∗ ∈ X∗ : |x∗(xk)| < ε, k = 1, . . . , N} ∩ S 6= ∅

So there exists x∗ ∈ S such that |x∗(xk)| < ε for each k = 1, . . . , N . If
e∗ ∈ UE and |λ| ≥ 2

α
, from the reverse triangle inequality for norms, we

have
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‖e∗ + λx∗‖ = ‖λx∗ − (−e∗‖)

≥ ‖λx∗‖ − ‖ − e∗‖

= |λ|‖x‖ − ‖e∗‖

≥ 2

α
· α− 1

= 1.

If |λ| < 2
α
we pick yk such that ‖e∗−yk‖ < ε. The fact that xk ∈ BX allows

us to write

‖y∗k + λx∗‖ ≥ y∗k(xk) + λx∗(xk)

≥ (1− ε) + λx∗(xk)

≥ (1− ε)− |λ|ε

≥ (1− ε)− 2

α
ε

=
(
1− (1 +

2

α
)ε
)
,

and therefore

‖e∗ + λx∗‖ ≥
∣∣∣‖e∗ − y∗k‖ − ‖y∗k + λx∗‖

∣∣∣
≥
∣∣∣‖y∗k + λx∗‖ − ‖e∗ − y∗k‖

∣∣∣
≥
(
1− (2 +

2

α
)ε
)
− ε

= 1−
(
(1 +

2

α
)ε+ ε

)
= 1− 2(α + 1)ε

α

= 1− ε.

Now we have proved (3.7) for e∗ ∈ Ue. Using the homogenity of the
norm it is easy to conclude that (3.7) holds for all e∗ ∈ E.

Now we will show a method for constructing basic sequences in some
certain sets of X∗.
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Theorem 3.7. Suppose S is a subset of X∗ such that 0 ∈ S
weak∗ but

0 /∈ S
‖ ‖. Then for any ε > 0, S contains a basic sequence with basis

constant less than 1 + ε.

Proof. Fix a decreasing sequence of positive numbers (εn)∞n=1 such that∑∞
n=1 <∞ and so that

∞∏
n=1

(1− εn) >
1

(1 + ε)
.

Pick x∗1 and consider the 1-dimensional space E = [x∗1]. By Lemma 3.6
there exists x∗2 ∈ S such that

‖e∗ + λx∗2‖ ≥ (1− ε1)‖e∗‖

for all e∗ ∈ E and λ ∈ R. Now let E2 = [x∗1, x
∗
2]. Lemma 3.6 guarantees

the existence of x∗3 ∈ S such that

‖e∗ + λx∗3‖ ≥ (1− ε2)‖e∗‖.

Repeating the process we produce a sequence (x∗n)∞n=1 in S such that for
each n ∈ N and any scalars (ak)

n+1∑
k=1

akx
∗
k‖ = ‖

n∑
k=1

akx
∗
k︸ ︷︷ ︸

∈[x∗1,...,x∗n]

+an+1x
∗
n+1‖ ≥ (1− εn)‖

n∑
k=1

akx
∗
k‖.
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Therefore for any two given integers m,n with m ≤ n, we have

‖
n∑
k=1

akx
∗
k = ‖

n−1∑
k=1

akx
∗
k + anx

∗
n‖ ≥ (1− εn)‖

n−1∑
k=1

akx
∗
k‖

= (1− εn)‖
n−2∑
k=1

akx
∗
k + an−1x

∗
n−1‖

≥ (1− εn)(1− εn−1)‖
n−2∑
k=1

akx
∗
k‖

≥ (1− εn)(1− εn−1), . . . , (1− εm+1)‖
m∑
k=1

akx
∗
k‖

=
m+1∏
j=1

(1− εj)‖
n∑
k=1

akx
∗
k‖,

which implies

‖
m∑
k=1

akx
∗
k‖ ≤

1
m+1∏
j=1

(1− εj)
‖

n∑
k=1

akx
∗
k‖

≤ 1
∞∏
j=1

(1− εj)
‖

n∑
k=1

akx
∗
k‖

< (1 + ε)‖
n∑
k=1

akx
∗
k‖.

Proposition 3.5 tells us that (x∗n)∞n=1 is a basic sequence with basis constant
at most 1 + ε.

The following corollary guarantees the existence of basic sequences in
infinite-dimensional Banach spaces.

Corollary 3.8. Every infinite-dimensional Banach space contains, for
ε > 0, a basic sequence with basis constant less than 1 + ε.

Proof. During the proof of the proposition 2.9 we proved that if we look
at S = SX = {x ∈ X : ‖x‖ = 1} then 0 ∈ SX

weak and 0 /∈ SX
‖ ‖. Thus
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0 ∈ S
weak∗ ⊂ X∗∗ and 0 /∈ S

‖ ‖. To complete the proof we apply the
Theorem 3.7.

Proposition 3.9. If (xn)∞n=1 is a weakly null sequence in an infinite-
dimensional Banach space X such that infn ‖xn‖ > 0 then, for ε > 0,
(xn)∞n=1 contains a basic subsequence with basis constant less than 1 + ε.

Proof. Look at S = {xn : n ∈ N}. Let’s prove that 0 /∈ S‖ ‖. If we assume
the opposite, that 0 ∈ S‖ ‖ then ∀ε > 0 the norm open neighbourhood of
0. V (ε) = {x ∈ X : ‖x‖} would contain at least one element from S i.e.,
∀ε > 0, ∃n ∈ N such that ‖xn‖ < ε. Thus we can pick a subsequence
(xnk)

∞
k=1 ⊂ (xn)∞n=1 such that ‖xnk‖ < ε,∀ε > 0 so

lim
k→∞
‖xnk‖ = 0.

On the other hand

lim
k→∞
‖xnk‖ ≥ inf

n
‖xnk‖ > 0

thus limk→∞ ‖xnk‖ > 0, which is a contradiction to ?? and therefore 0 /∈
S
‖ ‖. We know that the weak neighbourhoods of 0 are of the form

W (0;x∗1, . . . , x
∗
k) = {x ∈ X : |x∗i (x)| < ε, i = 1, . . . , k and ε > 0}.

Since (xn) converges weakly to 0 we can write

x∗(xn)→ 0 for all x∗ ∈ X∗.

Therefore ∀ε > 0, ∃k0 ∈ N such that ∀n ≥ k0 and x∗ ∈ X∗, we have

|x∗(xn)| < ε,

which means that xn ∈ W (0;x∗1, . . . , x
∗
k; ε) whenever n ≥ k0. Thus every

norm open neighbourhood of 0 contains points from S thus 0 ∈ Sweak. We
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are now in the conditions of the Theorem 3.7 which assures the existence
of a basic sequence contained in S with basis constant at most 1 + ε. To
finish the proof, since the basic sequence is a subset of (xn), we extract
the terms of basic sequence in the increasing order and we obtain a basic
subsequence of (xn)∞n=1.

Lemma 3.10. Let (xn)∞n=1 a basic sequence in X. Suppose there exists
a linear functional x∗ ∈ X∗ such that x∗(xn) = 1 for all n ∈ N. If u /∈ [xn]

then the sequence (xn + u)∞n=1 is basic.

Proof. Since u /∈ [xn], without loss of generality we can assume x∗(u) = 0.
Let T : X → X be the operator given by T (x) = x∗(x)u. T is linear: Take
the scalars α, β and x, y ∈ X, then we can write

T (αx+ βy) = x∗(αx+ βy)u

=
(
x∗(αx) + x∗(βy)

)
u

=
(
αx∗(x) + βx∗(y)

)
u

= αx∗(x)u+ βx∗(x)u

= αT (x) + βT (y).

Since x∗ ∈ X∗ is linear and bounded we can write

‖Tx‖ = ‖x∗(x)u‖

= |x∗(x)|‖u‖

≤ ‖x∗‖‖u‖‖x‖

≤ K‖x‖,

which means that T is norm continuous. Let ix be the identic function
on X. Since ix and T are linear and continuous then ix + T is linear and
continuous. Observe that
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(ix + T )(xn) = ix(xn) + T (xn)

= xn + x∗(xn)u

= xn + u.

Let’s prove that (xn + u)∞n=1 is a basic sequence. Pick x ∈ [xn + u], then
there exists n ∈ N, scalars (ai)

n
i=1 and (xi)

n
i=1 such that

x =
n∑
i=1

ai(xi + u)

=
n∑
i=1

ai(ix + T )(xi)

= (ix + T )
n∑
i=1

aixi.

Since
n∑
i=1

aixi ∈ [xn] and (xn)∞n=1 is a basic sequence, there exists a unique

sequence of nonzero scalars (bn)∞n=1 such that
n∑
i=1

aixi =
∞∑
n=1

bnxn and we

can write

x = (ix + T )
n∑
i=1

aixi

= (ix + T )
∞∑
n=1

bnxn

=
∞∑
n=1

bn(ix + T )xn

=
∞∑
n=1

bn(xn + u).

So we proved that if x ∈ [xn + u] then there exists a unique sequence of

nonzero scalars (bn)∞n=1 such that x =
∞∑
n=1

bn(xn + u) therefore (xn + u)∞n=1

is a basic sequence.
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Now we are going to present a simple and useful strategy which we will
apply in the next Theorem as well as in the proof of the Eberlein-Šmulian
Theorem. The result is quite easy but we note it for further reference.

Remark 2. If A is a bounded set in X such that Aweak∗ ⊂ X then A is
relatively weakly compact.

Proof. Take x∗∗ ∈ Aweak∗, then there exists a net (xα) ⊂ A with

(xα)
weak∗−−−→ x∗∗,

which implies ‖x∗∗‖ ≤ lim infα ‖xα‖ < ∞. Thus Aweak∗ is bounded. By
Corollary 2.17 since Aweak∗ is weak* closed and bounded then it is weak*
compact.
If we consider Aweak∗ then every element of Aweak∗ is in X. Thus Aweak∗

is just Aweak and therefore Aweak is weakly compact ,i.e. ,A is relatively
weakly compact.

Theorem 3.11. Let S be a bounded subset of a Banach space X such
that 0 /∈ S‖ ‖. Then the following are equivalent

(i) S fails to contain a basic sequence

(ii) S
weak is weakly compact and fails to contain 0.

Proof. (ii)⇒ (i). Suppose (xn)∞n=1 ⊂ S is a basic sequence. Since Sweak is
weakly compact the sequence (xn)∞n=1 has a has a subnet which converges
to x ∈ Sweak i.e., x is a weak cluster point of (xn)∞n=1. We can write

(xn)∞n=1 ⊂ [xn],

so we will have
x ∈ (xn)

weak
⇒ x ∈ [xn].
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Since [xn] is a convex set, by Mazur’s Theorem [xn]weak = [xn]‖ ‖ therefore
we can write

x =
∞∑
n=1

x∗n(x)xn.

Let B be an index set, since x is a weak cluster point of (xm)∞m=1 so there
exists a net (xβ)β∈B ⊂ (xm)m∈N such that xβ → x, x∗n are continuous so
they preserve limits and we can write

x∗n(xβ)→ x∗n(x).

Since x∗n(xβ) ⊂
(
x∗n(xm)

)∞
m=1

then we have that x∗n(x) is a weak cluster
point of the sequence of scalars

(
x∗n(xm)

)∞
m=1

which converges to 0. Thus
x∗n(x) = 0, ∀n ∈ N, as a consequence

x =
∞∑
n=1

x∗n(x)xn =
∞∑
n=1

0 · xn = 0.

This contradicts hypothesis that Sweak does not contain 0, so S contains
no basic sequences.
(i)⇒ (ii). Assume S contains no basic sequence. Applying Theorem 3.7
to S considered as a subset of X∗∗ equipped with the weak* topology we
conclude that 0 cannot be a weak closure point of S. It remains to show
that Sweak is weakly compact i.e. that S is relatively weakly compact. To
achieve this we it is sufficient to show that all weak* cluster points of S in
X∗∗ are already contained in X. Let us suppose x∗∗ is a weak* cluster point
of S and that x∗∗ ∈ X∗∗\X. Consider the set A = S− x∗∗ = {s− x∗∗ : s ∈
S} in X∗∗. By Theorem 3.7 there exists a sequence (xn)∞n=1 in S such that
the sequence (xn − x)∞n=1 is basic. We can suppose that x∗∗ /∈ [xn−x∗∗ ≥ 1]

because it is certainly true that x∗∗ /∈ [xn−x∗∗ ≥ N ] for some choice of N .
By the Hahn-Banach Theorem there exists x∗∗∗ ∈ X∗∗∗ so that x∗∗∗ ∈ X⊥

and x∗∗∗(x∗∗) = −1. This implies that x∗∗∗(xn − x∗∗) = 1 for all n ∈ N.
Now Lemma 3.10 applies and we deduce that (xn)∞n=1 is also basic which
contradicts our assumption on S.
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Lemma 3.12. If (xn)∞n=1 is a basic sequence in a Banach space X and
x ∈ X is a weak cluster point of (xn)∞n=1 then x = 0.

Proof. Since x is a weak cluster point of (xn)∞n=1 we can write

x ∈ {xn : n ∈ N
weak
⇒ x ∈ 〈xn : n ∈ N〉

weak
,

where 〈xn : n ∈ N〉 is the linear span of the sequence (xn)∞n=1. The set
〈xn : n ∈ N〉 is convex so applying Mazur’s Theorem we conclude that x
belongs to the norm closed linear span [xn], of (xn). Hence

x =
∞∑
n=1

x∗n(x)xn,

where (x∗n) are the biorthogonal functionals of (xn). Let B be an index set.
Since x is a weak cluster point of (xm)∞m=1 so there exists a net (xβ)β∈B ⊂
(xm)m∈N such that xβ → x, x∗n are continuous so they preserve limits and
we can write

x∗n(xβ)→ x∗n(x).

Since x∗n(xβ) ⊂
(
x∗n(xm)

)∞
m=1

then we have that x∗n(x) is a weak cluster
point of the sequence of scalars

(
x∗n(xm)

)∞
m=1

which converges to 0. Thus
x∗n(x) = 0, ∀n ∈ N, as a consequence

x =
∞∑
n=1

x∗n(x)xn =
∞∑
n=1

0 · xn = 0.

Lemma 3.13. Let A be a relatively weakly countably compact subset of
a Banach space X. Suppose that x ∈ X is the only weak cluster point of
the sequence (xn)∞n=1 ⊂ A. Then (xn)∞n=1 converges weakly to x.

Proof. Assume the opposite, that (xn) does not converge weakly to x. Then
∃x∗ ∈ X∗ such that

(
x∗(xn)

)∞
n=1

fails to converge to x∗(x), hence we may
pick a subsequence (xnk)

∞
k=1 of (xn)∞n=1 such that

inf
k
|x∗(x)− x∗(xnk)| > 0,

which means that x cannot be a weak cluster point of (xnk), contradicting
the hypothesis.
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3 Schauder Basis Theory

Now we are ready to give the proof of the Eberlein-Šmulian theorem
given by Pelczynski in 1964.

Theorem 3.14 (Eberlein-Šmulian). Let A be a subset of a Banach
space X. The following are equivalent:

(i) A is [relatively] weakly compact,

(ii) A is [relatively] weakly sequentially compact,

(iii) A is [relatively] weakly countably compact.

Proof. Since every sequence can be considered as a special case of a net
(i) and (ii) both imply (iii). We have to show that (iii) implies both (ii)

and (i). First we will prove the relativized versions and then show that the
result for nonrelativized versions can follow easily. Note that each of the
statements implies thast A is bounded.
(iii)⇒ (ii). Let (xn)∞n=1 be any sequence in A. Then, by hypothesis,
there is a weak cluster point x of (xn)∞n=1. If x is in the norm closure of
the set {xn}∞n=1, then there is a subsequence which converges and we are
done. If not, applying Theorem 3.11, we construct a subsequence (yn)∞n=1

of (xn)∞n=1 so that (yn − x)∞n=1 is a basic sequence. Since (yn)∞n=1 is in A

which is relatively weakly compact then it has a weak cluster point y. So,
if B is an arbitray index set, there exists a net (xβ)β∈B ⊂ (yn)∞n=1 with
xβ → y. We have

(xβ − x)β∈B ⊂ (yn − x)∞n=1 and (xβ − x)→ y − x

therefore y − x is a weak cluster point of the basic sequence (yn − x)∞n=1.
By Lemma 3.12 y−x = 0, therefore y = x. Thus x is the only weak cluster
point of (yn)∞n=1. By Lemma 3.13 (yn)∞n=1 converges to x. So we proved
that every sequence (xn)∞n=1 ⊂ A has a convergent subsequence (yn)∞n=1

and therefore A is realtively weakly sequentially compact.
(iii)⇒ (i). Suppose the opposite, that A is not relatively weakly compact
by Remark 2 then the weak* closure W of A is not contained in X. Thus
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3 Schauder Basis Theory

there exists x∗∗ ∈ W\X. Pick x∗ ∈ X∗ so that x∗∗(x∗) > 1. Then consider
the set A0 = {x ∈ A : x∗(x) > 1}. The set is not relatively weakly
compact since x∗∗ is in its weak* closure. Theorem 3.11 gives us a basic
sequence (xn)∞n=1 contained in A0. Since (xn)∞n=1 ⊂ A0 ⊂ A and A relatively
countably compact then (xn)∞n=1 must have a weak cluster point x which
by by Lemma 3.12 should be x = 0. This is a contradiction since, by
construction, x∗(x) ≥ 1.
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4 Proof of the Eberlein

Šmulian theorem due to

Whitley

In this section we are going to present the proof of the Eberlein Šmulian
theorem due to Whitley. This proof can be found in [9] and uses only basic
theorems from the weak and weak* topologies, namely Alaoglu’s theorem,
Hahn-Banach theorem and Mazurs’s theorem. Throughout this section
we will also refer to [?]. We will start by showing some basic results and
observations, then we will present the proof of the theorem.

Proposition 4.1. If A is a countable subset of a normed space, then [A]

is separable.

Proof. Since a dense subset of 〈A〉 is also a dense subset of [A], it is enough
to prove that 〈A〉 is separable. Let Q be the rationals. Let S be the subset
of 〈A〉 consisting of all linear combinations of elements of A formed by
using only scalar coefficients from Q. Let’s prove that S is countable.
Take x1, . . . , xn ∈ A and α1, . . . , αn ∈ R. Since Q is dense in R, for each
j such that j = 1, . . . , n there is a sequence (αj,m)∞m=1 ⊂ Q converging to
αj, and from the continuity of the vector space operations we have that

(α1,mx1 + α2,mx2 + · · ·+ αn,mxn) −−−→
m→∞

(α1x1 + α2x2 + · · ·+ αnxn).

Thus, the countable set S is dense in 〈A〉.
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4 Proof of the Eberlein Šmulian theorem due to Whitley

Lemma 4.2. A continuous one-to-one map from a compact space to a
Hausdorff space is a homeomorphism.

Proof. Let X be a compact space, Y a Hausforff space, and f a one-to-one
continuous function on X. Take a closed set A in X, since X is compact
then A is compact as closed subset of a compact space and f(A) is compact
as a continuous image of a compact set. Since Y is Hausdorff and in such
spaces compact sets are closed then f(A) is closed. Thus f−1 is continuous
and f is homeomorphism.

Definition 17. A set of continuous linear functionals defined on a
Banach space X is total if the only vector in X mapped into 0 by each
functional is the zero vector.

Lemma 4.3. If X is a separable Banach space then X∗ contains a
countable total set.

Proof. Let (xn)∞n=1 be a sequence of nonzero vectors which is dense in X.
Using the Hahn-Banach theorem, for each xn pick x∗n ∈ X so that

x∗n(xn) = ‖xn‖ and ‖x∗n‖ = 1.

Suppose x∗n(xn) = 0. Since (xn) = X then

∀ε > 0 ∃m such that ‖x− xm‖ < ε.

On the other hand

|x∗n(x− xm)| = |x∗n(x)− x∗n(xm)|

= |x∗n(xm)| = ‖xm‖

≤ ‖x∗n‖ · ‖x− xm‖

< ε.

So we have ‖xm‖ < ε and we can write

‖x‖ = ‖x− xm + xm‖ ≤ ‖x− xm‖+ ‖xm‖ < 2ε.
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4 Proof of the Eberlein Šmulian theorem due to Whitley

So ∀ε > 0 we have that ‖x‖ < ε ⇒ ‖x‖ = 0 ⇔ x = 0. Thus (x∗n)∞n=1 is
total.

Lemma 4.4. Let X be a Banach space such that X∗ contains a countable
total set. Then the weak topology on a weakly compact subset of X is
metrizable.

Proof. Let (x∗n)∞n=1 be a countable total set of functionals each of norm one.
Define a function d : X ×X → R by

d(x, y) =
∞∑
n=1

1

2n
|x∗n(x− y)|.

First of all, the function d is well defined

d(x, y) =
∞∑
n=1

1

2n
|x∗n(x− y)|

≤
∞∑
n=1

1

2n
‖x∗n‖ · ‖x− y‖

= ‖x− y‖
∞∑
n=1

1

2n

= ‖x− y‖

<∞.

Let’s prove now that d is a metric.

(i) d(x, y) =
∞∑
n=1

1
2n
|x∗n(x− y)| ≥ 0 .

(ii) d(x, y) =
∞∑
n=1

1
2n
|x∗n(x− y)| = 0⇔ |x∗n(x− y)| = 0 ∀n. Since (x∗n)∞n=1

is total, then x− y = 0⇔ x = y.

(iii) d(x, y) =
∞∑
n=1

1
2n
|x∗n(x− y)| =

∞∑
n=1

1
2n
|x∗n(y − x)| = d(y, x).
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4 Proof of the Eberlein Šmulian theorem due to Whitley

(iv) From triangle inequality we have |x∗n(x−y)| ≤ |x∗n(x−z)|+|x∗n(z−y)|,
and

d(x, y) =
∞∑
n=1

1

2n
|x∗n(x− y)|

≤
∞∑
n=1

1

2n
|x∗n(x− z)|+

∞∑
n=1

1

2n
|x∗n(z − y)|

= d(x, z) + d(z, y).

Let A be a weakly compact subset of X. Look at the identity id :

(A,weak)→ (A, d) which maps A with the weak topology one-to-one and
onto A with the weak topology induced by d. Take a ∈ A and an open
ball B(a, ε) = {x ∈ A : d(x, a) < ε} around a with radius ε > 0 and we
can write

d(x, y) =
∞∑
n=1

1

2n
|x∗n(x− y)| < ε⇒ |x∗n(x− a)| < ε ∀n,

and id{x ∈ X : |x∗n(x − a)| < ε} ⊂ B(a, ε). Thus id is continuous. The
metric space (A, d) is Hausdorff. Applying Lemma 4 we conclude that id is
a homeomorphism and this means that the weak and the metric topology
are equivalent on A and therefore A is metrizable.

Lemma 4.5. Let X be a Banach space and let E be a finite dimensional
subspace of X∗. Then there exists a finite set E ′ ⊂ SX such that ∀x∗ ∈ E

‖x∗‖
2
≤ max

x∈E′
|x∗(x)|.

Proof. Look at SE = {e∗ ∈ E : ‖e∗‖ = 1}. This is a closed and
bounded subset of the finite dimensional subspace E, so it is norm compact.
Therefore we can find a 1

4
-net N = {x∗1, . . . , x∗n}. From proposition 2.9

we know that 0 ∈ S
weak

X which means that for the weak neighbourhoods
W (0, x∗i ,

3
4
), i = 1, . . . , N of 0 we have W (0, x∗i ,

3
4
) ∩ SX 6= ∅ i.e., for each

i = 1, . . . , n ∃xi ∈ SX such that x∗i (xi) >
3
4
. Then, whenever x∗ ∈ SE we

have
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4 Proof of the Eberlein Šmulian theorem due to Whitley

x∗(xi) = (x∗i + x∗ − x∗i )(xi)

= x∗i (xi) + (x∗ − x∗i )(xi)

>
3

4
− 1

4

=
1

2
.

Therefore we can write

‖x∗‖
2
≤ max{|x∗(xi)|, i = 1 . . . , n}.

So if we take E ′ = {x1, . . . , xn} the proof is completed.

Now we have everything we need to prove Eberlein-Šmulian Theorem.

Theorem 4.6 (Eberlein-Šmulian). Let A be a subset of a Banach
space X. The following are equivalent.

(i) A is [relatively] weakly compact

(ii) A is [relatively] weakly sequentially compact

(iii) A is [relatively] weakly countably compact.

.

Proof. (i)⇒ (ii).
Let (an)∞n=1 be a sequence of elements in A which is relatively weakly
compact. Look at [an] norm closed linear span of (an)∞n=1. From
Proposition 4.1 [an] is separable. Since A is relatively weakly compact
then A ∪ [an] is a relatively weakly compact subset of the separable space
[an]. By Lemma 4.3, [an] contains a countable total. Lemma 4.4 A ∪ [an]

tells us that A ∪ [an] is metrizable. Since in metric spaces compactness
and sequential compactness are equivalent and A∪ [an] is relatively weakly
compact we conclude that A∪ [an] is relatively weakly sequentialy compact
in the weak topology of [an]. Since (an)∞n=1 ⊂ A ∪ [an], (an)∞n=1 contains a
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4 Proof of the Eberlein Šmulian theorem due to Whitley

subsequence converging to an element x in the weak topology of [an] and
thus converging to x in the weak topology of X.

(ii)⇒ (iii)

It is clear that every relatively weakly sequentially compact subset is
relatively weakly countably compact since each sequence can be considered
as a special case of a net.

(iii)⇒ (i)

First let’s show that A is bounded. Since A is relatively weakly countably
compact then for each continuous linear functional x∗ the set x∗(A) is a
relatively weakly countably compact set of scalars and thus a bounded set
of scalars, by the Uniform Boundedness Principle, A is bounded. According
to Remark 2 to prove that the bounded set A is realtively weakly compact
it is enough to prove that Aweak∗ ⊂ X. Take x∗∗ ∈ A

weak∗ and let x∗1 ∈
SX∗ . Since x∗∗ ∈ A

weak∗ each neighbourhood of x∗∗ contains an element
of A. In particular, the weak* neighbourhood generated by ε = 1 and x∗1
W (x∗∗, x∗1, ε) = {y∗∗ ∈ X∗∗ : |(y∗∗ − x∗∗)(x∗1)| < 1} contains a member a1
of A. So we can write

|(x∗∗ − a1)(x∗1)| < 1.

Consider the norm closed linear span E1 = [x∗∗, x∗∗ − a1] of x∗∗ and x∗ −
a1, this is finite dimensional subspace of X∗∗. Lemma 4.5 assures us the
existence of the finite set E1

′
= {x∗2, x∗3, . . . , x∗n(2)} in SX∗ , such that for any

y∗∗ ∈ E1,

‖y∗∗‖
2
≤ max{|y∗∗(x∗i )| : 1 ≤ i ≤ n(2).

Look at

W2 = {y∗∗ ∈ X∗∗ : |(y∗∗ − x∗∗)(x∗i )| <
1

2
, 1 ≤ i ≤ n(2)},

this is a weak* neighbourhood of x∗∗ so it contains one element a2 ∈ A.

And we can write
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4 Proof of the Eberlein Šmulian theorem due to Whitley

|(x∗∗ − a2)(x∗i )| <
1

2
, 1 ≤ i ≤ n(2)}.

Now consider E2 = [x∗∗, x∗∗ − a1, x
∗∗ − a2] which is a finite dimensional

subspace of X∗∗. Applying Lemma 4.5 again we are provided E2
′

=

{x∗n(2)+1, . . . , x
∗
n(3)} such that for any y∗∗ ∈ E2

‖y∗∗‖
2
≤ max{|y∗∗(x∗i )| : 1 ≤ i ≤ n(3).

Look at

W3 = {y∗∗ ∈ X∗∗ : |(y∗∗ − x∗∗)(x∗i )| <
1

3
, 1 ≤ i ≤ n(3)},

this a weak* neighbourhood of x∗∗ and therefore it contains one element
a4 ∈ A. We can write

|(x∗∗ − a2)(x∗i )| <
1

3
, 1 ≤ i ≤ n(3)}.

Applying Lemma 4.5 on the finite dimensional subspace E3 = [x∗∗, x∗∗ −
a1, x

∗∗−a2, x∗∗−a3] we are provided E3
′
= {x∗n(3)+1, . . . , x

∗
n(4)} ⊂ SX∗ such

that for any y∗∗ ∈ E3

‖y∗∗‖
2
≤ max{|y∗∗(x∗i )| : 1 ≤ i ≤ n(4).

Considering the weak* neighbourhood of x∗∗

W4 = {y∗∗ ∈ X∗∗ : |(y∗∗ − x∗∗)(x∗i )| <
1

4
, 1 ≤ i ≤ n(4)},

we find an element a4 ∈ A such that

|(x∗∗ − a4)(x∗i )| <
1

4
, 1 ≤ i ≤ n(4)}.

Considering E4 = [x∗∗, x∗∗ − a1, x∗∗ − a2, x∗∗ − a3, x∗∗ − a4] we produce
W5 and thus a5 and so on.
Now look at the produced sequence (ai)

∞
i=1 ⊂ A. Since A is relatively

weakly countably compact then is has a weak cluster point x ∈ X, i.e.,
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4 Proof of the Eberlein Šmulian theorem due to Whitley

x ∈ (an)
weak

, by Mazur’s Theorem x ∈ [an] so x∗∗−x = [x∗∗, x∗∗−a1, x∗∗−
a2, . . . , x

∗∗ − an, . . . , ] = C. By construction

‖y∗∗‖
2
≤ sup

m
|y∗∗(x∗m)|,

for any y∗∗ ∈ C. Since x∗∗ − x ∈ C then we can write

‖x∗∗ − x‖
2

≤ sup
m
|(x∗∗ − x)(x∗m)|.

Since x is a weak cluster point of (ai)
∞
i=1, there exists (aik)

∞
k=1 ⊂ (ai)

∞
i=1 so

that aik
weakly−−−−→ x i.e.,

x∗m(ai)k → x∗m(x) m ∈ N.

Thus, ∀ε > 0 we can find a natural number p(m) so that nk > p implies

|x∗m(aik − x)| < ε

4
.

Now, if necessary, during construction process we increase p such that
nk > p implies also

|(x∗∗ − ank
)(x∗m)| < ε

4
.

By triangle inequality

|(x∗∗ − x)(x∗m)| = |(x∗∗ − ank
)(x∗m)|+ |x∗m(ank

− x)|

<
ε

4
+
ε

4

=
ε

2
.

Thus ∀ε > 0 we can write ‖x∗∗ − x‖ < ε which implies ‖x∗∗ − x‖ = 0 and
therefore x∗∗ = x. Proof is completed.
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5 The weak topology and the

topology of pointwise

convergence on C(K)

In this section we will show the connection between the weak topology and
the topology of pointwise convergence in C(K) for K compact Hausdorff.
Our main source will be [4]. We denote the weak topology by τw and the
topology of pointwise convergence by τp.
The weak topology and weak convergence on C(K) are defined according
to definitions 6 and 7 respectively.
Let us define first the concept of pointwise convergence for a net (fα)α∈A ⊂
C(K).

Definition 18. We say that the net (fα)α∈A ⊂ C(K) converges pointwise
to f ∈ C(K) if

lim
α
fα(x) = f(x) ,∀x ∈ K.

Now we will define a topology τp on C(K) such that convergence of nets
in τp is pointwise and we will call it the topology of pointwise convergence.
For each f ∈ C(K) and ε > 0 put

W (f, A, ε) = {g ∈ C(K) : |f(x)− g(x)| < ε, ∀x ∈ A} (5.1)

where A ⊂ K is finite.

Proposition 5.1. The topology τp defined on C(K) such that each
f ∈ C(K) has the neighbourhood basis of the form (5.1) is the topology
of pointwise convergence.
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5 The weak topology and the topology of pointwise convergence on C(K)

Proof. Assume that the net (fα) converges to f ∈ C(K) in the τp topology.
Then for every W (f, A, ε) there exists an α0 such that W (f, A, ε) contains
all fα for α > α0. In particular, if x ∈ K, and ε > 0, there exists α0 =

α0(x, ε) such that α > α0 ⇒ fα ∈ W (f, x, ε). So, we can write

α ≥ α0 implies |fα(x)− f(x)| < ε,

which means that fα → f pointwise.

Now assume that fα → f pointwise, let A be finite and ε > 0. We
should prove that W (f, A, ε) contains all fα starting from some α0. For
each x ∈ A there exists α0 = α0(x) such that α > α0 ⇒ |fα(x)−f(x)| < ε.

Let α0 be the biggest of α0(x)’s. Then W contains fα for all α ≥ α0. This
means that the net fα converges to f in the τp topology.

Now that we know how τw and τp are constructed we may wonder which
of them is stronger.

Proposition 5.2. Topology of pointwise convergence is weaker than the
weak topology i.e., τp ⊂ τw.

Proof. Take a net (fα)α∈A ⊂ C(K) which converges weakly to f ∈ C(K)

i.e.,

w(fα)→ w(f) ,∀w ∈ C(K)∗.

Whenever x ∈ K define wx : C(K)→ R with

wx(f) = f(x).

Then wx ∈ C(K)∗ and we have

fα(x)→ f(x) , ∀x ∈ K,

therefore fα converges pointwise to f .

The converse of the inclusion τp ⊂ τw does not hold in general and we
show it by the following example.
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5 The weak topology and the topology of pointwise convergence on C(K)

Example 3. Take K = [0, 1] and define Λ to be the set of finite subsets
of [0, 1] ordered by inclusion. Λ is an index set. For each λ ∈ Λ define a
function fλ : [0, 1]→ [0, 1] such that

fλ =

1 , x ∈ λ

0 , x /∈ λ.

Take x ∈ [0, 1], we have fλ0(x) = 1 where λ0 = {x}. Then for every
λ ≥ λ0 we have x ∈ λ and therefore fλ(x) = 1. This means that the net fλ
converges to the constant function 1 pointwise. Define the function

w(fλ) =

1∫
0

fλ(t)dt.

For each λ ∈ Λ we have w(fλ) =
1∫
0

fλ(t)dt = 0, since fλ is zero almost

everywhere in [0, 1]. On the other hand w(1) =
1∫
0

1 · dt = 1. Now we have

w(fλ) = 0 6= 1 = w(1),

Therefore fλ doesn’t converge weakly to 1.

When it comes to sequences, it turns out that it is much more easy to
make weak convergence and pointwise convergence agree with each other.
All we need is boundedness of the sequence and then Riesz representation
theorem together with Lebesgue dominated convergence theorem. Here we
present the form of the Riesz representation theorem that we will use.

Theorem 5.3. Let K be a compact Hausdorff space and let w ∈ C(K)∗.
Then there exists a unique Radon measure µw on K such that

w(f) =

∫
K

fdµw ,∀f ∈ C(K).

This result is really important because it tells us how members of C(K)∗

work on C(K).
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5 The weak topology and the topology of pointwise convergence on C(K)

Proposition 5.4. Let (fn)n∈N ⊂ C(K) then the following are equivalent

(i) fn converges weakly to f

(ii) fn converges pointwise to f and supn∈N ‖fn‖ <∞

Proof. (1)⇒ (ii)

If fn converges weakly to f , from the previous proposition it follows that
fn converges to f pointwise. From pointwise convergence we can write

sup
n∈N
|fn(x)| <∞ ,∀x ∈ K.

Now, applying the Uniform Boundedness Principle we have

sup
n∈N
‖fn‖ <∞.

(ii)⇒ (i) Assume the condition in (ii) holds. Let w ∈ C(K)∗, then by
Riesz representation theorem, there exists a unique Radon measure µw on
K such that

w(f) =

∫
K

fdµw ,∀f ∈ C(K).

The functions fn are dominated by the constant function l : K → R with
l(x) = supn∈N ‖fn‖ i.e.,

|fn(x)| ≤ l(x) ,∀x ∈ K.

Now applying Lebesgue dominated convergence theorem we get

w(fn) =

∫
K

fndµw →
∫
f

dµw = w(f) , w ∈ C(K)∗,

and therefore fn converges to f weakly.

After looking into the previous proposition we might have a natural
question: Why doesn’t the same result apply to nets? The answer is
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5 The weak topology and the topology of pointwise convergence on C(K)

simple. Because Lebesgue dominated convergence theorem does not work
for nets.
In the following example we will show that weak convergence and pointwise
convergence are equivalent only for bounded sequences lying in C(K) i.e.,
we cannot relax the boundedness criteria.

Example 4. Take K = [0, 1] and the sequence of continuous functions

fn(x) = n2xe−nx n ∈ N.

Using l’Hopital’s rule we have

lim
n→∞

fn(x) = lim
n→∞

n2xe−nx

= lim
n→∞

n2

enx

= lim
n→∞

2nx

xenx

= 2 lim
n→∞

1

enx

= 0,

which means that the sequence of functions (fn)n∈N converges pointwise to
f = 0. Define on K the norm ‖ · ‖ by

‖fn‖ = lim
x→0

fn(x)

= lim
x→0

n2x

enx

= lim
x→0

n2

nenx

= lim
x→0

n

enx

= n lim
x→0

1

enx

= n.
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5 The weak topology and the topology of pointwise convergence on C(K)

Therefore

sup
n∈N
‖fn‖ ≥ lim

n→∞
‖fn‖

=∞

so fn is not norm-bounded. Let’s check now the weak convergence. Define
w : C(K)→ R by

w(f) =

∫ 1

0

f(x)dx.

We have

w(fn) =

∫ 1

0

n2xe−nxdx = 1− 1

en
− n

en
,

and so

lim
n→∞

w(fn) = 1 6= 0 = w(f).

Hence, fn does not converge weakly to f .
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6 A generalization of the

Ebrlein-Šmulian theorem

Finally, in this section we are going to give the proof of a generalization of
the Ebelein-Šmulian theorem. The sources which are used are [7] and [8].
We will need two important results before preceding with the proof.

Proposition 6.1. Let X be a normed space. Then there is a compact
Huasdorff space K such that X is isometrically isomorphic to a subspace
of C(K). If X is a Banach space, then X is isometrically isomorphic to a
closed subspace of C(K).

Proof. Let K = BX∗ equipped with the weak* topology of X∗. Define
T : X → C(K) by the formula

(
T (x)

)
(x∗) = x∗(x). T takes values in

C(K) and it is linear. We also can write

‖x‖ = sup{|x∗x| : x∗ ∈ BX∗} = sup{|
(
T (x)

)
(x∗)| : x∗ ∈ K} = ‖Tx‖∞,

so T is an isometric isomorphism from X into C(K). If X is a Banach
space, then so is T (X), and therefore T (X) is closed in C(K).

Lemma 6.2. If R and S are Hausdorff spaces, R is regular and
f : R → S is injective and continuous. Suppose D ⊂ R is dense and
f(C) is compact for every subset C of D. Then R is compact and f is a
homeomorphism.
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6 A generalization of the Ebrlein-Šmulian theorem

Proof. Suppose that U = {Ui : i ∈ I} is an open cover of R that has no
finite subcover. Let V = {Vj : j ∈ J} be any open cover of R such that for
any Vj there exists Ui so that Vj ⊆ Ui. Such a cover V exists. Suppose the
contrary. Then for any open cover V = {Vj : j ∈ J}, ∃ Vj such that for any
Ui we have Vj 6⊂ Ui i.e., ∃x ∈ Vj with x ∈ Uic,∀i which is an contradiction.
Since D = R then for any finite R ⊂ J we have

D \ (
⋃
j∈A

Vj) = D ∩ (
⋃
j∈A

Vj)
C

= D ∪ (
⋂
j∈A

Vj
C

) 6= ∅,

which means that exists rA ∈ D \ (
⋃
j∈A Vj), ∀A finite.

Let

E = {rA : A ⊆ J and A is finite}.

By construction E has no cluster point. Let s be a cluster point of f(E).
We know that f(E) is compact. Choose r ∈ E such that f(r) = s. Since
s is a cluster point of f(E) then for all α ∈ J

f(r) = s ∈ {f(rλ) : α ≤ λ}.

Since f is injective we have

r ∈ {rλ : α ≤ λ},

which means that r is a cluster point of the net E, this contradiction proves
that R is compact. Since R is compact, S is Hausdorff and f is a continuous
injection by Lemma 4 f is a homeomorphism.

Now we are ready to prove the generalized version of the Eberlein-
Šmulian theorem:

Theorem 6.3 (Eberlein-Šmulian, Grothendieck). Let C(K) be the
Banach algebra of continuous complex valued functions on the compact
space K. Suppose that T ⊆ C(K) is a norm bounded and relatively
countably compact in the weak*. Then T is relatively weakly compact and
every f ∈ Tweak is the weak limit of a sequence in T .
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6 A generalization of the Ebrlein-Šmulian theorem

Proof. Without loss of generality we can assume that T is a subset of the
unit ball of C(K). Take R = T

weak
, D = T , S equal to the pointwise

closure of T and f the identity. If we prove that for any C ⊆ T we have
(fC) is weakly compact then we can apply lemma above. Let h be any
cluster point of f(C) in the topology of pointwise convergence and let Y0 be
the finite dimensional subspace of the bounded complex valued functions
on K spanned by {h, 1K}. Choose a countable subset

{k0,i : i ∈ N}

of K that norms Y0. Since h is a cluster point of C in the topology of
pointwise convergence then there exists x1 ∈ C such that

|h(k0,i)− x1(k0,i)| < 1, i ≤ 1.

In general, let Yn−1 be the space spanned by all polynomials in

{h, 1K , x1, . . . , xn−1, x1, . . . , xn−1}

of degree no more than n− 1 and choose

{kn−1,i : i ∈ N} ⊆ K

that norms Yn−1. Similarly we choose xn ∈ C such that

|h(kl,i)− xn(kl,i)| <
1

n

for all i ≤ n and l ≤ n. We have now constructed the sequence {xn :

n ∈ N} ⊆ T . Since T is relatively countably compact in the topology of
pointwise convergence then {xn} has a cluster point y. This means that
any neighbourhood of y in the topology of pointwise convergence contains
at least one element xn for some n ∈ N .i.e., ∀n ∈ N, ∃xn with

|xn(kl,i)− y(kl,i)| <
1

n
, i ≤ n and l ≤ n.

Now we can write
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6 A generalization of the Ebrlein-Šmulian theorem

|h(kl,i)− y(kl,i)| ≤ |h(kl,i)− xn(kl,i)|+ |xn(kl,i)− y(kl,i)|

<
1

n
+

1

n

=
2

n
,

which implies that h(kl,i) = y(kl,i) for all l and i. The countable set {kl,i :

l, i ∈ N} norms the uniform closure of the algebra Y of bounded functions
on K generated by {h, 1K , x1, . . . , x2, . . . }. By the Stone-Weierstrass and
the Gelfand-Naimark theorems we conclude that y is in Y . Thus

sup
k∈K
|h(k)− y(k)| = sup

k,l
|h(kl,i)− y(kl,i)| = 0,

thus h = y ∈ C(K) and therefore f(C) is weakly compact. Now,
applying the above Lemma we conclude that Tweak = R is weakly compact.
Moreover, we have shown that h is continuous and that {xn : n ∈ N}
has only one continuous cluster point h = y. Since every subsequence of
{xn : n ∈ N} has a continuous cluster point y, then {xn} should converge
pointwise on K to h. Since {xn} ⊂ T which is bounded, by Proposition
5.4 {xn} converges weakly to h. The proof is completed.

Proposition 6.1 tells us that every Banach space X is isometrically
isomorphic with C(K) where K = BX∗ equipped with the weak* topology.
Let us argue that actually the above theorem is a generalization of the
Eberlein-Šmulian Theorem.
First, let us prove that it generalizes (CC)⇒ (C). Take a norm bounded

set A ∈ X which is relatively weakly countably compact. From Proposition
6.1 there exists a set C ⊆ BX∗ such that A = T (C) ⊆ C(BX∗) i.e.,
A ⊂ C(BX∗). Since A is relatively weakly countably compact, this
means that every sequence (xn) ⊂ A has a subnet (xα) that converges
weakly and therefore pointwise ,by Proposition 5.2. Thus A ⊆ C(BX∗) is
relatively countably compact in the topology of pointwise convergence. By
Proposition 6.3 it follows that A is relatively weakly compact.
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6 A generalization of the Ebrlein-Šmulian theorem

Now let us prove that Proposition 6.3 generalizes (CC)⇒ (SC). Con-
tinuing the same reasoning as above, for the set A ⊂ C(BX∗) bounded and
relatively countably compact the Proposition 6.3 assures that for every
f ∈ Aweak is the weak limit of a sequence in A. Take a sequence (xn) ⊂ A,
we want to prove that this sequence has a convergent subsequence (xnk).
For each fixed n there exists a sequence (ynk) with limk→∞ ynk = xn. Now
we can write

limn→∞ xn = limn→∞ limn→∞ xnk. Which means that (xn) has a
convergent subsequence.
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7 Some applications to

Tauberian operator theory

In this section we will show some applications of Eberlein-Šmulian theorem
in the theory of Tauberian operators as shown in [6].

Definition 19. Let X and Y be Banach spaces. A function T ∈ B(X, Y )

is Tauberian if T ∗∗−1(Y ) = X i.e. g ∈ X∗∗ , T ∗∗g ∈ Y imply g ∈ X.

It is immediate that a Tuberian operator has the property

(N): g ∈ X∗∗ , T ∗∗g = 0 imply g ∈ X.
If we denote the null space of T with NT , then as it is shown in Theorem
2 of [5] (N) implies

(R) : NT is reflexive.
Tauberian operators are, in a sense, opposite to weakly compact operators
since T ∈ B(X, Y ) is weakly compact if and only if the range of T ∗∗,
RT ∗∗ ⊂ Y . Thus the set of the Tauberian operators lies in the complement
of a closed subspace of B(X, Y )[6]. Firstly we will give a criterion for
property (N).

Theorem 7.1. Let X and Y be Banach spaces, T ∈ B(X, Y ). Then
T has property (N) if and only if every bounded sequence (xn) ∈ X with
Txn → 0 has a weakly convergent subsequence.

Proof. (⇒). Let z be a weak* cluster point of (xn) ∈ X. We have
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7 Some applications to Tauberian operator theory

T ∗∗(xn) = T (xn)→ 0

in norm, thus T ∗∗(z) = 0. By assumption we have z ∈ X and therefore
(xn) is relatively weakly compact, hence by the Eberlein-Šmulian Theorem
relatively weakly sequentially compact. This allows us to extract a
convergent subsequence from (xn) which converges weakly to some element
x ∈ X.
(⇐). Suppose g ∈ X∗∗ and T ∗∗g = 0 we want to prove that g ∈ X.

Without loss of generality we may assume that ‖g‖ = 1. By Goldstine’s
Theorem there exists a net (xα)α∈A in BX the unit ball of X, with xα → g

weak*. Then

Txα = T ∗∗xα → T ∗∗g = 0,

which means that Txα → 0 weakly. Thus if C is any convex subset of X
such that xα ∈ C eventually i.e. 0 is in the weak closure and therefore, by
Mazur’s Theorem in the norm closure of TC. For each α ∈ A let Cα be
the convex hull of

{xβ : β ≥ α}.

Each Cα contains a sequence (cnα) with ‖Tcnα‖ → 0. By assumption (cnα)

has a subsequence converging weakly to some cα, therefore Tcα = 0. Look
at

{cα : α ∈ A},

this is a relatively weakly sequentially compact set since for every sequence
(yn) ⊂ cα we have T (yn) = 0. By the Eberlein-Šmulian Theorem {cα : α ∈
A} is weakly compact. Thus cα has a weak cluster point and therefore a
weak* cluster point c. Since cα → g weak* and c is a weak* cluster point
of cα then g = c ∈ X. Which is what we wanted to prove.

During the proof of the next application we will need the following result

70



7 Some applications to Tauberian operator theory

Theorem 7.2. Let X and Y be Banach spaces and T ∈ B(X, Y ). The
following are equivalent:

(i) T is Tauberian

(ii) T has property (N) and T (BX) is closed

(iii) T has the property (N) and the closure of T (BX) is included in the
range of T .

Since the main purpose of this section is to show the usefulness of
Eberlein-Š Theorem we omit the proof which can be found in [5].

Theorem 7.3. Let X, Y be Banach spaces and T ∈ B(X, Y ). The
following are equivalent:

(i) T is Tauberian.

(ii) For every bounded set B ⊂ X such that TB is relatively weakly
compact, B is relatively weakly compact.

(iii) For every bounded set B ⊂ X such that TB is relatively compact, B
is relatively weakly compact.

Proof. (i)⇒ (ii)

Let T be Tauberian, B ⊂ X bounded, TB relatively weakly compact. We
want to prove that B is compact. Take a net (xα)α∈A in B. We can see
(xα) as a bounded net in X∗∗. Thus it has a weak* convergent subnet
which we may assume to be (xα) itself. We can write

xα
weak*−−−→ g, for some g ∈ X∗∗ ⇒ T ∗∗xα

weak*−−−→ T ∗∗g.

Since TB is relatively weakly compact (xα) has a convergent subnet,
which we may assume again to be (xα) itself such that

Txα
weak−−→ y for some y ∈ Y.
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7 Some applications to Tauberian operator theory

Now we have

T ∗∗g = weak∗ limT ∗∗

= weak∗ limTxα

= y.

Since T is Tauberian and T ∗∗g = y ∈ Y we conclude that g ∈ X. Thus
B is relatively weakly compact.

(ii)⇒ (iii)

Assume that TB is relatively norm compact. This means that its norm
closure is norm compact therefore weak compact. Hence TB is relatively
weakly compact. Now (ii) assures us that B is relatively weakly compact.

(iii)⇒ (i)

According to Theorem [7.2], to prove that T is Tauberian it is enough to
prove that TBX is included in the range of T and that T has property (N).
Take y ∈ TBX and choose a sequence (xn) in BX with Txn → y. Since
the convergent sequence (Txn) can be seen as a compact set, by hypothesis
(xn) has a subsequence (xnk) wich converges to some x ∈ X. Then, x ∈ BX

and we have

(xnk)→ x⇒ T (xnk)→ Tx.

Since Txn → y and T (xnk) → Tx, then Tx = y. Let’s show now that
property (N) holds. Take a bounded sequence in X with Txn → 0 in
Y . This means that the set {Txn : n ∈ N} is compact. By hypothesis
{xn : n ∈ N} is realtively weakly compact, hence by the Eberlein-Šmulian
Theorem relatively weakly sequentially compact. Therefore it has a weakly
convergent subsequence. According to Theorem [7.1] T has property (N).
Proof is completed.
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Summary

In the first chapter we introduce the concept of compactness(C), countable
compactness(CC) and sequential compactness(SC). In general topological
spaces we have the relationship: (C)⇒ (CC)⇐ (SC). It is a well known
fact that in metric spaces the three types of equivalence are equivalent. It
turns out that this equivalence holds for the weak topology of a Banach
space too.
In the second chapter we present basis of the weak and the weak*

topologies. We prove that the weak topology of an infinite dimensional
Banach space is never metrizable. Some basic properties of these topologies
are proved. In particular, we prove that for convex sets weak and norm
closure agree, X is weak* dense in X∗∗ and, BX∗ is weak* compact. These
theorems, known respectively as Mazur’s Theorem, Goldstine’s Theorem
and Banach-Alaouglu’s Theorem help creating key arguments throughout
all thesis.
In the third chapter we explore bases and Schauder bases of Banach

spaces. We prove that these concepts are equivalent. Here is presented the
concept of a basic sequence too. There are developed some tests which show
whether a sequence of vectors (en)∞n=1 ⊂ X is basis (basic sequence). We
provide methods for constructing basis (basic sequences) on Banach spaces.
It turns out that every Banach space contains a basic sequence. The use of
basic sequences is a key ingredient in the approach that Pelchynski follows
to prove the Eberlein-Šmulian Theorem.
In the following chapter we present the proof due to Whitley in 1967.

This proof is simple and only requires some basic results from weak and
weak* topologies.
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7 Some applications to Tauberian operator theory

In chapter five we investigate the connection between the weak topology
and the topology of pointwise convergence in C(K) for K compact
Hausdorff. We show that a sequence of bounded functionals (fn) ∈ C(K)

converges pointwise if and only if it converges weakly.
In chapter six a proof of the Eberlein-Šmulian Theorem for the weak

topology of C(K) for K compact Hausdorff is given. Since every Banach
space is isometrically isomorphic with a closed subspace of C(K) where
K = (BX∗ , weak

∗), then this version of the theorem is a generalization of
the others proved in the previous chapters.
In the last chapter we show some applications of the Eberlein-Šmulian

Thorem to the theory of Tauberian operators.
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