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Abstract 

This dissertation revolves around developing a multi-purpose embedded communication gateway. 

The gateway is equipped with multiple communication interfaces including Ethernet, Bluetooth, 

WiFi, Zigbee, LTE, and it can be configured and utilized for many purposes, such as a failover of an 

Ethernet cable via 4G in order to maintain the network connectivity.  Raspberry Pi circuit board and 

the operating system Raspbian are selected as the hardware and the software platforms respectively. 

 Different communication interfaces are coordinated by the Raspberry Pi and are configured via Linux 

scripts according to various use cases. Furthermore, a hardware watchdog is adopted to enhance the 

availability of system. In addition, the system is encapsulated into a box to increase its portability. 

The system is validated and evaluated through rigorous test-bed experiments.  Experiment results 

indicate that the developed router works smoothly and reliably in environments with little electrical 

disturbances. 

  



Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

V 

Version 0.7 

Contents 

1 Introduction ................................................................................................................................... 12 

1.1 Background ............................................................................................................................ 13 

1.2 Problem Statement ............................................................................................................... 13 

1.3 Problem Solution ................................................................................................................... 13 

1.4 Organization of the Dissertation ........................................................................................... 15 

2 Existing Work ................................................................................................................................. 16 

2.1 Commercial Products ............................................................................................................ 16 

2.2 Research Studies ................................................................................................................... 17 

2.2.1 Network Failover ........................................................................................................... 17 

2.2.2 Data Syncronization Technologies ................................................................................ 17 

2.2.3 Watchdog as a Reliability Improvement ....................................................................... 18 

3 System Design ............................................................................................................................... 20 

3.1 System Overview ................................................................................................................... 20 

3.2 Overview of Hardware .......................................................................................................... 21 

3.2.1 Main Computer Board – Raspberry Pi ........................................................................... 22 

3.2.2 Watchdog – Arduino...................................................................................................... 23 

3.3 Overview of Software ............................................................................................................ 23 

3.3.1 Operating System for Raspberry Pi ............................................................................... 24 

3.4 Overview of Interfaces .......................................................................................................... 25 

3.4.1 Technologies .................................................................................................................. 25 

3.4.2 Communication Dongles ............................................................................................... 27 

4 Implementation ............................................................................................................................. 28 

4.1 Software Installation and Interface Initialization .................................................................. 28 

4.1.1 Operation System Installation ....................................................................................... 28 

4.1.2 Mobile Broadband Software ......................................................................................... 31 



Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

VI 

Version 0.7 

4.1.3 Wi-Fi Access Point ......................................................................................................... 33 

4.1.4 Ethernet ......................................................................................................................... 35 

4.1.5 Routing .......................................................................................................................... 35 

4.1.6 E-mail ............................................................................................................................. 39 

4.1.7 Bluetooth ....................................................................................................................... 39 

4.1.8 ZigBee ............................................................................................................................ 41 

4.1.9 Kernel Compilation ........................................................................................................ 43 

4.1.10 SD-Card Protection ........................................................................................................ 45 

4.1.11 MySQL Installation Proposal.......................................................................................... 47 

4.2 Mobile Broadband Failover ................................................................................................... 49 

4.2.1 The Initialization of the Script ....................................................................................... 51 

4.2.2 While Loop When There is Internet Connectivity ......................................................... 52 

4.2.3 While Loop When There is Only Local Network Access ................................................ 54 

4.2.4 While Loop When There is No Network Access ............................................................ 55 

4.3 The Watchdog ....................................................................................................................... 57 

4.3.1 Internal Watchdog ......................................................................................................... 57 

4.3.2 External Watchdog ........................................................................................................ 59 

4.4 Other Reliability Measures .................................................................................................... 63 

4.5 Physical Implementation ....................................................................................................... 63 

4.5.1 The Casing ...................................................................................................................... 63 

4.5.2 Cables and Connections ................................................................................................ 66 

4.5.3 ZigBee Module ............................................................................................................... 69 

5 Testing and Validation ................................................................................................................... 71 

5.1 Reliability ............................................................................................................................... 71 

5.1.1 Wi-Fi Access Point ......................................................................................................... 71 

5.1.2 Ethernet Routing ........................................................................................................... 71 



Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

VII 

Version 0.7 

5.1.3 Mobile Broadband (3G/4G) ........................................................................................... 72 

5.1.4 Network Failover ........................................................................................................... 72 

5.1.5 Bluetooth ....................................................................................................................... 73 

5.1.6 Internal Watchdog ......................................................................................................... 73 

5.1.7 External Watchdog ........................................................................................................ 73 

5.2 Scenarios ............................................................................................................................... 75 

5.2.1 Wi-Fi Access Point Range Experiment ........................................................................... 75 

5.2.2 Mobile Broadband Gateway in a Car............................................................................. 75 

5.3 Validation .............................................................................................................................. 75 

6 Discussion ...................................................................................................................................... 77 

7 Conclusion ..................................................................................................................................... 79 

References ............................................................................................................................................. 80 

Appendices ............................................................................................................................................ 91 

 



Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

VIII 

Version 0.7 

List of Figures 

Figure 1 - Server synchronization scenario ........................................................................................... 14 

Figure 2 - Car scenario ........................................................................................................................... 14 

Figure 3 - Netgear DGN2200M [7]......................................................................................................... 16 

Figure 4 - Overview of the system ......................................................................................................... 20 

Figure 5 - Raspi-config main menu ........................................................................................................ 28 

Figure 6 - Raspi-config internationalisation options ............................................................................. 29 

Figure 7 - Raspi-config overclock warning ............................................................................................. 29 

Figure 8 - Raspi-config overclock menu ................................................................................................ 30 

Figure 9 - Raspi-config advanced options.............................................................................................. 30 

Figure 10 - Basic flow diagram for the installation script ...................................................................... 31 

Figure 11 - Output from "lsusb" ............................................................................................................ 32 

Figure 12 - Output from "lsusb" after reboot ....................................................................................... 32 

Figure 13 - Content of usb_modeswitch.conf ....................................................................................... 33 

Figure 14 - Content of wvdial.conf ........................................................................................................ 33 

Figure 15 - The contents of the configuration file for hostapd ............................................................. 34 

Figure 16 - The first part of the file "/etc/sysctl.conf" .......................................................................... 36 

Figure 17 - The content of the file "/etc/network/interfaces" ............................................................. 37 

Figure 18 - The start of the file "/etc/dhcp/dhcpd.conf" ...................................................................... 38 

Figure 19 - The end of the file "/etc/dhcp/dhcp.conf".......................................................................... 38 

Figure 20 - The main configuration of Postfix ....................................................................................... 39 

Figure 21 - XCTU initial launch............................................................................................................... 41 

Figure 22 - XCTU XBee Configuration .................................................................................................... 42 

Figure 23 - XCTU Range Test ................................................................................................................. 43 

Figure 24 - Overview of the network failover script ............................................................................. 50 

file:///C:/Users/Morten/Dropbox/Skole/Masteroppgave/Rapport/Master%20Thesis%20v0.7.docx%23_Toc389434866


Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

IX 

Version 0.7 

Figure 25 - Basic overview of the states in the network failover script ................................................ 50 

Figure 26 - Loop in the failover script where there is Internet access .................................................. 52 

Figure 27 - Loop in the failover script where there is local network access ......................................... 55 

Figure 28 - Loop in the failover script with no network access ............................................................. 56 

Figure 29 - Simple flow diagram of the internal watchdog ................................................................... 58 

Figure 30 - The Watchdog configuration file ......................................................................................... 58 

Figure 31 - A general flow diagram of an Arduino script ...................................................................... 59 

Figure 32 - Arduino main loop overview ............................................................................................... 60 

Figure 33 - A detailed view of the main loop in the Arduino script ...................................................... 62 

Figure 34 - The Raspberry Pi with the hub and some adapters ............................................................ 64 

Figure 35 - The front of the box ............................................................................................................ 65 

Figure 36 - The rear side of the box ...................................................................................................... 65 

Figure 37 - The top of the box ............................................................................................................... 66 

Figure 38 - The inside of the box, seen from above .............................................................................. 67 

Figure 39 - Illustration of connections  [91][92][93][43][94][95][96] ................................................ 68 

Figure 40 - Slice of Pi before assembly [97] .......................................................................................... 69 

Figure 41 - The Slice of Pi after soldering the connectors ..................................................................... 70 

Figure 42 - Our Slice of Pi with XBee ..................................................................................................... 70 

Figure 43 - RPi with Slice of Pi ............................................................................................................... 70 

Figure 44 - RPi with Slice of Pi ............................................................................................................... 70 

 

  

file:///C:/Users/Morten/Dropbox/Skole/Masteroppgave/Rapport/Master%20Thesis%20v0.7.docx%23_Toc389434906
file:///C:/Users/Morten/Dropbox/Skole/Masteroppgave/Rapport/Master%20Thesis%20v0.7.docx%23_Toc389434907


Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

X 

Version 0.7 

List of Tables 

Table 1 - Hardware comparison 1 ......................................................................................................... 21 

Table 2 - Hardware comparison 2 ......................................................................................................... 22 

Table 3 - Operating systems for ARM processors ................................................................................. 24 

Table 4 - Interface comparison .............................................................................................................. 25 

Table 5 - Explanation to Figure 39 ......................................................................................................... 68 

 



Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

XI 

Version 0.7 

Abbreviations 

3G Third Generation Telecommunication Technology

3DES Triple DES (Data Encryption Standard)

4G Fourth Generation Telecommunication Technology

5VDC 5 volt direct current

A Ampere

ARM Advanced RISC (Reduced Instruction Set Computer) Machine

armhf ARM Hard Float

ARMv6 ARM version 6

ARMv7 ARM version 7

BBB BeagleBone Black

BER Bit Error Rate

CD Compact Disc

CPU Central Processing Unit

DES Data Encryption Standard

DSL Digital Subscriber Line

GPIO General-purpose input/output

HDMI High-Definition Multimedia Interface

ISP Internet Service Provider

LAN Local Area Network

LED Light Emitting Diode

mA Milliampere

OS Operating system

RAM Random Access Memory

RAP Remote Access Points

RISC Reduced Instruction Set Computer

RPi Raspberry Pi

RTT Round Trip Time

SD Secure Digital

SSH Secure Shell

SSID Service Set Identifier

TCP Transmission Control Protocol

USB Universal Serial Bus

WLAN Wireless Local Area Network

 



Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

12 

Version 0.7 

1 Introduction 

The Internet acts as a gateway to knowledge and information, and its usages are unlimited. 

Connecting to the Internet allows billions of people around the world to communicate with each 

other in different ways. People all over the world connect to the Internet to receive the services it 

provides. It is a medium which has a large role in education, media entertainment as well as social 

interaction between users. The Internet is a resource and it would be hard to argue against it being 

an indispensible resource in today’s society. Devices which connects to the Internet every day are 

often shipped with other communication interfaces than Wi-Fi and Ethernet, an example would be a 

smart-phone with bluetooth and infrared support. It does not necessarly have to be a smart-phone, 

it may be an older phone that does not have Wi-Fi support, or a camera that are able to transfer files, 

wirelessly, through bluetooth. We would like to take advantage of the fact that there are a lot of 

devices with support for different communication interfaces. We would like to develop a multi-

purpose embedded communication gateway that different devices may connect to and use in 

different scenarios. The embedded system will act as a gateway for communication devices and 

provide services that they cannot achieve on their own. An exampled would be to forward pictures 

from a digital camera to the Internet by use of mobile broadband.  

Speaking of the Internet, one could imagine it would mean a great deal for most people to lose 

access to the services it provides, even for a single day, hour, or minute, depending on its current 

use. It may happen while streaming your favorite TV show or playing an online game. It may occur 

before handing in an assignment or while you are trying to read the news. Losing connection to the 

Internet can happen any day and at any time, some may experience it more frequently than others 

depending on the Internet service provider (ISP). In addition to featuring multiple interfaces, we 

would like our system to provide continuous Internet access. The system will be given a mobile 

broadband interface which acts as a secondary connection to the Internet and will automatically turn 

itself on at suitable occasions. The system will have multiple purposes, depending on the user that 

takes the device into use. It may serve as a node in an already established local area network (LAN) 

or be used in other scenarios.    
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1.1 Background 

There are some existing products on the market which provides continuous Internet access by using 

mobile broadband as a second connection to the Internet.  Companies such as Asus [1], Cisco [2], TP-

Link [3] and Netgear [4] are a few examples of manufacturers that have developed such devices.  The 

amount of devices which are specialized in providing continuous Internet access are few. Of these 

there are few or none multi-purpose devices able to communicate on other interfaces. The gateway 

provided by the dissertation will become an addition to the group of devices which uses mobile 

broadband as failover while providing the user the possilility to use it in scenarios suited for their 

needs.  It is important to note that this embedded system may be modified by users by expanding its 

capabilities. 

1.2 Problem Statement 

Although mentioned companies has developed existing products, there are still some features that 

may be added. For instance, multiple interfaces for multi-purpose use in other types of networks, as 

well as a watchdog to improve its availability. Keeping these improvements in mind, the objective of 

this dissertation is to create a similar product as well as improving its current state by adding new 

features. The newly developed product’s performance will be evaluated through experiments. More 

specifically, the following goals are identified: 

 Goal 1: To develop a multi-purpose embedded gateway by installing the following interfaces: 

LAN, Wireless Local Area Network (WLAN), and Bluetooth, ZigBee, and Third/Fourth 

Generation Telecom technology (3G/4G).  

 Goal 2: To develop automatic loss detection to the Internet that may be used together with 

mobile broadband to provide continuous Internet access.  

 Goal 3: To improve the system’s availability by adding a watchdog. 

 Goal 4: To improve the system’s reliability through script optimization and loading specific 

folder’s into the memory. The kernel of the operating system will be recompiled to bring 

stability to the system as well as removing unnecessary load. 

 Goal 5: To propose a solution for data synchronization to a remote server. 

1.3 Problem Solution 

The embedded system will be developed using a Raspberry Pi with several types of interface 

adapters. Continuous Internet access will be achieved using shell scripts with mobile broadband 

acting as a backup connection to the Internet. In order to provide availability, an Arduino will 

function as a watchdog. The reliability of the system will be achieved through code optimization in 
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addition to loading specific folders into the memory to protect the Secure Digital (SD) card. The 

kernel of the operating system will be recompiled to suit the system specification and to provide 

stability. The dissertation will also propose a solution for implementing data synchronization 

between the embedded system and a server. 

 

Figure 1 - Server synchronization scenario 

By including multiple interfaces, the embedded system will have additional usages. Figure 1 shows 

that it may be used to synchronize local nodes on different interfaces with an external server. Here a 

smart phone is connected to the system via both Bluetooth and Wi-Fi, while a computer network is 

connected through Ethernet. The system is connected to the internet via Digital Subscriber Line (DSL) 

and mobile broadband for redundancy. 

 

Figure 2 - Car scenario 
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Figure 2 shows that another use for the system can be inside a car. The system could provide routing 

for sensors in the car, and transmit log files to an online location if a emergency should occur. 

1.4 Organization of the Dissertation 

The main body of the report is organized into several different chapters ranging from chapter 2-7. 

Chapter 2 is titled Existing Work and provides information about already existing products and 

technology related to our communication system. Chapter 3 is called System Design and contains an 

overview of the different hardware and software that have been looked at during the semester. The 

chapter will also present the system overview in terms of chosen hardware and software and give 

the reasons behind the specific selections. The dissertation will then move on to Chapter 4 

Implementation. This chapter will provide information on how to install and develop the different 

features that are included in the multi-purpose embedded communication system. The chapter will 

in addition include how to compile the Linux kernel to suit the system's specifications and make it 

more reliable. Testing and validation will be provided in Chapter 5 Testing. The chapter will inform 

about the everal different experiments that were done to validate our solution. The end of the 

report, Chapter 6 and 7, will provide a discussion and conclusion of our work.  
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2 Existing Work 

2.1 Commercial Products 

It has already been mentioned in the previous sections that there are existing products on the 

market which provides continuous Internet access by using mobile broadband as a second 

connection to the Internet. One of them is NetGear.    

Netgear has three routers which were developed with purpose 

of providing continuous Internet access. The only router which 

supports a DSL connection is the DGN2200M [4]. It was 

released in 2010 and is still in production by the company [5]. 

The router was originally intended to be used with 3G 

modems, but is currently supporting a wide arrangement of 4G 

modems as well [6]. DSL is connected to the DGN2200M using 

the RJ11 connector. Its internal modem will act as an access 

point and provide Internet access to the other nodes in the 

network which eliminates the need of an independent modem.  

The DGN2200M, in addition to the DSL modem, supports mobile 

broadband through its Universal Serial Bus (USB) port. The mobile broadband can be used to provide 

continuous Internet access when the DSL is unavailable or as a dedicated mobile broadband router. 

Another useful feature which is included in the router is the traffic meter [7]. The traffic meter is 

used to control the amount of data used while the mobile broadband is active. A limit may be set to a 

specific value which will suit the user’s specification and needs. The mobile broadband will be 

disconnected when the limit of maximum data transfer is reached.  

The routers provide continuous Internet access in the same manner as our embedded 

communication gateway. Our embedded communication gateway does however provide multiple 

interface which makes it more universal than the products of the mentioned companies. It is also 

worth mentioning that our system is open source and may be modified to suit other purposes 

compared to the DGN2200M which is a closed system and protected by companies’ patents. In 

addition, the embedded communication gateway has an integrated watchdog which removes the 

need for manual rebooting of the system. The result is that it may be used in situation where manual 

reboots is not an option, for instance in a data sensor scenario where there are not any active 

administrators. 

Figure 3 - Netgear DGN2200M [7] 
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2.2 Research Studies 

2.2.1 Network Failover  

The first paper we're going to adress is a patent paper[8]. The paper itself describes a network which 

use Remote Access Points (RAP) that associates and employees connect to. The RAP is given the 

same configuration paramters as the local company network. By using the same Service Set 

identifiers (SSIDs), encryption and authentication settings, the users can automatically connect to the 

office network after an initial setup. The paper describes a strategy which lets the RAP stay 

connected to the company network at all times. This is done through several parameters such as 

connection priority, signal strength, connection capacity, bit error rate (BER), round-trip time(RTT), 

and traffic amount limitations. 

If the ammount of data transfer is exceeded in one connection between the user and RAP, the 

system will switch its user over to another RAP with the right specifications. If the user does not wish 

to do so, it should disconnect from the Internet. The process of choosing a connection is decided 

through different attributes such as BER and RTT. They are however subject to change due to 

weather conditions, amount of users on the specific access point as well as physical disturbances. 

The system will then measure these parameters for all available alternative connections before 

choosing one to connect through. The patent paper also address other requirements for the system 

such as security.  

The strategies and parameters mentioned in this article are relevant for the network selection in the 

embedded system. It is however uncertain if the requirements set for the network described in this 

article applies to the system developed during the thesis. If the solution is supposed to handle secure 

communication, it would be a good idea to implement some quality requirements. On the other 

hand, in applications with small amounts of data transferred, the quality of the connection does not 

need to meet the same requirements. There it would probably be a good alternative to implement 

connection quality as a user available setting. [9] 

2.2.2 Data Syncronization Technologies 

This article provides four different tests of the file transfer technologies cfengine and rsync [10]. The 

tests are with native cfengine, native cfengine through a Secure Shell (SSH) tunnel, native cfengine 

with Triple Data Encryption Standard (3DES) encryption, and rsync over SSH called externally from 

cfengine.  
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For each of these tests the data transfers were divided in four different sizes: From the smallest 

128kb in 22 files and 1 directory to the largest at 258Mb in 5646 files and 528 directories. The change 

in file sizes during the test may help to detect different performances during diverse workloads.  To 

produce enough data points, the tests were run ten times – five with debugging and five without 

debugging. And to eliminate eventual bottlenecks in the client, the same transfers were done in a 

secondary client as well.   

The results of the tests are illustrated in order to show the time taken for each transfer size and 

technology. To summarize the results, rsync on Linux performs better than cfengine only when there 

are a large amount of files to be synchronized and Solaris rsync is equal or faster than cfengine with 

all techniques. Non-encrypted cfengine over SSH performed poorly overall as cfengine and SSH was 

connected through Transmission Control Protocol (TCP) socket connections and therefore created a 

heavier load on the operating system’s TCP stack. 

These results are interesting as rsync is popular file synchronization technology. However, it is 

important to keep in mind that these tests were performed in 2001 and a lot has changed since then. 

Network transmission speeds, operating systems and hardware capacities as well technologies 

themselves are subject to change. Even if the results in this article were conclusive for the concurrent 

time, the same tests performed with the latest versions on the current hardware and operating 

systems may show different results. [9] 

2.2.3 Watchdog as a Reliability Improvement 

The purpose of this article is to describe the different types of watchdogs that may be used in a 

system [11].  It describes in details where they may be placed and what types of trigger mechanisms 

that are used based on their location.  There are three possible locations for a watchdog in a system: 

1 In software. 

2 On-chip of the device. 

3 External 

The article describes the advantages and disadvantage of each location. For instance, if the watchdog 

is placed inside the software and is to be triggered by a software malfunction it will result in being 

unusable if the hardware freezes.  However, an on-chip watchdog in the mentioned scenario may 

provide a system reboot. This way the system “knows” if the system is required a normal or an 

extraordinary boot. The third alternative is an external watchdog. An external watchdog is installed 

on an external board which is connected to the main system.  
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Other aspects which are described in the article are methods which can be used in order to detect a 

malfunction. One method is to implement a timer which is connected to the watchdog. The system 

will reset the timer at a given time, would the system fail to do so, the watchdog will act according to 

its settings. The article is relevant for our work as it provides information about the different types of 

watchdog which exists, and its strengths and weaknesses. 

As it has been mentioned in the previous subchapters, the goal of this dissertation is to develop a 

multi-purpose embedded communication gateway. The motivation itself lies within the mutual 

interest of development and networking. Personal motivation also plays a part of the project as it 

seems to be a practical device to have. It also lets the user to add more features to the device if 

necessary. 

Based on the above observations, we realize that some of the features our communication gateway 

brings to the market already exists. As it was mentioned in the previous section, there are already 

existing commercial products that provides continuous Internet access through LTE and the 

discussion of bringing network failover, data backup, and availability to to users is a fairly discussed 

topic. The LTE router mentioned in the previous section does however not provide any of the 

features that the articles discusses. It is important to notice that even though the features discussed 

in the articles are common in the corperate side, it is not so in a regular user's home. We would like 

to provide our users with a communication device that features LTE as a mean to provide continuous 

Internet access, as well as integrating the corporate advantages that has been discussed in the recent 

articles. Our device will also integrate different communication interfaces to ensure that the device 

can be used in different types of scenarios and not only in home-environment. [9]  
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3 System Design 

3.1 System Overview 

The embedded system is developed on the Raspberry Pi using a recompiled kernel of the operating 

system: Raspbian. Multiple communication interfaces such as Ethernet, Wi-Fi, Bluetooth, ZigBee, and 

LTE has been added through compatible chipsets to make it suitable for different types of scenarios.  

The communication dongles are connected to the Raspberry Pi through a self-powered USB-hub, and 

an external board is connected to the Raspberry Pi which functions as a watchdog. The current board 

which has been used in the system is an Arduino, the reason for choosing the specific hardware will 

be explained in Section 3.2.2.  

 

Figure 4 - Overview of the system 

The system has been developed to monitor its Ethernet ports in real-time to detect abrupt loss of 

connection and automatically switch to mobile broadband to provide continuous Internet access. It is 

designed to act as a wireless access point for wireless devices.  To extend the life of the SD card the 

system has been designed to write only to the Raspberry Pi’s memory.  
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3.2 Overview of Hardware 

This part of the report will provide some information about the different types of hardware which 

has been looked at during the past year, and the reasons for choosing the specific computer boards 

to support our communication gateway. 

Table 1 - Hardware comparison 1 

Computer Board Central 

Processing Unit 

(CPU) 

Random 

Access 

Memory 

(RAM) 

Storage USB-connections 

A13-OLinuXino-WIFI 

[12][13][14][15] 

1 GHz 512 MB Micro SD-card 3 

Arduino Mega 2560 

[16][17][18] 

16 MHz 8196 B Internal 4092 B 1 

BeagleBoard [19][20] 720 MHz 2048 MB Memory card 1 

BeagleBone Black 

[14][20][21] 

1 GHz 512 MB Micro SD card 1 

Cubietruck 

[14][22][23][24] 

Dual-core 1GHz 2048 MB Internal 2 GB+S-

ATA 

2 

Elektor Linux Board 

[25][26] 

180 MHz 32 MB 4 SD card 1 

Gooseberry [27][28][29] 1 GHz 512 MB 4 GB internal + 

micro SD 

1 Mini-USB 

Hackberry [30][31] 1 GHz 512 MB 4 GB internal + SD 

card up to 32 GB 

2 

Mars Board [32][33] 1.2 GHz 1024 MB 4 GB internal + SD 

card up to 32 GB 

2 + OTG 

Netduino plus 2 

[34][35][36] 

168 MHz 100+ KB Micro SD 0 

Parallella [37] [38][39] Dual-core 1 GHz 1024 MB 16 GB micro SD 1+OTG 

Raspberry Pi mod. B 

[40][41] 

700 MHz 512 MB SD card 2 

Utilite Value [42][43] 1 GHz 512 MB  Micro SD 4 + OTG 
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Table 2 - Hardware comparison 2 

Computer Board Ethernet Wi-Fi Bluetooth Power 

consumption 

Price 

A13-OLinuXino-WIFI [12][13][14][15] No Yes No 6 W 55€ 

Arduino Mega 2560 [16][17][18] No No No N/A 39€ 

BeagleBoard [19][20] No No No 6 W 91€ 

BeagleBone Black [14][20][21] Yes No No 6 W+ 35€ 

Cubietruck [14][22][23][24] Yes Yes Yes 2 A 70€ 

Elektor Linux Board [25][26] No No No 50-70 mA 71€ 

Gooseberry [44][28][29] No Yes No 4 W 50€ 

Hackberry [30][31] Yes Yes No 0.7 A @ 5.5 V 48€ 

Mars Board [32][33] Yes No No N/A 37€ 

Netduino plus 2 [34][35][36] Yes No No N/A 55€ 

Parallella [37] [38][39] Yes  No No 5 W 72€ 

Raspberry Pi mod. B [40][41] Yes No No 700-1000 mA 25€ 

Utilite Value [42][43] Yes No No 4-6 W 72€ 

3.2.1 Main Computer Board – Raspberry Pi 

Table 1 and Table 2 illustrate the different types of computer boards which have been studied in the 

past year. There is variation in power and price as well as utilities such as Ethernet, Wi-Fi, Bluetooth 

and power consumption. The weakest boards, the Arduino, The Elektor Linux board, and the 

Netduino Plus 2, all operate with processor frequencies below 200MHz. The mentioned boards’ 

specifications are too low to support our embedded system and are removed from the list of 

candidates. The other boards possess similar aspects when it comes to the CPU frequency as they all 

range from 700 MHz to 1.2 GHz dual core and are all able to run advanced operating systems such as 

Linux. Another important aspect is the amount of RAM each of the devices possess. They all range 

from 512MB to 2GB. The BeagleBoard and Cubietruck ships with the highest amount of RAM of the 

listed devices, but are also the most expensive ones to order, the BeagleBoard at 91€ and Cubietruck 

at 71€. Other expensive boards are the A13-OLinuxXino-WIFI, the Hackberry, the Parallella and the 

Utilite Value, which all have a price above 47€ and basically have the same capabilities as the 

cheaper models. It is important to note that the BeagleBoard and Cubietruck, with highest amount of 

RAM, are not suitable for the tasks that the embedded system will perform as 2048MB of RAM is too 

much.  
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This leaves us with BeagleBone Black, The Gooseberry, the Mars Board, and the Raspberry Pi. The 

Gooseberry was removed from the list of candidates since it does not possess an Ethernet port or a 

standard USB port. The next step is to look at the power adapters that are powering the different 

computer boards. The Raspberry Pi and BeagleBone Black are both powered by a mini-USB, while the 

Mars Board is only able to power up by use of a 5 volt direct current (5VDC) adapter. In terms of 

availability we decided to remove the Mars Board from the list of candidates as being able to power 

the Raspberry Pi (RPi) and BeagleBone Black (BBB) through a mini-USB is simpler.  

The two remaining boards are quite similar to each other. They both have the memory of 512 MB, as 

well as an High-Definition Multimedia Interface (HDMI) and Ethernet output. The RPi has the 

advantage of shipping with two USB ports, while the BBB has a stronger CPU at 1 GHz compared to 

Raspberry Pi’s 700 MHz. The RPi is however our chosen as our platform of development as it is more 

than powerful enough to support the systems function, and comes at a cheaper price than BBB.  The 

RPi is well suited for running a light Linux distribution, and the CPU can easily be overclocked to gain 

the necessary performance level. [45] 

3.2.2 Watchdog – Arduino 

The Arduino Mega 2560, Elektor Linux board and Netduino Plus 2 where all removed from the list of 

candidates in Section 3.2.1 for being too weak. As the watchdog uses a fairly simple piece of 

software, the processing power in the hardware does not have to be as great as in one who will run 

an operating system. The watchdog needs to be reliable and as inexpensive as possible. With the 

price ranging from 37€ for the Arduino to 71€ for the Elektor Linux Board, it was the most 

economical choice to choose the Arduino. Some other deciding factors is that the Elektor Linux 

Board, as well as the Netduino plus 2, require a memory card to function,  in addition to the 

Arduino’s large community which can be helpful if needing assistance. It is however important to 

mention that there are other types of hardware that might be more suitable for a service like 

watchdog. The Arduino is in reality too powerful for a simple task such as a watchdog; the decision to 

use it was made due to the availability of this hardware in the lab. We can easily transplant our 

program to another simpler device in the future if necessary. [45] 

3.3 Overview of Software 

This subchapter will present the operating system (OS) and other software which has been chosen 

for our embedded system as well as the reason for choosing the specific types. 
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3.3.1 Operating System for Raspberry Pi 

Table 3 contains an overview of free operating systems that supports the Advanced RISC Machine 

(ARM) CPU architecture. Popular operating systems such as Windows and OSX is not listed as they 

are not free, and do not support the type of architecture which is needed. Table 3 also contains a 

combination of suggestions from Distrowatch.com [46] and elinux.com [47]. It is important to note 

that not all of the distributions from the latter source list are taken into consideration as they do not 

support ARM Hard Float (armhf).  

Table 3 - Operating systems for ARM processors 

General Linux 

Distributions 

Lightweight OS Unix-like OS Entertainment Special Features 

Alt Linux Arch Linux FreeBSD GeeXbox IPFire 

Debian Bodhi Linux NetBSD OpenELEC Kali Linux 

Fedora Moebius openSUSE PiBox Plan9 

Gentoo Linux PiBang Linux Slackware Linux PiMAME  

Lubuntu Pidora  Raspbmc  

RISC OS Raspbian  RaspyFi  

Ubuntu SliTaz  Xbian  

 Tiny Core Linux    

The main board which was chosen for the embedded system runs ARM version 6 (ARMv6) CPU 

architecture. The natural step was to eliminate the distributions which did not support the current 

architecture, which is why the following operating systems where removed from the list of 

candidates: Alt Linux, Debian, Fedora, IPFire, Lubuntu, NetBSD, Slackware Linux and Ubuntu. Ubuntu 

and Lubuntu supports the ARM version 7 (ARMv7) architecture, but has limited ARMv6 support [48]. 

IPFire does not support ARMv6 architecture as the developers felt that it would be too slow for their 

operating system [49].  Slackware Linux does not exist for the Raspberry Pi [50] while NetBSD is 

under development [51]. Debian and Fedora does not support the Raspberry Pi, but there is however 

rebuilds of the two operating systems; Raspbian and Pidora.  

GeeXbox [52], OpenELEC [53], PiBox [54], Raspbmc [55], RaspyFi [56] and Xbian [57] are distributions 

that were developed to act as media centers on the Raspberry Pi which is not suited for our systems’ 

specifications. Another OS that was excluded is Kali Linux. Kali Linux is an operating system for 

network testing, and is made by the same developers who made the live compact disc (CD) tool 

BackTrack [58]. The PiMame is an OS with a collection of emulated game consoles while the Plan9 OS 
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is designed to be used as a part of a distributed system [59][60]. None of the mentioned operating 

systems suited our preferences and was removed. 

Limited information could be gathered from reading system specifications. The next step of the 

process was to install the different operating systems on the Raspberry Pi and check if the installed 

operating systems supported the basic features which were needed for the embedded system. The 

installation of RISC OS had several flaws. The operating system performed poorly with frequent 

crashes. Arch Linux was not able to detect nearby devices using Bluetooth and Bodhi Linux did not 

have the support for Bluetooth on the Raspberry Pi. Moebius was not able to transmit files even 

though the pairing had been successfully accomplished. We experienced Wi-Fi errors with several 

operating systems. Arch Linux, Bodhi Linux, Moebius, PiBang Linux and Pidora all had Wi-Fi 

connection uses and was able to detect nodes over Wi-Fi, but unable to connect to them. 

The Raspbian OS was the only operating system that met the system specifications of our embedded 

system and passed the basic installation experiments. It experienced some compatibility issues with 

the current USB-hub which made it unable to boot, but was easily resolved by using another hub. 

[45] 

3.4 Overview of Interfaces 

3.4.1 Technologies 

The table gives a description of the different values of the properties shared by the different 

communication systems. The table was used to compare and evaluate the different types of 

interfaces which were selected for our embedded communication gateway. 

Table 4 - Interface comparison 

Feature(s) Ethernet [61] IEEE 802.11g 

[62] 

Bluetooth 

[63][64] 

ZigBee 

[65] 

3G/4G  [66][67] 

Power Profile N/A Hours Days Years Days 

Complexity Very 

Complex 

Very Complex Complex Simple Very Complex 

Nodes/Master   7 64000  

Latency 0.3 ms Up to 3 sec. Up to 10 sec. 30 ms  

Range  N/A 100 m 10 m 70-300m Radio Tower  

Data Rate  11Mbps 1Mbps 250Kbps 40Mbps 
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Most of the interfaces from Table 4 is implemented in our embedded system. One interface which 

did not get implemented was WiMax. WiMax technology provides fast data rate up to 30-40 Mbps 

and has a large broadcast area compared to Wi-Fi [68]. There is a high amount of devices which 

supports the technology, and it may even rival Wi-Fi in some areas, but it was decided to not 

implement it as it is not a widespread technology in Norway. The Internet service providers which 

offer WiMax services are NextGentel, NextNet, and Telenor, and this is only in certain areas of the 

country [69]. The WiMax wireless communication standard is supported only by 4G era technology, 

which also only exists within the largest city in Norway and is costly. We believe it that it would be 

better to wait until it becomes a more widespread technology, and more people takes interest in it. 

The chosen interfaces for our system are Ethernet, Wi-Fi, Bluetooth, Zigbee and 3G/4G. We would 

like our embedded system to support multiple types of interfaces to make it a universal device which 

may be used in several situations. The user is then able to choose between the interfaces that may 

suit his or her needs. Ethernet is the most common and widespread technology used in LAN. It 

provides the network with high data transfer rate up to 100Gbps as well as security, as people would 

need to be physically connected to do any damage.  

The Ethernet technology is constrained by cables and it is the reason why Wi-Fi is included in the 

embedded system. Wi-Fi has the advantage of providing mobility, and allows LANs to be easily 

deployed while being cost efficient. The use of Wi-Fi will remove hurdles such as cabling, drilling and 

setting up multiple switches as access points. 

Bluetooth offers the same advantages as Wi-Fi, but at a much shorter range. Bluetooth was 

developed to be used by portable equipment and its application. The main difference between the 

two technologies is that Wi-Fi is dependent on access points. In addition Bluetooth demands low 

processing power, has low battery usage and, and gives little signal interference. 

The next interface which is implemented on the communication gateway is ZigBee. ZigBee is 

developed for the purpose of communication on a sensor network, and is a low power intensive 

interface. Compared to Bluetooth, ZigBee has the ability to transmit data over longer distance by use 

of multi-hop communication. Multi-hop communication gives the node the capability of forwarding 

information. 

The last interface which is going to be implemented in our system is 3G and 4G mobile broadband 

technology. The technology is usually used by mobile phones and other mobile devices. The 

technology comes with universal global roaming, and supports different types of multimedia 
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services. Mobile broadband is one of the most important features in our system, as it provides a 

second connection to the Internet. The interface provides better security than Wi-Fi, and allows a 

data transfer rate up to 40 Mbps while the device is stationary, which makes it an exceptional 

candidate for replacing DSL during downtime [67].  

During the process of selecting the different types of candidates we thought about how the 

mentioned interfaces could cover their strength and weaknesses. We would like users to choose 

between the different types of interface suited for their situation. By implementing multiple 

interfaces our embedded system may be used in a wide area of different tasks and makes our 

gateway universal. [45] 

3.4.2 Communication Dongles 

The embedded communication gateway provides several different communication interfaces. It 

requires several dongles which can serve as antennas for the respective interface.  Functional 

dongles was acquired by recommendations from the Linux community. The system is currently using 

ZTE MF821D Telenor as an antenna to provide mobile broadband, and reason for choosing the 

specific dongle was due to our connection with Telenor. They allowed us to borrow and test the 

dongle and offered us a special discount. The communication gateway serves as a wireless access 

point and is connected to a Edimax EW-7811Un. It was however not our first choice when choosing 

dongles. The D-Link DWL-123 Wi-Fi dongle was installed and worked as a client, but did not support 

the feature of serving as an access point for other devices.   

The Bluetooth dongle which was chosen for our gateway was the ASUS USBBT211. The Bluetooth 

was accessible at the current time and had been used by several users in the Raspberry Pi 

community. The ZigBee interface was provided by a ZigBee module named XBee, which required an 

additional circuit board to function. We had access to the Xbee module at the lab and the circuit 

board was ordered online as it was manufactured for the Raspberry Pi. 
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4 Implementation 

4.1 Software Installation and Interface Initialization 

4.1.1 Operation System Installation 

When having a brand new Raspberry Pi at hand, one need to install an operating system. There are 

different methods on how to do this, depending on which OS is used. As we chose to use Raspbian, 

the method is quite simple. By downloading an image file and extracting this onto the SD card using 

another computer, the installation process is almost done. 

The Raspberry Pi will boot immediately after inserting the SD card and being connected to the power 

supply. First the operating system will load, and then the script “raspi-config” will be shown. Since 

this is the first boot of the Raspberry Pi, it would be recommended to do some basic configuration 

before getting started using the OS. 

 

Figure 5 - Raspi-config main menu 

Most of the configurations in this script may be changed later, but we recommend to do some 

changes as soon as possible. Following is a list of configurations we recommend changing, where the 

naming is based the menu shown in Figure 5. Also note that some menu choices are unmentioned, as 

they are irrelevant for our setup. 

 1 Expand Filesystem: It is advisable to expand the file system, to make sure no space is 

unallocated and then unusable by the OS. 

 2 Change User Password: The default password for the user “pi” is “password”, but to 

improve the security, this should be changed. 
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 3 Enable Boot to Desktop/Scratch: If one wish to use the graphical user interface provided by 

Raspbian, it is necessary to enable that in the menu. By default the RPi will boot to the text 

console. 

 4 Internationalisation Options 

 

Figure 6 - Raspi-config internationalisation options 

o I2 Change Timezone: To get the clock correct one has to change the time zone 

setting. 

o I3 Change Keyboard Layout: By default the keyboard layout is set to “English”, and 

should be changed if the keyboard has another character set. 

 7 Overclock: In order to speed up the process of upgrading existing and installing new 

software, it is possible to overclock the CPU, core, SDRAM and voltage. However, it might 

weaken the stability and reduce the lifetime of the Raspberry Pi. 

 

Figure 7 - Raspi-config overclock warning 

 The Raspberry Pi Foundation has made some improvements, and enabling the highest level 

of overclocking will not void the warranty anymore [70]. As stability is a great factor in this 

implementation, we recommend to be careful when overclocking, but if it is only for a short 
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period of time, it can be a way to save some time. 

 

Figure 8 - Raspi-config overclock menu 

 When we did the installation of software, we used the preset called “High”, as the likelihood 

of stability issues increases with heavier overclocking. In earlier firmware versions it was a 

common problem with SD card corruption when using the “Turbo” preset, but this should 

have been fixed in newer firmware versions [71]. 

 8 Advanced Options 

 

Figure 9 - Raspi-config advanced options 

o A4 SSH: To control the Raspberry Pi remotely in the future, we suggest to enable the 

SSH server. Until this is done, a keyboard and a monitor is required to control the 

system. 

To exit the “raspi-config” script, choose “Finish” and answer yes to reboot the Raspberry Pi. 

During the development of this system, there has been a lot of fresh installs. Therefore we made a 

script to automate the installation. This script is somewhat interactive in the way that it asks the user 

which features to install, and saves the configuration details in between reboots. Then it is able to 
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continue where it left off and without the need of the same input twice[72]. The complete script can 

be read in Appendix 4. 

 

Figure 10 - Basic flow diagram for the installation script 

In general the installation script will ask the user for input, followed by installation of software and 

finally changing configuration files according to the collected input. 

We will not explain the script in detail, as the interested reader can study it in the appendices. 

However, an installation guide of different functions will be provided. The installation script contains 

some functionality that can be useful, such as selection of system functionality and e-mail 

notification when user input is needed. 

Before installing anything, one should get an updated version of the package lists from the 

repositories. This can be done in console by running “sudo apt-get update”. 

After the update, the application manager will know if there are any new versions of the installed 

packages on the computer. To install the newest versions of everything available from the package 

repositories, run the command “sudo apt-get upgrade –y”. This will take a while, but afterwards 

the system will be ready for the software installation. 

4.1.2 Mobile Broadband Software 

The mobile broadband can be difficult because the hardware often run in different modes. First it will 

start in storage mode which allows the user to install the supported driver software, but then one 

will have to enable the modem mode. In Windows this usually is no problem, but in Linux one will 

have to reboot or reconnect the device. Even then there might be an issue. Reconnecting the device 

will not always work, as it stays in storage mode after connecting it to the system. Also, if the modem 

is connected to a self-powered USB-hub (as we recommend), one will have to disconnect the 

external power supply, or the modem will not detect the reboot. 

A third alternative is to use a program named “usb-modeswitch”. It needs some configuration, but it 

is much more effective to use than any of the previously mentioned methods. 

As a step in the configuration you will have to run “lsusb” to get a list of USB-devices connected to 

the Raspberry Pi [73]. 



Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

32 

Version 0.7 

 

Figure 11 - Output from "lsusb" 

Find the modem in the list and take a note of the vendor ID and product ID. In Figure 11 these values 

are given as 19d2:0166 (the vendor ID and the product ID, respectively, separated with a colon), but 

these values will be different for other devices[73]. 

If an externally powered USB-hub is used, disconnect the power supply and then reboot. After 

rebooting the system, the power can be reconnected to the hub. Then, run “lsusb” again. 

 

Figure 12 - Output from "lsusb" after reboot 

This time, the vendor and product IDs should have changed. In Figure 12 they are 19d2:0167. Note 

that the vendor ID does not have to change. Again, take a note of these values as they will be used at 

a later stage[73]. 

To install the software, run the command “sudo apt-get install ppp wvdial usb-modeswitch –

y”. “wvdial” is creating the connection to the mobile broadband provider and “ppp” is a program 

responsible for creating a tunnel using the ppp protocol. 

 

Now that usb-modeswitch is installed, it can be configured. The command “tar –xzvf 

/usr/share/usb_modeswitch/configPack.tar.gz 19d2\:0166 && cat 19d2\:0166 | grep 

MessageContent” will output one or more lines to be used in the configuration [73]. Note that 

“19d2” and “0166” has to be replaced with the correct values for vendor ID and product ID from 

before the reboot (when the modem was in storage mode). This output is used when editing the 

configuration file /etc/usb_modeswitch.conf [73]. If using text console and not the GUI, the file 

can be changed using “sudo nano /etc/usb_modeswitch.conf”.  
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Figure 13 - Content of usb_modeswitch.conf 

Create the file as given in Figure 13, but use the vendor IDs, product IDs and the message content 

values from earlier. As the configuration file is complete, usb-modeswitch can be run with “sudo 

usb_modeswitch –c /etc/usb_modeswitch.conf” [73]. 

The only thing left before being able to use the mobile broadband, is the configuration of wvdial. The 

command “wvdialconf” creates a file (/etc/wvdial.conf) which can be edited using “nano”. There 

are three variables in this configuration file that depends on the mobile broadband provider. As we 

are using Telenor, the APN, username and password is all “telenor”. When using another provider, 

these settings will have to be changed accordingly. 

 

Figure 14 - Content of wvdial.conf 

As soon as the file is similar to Figure 14, connection can be tried using “wvdial telenor”, where 

“telenor” in this command is the apn name for the mobile broadband provider [73]. Press Ctrl+C to 

disconnect the mobile broadband connection. 

4.1.3 Wi-Fi Access Point 

If the objective with the system is to be a router, it is probably more useful to implement a wireless 

access point instead of client functionality. It is only possible to use one of these features, as the 

programs wpa_supplicant and hostapd is having counter-effects on each other. The latter is used to 
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handle the authentication and connection functions in the access point. The setup of Wi-Fi client is 

described in Appendix 7. 

To install hostapd, run “sudo apt-get install hostapd -y” [74]. This will install the necessary 

files to use a Linux computer as a Wi-Fi access point. Unfortunately, this is not completely supported 

by the Raspberry Pi. Therefore a modified version is needed. At the time of writing this thesis, the 

modified hostapd could be downloaded and installed using the following commands: 

wget http://www.adafruit.com/downloads/adafruit_hostapd.zip 
unzip adafruit_hostapd.zip 
sudo mv /usr/sbin/hostapd /usr/sbin/hostapd.ORIG 
sudo mv hostapd /usr/sbin/hostapd 
sudo chmod 755 /usr/sbin/hostapd 

The configuration process of hostapd is done by creating a configuration file. To edit or create the 

configuration file, run “sudo nano /etc/hostapd/hostapd.conf”. If the file does not exist yet, it 

will be created. 

 

Figure 15 - The contents of the configuration file for hostapd  

Inside the configuration file, write exactly the same as shown in Figure 15, except for the lines with 

“ssid” and “wpa_passphrase” [74]. This is where the name of the network and the password 

needed to connect is inserted. In Figure 15 the name of the network is “rasWiFi” and the WPA 

password is “raspberrypi”. If the connection is slow, changing the value for “channel” can solve the 

problem, as the frequency may be less disturbed on other channels. The best value is depending on 

the given environment. 

The completion of the access point setup is described in Section 4.1.5 as some of the steps are 

depending on whether the extra Ethernet port is going to be installed or not. 

http://www.adafruit.com/downloads/adafruit_hostapd.zip
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4.1.4 Ethernet 

The main reason for installing the extra Ethernet port would be for routing purposes in a larger 

network.  As the Wi-Fi interface has a physical limitation on the amount of concurrent users, the 

users on cabled network will not be affected by each other. On Wi-Fi, traffic from all other users will 

be received as noise, which will cause collisions and degraded signal. 

Other reasons for a limited Wi-Fi signal are noise from home appliances and limited signal range. In 

addition to these factors, the signal is vulnerable to building structures. Ethernet is much more 

resistant for external noise and therefore more stable. It also supports communications over a longer 

range. 

In order to install the extra Ethernet interface, connect the adapter and run the following commands: 

sudo ifconfig eth1 up 
sudo ifconfig eth1 10.0.1.1 

These commands will turn on the Ethernet port (if it is not on already) and set its IP address to 

10.0.1.1. For Ethernet clients this will be the address to their gateway. 

As the next steps are different if the Wi-Fi access point is installed, the final part of the setup is 

described in Section 4.1.5. 

4.1.5 Routing 

This subsection is only relevant when installing the Wi-Fi access point, the second Ethernet port or 

both. 

4.1.5.1 Network settings 

In order to be able to route network packets between the Internet and the local network, Linux need 

to enable forwarding. This is done by editing a file called “/etc/sysctl.conf” and running some 

commands afterwards. 

In the configuration file, uncomment the line containing “net.ipv4.ip_forward=1”, so it becomes 

identical to the bottom line in Figure 16 [74]. 

To finalize setting up the forwarding, run the following lines of code [74]. The first line will activate 

forwarding in Linux, and the rest is setting up iptables. 

sudo sh -c “echo 1 > /proc/sys/net/ipv4/ip_forward” 
sudo iptables --flush 
sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE 
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sudo iptables -A FORWARD -i eth0 -o eth1 -m state --state RELATED,ESTABLISHED 
sudo iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT 
sudo iptables-save > /etc/iptables.rules 

 

Figure 16 - The first part of the file "/etc/sysctl.conf" 

Iptables is a firewall in Linux, which is also used to help forward traffic. “iptables –t nat” sets up 

NAT, so the local network addresses is disguised for an external viewer. The parameters “-i eth0 -o 

eth1 -m state --state RELATED,ESTABLISHED” is blocking traffic from the outside which is not 

from an already existing connection, while “-i eth1 -o eth0 -j ACCEPT” lets through all traffic 

from the local network to the Internet. If only the Wi-Fi access point is in use, and not the extra 

Ethernet port, please replace eth1 in this example with wlan0. If both are in use, it is unnecessary to 

add wlan0 to the iptables rules. 

As the forwarding part is now complete, it is necessary to set some interface specific settings. These 

are set in the file “/etc/network/interfaces” [75]. 

If both the access point and the Ethernet is set up, the file from Figure 17 can be directly copied. If 

only one is being used, just skip the part of the file regarding the interface not in use. 
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Figure 17 - The content of the file "/etc/network/interfaces" 

4.1.5.2 DHCP Server 

In modern IPv4 networks, there is almost always a DHCP server present. Since devices need an IP 

address which corresponds to the current network in order to be able to communicate, it is quite 

impractical to use static IP addresses. To add DHCP functionality, start with installing the DHCP 

server: 

sudo apt-get install isc-dhcp-server -y 

This command will probably give an error message as the DHCP server will not be able to start before 

the configuration is complete. First open the file “/etc/default/isc-dhcp-server” and find the 

line starting with “INTERFACES=”. Add the names of the interfaces being used inside the quotation 

marks. Use a space to separate the names if using more than one. For instance, the line will be 

“INTERFACES=“wlan0 eth1”” if both interfaces is going to be used.  

The rest of the configuration is done when editing the file “/etc/dhcp/dhcpd.conf”. 

At the start of the configuration file, comment the lines with “option domain-name” and “option 

domain-name-servers”, and uncomment the line containing “#authoritative;”. The result should be 

similar to Figure 18. 

Before quitting the text editor, the subnet declarations for the interfaces you want to use must be 

added. These are added to the end of the same file. If both the Wi-Fi access point and extra Ethernet 

interface is to be used, the end of “dhcpd.conf” should look like Figure 19. 
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Figure 18 - The start of the file "/etc/dhcp/dhcpd.conf" 

On the other hand, if only the Wi-Fi access point is installed, then only add the first half with “subnet 

10.0.0.0” (including everything inside the first set of curly braces). Alternatively, if the access point 

is skipped, but the extra Ethernet interface is installed, add the last part of Figure 19, starting with 

“subnet 10.0.1.0”. 

 

Figure 19 - The end of the file "/etc/dhcp/dhcp.conf" 

The interfaces and DHCP server are now ready. To start the DHCP server and make it start during 

boot, run the two following commands: 

sudo service isc-dhcp-server start 
sudo update-rc.d isc-dhcp-server enable 

The first line is only starting the DHCP server for this session, and the second line makes it start at 

every boot. 
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4.1.6 E-mail 

If the user wants to be notified on special events, such as on errors or when the main Internet 

connection is lost, the gateway can send an e-mail to inform the user automatically. To do so, an  e-

mail server can be installed. This is purely for sending mail, and not for receiving. To install the 

required packages, run “sudo apt-get install postfix mailutils libsasl2-2 ca-

certificates libsasl2-modules –y” [76]. Postfix is the program used to send e-mail, and has to 

be configured using the file /etc/postfix/main.cf. In this example we are using a Gmail address, 

but it is possible to use most other e-mail accounts as well. 

 

Figure 20 - The main configuration of Postfix 

If using Gmail, the configuration file should be identical to Figure 20 [77][76]. To finish the setup of 

postfix, run the following commands. Make sure the “USERNAME” and “PASSWORD” fields are replaced 

with the correct login credentials. 

sudo echo "[smtp.gmail.com]:587    USERNAME@gmail.com:PASSWORD" > 
/etc/postfix/sasl_passwd 
sudo chmod 400 /etc/postfix/sasl_passwd 
sudo postmap /etc/postfix/sasl_passwd 
sudo cat /etc/ssl/certs/Thawte_Premium_Server_CA.pem | sudo tee –a 
/etc/postfix/cacert.pem 
sudo /etc/init.d/postfix reload 

Now that postfix is completely installed, e-mails can be sent using “echo “E-mail text” | mail –s 

“Subject” example@example.com”, where E-mail text is the body of the mail, Subject is the 

subject and example@example.com is the receiver of the e-mail [78]. 

4.1.7 Bluetooth 

In this setup, the Bluetooth interface is listening for incoming files and will automatically save them 

to a directory. By default the Bluetooth agent will need to pair with the sending device, in addition to 

accepting the file transfer, with help of a user input. These issues are solved in the following 

installation description. 

For this section, only three modules will be installed. This is done by running “sudo apt-get 

install bluetooth bluez-utils obexpushd -y” [79][80]. The third of these packages 
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(obexpushd) is the daemon responsible for accepting and receiving files over Bluetooth. The 

configuration is done by creating a file with “mkdir /home/pi/bluetooth && nano 

/etc/init/obexpushd.conf” and adding the following lines to this file [80]. 

chdir /home/pi/bluetooth 
exec obexpushd -n 
start on startup  

Save the file and run “sudo initctl reload-configuration” and “sudo start obexpushd”, and 

the system will be automatically receive all files sent from paired devices [80]. As previously 

mentioned, the system needs some user input to pair with a Bluetooth device. This is circumvented 

by running the following commands [81].  

sudo hciconfig hci0 piscan 
sudo hciconfig hci0 sspmode 1 

The first command will enable Bluetooth visibility and the second will turn off the PIN code when 

pairing. When these commands are run, they do not set the visibility and security modes 

permanently. If the Bluetooth should always stay in these modes, the commands may be added to a 

startup file using “sudo nano /etc/rc.local”. Please note that the last line should be “exit 0”, 

and any extra code should be inserted before this line. 

When files are received they will be saved in the previously given folder. This dissertation is not 

covering an automatic backup or file transfer in detail, but we have made an example where the user 

can have the incoming files sent by mail (given that the mail feature is installed in Section Feil! Fant 

ikke referansekilden.). This example is easy to modify by changing the echo and mail commands 

inside the “while read file” loop. When executing the following code, the folder for incoming files 

will constantly be monitored and files automatically sent to an e-mail address. 

#!/bin/bash 
while true 

do 

cd /home/pi/bluetooth 
ls > /tmp/bluetoothfiles.tmp 
while read file 
do 

  echo “File received from Bluetooth client” | mail –s “New Bluetooth 
file” –a $file test@example.com 

  rm $file 

done </tmp/bluetoothfiles.tmp 

sleep 10 

done 

In our code example above the ls command is run within the folder /home/pi/bluetooth and the 

output is printed to a temporary file. In each line in this temporary file, a name of a file is listed, and 

for each file an e-mail will be sent to the e-mail address test@example.com. Then the file will be 
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deleted to make sure it is not sent again and to prevent wasting disk space. This whole process is 

repeated every 10 seconds, by the use of the sleep command.  

4.1.8 ZigBee 

The hardware part of the ZigBee was installed in Section 4.5.3. This part of the dissertation will 

explain how to configure the XBee to join a PAN network with other nodes. The Xbee may be 

configured in different ways, it may be done through a software on a remote computer or through 

the Raspberry Pi itself. This part of the report will cover how to do it on a remote computer which 

does not run a Linux operating system.  

The first step to configure one's XBee is to download and install the open source application for XBee 

named XCTU on the remote computer. The application is a free multi-platform application that is 

both compatible with Windows and MacOS and offers simple wireless network configuration tools 

for the user [82]. 

 

Figure 21 - XCTU initial launch 

During the installation the XBee module can be prepared and connect them to a remote computer by 

use of a serial/USB port. The application will not automatically search for the modules and the search 

must be started manually by pressing the button in the top left corner with a plus sign. A window is 

shown in Figure 21. This window allows the user to add a radio device to the application. Choose the 
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respective serial port and press finish. It will most likely be able to find the device if it is new and in 

its default settings. However if the baud rate has been changed by another user, it might be 

necessary to try and go through all the different baud rate options, unless the specific number is 

known. 

 

Figure 22 - XCTU XBee Configuration 

After discovering the XBee moduleit can be configured. As seen in Figure 22 there are a lot of 

configuration parameters that may be set. The most important ones, however, are ID, CH, SH anD SL, 

MY, DH and DL, and BD.  The ID (PAN ID) allows the user to specify which networks the module is 

supposed to join. In other words, all the modules which are going to be in the same network needs to 

have the same ID. The CH (Operating channel) lets one specify the channel that the ZigBee modules 

will use while SH and SL specifies the unique address of the modules. The SH and SL can however 

cannot be changed. DH and DL allows setting destination address high, and destination address low. 

The addresses are found on the back of the XBee and will be given to the adjacent XBee in the PAN. 

The baud rate (BD) is set to 9600 which is the default rate to communicate. As we have not 

determined what to use the sensors for we use the default rate. An example were you could change 

it, would be in relation to a Nintendo Wii remote were a fast baud rate is necessary.  
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Figure 23 - XCTU Range Test 

By using XCTU we check if the XBee has been properly configured and may join a PAN. This requires 

another XBee which it can be join up with. After configuring the second XBee unit we switch to 

networking mode in XCTU. Figure 23 shows that the ZigBee modules are able to detect each other. 

To properly test the XBee modules and observe if they are able to transmit packets between each 

other we proceed to use the range test tool found in XCTU. 

By running the XCTU range test we now know that the two modules are properly configured and may 

now integrated onto the Raspberry Pi to serve as one of the many communication interfaces the 

system has to offer. 

4.1.9 Kernel Compilation 

There are basically two ways of compiling the Linux kernel. It can be done locally on the computer 

that is going to be upgraded, or it can be done on a secondary computer. As the Raspberry Pi is only 

equipped with a 700 MHz CPU, we figured it would take too much time. Especially since each build 

had to be tested and if it turned out to be erroneous, it had to be recompiled. Therefore we installed 

Ubuntu on a virtual PC using VirtualBox. It was given access to one CPU core running at 3.2 GHz and 

4096 MB of RAM. 
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The compilation process is started when downloading the source code to the Linux kernel, and a 

compiler designed for the target computer – in our case the RPi. Then the source code is primed with 

the current config, which is copied directly from the Raspberry Pi. When this is done, the kernel can 

be modified by adding or removing features. In order to make the kernel more stable, we removed a 

lot of unnecessary modules. After repeating this process until we had a reduced version that worked 

without flaws, we transferred the kernel and the modules to RPi. 

Below is a set of commands to download the necessary files and prepare for selecting modules. We 

have not automated the selection, as this was done in an interactive menu [83]. 

mkdir ~/rpi 
cd ~/rpi 
wget https://github.com/raspberrypi/linux/archive/rpi-3.2.27.tar.gz 
wget https://github.com/raspberrypi/tools/archive/master.tar.gz 
tar xzf rpi-3.2.27.tar.gz 
tar xzf master.tar.gz 
export CCPREFIX=/home/picompile/rpi/tools-master/arm-bcm2708/arm-bcm2708-linux-
gnueabi/bin/arm-bcm2708-linux-gnueabi- 
export KERNEL_SRC=/home/picompile/rpi/linux-rpi-3.2.27 
cd $KERNEL_SRC 
make mrproper 
scp pi@192.168.1.18:/proc/config.gz ./ 
zcat config.gz > .config 
make ARCH=arm CROSS_COMPILE=${CCPREFIX} oldconfig 

Please note that the username on the Ubuntu install is “picompile” and the IP address of the 

Raspberry Pi is “192.168.1.18” in the code example. The code above is first making a folder in the 

home directory, then downloading two .tar.gz-files. These files are then extracted. The “export” 

commands are creating variables to ease the rest of the process. Instead of using the long folder 

paths, the variables can be used. 

The “cd” command changes directory to perform the following commands from inside the kernel 

source folder. When inside this directory “make mrproper” cleans up old files before the compilation 

is started [83]. As this command also will remove configuration files, we wait until after this to copy 

the configuration from the RPi. 

“scp” is the command used to transfer the current configuration from RPi. This starts a SSH session 

and will copy the file to the Ubuntu machine. Then the configuration file is extracted and used to 

select the modules in the source that is already installed on the Raspberry Pi. In order to make 

changes in the kernel, run the following command and select or unselect modules [84] 

make ARCH=arm CROSS_COMPILE=${CCPREFIX} menuconfig  

When this is done, the kernel will be compiled using the command “make ARCH=arm 

CROSS_COMPILE=${CCPREFIX}”, and the modules will be built with “make ARCH=arm 
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CROSS_COMPILE=${CCPREFIX} modules” [84]. Be prepared to wait, as this is the part that may 

potensially take the most time, along with the transfer of the modules later. 

As all of the modules will now be built, they should be installed to a folder. To do this, run the 

following commands. 

mkdir ~/rpi/modules 
export MODULES_TEMP=~/rpi/modules 
make ARCH=arm CROSS_COMPILE=${CCPREFIX} INSTALL_MOD_PATH=${MODULES_TEMP} 
modules_install 

On the Raspberry Pi, we designed the following commands to install the newly built kernel along with 

the modules. 

scp -q picompile@192.168.1.76:/home/picompile/rpi/linux-rpi-
3.2.27/arch/arm/boot/Image ./ 
scp -r -q picompile@192.168.1.76:/home/picompile/rpi/modules/lib ./ 
cp Image /boot/kernel_new.img 
cp -r lib/* /lib 
rm -r Image lib/ 
cat /boot/config.txt | grep -v "kernel=" > config.txt 
echo "kernel=kernel_new.img" >> config.txt 
cp config.txt /boot/config.txt 
rm config.txt 

This time “scp” is used to copy the kernel image and the modules to the Raspberry Pi from the 

virtual PC with IP 192.168.1.76. Use “scp -r” to copy an entire directory [85].Then reboot and check 

if everything works the way it should. If there are errors, the process has to be repeated from “make 

mrproper” and afterwards. In case of error it can be helpful to only remove a small number of 

modules at a time, so that it is easier to troubleshoot. The solution is probably to add the module 

that turned out to be needed afterall. 

4.1.10 SD-Card Protection 

The multi-purpose embedded communication gateway has to be as reliable as possible. We looked at 

several different techniques to introduce reliability to the system, one of them revolved around the 

SD-card. It is known that writing multiple times to a SD-card might damage it over time. To reduce 

the amount of writing to the SD-card we found a couple of solutions to handle the problem.  

The Linux operating system has an in-memory file system that lets you write files to it. The files which 

are written to the memory will only exist in the hardware's memory and will be erased if the system 

is shut off. The Linux file system includes two different mount types; ramfs and tmpfs. Ramfs is not 

used in our solution as it does not give the option to set a memory limit to prevent overflow of RAM 

usage. The Raspberry Pi frequently writes to /var/log and /var/run. One could say that they are the 

worst offenders. The var/log file is mostly used for troubleshooting, but has been moved to the RAM 
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disk for the moment as it can be mounted back on the SD-card if needed. It would also benefit the 

system to write the temporary files from tmp to the RAM-disk.  

The /var/log, /var/run and tmp folders are mounted to the RAM disk by opening and editing the 

/etc/fstab configuration file. This is done by “sudo nano /etc/fstab”. 

The following lines should be added to the configfile [86][87].  

#<file system>    <dir>           <type>  <options>                 <dump><pass> 

proc              /proc                 proc    defaults                      0   0 

/dev/mmcblk0p1   /boot                 vfat    ro,noatime                    0   2 

/dev/mmcblk0p2   /ext4      defaults,noatime               0   1 

none              /var/run          tmpfs   defaults,noatime              0   0 

none              /var/log          tmpfs   defaults,noatime              0   0 

none   /tmp   tmpfs defaults,noatime   0   0 

The <filesystem> column determines the partition or storage that is going to be mounted. This 

column will not be used in relation to our solution. The <dir> column is used to specify the directory 

which is going to be written to the RAM instead of the SD-card. It is also possible to specify the type 

of file system that will be mounted. There are a lot of different types of file system besides tmpfs. 

<dump> can be set as 0 or 1 which specifies if to create a backup of the specific directory while 

<pass> is set to 0 or 1, depending on if it is desirable to have the file system checked by fsck utility. In 

the end we have the <options> coloumn which lets a user specify the setting for the specific folder. 

The fstab config files comes with a lot of different types of options. The options can be found at 

[kildenummer https://wiki.archlinux.org/index.php/fstab]. Currently the options for tmpfs has been 

set to default which means that tmpfs is allowed to use up to half of the total RAM that the system 

offers. The noatime option which has been set is the most important setting as it will disable the 

feature were Linux writes to the SD card every time something is read.  

By using tmpfs we will prevent some of the most used directories to be written to the SD card. The 

tmpfs does however come with a weakness. If a situation arise were the system is need of higher 

amounts of memory, the file system swap back to using the SD card when writing to a folder. To 

prevent swapping we can run the following commands to disable it [86]. 
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sudo dphys-swapfile swapoff 

sudo dphys-swapfile uninstall 

sudo update-rc.d dphys-swapfile remove 

The changes will take effect on system reboot. 

4.1.11 MySQL Installation Proposal 

This section of the dissertation will provide information about how to setup data synchronization 

between two servers using MySQL. The information provided here has not been tested and is only a 

proposal on how to install and configure MySQL to act as a master slave replication on the multi-

purpose communication gateway. The MySQL server is installed by using the following command: 

sudo apt-get install mysql-server mysqwl-client 

 

The next step of the process is to open up the mySQL configuration file on the Raspberry Pi. This is 

found in /etc/mysql/my.cnf and is accessed by use of the "nano" tool in Raspbian. Scroll down to 

bind-address in the configuration file and replace its IP address with the IP address of the server. In 

our case this will be the IP address of the Raspberry Pi.  

bind-address = 109.189.105.151 

 

The next line to change in the configuration file is the server id. The server id is used to identify the 

SQL server and must be unique. For the sake of simplicity we give the Raspberry Pi the id: 1. 

server-id = 1 

 

The last line to configure in the file is he log_bin line. log_bin is where all the changes that are 

made to the SQL server are registered. The slave server is going to copy these changes. The line will 

be commented and one only has to uncomment the line to activate it.  

log_bin = /var/log/mysql/-bin.log 

 

Once the changes has been made save and exist the configuration file. 

The next step of the configuration will take place in the MySQL shell. To access MySQL use the 

command mysql -u root -p. Access has to be given to the slave server and set up their password. 

To do so, give the following command. 

GRANT REPLICATION SLAVE ON *.* TO 'slave_user'@'%' IDENTIFIED BY 'password'; 

FLUSH PRIVILEGES; 

For the next step open a new window or tab in addition to the one already in use. In the new tab run 

the following commands. 
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USE newdatabase; 

FLUSH TABLES WITH READ LOCK; 

SHOW MASTER STATUS; 

The command "SHOW MASTER STATUS" will provide the user with a table which should be 

remembered for later use. The user will then go back to the previous shell tab and export the 

database using the following command. 

mysqldump -u root -p --opt newdatabase > newdatabase.sql. 

It is important to note that the command is run in bash shell and not in MySQL. Return to the MySQL 

shell and unlock the tables and quit. 

UNLOCK TABLES; 

QUIT; 

 

Now that we are done configuring the master database (Raspberry Pi) we have to configure the slave 

database. Open up the slave's MySQL shell with mysql -u root -p. In the SQL's shell use the 

following command. 

CREATE DATABASE newdatabase; 

EXIT; 

 

Import the database we previously exported from the master database by use of mysql -u root -p 

newdatabase < /path/to/newdatabase.sql. The next step is to configure the server in the same 

way that the master server was configured. The configuration file is accessed through the same 

means by sudo nano /etc/mysql/my.cnf. In the configuration file set the following parameters: 

server-id  = 2 

relay-log  = /var/log/mysql/mysql-relay-bin.log 

log_bin    = /var/log/mysql/mysql-bin.log 

binlog_do_db = newdatabase 

 

Exit the SQL shell and restart the service through sudo service mysql restart. Open the shell 

again after its reboot and type the following details: 

CHANGE MASTER TO MATER_HOST='109.189.105.151', MASTER_USER='slave_user', 
MASTER_PASSWORD='password', MASTER_LOG_FILE='mysql-bin.000001', MASTER_LOG_POS= 
107; 

The information used was given when running SHOW MASTER STATUS on the master server. The 

command used designates the current server as the slave of our master server and provides the 

server the correct login credentials. And lastly it tells the slave server were to replicate from by using 

the log file from the master server.  
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The configuration is now complete and one can start the slave server by typing “START SLAVE;” [88]. 

4.2 Mobile Broadband Failover 

In order to manage automatic failover of the Internet connection, we design the following script that 

will run continuously. An overview of this script is shown in Figure 24. 

When the script is started, it will set some settings before reaching the first loop. This loop runs while 

the Internet connection is available. Inside the loop, the script will check if the Internet connection is 

lost, and will also distinguish if there is local network access or not. If the connection is lost, it will 

connect the mobile broadband and set up forwarding from this, but where it goes from there 

depends on which level of network access is still available. When there is access to the local network, 

it will perform some tests towards the Internet. This is done within the B-loop in Figure 25. Another 

outcome is if there is no network connection at all. The script will then run loop C in Figure 25. Then 

the script will only perform tests on the local network. When the network connection is available, the 

script will exit loop C and enter loop B. If it then detects normal Internet connection, it will enter loop 

A. The mobile broadband connection will stay connected for a predefined number of seconds. This 

number is set in the start of the script. 

When taking a look at Figure 25, note that there is no direct link going from loop C to loop A. That is 

to make sure the network is back before switching off the mobile broadband. 

In this brief overview, we have divided the script into four parts. The following subsections will go 

into detail on each of these. 
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Figure 24 - Overview of the network failover script 

 

Figure 25 - Basic overview of the states in the network failover script 
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4.2.1 The Initialization of the Script 

The first part of the script is only used to set some parameters to be used later in the process. Some 

of the variables are set automatically, but some is also available for the user to change. Following is a 

complete list of the user definable variables and an explanation of their meaning: 

 IF – The interface which has internet access and is monitored by the script. By default it is 

eth0. 

 pausetime – The number of seconds which the script is going to wait between each check. 

Setting this to a low value increases the system load, but a high value may result in a longer 

waiting period before the failover script reacts on connection loss. Default: 2. 

 staymin – When mobile broadband is connected due to loss of Internet connection, and the 

main connection becomes available, this value says how long the mobile broadband shall 

stay connected. As it takes some seconds to connect the mobile broadband, this can help if 

there is a high risk of a new connection loss in near future. If the main connection is usually 

stable, this value can be set to 0. Default: 2. 

 networkstate – The initial network state. Can be 0, 1 or 2. 0 means that there is internet 

connectivity, 1 means only local access and 2 is no network access. This value is also deciding 

which of the while loops the script should stay in at all times. Default: 0. 

 rxthreshold – One of the connectivity tests are measuring the amount of packets that can 

be received and still have no internet access. 

 pingcount – The number of ping requests to be sent when performing ping tests. There is a 

delay on one second between each ping. Default value: 3. 

 pingexternal – An IP address in the Internet that is always available to ping. Default: 8.8.8.8 

(Google DNS server) 

 losslimit – This is the amount of ping requests that is acceptable to lose, given in 

percentage. The value must be between 0-100. Default: 0. 

 pridns – The primary DNS server that is to be used. It is possible to use the ISPs own DNS, 

but some servers are only for the ISPs IP subnet. As the mobile broadband is on some other 

subnet, and maybe behind a NAT server as well, it is possible that the ISP DNS will be 

unreachable when using the mobile broadband connection. Default value: 8.8.8.8 (hosted by 

Google). 

 secdns – The secondary DNS server that is to be used. Default: 8.8.4.4 (hosted by Google). 

In addition to the variables available to the user, the script sets some values automatically. These 

values include setting the default gateway on both the main interface and the 3G/4G interface. Also, 

the staymin value is converted to seconds, to match the timers in the script. 

By running ifconfig, the values for the amount of bytes sent and received can be read. These values 

are stored to the variables txold and rxold. 
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Before entering the main part of the script, usb_modeswitch will run to make sure the modem is 

ready, and not locked in storage mode. Then it will wait the number of seconds as the variable 

pausetime. 

4.2.2 While Loop When There is Internet Connectivity 

Right before the most common while loop, iptables will set its rules back to normal. If the variable 

networkstate is 0, the script will enter the loop. It will again wait the amount of seconds as defined 

in the variable pausetime. This is the best place of the script to add a delay. The delay has to be 

inside the loop, but the middle and the end of the loop is more time critical in case of failure. 

 

Figure 26 - Loop in the failover script where there is Internet access 
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After the delay, the script checks if there is anything stored in the variable defaultgw. Preferably the 

IP address of the nearest router on the current interface (given in the variable IF), should be stored 

in the variable. If the IP address is already stored in the variable, it will be saved to a file to remember 

until next time the script runs. On the other hand, if the variable is not set, the script will try to read 

it from the DHCP client lease file. If the IP address was found now, it will be saved in a file. It may 

happen that the address cannot be found, and it will then try reading the value from a file generated 

last time the IP address was known. 

In the next step there is a check if the variable mbbconnected equals 1. In that case, mobile 

broadband is most likely connected as well. If it is connected, it will first figure out how long it has 

been connected. This is done with comparing the variable SECONDS to the variable startconnect. 

The first of which is an internal Linux variable, that counts seconds from the start of the script, and 

the latter is set to the same value as SECONDS at the time the main connection is yet again available. 

The difference of these values will at all times show the number of seconds the mobile broadband 

has been connected after the main connection is back. If this difference, connectsec, is equal to or 

larger than staysec (which is the amount of seconds the mobile broadband shall stay connected 

after it is no longer in use), the mobile broadband will disconnect. This calculation makes sure that if 

the main connection disconnects again, it will be faster to switch over to mobile broadband. 

Depending on the contract and operator, it may be unwise to let the mobile broadband stay 

connected for longer periods of time, mostly because of the potential costs. 

In the next test, the script checks the content of a file called /sys/class/net/eth0/carrier (in this 

example eth0 is the value of the variable IF). If the content of this file is 1, the cable is detected in 

the port. That means that there must be a device in the other end of the cable. If the value here is 0, 

the loop will exit immediately and networkstate will be set to 2. 

When the cable is detected, the values for rxbytes and txbytes will be fetched from ifconfig. 

These are the numbers of bytes that has been received and transmitted (respectively) in total since 

boot. As the values rxold and txold contains the corresponding values from earlier, it is possible to 

measure the amount of traffic since last iteration of the script, or from the start of the script if this is 

its first round. The differences are stored to the values rxdiff and txdiff. 

If rxdiff is less than rxthreshold, the script will continue to check txdiff. Otherwise nothing will 

be done and the script will continue from the start of the loop. The next test checks if txdiff is 

equal to 0. If this is the case, nothing is probably expected to be received, and the script will 

continue. If txdiff is more than 0, the script will return to the start of the loop. 
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As it is now defined that there has been no measurable traffic since the last run, it is necessary to 

generate some traffic in order to find out if there is Internet access. This is done using ping tests. First 

the IP in defaultgw is pinged. If this fails (ergo; the fail percentage is higher than the value in 

losslimit), the script exits the loop, and sets networkstate to 2, as there is probably no network 

connection available. The number of attempts is depending on the value of pingcount. If the test is 

successful, some new attempts are done to the IP given in pingext. The result of this test will decide 

if the loop should be restarted or not. There is probably no working Internet connection if this test 

turns out negative, but it is already determined that the local network is available, so the variable 

networkstate will be set to 1 and the loop will be exited. If the test is positive, it seems to be no 

problem with the Internet connection. 

In total, there are three network tests in this loop. They are deliberately sorted by complexity, 

duration and resource intensity. As the simple cat command to determine if the cable is connected is 

so fast, it is best to try this first, as a network error will then be found earlier. A ping test demands 

more of the local system, and all nodes in between the sender and the receiver, so it is best to wait 

until this is the last option. 

4.2.3 While Loop When There is Only Local Network Access 

Before this while-loop is reached, there are some lines of code that enables the mobile broadband 

connection if it is not already connected. Similar to the in Subsection 4.2.2 that checks for content in 

the variable defaultgw, in this part the script checks mbbgw for content. If it is empty, it will attempt 

to find it using the route command. On the other hand, if the IP address to the gateway for the 

mobile broadband connection is already stored in the variable, it will create a file to save it for later. 

If this fails, and the variable was not found, it will attempt to read the IP address from a previously 

saved file. Then the default route will be updated to go via the mobile broadband gateway, the DNS 

servers are replaced and the iptables rules is changed to include ppp0 (rather than the interface 

stored in the IF variable). When this is done, the script will have arrived at the start of the loop. 

The first action within the while-loop, is to wait the number of seconds that is defined in pausetime. 

Then it will temporarily enable the main interface as the default route and reset the DNS server 

addresses. This is done mainly because there is a risk of getting false replies on the ping requests 

when the mobile broadband is connected. For instance, if the ping replies were received through the 

mobile broadband interface, the script could reset the connection back to the main interface, while 

in fact the connection was still down. 
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The first ping attempt is to the IP in pingext. If this succeeds, the script will exit the loop and set 

networkstate to 0, as there was now detected an Internet connection. However, if the attempt fails, 

the script will ping its nearest router, the IP from defaultgw. If this succeeds, the loop will restart 

after setting mbbgw as the default route and adding the new DNS servers, but if it fails, networkstate 

will become 2 and the loop will exit. 

 

Figure 27 - Loop in the failover script where there is local network access 

4.2.4 While Loop When There is No Network Access 

This while-loop is slightly different from the other two, in the way that the script can come from 

either the first or second loop (networkstate=0 or networkstate=1). If the process runs from 

networkstate=0, then the processes in front of the loop is identical to the part in front of the loop 

described in Subsection 4.2.3. In fact, this is the exact same piece of code that is run. However, if the 

script runs from networkstate=1, the given code has been run earlier. Therefore it does not matter 

for the outcome of the script, except for the flow described in Figure 28. Compared to the other 

while-loops, it is different as there are two possible starting points, instead of just one. 
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If the script comes from the loop where networkstate=0, the steps in the process before this while-

loop is described in Subsection 4.2.3. There are no code in between the two last loops in the script, 

so when exiting the loop where networkstate=1, this loop is entered at once. 

As soon as the loop is entered, the script stops as long as it should according to the value in 

pausetime. Then it will run the cat command to check /sys/class/net/eth0/carrier if the cable is 

detected. If so, the loop quits immediately and returns to the loop where networkstate=1.  

 

Figure 28 - Loop in the failover script with no network access 

On the other hand, if the cable is undetected, the script sets default route temporarily back to the 

standard value. The DNS servers are also updated. After this, the DNS servers are set and the default 

gateway is pinged and mbbgw is again set at default route. Depending on the verdict of the ping test, 

the script will either return to networkstate=1 or repeat the current loop (networkstate=2). None 
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of the loops will ever be exited unless the networkstate changes, so if the ping test gives a positive 

result, the loop will be exited. 

4.3 The Watchdog 

As stated in Section 3.2.2, we chose to use the Arduino Mega 2560 as our watchdog. What we might 

not have mentioned is that there is a watchdog on the Raspberry Pi as well. This internal watchdog is 

able to react sooner when something is wrong, but if the system has stopped working completely, 

chances are the watchdog itself has stopped running too. As this is a risk, we chose to use both the 

internal and external watchdogs. 

4.3.1 Internal Watchdog 

In order to use the onboard watchdog in the Raspberry Pi, the watchdog driver has to be added to 

the kernel. This can be done during the kernel compilation, or via a simple command and by editing a 

file. Also, the software for the watchdog has to be installed.  

If the kernel is not going to be recompiled, the watchdog driver can be added with the command 

“sudo modprobe bcm2708_wdog” [89]. 

Edit the file called /etc/modules and add a new line with the text “bcm2708_wdog” [89]. When this is 

done, the watchdog will be recognized by the operating system. 

To install the necessary software, run ”sudo apt-get install watchdog chkconfig -y”. The 

installation will create a file ”/etc/watchdog.conf” [89]. Edit this file by uncommenting the lines 

containing the following: 

 max-load 

 min-memory 

 watchdog-device 

 admin 

 interval 

 logtick 

 log-dir 

 pidfile 

Make sure the file is identical to the file in Figure 30. When the file is saved, run the two following 

commands, and the setup of the internal watchdog will be complete [89]. 

sudo chkconfig watchdog on 
sudo /etc/init.d/watchdog start  
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Figure 29 - Simple flow diagram of the internal watchdog 

 

Figure 30 - The Watchdog configuration file 

As long as the system is still running, the watchdog will continue to monitor the system state. If an 

exception should occur, the watchdog will reboot the system. The watchdog will however not be able 

to reboot the system if the process has stopped working. The reliability will then rely on the external 

watchdog. 
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4.3.2 External Watchdog 

Unlike the internal watchdog, the function of the Arduino is clearly not depending on the system load 

on the Raspberry Pi. The internal watchdog is unusable if the process controlling it stops working. 

In order to create and run a script on the Arduino, it needs to be connected to a computer running 

the Arduino IDE. This software is used to write the code, compile it and transfer to the Arduino. As 

the computer is quite basic, it will only run one script at a time, and any previous scripts will be 

deleted when transferring a new. As soon as the transfer is complete, the Arduino will restart and 

run the newly transferred script. Basically, an Arduino script can be divided into three parts: The 

initialization, the setup and the loop. 

 

Figure 31 - A general flow diagram of an Arduino script 

In the initialization, variables are defined and assigned start values. The setup contains code that is 

only supposed to run once. When this is done, the loop is started. This is the main part of the code, 

and will run continuously until the Arduino loses power, or is manually reset using its reset button.  

Our complete script can be read in Appendix X, where there also is a complete model. As the script is 

fairly complex, it will be described in detail below. 

4.3.2.1 Initialization Part 

This is the first part of the code and contains only declarations of variables. Following is a list of the 

variables, their initial values and a description: 

 buttonPin – The number of the pin where the button is connected. Default: 3. 

 beaconPin – The number of the pin where the Raspberry Pi sends its heartbeat signal. 

Default: 8. 

 onsignalPin – The number of the pin where the Arduino sends a signal to Raspberry Pi 

when it is supposed to be turned on. Default: 30. 

 relaysignalPin – The number of the pin where the Arduino sends a signal to the relay 

which is controlling the power supply to Raspberry Pi. Default: 52 

 startupTime – A measured number of milliseconds it takes to power up the Raspberry Pi. 

Default: 75000. 
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 shutdownTime – A measured number of milliseconds it takes to shut off Raspberry Pi. 

Default: 15000. 

 time – A value used to measure time between each alternation of the signal from Raspberry 

Pi. Default: 0. 

 newtime – A value used to measure time between each alternation of the signal from 

Raspberry Pi. Default: 0. 

 runtime – A value used to measure time between each alternation of the signal from 

Raspberry Pi. Default: 0. 

 buttonval – The measured value on buttonPin on a scale 0-1023. Default: 0. 

 beaconval – The measured value on beaconPin on a scale 0-1023. Default: 0. 

 initialState – A variable that is either 0 or 1. It is used to keep track of which section of 

the main loop that should be run. Default: 0. 

 startupState – A variable that is either 0 or 1. It is used to keep track of which section of 

the main loop that should be run. Default: 0. 

 normalState – A variable that is either 0 or 1. It is used to keep track of which section of the 

main loop that should be run. Default: 0. 

 buttonshutdownState – A variable that is either 0 or 1. It is used to keep track of which 

section of the main loop that should be run. Default: 0. 

 hardshutdownState – A variable that is either 0 or 1. It is used to keep track of which section 

of the main loop that should be run. Default: 0. 

4.3.2.2 The Setup 

The setup part only contains six lines of code. This includes setting the direction on the pins (input or 

output), starting a serial session for debugging and setting the variable initialState to 1. Pin 

direction is important as this tells the Arduino if the pin is used to send or receive signals.  

4.3.2.3 Main Code 

The main part of the script is one large “while”-loop that will run continuously [90]. Inside this loop, 

there are five smaller while loops. Three of them are only run once, and behave like “if”-tests. The 

other two will not stop until they receive a proper input, in form of a button press or a signal loss 

from the Raspberry Pi. 

 

Figure 32 - Arduino main loop overview 
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In the first while loop, which is only entered when initialState=1, the Arduino starts sending signal 

to the relay and the Raspberry Pi. It also sets initialState to 0 and startupState to 1. This means 

that it will always exit after its first run. 

When startupState=1, the second while loop is started. This is a state where the Arduino waits for 

the Raspberry Pi to boot. As soon it detects the signal from the Raspberry Pi, it will exit the loop and 

continue with its normal operation. 

Inside the main loop, there is code designed to detect the alternating signal from the Raspberry Pi, 

while also detecting if the button is being pressed. In order to do this, we have designed two smaller 

loops, one for when the signal is received and one for when it is not received. 

The first action in the main loop is to set the variable time to the output from the function millis() 

[91]. This is a number of milliseconds since the script was started and will be used at a later time. 

Afterwards, it will check if the signal from RPi is on or off [92]. If it is on it will check if the button is 

pressed [92]. If it is, the variables normalState and buttonshutdownState will be changed (to 0 and 

1 respectively). Then the script will not restart the main loop when it reaches the end, but instead 

continue to the next step. 

However, if the button was not pressed, the script will continue and check if the RPi is still sending a 

signal, and getting a new output from millis() [92][91]. This time the value is stored to the variable 

newtime. The difference between time and newtime is stored to runtime, which is compared to the 

value startupTime [93][94]. If runtime is longer than startupTime, the Raspberry Pi is declared 

“dead” and the script will enter the last loop [94]. This is done with setting the variables 

normalState, beaconval and hardshutdownState to 0, 1024, and 1, respectively. 

On the other hand, if runtime is small enough, the loop will return to the start. Just before runtime 

was calculated, there was also a set a new value for beaconval. If it has changed, the current loop 

will be exited, and the right loop in Figure 33 will run. This loop is designed exactly the same, except 

that it will run until the signal is detected again. As the signal is designed to alternate every 500 ms, 

the script will switch between the loops pretty fast. 

When the main loop is exited, it is always because the Raspberry Pi needs to shut down. It is either 

the user’s decision to or because the signal is constant on or off, so it’s suspected it has stopped 

working. Either way the Arduino stops sending the signal to Raspberry Pi. This is done so the 

Raspberry Pi has a chance to turn itself off in a controlled manner and to prevent damaging the SD 
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card when cutting the power. The Arduino will wait for the predefined number of milliseconds it 

usually takes to shutdown the RPi before switching off the relay. 

If the system was shut down by the user, the Arduino will wait for a new button press from the user 

before turning on the Raspberry Pi. On the other hand, if the Raspberry Pi was shutdown to recover 

from an error, it will be restarted instantaneously. In both of these scenarios, the new startup of the 

Raspberry Pi is done by returning to the start of the script, in the first while loop[90]. 

 

 

Figure 33 - A detailed view of the main loop in the Arduino script 
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4.4 Other Reliability Measures 

As the watchdog only reacts when the system has stopped working, there is a need for another level 

of reliability. This would be when clients fail to connect to the router, when the network interfaces 

need to restart or if processes have stopped. A reboot is too time consuming and should be the 

absolute last resort. 

For instance, if the process which is signaling the watchdog stops, there will only be a constant signal, 

or loss of signal. Then the watchdog will react and restart the whole system. A restart may take 90 

seconds or more, so it would be beneficial for the user if the system just could restart the given 

process. 

As a complement to the watchdog, we have created a script that will check different important 

parameters and fix them if necessary. This script is started during boot and continues to run as long 

as the system is on. Through extensive testing we have found multiple parameters which can be used 

to automate a troubleshooting: 

 Check if secondary Ethernet and Wi-Fi has IP addresses. If not, the script will set IP addresses. 

 Check if DHCP process is running. If not, start it. 

 Check if hostapd process is running. If not, start it. 

 Capture network traffic on local interfaces and check if DHCP requests are received without 

being answered. Restart DHCP server if there are any problems with this. 

 Check that the processes that is capturing network traffic is running. If not, start them. 

 Check the system logfile if there has been any sudden deauthentications of Wi-Fi clients that 

has previously been connected. In that case, restart hostapd. 

The script is available for reading in Appendix 4. 

4.5 Physical Implementation 

The previous subchapters have shown how we installed the software and designed the various 

scripts. In this subchapter we will show how the system was built, and how the final version is 

connected physically.  

4.5.1 The Casing 

In the early stages of the project, the main focus was to get the features to work independently. It 

was first of all important that the Wi-Fi, 3G/4G and external Ethernet worked on its own before 
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connecting the parts. Figure 34 shows the Raspberry Pi (to the right) connected to power and the 

USB-hub (the device to the bottom left). The primary Ethernet is not connected in the figure. On the 

lower part of the USB-hub, there are two cables: The external power and the USB-cable to the RPi. 

We experienced that the interfaces would become unstable if the external power was disconnected, 

so we will recommend to always keep this connected, except during setup of the mobile broadband 

software. 

 

Figure 34 - The Raspberry Pi with the hub and some adapters 

On the top of the hub, the Edimax Wi-Fi adapter is connected (directly to the right of the Logik-logo 

in Figure 34). The secondary Ethernet and the 3G/4G modem is located on the top side of the hub, in 

the picture. Note that in Figure 34 the Bluetooth and ZigBee adapters are not present, and the 

devices are unpowered. The light emitting diodes (LEDs) are turned off. 

After the picture in Figure 34 was taken, the system would also get support for Bluetooth and ZigBee, 

and the watchdog was added. In order to make it transportable, we decided to make a box for it. The 

box was made primarily by plexiglass and plastic glue, but the devices were mounted using Sugru 

[95]. 
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Figure 35 - The front of the box 

A button is placed in the front side of the box. This button is used to turn the system on and off. The 

relay is also placed on this wall, but on the inside. 

 

Figure 36 - The rear side of the box 

The rear wall has a hole with a narrow opening above going to the top of the box, as in Figure 36. The 

intention is that the cables will be pulled through the hole. The opening is located there for guiding 

the cables when installing, if the connectors are too large to be pulled through. 
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Figure 37 - The top of the box 

On the inside of the top side, the USB-hub is mounted. In order to make the box compact, we found 

that this was the best solution. The top is glued to one of the side walls, and these two parts are 

separate from the rest of the box. This is practical as one might have to perform changes in the 

connections inside the box. The one side wall is also working as a stabilizator for the roof when it is 

stuck between the two adjacent walls. 

When the roof is lifted off, it is easier to see the placement of the devices. See Figure 38 for an 

overview. The two embedded computers are placed on the bottom, in parallel to each other. It 

seems to be a lot of cables, but the USB cable from the hub was quite long. We could have shortened 

it, but wanted to keep it intact for the future. 

4.5.2 Cables and Connections 

We did however modify the power cables for the Arduino and the RPi. As there was limited extra 

space for the connectors in the box, we dismantled the USB type B connector for the Arduino, the 

USB connector to the USB hub, and the micro USB to the Raspberry Pi. Then we were able to angle 

them by resoldering and encapsulating the cables using Sugru. As Sugru is formable and sets like 

rubber, in addition to having a very high level of electrical resistance [95], it was ideal to use instead 

of the original plastic coating on the connectors. 
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Figure 38 - The inside of the box, seen from above 

When the power cable to RPi was modified, it was also cut in half. This was done in order to connect 

the relay switch in between, to make the Arduino able to control the power status of the Raspberry 

Pi. The 5VDC lead was connected to the normally-open (NO) contacts on the relay, while the ground 

was practically unaltered, going directly from the RPi to the power source. The relations between the 

Arduino, Raspberry Pi, Slice of Pi, on/off button and relay is illustrated in Figure 39, and a short 

explanation to each connection is given in Table 5. 

The Arduino is connected to the other side of the relay. The VCC on the relay is always powered from 

a 5VDC output on the Arduino, and the ground is connected to ground on the relay. In between VCC 

and ground on the relay, is the IN1 pin [96]. This is supposed to get signal when the relay should be 

switched on. In our setup we connected this to digital pin 52, but another pin can be chosen as long 

as the correct pin number is defined in the watchdog script.  
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Figure 39 - Illustration of connections  [97][98][99][44][100][101][102] 

Table 5 - Explanation to Figure 39 

Connection From To Description 

A Power source Relay 5VDC to relay 

B Relay Micro USB connector Relay to 5VDC (micro USB connector) 

C Micro USB connector Power source Ground (connector) to power source 

D Micro USB connector Raspberry Pi Micro USB connector connected to RPi 

E Arduino Relay 5VDC  (Arduino) to VCC (relay) 

F Arduino Relay Digital pin 52 (Arduino) to IN1 (relay) 

G Relay Arduino Ground (relay) to ground (Arduino) 

H Arduino Slice of Pi Digital pin 30 to GPIO 17 

I Slice of Pi Arduino GPIO 4 to analog pin 8 

J Button Arduino Button to analog pin 3 

K Arduino Button 5VDC (Arduino) to button 

L Raspberry Pi Slice of Pi All GPIO pins (RPi) to Slice of Pi 

The next connection on the list in Table 5 is going from the Arduino to the Slice of Pi. As the Slice of Pi 

is connected to all of the GPIO pins on the Raspberry Pi, and not all of them are used by the Xbee, 
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there are some GPIO extensions available. When connecting the Arduino to GPIO 4 and GPIO 17 on 

the Slice of Pi, it is in reality connected to the same GPIO pins on the Raspberry Pi. In our setup we 

used GPIO 17 to receive the signal from Arduino that only stops when RPi needs to shut down. This 

signal was sent from digital pin 30, but as with the relay signal, this can be changed as long as the pin 

is defined in the script on the Arduino. From GPIO 4on RPi is the heartbeat signal sent to analog pin 8 

on Arduino. This is the alternating signal that is designed to let the watchdog know if the system has 

stopped working. 

The second input for the Arduino comes from the on/off button. The button is constantly connected 

to 5VDC on Arduino and when pressed it connects the circuit so that the Arduino detects input on 

analog pin 3. 

4.5.3 ZigBee Module 

We mentioned that we used the printed circuit board (PCB) Slice of Pi in between the Xbee and the 

GPIO connections. This came as a kit which needed to be assembled. Figure 40 shows the parts 

separated as they were delivered. 

 

Figure 40 - Slice of Pi before assembly [103] 

Please note that the PCB in Figure 40 is version 1.1, while the Slice of Pi in Figure 39 is version 1.0. 

The differences seems minimal, but the naming scheme is different. Version 1.1, which we use, uses 

the naming scheme of the second revision of Raspberry Pi, while version 1.0 uses a numbering 

scheme ranging from 0 to 7 [104]. This difference does not have any practical impact on the system, 

except that it is important to connect to the correct pins according to the settings in the scripts. 

The pins are easier to connect to after assembling the Slice of Pi kit. Figure 41 shows the PCB after 

soldering the connectors. For connecting the Xbee, the two nearest, parallel connection sets are 

used. 



Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

70 

Version 0.7 

 

Figure 41 - The Slice of Pi after soldering the connectors 

There is even an outline to show which direction the Xbee should be placed in. How the Xbee is 

connected, is shown in Figure 42. 

 

Figure 42 - Our Slice of Pi with XBee 

This is the Slice of Pi before it is connected to the Raspberry Pi. In Figure 43 and Figure 44, one can 

see how it looks when mounted on the RPi. 

 

  

 

Figure 44 - RPi with Slice of Pi 

 

Figure 43 - RPi with Slice of Pi 
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5 Testing and Validation 

5.1 Reliability 

The multi-purpose embedded communication gateway provides several types of features. The 

features themselves are independent of each other will be validated independently of each other. 

The data of the experiments will be collected through sheer observation. 

5.1.1 Wi-Fi Access Point 

In addition to acting as a gateway, it may also act as an access point for wireless devices. The setup of 

the wireless access point has already been explained in the previous section and this test will validate 

the feature of the device. The process of the test will simply be to: 

1. Install the necessary software and hardware and setup the system as an access point as 

described in Section 4.1.3. 

2. Connect several wireless devices (smart-phones and laptops) to the access point and let 

them stay connected for several hours.  

3. Access the Internet through Raspberry Pi using the wireless devices. 

The result of the experiment was successful. The different wireless devices were connected to the 

access point for several hours. The wireless devices received updates from social media sites and 

applications such as Facebook and Steamworks through the communication gateway, and users who 

used it for playing online games did not get sudden connection drops. 

5.1.2 Ethernet Routing 

The embedded system will provide various communication interfaces and may act as a gateway in a 

local area network. One of the interfaces which are provided by the gateway is Ethernet. Ethernet is 

one of the most common data transfer protocols, and the procedure for verifying Ethernet will 

simply be: 

1. Install an additional Ethernet port on to the Raspberry Pi as described in Section 4.1.4. 

2. Let Raspberry Pi a gateway between a computer and a modem. 

3. Access the Internet through the Raspberry Pi using the computer. 

The result of the test was a success. The computer in use was able to access the Internet, as well as 

remotely control the Raspberry Pi through SSH. The test also showed us that the Raspberry Pi did not 
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act as a bottleneck between the computer, and the modem and kept its throughput throughout the 

session. 

5.1.3 Mobile Broadband (3G/4G) 

The mobile broadband provided by the mobile communication gateway, is the interface which 

provides continuous Internet access to the users of the system. The mobile broadband is one of the 

most important features of the system, and will be validated through the given process. 

1. Install the hardware and software, and make the proper configurations of the mobile 

broadband and the routing as shown in Chapter 0. 

2. Disconnect the Ethernet cable and connect the mobile broadband modem. 

3. Access the Internet. 

The result of the experiment was a success. The devices connected to the mobile broadband were 

able to connect to the Internet and browse web, as well as receiving files through application 

services. The mobile broadband offered a sufficient throughput. 

5.1.4 Network Failover 

The experiment of this feature includes several different sub-features which are implemented into 

the communication gateway. The features which will be validated through the experiment are the 

device's ability to detect connection losses to the Internet, turn on mobile broadband, detect 

Internet connection through Ethernet, and switch off mobile broadband. The experiment is given as: 

1. Create or install the script for automatic failover before running it, as described in 

Subchapter 4.2. 

2. Disconnect the Ethernet cable or turn off the DSL modem.  

3. Test the Internet connection by use of a wireless or physical connected device. 

4. Connect the Ethernet cable or turn on the DSL modem. 

5. Observe if the mobile broadband process is killed. 

6. Test the Internet connection by use of a wireless or physical connected device. 

The experiment was successfully completed. The mobile broadband was connected once the 

Ethernet cable was pulled out, and the connected devices were able to access the Internet. The time 

it took for the system to switch from Ethernet to mobile broadband was approximately 10 seconds. 

The process of disconnecting the modem was instantaneous as the script is designed to kill the 

connection process when detecting another source to the Internet. 
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5.1.5 Bluetooth 

The gateway provides Bluetooth support for situations where users decide to transfer files in a 

simple manner from a device without Wi-Fi. It is also important to notice that the mobile 

communication gateway needs to accept the pairing of any device by default.  

1. Install the software and hardware as described in Section 4.1.7 

2. Use a device to pair with the gateway and observe if it is accepted automatically by default. 

3. Choose a file to transfer from the device to the gateway and vice versa.  

The experiment was successfully completed, and both devices were able to retrieve and store a PDF 

file of 6000 KB. The pairing was accepted by the Raspberry Pi and remembered by the Bluetooth 

device used in the process. 

5.1.6 Internal Watchdog 

In order to make the system run reliably a watchdog is used. The internal watchdog is having more 

control over the system status, and can reboot the system fast if there are any problems. The 

following steps were done to test if the onboard watchdog is working properly. 

1. Install the watchdog as described in Section 4.3.1. 

2. Try crashing the system. 

3. Wait to see if the system crashes and reboots on its own. 

To crash the system we ran a piece of code (“: (){ :|:& };:”) called a fork bomb [89]. This is a 

process which creates subprocesses that creates more processes. After a short while there has been 

created so many processes that the system is drained of resources and is unable to perform any 

actions. The code was successful and simply by waiting we noticed that the system rebooted. The 

result was expected and we think it was highly satisfactory. 

5.1.7 External Watchdog 

As the internal watchdog, the external watchdog will also monitor the system. The external 

watchdog will have the advantage that it is separate from the rest of the system. In case the 

hardware crashes on the Raspberry Pi, it is a possibility that the internal watchdog has crashed as 

well. The probability for needing the external watchdog is fairly low, but it provides a great deal of 

reliability, as the chance of both the internal watchdog and the external watchdog crashing at the 

same time is very small. In order to test the external watchdog, we will do the following. 
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1. Install the external watchdog as described in 4.3.2. 

2. Press the button and check that the RPi turns off. 

3. Check if the RPi turns on when button is pressed.  

4. Stop the signal from the Raspberry Pi. 

5. Wait and see if the watchdog restarts the RPi. 

6. Check that the watchdog does not turn on or off the system unexpectedly. 

When first connecting power to the Arduino, it started sending a signal to the relay, which is 

supplying power for the Raspberry Pi. According to the design of the watchdog script, nothing will be 

done before the Raspberry Pi has started completely. When the Raspberry Pi was done with the 

startup, we tried pushing the button. The Raspberry Pi shut down almost immediately and its power 

was cut by the relay. Then we pushed the button again the relay was switched on and the RPi booted 

up again. 

The secondary task of the watchdog is to listen for changes in the signal from Raspberry Pi. This 

feature was tested by killing the process in charge of alternating the signal. As the script is designed 

to wait until the RPi have had enough time to boot on its own if the signal was stopped by a 

controlled reboot, nothing happened until around 75 seconds had passed. Then the relay was shut 

off, then on again and the system booted once again. 

Until now, the system has been acting as expected. The last step in the list was tested over two 

hours. During this time the system shut down once. After some troubleshooting we found that the 

watchdog had gotten some false signals on the button input. As the input signal is read on an analog 

GPIO pin, it will always detect some input values, but usually not more than a fraction of what is 

needed to trigger the watchdog. The input values on analog pins are read in a range of 0-1023, where 

1023 is the value when the current is sent deliberately. Unless a step-down converter is used, the 

input value will never be 0. By debugging this value, we found that the value is highly dependent on 

the environment. Just by holding the hand over the Arduino, without touching, we were able to 

trigger a shutdown of the system. 

At the current state of the system, the watchdog acts fairly reliable, but as there is a risk for getting 

wrong values on the analog pin, it is advisable to keep the chassis closed and place the system in a 

distance from other electrical devices in order to prevent erroneous signals. 
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5.2 Scenarios 

5.2.1 Wi-Fi Access Point Range Experiment 

The Wi-Fi access point configured for the embedded communication gateway may vary in connection 

quality when one take into the account of objects that may disrupt the signal. This experiment's 

purpose is to estimate the signal strength of the communication gateway's AP inside a building. The 

experiment was performed inside a house of 144 square meters, and the wireless access point was 

placed at the far end of the house. We observed that the users were able to connect to the access 

point at all locations in the house, maintaining an excellent connection quality throughout the 10 

hour session. The quality of the signal did however drop significantly outside the house, unable to 

detect its signal 5 meters past the outer walls. The reason for such sudden drop is that the outer wall 

of the house is thicker and made of high density materials such as concrete and cement. A 

comparison was made with the home owner's router and the same results were observed. 

5.2.2 Mobile Broadband Gateway in a Car 

In order to find out if the system is suited for use in a car, we performed an experiment where the 

intention was to connect to the Internet through the Wi-Fi access point. The watchdog was powered 

by the USB-port on a computer and the Raspberry Pi was connected to a 12V cigarette lighter 

adapter with 1 ampere (A) power capacity. As there was no 230V outlet in the car, the external 

power supply for the USB-hub was not used. 

The result of the experiment was that the Wi-Fi access point turned on, and provided Internet access, 

but only for a few seconds before rebooting. This was most likely caused by lack of power, as the 

Ethernet adapter did not even turn on like it usually does. As the RPi is designed to use almost 700 

milliampere (mA), there will be roughly 300 mA left of the capacity of the power adapter to serve the 

USB-hub including Wi-Fi, Ethernet, 3G/4G modem and Bluetooth. Therefore we can conclude that 

with the current setup, the system is not suited for use in a car. With an increase of power, this test 

should be retried. 

5.3 Validation 

Most of the goals for this project are met, but the watchdog is not quite as reliable as we wanted. 

This is because of the sensitivity of the analog pins. As they can give false results by just holding 

objects near them, we feel it is an issue that should be fixed in the future. Also, in the car scenario, 

the system requires more power in order to function properly. 



Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

76 

Version 0.7 

Because of these issues, we have to say that the solution as of now is not completely satisfactory. 

The solution is however well working in an environment with little electrical disturbances. As the 

Ethernet, Wi-Fi, mobile broadband, and Bluetooth interfaces have all been working with no errors 

during the testing period, there is not much left until the system is comparable to existing products.  



Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

77 

Version 0.7 

6 Discussion 

This part of the disseration will provide some of the additional options which have been looked at 

during the semester. A lot of software and hardware has been looked  at. It has been mentioned in 

the previous chapters that we've had a lot of different hardware and software candidates to choose 

between,  but they were all eliminated during the planning stage of our embedded system. It is 

however somewhat hard to eliminate all the options during the phase of planning, such as solutions 

for a given feature. A solution to a given feature comes in many different forms, and this part will 

present some of the other solutions that has been worked one during our thesis, and was not used 

used due to particular reasons. In addition to presenting former, we will also recommend the next 

step for the project. 

The first chosen operating system for our system base our system on an operating system named 

PiBang Linux. The operating system proved to be unstable an had several errors during the 

installation process. As our time were limited, starting a project on an unstable platform could have 

given us a hard time in the future and it was removed as our system's operating system.  

In addition to the operating system, we encounter different solutions to install mobile broadband to 

our device. It was decided on the earlier stage that the system would use a software named sakis3G. 

Sakis3G is a tool in Linux which is used to configure and connect a device to the Internet through LTE. 

The software required usb-modeswitch to successfully connect to the Internet and ran in a stable 

manner during our experiments. It was however not used in the final stage of the prototype as it ran 

too slow. In our experiments the modem used an average 40 seconds to connect to the Internet, 

compared to the 10 seconds used by wvdial.  

We had different hardware solution as well as software solutions. As one can recall, several types of 

communication interface dongles were tested during our master thesis as mentioned in Section 

3.4.2. The most noticeable one was a Wi-Fi dongle named D-Link DWA-123. The D-Link DWA-123 

dongle worked perfectly fine as a standard Wi-Fi connector, but lacked the feature to act as an access 

point which was crucial for our solution. When discovered it got replaced by an Edimax dongle which 

supported the feature. Another problem we encountered during our communication interface 

hardware selection, was during our time implementing a second Ethernet port to the Raspberry Pi. 

The Ethernet port created a serious issue that froze the Raspberry Pi on random occasions. We 

suspect that it was driver related problem, but were not able to determine the exact cause since the 

Raspberry Pi kept crashing. To solve the ongoing issue we bought a new Ethernet port KÖNIG CMP-

NWUSB2.0 which was connected to the Raspberry Pi without further problems. In addition to the 



Chi Winth Ea  Multi-purpose Embedded Communication Gateway: 
Morten Sørbø  System Design and Testbed Implementation 

 

78 

Version 0.7 

solutions that was not implemented due to various problems there were features that we would like 

to add to our system, but did not have the appropriate time to do.  

For future work we would recommend to go onto the direction of making the device a commercial 

product. Then the issue with the watchdog should be resolved. The analog pins are likely to give false 

values when read. This can be fixed either by using the digital pins instead, or by adding a resistor as 

a step-down converter. 

To improve the product further, we suggest to make it easier to configure for the regular user by 

developing a graphical user interface. The graphical user interface would give the user the option to 

configure the device without prior knowledge to Linux and scripting. 

We would also recommend to design and create a proper casing for the embedded system that 

makes it more durable as well as giving it a slicker design. At this point the embedded 

communication system is powered through three power adapters. In the future we we would also 

like to combine all three of the power adapters into an single unit, as well as implementing our 

suggesting to synchronizing the Raspberry Pi with a server through use of mySQL. 
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7 Conclusion 

The purpose of the dissertation was to develop a multi-purpose embedded communication gateway 

for providing continuous Internet access. A gateway was developed for multiple interfaces such as 

Ethernet, Wi-Fi, Bluetooth, ZigBee, and 3G/4G. The device would use the mobile broadband as a 

failover to provide continuous Internet action, and provide reliability and availability through script 

optimization and a watchdog. 

The result of our work, is a stable gateway that may be used in different types of scenarios, as long as 

the amount of power needed for the system is appropriately delivered. The gateway may act as an 

access point for different types of communication interfaces, and forward information to the 

Internet by use of Ethernet or mobile broadband. Compared with other commercial devices, it 

includes different communication interfaces, and features a watchdog which strengthens the 

device's availability and reliability in an environment without electrical disturbances. It is also 

important to mention that the gateway is open source, and new modules may be added to suit the 

user's specifications.  
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Appendix 1 – Installation script 

#!/bin/bash 

if [ -e progress.txt ] 

then 

 progress=$(<progress.txt) 

else 

 progress=0 

 echo $progress > progress.txt 

fi 

 

while [ $progress -eq 0 ] 

do 

 mkdir temp 

 apt-get update 

 echo "Enabling SSH server" 

 update-rc.d ssh enable 

 invoke-rc.d ssh start 

 echo "Overclocking... Valid after next reboot" 

 sed -e "s/^`cat /boot/config.txt | grep arm_freq`/arm_freq=950/g" -e "s/^`cat 
/boot/config.txt | grep core_freq`//g" -e "s/^`cat /boot/config.txt | grep 
sdram_freq`//g" -e "s/^`cat /boot/config.txt | grep over_voltage`//g" 
/boot/config.txt > /boot/config.txt 

 echo "core_freq=250" >> /boot/config.txt 

 echo "sdram_freq=450" >> /boot/config.txt 

 echo "over_voltage=6" >> /boot/config.txt 

 echo "Do you want to install e-mail? You need an Gmail address to do so!" 

 read installemail 

  

 y="y" 

 yes="yes" 

 client="c" 

 AP="a" 

  

 if [ "$installemail" == "$y" ] 

 then 

  instmail=1 

  echo "Will install email!" 

  apt-get install postfix -y 

  echo "What is your Gmail username (before @gmail.com)?" 

  read gmailuser 

  echo "What is your Gmail password?" 

  read -s gmailpass 

  echo "Do you want to be notified on mail when this installation needs 
input?" 

  read installnotification 

  if [ "$installnotification" == "$y" ] 

  then 

   notify=1 

   echo "Will set up notification. On which mail address do you 
wish to be notified?" 

   read mailaddress 

  elif [ "$installnotification" == "$yes" ] 
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  then 

   notify=1 

   echo "Will set up notification. On which mail address do you 
wish to be notified?" 

   read mailaddress 

  else 

   notify=0 

   echo "Will not set up notification" 

  fi 

 elif [ "$installemail" == "$yes" ] 

 then 

  instmail=1 

  echo "Will install email!" 

  apt-get install postfix -y 

  echo "What is your Gmail username (before @gmail.com)?" 

  read gmailuser 

  echo "What is your Gmail password?" 

  read -s gmailpass 

  echo "Do you want to be notified on mail when this installation needs 
input?" 

  read installnotification 

  if [ "$installnotification" == "$y" ] 

  then 

   notify=1 

   echo "Will set up notification. On which mail address do you 
wish to be notified?" 

   read mailaddress 

  elif [ "$installnotification" == "$yes" ] 

  then 

   notify=1 

   echo "Will set up notification. On which mail address do you 
wish to be notified?" 

   read mailaddress 

  else 

   notify=0 

   echo "Will not set up notification" 

  fi 

 else 

  instmail=0 

  echo "Skipping install of email" 

 fi 

 echo "Disconnect all wireless network devices now! Do not connect until 
asked! Press ENTER to continue." 

 read 

 echo "Do you want to install 3G/4G?" 

 read installmbb 

 echo 'Do you want to install Wi-Fi client or access point? Type "c" for 
client, "a" for accesspoint or "n" to skip Wi-Fi.' 

 read installwifi 

 echo "Do you want to install secondary ethernet for routing?" 

 read installeth1 

 

 if [ "$installmbb" == "$y" ] 

 then 
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  instmbb=1 

  echo "Will install mobile broadband" 

 elif [ "$installmbb" == "$yes" ] 

 then 

  instmbb=1 

  echo "Will install mobile broadband" 

 else 

  instmbb=0 

  echo "Skipping install mobile broadband" 

 fi 

  

 if [ "$installwifi" == "$client" ] 

 then 

  instwificlient=1 

  instwifiap=0 

  echo "Will install Wi-Fi client" 

 elif [ "$installwifi" == "$AP" ] 

 then 

  instwifiap=1 

  instwificlient=0 

  echo "Will install Wi-Fi access point" 

 else 

  instwificlient=0 

  instwifiap=0 

  echo "Skipping install of Wi-Fi" 

 fi 

  

 if [ "$installeth1" == "$y" ] 

 then 

  insteth1=1 

  echo "Will install ethernet router" 

 elif [ "$installeth1" == "$yes" ] 

 then 

  insteth1=1 

  echo "Will install ethernet router" 

 else 

  insteth1=0 

  echo "Skipping install of secondary interface" 

 fi 

 

 if [ $instmbb -eq 1 ] 

 then 

  echo "Please connect 3G/4G modem now! Will now ask for mobile 
broadband details." 

  echo "Enter apn" 

  read apnname 

  echo "Enter apn username" 

  read apnusername 

  echo "Enter apn password" 

  read apnpassword 

  echo "Running lsusb... Will then ask for ID of mobile broadband 
device! It's given in the format ID xxxx:yyyy." 

  sleep 3 
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  lsusb 

  echo "Enter vendor ID (xxxx in the xxxx:yyyy format)" 

  read vendorid 

  echo "Enter product ID (yyyy in the xxxx:yyyy format)" 

  read productid 

 fi 

 if [ $instwificlient -eq 1 ] 

 then 

  echo "Will now ask for Wi-Fi details. Do NOT connect Wi-Fi adapter 
yet!" 

  echo "Enter SSID" 

  read ssidname 

  echo "Enter WPA2 key" 

  read wpa2password 

 fi 

 if [ $instwifiap -eq 1 ] 

 then 

  echo "Will now ask for Wi-Fi details. Do NOT connect Wi-Fi adapter 
yet!" 

  echo "Enter SSID" 

  read ssidname 

  echo "Enter WPA2 key" 

  read wpa2password 

 fi 

 echo "Upgrading current software..." 

 if [ $notify -eq 1 ] 

 then 

  echo "This might take a few minutes. You will be notified by mail when 
you are needed." 

 fi 

 apt-get upgrade -y 

 apt-get install raspi-config -y 

 

 if [ $instmail -eq 1 ] 

 then 

  apt-get install mailutils libsasl2-2 ca-certificates libsasl2-modules 
-y 

  sed -e "s/^`cat /etc/postfix/main.cf | grep relayhost`//g" -e "s/^`cat 
/etc/postfix/main.cf | grep smtp_sasl_auth_enable`//g" -e "s/^`cat 
/etc/postfix/main.cf | grep smtp_sasl_password_maps`//g" -e "s/^`cat 
/etc/postfix/main.cf | grep smtp_sasl_security_options`//g" -e "s/^`cat 
/etc/postfix/main.cf | grep smtp_tls_CAfile`//g" -e "s/^`cat /etc/postfix/main.cf | 
grep smtp_use_tls`//g" /etc/postfix/main.cf > /etc/postfix/main.cf 

  echo "relayhost = [smtp.gmail.com]:587" >> /etc/postfix/main.cf 

  echo "smtp_sasl_auth_enable = yes" >> /etc/postfix/main.cf 

  echo "smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd" >> 
/etc/postfix/main.cf 

  echo "smtp_sasl_security_options = noanonymous" >> 
/etc/postfix/main.cf 

  echo "smtp_tls_CAfile = /etc/postfix/cacert.pem" >> 
/etc/postfix/main.cf 

  echo "smtp_use_tls = yes" >> /etc/postfix/main.cf 

  echo "[smtp.gmail.com]:587    $gmailuser@gmail.com:$gmailpass" > 
/etc/postfix/sasl_passwd 

  chmod 400 /etc/postfix/sasl_passwd 

  postmap /etc/postfix/sasl_passwd 
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  cat /etc/ssl/certs/Thawte_Premium_Server_CA.pem | sudo tee -a 
/etc/postfix/cacert.pem 

  /etc/init.d/postfix reload 

  if [ $notify -eq 1 ] 

  then 

   echo $mailaddress > temp/mailaddress.txt 

   echo "Sending a test mail" 

   echo "Test mail from postfix" | mail -s "Test Postfix" 
$mailaddress 

  fi 

 fi 

  

 if [ $instmbb -eq 1 ] 

 then 

  echo "Installing mobile broadband software..." 

  apt-get install ppp wvdial usb-modeswitch -y 

 fi 

 

 echo "Storing progress before reboot" 

 echo $instmail > temp/installmail.txt 

 echo $notify > temp/notify.txt 

 echo $instmbb > temp/installmbb.txt 

 echo $instwificlient > temp/installwificlient.txt 

 echo $instwifiap > temp/installwifiap.txt 

 echo $insteth1 > temp/installeth1.txt 

 if [ $instmbb -eq 1 ] 

 then 

  echo $apnname > temp/apnname.txt 

  echo $apnusername > temp/apnuser.txt 

  echo $apnpassword > temp/apnpassword.txt 

  echo $vendorid > temp/defaultvendor.txt 

  echo $productid > temp/defaultproduct.txt 

 fi 

 if [ $instwificlient -eq 1 ] 

 then 

  echo $ssidname > temp/ssid.txt 

  echo $wpa2password > temp/wpa2.txt 

 fi 

 if [ $instwifiap -eq 1 ] 

 then 

  echo $ssidname > temp/ssid.txt 

  echo $wpa2password > temp/wpa2.txt 

 fi 

 progress=1 

 echo 1 > progress.txt 

 if [ $instmbb -eq 1 ] 

 then 

  echo "If mobile broadband modem is connected to self-powered USB-hub, 
disconnect the power supply of the hub while rebooting! Press ENTER to reboot!" 

  if [ $notify -eq 1 ] 

  then 

   echo "If mobile broadband modem is connected to self-powered 
USB-hub, disconnect the power supply of the hub while rebooting! Confirm reboot!" | 
mail -s "Installation progress" $mailaddress 
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  fi 

  read 

  reboot 

  sleep 10 

 fi 

done 

 

while [ $progress -eq 1 ] 

do 

 instmail=$(<temp/installmail.txt) 

 notify=$(<temp/notify.txt) 

 if [ $notify -eq 1 ] 

 then 

  mailaddress=$(<temp/mailaddress.txt) 

 fi 

 instmbb=$(<temp/installmbb.txt) 

 instwificlient=$(<temp/installwificlient.txt) 

 instwifiap=$(<temp/installwifiap.txt) 

 insteth1=$(<temp/installeth1.txt) 

 if [ $instmbb -eq 1 ] 

 then 

  echo "Continuing from last time. Reconnect power supply to the USB-
hub" 

  echo "Running lsusb... Will then ask for ID of mobile broadband 
device! It's given in the format ID xxxx:yyyy." 

  if [ $notify -eq 1 ] 

  then 

   echo "Reconnect power supply to the USB-hub! Waiting for 
input..." | mail -s "Installation progress" $mailaddress 

  fi 

  lsusb 

  echo "Enter vendor ID (xxxx in the xxxx:yyyy format)" 

  read targetvendorid 

  echo "Enter product ID (yyyy in the xxxx:yyyy format)" 

  read targetproductid 

  if [ $notify -eq 1 ] 

  then 

   echo "This might take a few minutes. You will be notified by 
mail when you are needed." 

  fi 

  echo "Customizing /etc/usb_modeswitch.conf" 

  defaultvendor=$(<temp/defaultvendor.txt) 

  defaultproduct=$(<temp/defaultproduct.txt) 

  cwd=$(pwd) 

  echo "DefaultVendor=0x$defaultvendor" > /etc/usb_modeswitch.conf 

  echo "DefaultProduct=0x$defaultproduct" >> /etc/usb_modeswitch.conf 

  echo "" >> /etc/usb_modeswitch.conf 

  echo "TargetVendor=0x$targetvendorid" >> /etc/usb_modeswitch.conf 

  echo "TargetProduct=0x$targetproductid" >> /etc/usb_modeswitch.conf 

  echo "" >> /etc/usb_modeswitch.conf 

  cd /tmp 

  tar -xzvf /usr/share/usb_modeswitch/configPack.tar.gz 
$defaultvendor\:$defaultproduct 

  for mc in $(cat $defaultvendor\:$defaultproduct | grep MessageContent) 
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  do 

   echo $mc >> /etc/usb_modeswitch.conf 

  done 

  cd $cwd 

 

  echo "Customizing /etc/wvdial.conf" 

  wvdialconf > temp/wvdialconf.txt 

  wvdialmodem=`cat temp/wvdialconf.txt | grep "Found a modem on " | awk 
'{ print $5 }'` 

  modem=${wvdialmodem//[.]/} 

  apnname=$(<temp/apnname.txt) 

  apnuser=$(<temp/apnuser.txt) 

  apnpassword=$(<temp/apnpassword.txt) 

  echo "[Dialer $apnname]" > /etc/wvdial.conf 

  echo "Init1 = ATZ" >> /etc/wvdial.conf 

  echo "Init2 = ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0" >> /etc/wvdial.conf 

  echo "Init3 = AT+CGDCONT=1,\"IP\",\"$apnname\"" >> /etc/wvdial.conf 

  echo "Stupid mode = 1" >> /etc/wvdial.conf 

  echo "Modem Type = Analog Modem" >> /etc/wvdial.conf 

  echo "ISDN = 0" >> /etc/wvdial.conf 

  echo "Phone = *99#" >> /etc/wvdial.conf 

  echo "Modem = $modem" >> /etc/wvdial.conf 

  echo "Username = {$apnuser}" >> /etc/wvdial.conf 

  echo "Password = {$apnpassword}" >> /etc/wvdial.conf 

  echo "Baud = 9600" >> /etc/wvdial.conf 

 fi 

 progress=2 

 echo 2 > progress.txt 

done 

 

while [ $progress -eq 2 ] 

do 

 instmail=$(<temp/installmail.txt) 

 notify=$(<temp/notify.txt) 

 if [ $notify -eq 1 ] 

 then 

  mailaddress=$(<temp/mailaddress.txt) 

 fi 

 instmbb=$(<temp/installmbb.txt) 

 instwificlient=$(<temp/installwificlient.txt) 

 instwifiap=$(<temp/installwifiap.txt) 

 insteth1=$(<temp/installeth1.txt) 

 if [ $instwificlient -eq 1 ] 

 then 

  echo "Installing Wi-Fi client..." 

  echo "Removing old Wi-Fi drivers" 

  apt-get remove firmware-ralink -y 

 

  ###https://wiki.debian.org/rt2800usb: 

  echo "Temporarily changing apt-get sources" 

  cp /etc/apt/sources.list /tmp/sources.list.tmp 

  echo "deb http://http.debian.net/debian/ wheezy main contrib non-free" 
> /etc/apt/sources.list 
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  apt-get update 

  echo "Install Wi-Fi drivers" 

  apt-get install firmware-ralink -y --force-yes 

  echo "Changing back to old apt-get source" 

  cp /tmp/sources.list.tmp /etc/apt/sources.list 

  apt-get update 

 

  ssidname=$(<temp/ssid.txt) 

  wpa2password=$(<temp/wpa2.txt) 

 

  echo "Connect Wi-Fi-adapter now! Press ENTER to continue." 

  if [ $notify -eq 1 ] 

  then 

   echo "Connect Wi-Fi-adapter now! Press ENTER to continue." | 
mail -s "Installation progress" $mailaddress 

  fi 

  read 

  sleep 5 

  ###http://databoyz.wordpress.com/tag/how-to-setup-network-and-
wpa_supplicant-conf-file-on-raspberry-pi/: 

  echo "Updating /etc/wpa_supplicant/wpa_supplicant.conf" 

  echo "ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev" > 
/etc/wpa_supplicant/wpa_supplicant.conf 

  echo "update_config=1" >> /etc/wpa_supplicant/wpa_supplicant.conf 

  echo "network={" >> /etc/wpa_supplicant/wpa_supplicant.conf 

  echo " ssid=\"$ssidname\"" >> /etc/wpa_supplicant/wpa_supplicant.conf 

  echo " scan_ssid=1" >> /etc/wpa_supplicant/wpa_supplicant.conf 

  echo " psk=\"$wpa2password\"" >> 
/etc/wpa_supplicant/wpa_supplicant.conf 

  echo " proto=RSN" >> /etc/wpa_supplicant/wpa_supplicant.conf 

  echo " key_mgmt=WPA-PSK" >> /etc/wpa_supplicant/wpa_supplicant.conf 

  echo " pairwise=CCMP" >> /etc/wpa_supplicant/wpa_supplicant.conf 

  echo " auth_alg=OPEN" >> /etc/wpa_supplicant/wpa_supplicant.conf 

  echo "}" >> /etc/wpa_supplicant/wpa_supplicant.conf 

 fi 

  

 if [ $insteth1 -eq 1 ] 

 then 

  defaultgw=`cat /var/lib/dhcp/dhclient.eth0.leases | grep router | tail 
-1 | awk '{ print $3 }'` 

  gw=${defaultgw//[;]/} 

  if [ $instwifiap -eq 1 ] 

  then 

   echo "Connect Ethernet and Wi-Fi adapters now! Press ENTER to 
continue." 

   if [ $notify -eq 1 ] 

   then 

    echo "Connect Ethernet and Wi-Fi adapters now! Press 
ENTER to continue." | mail -s "Installation progress" $mailaddress 

   fi 

   read 

   sleep 5 

   echo "Setting up eth1" 

   ifconfig eth1 up 
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   ifconfig eth1 10.0.0.1 

   echo "Setting up wlan0" 

   ifconfig wlan0 up 

   ifconfig wlan0 10.0.0.1 

   apt-get install hostapd isc-dhcp-server -y 

  else 

   echo "Connect Ethernet adapter now! Press ENTER to continue." 

   if [ $notify -eq 1 ] 

   then 

    echo "Connect Ethernet adapter now! Press ENTER to 
continue." | mail -s "Installation progress" $mailaddress 

   fi 

   read 

   sleep 5 

   echo "Setting up eth1" 

   ifconfig eth1 up 

   ifconfig eth1 10.0.0.1 

   apt-get install isc-dhcp-server -y 

  fi 

  sed -e "s/^#authoritative;/authoritative;/g" /etc/dhcp/dhcpd.conf > 
temp/dhcpd.conf 

  cp temp/dhcpd.conf /etc/dhcp/dhcpd.conf 

  sed -e "s/^option domain-name/#option domain-name/g" 
/etc/dhcp/dhcpd.conf > temp/dhcpd2.conf 

  cp temp/dhcpd2.conf /etc/dhcp/dhcpd.conf 

  echo "" >> /etc/dhcp/dhcpd.conf 

  echo "subnet 10.0.0.0 netmask 255.255.255.0 {" >> /etc/dhcp/dhcpd.conf 

  echo "range 10.0.0.10 10.0.0.59;" >> /etc/dhcp/dhcpd.conf 

  echo "option broadcast-address 10.0.0.255;" >> /etc/dhcp/dhcpd.conf 

  echo "option routers 10.0.0.1;" >> /etc/dhcp/dhcpd.conf 

  echo "default-lease-time 600;" >> /etc/dhcp/dhcpd.conf 

  echo "max-lease-time 7200;" >> /etc/dhcp/dhcpd.conf 

  echo 'option domain-name "local";' >> /etc/dhcp/dhcpd.conf 

  echo "option domain-name-servers 8.8.8.8, 8.8.4.4;" >> 
/etc/dhcp/dhcpd.conf 

  echo "}" >> /etc/dhcp/dhcpd.conf 

  sed -e 's/^#net.ipv4.ip_forward=1/net.ipv4.ip_forward=1/g' 
/etc/sysctl.conf > temp/sysctl.conf 

  cp temp/sysctl.conf /etc/sysctl.conf 

  sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward" 

  if [ $instwifiap -eq 1 ] 

  then 

   sed -e 's/^INTERFACES=""/INTERFACES="eth1 wlan0"/g' 
/etc/default/isc-dhcp-server > temp/isc-dhcp-server 

  else 

   sed -e 's/^INTERFACES=""/INTERFACES="eth1"/g' /etc/default/isc-
dhcp-server > temp/isc-dhcp-server 

  fi 

  cp temp/isc-dhcp-server /etc/default/isc-dhcp-server 

  iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE 

  iptables -A FORWARD -i eth0 -o eth1 -m state --state 
RELATED,ESTABLISHED -j ACCEPT 

  iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT 

  if [ $instwifiap -eq 1 ] 

  then 
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   iptables -A FORWARD -i eth0 -o wlan0 -m state --state 
RELATED,ESTABLISHED -j ACCEPT 

   iptables -A FORWARD -i wlan0 -o eth0 -j ACCEPT 

  fi 

  iptables-save > /etc/iptables.rules 

  route del default 

  route add default gw $gw eth0 

 elif [ $instwifiap -eq 1 ] 

 then 

  defaultgw=`cat /var/lib/dhcp/dhclient.eth0.leases | grep router | tail 
-1 | awk '{ print $3 }'` 

  gw=${defaultgw//[;]/} 

  echo "Connect Wi-Fi adapter now! Press ENTER to continue." 

  if [ $notify -eq 1 ] 

  then 

   echo "Connect Wi-Fi adapter now! Press ENTER to continue." | 
mail -s "Installation progress" $mailaddress 

  fi 

  read 

  sleep 5 

  echo "Setting up wlan0" 

  ifconfig wlan0 up 

  ifconfig wlan0 10.0.0.1 

  apt-get install hostapd isc-dhcp-server -y 

  sed -e "s/^#authoritative;/authoritative;/g" /etc/dhcp/dhcpd.conf > 
temp/dhcpd.conf 

  cp temp/dhcpd.conf /etc/dhcp/dhcpd.conf 

  sed -e "s/^option domain-name/#option domain-name/g" 
/etc/dhcp/dhcpd.conf > temp/dhcpd2.conf 

  cp temp/dhcpd2.conf /etc/dhcp/dhcpd.conf 

  echo "" >> /etc/dhcp/dhcpd.conf 

  echo "subnet 10.0.0.0 netmask 255.255.255.0 {" >> /etc/dhcp/dhcpd.conf 

  echo "range 10.0.0.10 10.0.0.59;" >> /etc/dhcp/dhcpd.conf 

  echo "option broadcast-address 10.0.0.255;" >> /etc/dhcp/dhcpd.conf 

  echo "option routers 10.0.0.1;" >> /etc/dhcp/dhcpd.conf 

  echo "default-lease-time 600;" >> /etc/dhcp/dhcpd.conf 

  echo "max-lease-time 7200;" >> /etc/dhcp/dhcpd.conf 

  echo 'option domain-name "local";' >> /etc/dhcp/dhcpd.conf 

  echo "option domain-name-servers 8.8.8.8, 8.8.4.4;" >> 
/etc/dhcp/dhcpd.conf 

  echo "}" >> /etc/dhcp/dhcpd.conf 

  sed -e 's/^#net.ipv4.ip_forward=1/net.ipv4.ip_forward=1/g' 
/etc/sysctl.conf > temp/sysctl.conf 

  cp temp/sysctl.conf /etc/sysctl.conf 

  sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward" 

  sed -e 's/^INTERFACES=""/INTERFACES="wlan0"/g' /etc/default/isc-dhcp-
server > temp/isc-dhcp-server 

  cp temp/isc-dhcp-server /etc/default/isc-dhcp-server 

  iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE 

  iptables -A FORWARD -i eth0 -o wlan0 -m state --state 
RELATED,ESTABLISHED -j ACCEPT 

  iptables -A FORWARD -i wlan0 -o eth0 -j ACCEPT 

  iptables-save > /etc/iptables.rules 

  route del default 

  route add default gw $gw eth0 
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 fi 

  

 echo "Updating /etc/network/interfaces" 

 echo "auto lo" > /etc/network/interfaces 

 echo "iface lo inet loopback" >> /etc/network/interfaces 

 echo " " >> /etc/network/interfaces 

 echo "auto eth0" >> /etc/network/interfaces 

 echo "allow-hotplug eth0" >> /etc/network/interfaces 

 echo "iface eth0 inet dhcp" >> /etc/network/interfaces 

 echo " " >> /etc/network/interfaces 

 if [ $insteth1 -eq 1 ] 

 then 

  echo "auto eth1" >> /etc/network/interfaces 

  echo "allow-hotplug eth1" >> /etc/network/interfaces 

  echo "iface eth1 inet static" >> /etc/network/interfaces 

  echo "address 10.0.0.1" >> /etc/network/interfaces 

  echo "netmask 255.255.255.0" >> /etc/network/interfaces 

  echo "gateway 10.0.0.1" >> /etc/network/interfaces 

  echo " " >> /etc/network/interfaces 

 fi 

 if [ $instwificlient -eq 1 ] 

 then 

  echo "allow-hotplug wlan0" >> /etc/network/interfaces 

  echo "iface wlan0 inet manual" >> /etc/network/interfaces 

  echo " wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf" >> 
/etc/network/interfaces 

 fi 

 if [ $instwifiap -eq 1 ] 

 then 

  echo "allow-hotplug wlan0" >> /etc/network/interfaces 

  echo "iface wlan0 inet static" >> /etc/network/interfaces 

  echo " address 10.0.0.1" >> /etc/network/interfaces 

  echo " netmask 255.255.255.0" >> /etc/network/interfaces 

  echo "" >> /etc/network/interfaces 

  echo "#iface wlan0 inet manual" >> /etc/network/interfaces 

  echo "# wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf" >> 
/etc/network/interfaces 

   

  echo "Setting up hostapd" 

  ssidname=$(<temp/ssid.txt) 

  wpa2password=$(<temp/wpa2.txt) 

  echo "interface=wlan0" > /etc/hostapd/hostapd.conf 

  echo "driver=rtl871xdrv" >> /etc/hostapd/hostapd.conf 

  echo "ssid=$ssidname" >> /etc/hostapd/hostapd.conf 

  echo "hw_mode=g" >> /etc/hostapd/hostapd.conf 

  echo "channel=6" >> /etc/hostapd/hostapd.conf 

  echo "macaddr_acl=0" >> /etc/hostapd/hostapd.conf 

  echo "auth_algs=1" >> /etc/hostapd/hostapd.conf 

  echo "ignore_broadcast_ssid=0" >> /etc/hostapd/hostapd.conf 

  echo "wpa=2" >> /etc/hostapd/hostapd.conf 

  echo "wpa_passphrase=$wpa2password" >> /etc/hostapd/hostapd.conf 

  echo "wpa_key_mgmt=WPA-PSK" >> /etc/hostapd/hostapd.conf 

  echo "wpa_pairwise=TKIP" >> /etc/hostapd/hostapd.conf 
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  echo "rsn_pairwise=CCMP" >> /etc/hostapd/hostapd.conf 

  echo "logger_syslog=-1" >> /etc/hostapd/hostapd.conf 

  echo "logger_syslog_level=2" >> /etc/hostapd/hostapd.conf 

  echo "logger_stdout=-1" >> /etc/hostapd/hostapd.conf 

  echo "logger_stdout_level=2" >> /etc/hostapd/hostapd.conf 

  sed -e 
's/^\#DAEMON_CONF=\"\"/DAEMON_CONF=\"/etc/hostapd/hostapd.conf\"/g' 
/etc/default/hostapd > temp/hostapd 

  cp temp/hostapd /etc/default/hostapd 

 

  echo "Updating hostapd" 

  route 

  echo "Press ENTER if eth0 is default route" 

  if [ $notify -eq 1 ] 

  then 

   echo "Confirm if eth0 is default route." | mail -s "Installation 
progress" $mailaddress 

  fi 

  read 

  wget http://www.adafruit.com/downloads/adafruit_hostapd.zip 

  unzip adafruit_hostapd.zip 

  mv /usr/sbin/hostapd /usr/sbin/hostapd.ORIG 

  mv hostapd /usr/sbin 

  chmod 755 /usr/sbin/hostapd 

 else 

  echo "iface default inet dhcp" >> /etc/network/interfaces 

 fi 

  

 if [ $insteth1 -eq 1 ] 

 then 

  sed -e 's/^\#\!\/bin\/sh\ \-e/\#\!\/bin\/bash/g' /etc/rc.local > 
temp/rc.local2 

  sed -e 's/^exit 0//g' temp/rc.local2 > temp/rc.local 

  echo "" >> temp/rc.local 

  echo "iptables-restore < /etc/iptables.rules" >> temp/rc.local 

  echo "" >> temp/rc.local 

  echo "gw=\`cat /var/lib/dhcp/dhclient.eth0.leases | grep router | tail 
-1 | awk '{ print \$3 }'\`" >> temp/rc.local 

  echo "defgw=\${gw//[;]/}" >> temp/rc.local 

  echo "route del default" >> temp/rc.local 

  echo "route add default gw \$defgw eth0" >> temp/rc.local 

  echo "" >> temp/rc.local 

  echo "exit 0" >> temp/rc.local 

  cp temp/rc.local /etc/rc.local 

  if [ $instwifiap -eq 1 ] 

  then 

   service hostapd start 

   update-rc.d hostapd enable 

  fi 

  service isc-dhcp-server start 

  update-rc.d isc-dhcp-server enable 

 elif [ $instwifiap -eq 1 ] 

 then 
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  sed -e 's/^\#\!\/bin\/sh\ \-e/\#\!\/bin\/bash/g' /etc/rc.local > 
temp/rc.local2 

  sed -e 's/^exit 0//g' temp/rc.local2 > temp/rc.local 

  echo "" >> temp/rc.local 

  echo "iptables-restore < /etc/iptables.rules" >> temp/rc.local 

  echo "" >> temp/rc.local 

  echo "gw=\`cat /var/lib/dhcp/dhclient.eth0.leases | grep router | tail 
-1 | awk '{ print \$3 }'\`" >> temp/rc.local 

  echo "defgw=\${gw//[;]/}" >> temp/rc.local 

  echo "route del default" >> temp/rc.local 

  echo "route add default gw \$defgw eth0" >> temp/rc.local 

  echo "" >> temp/rc.local 

  echo "hostapd /etc/hostapd/hostapd.conf" >> temp/rc.local 

  echo "" >> temp/rc.local 

  echo "exit 0" >> temp/rc.local 

  cp temp/rc.local /etc/rc.local 

  service hostapd start 

  update-rc.d hostapd enable 

  service isc-dhcp-server start 

  update-rc.d isc-dhcp-server enable 

 fi 

 echo "Resetting overclock to default. Valid after reboot." 

 sed -e "s/^`cat /boot/config.txt | grep arm_freq`/arm_freq=700/g" -e "s/^`cat 
/boot/config.txt | grep core_freq`/core_freq=250/g" -e "s/^`cat /boot/config.txt | 
grep sdram_freq`/sdram_freq=400/g" -e "s/^`cat /boot/config.txt | grep 
over_voltage`/over_voltage=0/g" /boot/config.txt > /boot/config.txt 

 echo "Press ENTER to reboot" 

 if [ $notify -eq 1 ] 

 then 

  echo "Press ENTER to reboot and finalize setup!" | mail -s 
"Installation progress" $mailaddress 

 fi  

 read 

 progress=3 

 echo 3 > progress.txt 

 rm -r temp 

 reboot 

 sleep 10 

done 

 

while [ $progress -eq 3 ] 

do 

 echo "Completely installed!" 

 progress=4 

done 

exit 
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Appendix 2 – Failover script 

#!/bin/bash 

 

#Initial settings: 

IF=eth0 

pausetime=2 #Number of seconds between each run 

staymin=1 #Number of minutes to stay connected to mobile broadband after primary 
interface is back online 

networkstate=0 #0=Internet access; 1=Local network access; 2=No network access 

rxthreshold=150 

 

#Initialization: 

touch rx.txt 

touch tx.txt 

touch defaultgw.txt 

touch mbbgw.txt 

gw=`cat /var/lib/dhcp/dhclient.eth0.leases | grep router | tail -1 | awk '{ print 
$3 }'` 

defaultgw=${gw//[;]/} 

mbbgw=$(<mbbgw.txt) 

cp /etc/resolv.conf resolv.conf.backup 

echo `ifconfig $IF | grep "RX bytes" | cut -d: -f2 | awk '{ print $1 }'` > rx.txt 

echo `ifconfig $IF | grep "TX bytes" | cut -d: -f3 | awk '{ print $1 }'` > tx.txt 

sleep $pausetime 

staysec=$[$staymin * 60] 

mbbconnected=0 

usb_modeswitch -c /etc/usb_modeswitch.conf 

 

##Ping settings: 

pingcount=3 #Number of ping attempts 

pingexternal=8.8.8.8 #Address to send ping 

losslimit=0 #Acceptable loss of ping requests in percentage [0-100] 

 

##DNS settings: 

pridns=8.8.8.8 #Primary DNS 

secdns=8.8.4.4 #Secondary DNS 

 

#Infinite loop: 

while true 

do 

# iptables --flush 

# iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE 

# iptables -A FORWARD -i eth0 -o eth1 -m state --state RELATED,ESTABLISHED 

# iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT 

 

 while [ $networkstate -eq 0 ] 

 do 

  sleep $pausetime 

  gw=`cat /var/lib/dhcp/dhclient.eth0.leases | grep router | tail -1 | 
awk '{ print $3 }'` 

  defaultgw=${gw//[;]/} 

  mbbgw=`route | grep "ppp0" | awk '{ print $1 }'` 
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  if [[ -z "$defaultgw" ]] 

  then 

   defaultgw=$(<defaultgw.txt) 

  else 

   echo $defaultgw > defaultgw.txt 

  fi 

 

  if [[ -z "$mbbgw" ]] 

  then 

   mbbgw=$(<mbbgw.txt) 

  else 

   echo $mbbgw > mbbgw.txt 

  fi 

  #echo "Mobile broadband gateway $mbbgw" 

 

  if [ $mbbconnected -eq 1 ] 

  then 

   connectsec=$[$SECONDS - $startconnect] 

   echo "Still connected to mbb - will stay connected for 
$[$staysec - $connectsec] seconds." 

   while [ $connectsec -ge $staysec ] 

   do 

    killall wvdial & 

    mbbconnected=0 

    connectsec=0 

    sleep 2 

   done 

  else 

   echo "Not connected to mbb" 

  fi 

 

  #Check if cable connected 

  for interface in $(ls /sys/class/net/ | grep -e $IF); 

  do 

   if [[ $(cat /sys/class/net/$interface/carrier) = 1 ]] 

   then 

    echo "Cable connected." 

    #Calculation of sent and received bytes since boot 

    ##Get current values 

    rxbytes=`ifconfig $IF | grep "RX bytes" | cut -d: -f2 | 
awk '{ print $1 }'` 

    txbytes=`ifconfig $IF | grep "TX bytes" | cut -d: -f3 | 
awk '{ print $1 }'` 

    ##Get values from last run  

    oldrx=$(<rx.txt) 

    oldtx=$(<tx.txt) 

    ##Write current values to files 

    echo $rxbytes > rx.txt 

    echo $txbytes > tx.txt 

    ##Get difference between old and new values 

    diffrx=`expr $rxbytes - $oldrx` 

    difftx=`expr $txbytes - $oldtx` 
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    diffsum=`expr $diffrx + $difftx` 

 

    #Print visible output before connectivity test 

    #echo "Default next hop gateway $defaultgw on interface 
$IF" 

    #echo "Mobile broadband gateway $mbbgw" 

    #echo "Received bytes since last run:  $diffrx" 

    #echo "Sent bytes since last run: $difftx" 

    echo "Total packaces transmitted: $diffsum" 

    #echo $oldrx 

    #echo $oldtx 

 

    if [ $diffrx -le $rxthreshold ] 

    then 

     echo "Packets received since last run! No more 
tests needed." 

     #Get gateway addresses on primary interface and 
mobile broadband 

    elif [ $difftx -le 0 ] 

    then 

     defaultgw=$(<defaultgw.txt) 

 

     echo "No activity! Pinging $defaultgw ..." 

     pingtestnh=`ping -c $pingcount -l $pingcount -I 
$IF $defaultgw | grep "$pingcount packets transmitted" | cut -d, -f3 | awk '{ print 
$1 }'` 

     pcktlossnh=${pingtestnh//[%]/} 

 

     if [ $pcktlossnh -le $losslimit ] 

     then 

      echo "$pcktlossnh percent packet loss on 
ping request. Within acceptable limit." 

      echo "Checking internet access - pinging 
$pingexternal" 

             pingext=`ping -c $pingcount -l $pingcount -I 
$IF $pingexternal | grep "$pingcount packets transmitted" | cut -d, -f3 | awk '{ 
print $1 }'` 

      pcktlossext=${pingext//[%]/} 

 

      if [ $pcktlossext -le $losslimit ] 

             then 

                     echo "$pcktlossext percent packet 
loss on ping request. Internet connection is available!" 

             else 

                     echo "$pcktlossext percent packet 
loss on ping request to $pingexternal. Over acceptable limit. Local network access, 
but no internet access!" 

       networkstate=1 

             fi 

     else 

      echo "$pcktlossnh percent packet loss on 
ping request to $defaultgw. Over acceptable limit. No network access!" 

      networkstate=2 

     fi 

    else 
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     echo "Packets sent since last run! No more tests 
needed." 

    fi 

   else 

    echo "Cable disconnected! Setting mobile broadband as 
default..." 

    networkstate=2 

   fi 

  done 

 done 

 

 if [ $mbbconnected -eq 0 ] 

 then 

  echo "Connecting mobile broadband..." 

  wvdial telenor & 

  sleep 2 

  mbbconnected=1 

 fi 

# route del default 

 mbbgw=`route | grep "ppp0" | awk '{ print $1 }'` 

 if [[ -z "$mbbgw" ]] 

 then 

  mbbgw=$(<mbbgw.txt) 

 else 

  echo $mbbgw > mbbgw.txt 

 fi 

 route add default gw $mbbgw 

 echo "nameserver $pridns" > /etc/resolv.conf 

 echo "nameserver $secdns" >> /etc/resolv.conf 

 currentgw=`route | grep 0.0.0.0 | awk '{ print $2 }'` 

 currentif=`route | grep 0.0.0.0 | awk '{ print $8 }'` 

 echo "Default gateway $currentgw on $currentif." 

# iptables --flush 

# iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE 

# iptables -A FORWARD -i ppp0 -o eth1 -m state --state RELATED,ESTABLISHED 

# iptables -A FORWARD -i eth1 -o ppp0 -j ACCEPT 

 while [ $networkstate -eq 1 ] 

 do 

  sleep $pausetime 

  defaultgw=$(<defaultgw.txt) 

#  route del default 

  route add default gw $defaultgw $IF 

  cp resolv.conf.backup /etc/resolv.conf   

  pingext=`ping -c $pingcount -l $pingcount -I $IF $pingexternal | grep 
"$pingcount packets transmitted" | cut -d, -f3 | awk '{ print $1 }'` 

  pcktlossext=${pingext//[%]/} 

  echo "$pcktlossext percent packet loss on ping request." 

  if [ $pcktlossext -le $losslimit ] 

         then 

   echo "Internet connection, setting default settings" 

   networkstate=0 

   startconnect=$SECONDS 

  else 
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#   route del default 

#   route add default gw $mbbgw 

   echo "nameserver $pridns" > /etc/resolv.conf 

   echo "nameserver $secdns" >> /etc/resolv.conf 

   pingtestnh=`ping -c $pingcount -l $pingcount -I $IF $defaultgw | 
grep "$pingcount packets transmitted" | cut -d, -f3 | awk '{ print $1 }'` 

   pcktlossnh=${pingtestnh//[%]/} 

   if [ $pcktlossnh -le $losslimit ] 

   then 

    echo "Still only local network access" 

   else 

    echo "No network connection on $IF. Check cables and 
equipment!" 

    networkstate=2 

   fi 

  fi 

  currentgw=`route | grep 0.0.0.0 | awk '{ print $2 }'` 

  currentif=`route | grep 0.0.0.0 | awk '{ print $8 }'` 

  echo "Default gateway $currentgw on $currentif." 

 done 

 

 while [ $networkstate -eq 2 ] 

 do 

  firstrun=1 

  sleep $pausetime 

  for interface in $(ls /sys/class/net/ | grep -e $IF); 

  do 

   if [[ $(cat /sys/class/net/$interface/carrier) = 1 ]] 

   #pingtestnh=`ping -c $pingcount -l $pingcount -I $IF $defaultgw 
| grep "$pingcount packets transmitted" | cut -d, -f3 | awk '{ print $1 }'` 

   #pcktlossnh=${pingtestnh//[%]/} 

   #if [ $pcktlossnh -le $losslimit ] 

   then 

    echo "Local network access" 

    networkstate=1 

   else 

    echo "Still no network connection on $IF. Check cables 
and equipment!" 

   fi 

  done 

  currentif=`route | grep 0.0.0.0 | awk '{ print $8 }'` 

  currentgw=`route | grep 0.0.0.0 | awk '{ print $2 }'` 

  echo "Default gateway $currentgw on $currentif." 

 

  while [ $firstrun -eq 1 ] 

  do 

   sleep $pausetime 

   for interface in $(ls /sys/class/net/ | grep -e $IF); 

   do 

    if [[ $(cat /sys/class/net/$interface/carrier) = 1 ]] 

    #pingtestnh=`ping -c $pingcount -l $pingcount -I $IF 
$defaultgw | grep "$pingcount packets transmitted" | cut -d, -f3 | awk '{ print $1 
}'` 

    #pcktlossnh=${pingtestnh//[%]/} 
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    #if [ $pcktlossnh -le $losslimit ] 

    then 

     echo "Local network access" 

     networkstate=1 

     firstrun=0 

    #else 

     #echo "Still no network connection on $IF. Check 
cables and equipment!" 

    fi 

   done 

  done 

 done 

done 

exit  
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Appendix 3 – Arduino script 

int buttonPin = 3;     // on/off button connected to analog pin 3 

int beaconPin = 8;     // beacon signal from Raspberry Pi connected to analog pin 8 

int onsignalPin = 30;    // keep alive signal to Raspberry Pi on digital pin 30 

int relaysignalPin = 52;     // signal to relay switch on digital pin 52 

int startupTime = 75000;     // maximum time spent to start up Raspberry Pi 

int shutdownTime = 15000;     // standard time in milliseconds spent to shutdown 
Raspberry Pi 

int time = 0; 

int newtime = 0; 

int runtime = 0; 

 

int buttonval = 0;     // variable to store the value read on button pin 

int beaconval = 0;     // variable to store the value read on beacon pin 

 

int initialState = 0;     // variable to store state. This is the first phase of 
the process 

int startupState = 0;     // variable to store state. If in startup phase, value 
will be 1 

int normalState = 0;     // variable to store state. If in normal phase, value will 
be 1 

int buttonshutdownState = 0;     // variable to store state. If button is pressed 
to shutdown, value will be 1 

int hardshutdownState = 0;     // variable to store state. If beacon signal is not 
received, value will be 1 

int val = 0; 

 

int run = 0;     // variable to check for alternating beacon signal. if value is 
too high, beacon from the Raspberry Pi is propably dead 

 

void setup() 

 

{ 

  pinMode(buttonPin,INPUT);     // set signal direction 

  pinMode(beaconPin,INPUT);     // set signal direction 

  pinMode(onsignalPin,OUTPUT);     // set signal direction 

  pinMode(relaysignalPin,OUTPUT);     // set signal direction 

  Serial.begin(9600);          //  setup serial 

  initialState = 1;      // enter initial state 

} 

 

void loop() 

 

{ 

  while (initialState == 1) { 

    digitalWrite(relaysignalPin,HIGH);     // send signal to power the Pi 

    digitalWrite(onsignalPin,HIGH);     // send keep-alive signal to the Pi 

    initialState = 0;     // exit initial state 

    startupState = 1;     // enter startup state 

  } 

   

  while (startupState == 1) { 

    beaconval = analogRead(beaconPin);    // read the input pin 
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    if (beaconval == 1023) { 

      startupState = 0;     // exit startup state 

      normalState = 1;     // enter normal state 

    } 

  } 

   

  while (normalState == 1) { 

    time = millis(); 

    beaconval = analogRead(beaconPin);    // read the input pin 

    while (beaconval == 1023) { 

      buttonval = analogRead(buttonPin);    // read the input pin 

      if (val == 1023) { 

        normalState = 0;     // Exit the state 

        buttonshutdownState = 1;     // Restart the Raspberry Pi 

      } 

      beaconval = analogRead(beaconPin);    // read the input pin 

      newtime = millis(); 

      runtime = newtime - time; 

      if (runtime >= startupTime) {     // If the beacon does not change after this 
amount of runs, the RPi is probably dead. (MUST CHECK THIS VALUE) 

//        delay(startupTime);     // wait for beacon in case onboard watchdog has 
restarted the raspberry pi 

        normalState = 0;     // Exit the state 

        beaconval = 1024;     // exit the while loop by returning a value that 
could never be read on the analog pin (0-1023) 

        hardshutdownState = 1;     // Restart the Raspberry Pi 

      } 

    } 

     

    time = millis(); 

    while (beaconval == 0) { 

      buttonval = analogRead(buttonPin);    // read the input pin 

      if (val == 1023) { 

        normalState = 0;     // Exit the state 

        buttonshutdownState = 1;     // Restart the Raspberry Pi 

      } 

      beaconval = analogRead(beaconPin);    // read the input pin 

      newtime = millis(); 

      runtime = newtime - time; 

      if (runtime >= startupTime) {     // If the beacon does not change after this 
amount of runs, the RPi is probably dead. (MUST CHECK THIS VALUE) 

//        delay(startupTime);     // wait for beacon in case onboard watchdog has 
restarted the raspberry pi 

        normalState = 0;     // Exit the state 

        beaconval = 1024;     // exit the while loop by returning a value that 
could never be read on the analog pin (0-1023) 

        hardshutdownState = 1;     // Restart the Raspberry Pi 

      } 

    } 

  } 

   

  // When exiting normal state, the Raspberry Pi is shutting down, either forced og 
because the button was pressed. 

  // The following three lines are mutual for both states, and is kept in front of 
the while loops as they only should be run once. 
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  digitalWrite(onsignalPin,LOW); 

  delay(shutdownTime); 

  digitalWrite(relaysignalPin,LOW); 

     

  while (buttonshutdownState == 1) { 

    buttonval = analogRead(buttonPin);    // read the input pin 

    if (val == 1023) { 

      buttonshutdownState = 0;     // Exit the state 

      initialState = 1;     // Restart the Raspberry Pi 

    } 

  } 

   

  while (hardshutdownState == 1) { 

    hardshutdownState = 0;     // Exit the state 

    initialState = 1;     // Restart the Raspberry Pi 

  } 

}  
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Appendix 4 – Selftest script 

#!/bin/bash 

cat /var/log/syslog | grep hostapd > /tmp/syslog.tmp 

lastSyslog=`cat /tmp/syslog.tmp | tail -1` 

while true 

do 

isWlanIPset=`ifconfig wlan0 | grep -c 'inet addr'` 

isEth1IPset=`ifconfig eth1 | grep -c 'inet addr'` 

dhcpStatus=`service isc-dhcp-server status` 

hostapdProcessRunning=`ps aux | grep hostapd | grep -v grep | grep -c hostapd` 

wlan0tsharkProcessRunning=`ps aux | grep tshark | grep wlan0 | grep -v grep | grep 
-c tshark` 

eth1tsharkProcessRunning=`ps aux | grep tshark | grep eth1 | grep -v grep | grep -c 
tshark` 

currentWlan0LogEdit=`ls /tmp | grep outfile_wlan0 | cut -d'_' -f4 | tail -1` 

lastWlan0LogEdit=`ls /tmp | grep outfile_wlan0 | grep -v $currentWlan0LogEdit` 

tcpdump -ttttnnr /tmp/$lastWlan0LogEdit | grep -v IP6 > /tmp/wlan0.tmp 

cat /tmp/wlan0.tmp | cut -d' ' -f4 | cut -d'.' -f1-4 | grep . > /tmp/wlan0src.tmp 

cat /tmp/wlan0.tmp | cut -d' ' -f6 | cut -d'.' -f1-4 | grep . > /tmp/wlan0dst.tmp 

cat /var/log/syslog | grep hostapd > /tmp/syslog.tmp 

chmod 777 /tmp/syslog.tmp 

currentSyslog=`cat /tmp/syslog.tmp | tail -1` 

lnOfLastSyslog=`cat /tmp/syslog.tmp | grep -n '$lastSyslog' | cut -d':' -f1` 

nextSyslog=`expr $lnOfLastSyslog + 1` 

recentDeauth=`cat /tmp/syslog.tmp | tail -n +$nextSyslog | grep -c 'IEEE 802.11: 
deauthenticated due to local'` 

lastSyslog=$currentSyslog 

wlan0clients=`arp -an | grep -c wlan0` 

if [ $wlan0clients -ne 0 ] 

then 

 i=1 

 offlineClients=0 

 while [ $i -le $wlan0clients ] 

 do 

  clientIP=`arp -an | grep wlan0 | cut -d'(' -f2 | cut -d')' -f1` 

  pingresult=`ping -c 3 -I wlan0 $clientIP | grep 'packet loss' | cut -
d' ' -f6 | cut -d'%' -f1` 

  if [ $pingresult -eq 100 ] 

  then 

   offlineClients=`expr $offlineClients + 1` 

  fi 

  i=`expr $i + 1` 

 done 

 onlineClients=`expr $wlan0clients - $offlineClients` 

else 

 onlineClients=0 

fi 

echo $onlineClients 

currentEth1LogEdit=`ls /tmp | grep outfile_eth1 | cut -d'_' -f4 | tail -1` 

lastEth1LogEdit=`ls /tmp | grep outfile_eth1 | grep -v $currentEth1LogEdit` 
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tcpdump -ttttnnr /tmp/$lastEth1LogEdit | grep -v IP6 > /tmp/eth1.tmp 

cat /tmp/eth1.tmp | cut -d' ' -f4 | cut -d'.' -f1-4 | grep '*.*.*.*' > 
/tmp/eth1src.tmp 

cat /tmp/eth1.tmp | cut -d' ' -f6 | cut -d'.' -f1-4 | grep '*.*.*.*' > 
/tmp/eth1dst.tmp 

lnnr=0 

while read line 

do 

 lnnr=`expr $lnnr + 1` 

 destination=`cat /tmp/eth1dst.tmp | tail -$lnnr | head -1` 

 echo '$lnnr:$line:$destination' 

done </tmp/eth1src.tmp 

 

 

if [ $isWlanIPset -eq 1 ] 

then 

 echo 'wlan0 IP:  OK' 

else 

 echo 'wlan0 IP:  Not set' 

 ifconfig wlan0 10.0.0.1 

fi 

if [ $isEth1IPset -eq 1 ] 

then 

        echo 'eth1 IP:  OK' 

else 

        echo 'eth1 IP:  Not set' 

 ifconfig eth1 10.0.1.1 

fi 

if [[ $dhcpStatus == 'Status of ISC DHCP server: dhcpd is running.' ]] 

then 

 echo 'DHCP-server:  OK' 

else 

 echo 'DHCP-server:  Not running' 

 sudo isc-dhcp-server restart 

fi 

if [ $hostapdProcessRunning -ne 0 ] 

then 

 if [[ ($recentDeauth -ne 0) && ($onlineClients -eq 0) ]] 

 then 

         echo 'Hostapd process: Restarting...' 

  killall hostapd 

         ifdown wlan0 

         ifup wlan0 

         nohup hostapd /etc/hostapd/hostapd.conf & 

         service isc-dhcp-server restart 

  rm /tmp/outfile_wlan0* 

         nohup tshark -b duration:20 -b files:2 -w /tmp/outfile_wlan0log -t d -
i wlan0 & 

 else 

  echo 'Hostapd process:  OK' 

 fi 

else 

 echo 'Hostapd process: Not running' 
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 nohup hostapd /etc/hostapd/hostapd.conf & 

 service isc-dhcp-server restart 

fi 

if [ $wlan0tsharkProcessRunning -ne 0 ] 

then 

 echo 'Wlan0 logging:  OK' 

else 

 echo 'Wlan0 logging:  Starting...' 

 rm /tmp/outfile_wlan0* 

 nohup tshark -b duration:20 -b files:2 -w /tmp/outfile_wlan0log -t d -i wlan0 
& 

fi 

if [ $eth1tsharkProcessRunning -ne 0 ] 

then 

 echo 'Eth1 logging:  OK' 

else 

 echo 'Eth1 logging:             Starting...' 

 rm /tmp/outfile_eth1* 

 nohup tshark -b duration:20 -b files:2 -w /tmp/outfile_eth1log -t d -i eth1 & 

fi 

 

if [[ ($wlan0ok -eq 1) && ($wlan0ok == $eth1ok) && ($eth1ok == $dhcpok) && ($dhcpok 
== $hostapdok) ]] 

then 

 check=1 

fi 

sleep 10 

done 

exit  
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Appendix 5 – Heartbeat signal to watchdog (script) 

#!/bin/bash 

while true 

do 

 echo "1" > /sys/class/gpio/gpio4/value 

 echo "on" 

 sleep 0.5 

 echo "0" > /sys/class/gpio/gpio4/value 

 echo "off" 

 sleep 0.5 

done 

exit  
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Appendix 6 – Stay alive when signal from watchdog is received (script) 

#!/bin/bash 

i=0 

while true 

do 

 keepalive=`cat /sys/class/gpio/gpio17/value` 

 if [[ "$keepalive" -ne "1" ]] 

 then 

#  echo "recieving shutdown signal" 

  i=`expr $i + 1` 

  if [[ "$i" -eq 10 ]] 

  then 

   shutdown now 

   sleep 15 

  fi 

 else 

#  echo "stay alive" 

  i=0 

 fi 

# echo $i 

 sleep 1 

done 

exit  
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Appendix 7 - Wi-Fi Client 

As the Wi-Fi client software excludes the possibility for access point, and vice versa, one cannot 

choose both. If the Wi-Fi access point is going to be installed, please read Section 4.1.3. 

As we were using D-Link DWA-123 when the system featured a Wi-Fi client, it was necessary to 

download a driver that was not available in the Raspbian repositories [105]. If using another adapter, 

chances are that the installed drivers are fully compatible. In that case it is not required to install new 

drivers.  

This can be done using the following command set. Each command is here written on a new line to 

improve readability, but to run multiple commands at once, write them on a single line and put “&&” 

in between. 

sudo apt-get remove firmware-ralink –y 
sudo cp /etc/apt/sources.list ./sources.list.tmp 
sudo echo “deb http://http.debian.net/debian/ wheezy main contrib non-free” > cp 
/etc/apt/sources.list 
sudo apt-get update 
sudo apt-get install firmware-ralink -y --force-yes 
sudo mv ./sources.list.tmp /etc/apt/sources.list 
sudo apt-get update 

With the drivers installed, the Wi-Fi software is ready to be configured. This is done by editing 

“/etc/wpa_supplicant/wpa_supplicant.conf”. 

 

Content of wpa_supplicant.conf 

Edit the file so that it becomes identical to the Figure above, except for the ssid=”” and psk=””. 

Insert the name of the network you wish to connect to, in the quotation marks following ssid, and 

insert the network password in the quotation marks after psk. 

Finally, add the following three lines to the end of /etc/network/interfaces [106].  

allow-hotplug wlan0 
iface wlan0 inet manual 
 wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf 
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When this is done reboot the system and it should connect automatically to the configured wireless 

network. 
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