

This master’s thesis is carried out as a part of the education at the

University of Agder and is therefore approved as a part of this

education. However, this does not imply that the University answers

for the methods that are used or the conclusions that are drawn.

University of Agder, 2014

Faculty of Information and Communication Technology

Department of Engineering and Science

Multi-purpose Embedded Communication Gateway:

System Design and Testbed Implementation

Chi Winth Ea

Morten Sørbø

Lei Jiao

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

I

Version 0.7

Version Control

Version Status Date Change Author

0.1 Draft 2014-05-11 Chapters 1, 2 and 3 CWE

0.2 Draft 2014-05-18 All chapters changed CWE and MS

0.3 Draft 2014-05-24 All chapters changed CWE and MS

0.4 Draft 2014-05-29 All chapters changed CWE and MS

0.5 Review 2014-05-30 All chapters changed CWE and MS

0.6 Review 2014-06-01 All chapters changed CWE and MS

0.7 Review 2014-06-01 All chapters changed CWE and MS

1.0 Final 2013-06-02 All chapters changed CWE and MS

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

II

Version 0.7

Preface

This dissertation was written by ICT masterstudents at the University of Agder in Grimstad, Norway,

from January 2014 to June 2014.

The thesis has been supervised by Postdoctoral researcher Lei Jiao, University of Agder. With weekly

meetings, the process has been continuously smooth as there has always been enough work to do.

The equipment used during the thesis is financed by the University of Agder. Some was already

available at the University, but most of the devices had to be aquired by the writers. As time was of

the essence, it has been important to choose equipment that was easily available to borrow or

purchase.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

III

Version 0.7

Acknowledgements

We would like to express our gratitude towards Dr. Lei Jiao for his invaluable guidance during this

dissertation. It has been a pleasure having him as our supervisor as his input during our time

together steered us towards the completion of our work. He has been very gracious with his time,

and made us feel prioritized along the whole process.

Grimstad

June, 2014

Chi Winth Ea and Morten Sørbø

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

IV

Version 0.7

Abstract

This dissertation revolves around developing a multi-purpose embedded communication gateway.

The gateway is equipped with multiple communication interfaces including Ethernet, Bluetooth,

WiFi, Zigbee, LTE, and it can be configured and utilized for many purposes, such as a failover of an

Ethernet cable via 4G in order to maintain the network connectivity. Raspberry Pi circuit board and

the operating system Raspbian are selected as the hardware and the software platforms respectively.

 Different communication interfaces are coordinated by the Raspberry Pi and are configured via Linux

scripts according to various use cases. Furthermore, a hardware watchdog is adopted to enhance the

availability of system. In addition, the system is encapsulated into a box to increase its portability.

The system is validated and evaluated through rigorous test-bed experiments. Experiment results

indicate that the developed router works smoothly and reliably in environments with little electrical

disturbances.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

V

Version 0.7

Contents

1 Introduction ... 12

1.1 Background .. 13

1.2 Problem Statement ... 13

1.3 Problem Solution ... 13

1.4 Organization of the Dissertation ... 15

2 Existing Work ... 16

2.1 Commercial Products .. 16

2.2 Research Studies ... 17

2.2.1 Network Failover ... 17

2.2.2 Data Syncronization Technologies .. 17

2.2.3 Watchdog as a Reliability Improvement ... 18

3 System Design ... 20

3.1 System Overview ... 20

3.2 Overview of Hardware .. 21

3.2.1 Main Computer Board – Raspberry Pi ... 22

3.2.2 Watchdog – Arduino.. 23

3.3 Overview of Software .. 23

3.3.1 Operating System for Raspberry Pi ... 24

3.4 Overview of Interfaces .. 25

3.4.1 Technologies .. 25

3.4.2 Communication Dongles ... 27

4 Implementation ... 28

4.1 Software Installation and Interface Initialization .. 28

4.1.1 Operation System Installation ... 28

4.1.2 Mobile Broadband Software ... 31

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

VI

Version 0.7

4.1.3 Wi-Fi Access Point ... 33

4.1.4 Ethernet ... 35

4.1.5 Routing .. 35

4.1.6 E-mail ... 39

4.1.7 Bluetooth ... 39

4.1.8 ZigBee .. 41

4.1.9 Kernel Compilation .. 43

4.1.10 SD-Card Protection .. 45

4.1.11 MySQL Installation Proposal.. 47

4.2 Mobile Broadband Failover ... 49

4.2.1 The Initialization of the Script ... 51

4.2.2 While Loop When There is Internet Connectivity ... 52

4.2.3 While Loop When There is Only Local Network Access .. 54

4.2.4 While Loop When There is No Network Access .. 55

4.3 The Watchdog ... 57

4.3.1 Internal Watchdog ... 57

4.3.2 External Watchdog .. 59

4.4 Other Reliability Measures .. 63

4.5 Physical Implementation ... 63

4.5.1 The Casing .. 63

4.5.2 Cables and Connections .. 66

4.5.3 ZigBee Module ... 69

5 Testing and Validation ... 71

5.1 Reliability ... 71

5.1.1 Wi-Fi Access Point ... 71

5.1.2 Ethernet Routing ... 71

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

VII

Version 0.7

5.1.3 Mobile Broadband (3G/4G) ... 72

5.1.4 Network Failover ... 72

5.1.5 Bluetooth ... 73

5.1.6 Internal Watchdog ... 73

5.1.7 External Watchdog .. 73

5.2 Scenarios ... 75

5.2.1 Wi-Fi Access Point Range Experiment ... 75

5.2.2 Mobile Broadband Gateway in a Car... 75

5.3 Validation .. 75

6 Discussion .. 77

7 Conclusion ... 79

References ... 80

Appendices .. 91

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

VIII

Version 0.7

List of Figures

Figure 1 - Server synchronization scenario ... 14

Figure 2 - Car scenario ... 14

Figure 3 - Netgear DGN2200M [7]... 16

Figure 4 - Overview of the system ... 20

Figure 5 - Raspi-config main menu .. 28

Figure 6 - Raspi-config internationalisation options ... 29

Figure 7 - Raspi-config overclock warning ... 29

Figure 8 - Raspi-config overclock menu .. 30

Figure 9 - Raspi-config advanced options.. 30

Figure 10 - Basic flow diagram for the installation script .. 31

Figure 11 - Output from "lsusb" .. 32

Figure 12 - Output from "lsusb" after reboot ... 32

Figure 13 - Content of usb_modeswitch.conf ... 33

Figure 14 - Content of wvdial.conf .. 33

Figure 15 - The contents of the configuration file for hostapd ... 34

Figure 16 - The first part of the file "/etc/sysctl.conf" .. 36

Figure 17 - The content of the file "/etc/network/interfaces" ... 37

Figure 18 - The start of the file "/etc/dhcp/dhcpd.conf" .. 38

Figure 19 - The end of the file "/etc/dhcp/dhcp.conf".. 38

Figure 20 - The main configuration of Postfix ... 39

Figure 21 - XCTU initial launch... 41

Figure 22 - XCTU XBee Configuration .. 42

Figure 23 - XCTU Range Test ... 43

Figure 24 - Overview of the network failover script ... 50

file:///C:/Users/Morten/Dropbox/Skole/Masteroppgave/Rapport/Master%20Thesis%20v0.7.docx%23_Toc389434866

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

IX

Version 0.7

Figure 25 - Basic overview of the states in the network failover script .. 50

Figure 26 - Loop in the failover script where there is Internet access .. 52

Figure 27 - Loop in the failover script where there is local network access ... 55

Figure 28 - Loop in the failover script with no network access ... 56

Figure 29 - Simple flow diagram of the internal watchdog ... 58

Figure 30 - The Watchdog configuration file ... 58

Figure 31 - A general flow diagram of an Arduino script .. 59

Figure 32 - Arduino main loop overview ... 60

Figure 33 - A detailed view of the main loop in the Arduino script .. 62

Figure 34 - The Raspberry Pi with the hub and some adapters .. 64

Figure 35 - The front of the box .. 65

Figure 36 - The rear side of the box .. 65

Figure 37 - The top of the box ... 66

Figure 38 - The inside of the box, seen from above .. 67

Figure 39 - Illustration of connections [91][92][93][43][94][95][96] .. 68

Figure 40 - Slice of Pi before assembly [97] .. 69

Figure 41 - The Slice of Pi after soldering the connectors ... 70

Figure 42 - Our Slice of Pi with XBee ... 70

Figure 43 - RPi with Slice of Pi ... 70

Figure 44 - RPi with Slice of Pi ... 70

file:///C:/Users/Morten/Dropbox/Skole/Masteroppgave/Rapport/Master%20Thesis%20v0.7.docx%23_Toc389434906
file:///C:/Users/Morten/Dropbox/Skole/Masteroppgave/Rapport/Master%20Thesis%20v0.7.docx%23_Toc389434907

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

X

Version 0.7

List of Tables

Table 1 - Hardware comparison 1 ... 21

Table 2 - Hardware comparison 2 ... 22

Table 3 - Operating systems for ARM processors ... 24

Table 4 - Interface comparison .. 25

Table 5 - Explanation to Figure 39 ... 68

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

XI

Version 0.7

Abbreviations

3G Third Generation Telecommunication Technology

3DES Triple DES (Data Encryption Standard)

4G Fourth Generation Telecommunication Technology

5VDC 5 volt direct current

A Ampere

ARM Advanced RISC (Reduced Instruction Set Computer) Machine

armhf ARM Hard Float

ARMv6 ARM version 6

ARMv7 ARM version 7

BBB BeagleBone Black

BER Bit Error Rate

CD Compact Disc

CPU Central Processing Unit

DES Data Encryption Standard

DSL Digital Subscriber Line

GPIO General-purpose input/output

HDMI High-Definition Multimedia Interface

ISP Internet Service Provider

LAN Local Area Network

LED Light Emitting Diode

mA Milliampere

OS Operating system

RAM Random Access Memory

RAP Remote Access Points

RISC Reduced Instruction Set Computer

RPi Raspberry Pi

RTT Round Trip Time

SD Secure Digital

SSH Secure Shell

SSID Service Set Identifier

TCP Transmission Control Protocol

USB Universal Serial Bus

WLAN Wireless Local Area Network

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

12

Version 0.7

1 Introduction

The Internet acts as a gateway to knowledge and information, and its usages are unlimited.

Connecting to the Internet allows billions of people around the world to communicate with each

other in different ways. People all over the world connect to the Internet to receive the services it

provides. It is a medium which has a large role in education, media entertainment as well as social

interaction between users. The Internet is a resource and it would be hard to argue against it being

an indispensible resource in today’s society. Devices which connects to the Internet every day are

often shipped with other communication interfaces than Wi-Fi and Ethernet, an example would be a

smart-phone with bluetooth and infrared support. It does not necessarly have to be a smart-phone,

it may be an older phone that does not have Wi-Fi support, or a camera that are able to transfer files,

wirelessly, through bluetooth. We would like to take advantage of the fact that there are a lot of

devices with support for different communication interfaces. We would like to develop a multi-

purpose embedded communication gateway that different devices may connect to and use in

different scenarios. The embedded system will act as a gateway for communication devices and

provide services that they cannot achieve on their own. An exampled would be to forward pictures

from a digital camera to the Internet by use of mobile broadband.

Speaking of the Internet, one could imagine it would mean a great deal for most people to lose

access to the services it provides, even for a single day, hour, or minute, depending on its current

use. It may happen while streaming your favorite TV show or playing an online game. It may occur

before handing in an assignment or while you are trying to read the news. Losing connection to the

Internet can happen any day and at any time, some may experience it more frequently than others

depending on the Internet service provider (ISP). In addition to featuring multiple interfaces, we

would like our system to provide continuous Internet access. The system will be given a mobile

broadband interface which acts as a secondary connection to the Internet and will automatically turn

itself on at suitable occasions. The system will have multiple purposes, depending on the user that

takes the device into use. It may serve as a node in an already established local area network (LAN)

or be used in other scenarios.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

13

Version 0.7

1.1 Background

There are some existing products on the market which provides continuous Internet access by using

mobile broadband as a second connection to the Internet. Companies such as Asus [1], Cisco [2], TP-

Link [3] and Netgear [4] are a few examples of manufacturers that have developed such devices. The

amount of devices which are specialized in providing continuous Internet access are few. Of these

there are few or none multi-purpose devices able to communicate on other interfaces. The gateway

provided by the dissertation will become an addition to the group of devices which uses mobile

broadband as failover while providing the user the possilility to use it in scenarios suited for their

needs. It is important to note that this embedded system may be modified by users by expanding its

capabilities.

1.2 Problem Statement

Although mentioned companies has developed existing products, there are still some features that

may be added. For instance, multiple interfaces for multi-purpose use in other types of networks, as

well as a watchdog to improve its availability. Keeping these improvements in mind, the objective of

this dissertation is to create a similar product as well as improving its current state by adding new

features. The newly developed product’s performance will be evaluated through experiments. More

specifically, the following goals are identified:

 Goal 1: To develop a multi-purpose embedded gateway by installing the following interfaces:

LAN, Wireless Local Area Network (WLAN), and Bluetooth, ZigBee, and Third/Fourth

Generation Telecom technology (3G/4G).

 Goal 2: To develop automatic loss detection to the Internet that may be used together with

mobile broadband to provide continuous Internet access.

 Goal 3: To improve the system’s availability by adding a watchdog.

 Goal 4: To improve the system’s reliability through script optimization and loading specific

folder’s into the memory. The kernel of the operating system will be recompiled to bring

stability to the system as well as removing unnecessary load.

 Goal 5: To propose a solution for data synchronization to a remote server.

1.3 Problem Solution

The embedded system will be developed using a Raspberry Pi with several types of interface

adapters. Continuous Internet access will be achieved using shell scripts with mobile broadband

acting as a backup connection to the Internet. In order to provide availability, an Arduino will

function as a watchdog. The reliability of the system will be achieved through code optimization in

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

14

Version 0.7

addition to loading specific folders into the memory to protect the Secure Digital (SD) card. The

kernel of the operating system will be recompiled to suit the system specification and to provide

stability. The dissertation will also propose a solution for implementing data synchronization

between the embedded system and a server.

Figure 1 - Server synchronization scenario

By including multiple interfaces, the embedded system will have additional usages. Figure 1 shows

that it may be used to synchronize local nodes on different interfaces with an external server. Here a

smart phone is connected to the system via both Bluetooth and Wi-Fi, while a computer network is

connected through Ethernet. The system is connected to the internet via Digital Subscriber Line (DSL)

and mobile broadband for redundancy.

Figure 2 - Car scenario

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

15

Version 0.7

Figure 2 shows that another use for the system can be inside a car. The system could provide routing

for sensors in the car, and transmit log files to an online location if a emergency should occur.

1.4 Organization of the Dissertation

The main body of the report is organized into several different chapters ranging from chapter 2-7.

Chapter 2 is titled Existing Work and provides information about already existing products and

technology related to our communication system. Chapter 3 is called System Design and contains an

overview of the different hardware and software that have been looked at during the semester. The

chapter will also present the system overview in terms of chosen hardware and software and give

the reasons behind the specific selections. The dissertation will then move on to Chapter 4

Implementation. This chapter will provide information on how to install and develop the different

features that are included in the multi-purpose embedded communication system. The chapter will

in addition include how to compile the Linux kernel to suit the system's specifications and make it

more reliable. Testing and validation will be provided in Chapter 5 Testing. The chapter will inform

about the everal different experiments that were done to validate our solution. The end of the

report, Chapter 6 and 7, will provide a discussion and conclusion of our work.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

16

Version 0.7

2 Existing Work

2.1 Commercial Products

It has already been mentioned in the previous sections that there are existing products on the

market which provides continuous Internet access by using mobile broadband as a second

connection to the Internet. One of them is NetGear.

Netgear has three routers which were developed with purpose

of providing continuous Internet access. The only router which

supports a DSL connection is the DGN2200M [4]. It was

released in 2010 and is still in production by the company [5].

The router was originally intended to be used with 3G

modems, but is currently supporting a wide arrangement of 4G

modems as well [6]. DSL is connected to the DGN2200M using

the RJ11 connector. Its internal modem will act as an access

point and provide Internet access to the other nodes in the

network which eliminates the need of an independent modem.

The DGN2200M, in addition to the DSL modem, supports mobile

broadband through its Universal Serial Bus (USB) port. The mobile broadband can be used to provide

continuous Internet access when the DSL is unavailable or as a dedicated mobile broadband router.

Another useful feature which is included in the router is the traffic meter [7]. The traffic meter is

used to control the amount of data used while the mobile broadband is active. A limit may be set to a

specific value which will suit the user’s specification and needs. The mobile broadband will be

disconnected when the limit of maximum data transfer is reached.

The routers provide continuous Internet access in the same manner as our embedded

communication gateway. Our embedded communication gateway does however provide multiple

interface which makes it more universal than the products of the mentioned companies. It is also

worth mentioning that our system is open source and may be modified to suit other purposes

compared to the DGN2200M which is a closed system and protected by companies’ patents. In

addition, the embedded communication gateway has an integrated watchdog which removes the

need for manual rebooting of the system. The result is that it may be used in situation where manual

reboots is not an option, for instance in a data sensor scenario where there are not any active

administrators.

Figure 3 - Netgear DGN2200M [7]

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

17

Version 0.7

2.2 Research Studies

2.2.1 Network Failover

The first paper we're going to adress is a patent paper[8]. The paper itself describes a network which

use Remote Access Points (RAP) that associates and employees connect to. The RAP is given the

same configuration paramters as the local company network. By using the same Service Set

identifiers (SSIDs), encryption and authentication settings, the users can automatically connect to the

office network after an initial setup. The paper describes a strategy which lets the RAP stay

connected to the company network at all times. This is done through several parameters such as

connection priority, signal strength, connection capacity, bit error rate (BER), round-trip time(RTT),

and traffic amount limitations.

If the ammount of data transfer is exceeded in one connection between the user and RAP, the

system will switch its user over to another RAP with the right specifications. If the user does not wish

to do so, it should disconnect from the Internet. The process of choosing a connection is decided

through different attributes such as BER and RTT. They are however subject to change due to

weather conditions, amount of users on the specific access point as well as physical disturbances.

The system will then measure these parameters for all available alternative connections before

choosing one to connect through. The patent paper also address other requirements for the system

such as security.

The strategies and parameters mentioned in this article are relevant for the network selection in the

embedded system. It is however uncertain if the requirements set for the network described in this

article applies to the system developed during the thesis. If the solution is supposed to handle secure

communication, it would be a good idea to implement some quality requirements. On the other

hand, in applications with small amounts of data transferred, the quality of the connection does not

need to meet the same requirements. There it would probably be a good alternative to implement

connection quality as a user available setting. [9]

2.2.2 Data Syncronization Technologies

This article provides four different tests of the file transfer technologies cfengine and rsync [10]. The

tests are with native cfengine, native cfengine through a Secure Shell (SSH) tunnel, native cfengine

with Triple Data Encryption Standard (3DES) encryption, and rsync over SSH called externally from

cfengine.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

18

Version 0.7

For each of these tests the data transfers were divided in four different sizes: From the smallest

128kb in 22 files and 1 directory to the largest at 258Mb in 5646 files and 528 directories. The change

in file sizes during the test may help to detect different performances during diverse workloads. To

produce enough data points, the tests were run ten times – five with debugging and five without

debugging. And to eliminate eventual bottlenecks in the client, the same transfers were done in a

secondary client as well.

The results of the tests are illustrated in order to show the time taken for each transfer size and

technology. To summarize the results, rsync on Linux performs better than cfengine only when there

are a large amount of files to be synchronized and Solaris rsync is equal or faster than cfengine with

all techniques. Non-encrypted cfengine over SSH performed poorly overall as cfengine and SSH was

connected through Transmission Control Protocol (TCP) socket connections and therefore created a

heavier load on the operating system’s TCP stack.

These results are interesting as rsync is popular file synchronization technology. However, it is

important to keep in mind that these tests were performed in 2001 and a lot has changed since then.

Network transmission speeds, operating systems and hardware capacities as well technologies

themselves are subject to change. Even if the results in this article were conclusive for the concurrent

time, the same tests performed with the latest versions on the current hardware and operating

systems may show different results. [9]

2.2.3 Watchdog as a Reliability Improvement

The purpose of this article is to describe the different types of watchdogs that may be used in a

system [11]. It describes in details where they may be placed and what types of trigger mechanisms

that are used based on their location. There are three possible locations for a watchdog in a system:

1 In software.

2 On-chip of the device.

3 External

The article describes the advantages and disadvantage of each location. For instance, if the watchdog

is placed inside the software and is to be triggered by a software malfunction it will result in being

unusable if the hardware freezes. However, an on-chip watchdog in the mentioned scenario may

provide a system reboot. This way the system “knows” if the system is required a normal or an

extraordinary boot. The third alternative is an external watchdog. An external watchdog is installed

on an external board which is connected to the main system.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

19

Version 0.7

Other aspects which are described in the article are methods which can be used in order to detect a

malfunction. One method is to implement a timer which is connected to the watchdog. The system

will reset the timer at a given time, would the system fail to do so, the watchdog will act according to

its settings. The article is relevant for our work as it provides information about the different types of

watchdog which exists, and its strengths and weaknesses.

As it has been mentioned in the previous subchapters, the goal of this dissertation is to develop a

multi-purpose embedded communication gateway. The motivation itself lies within the mutual

interest of development and networking. Personal motivation also plays a part of the project as it

seems to be a practical device to have. It also lets the user to add more features to the device if

necessary.

Based on the above observations, we realize that some of the features our communication gateway

brings to the market already exists. As it was mentioned in the previous section, there are already

existing commercial products that provides continuous Internet access through LTE and the

discussion of bringing network failover, data backup, and availability to to users is a fairly discussed

topic. The LTE router mentioned in the previous section does however not provide any of the

features that the articles discusses. It is important to notice that even though the features discussed

in the articles are common in the corperate side, it is not so in a regular user's home. We would like

to provide our users with a communication device that features LTE as a mean to provide continuous

Internet access, as well as integrating the corporate advantages that has been discussed in the recent

articles. Our device will also integrate different communication interfaces to ensure that the device

can be used in different types of scenarios and not only in home-environment. [9]

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

20

Version 0.7

3 System Design

3.1 System Overview

The embedded system is developed on the Raspberry Pi using a recompiled kernel of the operating

system: Raspbian. Multiple communication interfaces such as Ethernet, Wi-Fi, Bluetooth, ZigBee, and

LTE has been added through compatible chipsets to make it suitable for different types of scenarios.

The communication dongles are connected to the Raspberry Pi through a self-powered USB-hub, and

an external board is connected to the Raspberry Pi which functions as a watchdog. The current board

which has been used in the system is an Arduino, the reason for choosing the specific hardware will

be explained in Section 3.2.2.

Figure 4 - Overview of the system

The system has been developed to monitor its Ethernet ports in real-time to detect abrupt loss of

connection and automatically switch to mobile broadband to provide continuous Internet access. It is

designed to act as a wireless access point for wireless devices. To extend the life of the SD card the

system has been designed to write only to the Raspberry Pi’s memory.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

21

Version 0.7

3.2 Overview of Hardware

This part of the report will provide some information about the different types of hardware which

has been looked at during the past year, and the reasons for choosing the specific computer boards

to support our communication gateway.

Table 1 - Hardware comparison 1

Computer Board Central

Processing Unit

(CPU)

Random

Access

Memory

(RAM)

Storage USB-connections

A13-OLinuXino-WIFI

[12][13][14][15]

1 GHz 512 MB Micro SD-card 3

Arduino Mega 2560

[16][17][18]

16 MHz 8196 B Internal 4092 B 1

BeagleBoard [19][20] 720 MHz 2048 MB Memory card 1

BeagleBone Black

[14][20][21]

1 GHz 512 MB Micro SD card 1

Cubietruck

[14][22][23][24]

Dual-core 1GHz 2048 MB Internal 2 GB+S-

ATA

2

Elektor Linux Board

[25][26]

180 MHz 32 MB 4 SD card 1

Gooseberry [27][28][29] 1 GHz 512 MB 4 GB internal +

micro SD

1 Mini-USB

Hackberry [30][31] 1 GHz 512 MB 4 GB internal + SD

card up to 32 GB

2

Mars Board [32][33] 1.2 GHz 1024 MB 4 GB internal + SD

card up to 32 GB

2 + OTG

Netduino plus 2

[34][35][36]

168 MHz 100+ KB Micro SD 0

Parallella [37] [38][39] Dual-core 1 GHz 1024 MB 16 GB micro SD 1+OTG

Raspberry Pi mod. B

[40][41]

700 MHz 512 MB SD card 2

Utilite Value [42][43] 1 GHz 512 MB Micro SD 4 + OTG

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

22

Version 0.7

Table 2 - Hardware comparison 2

Computer Board Ethernet Wi-Fi Bluetooth Power

consumption

Price

A13-OLinuXino-WIFI [12][13][14][15] No Yes No 6 W 55€

Arduino Mega 2560 [16][17][18] No No No N/A 39€

BeagleBoard [19][20] No No No 6 W 91€

BeagleBone Black [14][20][21] Yes No No 6 W+ 35€

Cubietruck [14][22][23][24] Yes Yes Yes 2 A 70€

Elektor Linux Board [25][26] No No No 50-70 mA 71€

Gooseberry [44][28][29] No Yes No 4 W 50€

Hackberry [30][31] Yes Yes No 0.7 A @ 5.5 V 48€

Mars Board [32][33] Yes No No N/A 37€

Netduino plus 2 [34][35][36] Yes No No N/A 55€

Parallella [37] [38][39] Yes No No 5 W 72€

Raspberry Pi mod. B [40][41] Yes No No 700-1000 mA 25€

Utilite Value [42][43] Yes No No 4-6 W 72€

3.2.1 Main Computer Board – Raspberry Pi

Table 1 and Table 2 illustrate the different types of computer boards which have been studied in the

past year. There is variation in power and price as well as utilities such as Ethernet, Wi-Fi, Bluetooth

and power consumption. The weakest boards, the Arduino, The Elektor Linux board, and the

Netduino Plus 2, all operate with processor frequencies below 200MHz. The mentioned boards’

specifications are too low to support our embedded system and are removed from the list of

candidates. The other boards possess similar aspects when it comes to the CPU frequency as they all

range from 700 MHz to 1.2 GHz dual core and are all able to run advanced operating systems such as

Linux. Another important aspect is the amount of RAM each of the devices possess. They all range

from 512MB to 2GB. The BeagleBoard and Cubietruck ships with the highest amount of RAM of the

listed devices, but are also the most expensive ones to order, the BeagleBoard at 91€ and Cubietruck

at 71€. Other expensive boards are the A13-OLinuxXino-WIFI, the Hackberry, the Parallella and the

Utilite Value, which all have a price above 47€ and basically have the same capabilities as the

cheaper models. It is important to note that the BeagleBoard and Cubietruck, with highest amount of

RAM, are not suitable for the tasks that the embedded system will perform as 2048MB of RAM is too

much.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

23

Version 0.7

This leaves us with BeagleBone Black, The Gooseberry, the Mars Board, and the Raspberry Pi. The

Gooseberry was removed from the list of candidates since it does not possess an Ethernet port or a

standard USB port. The next step is to look at the power adapters that are powering the different

computer boards. The Raspberry Pi and BeagleBone Black are both powered by a mini-USB, while the

Mars Board is only able to power up by use of a 5 volt direct current (5VDC) adapter. In terms of

availability we decided to remove the Mars Board from the list of candidates as being able to power

the Raspberry Pi (RPi) and BeagleBone Black (BBB) through a mini-USB is simpler.

The two remaining boards are quite similar to each other. They both have the memory of 512 MB, as

well as an High-Definition Multimedia Interface (HDMI) and Ethernet output. The RPi has the

advantage of shipping with two USB ports, while the BBB has a stronger CPU at 1 GHz compared to

Raspberry Pi’s 700 MHz. The RPi is however our chosen as our platform of development as it is more

than powerful enough to support the systems function, and comes at a cheaper price than BBB. The

RPi is well suited for running a light Linux distribution, and the CPU can easily be overclocked to gain

the necessary performance level. [45]

3.2.2 Watchdog – Arduino

The Arduino Mega 2560, Elektor Linux board and Netduino Plus 2 where all removed from the list of

candidates in Section 3.2.1 for being too weak. As the watchdog uses a fairly simple piece of

software, the processing power in the hardware does not have to be as great as in one who will run

an operating system. The watchdog needs to be reliable and as inexpensive as possible. With the

price ranging from 37€ for the Arduino to 71€ for the Elektor Linux Board, it was the most

economical choice to choose the Arduino. Some other deciding factors is that the Elektor Linux

Board, as well as the Netduino plus 2, require a memory card to function, in addition to the

Arduino’s large community which can be helpful if needing assistance. It is however important to

mention that there are other types of hardware that might be more suitable for a service like

watchdog. The Arduino is in reality too powerful for a simple task such as a watchdog; the decision to

use it was made due to the availability of this hardware in the lab. We can easily transplant our

program to another simpler device in the future if necessary. [45]

3.3 Overview of Software

This subchapter will present the operating system (OS) and other software which has been chosen

for our embedded system as well as the reason for choosing the specific types.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

24

Version 0.7

3.3.1 Operating System for Raspberry Pi

Table 3 contains an overview of free operating systems that supports the Advanced RISC Machine

(ARM) CPU architecture. Popular operating systems such as Windows and OSX is not listed as they

are not free, and do not support the type of architecture which is needed. Table 3 also contains a

combination of suggestions from Distrowatch.com [46] and elinux.com [47]. It is important to note

that not all of the distributions from the latter source list are taken into consideration as they do not

support ARM Hard Float (armhf).

Table 3 - Operating systems for ARM processors

General Linux

Distributions

Lightweight OS Unix-like OS Entertainment Special Features

Alt Linux Arch Linux FreeBSD GeeXbox IPFire

Debian Bodhi Linux NetBSD OpenELEC Kali Linux

Fedora Moebius openSUSE PiBox Plan9

Gentoo Linux PiBang Linux Slackware Linux PiMAME

Lubuntu Pidora Raspbmc

RISC OS Raspbian RaspyFi

Ubuntu SliTaz Xbian

 Tiny Core Linux

The main board which was chosen for the embedded system runs ARM version 6 (ARMv6) CPU

architecture. The natural step was to eliminate the distributions which did not support the current

architecture, which is why the following operating systems where removed from the list of

candidates: Alt Linux, Debian, Fedora, IPFire, Lubuntu, NetBSD, Slackware Linux and Ubuntu. Ubuntu

and Lubuntu supports the ARM version 7 (ARMv7) architecture, but has limited ARMv6 support [48].

IPFire does not support ARMv6 architecture as the developers felt that it would be too slow for their

operating system [49]. Slackware Linux does not exist for the Raspberry Pi [50] while NetBSD is

under development [51]. Debian and Fedora does not support the Raspberry Pi, but there is however

rebuilds of the two operating systems; Raspbian and Pidora.

GeeXbox [52], OpenELEC [53], PiBox [54], Raspbmc [55], RaspyFi [56] and Xbian [57] are distributions

that were developed to act as media centers on the Raspberry Pi which is not suited for our systems’

specifications. Another OS that was excluded is Kali Linux. Kali Linux is an operating system for

network testing, and is made by the same developers who made the live compact disc (CD) tool

BackTrack [58]. The PiMame is an OS with a collection of emulated game consoles while the Plan9 OS

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

25

Version 0.7

is designed to be used as a part of a distributed system [59][60]. None of the mentioned operating

systems suited our preferences and was removed.

Limited information could be gathered from reading system specifications. The next step of the

process was to install the different operating systems on the Raspberry Pi and check if the installed

operating systems supported the basic features which were needed for the embedded system. The

installation of RISC OS had several flaws. The operating system performed poorly with frequent

crashes. Arch Linux was not able to detect nearby devices using Bluetooth and Bodhi Linux did not

have the support for Bluetooth on the Raspberry Pi. Moebius was not able to transmit files even

though the pairing had been successfully accomplished. We experienced Wi-Fi errors with several

operating systems. Arch Linux, Bodhi Linux, Moebius, PiBang Linux and Pidora all had Wi-Fi

connection uses and was able to detect nodes over Wi-Fi, but unable to connect to them.

The Raspbian OS was the only operating system that met the system specifications of our embedded

system and passed the basic installation experiments. It experienced some compatibility issues with

the current USB-hub which made it unable to boot, but was easily resolved by using another hub.

[45]

3.4 Overview of Interfaces

3.4.1 Technologies

The table gives a description of the different values of the properties shared by the different

communication systems. The table was used to compare and evaluate the different types of

interfaces which were selected for our embedded communication gateway.

Table 4 - Interface comparison

Feature(s) Ethernet [61] IEEE 802.11g

[62]

Bluetooth

[63][64]

ZigBee

[65]

3G/4G [66][67]

Power Profile N/A Hours Days Years Days

Complexity Very

Complex

Very Complex Complex Simple Very Complex

Nodes/Master 7 64000

Latency 0.3 ms Up to 3 sec. Up to 10 sec. 30 ms

Range N/A 100 m 10 m 70-300m Radio Tower

Data Rate 11Mbps 1Mbps 250Kbps 40Mbps

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

26

Version 0.7

Most of the interfaces from Table 4 is implemented in our embedded system. One interface which

did not get implemented was WiMax. WiMax technology provides fast data rate up to 30-40 Mbps

and has a large broadcast area compared to Wi-Fi [68]. There is a high amount of devices which

supports the technology, and it may even rival Wi-Fi in some areas, but it was decided to not

implement it as it is not a widespread technology in Norway. The Internet service providers which

offer WiMax services are NextGentel, NextNet, and Telenor, and this is only in certain areas of the

country [69]. The WiMax wireless communication standard is supported only by 4G era technology,

which also only exists within the largest city in Norway and is costly. We believe it that it would be

better to wait until it becomes a more widespread technology, and more people takes interest in it.

The chosen interfaces for our system are Ethernet, Wi-Fi, Bluetooth, Zigbee and 3G/4G. We would

like our embedded system to support multiple types of interfaces to make it a universal device which

may be used in several situations. The user is then able to choose between the interfaces that may

suit his or her needs. Ethernet is the most common and widespread technology used in LAN. It

provides the network with high data transfer rate up to 100Gbps as well as security, as people would

need to be physically connected to do any damage.

The Ethernet technology is constrained by cables and it is the reason why Wi-Fi is included in the

embedded system. Wi-Fi has the advantage of providing mobility, and allows LANs to be easily

deployed while being cost efficient. The use of Wi-Fi will remove hurdles such as cabling, drilling and

setting up multiple switches as access points.

Bluetooth offers the same advantages as Wi-Fi, but at a much shorter range. Bluetooth was

developed to be used by portable equipment and its application. The main difference between the

two technologies is that Wi-Fi is dependent on access points. In addition Bluetooth demands low

processing power, has low battery usage and, and gives little signal interference.

The next interface which is implemented on the communication gateway is ZigBee. ZigBee is

developed for the purpose of communication on a sensor network, and is a low power intensive

interface. Compared to Bluetooth, ZigBee has the ability to transmit data over longer distance by use

of multi-hop communication. Multi-hop communication gives the node the capability of forwarding

information.

The last interface which is going to be implemented in our system is 3G and 4G mobile broadband

technology. The technology is usually used by mobile phones and other mobile devices. The

technology comes with universal global roaming, and supports different types of multimedia

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

27

Version 0.7

services. Mobile broadband is one of the most important features in our system, as it provides a

second connection to the Internet. The interface provides better security than Wi-Fi, and allows a

data transfer rate up to 40 Mbps while the device is stationary, which makes it an exceptional

candidate for replacing DSL during downtime [67].

During the process of selecting the different types of candidates we thought about how the

mentioned interfaces could cover their strength and weaknesses. We would like users to choose

between the different types of interface suited for their situation. By implementing multiple

interfaces our embedded system may be used in a wide area of different tasks and makes our

gateway universal. [45]

3.4.2 Communication Dongles

The embedded communication gateway provides several different communication interfaces. It

requires several dongles which can serve as antennas for the respective interface. Functional

dongles was acquired by recommendations from the Linux community. The system is currently using

ZTE MF821D Telenor as an antenna to provide mobile broadband, and reason for choosing the

specific dongle was due to our connection with Telenor. They allowed us to borrow and test the

dongle and offered us a special discount. The communication gateway serves as a wireless access

point and is connected to a Edimax EW-7811Un. It was however not our first choice when choosing

dongles. The D-Link DWL-123 Wi-Fi dongle was installed and worked as a client, but did not support

the feature of serving as an access point for other devices.

The Bluetooth dongle which was chosen for our gateway was the ASUS USBBT211. The Bluetooth

was accessible at the current time and had been used by several users in the Raspberry Pi

community. The ZigBee interface was provided by a ZigBee module named XBee, which required an

additional circuit board to function. We had access to the Xbee module at the lab and the circuit

board was ordered online as it was manufactured for the Raspberry Pi.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

28

Version 0.7

4 Implementation

4.1 Software Installation and Interface Initialization

4.1.1 Operation System Installation

When having a brand new Raspberry Pi at hand, one need to install an operating system. There are

different methods on how to do this, depending on which OS is used. As we chose to use Raspbian,

the method is quite simple. By downloading an image file and extracting this onto the SD card using

another computer, the installation process is almost done.

The Raspberry Pi will boot immediately after inserting the SD card and being connected to the power

supply. First the operating system will load, and then the script “raspi-config” will be shown. Since

this is the first boot of the Raspberry Pi, it would be recommended to do some basic configuration

before getting started using the OS.

Figure 5 - Raspi-config main menu

Most of the configurations in this script may be changed later, but we recommend to do some

changes as soon as possible. Following is a list of configurations we recommend changing, where the

naming is based the menu shown in Figure 5. Also note that some menu choices are unmentioned, as

they are irrelevant for our setup.

 1 Expand Filesystem: It is advisable to expand the file system, to make sure no space is

unallocated and then unusable by the OS.

 2 Change User Password: The default password for the user “pi” is “password”, but to

improve the security, this should be changed.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

29

Version 0.7

 3 Enable Boot to Desktop/Scratch: If one wish to use the graphical user interface provided by

Raspbian, it is necessary to enable that in the menu. By default the RPi will boot to the text

console.

 4 Internationalisation Options

Figure 6 - Raspi-config internationalisation options

o I2 Change Timezone: To get the clock correct one has to change the time zone

setting.

o I3 Change Keyboard Layout: By default the keyboard layout is set to “English”, and

should be changed if the keyboard has another character set.

 7 Overclock: In order to speed up the process of upgrading existing and installing new

software, it is possible to overclock the CPU, core, SDRAM and voltage. However, it might

weaken the stability and reduce the lifetime of the Raspberry Pi.

Figure 7 - Raspi-config overclock warning

 The Raspberry Pi Foundation has made some improvements, and enabling the highest level

of overclocking will not void the warranty anymore [70]. As stability is a great factor in this

implementation, we recommend to be careful when overclocking, but if it is only for a short

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

30

Version 0.7

period of time, it can be a way to save some time.

Figure 8 - Raspi-config overclock menu

 When we did the installation of software, we used the preset called “High”, as the likelihood

of stability issues increases with heavier overclocking. In earlier firmware versions it was a

common problem with SD card corruption when using the “Turbo” preset, but this should

have been fixed in newer firmware versions [71].

 8 Advanced Options

Figure 9 - Raspi-config advanced options

o A4 SSH: To control the Raspberry Pi remotely in the future, we suggest to enable the

SSH server. Until this is done, a keyboard and a monitor is required to control the

system.

To exit the “raspi-config” script, choose “Finish” and answer yes to reboot the Raspberry Pi.

During the development of this system, there has been a lot of fresh installs. Therefore we made a

script to automate the installation. This script is somewhat interactive in the way that it asks the user

which features to install, and saves the configuration details in between reboots. Then it is able to

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

31

Version 0.7

continue where it left off and without the need of the same input twice[72]. The complete script can

be read in Appendix 4.

Figure 10 - Basic flow diagram for the installation script

In general the installation script will ask the user for input, followed by installation of software and

finally changing configuration files according to the collected input.

We will not explain the script in detail, as the interested reader can study it in the appendices.

However, an installation guide of different functions will be provided. The installation script contains

some functionality that can be useful, such as selection of system functionality and e-mail

notification when user input is needed.

Before installing anything, one should get an updated version of the package lists from the

repositories. This can be done in console by running “sudo apt-get update”.

After the update, the application manager will know if there are any new versions of the installed

packages on the computer. To install the newest versions of everything available from the package

repositories, run the command “sudo apt-get upgrade –y”. This will take a while, but afterwards

the system will be ready for the software installation.

4.1.2 Mobile Broadband Software

The mobile broadband can be difficult because the hardware often run in different modes. First it will

start in storage mode which allows the user to install the supported driver software, but then one

will have to enable the modem mode. In Windows this usually is no problem, but in Linux one will

have to reboot or reconnect the device. Even then there might be an issue. Reconnecting the device

will not always work, as it stays in storage mode after connecting it to the system. Also, if the modem

is connected to a self-powered USB-hub (as we recommend), one will have to disconnect the

external power supply, or the modem will not detect the reboot.

A third alternative is to use a program named “usb-modeswitch”. It needs some configuration, but it

is much more effective to use than any of the previously mentioned methods.

As a step in the configuration you will have to run “lsusb” to get a list of USB-devices connected to

the Raspberry Pi [73].

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

32

Version 0.7

Figure 11 - Output from "lsusb"

Find the modem in the list and take a note of the vendor ID and product ID. In Figure 11 these values

are given as 19d2:0166 (the vendor ID and the product ID, respectively, separated with a colon), but

these values will be different for other devices[73].

If an externally powered USB-hub is used, disconnect the power supply and then reboot. After

rebooting the system, the power can be reconnected to the hub. Then, run “lsusb” again.

Figure 12 - Output from "lsusb" after reboot

This time, the vendor and product IDs should have changed. In Figure 12 they are 19d2:0167. Note

that the vendor ID does not have to change. Again, take a note of these values as they will be used at

a later stage[73].

To install the software, run the command “sudo apt-get install ppp wvdial usb-modeswitch –

y”. “wvdial” is creating the connection to the mobile broadband provider and “ppp” is a program

responsible for creating a tunnel using the ppp protocol.

Now that usb-modeswitch is installed, it can be configured. The command “tar –xzvf

/usr/share/usb_modeswitch/configPack.tar.gz 19d2\:0166 && cat 19d2\:0166 | grep

MessageContent” will output one or more lines to be used in the configuration [73]. Note that

“19d2” and “0166” has to be replaced with the correct values for vendor ID and product ID from

before the reboot (when the modem was in storage mode). This output is used when editing the

configuration file /etc/usb_modeswitch.conf [73]. If using text console and not the GUI, the file

can be changed using “sudo nano /etc/usb_modeswitch.conf”.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

33

Version 0.7

Figure 13 - Content of usb_modeswitch.conf

Create the file as given in Figure 13, but use the vendor IDs, product IDs and the message content

values from earlier. As the configuration file is complete, usb-modeswitch can be run with “sudo

usb_modeswitch –c /etc/usb_modeswitch.conf” [73].

The only thing left before being able to use the mobile broadband, is the configuration of wvdial. The

command “wvdialconf” creates a file (/etc/wvdial.conf) which can be edited using “nano”. There

are three variables in this configuration file that depends on the mobile broadband provider. As we

are using Telenor, the APN, username and password is all “telenor”. When using another provider,

these settings will have to be changed accordingly.

Figure 14 - Content of wvdial.conf

As soon as the file is similar to Figure 14, connection can be tried using “wvdial telenor”, where

“telenor” in this command is the apn name for the mobile broadband provider [73]. Press Ctrl+C to

disconnect the mobile broadband connection.

4.1.3 Wi-Fi Access Point

If the objective with the system is to be a router, it is probably more useful to implement a wireless

access point instead of client functionality. It is only possible to use one of these features, as the

programs wpa_supplicant and hostapd is having counter-effects on each other. The latter is used to

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

34

Version 0.7

handle the authentication and connection functions in the access point. The setup of Wi-Fi client is

described in Appendix 7.

To install hostapd, run “sudo apt-get install hostapd -y” [74]. This will install the necessary

files to use a Linux computer as a Wi-Fi access point. Unfortunately, this is not completely supported

by the Raspberry Pi. Therefore a modified version is needed. At the time of writing this thesis, the

modified hostapd could be downloaded and installed using the following commands:

wget http://www.adafruit.com/downloads/adafruit_hostapd.zip
unzip adafruit_hostapd.zip
sudo mv /usr/sbin/hostapd /usr/sbin/hostapd.ORIG
sudo mv hostapd /usr/sbin/hostapd
sudo chmod 755 /usr/sbin/hostapd

The configuration process of hostapd is done by creating a configuration file. To edit or create the

configuration file, run “sudo nano /etc/hostapd/hostapd.conf”. If the file does not exist yet, it

will be created.

Figure 15 - The contents of the configuration file for hostapd

Inside the configuration file, write exactly the same as shown in Figure 15, except for the lines with

“ssid” and “wpa_passphrase” [74]. This is where the name of the network and the password

needed to connect is inserted. In Figure 15 the name of the network is “rasWiFi” and the WPA

password is “raspberrypi”. If the connection is slow, changing the value for “channel” can solve the

problem, as the frequency may be less disturbed on other channels. The best value is depending on

the given environment.

The completion of the access point setup is described in Section 4.1.5 as some of the steps are

depending on whether the extra Ethernet port is going to be installed or not.

http://www.adafruit.com/downloads/adafruit_hostapd.zip

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

35

Version 0.7

4.1.4 Ethernet

The main reason for installing the extra Ethernet port would be for routing purposes in a larger

network. As the Wi-Fi interface has a physical limitation on the amount of concurrent users, the

users on cabled network will not be affected by each other. On Wi-Fi, traffic from all other users will

be received as noise, which will cause collisions and degraded signal.

Other reasons for a limited Wi-Fi signal are noise from home appliances and limited signal range. In

addition to these factors, the signal is vulnerable to building structures. Ethernet is much more

resistant for external noise and therefore more stable. It also supports communications over a longer

range.

In order to install the extra Ethernet interface, connect the adapter and run the following commands:

sudo ifconfig eth1 up
sudo ifconfig eth1 10.0.1.1

These commands will turn on the Ethernet port (if it is not on already) and set its IP address to

10.0.1.1. For Ethernet clients this will be the address to their gateway.

As the next steps are different if the Wi-Fi access point is installed, the final part of the setup is

described in Section 4.1.5.

4.1.5 Routing

This subsection is only relevant when installing the Wi-Fi access point, the second Ethernet port or

both.

4.1.5.1 Network settings

In order to be able to route network packets between the Internet and the local network, Linux need

to enable forwarding. This is done by editing a file called “/etc/sysctl.conf” and running some

commands afterwards.

In the configuration file, uncomment the line containing “net.ipv4.ip_forward=1”, so it becomes

identical to the bottom line in Figure 16 [74].

To finalize setting up the forwarding, run the following lines of code [74]. The first line will activate

forwarding in Linux, and the rest is setting up iptables.

sudo sh -c “echo 1 > /proc/sys/net/ipv4/ip_forward”
sudo iptables --flush
sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

36

Version 0.7

sudo iptables -A FORWARD -i eth0 -o eth1 -m state --state RELATED,ESTABLISHED
sudo iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT
sudo iptables-save > /etc/iptables.rules

Figure 16 - The first part of the file "/etc/sysctl.conf"

Iptables is a firewall in Linux, which is also used to help forward traffic. “iptables –t nat” sets up

NAT, so the local network addresses is disguised for an external viewer. The parameters “-i eth0 -o

eth1 -m state --state RELATED,ESTABLISHED” is blocking traffic from the outside which is not

from an already existing connection, while “-i eth1 -o eth0 -j ACCEPT” lets through all traffic

from the local network to the Internet. If only the Wi-Fi access point is in use, and not the extra

Ethernet port, please replace eth1 in this example with wlan0. If both are in use, it is unnecessary to

add wlan0 to the iptables rules.

As the forwarding part is now complete, it is necessary to set some interface specific settings. These

are set in the file “/etc/network/interfaces” [75].

If both the access point and the Ethernet is set up, the file from Figure 17 can be directly copied. If

only one is being used, just skip the part of the file regarding the interface not in use.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

37

Version 0.7

Figure 17 - The content of the file "/etc/network/interfaces"

4.1.5.2 DHCP Server

In modern IPv4 networks, there is almost always a DHCP server present. Since devices need an IP

address which corresponds to the current network in order to be able to communicate, it is quite

impractical to use static IP addresses. To add DHCP functionality, start with installing the DHCP

server:

sudo apt-get install isc-dhcp-server -y

This command will probably give an error message as the DHCP server will not be able to start before

the configuration is complete. First open the file “/etc/default/isc-dhcp-server” and find the

line starting with “INTERFACES=”. Add the names of the interfaces being used inside the quotation

marks. Use a space to separate the names if using more than one. For instance, the line will be

“INTERFACES=“wlan0 eth1”” if both interfaces is going to be used.

The rest of the configuration is done when editing the file “/etc/dhcp/dhcpd.conf”.

At the start of the configuration file, comment the lines with “option domain-name” and “option

domain-name-servers”, and uncomment the line containing “#authoritative;”. The result should be

similar to Figure 18.

Before quitting the text editor, the subnet declarations for the interfaces you want to use must be

added. These are added to the end of the same file. If both the Wi-Fi access point and extra Ethernet

interface is to be used, the end of “dhcpd.conf” should look like Figure 19.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

38

Version 0.7

Figure 18 - The start of the file "/etc/dhcp/dhcpd.conf"

On the other hand, if only the Wi-Fi access point is installed, then only add the first half with “subnet

10.0.0.0” (including everything inside the first set of curly braces). Alternatively, if the access point

is skipped, but the extra Ethernet interface is installed, add the last part of Figure 19, starting with

“subnet 10.0.1.0”.

Figure 19 - The end of the file "/etc/dhcp/dhcp.conf"

The interfaces and DHCP server are now ready. To start the DHCP server and make it start during

boot, run the two following commands:

sudo service isc-dhcp-server start
sudo update-rc.d isc-dhcp-server enable

The first line is only starting the DHCP server for this session, and the second line makes it start at

every boot.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

39

Version 0.7

4.1.6 E-mail

If the user wants to be notified on special events, such as on errors or when the main Internet

connection is lost, the gateway can send an e-mail to inform the user automatically. To do so, an e-

mail server can be installed. This is purely for sending mail, and not for receiving. To install the

required packages, run “sudo apt-get install postfix mailutils libsasl2-2 ca-

certificates libsasl2-modules –y” [76]. Postfix is the program used to send e-mail, and has to

be configured using the file /etc/postfix/main.cf. In this example we are using a Gmail address,

but it is possible to use most other e-mail accounts as well.

Figure 20 - The main configuration of Postfix

If using Gmail, the configuration file should be identical to Figure 20 [77][76]. To finish the setup of

postfix, run the following commands. Make sure the “USERNAME” and “PASSWORD” fields are replaced

with the correct login credentials.

sudo echo "[smtp.gmail.com]:587 USERNAME@gmail.com:PASSWORD" >
/etc/postfix/sasl_passwd
sudo chmod 400 /etc/postfix/sasl_passwd
sudo postmap /etc/postfix/sasl_passwd
sudo cat /etc/ssl/certs/Thawte_Premium_Server_CA.pem | sudo tee –a
/etc/postfix/cacert.pem
sudo /etc/init.d/postfix reload

Now that postfix is completely installed, e-mails can be sent using “echo “E-mail text” | mail –s

“Subject” example@example.com”, where E-mail text is the body of the mail, Subject is the

subject and example@example.com is the receiver of the e-mail [78].

4.1.7 Bluetooth

In this setup, the Bluetooth interface is listening for incoming files and will automatically save them

to a directory. By default the Bluetooth agent will need to pair with the sending device, in addition to

accepting the file transfer, with help of a user input. These issues are solved in the following

installation description.

For this section, only three modules will be installed. This is done by running “sudo apt-get

install bluetooth bluez-utils obexpushd -y” [79][80]. The third of these packages

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

40

Version 0.7

(obexpushd) is the daemon responsible for accepting and receiving files over Bluetooth. The

configuration is done by creating a file with “mkdir /home/pi/bluetooth && nano

/etc/init/obexpushd.conf” and adding the following lines to this file [80].

chdir /home/pi/bluetooth
exec obexpushd -n
start on startup

Save the file and run “sudo initctl reload-configuration” and “sudo start obexpushd”, and

the system will be automatically receive all files sent from paired devices [80]. As previously

mentioned, the system needs some user input to pair with a Bluetooth device. This is circumvented

by running the following commands [81].

sudo hciconfig hci0 piscan
sudo hciconfig hci0 sspmode 1

The first command will enable Bluetooth visibility and the second will turn off the PIN code when

pairing. When these commands are run, they do not set the visibility and security modes

permanently. If the Bluetooth should always stay in these modes, the commands may be added to a

startup file using “sudo nano /etc/rc.local”. Please note that the last line should be “exit 0”,

and any extra code should be inserted before this line.

When files are received they will be saved in the previously given folder. This dissertation is not

covering an automatic backup or file transfer in detail, but we have made an example where the user

can have the incoming files sent by mail (given that the mail feature is installed in Section Feil! Fant

ikke referansekilden.). This example is easy to modify by changing the echo and mail commands

inside the “while read file” loop. When executing the following code, the folder for incoming files

will constantly be monitored and files automatically sent to an e-mail address.

#!/bin/bash
while true

do

cd /home/pi/bluetooth
ls > /tmp/bluetoothfiles.tmp
while read file
do

 echo “File received from Bluetooth client” | mail –s “New Bluetooth
file” –a $file test@example.com

 rm $file

done </tmp/bluetoothfiles.tmp

sleep 10

done

In our code example above the ls command is run within the folder /home/pi/bluetooth and the

output is printed to a temporary file. In each line in this temporary file, a name of a file is listed, and

for each file an e-mail will be sent to the e-mail address test@example.com. Then the file will be

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

41

Version 0.7

deleted to make sure it is not sent again and to prevent wasting disk space. This whole process is

repeated every 10 seconds, by the use of the sleep command.

4.1.8 ZigBee

The hardware part of the ZigBee was installed in Section 4.5.3. This part of the dissertation will

explain how to configure the XBee to join a PAN network with other nodes. The Xbee may be

configured in different ways, it may be done through a software on a remote computer or through

the Raspberry Pi itself. This part of the report will cover how to do it on a remote computer which

does not run a Linux operating system.

The first step to configure one's XBee is to download and install the open source application for XBee

named XCTU on the remote computer. The application is a free multi-platform application that is

both compatible with Windows and MacOS and offers simple wireless network configuration tools

for the user [82].

Figure 21 - XCTU initial launch

During the installation the XBee module can be prepared and connect them to a remote computer by

use of a serial/USB port. The application will not automatically search for the modules and the search

must be started manually by pressing the button in the top left corner with a plus sign. A window is

shown in Figure 21. This window allows the user to add a radio device to the application. Choose the

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

42

Version 0.7

respective serial port and press finish. It will most likely be able to find the device if it is new and in

its default settings. However if the baud rate has been changed by another user, it might be

necessary to try and go through all the different baud rate options, unless the specific number is

known.

Figure 22 - XCTU XBee Configuration

After discovering the XBee moduleit can be configured. As seen in Figure 22 there are a lot of

configuration parameters that may be set. The most important ones, however, are ID, CH, SH anD SL,

MY, DH and DL, and BD. The ID (PAN ID) allows the user to specify which networks the module is

supposed to join. In other words, all the modules which are going to be in the same network needs to

have the same ID. The CH (Operating channel) lets one specify the channel that the ZigBee modules

will use while SH and SL specifies the unique address of the modules. The SH and SL can however

cannot be changed. DH and DL allows setting destination address high, and destination address low.

The addresses are found on the back of the XBee and will be given to the adjacent XBee in the PAN.

The baud rate (BD) is set to 9600 which is the default rate to communicate. As we have not

determined what to use the sensors for we use the default rate. An example were you could change

it, would be in relation to a Nintendo Wii remote were a fast baud rate is necessary.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

43

Version 0.7

Figure 23 - XCTU Range Test

By using XCTU we check if the XBee has been properly configured and may join a PAN. This requires

another XBee which it can be join up with. After configuring the second XBee unit we switch to

networking mode in XCTU. Figure 23 shows that the ZigBee modules are able to detect each other.

To properly test the XBee modules and observe if they are able to transmit packets between each

other we proceed to use the range test tool found in XCTU.

By running the XCTU range test we now know that the two modules are properly configured and may

now integrated onto the Raspberry Pi to serve as one of the many communication interfaces the

system has to offer.

4.1.9 Kernel Compilation

There are basically two ways of compiling the Linux kernel. It can be done locally on the computer

that is going to be upgraded, or it can be done on a secondary computer. As the Raspberry Pi is only

equipped with a 700 MHz CPU, we figured it would take too much time. Especially since each build

had to be tested and if it turned out to be erroneous, it had to be recompiled. Therefore we installed

Ubuntu on a virtual PC using VirtualBox. It was given access to one CPU core running at 3.2 GHz and

4096 MB of RAM.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

44

Version 0.7

The compilation process is started when downloading the source code to the Linux kernel, and a

compiler designed for the target computer – in our case the RPi. Then the source code is primed with

the current config, which is copied directly from the Raspberry Pi. When this is done, the kernel can

be modified by adding or removing features. In order to make the kernel more stable, we removed a

lot of unnecessary modules. After repeating this process until we had a reduced version that worked

without flaws, we transferred the kernel and the modules to RPi.

Below is a set of commands to download the necessary files and prepare for selecting modules. We

have not automated the selection, as this was done in an interactive menu [83].

mkdir ~/rpi
cd ~/rpi
wget https://github.com/raspberrypi/linux/archive/rpi-3.2.27.tar.gz
wget https://github.com/raspberrypi/tools/archive/master.tar.gz
tar xzf rpi-3.2.27.tar.gz
tar xzf master.tar.gz
export CCPREFIX=/home/picompile/rpi/tools-master/arm-bcm2708/arm-bcm2708-linux-
gnueabi/bin/arm-bcm2708-linux-gnueabi-
export KERNEL_SRC=/home/picompile/rpi/linux-rpi-3.2.27
cd $KERNEL_SRC
make mrproper
scp pi@192.168.1.18:/proc/config.gz ./
zcat config.gz > .config
make ARCH=arm CROSS_COMPILE=${CCPREFIX} oldconfig

Please note that the username on the Ubuntu install is “picompile” and the IP address of the

Raspberry Pi is “192.168.1.18” in the code example. The code above is first making a folder in the

home directory, then downloading two .tar.gz-files. These files are then extracted. The “export”

commands are creating variables to ease the rest of the process. Instead of using the long folder

paths, the variables can be used.

The “cd” command changes directory to perform the following commands from inside the kernel

source folder. When inside this directory “make mrproper” cleans up old files before the compilation

is started [83]. As this command also will remove configuration files, we wait until after this to copy

the configuration from the RPi.

“scp” is the command used to transfer the current configuration from RPi. This starts a SSH session

and will copy the file to the Ubuntu machine. Then the configuration file is extracted and used to

select the modules in the source that is already installed on the Raspberry Pi. In order to make

changes in the kernel, run the following command and select or unselect modules [84]

make ARCH=arm CROSS_COMPILE=${CCPREFIX} menuconfig

When this is done, the kernel will be compiled using the command “make ARCH=arm

CROSS_COMPILE=${CCPREFIX}”, and the modules will be built with “make ARCH=arm

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

45

Version 0.7

CROSS_COMPILE=${CCPREFIX} modules” [84]. Be prepared to wait, as this is the part that may

potensially take the most time, along with the transfer of the modules later.

As all of the modules will now be built, they should be installed to a folder. To do this, run the

following commands.

mkdir ~/rpi/modules
export MODULES_TEMP=~/rpi/modules
make ARCH=arm CROSS_COMPILE=${CCPREFIX} INSTALL_MOD_PATH=${MODULES_TEMP}
modules_install

On the Raspberry Pi, we designed the following commands to install the newly built kernel along with

the modules.

scp -q picompile@192.168.1.76:/home/picompile/rpi/linux-rpi-
3.2.27/arch/arm/boot/Image ./
scp -r -q picompile@192.168.1.76:/home/picompile/rpi/modules/lib ./
cp Image /boot/kernel_new.img
cp -r lib/* /lib
rm -r Image lib/
cat /boot/config.txt | grep -v "kernel=" > config.txt
echo "kernel=kernel_new.img" >> config.txt
cp config.txt /boot/config.txt
rm config.txt

This time “scp” is used to copy the kernel image and the modules to the Raspberry Pi from the

virtual PC with IP 192.168.1.76. Use “scp -r” to copy an entire directory [85].Then reboot and check

if everything works the way it should. If there are errors, the process has to be repeated from “make

mrproper” and afterwards. In case of error it can be helpful to only remove a small number of

modules at a time, so that it is easier to troubleshoot. The solution is probably to add the module

that turned out to be needed afterall.

4.1.10 SD-Card Protection

The multi-purpose embedded communication gateway has to be as reliable as possible. We looked at

several different techniques to introduce reliability to the system, one of them revolved around the

SD-card. It is known that writing multiple times to a SD-card might damage it over time. To reduce

the amount of writing to the SD-card we found a couple of solutions to handle the problem.

The Linux operating system has an in-memory file system that lets you write files to it. The files which

are written to the memory will only exist in the hardware's memory and will be erased if the system

is shut off. The Linux file system includes two different mount types; ramfs and tmpfs. Ramfs is not

used in our solution as it does not give the option to set a memory limit to prevent overflow of RAM

usage. The Raspberry Pi frequently writes to /var/log and /var/run. One could say that they are the

worst offenders. The var/log file is mostly used for troubleshooting, but has been moved to the RAM

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

46

Version 0.7

disk for the moment as it can be mounted back on the SD-card if needed. It would also benefit the

system to write the temporary files from tmp to the RAM-disk.

The /var/log, /var/run and tmp folders are mounted to the RAM disk by opening and editing the

/etc/fstab configuration file. This is done by “sudo nano /etc/fstab”.

The following lines should be added to the configfile [86][87].

#<file system> <dir> <type> <options> <dump><pass>

proc /proc proc defaults 0 0

/dev/mmcblk0p1 /boot vfat ro,noatime 0 2

/dev/mmcblk0p2 /ext4 defaults,noatime 0 1

none /var/run tmpfs defaults,noatime 0 0

none /var/log tmpfs defaults,noatime 0 0

none /tmp tmpfs defaults,noatime 0 0

The <filesystem> column determines the partition or storage that is going to be mounted. This

column will not be used in relation to our solution. The <dir> column is used to specify the directory

which is going to be written to the RAM instead of the SD-card. It is also possible to specify the type

of file system that will be mounted. There are a lot of different types of file system besides tmpfs.

<dump> can be set as 0 or 1 which specifies if to create a backup of the specific directory while

<pass> is set to 0 or 1, depending on if it is desirable to have the file system checked by fsck utility. In

the end we have the <options> coloumn which lets a user specify the setting for the specific folder.

The fstab config files comes with a lot of different types of options. The options can be found at

[kildenummer https://wiki.archlinux.org/index.php/fstab]. Currently the options for tmpfs has been

set to default which means that tmpfs is allowed to use up to half of the total RAM that the system

offers. The noatime option which has been set is the most important setting as it will disable the

feature were Linux writes to the SD card every time something is read.

By using tmpfs we will prevent some of the most used directories to be written to the SD card. The

tmpfs does however come with a weakness. If a situation arise were the system is need of higher

amounts of memory, the file system swap back to using the SD card when writing to a folder. To

prevent swapping we can run the following commands to disable it [86].

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

47

Version 0.7

sudo dphys-swapfile swapoff

sudo dphys-swapfile uninstall

sudo update-rc.d dphys-swapfile remove

The changes will take effect on system reboot.

4.1.11 MySQL Installation Proposal

This section of the dissertation will provide information about how to setup data synchronization

between two servers using MySQL. The information provided here has not been tested and is only a

proposal on how to install and configure MySQL to act as a master slave replication on the multi-

purpose communication gateway. The MySQL server is installed by using the following command:

sudo apt-get install mysql-server mysqwl-client

The next step of the process is to open up the mySQL configuration file on the Raspberry Pi. This is

found in /etc/mysql/my.cnf and is accessed by use of the "nano" tool in Raspbian. Scroll down to

bind-address in the configuration file and replace its IP address with the IP address of the server. In

our case this will be the IP address of the Raspberry Pi.

bind-address = 109.189.105.151

The next line to change in the configuration file is the server id. The server id is used to identify the

SQL server and must be unique. For the sake of simplicity we give the Raspberry Pi the id: 1.

server-id = 1

The last line to configure in the file is he log_bin line. log_bin is where all the changes that are

made to the SQL server are registered. The slave server is going to copy these changes. The line will

be commented and one only has to uncomment the line to activate it.

log_bin = /var/log/mysql/-bin.log

Once the changes has been made save and exist the configuration file.

The next step of the configuration will take place in the MySQL shell. To access MySQL use the

command mysql -u root -p. Access has to be given to the slave server and set up their password.

To do so, give the following command.

GRANT REPLICATION SLAVE ON *.* TO 'slave_user'@'%' IDENTIFIED BY 'password';

FLUSH PRIVILEGES;

For the next step open a new window or tab in addition to the one already in use. In the new tab run

the following commands.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

48

Version 0.7

USE newdatabase;

FLUSH TABLES WITH READ LOCK;

SHOW MASTER STATUS;

The command "SHOW MASTER STATUS" will provide the user with a table which should be

remembered for later use. The user will then go back to the previous shell tab and export the

database using the following command.

mysqldump -u root -p --opt newdatabase > newdatabase.sql.

It is important to note that the command is run in bash shell and not in MySQL. Return to the MySQL

shell and unlock the tables and quit.

UNLOCK TABLES;

QUIT;

Now that we are done configuring the master database (Raspberry Pi) we have to configure the slave

database. Open up the slave's MySQL shell with mysql -u root -p. In the SQL's shell use the

following command.

CREATE DATABASE newdatabase;

EXIT;

Import the database we previously exported from the master database by use of mysql -u root -p

newdatabase < /path/to/newdatabase.sql. The next step is to configure the server in the same

way that the master server was configured. The configuration file is accessed through the same

means by sudo nano /etc/mysql/my.cnf. In the configuration file set the following parameters:

server-id = 2

relay-log = /var/log/mysql/mysql-relay-bin.log

log_bin = /var/log/mysql/mysql-bin.log

binlog_do_db = newdatabase

Exit the SQL shell and restart the service through sudo service mysql restart. Open the shell

again after its reboot and type the following details:

CHANGE MASTER TO MATER_HOST='109.189.105.151', MASTER_USER='slave_user',
MASTER_PASSWORD='password', MASTER_LOG_FILE='mysql-bin.000001', MASTER_LOG_POS=
107;

The information used was given when running SHOW MASTER STATUS on the master server. The

command used designates the current server as the slave of our master server and provides the

server the correct login credentials. And lastly it tells the slave server were to replicate from by using

the log file from the master server.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

49

Version 0.7

The configuration is now complete and one can start the slave server by typing “START SLAVE;” [88].

4.2 Mobile Broadband Failover

In order to manage automatic failover of the Internet connection, we design the following script that

will run continuously. An overview of this script is shown in Figure 24.

When the script is started, it will set some settings before reaching the first loop. This loop runs while

the Internet connection is available. Inside the loop, the script will check if the Internet connection is

lost, and will also distinguish if there is local network access or not. If the connection is lost, it will

connect the mobile broadband and set up forwarding from this, but where it goes from there

depends on which level of network access is still available. When there is access to the local network,

it will perform some tests towards the Internet. This is done within the B-loop in Figure 25. Another

outcome is if there is no network connection at all. The script will then run loop C in Figure 25. Then

the script will only perform tests on the local network. When the network connection is available, the

script will exit loop C and enter loop B. If it then detects normal Internet connection, it will enter loop

A. The mobile broadband connection will stay connected for a predefined number of seconds. This

number is set in the start of the script.

When taking a look at Figure 25, note that there is no direct link going from loop C to loop A. That is

to make sure the network is back before switching off the mobile broadband.

In this brief overview, we have divided the script into four parts. The following subsections will go

into detail on each of these.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

50

Version 0.7

Figure 24 - Overview of the network failover script

Figure 25 - Basic overview of the states in the network failover script

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

51

Version 0.7

4.2.1 The Initialization of the Script

The first part of the script is only used to set some parameters to be used later in the process. Some

of the variables are set automatically, but some is also available for the user to change. Following is a

complete list of the user definable variables and an explanation of their meaning:

 IF – The interface which has internet access and is monitored by the script. By default it is

eth0.

 pausetime – The number of seconds which the script is going to wait between each check.

Setting this to a low value increases the system load, but a high value may result in a longer

waiting period before the failover script reacts on connection loss. Default: 2.

 staymin – When mobile broadband is connected due to loss of Internet connection, and the

main connection becomes available, this value says how long the mobile broadband shall

stay connected. As it takes some seconds to connect the mobile broadband, this can help if

there is a high risk of a new connection loss in near future. If the main connection is usually

stable, this value can be set to 0. Default: 2.

 networkstate – The initial network state. Can be 0, 1 or 2. 0 means that there is internet

connectivity, 1 means only local access and 2 is no network access. This value is also deciding

which of the while loops the script should stay in at all times. Default: 0.

 rxthreshold – One of the connectivity tests are measuring the amount of packets that can

be received and still have no internet access.

 pingcount – The number of ping requests to be sent when performing ping tests. There is a

delay on one second between each ping. Default value: 3.

 pingexternal – An IP address in the Internet that is always available to ping. Default: 8.8.8.8

(Google DNS server)

 losslimit – This is the amount of ping requests that is acceptable to lose, given in

percentage. The value must be between 0-100. Default: 0.

 pridns – The primary DNS server that is to be used. It is possible to use the ISPs own DNS,

but some servers are only for the ISPs IP subnet. As the mobile broadband is on some other

subnet, and maybe behind a NAT server as well, it is possible that the ISP DNS will be

unreachable when using the mobile broadband connection. Default value: 8.8.8.8 (hosted by

Google).

 secdns – The secondary DNS server that is to be used. Default: 8.8.4.4 (hosted by Google).

In addition to the variables available to the user, the script sets some values automatically. These

values include setting the default gateway on both the main interface and the 3G/4G interface. Also,

the staymin value is converted to seconds, to match the timers in the script.

By running ifconfig, the values for the amount of bytes sent and received can be read. These values

are stored to the variables txold and rxold.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

52

Version 0.7

Before entering the main part of the script, usb_modeswitch will run to make sure the modem is

ready, and not locked in storage mode. Then it will wait the number of seconds as the variable

pausetime.

4.2.2 While Loop When There is Internet Connectivity

Right before the most common while loop, iptables will set its rules back to normal. If the variable

networkstate is 0, the script will enter the loop. It will again wait the amount of seconds as defined

in the variable pausetime. This is the best place of the script to add a delay. The delay has to be

inside the loop, but the middle and the end of the loop is more time critical in case of failure.

Figure 26 - Loop in the failover script where there is Internet access

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

53

Version 0.7

After the delay, the script checks if there is anything stored in the variable defaultgw. Preferably the

IP address of the nearest router on the current interface (given in the variable IF), should be stored

in the variable. If the IP address is already stored in the variable, it will be saved to a file to remember

until next time the script runs. On the other hand, if the variable is not set, the script will try to read

it from the DHCP client lease file. If the IP address was found now, it will be saved in a file. It may

happen that the address cannot be found, and it will then try reading the value from a file generated

last time the IP address was known.

In the next step there is a check if the variable mbbconnected equals 1. In that case, mobile

broadband is most likely connected as well. If it is connected, it will first figure out how long it has

been connected. This is done with comparing the variable SECONDS to the variable startconnect.

The first of which is an internal Linux variable, that counts seconds from the start of the script, and

the latter is set to the same value as SECONDS at the time the main connection is yet again available.

The difference of these values will at all times show the number of seconds the mobile broadband

has been connected after the main connection is back. If this difference, connectsec, is equal to or

larger than staysec (which is the amount of seconds the mobile broadband shall stay connected

after it is no longer in use), the mobile broadband will disconnect. This calculation makes sure that if

the main connection disconnects again, it will be faster to switch over to mobile broadband.

Depending on the contract and operator, it may be unwise to let the mobile broadband stay

connected for longer periods of time, mostly because of the potential costs.

In the next test, the script checks the content of a file called /sys/class/net/eth0/carrier (in this

example eth0 is the value of the variable IF). If the content of this file is 1, the cable is detected in

the port. That means that there must be a device in the other end of the cable. If the value here is 0,

the loop will exit immediately and networkstate will be set to 2.

When the cable is detected, the values for rxbytes and txbytes will be fetched from ifconfig.

These are the numbers of bytes that has been received and transmitted (respectively) in total since

boot. As the values rxold and txold contains the corresponding values from earlier, it is possible to

measure the amount of traffic since last iteration of the script, or from the start of the script if this is

its first round. The differences are stored to the values rxdiff and txdiff.

If rxdiff is less than rxthreshold, the script will continue to check txdiff. Otherwise nothing will

be done and the script will continue from the start of the loop. The next test checks if txdiff is

equal to 0. If this is the case, nothing is probably expected to be received, and the script will

continue. If txdiff is more than 0, the script will return to the start of the loop.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

54

Version 0.7

As it is now defined that there has been no measurable traffic since the last run, it is necessary to

generate some traffic in order to find out if there is Internet access. This is done using ping tests. First

the IP in defaultgw is pinged. If this fails (ergo; the fail percentage is higher than the value in

losslimit), the script exits the loop, and sets networkstate to 2, as there is probably no network

connection available. The number of attempts is depending on the value of pingcount. If the test is

successful, some new attempts are done to the IP given in pingext. The result of this test will decide

if the loop should be restarted or not. There is probably no working Internet connection if this test

turns out negative, but it is already determined that the local network is available, so the variable

networkstate will be set to 1 and the loop will be exited. If the test is positive, it seems to be no

problem with the Internet connection.

In total, there are three network tests in this loop. They are deliberately sorted by complexity,

duration and resource intensity. As the simple cat command to determine if the cable is connected is

so fast, it is best to try this first, as a network error will then be found earlier. A ping test demands

more of the local system, and all nodes in between the sender and the receiver, so it is best to wait

until this is the last option.

4.2.3 While Loop When There is Only Local Network Access

Before this while-loop is reached, there are some lines of code that enables the mobile broadband

connection if it is not already connected. Similar to the in Subsection 4.2.2 that checks for content in

the variable defaultgw, in this part the script checks mbbgw for content. If it is empty, it will attempt

to find it using the route command. On the other hand, if the IP address to the gateway for the

mobile broadband connection is already stored in the variable, it will create a file to save it for later.

If this fails, and the variable was not found, it will attempt to read the IP address from a previously

saved file. Then the default route will be updated to go via the mobile broadband gateway, the DNS

servers are replaced and the iptables rules is changed to include ppp0 (rather than the interface

stored in the IF variable). When this is done, the script will have arrived at the start of the loop.

The first action within the while-loop, is to wait the number of seconds that is defined in pausetime.

Then it will temporarily enable the main interface as the default route and reset the DNS server

addresses. This is done mainly because there is a risk of getting false replies on the ping requests

when the mobile broadband is connected. For instance, if the ping replies were received through the

mobile broadband interface, the script could reset the connection back to the main interface, while

in fact the connection was still down.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

55

Version 0.7

The first ping attempt is to the IP in pingext. If this succeeds, the script will exit the loop and set

networkstate to 0, as there was now detected an Internet connection. However, if the attempt fails,

the script will ping its nearest router, the IP from defaultgw. If this succeeds, the loop will restart

after setting mbbgw as the default route and adding the new DNS servers, but if it fails, networkstate

will become 2 and the loop will exit.

Figure 27 - Loop in the failover script where there is local network access

4.2.4 While Loop When There is No Network Access

This while-loop is slightly different from the other two, in the way that the script can come from

either the first or second loop (networkstate=0 or networkstate=1). If the process runs from

networkstate=0, then the processes in front of the loop is identical to the part in front of the loop

described in Subsection 4.2.3. In fact, this is the exact same piece of code that is run. However, if the

script runs from networkstate=1, the given code has been run earlier. Therefore it does not matter

for the outcome of the script, except for the flow described in Figure 28. Compared to the other

while-loops, it is different as there are two possible starting points, instead of just one.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

56

Version 0.7

If the script comes from the loop where networkstate=0, the steps in the process before this while-

loop is described in Subsection 4.2.3. There are no code in between the two last loops in the script,

so when exiting the loop where networkstate=1, this loop is entered at once.

As soon as the loop is entered, the script stops as long as it should according to the value in

pausetime. Then it will run the cat command to check /sys/class/net/eth0/carrier if the cable is

detected. If so, the loop quits immediately and returns to the loop where networkstate=1.

Figure 28 - Loop in the failover script with no network access

On the other hand, if the cable is undetected, the script sets default route temporarily back to the

standard value. The DNS servers are also updated. After this, the DNS servers are set and the default

gateway is pinged and mbbgw is again set at default route. Depending on the verdict of the ping test,

the script will either return to networkstate=1 or repeat the current loop (networkstate=2). None

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

57

Version 0.7

of the loops will ever be exited unless the networkstate changes, so if the ping test gives a positive

result, the loop will be exited.

4.3 The Watchdog

As stated in Section 3.2.2, we chose to use the Arduino Mega 2560 as our watchdog. What we might

not have mentioned is that there is a watchdog on the Raspberry Pi as well. This internal watchdog is

able to react sooner when something is wrong, but if the system has stopped working completely,

chances are the watchdog itself has stopped running too. As this is a risk, we chose to use both the

internal and external watchdogs.

4.3.1 Internal Watchdog

In order to use the onboard watchdog in the Raspberry Pi, the watchdog driver has to be added to

the kernel. This can be done during the kernel compilation, or via a simple command and by editing a

file. Also, the software for the watchdog has to be installed.

If the kernel is not going to be recompiled, the watchdog driver can be added with the command

“sudo modprobe bcm2708_wdog” [89].

Edit the file called /etc/modules and add a new line with the text “bcm2708_wdog” [89]. When this is

done, the watchdog will be recognized by the operating system.

To install the necessary software, run ”sudo apt-get install watchdog chkconfig -y”. The

installation will create a file ”/etc/watchdog.conf” [89]. Edit this file by uncommenting the lines

containing the following:

 max-load

 min-memory

 watchdog-device

 admin

 interval

 logtick

 log-dir

 pidfile

Make sure the file is identical to the file in Figure 30. When the file is saved, run the two following

commands, and the setup of the internal watchdog will be complete [89].

sudo chkconfig watchdog on
sudo /etc/init.d/watchdog start

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

58

Version 0.7

Figure 29 - Simple flow diagram of the internal watchdog

Figure 30 - The Watchdog configuration file

As long as the system is still running, the watchdog will continue to monitor the system state. If an

exception should occur, the watchdog will reboot the system. The watchdog will however not be able

to reboot the system if the process has stopped working. The reliability will then rely on the external

watchdog.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

59

Version 0.7

4.3.2 External Watchdog

Unlike the internal watchdog, the function of the Arduino is clearly not depending on the system load

on the Raspberry Pi. The internal watchdog is unusable if the process controlling it stops working.

In order to create and run a script on the Arduino, it needs to be connected to a computer running

the Arduino IDE. This software is used to write the code, compile it and transfer to the Arduino. As

the computer is quite basic, it will only run one script at a time, and any previous scripts will be

deleted when transferring a new. As soon as the transfer is complete, the Arduino will restart and

run the newly transferred script. Basically, an Arduino script can be divided into three parts: The

initialization, the setup and the loop.

Figure 31 - A general flow diagram of an Arduino script

In the initialization, variables are defined and assigned start values. The setup contains code that is

only supposed to run once. When this is done, the loop is started. This is the main part of the code,

and will run continuously until the Arduino loses power, or is manually reset using its reset button.

Our complete script can be read in Appendix X, where there also is a complete model. As the script is

fairly complex, it will be described in detail below.

4.3.2.1 Initialization Part

This is the first part of the code and contains only declarations of variables. Following is a list of the

variables, their initial values and a description:

 buttonPin – The number of the pin where the button is connected. Default: 3.

 beaconPin – The number of the pin where the Raspberry Pi sends its heartbeat signal.

Default: 8.

 onsignalPin – The number of the pin where the Arduino sends a signal to Raspberry Pi

when it is supposed to be turned on. Default: 30.

 relaysignalPin – The number of the pin where the Arduino sends a signal to the relay

which is controlling the power supply to Raspberry Pi. Default: 52

 startupTime – A measured number of milliseconds it takes to power up the Raspberry Pi.

Default: 75000.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

60

Version 0.7

 shutdownTime – A measured number of milliseconds it takes to shut off Raspberry Pi.

Default: 15000.

 time – A value used to measure time between each alternation of the signal from Raspberry

Pi. Default: 0.

 newtime – A value used to measure time between each alternation of the signal from

Raspberry Pi. Default: 0.

 runtime – A value used to measure time between each alternation of the signal from

Raspberry Pi. Default: 0.

 buttonval – The measured value on buttonPin on a scale 0-1023. Default: 0.

 beaconval – The measured value on beaconPin on a scale 0-1023. Default: 0.

 initialState – A variable that is either 0 or 1. It is used to keep track of which section of

the main loop that should be run. Default: 0.

 startupState – A variable that is either 0 or 1. It is used to keep track of which section of

the main loop that should be run. Default: 0.

 normalState – A variable that is either 0 or 1. It is used to keep track of which section of the

main loop that should be run. Default: 0.

 buttonshutdownState – A variable that is either 0 or 1. It is used to keep track of which

section of the main loop that should be run. Default: 0.

 hardshutdownState – A variable that is either 0 or 1. It is used to keep track of which section

of the main loop that should be run. Default: 0.

4.3.2.2 The Setup

The setup part only contains six lines of code. This includes setting the direction on the pins (input or

output), starting a serial session for debugging and setting the variable initialState to 1. Pin

direction is important as this tells the Arduino if the pin is used to send or receive signals.

4.3.2.3 Main Code

The main part of the script is one large “while”-loop that will run continuously [90]. Inside this loop,

there are five smaller while loops. Three of them are only run once, and behave like “if”-tests. The

other two will not stop until they receive a proper input, in form of a button press or a signal loss

from the Raspberry Pi.

Figure 32 - Arduino main loop overview

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

61

Version 0.7

In the first while loop, which is only entered when initialState=1, the Arduino starts sending signal

to the relay and the Raspberry Pi. It also sets initialState to 0 and startupState to 1. This means

that it will always exit after its first run.

When startupState=1, the second while loop is started. This is a state where the Arduino waits for

the Raspberry Pi to boot. As soon it detects the signal from the Raspberry Pi, it will exit the loop and

continue with its normal operation.

Inside the main loop, there is code designed to detect the alternating signal from the Raspberry Pi,

while also detecting if the button is being pressed. In order to do this, we have designed two smaller

loops, one for when the signal is received and one for when it is not received.

The first action in the main loop is to set the variable time to the output from the function millis()

[91]. This is a number of milliseconds since the script was started and will be used at a later time.

Afterwards, it will check if the signal from RPi is on or off [92]. If it is on it will check if the button is

pressed [92]. If it is, the variables normalState and buttonshutdownState will be changed (to 0 and

1 respectively). Then the script will not restart the main loop when it reaches the end, but instead

continue to the next step.

However, if the button was not pressed, the script will continue and check if the RPi is still sending a

signal, and getting a new output from millis() [92][91]. This time the value is stored to the variable

newtime. The difference between time and newtime is stored to runtime, which is compared to the

value startupTime [93][94]. If runtime is longer than startupTime, the Raspberry Pi is declared

“dead” and the script will enter the last loop [94]. This is done with setting the variables

normalState, beaconval and hardshutdownState to 0, 1024, and 1, respectively.

On the other hand, if runtime is small enough, the loop will return to the start. Just before runtime

was calculated, there was also a set a new value for beaconval. If it has changed, the current loop

will be exited, and the right loop in Figure 33 will run. This loop is designed exactly the same, except

that it will run until the signal is detected again. As the signal is designed to alternate every 500 ms,

the script will switch between the loops pretty fast.

When the main loop is exited, it is always because the Raspberry Pi needs to shut down. It is either

the user’s decision to or because the signal is constant on or off, so it’s suspected it has stopped

working. Either way the Arduino stops sending the signal to Raspberry Pi. This is done so the

Raspberry Pi has a chance to turn itself off in a controlled manner and to prevent damaging the SD

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

62

Version 0.7

card when cutting the power. The Arduino will wait for the predefined number of milliseconds it

usually takes to shutdown the RPi before switching off the relay.

If the system was shut down by the user, the Arduino will wait for a new button press from the user

before turning on the Raspberry Pi. On the other hand, if the Raspberry Pi was shutdown to recover

from an error, it will be restarted instantaneously. In both of these scenarios, the new startup of the

Raspberry Pi is done by returning to the start of the script, in the first while loop[90].

Figure 33 - A detailed view of the main loop in the Arduino script

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

63

Version 0.7

4.4 Other Reliability Measures

As the watchdog only reacts when the system has stopped working, there is a need for another level

of reliability. This would be when clients fail to connect to the router, when the network interfaces

need to restart or if processes have stopped. A reboot is too time consuming and should be the

absolute last resort.

For instance, if the process which is signaling the watchdog stops, there will only be a constant signal,

or loss of signal. Then the watchdog will react and restart the whole system. A restart may take 90

seconds or more, so it would be beneficial for the user if the system just could restart the given

process.

As a complement to the watchdog, we have created a script that will check different important

parameters and fix them if necessary. This script is started during boot and continues to run as long

as the system is on. Through extensive testing we have found multiple parameters which can be used

to automate a troubleshooting:

 Check if secondary Ethernet and Wi-Fi has IP addresses. If not, the script will set IP addresses.

 Check if DHCP process is running. If not, start it.

 Check if hostapd process is running. If not, start it.

 Capture network traffic on local interfaces and check if DHCP requests are received without

being answered. Restart DHCP server if there are any problems with this.

 Check that the processes that is capturing network traffic is running. If not, start them.

 Check the system logfile if there has been any sudden deauthentications of Wi-Fi clients that

has previously been connected. In that case, restart hostapd.

The script is available for reading in Appendix 4.

4.5 Physical Implementation

The previous subchapters have shown how we installed the software and designed the various

scripts. In this subchapter we will show how the system was built, and how the final version is

connected physically.

4.5.1 The Casing

In the early stages of the project, the main focus was to get the features to work independently. It

was first of all important that the Wi-Fi, 3G/4G and external Ethernet worked on its own before

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

64

Version 0.7

connecting the parts. Figure 34 shows the Raspberry Pi (to the right) connected to power and the

USB-hub (the device to the bottom left). The primary Ethernet is not connected in the figure. On the

lower part of the USB-hub, there are two cables: The external power and the USB-cable to the RPi.

We experienced that the interfaces would become unstable if the external power was disconnected,

so we will recommend to always keep this connected, except during setup of the mobile broadband

software.

Figure 34 - The Raspberry Pi with the hub and some adapters

On the top of the hub, the Edimax Wi-Fi adapter is connected (directly to the right of the Logik-logo

in Figure 34). The secondary Ethernet and the 3G/4G modem is located on the top side of the hub, in

the picture. Note that in Figure 34 the Bluetooth and ZigBee adapters are not present, and the

devices are unpowered. The light emitting diodes (LEDs) are turned off.

After the picture in Figure 34 was taken, the system would also get support for Bluetooth and ZigBee,

and the watchdog was added. In order to make it transportable, we decided to make a box for it. The

box was made primarily by plexiglass and plastic glue, but the devices were mounted using Sugru

[95].

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

65

Version 0.7

Figure 35 - The front of the box

A button is placed in the front side of the box. This button is used to turn the system on and off. The

relay is also placed on this wall, but on the inside.

Figure 36 - The rear side of the box

The rear wall has a hole with a narrow opening above going to the top of the box, as in Figure 36. The

intention is that the cables will be pulled through the hole. The opening is located there for guiding

the cables when installing, if the connectors are too large to be pulled through.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

66

Version 0.7

Figure 37 - The top of the box

On the inside of the top side, the USB-hub is mounted. In order to make the box compact, we found

that this was the best solution. The top is glued to one of the side walls, and these two parts are

separate from the rest of the box. This is practical as one might have to perform changes in the

connections inside the box. The one side wall is also working as a stabilizator for the roof when it is

stuck between the two adjacent walls.

When the roof is lifted off, it is easier to see the placement of the devices. See Figure 38 for an

overview. The two embedded computers are placed on the bottom, in parallel to each other. It

seems to be a lot of cables, but the USB cable from the hub was quite long. We could have shortened

it, but wanted to keep it intact for the future.

4.5.2 Cables and Connections

We did however modify the power cables for the Arduino and the RPi. As there was limited extra

space for the connectors in the box, we dismantled the USB type B connector for the Arduino, the

USB connector to the USB hub, and the micro USB to the Raspberry Pi. Then we were able to angle

them by resoldering and encapsulating the cables using Sugru. As Sugru is formable and sets like

rubber, in addition to having a very high level of electrical resistance [95], it was ideal to use instead

of the original plastic coating on the connectors.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

67

Version 0.7

Figure 38 - The inside of the box, seen from above

When the power cable to RPi was modified, it was also cut in half. This was done in order to connect

the relay switch in between, to make the Arduino able to control the power status of the Raspberry

Pi. The 5VDC lead was connected to the normally-open (NO) contacts on the relay, while the ground

was practically unaltered, going directly from the RPi to the power source. The relations between the

Arduino, Raspberry Pi, Slice of Pi, on/off button and relay is illustrated in Figure 39, and a short

explanation to each connection is given in Table 5.

The Arduino is connected to the other side of the relay. The VCC on the relay is always powered from

a 5VDC output on the Arduino, and the ground is connected to ground on the relay. In between VCC

and ground on the relay, is the IN1 pin [96]. This is supposed to get signal when the relay should be

switched on. In our setup we connected this to digital pin 52, but another pin can be chosen as long

as the correct pin number is defined in the watchdog script.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

68

Version 0.7

Figure 39 - Illustration of connections [97][98][99][44][100][101][102]

Table 5 - Explanation to Figure 39

Connection From To Description

A Power source Relay 5VDC to relay

B Relay Micro USB connector Relay to 5VDC (micro USB connector)

C Micro USB connector Power source Ground (connector) to power source

D Micro USB connector Raspberry Pi Micro USB connector connected to RPi

E Arduino Relay 5VDC (Arduino) to VCC (relay)

F Arduino Relay Digital pin 52 (Arduino) to IN1 (relay)

G Relay Arduino Ground (relay) to ground (Arduino)

H Arduino Slice of Pi Digital pin 30 to GPIO 17

I Slice of Pi Arduino GPIO 4 to analog pin 8

J Button Arduino Button to analog pin 3

K Arduino Button 5VDC (Arduino) to button

L Raspberry Pi Slice of Pi All GPIO pins (RPi) to Slice of Pi

The next connection on the list in Table 5 is going from the Arduino to the Slice of Pi. As the Slice of Pi

is connected to all of the GPIO pins on the Raspberry Pi, and not all of them are used by the Xbee,

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

69

Version 0.7

there are some GPIO extensions available. When connecting the Arduino to GPIO 4 and GPIO 17 on

the Slice of Pi, it is in reality connected to the same GPIO pins on the Raspberry Pi. In our setup we

used GPIO 17 to receive the signal from Arduino that only stops when RPi needs to shut down. This

signal was sent from digital pin 30, but as with the relay signal, this can be changed as long as the pin

is defined in the script on the Arduino. From GPIO 4on RPi is the heartbeat signal sent to analog pin 8

on Arduino. This is the alternating signal that is designed to let the watchdog know if the system has

stopped working.

The second input for the Arduino comes from the on/off button. The button is constantly connected

to 5VDC on Arduino and when pressed it connects the circuit so that the Arduino detects input on

analog pin 3.

4.5.3 ZigBee Module

We mentioned that we used the printed circuit board (PCB) Slice of Pi in between the Xbee and the

GPIO connections. This came as a kit which needed to be assembled. Figure 40 shows the parts

separated as they were delivered.

Figure 40 - Slice of Pi before assembly [103]

Please note that the PCB in Figure 40 is version 1.1, while the Slice of Pi in Figure 39 is version 1.0.

The differences seems minimal, but the naming scheme is different. Version 1.1, which we use, uses

the naming scheme of the second revision of Raspberry Pi, while version 1.0 uses a numbering

scheme ranging from 0 to 7 [104]. This difference does not have any practical impact on the system,

except that it is important to connect to the correct pins according to the settings in the scripts.

The pins are easier to connect to after assembling the Slice of Pi kit. Figure 41 shows the PCB after

soldering the connectors. For connecting the Xbee, the two nearest, parallel connection sets are

used.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

70

Version 0.7

Figure 41 - The Slice of Pi after soldering the connectors

There is even an outline to show which direction the Xbee should be placed in. How the Xbee is

connected, is shown in Figure 42.

Figure 42 - Our Slice of Pi with XBee

This is the Slice of Pi before it is connected to the Raspberry Pi. In Figure 43 and Figure 44, one can

see how it looks when mounted on the RPi.

Figure 44 - RPi with Slice of Pi

Figure 43 - RPi with Slice of Pi

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

71

Version 0.7

5 Testing and Validation

5.1 Reliability

The multi-purpose embedded communication gateway provides several types of features. The

features themselves are independent of each other will be validated independently of each other.

The data of the experiments will be collected through sheer observation.

5.1.1 Wi-Fi Access Point

In addition to acting as a gateway, it may also act as an access point for wireless devices. The setup of

the wireless access point has already been explained in the previous section and this test will validate

the feature of the device. The process of the test will simply be to:

1. Install the necessary software and hardware and setup the system as an access point as

described in Section 4.1.3.

2. Connect several wireless devices (smart-phones and laptops) to the access point and let

them stay connected for several hours.

3. Access the Internet through Raspberry Pi using the wireless devices.

The result of the experiment was successful. The different wireless devices were connected to the

access point for several hours. The wireless devices received updates from social media sites and

applications such as Facebook and Steamworks through the communication gateway, and users who

used it for playing online games did not get sudden connection drops.

5.1.2 Ethernet Routing

The embedded system will provide various communication interfaces and may act as a gateway in a

local area network. One of the interfaces which are provided by the gateway is Ethernet. Ethernet is

one of the most common data transfer protocols, and the procedure for verifying Ethernet will

simply be:

1. Install an additional Ethernet port on to the Raspberry Pi as described in Section 4.1.4.

2. Let Raspberry Pi a gateway between a computer and a modem.

3. Access the Internet through the Raspberry Pi using the computer.

The result of the test was a success. The computer in use was able to access the Internet, as well as

remotely control the Raspberry Pi through SSH. The test also showed us that the Raspberry Pi did not

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

72

Version 0.7

act as a bottleneck between the computer, and the modem and kept its throughput throughout the

session.

5.1.3 Mobile Broadband (3G/4G)

The mobile broadband provided by the mobile communication gateway, is the interface which

provides continuous Internet access to the users of the system. The mobile broadband is one of the

most important features of the system, and will be validated through the given process.

1. Install the hardware and software, and make the proper configurations of the mobile

broadband and the routing as shown in Chapter 0.

2. Disconnect the Ethernet cable and connect the mobile broadband modem.

3. Access the Internet.

The result of the experiment was a success. The devices connected to the mobile broadband were

able to connect to the Internet and browse web, as well as receiving files through application

services. The mobile broadband offered a sufficient throughput.

5.1.4 Network Failover

The experiment of this feature includes several different sub-features which are implemented into

the communication gateway. The features which will be validated through the experiment are the

device's ability to detect connection losses to the Internet, turn on mobile broadband, detect

Internet connection through Ethernet, and switch off mobile broadband. The experiment is given as:

1. Create or install the script for automatic failover before running it, as described in

Subchapter 4.2.

2. Disconnect the Ethernet cable or turn off the DSL modem.

3. Test the Internet connection by use of a wireless or physical connected device.

4. Connect the Ethernet cable or turn on the DSL modem.

5. Observe if the mobile broadband process is killed.

6. Test the Internet connection by use of a wireless or physical connected device.

The experiment was successfully completed. The mobile broadband was connected once the

Ethernet cable was pulled out, and the connected devices were able to access the Internet. The time

it took for the system to switch from Ethernet to mobile broadband was approximately 10 seconds.

The process of disconnecting the modem was instantaneous as the script is designed to kill the

connection process when detecting another source to the Internet.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

73

Version 0.7

5.1.5 Bluetooth

The gateway provides Bluetooth support for situations where users decide to transfer files in a

simple manner from a device without Wi-Fi. It is also important to notice that the mobile

communication gateway needs to accept the pairing of any device by default.

1. Install the software and hardware as described in Section 4.1.7

2. Use a device to pair with the gateway and observe if it is accepted automatically by default.

3. Choose a file to transfer from the device to the gateway and vice versa.

The experiment was successfully completed, and both devices were able to retrieve and store a PDF

file of 6000 KB. The pairing was accepted by the Raspberry Pi and remembered by the Bluetooth

device used in the process.

5.1.6 Internal Watchdog

In order to make the system run reliably a watchdog is used. The internal watchdog is having more

control over the system status, and can reboot the system fast if there are any problems. The

following steps were done to test if the onboard watchdog is working properly.

1. Install the watchdog as described in Section 4.3.1.

2. Try crashing the system.

3. Wait to see if the system crashes and reboots on its own.

To crash the system we ran a piece of code (“: (){ :|:& };:”) called a fork bomb [89]. This is a

process which creates subprocesses that creates more processes. After a short while there has been

created so many processes that the system is drained of resources and is unable to perform any

actions. The code was successful and simply by waiting we noticed that the system rebooted. The

result was expected and we think it was highly satisfactory.

5.1.7 External Watchdog

As the internal watchdog, the external watchdog will also monitor the system. The external

watchdog will have the advantage that it is separate from the rest of the system. In case the

hardware crashes on the Raspberry Pi, it is a possibility that the internal watchdog has crashed as

well. The probability for needing the external watchdog is fairly low, but it provides a great deal of

reliability, as the chance of both the internal watchdog and the external watchdog crashing at the

same time is very small. In order to test the external watchdog, we will do the following.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

74

Version 0.7

1. Install the external watchdog as described in 4.3.2.

2. Press the button and check that the RPi turns off.

3. Check if the RPi turns on when button is pressed.

4. Stop the signal from the Raspberry Pi.

5. Wait and see if the watchdog restarts the RPi.

6. Check that the watchdog does not turn on or off the system unexpectedly.

When first connecting power to the Arduino, it started sending a signal to the relay, which is

supplying power for the Raspberry Pi. According to the design of the watchdog script, nothing will be

done before the Raspberry Pi has started completely. When the Raspberry Pi was done with the

startup, we tried pushing the button. The Raspberry Pi shut down almost immediately and its power

was cut by the relay. Then we pushed the button again the relay was switched on and the RPi booted

up again.

The secondary task of the watchdog is to listen for changes in the signal from Raspberry Pi. This

feature was tested by killing the process in charge of alternating the signal. As the script is designed

to wait until the RPi have had enough time to boot on its own if the signal was stopped by a

controlled reboot, nothing happened until around 75 seconds had passed. Then the relay was shut

off, then on again and the system booted once again.

Until now, the system has been acting as expected. The last step in the list was tested over two

hours. During this time the system shut down once. After some troubleshooting we found that the

watchdog had gotten some false signals on the button input. As the input signal is read on an analog

GPIO pin, it will always detect some input values, but usually not more than a fraction of what is

needed to trigger the watchdog. The input values on analog pins are read in a range of 0-1023, where

1023 is the value when the current is sent deliberately. Unless a step-down converter is used, the

input value will never be 0. By debugging this value, we found that the value is highly dependent on

the environment. Just by holding the hand over the Arduino, without touching, we were able to

trigger a shutdown of the system.

At the current state of the system, the watchdog acts fairly reliable, but as there is a risk for getting

wrong values on the analog pin, it is advisable to keep the chassis closed and place the system in a

distance from other electrical devices in order to prevent erroneous signals.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

75

Version 0.7

5.2 Scenarios

5.2.1 Wi-Fi Access Point Range Experiment

The Wi-Fi access point configured for the embedded communication gateway may vary in connection

quality when one take into the account of objects that may disrupt the signal. This experiment's

purpose is to estimate the signal strength of the communication gateway's AP inside a building. The

experiment was performed inside a house of 144 square meters, and the wireless access point was

placed at the far end of the house. We observed that the users were able to connect to the access

point at all locations in the house, maintaining an excellent connection quality throughout the 10

hour session. The quality of the signal did however drop significantly outside the house, unable to

detect its signal 5 meters past the outer walls. The reason for such sudden drop is that the outer wall

of the house is thicker and made of high density materials such as concrete and cement. A

comparison was made with the home owner's router and the same results were observed.

5.2.2 Mobile Broadband Gateway in a Car

In order to find out if the system is suited for use in a car, we performed an experiment where the

intention was to connect to the Internet through the Wi-Fi access point. The watchdog was powered

by the USB-port on a computer and the Raspberry Pi was connected to a 12V cigarette lighter

adapter with 1 ampere (A) power capacity. As there was no 230V outlet in the car, the external

power supply for the USB-hub was not used.

The result of the experiment was that the Wi-Fi access point turned on, and provided Internet access,

but only for a few seconds before rebooting. This was most likely caused by lack of power, as the

Ethernet adapter did not even turn on like it usually does. As the RPi is designed to use almost 700

milliampere (mA), there will be roughly 300 mA left of the capacity of the power adapter to serve the

USB-hub including Wi-Fi, Ethernet, 3G/4G modem and Bluetooth. Therefore we can conclude that

with the current setup, the system is not suited for use in a car. With an increase of power, this test

should be retried.

5.3 Validation

Most of the goals for this project are met, but the watchdog is not quite as reliable as we wanted.

This is because of the sensitivity of the analog pins. As they can give false results by just holding

objects near them, we feel it is an issue that should be fixed in the future. Also, in the car scenario,

the system requires more power in order to function properly.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

76

Version 0.7

Because of these issues, we have to say that the solution as of now is not completely satisfactory.

The solution is however well working in an environment with little electrical disturbances. As the

Ethernet, Wi-Fi, mobile broadband, and Bluetooth interfaces have all been working with no errors

during the testing period, there is not much left until the system is comparable to existing products.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

77

Version 0.7

6 Discussion

This part of the disseration will provide some of the additional options which have been looked at

during the semester. A lot of software and hardware has been looked at. It has been mentioned in

the previous chapters that we've had a lot of different hardware and software candidates to choose

between, but they were all eliminated during the planning stage of our embedded system. It is

however somewhat hard to eliminate all the options during the phase of planning, such as solutions

for a given feature. A solution to a given feature comes in many different forms, and this part will

present some of the other solutions that has been worked one during our thesis, and was not used

used due to particular reasons. In addition to presenting former, we will also recommend the next

step for the project.

The first chosen operating system for our system base our system on an operating system named

PiBang Linux. The operating system proved to be unstable an had several errors during the

installation process. As our time were limited, starting a project on an unstable platform could have

given us a hard time in the future and it was removed as our system's operating system.

In addition to the operating system, we encounter different solutions to install mobile broadband to

our device. It was decided on the earlier stage that the system would use a software named sakis3G.

Sakis3G is a tool in Linux which is used to configure and connect a device to the Internet through LTE.

The software required usb-modeswitch to successfully connect to the Internet and ran in a stable

manner during our experiments. It was however not used in the final stage of the prototype as it ran

too slow. In our experiments the modem used an average 40 seconds to connect to the Internet,

compared to the 10 seconds used by wvdial.

We had different hardware solution as well as software solutions. As one can recall, several types of

communication interface dongles were tested during our master thesis as mentioned in Section

3.4.2. The most noticeable one was a Wi-Fi dongle named D-Link DWA-123. The D-Link DWA-123

dongle worked perfectly fine as a standard Wi-Fi connector, but lacked the feature to act as an access

point which was crucial for our solution. When discovered it got replaced by an Edimax dongle which

supported the feature. Another problem we encountered during our communication interface

hardware selection, was during our time implementing a second Ethernet port to the Raspberry Pi.

The Ethernet port created a serious issue that froze the Raspberry Pi on random occasions. We

suspect that it was driver related problem, but were not able to determine the exact cause since the

Raspberry Pi kept crashing. To solve the ongoing issue we bought a new Ethernet port KÖNIG CMP-

NWUSB2.0 which was connected to the Raspberry Pi without further problems. In addition to the

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

78

Version 0.7

solutions that was not implemented due to various problems there were features that we would like

to add to our system, but did not have the appropriate time to do.

For future work we would recommend to go onto the direction of making the device a commercial

product. Then the issue with the watchdog should be resolved. The analog pins are likely to give false

values when read. This can be fixed either by using the digital pins instead, or by adding a resistor as

a step-down converter.

To improve the product further, we suggest to make it easier to configure for the regular user by

developing a graphical user interface. The graphical user interface would give the user the option to

configure the device without prior knowledge to Linux and scripting.

We would also recommend to design and create a proper casing for the embedded system that

makes it more durable as well as giving it a slicker design. At this point the embedded

communication system is powered through three power adapters. In the future we we would also

like to combine all three of the power adapters into an single unit, as well as implementing our

suggesting to synchronizing the Raspberry Pi with a server through use of mySQL.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

79

Version 0.7

7 Conclusion

The purpose of the dissertation was to develop a multi-purpose embedded communication gateway

for providing continuous Internet access. A gateway was developed for multiple interfaces such as

Ethernet, Wi-Fi, Bluetooth, ZigBee, and 3G/4G. The device would use the mobile broadband as a

failover to provide continuous Internet action, and provide reliability and availability through script

optimization and a watchdog.

The result of our work, is a stable gateway that may be used in different types of scenarios, as long as

the amount of power needed for the system is appropriately delivered. The gateway may act as an

access point for different types of communication interfaces, and forward information to the

Internet by use of Ethernet or mobile broadband. Compared with other commercial devices, it

includes different communication interfaces, and features a watchdog which strengthens the

device's availability and reliability in an environment without electrical disturbances. It is also

important to mention that the gateway is open source, and new modules may be added to suit the

user's specifications.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

80

Version 0.7

References

[1] ASUSTEK Computer Inc. "SDHC 3-in-1 Wireless-N150 Router with 3G/4G backup". Internet:

http://www.asus.com/Networking/RTN10U_B/, [Nov., 2013].

[2] Cisco Systems, Inc. "Cisco 880G Series 3G Wireless Integrated Services Router". Internet:

http://www.cisco.com/en/US/prod/collateral/routers/ps380/ps10082/data_sheet_c78_498

096.html, [Nov., 2013].

[3] TP-Link Technologies CO., Ltd. "3G/4G Wireless N Router". Internet: http://www.tp-

link.com/no/products/details/?model=TL-MR3420, [Nov., 2013].

[4] NETGEAR. "NETGEAR® Mobile Broadband Wireless Routers". Internet:

http://www.netgear.com/3G, [Nov., 2013].

[5] M. Webb. "Netgear unveils Wireless-N 300 router featuring automatic 3G/4G/WiMax

failover". Internet: http://www.gizmag.com/netgear-wireless-router-failover-

dgn2200m/13759/, Jan., 2010 [Nov., 2013].

[6] NETGEAR. "DGN2200M Compatible 3G USB Modems in Denmark". Internet:

http://kb.netgear.com/app/answers/detail/a_id/24181, Nov., 2013 [Nov., 2013].

[7] NETGEAR. "N300 Wireless ADSL2+ Modem Router DGN2200M Mobile Edition User Manual".

Internet:

http://www.downloads.netgear.com/files/GDC/DGN2200M/DGN2200M_UM_04Nov11.pdf,

Nov., 2011 [Jan., 2014].

[8] J. Vadivelu. "Method and system for network failover and network selection with multi-

mode modem in remote access points". Internet:

http://patentimages.storage.googleapis.com/pdfs/US8537715.pdf, Sep., 2013 [Nov., 2013].

[9] C. W. Ea and M. Sørbø, "Multipurpose Embedded Communication Gateway," University of

Agder, Grimstad, Project report for IKT416 Scientific Methods 2013.

[10] M. J. Pont and R. H.L. Ong. "Using watchdog timers to improve the reliability of single-

processor embedded systems: Seven new patterns and a case study". Internet:

http://www.le.ac.uk/eg/mjp9/mjpvp02.pdf, Sep., 2002 [Mar., 2014].

[11] A. Mayhew. "File Distribution Efficiencies: cfengine vs. rsync". Internet:

https://www.usenix.org/legacy/events/lisa2001/tech/full_papers/mayhew/mayhew.pdf,

Dec., 2001 [Nov., 2013].

[12] Wikipedia. "A13-OLinuXino-WIFI". Internet: http://en.wikipedia.org/wiki/OLinuXino#A13-

http://www.asus.com/Networking/RTN10U_B/
http://www.cisco.com/en/US/prod/collateral/routers/ps380/ps10082/data_sheet_c78_498096.html
http://www.cisco.com/en/US/prod/collateral/routers/ps380/ps10082/data_sheet_c78_498096.html
http://www.tp-link.com/no/products/details/?model=TL-MR3420
http://www.tp-link.com/no/products/details/?model=TL-MR3420
http://www.netgear.com/3G
http://www.gizmag.com/netgear-wireless-router-failover-dgn2200m/13759/
http://www.gizmag.com/netgear-wireless-router-failover-dgn2200m/13759/
http://kb.netgear.com/app/answers/detail/a_id/24181
http://www.downloads.netgear.com/files/GDC/DGN2200M/DGN2200M_UM_04Nov11.pdf
http://patentimages.storage.googleapis.com/pdfs/US8537715.pdf
http://www.le.ac.uk/eg/mjp9/mjpvp02.pdf
https://www.usenix.org/legacy/events/lisa2001/tech/full_papers/mayhew/mayhew.pdf
http://en.wikipedia.org/wiki/OLinuXino#A13-OLinuXino-WIFI

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

81

Version 0.7

OLinuXino-WIFI, [Nov., 2013].

[13] Olimex Ltd. "Universal EXTension connector". Internet:

https://www.olimex.com/Products/Modules/UEXT/, [Nov., 2013].

[14] J. Vilaça. "Cubieboard vs OlinuXino A13 WiFi vs Beaglebone". Internet:

http://vilaca.eu/cubieboard-olinuxinoa13-beaglebone/, [Nov., 2013].

[15] Olimex Ltd. "A13-OLinuXino-WIFI". Internet:

https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-WIFI/open-source-

hardware, [Nov., 2013].

[16] Atmel Corporation. "ATmega2560". Internet:

http://www.atmel.com/devices/atmega2560.aspx, [Nov., 2013].

[17] Arduino SA. "Arduino Mega 2560". Internet:

http://arduino.cc/en/Main/ArduinoBoardMega2560, [Nov., 2013].

[18] Arduino SA. "Arduino Mega2560 Rev3". Internet:

http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=11_12&products_i

d=196, [Nov., 2013].

[19] The BeagleBoard.org Foundation. "BeagleBoard". Internet:

http://beagleboard.org/Products/BeagleBoard, [Nov., 2013].

[20] G. Coley. "BeagleBone Black vs BeagleBone". Internet:

https://groups.google.com/d/msg/beagleboard/9aLzt68mq9I/hfTVH9mAqhMJ, May., 2013

[Nov., 2013].

[21] The BeagleBoard.org Foundation. "BeagleBone Black". Internet:

http://beagleboard.org/Products/BeagleBone%20Black, [Nov., 2013].

[22] Cubieboard. "Cubieboard Products". Internet: http://docs.cubieboard.org/products/start,

[Nov., 2013].

[23] Miniand Pty Ltd. "Cubietruck A20 Dev Board". Internet:

https://www.miniand.com/products/Cubietruck%20A20%20Dev%20Board#specifications,

[Nov., 2013].

[24] Seeed Studio. "Cubietruck Kit - Dual Core Single-board Computer". Internet:

http://www.seeedstudio.com/depot/cubietruck-kit-dual-core-singleboard-computer-p-

1628.html, [Nov., 2013].

[25] Elektor International Media BV. "Elektor Academy - Embedded Linux Made Easy – Q&A

https://www.olimex.com/Products/Modules/UEXT/
http://vilaca.eu/cubieboard-olinuxinoa13-beaglebone/
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-WIFI/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-WIFI/open-source-hardware
http://www.atmel.com/devices/atmega2560.aspx
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=11_12&products_id=196
http://store.arduino.cc/ww/index.php?main_page=product_info&cPath=11_12&products_id=196
http://beagleboard.org/Products/BeagleBoard
https://groups.google.com/d/msg/beagleboard/9aLzt68mq9I/hfTVH9mAqhMJ
http://beagleboard.org/Products/BeagleBone%20Black
http://docs.cubieboard.org/products/start
https://www.miniand.com/products/Cubietruck%20A20%20Dev%20Board#specifications
http://www.seeedstudio.com/depot/cubietruck-kit-dual-core-singleboard-computer-p-1628.html
http://www.seeedstudio.com/depot/cubietruck-kit-dual-core-singleboard-computer-p-1628.html

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

82

Version 0.7

session". Internet:

http://www.element14.com/community/servlet/JiveServlet/previewBody/50560-102-1-

261603/QA_Sep_final.docx, [Nov., 2013].

[26] Elektor International Media BV. "Embedded Linux Made Easy (120026-91)". Internet:

http://www.elektor.com/products/kits-modules/modules/120026-91-elektor-linux-

board.2135310.lynkx, [Nov., 2013].

[27] B. Linder. "Gooseberry developer boards: £40 alternative to the Raspberry Pi". Internet:

http://liliputing.com/2012/06/gooseberry-developer-boards-40-alternative-raspberry-

pi.html, Jun., 2012 [Nov., 2013].

[28] P. Georgiadis. "Gooseberry – An alternative to Raspberry Pi". Internet:

http://www.unixmen.com/gooseberry-an-alternative-to-raspberry-pi/, Jul., 2012 [Nov.,

2013].

[29] Gooseberry. "Gooseberry - Store". Internet: http://gooseberry.atspace.co.uk/?page_id=31,

[Nov., 2013].

[30] Miniand Pty Ltd. "Hackberry A10 Dev Board". Internet:

https://www.miniand.com/products/Hackberry%20A10%20Developer%20Board, [Nov.,

2013].

[31] Miniand Pty Ltd. "Hackberry-Power". Internet: https://www.miniand.com/wiki/Hackberry-

Power, Oct., 2012 [Nov., 2013].

[32] HAOYU Electronics. "MarsBoard A10 Dev Board". Internet:

http://www.hotmcu.com/marsboard-a10-dev-board-p-59.html, [Nov., 2013].

[33] HAOYU Electronics. "MarsBoard A10 Dev Board - An ARM GUN/Linux box". Internet:

http://www.marsboard.com/, [Nov., 2013].

[34] Secret Labs LLC. "netduino - hardware". Internet: http://netduino.com/hardware/, [Nov.,

2013].

[35] Secret Labs LLC. "Netduino Board Comparison". Internet:

http://wiki.netduino.com/Comparison.ashx, [Nov., 2013].

[36] Cool Components Ltd. "Netduino Plus 2.NET / C# Development Board". Internet:

http://www.coolcomponents.co.uk/dev-boards/net/netduino/ netduino-plus-2-net-c-

development-board.html, [Nov., 2013].

[37] Parallella. "Parallella Computer Specifications". Internet: http://www.parallella.org/board/,

http://www.element14.com/community/servlet/JiveServlet/previewBody/50560-102-1-261603/QA_Sep_final.docx
http://www.element14.com/community/servlet/JiveServlet/previewBody/50560-102-1-261603/QA_Sep_final.docx
http://www.elektor.com/products/kits-modules/modules/120026-91-elektor-linux-board.2135310.lynkx
http://www.elektor.com/products/kits-modules/modules/120026-91-elektor-linux-board.2135310.lynkx
http://liliputing.com/2012/06/gooseberry-developer-boards-40-alternative-raspberry-pi.html
http://liliputing.com/2012/06/gooseberry-developer-boards-40-alternative-raspberry-pi.html
http://www.unixmen.com/gooseberry-an-alternative-to-raspberry-pi/
http://gooseberry.atspace.co.uk/?page_id=31
https://www.miniand.com/products/Hackberry%20A10%20Developer%20Board
https://www.miniand.com/wiki/Hackberry-Power
https://www.miniand.com/wiki/Hackberry-Power
http://www.hotmcu.com/marsboard-a10-dev-board-p-59.html
http://www.marsboard.com/
http://netduino.com/hardware/
http://wiki.netduino.com/Comparison.ashx
http://www.coolcomponents.co.uk/dev-boards/net/netduino/%20netduino-plus-2-net-c-development-board.html
http://www.coolcomponents.co.uk/dev-boards/net/netduino/%20netduino-plus-2-net-c-development-board.html
http://www.parallella.org/board/

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

83

Version 0.7

[Nov., 2013].

[38] Adapteva Inc. "Parallella Reference Manual 4.13.2.13". Internet:

http://www.adapteva.com/wp-content/uploads/2013/02/parallella_reference

_4.13.2.13.pdf, [Nov., 2013].

[39] Adapteva Inc. "Parallella-16". Internet: http://shop.adapteva.com/collections/featured-

products/products/parallella-16, [Nov., 2013].

[40] Wikipedia. "Raspberry Pi". Internet: http://en.wikipedia.org/wiki/Raspberry_Pi, [Nov.,

2013].

[41] Raspberry Pi Foundation. "FAQs". Internet: http://www.raspberrypi.org/faqs, [Nov., 2013].

[42] CompuLab. "Utilite Value Specifications". Internet: http://utilite-computer.com/web/utilite-

value-specifications, [Nov., 2013].

[43] CompuLab. "Order Utilite Direct". Internet: http://utilite-computer.com/web/order-utilite-

direct, [Nov., 2013].

[44] A. D. Lindsay. "Picture of Slice of Pi". Internet: http://blog.thiseldo.co.uk/wp-

photos/pi_001.jpg, [May., 2014].

[45] C. W. Ea and M. Sørbø, "Multipurpose Embedded Communication Gateway," University of

Agder, Grimstad, Project report for IKT508 Specialization Project 2013.

[46] Unsigned Integer Limited. "DistroWatch.com - Search Distributions". Internet:

http://distrowatch.com/search.php?ostype=All&category=All&origin

=All&basedon=All¬basedon=None&desktop=All&architecture=arm&status=Active,

[Nov., 2013].

[47] eLinux.org. "RPi Distributions". Internet: http://elinux.org/RPi_Distributions, [Nov., 2013].

[48] Canonical Ltd. "Ubuntu.com - ARM". Internet: https://wiki.ubuntu.com/ARM, [Nov., 2013].

[49] M. Tremer. "The Raspberry Pi dilemma". Internet: http://planet.ipfire.org/post/the-

raspberry-pi-dilemma, Apr., 2012 [Nov., 2013].

[50] Slackware Linux, Inc. "Slackware ARM on the Raspberry Pi". Internet:

http://docs.slackware.com/howtos:hardware:arm:raspberrypi, [Nov., 2013].

[51] The NetBSD Foundation, Inc. "NetBSD/evbarm on Raspberry Pi". Internet:

http://wiki.netbsd.org/ports/evbarm/raspberry_pi/, [Nov., 2013].

[52] GeeXboX. "GeeXboX". Internet: http://www.geexbox.org/, [Nov., 2013].

[53] OpenELEC. "OpenELEC MediaCenter". Internet: http://openelec.tv/, [Nov., 2013].

http://www.adapteva.com/wp-content/uploads/2013/02/parallella_reference%20_4.13.2.13.pdf
http://www.adapteva.com/wp-content/uploads/2013/02/parallella_reference%20_4.13.2.13.pdf
http://shop.adapteva.com/collections/featured-products/products/parallella-16
http://shop.adapteva.com/collections/featured-products/products/parallella-16
http://en.wikipedia.org/wiki/Raspberry_Pi
http://www.raspberrypi.org/faqs
http://utilite-computer.com/web/utilite-value-specifications
http://utilite-computer.com/web/utilite-value-specifications
http://utilite-computer.com/web/order-utilite-direct
http://utilite-computer.com/web/order-utilite-direct
http://blog.thiseldo.co.uk/wp-photos/pi_001.jpg
http://blog.thiseldo.co.uk/wp-photos/pi_001.jpg
http://distrowatch.com/search.php?ostype=All&category=All&origin%20=All&basedon=All¬basedon=None&desktop=All&architecture=arm&status=Active
http://distrowatch.com/search.php?ostype=All&category=All&origin%20=All&basedon=All¬basedon=None&desktop=All&architecture=arm&status=Active
http://elinux.org/RPi_Distributions
https://wiki.ubuntu.com/ARM
http://planet.ipfire.org/post/the-raspberry-pi-dilemma
http://planet.ipfire.org/post/the-raspberry-pi-dilemma
http://docs.slackware.com/howtos:hardware:arm:raspberrypi
http://wiki.netbsd.org/ports/evbarm/raspberry_pi/
http://www.geexbox.org/
http://openelec.tv/

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

84

Version 0.7

[54] M. J. Hammel. "PiBox: An Embedded Distribution for the Raspberry Pi. And more!" Internet:

http://www.graphics-muse.org/wiki/pmwiki.php/RaspberryPi/RaspberryPi, [Nov., 2013].

[55] S. Nazarko. "Raspbmc". Internet: http://www.raspbmc.com/, [Nov., 2013].

[56] RaspyFi. "RaspyFi Pi never sounded so good!" Internet: http://www.raspyfi.com/, [Nov.,

2013].

[57] Xbian. "XBian | XBMC on the Raspberry Pi, The bleeding edge". Internet:

http://www.xbian.org/, [Nov., 2013].

[58] Offensive Security Ltd. "Kali Linux | Rebirth of BackTrack, the Penetration Testing

Distribution." Internet: http://www.kali.org/, [Nov., 2013].

[59] S. Silverman. "PiMAME | Gaming and Emulators for the Raspbery Pi | Shea Silverman".

Internet: http://pimame.org/, [Nov., 2013].

[60] Alcatel-Lucent. "Expanding your Grid". Internet: http://plan9.bell-

labs.com/wiki/plan9/expanding_your_grid/index.html, [Nov., 2013].

[61] K. J. Sitjar. "Pro’s And Cons Of Ethernet". Internet: http://www.techwench.com/pros-and-

cons-of-ethernet/, Sep., 2012 [Nov., 2013].

[62] WyzGuys Computer Tutors. "Pro and Cons of WiFi". Internet:

http://www.wifi.wyzguys.net/04Pros&Cons.htm, [Nov., 2013].

[63] P. S. Kwak. "Pros & Cons of Bluetooth". Internet:

http://www.ehow.com/info_8258446_pros-cons-bluetooth.html, [Nov., 2013].

[64] R. Thadani. "Advantages and Disadvantages of Bluetooth Technology". Internet:

http://www.buzzle.com/articles/advantages-and-disadvantages-of-bluetooth-

technology.html, Jun., 2011 [Nov., 2013].

[65] Wikipedia. "ZigBee". Internet: http://en.wikipedia.org/wiki/Zigbee, [Nov., 2013].

[66] F. Y. Li. "IKT429 Lecture 7: Wireless Sensor Networks". Internet:

https://fronter.com/uia/links/files.phtml/478215379$150667710$/Fagstoff/Lecture+slides/I

KT429_L7_WSN.pdf, Oct., 2013 [Oct., 2013].

[67] Telenor. "Dekning - 4G og 3G". Internet: http://www.telenor.no/privat/dekning/?cid=p-

00741-bet-gog-mbb-

generiskdekning&gclid=CjgKEAjw2KCcBRCQ_6mztcunhEgSJABPxOF13gjWdmbv6cmh1punsQ

PKeH_01AHndEpglXZ8bn2vKPD_BwE, [May., 2014].

[68] Wikipedia. "WiMax". Internet: http://en.wikipedia.org/wiki/WiMAX, [Nov., 2013].

http://www.graphics-muse.org/wiki/pmwiki.php/RaspberryPi/RaspberryPi
http://www.raspbmc.com/
http://www.raspyfi.com/
http://www.xbian.org/
http://www.kali.org/
http://pimame.org/
http://plan9.bell-labs.com/wiki/plan9/expanding_your_grid/index.html
http://plan9.bell-labs.com/wiki/plan9/expanding_your_grid/index.html
http://www.techwench.com/pros-and-cons-of-ethernet/
http://www.techwench.com/pros-and-cons-of-ethernet/
http://www.wifi.wyzguys.net/04Pros&Cons.htm
http://www.ehow.com/info_8258446_pros-cons-bluetooth.html
http://www.buzzle.com/articles/advantages-and-disadvantages-of-bluetooth-technology.html
http://www.buzzle.com/articles/advantages-and-disadvantages-of-bluetooth-technology.html
http://en.wikipedia.org/wiki/Zigbee
https://fronter.com/uia/links/files.phtml/478215379$150667710$/Fagstoff/Lecture+slides/IKT429_L7_WSN.pdf
https://fronter.com/uia/links/files.phtml/478215379$150667710$/Fagstoff/Lecture+slides/IKT429_L7_WSN.pdf
http://www.telenor.no/privat/dekning/?cid=p-00741-bet-gog-mbb-generiskdekning&gclid=CjgKEAjw2KCcBRCQ_6mztcunhEgSJABPxOF13gjWdmbv6cmh1punsQPKeH_01AHndEpglXZ8bn2vKPD_BwE
http://www.telenor.no/privat/dekning/?cid=p-00741-bet-gog-mbb-generiskdekning&gclid=CjgKEAjw2KCcBRCQ_6mztcunhEgSJABPxOF13gjWdmbv6cmh1punsQPKeH_01AHndEpglXZ8bn2vKPD_BwE
http://www.telenor.no/privat/dekning/?cid=p-00741-bet-gog-mbb-generiskdekning&gclid=CjgKEAjw2KCcBRCQ_6mztcunhEgSJABPxOF13gjWdmbv6cmh1punsQPKeH_01AHndEpglXZ8bn2vKPD_BwE
http://www.telenor.no/privat/dekning/?cid=p-00741-bet-gog-mbb-generiskdekning&gclid=CjgKEAjw2KCcBRCQ_6mztcunhEgSJABPxOF13gjWdmbv6cmh1punsQPKeH_01AHndEpglXZ8bn2vKPD_BwE
http://en.wikipedia.org/wiki/WiMAX

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

85

Version 0.7

[69] Diskusjon.no-user: Zailenser. "WiMAX dekkning i Norge". Internet:

http://www.diskusjon.no/index.php?showtopic=1052585&p=12720383, Nov., 2008 [Feb.,

2014].

[70] E. Upton. "Introducing Turbo Mode: Up to 50% More Performance For Free". Internet:

http://www.raspberrypi.org/introducing-turbo-mode-up-to-50-more-performance-for-

free/, [May., 2014].

[71] eLinux.org. "RPiconfig". Internet: http://elinux.org/RPiconfig, [May., 2014].

[72] A. Gutierrez. "read a file and save it in variable using shell script". Internet:

http://stackoverflow.com/questions/7427262/read-a-file-and-save-it-in-variable-using-

shell-script, May., 2012 [Jan., 2014].

[73] The Fan Club. "How to setup a USB 3G Modem on Raspberry PI using usb_modeswitch and

wvdial". Internet: http://www.thefanclub.co.za/how-to/how-setup-usb-3g-modem-

raspberry-pi-using-usbmodeswitch-and-wvdial, Nov., 2013 [Feb., 2014].

[74] eLinux.org. "RPI-Wireless-Hotspot". Internet: http://elinux.org/RPI-Wireless-Hotspot, [Jan.,

2014].

[75] E. Carvalho. "How to set up Wi-Fi Hotspot for sharing using 2 wired and 1 Wi-Fi network

cards?" Internet: http://askubuntu.com/questions/186516/how-to-set-up-wi-fi-hotspot-for-

sharing-using-2-wired-and-1-wi-fi-network-cards, Sep., 2012 [Apr., 2014].

[76] rtCamp. "Configure Postfix to Use Gmail SMTP on Ubuntu". Internet:

https://rtcamp.com/tutorials/linux/ubuntu-postfix-gmail-smtp/, [Apr., 2014].

[77] postfix.org. "Postfix main.cf file format". Internet: http://www.postfix.org/postconf.5.html,

[Apr., 2014].

[78] rtCamp. "Debugging Postfix Config, Mail Logs & more". Internet:

https://rtcamp.com/tutorials/mail/postfix-debugging/, [Apr., 2014].

[79] Dream Green House Ltd. "Raspberry Pi & Bluetooth". Internet:

http://www.dreamgreenhouse.com/projects/2012/rpibt/index.php, [May., 2014].

[80] askubuntu.com-user: James. "How do you make Ubuntu Server accept files sent over

bluetooth?" Internet: http://askubuntu.com/questions/408429/how-do-you-make-ubuntu-

server-accept-files-sent-over-bluetooth, Jan., 2014 [Apr., 2014].

[81] archlinux.org. "Bluetooth". Internet: https://wiki.archlinux.org/index.php/Bluetooth, [Apr.,

2014].

http://www.diskusjon.no/index.php?showtopic=1052585&p=12720383
http://www.raspberrypi.org/introducing-turbo-mode-up-to-50-more-performance-for-free/
http://www.raspberrypi.org/introducing-turbo-mode-up-to-50-more-performance-for-free/
http://elinux.org/RPiconfig
http://stackoverflow.com/questions/7427262/read-a-file-and-save-it-in-variable-using-shell-script
http://stackoverflow.com/questions/7427262/read-a-file-and-save-it-in-variable-using-shell-script
http://www.thefanclub.co.za/how-to/how-setup-usb-3g-modem-raspberry-pi-using-usbmodeswitch-and-wvdial
http://www.thefanclub.co.za/how-to/how-setup-usb-3g-modem-raspberry-pi-using-usbmodeswitch-and-wvdial
http://elinux.org/RPI-Wireless-Hotspot
http://askubuntu.com/questions/186516/how-to-set-up-wi-fi-hotspot-for-sharing-using-2-wired-and-1-wi-fi-network-cards
http://askubuntu.com/questions/186516/how-to-set-up-wi-fi-hotspot-for-sharing-using-2-wired-and-1-wi-fi-network-cards
https://rtcamp.com/tutorials/linux/ubuntu-postfix-gmail-smtp/
http://www.postfix.org/postconf.5.html
https://rtcamp.com/tutorials/mail/postfix-debugging/
http://www.dreamgreenhouse.com/projects/2012/rpibt/index.php
http://askubuntu.com/questions/408429/how-do-you-make-ubuntu-server-accept-files-sent-over-bluetooth
http://askubuntu.com/questions/408429/how-do-you-make-ubuntu-server-accept-files-sent-over-bluetooth
https://wiki.archlinux.org/index.php/Bluetooth

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

86

Version 0.7

[82] Digi International Inc. "XCTU - Next generation configuration platform for XBee". Internet:

http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-

modules/xctu, [May., 2014].

[83] B. Chavez. "Compiling Kernel Modules for Raspberry Pi". Internet:

http://bchavez.bitarmory.com/archive/2013/01/16/compiling-kernel-modules-for-

raspberry-pi.aspx, Jan., 2013 [Apr., 2014].

[84] eLinux.org. "RPi Kernel Compilation - Cross compiling from Linux". Internet:

http://elinux.org/RPi_Kernel_Compilation#2._Cross_compiling_from_Linux, [Mar., 2014].

[85] stackoverflow.com-user: Gryphius. "How to scp a folder from remote to local?" Internet:

http://stackoverflow.com/questions/11304895/how-to-scp-a-folder-from-remote-to-local,

Jul., 2012 [Apr., 2014].

[86] N. Wertzberger. "Stopping SD Card Corruption on Raspberry Pi’s Raspbian". Internet:

http://www.ideaheap.com/2013/07/stopping-sd-card-corruption-on-a-raspberry-pi/, Mar.,

2014 [May., 2014].

[87] A-netz.de. "Ramdisks for the Raspberry". Internet: http://www.a-

netz.de/2013/02/ramdisks-for-the-raspberry/, Feb., 2013 [May., 2014].

[88] E. Sverdlov. "How To Set Up Master Slave Replication in MySQL". Internet:

https://www.digitalocean.com/community/articles/how-to-set-up-master-slave-replication-

in-mysql, Jul., 2012 [May., 2014].

[89] binerry.de. "Raspberry Pi Watchdog Timer". Internet:

http://binerry.de/post/28263824530/raspberry-pi-watchdog-timer, [May., 2014].

[90] Arduino Team. "Arduino Tutorial - While Loop". Internet:

http://arduino.cc/en/Tutorial/WhileLoop, [Apr., 2014].

[91] Arduino Team. "Arduino Reference - millis()". Internet:

http://arduino.cc/en/Reference/millis, [May., 2014].

[92] Arduino Team. "Arduino Reference - analogRead()". Internet:

http://arduino.cc/en/Reference/analogRead, [Apr., 2014].

[93] Arduino Team. "Arduino Reference - Addition, Subtraction, Multiplication, & Division".

Internet: http://arduino.cc/en/Reference/Arithmetic, [May., 2014].

[94] Arduino Team. "Arduino Reference - if (conditional) and ==, !=, (comparison operators)".

Internet: http://arduino.cc/en/Reference/if, [May., 2014].

http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/xctu
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/xctu
http://bchavez.bitarmory.com/archive/2013/01/16/compiling-kernel-modules-for-raspberry-pi.aspx
http://bchavez.bitarmory.com/archive/2013/01/16/compiling-kernel-modules-for-raspberry-pi.aspx
http://elinux.org/RPi_Kernel_Compilation#2._Cross_compiling_from_Linux
http://stackoverflow.com/questions/11304895/how-to-scp-a-folder-from-remote-to-local
http://www.ideaheap.com/2013/07/stopping-sd-card-corruption-on-a-raspberry-pi/
http://www.a-netz.de/2013/02/ramdisks-for-the-raspberry/
http://www.a-netz.de/2013/02/ramdisks-for-the-raspberry/
https://www.digitalocean.com/community/articles/how-to-set-up-master-slave-replication-in-mysql
https://www.digitalocean.com/community/articles/how-to-set-up-master-slave-replication-in-mysql
http://binerry.de/post/28263824530/raspberry-pi-watchdog-timer
http://arduino.cc/en/Tutorial/WhileLoop
http://arduino.cc/en/Reference/millis
http://arduino.cc/en/Reference/analogRead
http://arduino.cc/en/Reference/Arithmetic
http://arduino.cc/en/Reference/if

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

87

Version 0.7

[95] FormFormForm Ltd. "About sugru". Internet: http://sugru.com/about, [May., 2014].

[96] hobbyist.co.nz. "Step 2: Interfacing the relay modules to the Arduino". Internet:

http://www.hobbyist.co.nz/?q=interfacing-relay-modules-to-arduino, [Apr., 2014].

[97] eDampf-Shop.com. "Picture of Micro USB connector". Internet: http://www.edampf-

shop.com/WebRoot/Store/Shops/47213485610/5211/E481/5A43/612F/69D9/596E/87E8/B

E5A/USB-Kabel_auf_micro_USB2.png, [May., 2014].

[98] Wikipedia. "USB". Internet: http://en.wikipedia.org/wiki/USB, [Apr., 2014].

[99] R. J. Kinch. "Picture of Raspberry Pi". Internet: http://www.truetex.com/raspberry_pi_2-

0.jpg, [May., 2014].

[100] ebaths.co.uk. "Picture of silver button". Internet:

http://www.ebaths.co.uk/ekmps/shops/ebaths1/images/twyford-air-button-single-flush-

plastic-small-button-chrome-plated-b97940-900-p[ekm]288x288[ekm].jpg, [May., 2014].

[101] NY PLATFORM. "Picture of relay". Internet: http://www.ebay.com/itm/321341659057,

[May., 2014].

[102] hifiduino.wordpress.com. "Picture of Arduino Mega 2560". Internet:

http://hifiduino.files.wordpress.com/2012/03/arduinomega2560_r2_front.jpg, [May.,

2014].

[103] pihomeserver.fr. "Picture of Slice of Pi v1.1". Internet: http://www.pihomeserver.fr/wp-

content/uploads/2013/07/P1060953.jpg, [May., 2014].

[104] S. Breuning. "Controlling GPIO with wiringPi". Internet:

http://raspberrywebserver.com/gpio/wiringPi.html, [Apr., 2014].

[105] debian.org. "Ralink RT2070, RT2770, RT2870, RT3070, RT3071, RT3072, RT3370, RT3572,

RT5370, RT5372 devices (rt2800usb)". Internet: https://wiki.debian.org/rt2800usb, [Jan.,

2014].

[106] T. Sounthala. "How to Setup Asus USB N10 Wifi Adapter On Raspberry Pi". Internet:

http://databoyz.wordpress.com/tag/how-to-setup-network-and-wpa_supplicant-conf-file-

on-raspberry-pi/, Oct., 2012 [Feb., 2014].

[107] eLinux.org. "RPi Low-level peripherals - GPIO hardware hacking". Internet:

http://elinux.org/Rpi_Low-level_peripherals#GPIO_hardware_hacking, [Apr., 2014].

[108] wikia.com. "How to set up a NAT router on a Linux-based computer". Internet: http://how-

to.wikia.com/wiki/How_to_set_up_a_NAT_router_on_a_Linux-based_computer, [Feb.,

http://sugru.com/about
http://www.hobbyist.co.nz/?q=interfacing-relay-modules-to-arduino
http://www.edampf-shop.com/WebRoot/Store/Shops/47213485610/5211/E481/5A43/612F/69D9/596E/87E8/BE5A/USB-Kabel_auf_micro_USB2.png
http://www.edampf-shop.com/WebRoot/Store/Shops/47213485610/5211/E481/5A43/612F/69D9/596E/87E8/BE5A/USB-Kabel_auf_micro_USB2.png
http://www.edampf-shop.com/WebRoot/Store/Shops/47213485610/5211/E481/5A43/612F/69D9/596E/87E8/BE5A/USB-Kabel_auf_micro_USB2.png
http://en.wikipedia.org/wiki/USB
http://www.truetex.com/raspberry_pi_2-0.jpg
http://www.truetex.com/raspberry_pi_2-0.jpg
http://www.ebaths.co.uk/ekmps/shops/ebaths1/images/twyford-air-button-single-flush-plastic-small-button-chrome-plated-b97940-900-p%5bekm%5d288x288%5bekm%5d.jpg
http://www.ebaths.co.uk/ekmps/shops/ebaths1/images/twyford-air-button-single-flush-plastic-small-button-chrome-plated-b97940-900-p%5bekm%5d288x288%5bekm%5d.jpg
http://www.ebay.com/itm/321341659057
http://hifiduino.files.wordpress.com/2012/03/arduinomega2560_r2_front.jpg
http://www.pihomeserver.fr/wp-content/uploads/2013/07/P1060953.jpg
http://www.pihomeserver.fr/wp-content/uploads/2013/07/P1060953.jpg
http://raspberrywebserver.com/gpio/wiringPi.html
https://wiki.debian.org/rt2800usb
http://databoyz.wordpress.com/tag/how-to-setup-network-and-wpa_supplicant-conf-file-on-raspberry-pi/
http://databoyz.wordpress.com/tag/how-to-setup-network-and-wpa_supplicant-conf-file-on-raspberry-pi/
http://elinux.org/Rpi_Low-level_peripherals#GPIO_hardware_hacking
http://how-to.wikia.com/wiki/How_to_set_up_a_NAT_router_on_a_Linux-based_computer
http://how-to.wikia.com/wiki/How_to_set_up_a_NAT_router_on_a_Linux-based_computer

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

88

Version 0.7

2014].

[109] adafruit.com. "Setting up a Raspberry Pi as a WiFi access point". Internet:

http://learn.adafruit.com/setting-up-a-raspberry-pi-as-a-wifi-access-point, [Apr., 2014].

[110] Wireshark Foundation. "Filtering while capturing". Internet:

http://www.wireshark.org/docs/wsug_html_chunked/ChCapCaptureFilterSection.html,

[Apr., 2014].

[111] Me in IT Consultancy. "A shell script to measure network throughput on Linux machines".

Internet: http://meinit.nl/shell-script-measure-network-throughput-linux-machines, [Jan.,

2014].

[112] kernel.org. "hostapd Linux documentation page". Internet:

http://wireless.kernel.org/en/users/Documentation/hostapd, [Apr., 2014].

[113] debian.org. "NetworkConfiguration". Internet:

https://wiki.debian.org/NetworkConfiguration, [Mar., 2014].

[114] H.W. Tseng, L. M. Grupp, and S. Swanson. "Understanding the Impact of Power Loss on Flash

Memory". Internet: http://cseweb.ucsd.edu/users/swanson/papers/DAC2011PowerCut.pdf,

[Apr., 2014].

[115] S. Moorthy. "Unix Nohup: Run a Command or Shell-Script Even after You Logout". Internet:

http://linux.101hacks.com/unix/nohup-command/, [Apr., 2014].

[116] E. Groothuis. "General Commands Manual - dhcping". Internet:

http://www.mavetju.org/unix/dhcping-man.php, [May., 2014].

[117] M. Griffa. "BASH Programming - Introduction HOW-TO - Misc." Internet:

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-10.html, Jul., 2000 [Jan., 2014].

[118] linuxquestions.org-user: Matir. "how to specify default network interface?" Internet:

http://www.linuxquestions.org/questions/debian-26/how-to-specify-default-network-

interface-373181/, Oct., 2005 [Apr., 2014].

[119] linuxquestions.org-user: jschiwal. "bash command for removing special characters from

string". Internet: http://www.linuxquestions.org/questions/linux-newbie-8/bash-command-

for-removing-special-characters-from-string-644828/, May., 2008 [Jan., 2014].

[120] nixCraft. "Bash For Loop Examples". Internet: http://www.cyberciti.biz/faq/bash-for-loop/,

Oct., 2008 [Apr., 2014].

[121] M. Garrels. "Introduction to if". Internet: http://tldp.org/LDP/Bash-Beginners-

http://learn.adafruit.com/setting-up-a-raspberry-pi-as-a-wifi-access-point
http://www.wireshark.org/docs/wsug_html_chunked/ChCapCaptureFilterSection.html
http://meinit.nl/shell-script-measure-network-throughput-linux-machines
http://wireless.kernel.org/en/users/Documentation/hostapd
https://wiki.debian.org/NetworkConfiguration
http://cseweb.ucsd.edu/users/swanson/papers/DAC2011PowerCut.pdf
http://linux.101hacks.com/unix/nohup-command/
http://www.mavetju.org/unix/dhcping-man.php
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO-10.html
http://www.linuxquestions.org/questions/debian-26/how-to-specify-default-network-interface-373181/
http://www.linuxquestions.org/questions/debian-26/how-to-specify-default-network-interface-373181/
http://www.linuxquestions.org/questions/linux-newbie-8/bash-command-for-removing-special-characters-from-string-644828/
http://www.linuxquestions.org/questions/linux-newbie-8/bash-command-for-removing-special-characters-from-string-644828/
http://www.cyberciti.biz/faq/bash-for-loop/
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

89

Version 0.7

Guide/html/sect_07_01.html, Dec., 2008 [Mar., 2014].

[122] T. Amoyal. "How can I read pcap files in a friendly format?" Internet:

http://serverfault.com/questions/38626/how-can-i-read-pcap-files-in-a-friendly-format,

Aug., 2009 [Apr., 2014].

[123] nixCraft. "How To Use awk In Bash Scripting". Internet: http://www.cyberciti.biz/faq/bash-

scripting-using-awk/, Aug., 2009 [Feb., 2014].

[124] thegeekstuff.com-user: Sasikala. "4 Bash If Statement Examples (If then fi, If then else fi, If

elif else fi, Nested if)". Internet: http://www.thegeekstuff.com/2010/06/bash-if-statement-

examples/, Jun., 2010 [Mar., 2014].

[125] nixCraft. "Bash String Comparison: Find Out IF a Variable Contains a Substring". Internet:

http://www.cyberciti.biz/faq/bash-find-out-if-variable-contains-substring/, Mar., 2010 [Feb.,

2014].

[126] stackoverflow.com-user: wsware. "How to get a password from a shell script without

echoing". Internet: http://stackoverflow.com/questions/3980668/how-to-get-a-password-

from-a-shell-script-without-echoing, Oct., 2010 [Feb., 2014].

[127] R. Natarajan. "7 Linux Grep OR, Grep AND, Grep NOT Operator Examples". Internet:

http://www.thegeekstuff.com/2011/10/grep-or-and-not-operators/, Oct., 2011 [Mar.,

2014].

[128] nixCraft. "Bash Infinite Loop Examples". Internet: http://www.cyberciti.biz/faq/bash-infinite-

loop/, Jan., 2011 [Jan., 2014].

[129] J. Bennett. "Deauthenticated due to local deauth request on a tp-link wa901nd v2 running

wpa2-psk". Internet: https://dev.openwrt.org/ticket/10025, Aug., 2011 [May., 2014].

[130] K. Horvath. "How can I add numbers in a bash script". Internet:

http://stackoverflow.com/questions/6348902/how-can-i-add-numbers-in-a-bash-script,

Jun., 2011 [Apr., 2014].

[131] T. Anderson. "How can I measure a duration in seconds in a Linux shell script?" Internet:

http://stackoverflow.com/questions/5152858/how-can-i-measure-a-duration-in-seconds-in-

a-linux-shell-script, Mar., 2011 [Apr., 2014].

[132] M. Jdidi. "Uncoment lines using bash script". Internet:

http://stackoverflow.com/questions/7751065/uncoment-lines-using-bash-script, Oct., 2011

[Feb., 2014].

http://serverfault.com/questions/38626/how-can-i-read-pcap-files-in-a-friendly-format
http://www.cyberciti.biz/faq/bash-scripting-using-awk/
http://www.cyberciti.biz/faq/bash-scripting-using-awk/
http://www.thegeekstuff.com/2010/06/bash-if-statement-examples/
http://www.thegeekstuff.com/2010/06/bash-if-statement-examples/
http://www.cyberciti.biz/faq/bash-find-out-if-variable-contains-substring/
http://stackoverflow.com/questions/3980668/how-to-get-a-password-from-a-shell-script-without-echoing
http://stackoverflow.com/questions/3980668/how-to-get-a-password-from-a-shell-script-without-echoing
http://www.thegeekstuff.com/2011/10/grep-or-and-not-operators/
http://www.cyberciti.biz/faq/bash-infinite-loop/
http://www.cyberciti.biz/faq/bash-infinite-loop/
https://dev.openwrt.org/ticket/10025
http://stackoverflow.com/questions/6348902/how-can-i-add-numbers-in-a-bash-script
http://stackoverflow.com/questions/5152858/how-can-i-measure-a-duration-in-seconds-in-a-linux-shell-script
http://stackoverflow.com/questions/5152858/how-can-i-measure-a-duration-in-seconds-in-a-linux-shell-script
http://stackoverflow.com/questions/7751065/uncoment-lines-using-bash-script

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

90

Version 0.7

[133] nixCraft. "Bash Shell: Find Out If a Variable Is Empty Or Not". Internet:

http://www.cyberciti.biz/faq/unix-linux-bash-script-check-if-variable-is-empty/, Dec., 2012

[Apr., 2014].

[134] K. Jones. "Bash: test mutual equality of multiple variables?" Internet:

http://stackoverflow.com/questions/8812089/bash-test-mutual-equality-of-multiple-

variables, Jan., 2012 [Apr., 2014].

[135] O. Warner. "List all MAC addresses and their associated IPs in my local network(LAN)".

Internet: http://askubuntu.com/questions/406792/list-all-mac-addresses-and-their-

associated-ips-in-my-local-networklan, Jan., 2014 [Apr., 2014].

[136] J. Tokar. "Hotspot – WiFi Access Point". Internet: http://raspberry-at-home.com/hotspot-

wifi-access-point/, Jun., 2013 [Mar., 2014].

[137] J. Malinen. "hostapd.conf". Internet:

http://hostap.epitest.fi/cgit/hostap/plain/hostapd/hostapd.conf, Jan., 2013 [Mar., 2014].

[138] linux.org-user: rob.1. "File Permissions - chmod". Internet:

http://www.linux.org/threads/file-permissions-chmod.4094/, Jul., 2013 [Apr., 2014].

http://www.cyberciti.biz/faq/unix-linux-bash-script-check-if-variable-is-empty/
http://stackoverflow.com/questions/8812089/bash-test-mutual-equality-of-multiple-variables
http://stackoverflow.com/questions/8812089/bash-test-mutual-equality-of-multiple-variables
http://askubuntu.com/questions/406792/list-all-mac-addresses-and-their-associated-ips-in-my-local-networklan
http://askubuntu.com/questions/406792/list-all-mac-addresses-and-their-associated-ips-in-my-local-networklan
http://raspberry-at-home.com/hotspot-wifi-access-point/
http://raspberry-at-home.com/hotspot-wifi-access-point/
http://hostap.epitest.fi/cgit/hostap/plain/hostapd/hostapd.conf
http://www.linux.org/threads/file-permissions-chmod.4094/

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

91

Version 0.7

Appendices

Appendix 1 – Installation script ... 92

Appendix 2 – Failover script .. 105

Appendix 3 – Arduino script .. 111

Appendix 4 – Selftest script ... 115

Appendix 5 – Heartbeat signal to watchdog (script) ... 118

Appendix 6 – Stay alive when signal from watchdog is received (script) ... 119

Appendix 7 - Wi-Fi Client ... 120

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

92

Version 0.7

Appendix 1 – Installation script

#!/bin/bash

if [-e progress.txt]

then

 progress=$(<progress.txt)

else

 progress=0

 echo $progress > progress.txt

fi

while [$progress -eq 0]

do

 mkdir temp

 apt-get update

 echo "Enabling SSH server"

 update-rc.d ssh enable

 invoke-rc.d ssh start

 echo "Overclocking... Valid after next reboot"

 sed -e "s/^`cat /boot/config.txt | grep arm_freq`/arm_freq=950/g" -e "s/^`cat
/boot/config.txt | grep core_freq`//g" -e "s/^`cat /boot/config.txt | grep
sdram_freq`//g" -e "s/^`cat /boot/config.txt | grep over_voltage`//g"
/boot/config.txt > /boot/config.txt

 echo "core_freq=250" >> /boot/config.txt

 echo "sdram_freq=450" >> /boot/config.txt

 echo "over_voltage=6" >> /boot/config.txt

 echo "Do you want to install e-mail? You need an Gmail address to do so!"

 read installemail

 y="y"

 yes="yes"

 client="c"

 AP="a"

 if ["$installemail" == "$y"]

 then

 instmail=1

 echo "Will install email!"

 apt-get install postfix -y

 echo "What is your Gmail username (before @gmail.com)?"

 read gmailuser

 echo "What is your Gmail password?"

 read -s gmailpass

 echo "Do you want to be notified on mail when this installation needs
input?"

 read installnotification

 if ["$installnotification" == "$y"]

 then

 notify=1

 echo "Will set up notification. On which mail address do you
wish to be notified?"

 read mailaddress

 elif ["$installnotification" == "$yes"]

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

93

Version 0.7

 then

 notify=1

 echo "Will set up notification. On which mail address do you
wish to be notified?"

 read mailaddress

 else

 notify=0

 echo "Will not set up notification"

 fi

 elif ["$installemail" == "$yes"]

 then

 instmail=1

 echo "Will install email!"

 apt-get install postfix -y

 echo "What is your Gmail username (before @gmail.com)?"

 read gmailuser

 echo "What is your Gmail password?"

 read -s gmailpass

 echo "Do you want to be notified on mail when this installation needs
input?"

 read installnotification

 if ["$installnotification" == "$y"]

 then

 notify=1

 echo "Will set up notification. On which mail address do you
wish to be notified?"

 read mailaddress

 elif ["$installnotification" == "$yes"]

 then

 notify=1

 echo "Will set up notification. On which mail address do you
wish to be notified?"

 read mailaddress

 else

 notify=0

 echo "Will not set up notification"

 fi

 else

 instmail=0

 echo "Skipping install of email"

 fi

 echo "Disconnect all wireless network devices now! Do not connect until
asked! Press ENTER to continue."

 read

 echo "Do you want to install 3G/4G?"

 read installmbb

 echo 'Do you want to install Wi-Fi client or access point? Type "c" for
client, "a" for accesspoint or "n" to skip Wi-Fi.'

 read installwifi

 echo "Do you want to install secondary ethernet for routing?"

 read installeth1

 if ["$installmbb" == "$y"]

 then

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

94

Version 0.7

 instmbb=1

 echo "Will install mobile broadband"

 elif ["$installmbb" == "$yes"]

 then

 instmbb=1

 echo "Will install mobile broadband"

 else

 instmbb=0

 echo "Skipping install mobile broadband"

 fi

 if ["$installwifi" == "$client"]

 then

 instwificlient=1

 instwifiap=0

 echo "Will install Wi-Fi client"

 elif ["$installwifi" == "$AP"]

 then

 instwifiap=1

 instwificlient=0

 echo "Will install Wi-Fi access point"

 else

 instwificlient=0

 instwifiap=0

 echo "Skipping install of Wi-Fi"

 fi

 if ["$installeth1" == "$y"]

 then

 insteth1=1

 echo "Will install ethernet router"

 elif ["$installeth1" == "$yes"]

 then

 insteth1=1

 echo "Will install ethernet router"

 else

 insteth1=0

 echo "Skipping install of secondary interface"

 fi

 if [$instmbb -eq 1]

 then

 echo "Please connect 3G/4G modem now! Will now ask for mobile
broadband details."

 echo "Enter apn"

 read apnname

 echo "Enter apn username"

 read apnusername

 echo "Enter apn password"

 read apnpassword

 echo "Running lsusb... Will then ask for ID of mobile broadband
device! It's given in the format ID xxxx:yyyy."

 sleep 3

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

95

Version 0.7

 lsusb

 echo "Enter vendor ID (xxxx in the xxxx:yyyy format)"

 read vendorid

 echo "Enter product ID (yyyy in the xxxx:yyyy format)"

 read productid

 fi

 if [$instwificlient -eq 1]

 then

 echo "Will now ask for Wi-Fi details. Do NOT connect Wi-Fi adapter
yet!"

 echo "Enter SSID"

 read ssidname

 echo "Enter WPA2 key"

 read wpa2password

 fi

 if [$instwifiap -eq 1]

 then

 echo "Will now ask for Wi-Fi details. Do NOT connect Wi-Fi adapter
yet!"

 echo "Enter SSID"

 read ssidname

 echo "Enter WPA2 key"

 read wpa2password

 fi

 echo "Upgrading current software..."

 if [$notify -eq 1]

 then

 echo "This might take a few minutes. You will be notified by mail when
you are needed."

 fi

 apt-get upgrade -y

 apt-get install raspi-config -y

 if [$instmail -eq 1]

 then

 apt-get install mailutils libsasl2-2 ca-certificates libsasl2-modules
-y

 sed -e "s/^`cat /etc/postfix/main.cf | grep relayhost`//g" -e "s/^`cat
/etc/postfix/main.cf | grep smtp_sasl_auth_enable`//g" -e "s/^`cat
/etc/postfix/main.cf | grep smtp_sasl_password_maps`//g" -e "s/^`cat
/etc/postfix/main.cf | grep smtp_sasl_security_options`//g" -e "s/^`cat
/etc/postfix/main.cf | grep smtp_tls_CAfile`//g" -e "s/^`cat /etc/postfix/main.cf |
grep smtp_use_tls`//g" /etc/postfix/main.cf > /etc/postfix/main.cf

 echo "relayhost = [smtp.gmail.com]:587" >> /etc/postfix/main.cf

 echo "smtp_sasl_auth_enable = yes" >> /etc/postfix/main.cf

 echo "smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd" >>
/etc/postfix/main.cf

 echo "smtp_sasl_security_options = noanonymous" >>
/etc/postfix/main.cf

 echo "smtp_tls_CAfile = /etc/postfix/cacert.pem" >>
/etc/postfix/main.cf

 echo "smtp_use_tls = yes" >> /etc/postfix/main.cf

 echo "[smtp.gmail.com]:587 $gmailuser@gmail.com:$gmailpass" >
/etc/postfix/sasl_passwd

 chmod 400 /etc/postfix/sasl_passwd

 postmap /etc/postfix/sasl_passwd

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

96

Version 0.7

 cat /etc/ssl/certs/Thawte_Premium_Server_CA.pem | sudo tee -a
/etc/postfix/cacert.pem

 /etc/init.d/postfix reload

 if [$notify -eq 1]

 then

 echo $mailaddress > temp/mailaddress.txt

 echo "Sending a test mail"

 echo "Test mail from postfix" | mail -s "Test Postfix"
$mailaddress

 fi

 fi

 if [$instmbb -eq 1]

 then

 echo "Installing mobile broadband software..."

 apt-get install ppp wvdial usb-modeswitch -y

 fi

 echo "Storing progress before reboot"

 echo $instmail > temp/installmail.txt

 echo $notify > temp/notify.txt

 echo $instmbb > temp/installmbb.txt

 echo $instwificlient > temp/installwificlient.txt

 echo $instwifiap > temp/installwifiap.txt

 echo $insteth1 > temp/installeth1.txt

 if [$instmbb -eq 1]

 then

 echo $apnname > temp/apnname.txt

 echo $apnusername > temp/apnuser.txt

 echo $apnpassword > temp/apnpassword.txt

 echo $vendorid > temp/defaultvendor.txt

 echo $productid > temp/defaultproduct.txt

 fi

 if [$instwificlient -eq 1]

 then

 echo $ssidname > temp/ssid.txt

 echo $wpa2password > temp/wpa2.txt

 fi

 if [$instwifiap -eq 1]

 then

 echo $ssidname > temp/ssid.txt

 echo $wpa2password > temp/wpa2.txt

 fi

 progress=1

 echo 1 > progress.txt

 if [$instmbb -eq 1]

 then

 echo "If mobile broadband modem is connected to self-powered USB-hub,
disconnect the power supply of the hub while rebooting! Press ENTER to reboot!"

 if [$notify -eq 1]

 then

 echo "If mobile broadband modem is connected to self-powered
USB-hub, disconnect the power supply of the hub while rebooting! Confirm reboot!" |
mail -s "Installation progress" $mailaddress

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

97

Version 0.7

 fi

 read

 reboot

 sleep 10

 fi

done

while [$progress -eq 1]

do

 instmail=$(<temp/installmail.txt)

 notify=$(<temp/notify.txt)

 if [$notify -eq 1]

 then

 mailaddress=$(<temp/mailaddress.txt)

 fi

 instmbb=$(<temp/installmbb.txt)

 instwificlient=$(<temp/installwificlient.txt)

 instwifiap=$(<temp/installwifiap.txt)

 insteth1=$(<temp/installeth1.txt)

 if [$instmbb -eq 1]

 then

 echo "Continuing from last time. Reconnect power supply to the USB-
hub"

 echo "Running lsusb... Will then ask for ID of mobile broadband
device! It's given in the format ID xxxx:yyyy."

 if [$notify -eq 1]

 then

 echo "Reconnect power supply to the USB-hub! Waiting for
input..." | mail -s "Installation progress" $mailaddress

 fi

 lsusb

 echo "Enter vendor ID (xxxx in the xxxx:yyyy format)"

 read targetvendorid

 echo "Enter product ID (yyyy in the xxxx:yyyy format)"

 read targetproductid

 if [$notify -eq 1]

 then

 echo "This might take a few minutes. You will be notified by
mail when you are needed."

 fi

 echo "Customizing /etc/usb_modeswitch.conf"

 defaultvendor=$(<temp/defaultvendor.txt)

 defaultproduct=$(<temp/defaultproduct.txt)

 cwd=$(pwd)

 echo "DefaultVendor=0x$defaultvendor" > /etc/usb_modeswitch.conf

 echo "DefaultProduct=0x$defaultproduct" >> /etc/usb_modeswitch.conf

 echo "" >> /etc/usb_modeswitch.conf

 echo "TargetVendor=0x$targetvendorid" >> /etc/usb_modeswitch.conf

 echo "TargetProduct=0x$targetproductid" >> /etc/usb_modeswitch.conf

 echo "" >> /etc/usb_modeswitch.conf

 cd /tmp

 tar -xzvf /usr/share/usb_modeswitch/configPack.tar.gz
$defaultvendor\:$defaultproduct

 for mc in $(cat $defaultvendor\:$defaultproduct | grep MessageContent)

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

98

Version 0.7

 do

 echo $mc >> /etc/usb_modeswitch.conf

 done

 cd $cwd

 echo "Customizing /etc/wvdial.conf"

 wvdialconf > temp/wvdialconf.txt

 wvdialmodem=`cat temp/wvdialconf.txt | grep "Found a modem on " | awk
'{ print $5 }'`

 modem=${wvdialmodem//[.]/}

 apnname=$(<temp/apnname.txt)

 apnuser=$(<temp/apnuser.txt)

 apnpassword=$(<temp/apnpassword.txt)

 echo "[Dialer $apnname]" > /etc/wvdial.conf

 echo "Init1 = ATZ" >> /etc/wvdial.conf

 echo "Init2 = ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0" >> /etc/wvdial.conf

 echo "Init3 = AT+CGDCONT=1,\"IP\",\"$apnname\"" >> /etc/wvdial.conf

 echo "Stupid mode = 1" >> /etc/wvdial.conf

 echo "Modem Type = Analog Modem" >> /etc/wvdial.conf

 echo "ISDN = 0" >> /etc/wvdial.conf

 echo "Phone = *99#" >> /etc/wvdial.conf

 echo "Modem = $modem" >> /etc/wvdial.conf

 echo "Username = {$apnuser}" >> /etc/wvdial.conf

 echo "Password = {$apnpassword}" >> /etc/wvdial.conf

 echo "Baud = 9600" >> /etc/wvdial.conf

 fi

 progress=2

 echo 2 > progress.txt

done

while [$progress -eq 2]

do

 instmail=$(<temp/installmail.txt)

 notify=$(<temp/notify.txt)

 if [$notify -eq 1]

 then

 mailaddress=$(<temp/mailaddress.txt)

 fi

 instmbb=$(<temp/installmbb.txt)

 instwificlient=$(<temp/installwificlient.txt)

 instwifiap=$(<temp/installwifiap.txt)

 insteth1=$(<temp/installeth1.txt)

 if [$instwificlient -eq 1]

 then

 echo "Installing Wi-Fi client..."

 echo "Removing old Wi-Fi drivers"

 apt-get remove firmware-ralink -y

 ###https://wiki.debian.org/rt2800usb:

 echo "Temporarily changing apt-get sources"

 cp /etc/apt/sources.list /tmp/sources.list.tmp

 echo "deb http://http.debian.net/debian/ wheezy main contrib non-free"
> /etc/apt/sources.list

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

99

Version 0.7

 apt-get update

 echo "Install Wi-Fi drivers"

 apt-get install firmware-ralink -y --force-yes

 echo "Changing back to old apt-get source"

 cp /tmp/sources.list.tmp /etc/apt/sources.list

 apt-get update

 ssidname=$(<temp/ssid.txt)

 wpa2password=$(<temp/wpa2.txt)

 echo "Connect Wi-Fi-adapter now! Press ENTER to continue."

 if [$notify -eq 1]

 then

 echo "Connect Wi-Fi-adapter now! Press ENTER to continue." |
mail -s "Installation progress" $mailaddress

 fi

 read

 sleep 5

 ###http://databoyz.wordpress.com/tag/how-to-setup-network-and-
wpa_supplicant-conf-file-on-raspberry-pi/:

 echo "Updating /etc/wpa_supplicant/wpa_supplicant.conf"

 echo "ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev" >
/etc/wpa_supplicant/wpa_supplicant.conf

 echo "update_config=1" >> /etc/wpa_supplicant/wpa_supplicant.conf

 echo "network={" >> /etc/wpa_supplicant/wpa_supplicant.conf

 echo " ssid=\"$ssidname\"" >> /etc/wpa_supplicant/wpa_supplicant.conf

 echo " scan_ssid=1" >> /etc/wpa_supplicant/wpa_supplicant.conf

 echo " psk=\"$wpa2password\"" >>
/etc/wpa_supplicant/wpa_supplicant.conf

 echo " proto=RSN" >> /etc/wpa_supplicant/wpa_supplicant.conf

 echo " key_mgmt=WPA-PSK" >> /etc/wpa_supplicant/wpa_supplicant.conf

 echo " pairwise=CCMP" >> /etc/wpa_supplicant/wpa_supplicant.conf

 echo " auth_alg=OPEN" >> /etc/wpa_supplicant/wpa_supplicant.conf

 echo "}" >> /etc/wpa_supplicant/wpa_supplicant.conf

 fi

 if [$insteth1 -eq 1]

 then

 defaultgw=`cat /var/lib/dhcp/dhclient.eth0.leases | grep router | tail
-1 | awk '{ print $3 }'`

 gw=${defaultgw//[;]/}

 if [$instwifiap -eq 1]

 then

 echo "Connect Ethernet and Wi-Fi adapters now! Press ENTER to
continue."

 if [$notify -eq 1]

 then

 echo "Connect Ethernet and Wi-Fi adapters now! Press
ENTER to continue." | mail -s "Installation progress" $mailaddress

 fi

 read

 sleep 5

 echo "Setting up eth1"

 ifconfig eth1 up

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

100

Version 0.7

 ifconfig eth1 10.0.0.1

 echo "Setting up wlan0"

 ifconfig wlan0 up

 ifconfig wlan0 10.0.0.1

 apt-get install hostapd isc-dhcp-server -y

 else

 echo "Connect Ethernet adapter now! Press ENTER to continue."

 if [$notify -eq 1]

 then

 echo "Connect Ethernet adapter now! Press ENTER to
continue." | mail -s "Installation progress" $mailaddress

 fi

 read

 sleep 5

 echo "Setting up eth1"

 ifconfig eth1 up

 ifconfig eth1 10.0.0.1

 apt-get install isc-dhcp-server -y

 fi

 sed -e "s/^#authoritative;/authoritative;/g" /etc/dhcp/dhcpd.conf >
temp/dhcpd.conf

 cp temp/dhcpd.conf /etc/dhcp/dhcpd.conf

 sed -e "s/^option domain-name/#option domain-name/g"
/etc/dhcp/dhcpd.conf > temp/dhcpd2.conf

 cp temp/dhcpd2.conf /etc/dhcp/dhcpd.conf

 echo "" >> /etc/dhcp/dhcpd.conf

 echo "subnet 10.0.0.0 netmask 255.255.255.0 {" >> /etc/dhcp/dhcpd.conf

 echo "range 10.0.0.10 10.0.0.59;" >> /etc/dhcp/dhcpd.conf

 echo "option broadcast-address 10.0.0.255;" >> /etc/dhcp/dhcpd.conf

 echo "option routers 10.0.0.1;" >> /etc/dhcp/dhcpd.conf

 echo "default-lease-time 600;" >> /etc/dhcp/dhcpd.conf

 echo "max-lease-time 7200;" >> /etc/dhcp/dhcpd.conf

 echo 'option domain-name "local";' >> /etc/dhcp/dhcpd.conf

 echo "option domain-name-servers 8.8.8.8, 8.8.4.4;" >>
/etc/dhcp/dhcpd.conf

 echo "}" >> /etc/dhcp/dhcpd.conf

 sed -e 's/^#net.ipv4.ip_forward=1/net.ipv4.ip_forward=1/g'
/etc/sysctl.conf > temp/sysctl.conf

 cp temp/sysctl.conf /etc/sysctl.conf

 sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"

 if [$instwifiap -eq 1]

 then

 sed -e 's/^INTERFACES=""/INTERFACES="eth1 wlan0"/g'
/etc/default/isc-dhcp-server > temp/isc-dhcp-server

 else

 sed -e 's/^INTERFACES=""/INTERFACES="eth1"/g' /etc/default/isc-
dhcp-server > temp/isc-dhcp-server

 fi

 cp temp/isc-dhcp-server /etc/default/isc-dhcp-server

 iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

 iptables -A FORWARD -i eth0 -o eth1 -m state --state
RELATED,ESTABLISHED -j ACCEPT

 iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

 if [$instwifiap -eq 1]

 then

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

101

Version 0.7

 iptables -A FORWARD -i eth0 -o wlan0 -m state --state
RELATED,ESTABLISHED -j ACCEPT

 iptables -A FORWARD -i wlan0 -o eth0 -j ACCEPT

 fi

 iptables-save > /etc/iptables.rules

 route del default

 route add default gw $gw eth0

 elif [$instwifiap -eq 1]

 then

 defaultgw=`cat /var/lib/dhcp/dhclient.eth0.leases | grep router | tail
-1 | awk '{ print $3 }'`

 gw=${defaultgw//[;]/}

 echo "Connect Wi-Fi adapter now! Press ENTER to continue."

 if [$notify -eq 1]

 then

 echo "Connect Wi-Fi adapter now! Press ENTER to continue." |
mail -s "Installation progress" $mailaddress

 fi

 read

 sleep 5

 echo "Setting up wlan0"

 ifconfig wlan0 up

 ifconfig wlan0 10.0.0.1

 apt-get install hostapd isc-dhcp-server -y

 sed -e "s/^#authoritative;/authoritative;/g" /etc/dhcp/dhcpd.conf >
temp/dhcpd.conf

 cp temp/dhcpd.conf /etc/dhcp/dhcpd.conf

 sed -e "s/^option domain-name/#option domain-name/g"
/etc/dhcp/dhcpd.conf > temp/dhcpd2.conf

 cp temp/dhcpd2.conf /etc/dhcp/dhcpd.conf

 echo "" >> /etc/dhcp/dhcpd.conf

 echo "subnet 10.0.0.0 netmask 255.255.255.0 {" >> /etc/dhcp/dhcpd.conf

 echo "range 10.0.0.10 10.0.0.59;" >> /etc/dhcp/dhcpd.conf

 echo "option broadcast-address 10.0.0.255;" >> /etc/dhcp/dhcpd.conf

 echo "option routers 10.0.0.1;" >> /etc/dhcp/dhcpd.conf

 echo "default-lease-time 600;" >> /etc/dhcp/dhcpd.conf

 echo "max-lease-time 7200;" >> /etc/dhcp/dhcpd.conf

 echo 'option domain-name "local";' >> /etc/dhcp/dhcpd.conf

 echo "option domain-name-servers 8.8.8.8, 8.8.4.4;" >>
/etc/dhcp/dhcpd.conf

 echo "}" >> /etc/dhcp/dhcpd.conf

 sed -e 's/^#net.ipv4.ip_forward=1/net.ipv4.ip_forward=1/g'
/etc/sysctl.conf > temp/sysctl.conf

 cp temp/sysctl.conf /etc/sysctl.conf

 sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"

 sed -e 's/^INTERFACES=""/INTERFACES="wlan0"/g' /etc/default/isc-dhcp-
server > temp/isc-dhcp-server

 cp temp/isc-dhcp-server /etc/default/isc-dhcp-server

 iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

 iptables -A FORWARD -i eth0 -o wlan0 -m state --state
RELATED,ESTABLISHED -j ACCEPT

 iptables -A FORWARD -i wlan0 -o eth0 -j ACCEPT

 iptables-save > /etc/iptables.rules

 route del default

 route add default gw $gw eth0

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

102

Version 0.7

 fi

 echo "Updating /etc/network/interfaces"

 echo "auto lo" > /etc/network/interfaces

 echo "iface lo inet loopback" >> /etc/network/interfaces

 echo " " >> /etc/network/interfaces

 echo "auto eth0" >> /etc/network/interfaces

 echo "allow-hotplug eth0" >> /etc/network/interfaces

 echo "iface eth0 inet dhcp" >> /etc/network/interfaces

 echo " " >> /etc/network/interfaces

 if [$insteth1 -eq 1]

 then

 echo "auto eth1" >> /etc/network/interfaces

 echo "allow-hotplug eth1" >> /etc/network/interfaces

 echo "iface eth1 inet static" >> /etc/network/interfaces

 echo "address 10.0.0.1" >> /etc/network/interfaces

 echo "netmask 255.255.255.0" >> /etc/network/interfaces

 echo "gateway 10.0.0.1" >> /etc/network/interfaces

 echo " " >> /etc/network/interfaces

 fi

 if [$instwificlient -eq 1]

 then

 echo "allow-hotplug wlan0" >> /etc/network/interfaces

 echo "iface wlan0 inet manual" >> /etc/network/interfaces

 echo " wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf" >>
/etc/network/interfaces

 fi

 if [$instwifiap -eq 1]

 then

 echo "allow-hotplug wlan0" >> /etc/network/interfaces

 echo "iface wlan0 inet static" >> /etc/network/interfaces

 echo " address 10.0.0.1" >> /etc/network/interfaces

 echo " netmask 255.255.255.0" >> /etc/network/interfaces

 echo "" >> /etc/network/interfaces

 echo "#iface wlan0 inet manual" >> /etc/network/interfaces

 echo "# wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf" >>
/etc/network/interfaces

 echo "Setting up hostapd"

 ssidname=$(<temp/ssid.txt)

 wpa2password=$(<temp/wpa2.txt)

 echo "interface=wlan0" > /etc/hostapd/hostapd.conf

 echo "driver=rtl871xdrv" >> /etc/hostapd/hostapd.conf

 echo "ssid=$ssidname" >> /etc/hostapd/hostapd.conf

 echo "hw_mode=g" >> /etc/hostapd/hostapd.conf

 echo "channel=6" >> /etc/hostapd/hostapd.conf

 echo "macaddr_acl=0" >> /etc/hostapd/hostapd.conf

 echo "auth_algs=1" >> /etc/hostapd/hostapd.conf

 echo "ignore_broadcast_ssid=0" >> /etc/hostapd/hostapd.conf

 echo "wpa=2" >> /etc/hostapd/hostapd.conf

 echo "wpa_passphrase=$wpa2password" >> /etc/hostapd/hostapd.conf

 echo "wpa_key_mgmt=WPA-PSK" >> /etc/hostapd/hostapd.conf

 echo "wpa_pairwise=TKIP" >> /etc/hostapd/hostapd.conf

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

103

Version 0.7

 echo "rsn_pairwise=CCMP" >> /etc/hostapd/hostapd.conf

 echo "logger_syslog=-1" >> /etc/hostapd/hostapd.conf

 echo "logger_syslog_level=2" >> /etc/hostapd/hostapd.conf

 echo "logger_stdout=-1" >> /etc/hostapd/hostapd.conf

 echo "logger_stdout_level=2" >> /etc/hostapd/hostapd.conf

 sed -e
's/^\#DAEMON_CONF=\"\"/DAEMON_CONF=\"/etc/hostapd/hostapd.conf\"/g'
/etc/default/hostapd > temp/hostapd

 cp temp/hostapd /etc/default/hostapd

 echo "Updating hostapd"

 route

 echo "Press ENTER if eth0 is default route"

 if [$notify -eq 1]

 then

 echo "Confirm if eth0 is default route." | mail -s "Installation
progress" $mailaddress

 fi

 read

 wget http://www.adafruit.com/downloads/adafruit_hostapd.zip

 unzip adafruit_hostapd.zip

 mv /usr/sbin/hostapd /usr/sbin/hostapd.ORIG

 mv hostapd /usr/sbin

 chmod 755 /usr/sbin/hostapd

 else

 echo "iface default inet dhcp" >> /etc/network/interfaces

 fi

 if [$insteth1 -eq 1]

 then

 sed -e 's/^\#\!\/bin\/sh\ \-e/\#\!\/bin\/bash/g' /etc/rc.local >
temp/rc.local2

 sed -e 's/^exit 0//g' temp/rc.local2 > temp/rc.local

 echo "" >> temp/rc.local

 echo "iptables-restore < /etc/iptables.rules" >> temp/rc.local

 echo "" >> temp/rc.local

 echo "gw=\`cat /var/lib/dhcp/dhclient.eth0.leases | grep router | tail
-1 | awk '{ print \$3 }'\`" >> temp/rc.local

 echo "defgw=\${gw//[;]/}" >> temp/rc.local

 echo "route del default" >> temp/rc.local

 echo "route add default gw \$defgw eth0" >> temp/rc.local

 echo "" >> temp/rc.local

 echo "exit 0" >> temp/rc.local

 cp temp/rc.local /etc/rc.local

 if [$instwifiap -eq 1]

 then

 service hostapd start

 update-rc.d hostapd enable

 fi

 service isc-dhcp-server start

 update-rc.d isc-dhcp-server enable

 elif [$instwifiap -eq 1]

 then

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

104

Version 0.7

 sed -e 's/^\#\!\/bin\/sh\ \-e/\#\!\/bin\/bash/g' /etc/rc.local >
temp/rc.local2

 sed -e 's/^exit 0//g' temp/rc.local2 > temp/rc.local

 echo "" >> temp/rc.local

 echo "iptables-restore < /etc/iptables.rules" >> temp/rc.local

 echo "" >> temp/rc.local

 echo "gw=\`cat /var/lib/dhcp/dhclient.eth0.leases | grep router | tail
-1 | awk '{ print \$3 }'\`" >> temp/rc.local

 echo "defgw=\${gw//[;]/}" >> temp/rc.local

 echo "route del default" >> temp/rc.local

 echo "route add default gw \$defgw eth0" >> temp/rc.local

 echo "" >> temp/rc.local

 echo "hostapd /etc/hostapd/hostapd.conf" >> temp/rc.local

 echo "" >> temp/rc.local

 echo "exit 0" >> temp/rc.local

 cp temp/rc.local /etc/rc.local

 service hostapd start

 update-rc.d hostapd enable

 service isc-dhcp-server start

 update-rc.d isc-dhcp-server enable

 fi

 echo "Resetting overclock to default. Valid after reboot."

 sed -e "s/^`cat /boot/config.txt | grep arm_freq`/arm_freq=700/g" -e "s/^`cat
/boot/config.txt | grep core_freq`/core_freq=250/g" -e "s/^`cat /boot/config.txt |
grep sdram_freq`/sdram_freq=400/g" -e "s/^`cat /boot/config.txt | grep
over_voltage`/over_voltage=0/g" /boot/config.txt > /boot/config.txt

 echo "Press ENTER to reboot"

 if [$notify -eq 1]

 then

 echo "Press ENTER to reboot and finalize setup!" | mail -s
"Installation progress" $mailaddress

 fi

 read

 progress=3

 echo 3 > progress.txt

 rm -r temp

 reboot

 sleep 10

done

while [$progress -eq 3]

do

 echo "Completely installed!"

 progress=4

done

exit

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

105

Version 0.7

Appendix 2 – Failover script

#!/bin/bash

#Initial settings:

IF=eth0

pausetime=2 #Number of seconds between each run

staymin=1 #Number of minutes to stay connected to mobile broadband after primary
interface is back online

networkstate=0 #0=Internet access; 1=Local network access; 2=No network access

rxthreshold=150

#Initialization:

touch rx.txt

touch tx.txt

touch defaultgw.txt

touch mbbgw.txt

gw=`cat /var/lib/dhcp/dhclient.eth0.leases | grep router | tail -1 | awk '{ print
$3 }'`

defaultgw=${gw//[;]/}

mbbgw=$(<mbbgw.txt)

cp /etc/resolv.conf resolv.conf.backup

echo `ifconfig $IF | grep "RX bytes" | cut -d: -f2 | awk '{ print $1 }'` > rx.txt

echo `ifconfig $IF | grep "TX bytes" | cut -d: -f3 | awk '{ print $1 }'` > tx.txt

sleep $pausetime

staysec=$[$staymin * 60]

mbbconnected=0

usb_modeswitch -c /etc/usb_modeswitch.conf

##Ping settings:

pingcount=3 #Number of ping attempts

pingexternal=8.8.8.8 #Address to send ping

losslimit=0 #Acceptable loss of ping requests in percentage [0-100]

##DNS settings:

pridns=8.8.8.8 #Primary DNS

secdns=8.8.4.4 #Secondary DNS

#Infinite loop:

while true

do

iptables --flush

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

iptables -A FORWARD -i eth0 -o eth1 -m state --state RELATED,ESTABLISHED

iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

 while [$networkstate -eq 0]

 do

 sleep $pausetime

 gw=`cat /var/lib/dhcp/dhclient.eth0.leases | grep router | tail -1 |
awk '{ print $3 }'`

 defaultgw=${gw//[;]/}

 mbbgw=`route | grep "ppp0" | awk '{ print $1 }'`

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

106

Version 0.7

 if [[-z "$defaultgw"]]

 then

 defaultgw=$(<defaultgw.txt)

 else

 echo $defaultgw > defaultgw.txt

 fi

 if [[-z "$mbbgw"]]

 then

 mbbgw=$(<mbbgw.txt)

 else

 echo $mbbgw > mbbgw.txt

 fi

 #echo "Mobile broadband gateway $mbbgw"

 if [$mbbconnected -eq 1]

 then

 connectsec=$[$SECONDS - $startconnect]

 echo "Still connected to mbb - will stay connected for
$[$staysec - $connectsec] seconds."

 while [$connectsec -ge $staysec]

 do

 killall wvdial &

 mbbconnected=0

 connectsec=0

 sleep 2

 done

 else

 echo "Not connected to mbb"

 fi

 #Check if cable connected

 for interface in $(ls /sys/class/net/ | grep -e $IF);

 do

 if [[$(cat /sys/class/net/$interface/carrier) = 1]]

 then

 echo "Cable connected."

 #Calculation of sent and received bytes since boot

 ##Get current values

 rxbytes=`ifconfig $IF | grep "RX bytes" | cut -d: -f2 |
awk '{ print $1 }'`

 txbytes=`ifconfig $IF | grep "TX bytes" | cut -d: -f3 |
awk '{ print $1 }'`

 ##Get values from last run

 oldrx=$(<rx.txt)

 oldtx=$(<tx.txt)

 ##Write current values to files

 echo $rxbytes > rx.txt

 echo $txbytes > tx.txt

 ##Get difference between old and new values

 diffrx=`expr $rxbytes - $oldrx`

 difftx=`expr $txbytes - $oldtx`

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

107

Version 0.7

 diffsum=`expr $diffrx + $difftx`

 #Print visible output before connectivity test

 #echo "Default next hop gateway $defaultgw on interface
$IF"

 #echo "Mobile broadband gateway $mbbgw"

 #echo "Received bytes since last run: $diffrx"

 #echo "Sent bytes since last run: $difftx"

 echo "Total packaces transmitted: $diffsum"

 #echo $oldrx

 #echo $oldtx

 if [$diffrx -le $rxthreshold]

 then

 echo "Packets received since last run! No more
tests needed."

 #Get gateway addresses on primary interface and
mobile broadband

 elif [$difftx -le 0]

 then

 defaultgw=$(<defaultgw.txt)

 echo "No activity! Pinging $defaultgw ..."

 pingtestnh=`ping -c $pingcount -l $pingcount -I
$IF $defaultgw | grep "$pingcount packets transmitted" | cut -d, -f3 | awk '{ print
$1 }'`

 pcktlossnh=${pingtestnh//[%]/}

 if [$pcktlossnh -le $losslimit]

 then

 echo "$pcktlossnh percent packet loss on
ping request. Within acceptable limit."

 echo "Checking internet access - pinging
$pingexternal"

 pingext=`ping -c $pingcount -l $pingcount -I
$IF $pingexternal | grep "$pingcount packets transmitted" | cut -d, -f3 | awk '{
print $1 }'`

 pcktlossext=${pingext//[%]/}

 if [$pcktlossext -le $losslimit]

 then

 echo "$pcktlossext percent packet
loss on ping request. Internet connection is available!"

 else

 echo "$pcktlossext percent packet
loss on ping request to $pingexternal. Over acceptable limit. Local network access,
but no internet access!"

 networkstate=1

 fi

 else

 echo "$pcktlossnh percent packet loss on
ping request to $defaultgw. Over acceptable limit. No network access!"

 networkstate=2

 fi

 else

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

108

Version 0.7

 echo "Packets sent since last run! No more tests
needed."

 fi

 else

 echo "Cable disconnected! Setting mobile broadband as
default..."

 networkstate=2

 fi

 done

 done

 if [$mbbconnected -eq 0]

 then

 echo "Connecting mobile broadband..."

 wvdial telenor &

 sleep 2

 mbbconnected=1

 fi

route del default

 mbbgw=`route | grep "ppp0" | awk '{ print $1 }'`

 if [[-z "$mbbgw"]]

 then

 mbbgw=$(<mbbgw.txt)

 else

 echo $mbbgw > mbbgw.txt

 fi

 route add default gw $mbbgw

 echo "nameserver $pridns" > /etc/resolv.conf

 echo "nameserver $secdns" >> /etc/resolv.conf

 currentgw=`route | grep 0.0.0.0 | awk '{ print $2 }'`

 currentif=`route | grep 0.0.0.0 | awk '{ print $8 }'`

 echo "Default gateway $currentgw on $currentif."

iptables --flush

iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE

iptables -A FORWARD -i ppp0 -o eth1 -m state --state RELATED,ESTABLISHED

iptables -A FORWARD -i eth1 -o ppp0 -j ACCEPT

 while [$networkstate -eq 1]

 do

 sleep $pausetime

 defaultgw=$(<defaultgw.txt)

route del default

 route add default gw $defaultgw $IF

 cp resolv.conf.backup /etc/resolv.conf

 pingext=`ping -c $pingcount -l $pingcount -I $IF $pingexternal | grep
"$pingcount packets transmitted" | cut -d, -f3 | awk '{ print $1 }'`

 pcktlossext=${pingext//[%]/}

 echo "$pcktlossext percent packet loss on ping request."

 if [$pcktlossext -le $losslimit]

 then

 echo "Internet connection, setting default settings"

 networkstate=0

 startconnect=$SECONDS

 else

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

109

Version 0.7

route del default

route add default gw $mbbgw

 echo "nameserver $pridns" > /etc/resolv.conf

 echo "nameserver $secdns" >> /etc/resolv.conf

 pingtestnh=`ping -c $pingcount -l $pingcount -I $IF $defaultgw |
grep "$pingcount packets transmitted" | cut -d, -f3 | awk '{ print $1 }'`

 pcktlossnh=${pingtestnh//[%]/}

 if [$pcktlossnh -le $losslimit]

 then

 echo "Still only local network access"

 else

 echo "No network connection on $IF. Check cables and
equipment!"

 networkstate=2

 fi

 fi

 currentgw=`route | grep 0.0.0.0 | awk '{ print $2 }'`

 currentif=`route | grep 0.0.0.0 | awk '{ print $8 }'`

 echo "Default gateway $currentgw on $currentif."

 done

 while [$networkstate -eq 2]

 do

 firstrun=1

 sleep $pausetime

 for interface in $(ls /sys/class/net/ | grep -e $IF);

 do

 if [[$(cat /sys/class/net/$interface/carrier) = 1]]

 #pingtestnh=`ping -c $pingcount -l $pingcount -I $IF $defaultgw
| grep "$pingcount packets transmitted" | cut -d, -f3 | awk '{ print $1 }'`

 #pcktlossnh=${pingtestnh//[%]/}

 #if [$pcktlossnh -le $losslimit]

 then

 echo "Local network access"

 networkstate=1

 else

 echo "Still no network connection on $IF. Check cables
and equipment!"

 fi

 done

 currentif=`route | grep 0.0.0.0 | awk '{ print $8 }'`

 currentgw=`route | grep 0.0.0.0 | awk '{ print $2 }'`

 echo "Default gateway $currentgw on $currentif."

 while [$firstrun -eq 1]

 do

 sleep $pausetime

 for interface in $(ls /sys/class/net/ | grep -e $IF);

 do

 if [[$(cat /sys/class/net/$interface/carrier) = 1]]

 #pingtestnh=`ping -c $pingcount -l $pingcount -I $IF
$defaultgw | grep "$pingcount packets transmitted" | cut -d, -f3 | awk '{ print $1
}'`

 #pcktlossnh=${pingtestnh//[%]/}

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

110

Version 0.7

 #if [$pcktlossnh -le $losslimit]

 then

 echo "Local network access"

 networkstate=1

 firstrun=0

 #else

 #echo "Still no network connection on $IF. Check
cables and equipment!"

 fi

 done

 done

 done

done

exit

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

111

Version 0.7

Appendix 3 – Arduino script

int buttonPin = 3; // on/off button connected to analog pin 3

int beaconPin = 8; // beacon signal from Raspberry Pi connected to analog pin 8

int onsignalPin = 30; // keep alive signal to Raspberry Pi on digital pin 30

int relaysignalPin = 52; // signal to relay switch on digital pin 52

int startupTime = 75000; // maximum time spent to start up Raspberry Pi

int shutdownTime = 15000; // standard time in milliseconds spent to shutdown
Raspberry Pi

int time = 0;

int newtime = 0;

int runtime = 0;

int buttonval = 0; // variable to store the value read on button pin

int beaconval = 0; // variable to store the value read on beacon pin

int initialState = 0; // variable to store state. This is the first phase of
the process

int startupState = 0; // variable to store state. If in startup phase, value
will be 1

int normalState = 0; // variable to store state. If in normal phase, value will
be 1

int buttonshutdownState = 0; // variable to store state. If button is pressed
to shutdown, value will be 1

int hardshutdownState = 0; // variable to store state. If beacon signal is not
received, value will be 1

int val = 0;

int run = 0; // variable to check for alternating beacon signal. if value is
too high, beacon from the Raspberry Pi is propably dead

void setup()

{

 pinMode(buttonPin,INPUT); // set signal direction

 pinMode(beaconPin,INPUT); // set signal direction

 pinMode(onsignalPin,OUTPUT); // set signal direction

 pinMode(relaysignalPin,OUTPUT); // set signal direction

 Serial.begin(9600); // setup serial

 initialState = 1; // enter initial state

}

void loop()

{

 while (initialState == 1) {

 digitalWrite(relaysignalPin,HIGH); // send signal to power the Pi

 digitalWrite(onsignalPin,HIGH); // send keep-alive signal to the Pi

 initialState = 0; // exit initial state

 startupState = 1; // enter startup state

 }

 while (startupState == 1) {

 beaconval = analogRead(beaconPin); // read the input pin

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

112

Version 0.7

 if (beaconval == 1023) {

 startupState = 0; // exit startup state

 normalState = 1; // enter normal state

 }

 }

 while (normalState == 1) {

 time = millis();

 beaconval = analogRead(beaconPin); // read the input pin

 while (beaconval == 1023) {

 buttonval = analogRead(buttonPin); // read the input pin

 if (val == 1023) {

 normalState = 0; // Exit the state

 buttonshutdownState = 1; // Restart the Raspberry Pi

 }

 beaconval = analogRead(beaconPin); // read the input pin

 newtime = millis();

 runtime = newtime - time;

 if (runtime >= startupTime) { // If the beacon does not change after this
amount of runs, the RPi is probably dead. (MUST CHECK THIS VALUE)

// delay(startupTime); // wait for beacon in case onboard watchdog has
restarted the raspberry pi

 normalState = 0; // Exit the state

 beaconval = 1024; // exit the while loop by returning a value that
could never be read on the analog pin (0-1023)

 hardshutdownState = 1; // Restart the Raspberry Pi

 }

 }

 time = millis();

 while (beaconval == 0) {

 buttonval = analogRead(buttonPin); // read the input pin

 if (val == 1023) {

 normalState = 0; // Exit the state

 buttonshutdownState = 1; // Restart the Raspberry Pi

 }

 beaconval = analogRead(beaconPin); // read the input pin

 newtime = millis();

 runtime = newtime - time;

 if (runtime >= startupTime) { // If the beacon does not change after this
amount of runs, the RPi is probably dead. (MUST CHECK THIS VALUE)

// delay(startupTime); // wait for beacon in case onboard watchdog has
restarted the raspberry pi

 normalState = 0; // Exit the state

 beaconval = 1024; // exit the while loop by returning a value that
could never be read on the analog pin (0-1023)

 hardshutdownState = 1; // Restart the Raspberry Pi

 }

 }

 }

 // When exiting normal state, the Raspberry Pi is shutting down, either forced og
because the button was pressed.

 // The following three lines are mutual for both states, and is kept in front of
the while loops as they only should be run once.

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

113

Version 0.7

 digitalWrite(onsignalPin,LOW);

 delay(shutdownTime);

 digitalWrite(relaysignalPin,LOW);

 while (buttonshutdownState == 1) {

 buttonval = analogRead(buttonPin); // read the input pin

 if (val == 1023) {

 buttonshutdownState = 0; // Exit the state

 initialState = 1; // Restart the Raspberry Pi

 }

 }

 while (hardshutdownState == 1) {

 hardshutdownState = 0; // Exit the state

 initialState = 1; // Restart the Raspberry Pi

 }

}

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

114

Version 0.7

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

115

Version 0.7

Appendix 4 – Selftest script

#!/bin/bash

cat /var/log/syslog | grep hostapd > /tmp/syslog.tmp

lastSyslog=`cat /tmp/syslog.tmp | tail -1`

while true

do

isWlanIPset=`ifconfig wlan0 | grep -c 'inet addr'`

isEth1IPset=`ifconfig eth1 | grep -c 'inet addr'`

dhcpStatus=`service isc-dhcp-server status`

hostapdProcessRunning=`ps aux | grep hostapd | grep -v grep | grep -c hostapd`

wlan0tsharkProcessRunning=`ps aux | grep tshark | grep wlan0 | grep -v grep | grep
-c tshark`

eth1tsharkProcessRunning=`ps aux | grep tshark | grep eth1 | grep -v grep | grep -c
tshark`

currentWlan0LogEdit=`ls /tmp | grep outfile_wlan0 | cut -d'_' -f4 | tail -1`

lastWlan0LogEdit=`ls /tmp | grep outfile_wlan0 | grep -v $currentWlan0LogEdit`

tcpdump -ttttnnr /tmp/$lastWlan0LogEdit | grep -v IP6 > /tmp/wlan0.tmp

cat /tmp/wlan0.tmp | cut -d' ' -f4 | cut -d'.' -f1-4 | grep . > /tmp/wlan0src.tmp

cat /tmp/wlan0.tmp | cut -d' ' -f6 | cut -d'.' -f1-4 | grep . > /tmp/wlan0dst.tmp

cat /var/log/syslog | grep hostapd > /tmp/syslog.tmp

chmod 777 /tmp/syslog.tmp

currentSyslog=`cat /tmp/syslog.tmp | tail -1`

lnOfLastSyslog=`cat /tmp/syslog.tmp | grep -n '$lastSyslog' | cut -d':' -f1`

nextSyslog=`expr $lnOfLastSyslog + 1`

recentDeauth=`cat /tmp/syslog.tmp | tail -n +$nextSyslog | grep -c 'IEEE 802.11:
deauthenticated due to local'`

lastSyslog=$currentSyslog

wlan0clients=`arp -an | grep -c wlan0`

if [$wlan0clients -ne 0]

then

 i=1

 offlineClients=0

 while [$i -le $wlan0clients]

 do

 clientIP=`arp -an | grep wlan0 | cut -d'(' -f2 | cut -d')' -f1`

 pingresult=`ping -c 3 -I wlan0 $clientIP | grep 'packet loss' | cut -
d' ' -f6 | cut -d'%' -f1`

 if [$pingresult -eq 100]

 then

 offlineClients=`expr $offlineClients + 1`

 fi

 i=`expr $i + 1`

 done

 onlineClients=`expr $wlan0clients - $offlineClients`

else

 onlineClients=0

fi

echo $onlineClients

currentEth1LogEdit=`ls /tmp | grep outfile_eth1 | cut -d'_' -f4 | tail -1`

lastEth1LogEdit=`ls /tmp | grep outfile_eth1 | grep -v $currentEth1LogEdit`

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

116

Version 0.7

tcpdump -ttttnnr /tmp/$lastEth1LogEdit | grep -v IP6 > /tmp/eth1.tmp

cat /tmp/eth1.tmp | cut -d' ' -f4 | cut -d'.' -f1-4 | grep '*.*.*.*' >
/tmp/eth1src.tmp

cat /tmp/eth1.tmp | cut -d' ' -f6 | cut -d'.' -f1-4 | grep '*.*.*.*' >
/tmp/eth1dst.tmp

lnnr=0

while read line

do

 lnnr=`expr $lnnr + 1`

 destination=`cat /tmp/eth1dst.tmp | tail -$lnnr | head -1`

 echo '$lnnr:$line:$destination'

done </tmp/eth1src.tmp

if [$isWlanIPset -eq 1]

then

 echo 'wlan0 IP: OK'

else

 echo 'wlan0 IP: Not set'

 ifconfig wlan0 10.0.0.1

fi

if [$isEth1IPset -eq 1]

then

 echo 'eth1 IP: OK'

else

 echo 'eth1 IP: Not set'

 ifconfig eth1 10.0.1.1

fi

if [[$dhcpStatus == 'Status of ISC DHCP server: dhcpd is running.']]

then

 echo 'DHCP-server: OK'

else

 echo 'DHCP-server: Not running'

 sudo isc-dhcp-server restart

fi

if [$hostapdProcessRunning -ne 0]

then

 if [[($recentDeauth -ne 0) && ($onlineClients -eq 0)]]

 then

 echo 'Hostapd process: Restarting...'

 killall hostapd

 ifdown wlan0

 ifup wlan0

 nohup hostapd /etc/hostapd/hostapd.conf &

 service isc-dhcp-server restart

 rm /tmp/outfile_wlan0*

 nohup tshark -b duration:20 -b files:2 -w /tmp/outfile_wlan0log -t d -
i wlan0 &

 else

 echo 'Hostapd process: OK'

 fi

else

 echo 'Hostapd process: Not running'

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

117

Version 0.7

 nohup hostapd /etc/hostapd/hostapd.conf &

 service isc-dhcp-server restart

fi

if [$wlan0tsharkProcessRunning -ne 0]

then

 echo 'Wlan0 logging: OK'

else

 echo 'Wlan0 logging: Starting...'

 rm /tmp/outfile_wlan0*

 nohup tshark -b duration:20 -b files:2 -w /tmp/outfile_wlan0log -t d -i wlan0
&

fi

if [$eth1tsharkProcessRunning -ne 0]

then

 echo 'Eth1 logging: OK'

else

 echo 'Eth1 logging: Starting...'

 rm /tmp/outfile_eth1*

 nohup tshark -b duration:20 -b files:2 -w /tmp/outfile_eth1log -t d -i eth1 &

fi

if [[($wlan0ok -eq 1) && ($wlan0ok == $eth1ok) && ($eth1ok == $dhcpok) && ($dhcpok
== $hostapdok)]]

then

 check=1

fi

sleep 10

done

exit

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

118

Version 0.7

Appendix 5 – Heartbeat signal to watchdog (script)

#!/bin/bash

while true

do

 echo "1" > /sys/class/gpio/gpio4/value

 echo "on"

 sleep 0.5

 echo "0" > /sys/class/gpio/gpio4/value

 echo "off"

 sleep 0.5

done

exit

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

119

Version 0.7

Appendix 6 – Stay alive when signal from watchdog is received (script)

#!/bin/bash

i=0

while true

do

 keepalive=`cat /sys/class/gpio/gpio17/value`

 if [["$keepalive" -ne "1"]]

 then

echo "recieving shutdown signal"

 i=`expr $i + 1`

 if [["$i" -eq 10]]

 then

 shutdown now

 sleep 15

 fi

 else

echo "stay alive"

 i=0

 fi

echo $i

 sleep 1

done

exit

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

120

Version 0.7

Appendix 7 - Wi-Fi Client

As the Wi-Fi client software excludes the possibility for access point, and vice versa, one cannot

choose both. If the Wi-Fi access point is going to be installed, please read Section 4.1.3.

As we were using D-Link DWA-123 when the system featured a Wi-Fi client, it was necessary to

download a driver that was not available in the Raspbian repositories [105]. If using another adapter,

chances are that the installed drivers are fully compatible. In that case it is not required to install new

drivers.

This can be done using the following command set. Each command is here written on a new line to

improve readability, but to run multiple commands at once, write them on a single line and put “&&”

in between.

sudo apt-get remove firmware-ralink –y
sudo cp /etc/apt/sources.list ./sources.list.tmp
sudo echo “deb http://http.debian.net/debian/ wheezy main contrib non-free” > cp
/etc/apt/sources.list
sudo apt-get update
sudo apt-get install firmware-ralink -y --force-yes
sudo mv ./sources.list.tmp /etc/apt/sources.list
sudo apt-get update

With the drivers installed, the Wi-Fi software is ready to be configured. This is done by editing

“/etc/wpa_supplicant/wpa_supplicant.conf”.

Content of wpa_supplicant.conf

Edit the file so that it becomes identical to the Figure above, except for the ssid=”” and psk=””.

Insert the name of the network you wish to connect to, in the quotation marks following ssid, and

insert the network password in the quotation marks after psk.

Finally, add the following three lines to the end of /etc/network/interfaces [106].

allow-hotplug wlan0
iface wlan0 inet manual
 wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf

Chi Winth Ea Multi-purpose Embedded Communication Gateway:
Morten Sørbø System Design and Testbed Implementation

121

Version 0.7

When this is done reboot the system and it should connect automatically to the configured wireless

network.

	Tittel
	Undertittel
	Forfatter
	År
	Fakultet
	EaC13
	EaC131
	Dig14
	Wer14
	Ane14
	Sve12

