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Abstract 

Ant colony optimization is a metaheuristic approach for solving combinatorial optimization problems 

which belongs to swarm intelligence techniques. Ant colony optimization algorithms are one of the most 

successful strands of swarm intelligence which has already shown very good performance in many 

combinatorial problems and for some real applications. 

This thesis introduces a new multilevel approach for ant colony optimization to solve the NP-hard 

problems shortest path and traveling salesman. We have reviewed different elements of multilevel 

algorithm which helped us in construction of our proposed multilevel ant colony optimization solution. 

We for comparison purposes implemented our own multi-threaded variant Dijkstra for solving shortest 

path to compare it with single level and multilevel ant colony optimization and reviewed different 

techniques such as genetic algorithms and Dijkstra’s algorithm. 

Our proposed multilevel ant colony optimization was developed based on the single level ant colony 

optimization which we both implemented. We have applied the novel multilevel ant colony optimization 

to solve the shortest path and traveling salesman problem. We show that the multilevel variant of ant 

colony optimization outperforms single level.  

The experimental results conducted demonstrate the overall performance of multilevel in comparison to 

the single level ant colony optimization, displaying a vast improvement when employing a multilevel 

approach in contrast to the classical single level approach. These results gave us a better understanding of 

the problems and provide indications for further research. 
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Chapter 1 – Introduction 

Within the world we live, there exists a multitude of problems for which logical “smart” solutions cannot 

solve them within the lifetime of humanity these are the so-called NP-Hard problems. But for several of 

these problems there exists solutions within nature that results in good enough solutions. In multiple cases 

if one where to simulate nature the problems becomes solvable by not looking for the best solution but a 

good enough solution. For many of these solutions and problems, the cost of getting the last percent of 

improvement takes as much time as the first 99 percent of improvements. 

There exist several nature copies in various environments, those being the simulation of ant behavior, 

flocking of birds and other animals, genes, neurons and other artificial intelligence algorithms. What these 

all have in common is that they act in an intentionally way to create un-foreseen solutions, their behavior 

or movement is not pre-determined and they system will churn out a different “good” solution every time. 

In our thesis we look at the Ant Colony Optimization (ACO) in particular. ACO is a probabilistic 

technique for solving computational problems in finding good paths through graph [1]. ACO is used to 

solve both practical optimization and combination optimization problems.  

The first ACO algorithms were introduced in the early 1990’s by Marco Dorigo in his Ph.D. thesis [2].  

The development of ACO algorithms was inspired by the real ant colonies.  More specifically, it was 

inspired by the observation of their foraging behavior and how they can find the shortest paths between 

their nest and food source as shown in Figure 1 below. 

Figure 1 : Self-adaptive behavior of a real ant colony 
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Ants communicate with each other by producing scented chemicals known as pheromones. These 

pheromones are created from glands found all over their bodies. When ants are hunting for food, they 

explore an area randomly. While exploring, ants leave pheromones trail on the ground so that other ants 

can smell it. As soon as they find the location of the food source, ants will deposit pheromones depending 

on the quality and quantity of the food they carry. In choosing paths for the next ants, they will likely to 

follow the paths with strong pheromone concentrations enables them to find the shortest path. This 

indirect communication of ants via pheromone trails also known as stigmergy [3].   

Stigmergy is an important mechanism for swarm intelligence [4].  This kind of stigmergetic information 

has a huge impact in the utilization of collective knowledge. For instance, its effect to change the way the 

environment is locally perceived by the ants as a function of all past history of the colony. As pheromones 

are subject to evaporate over time when no new pheromones are deposited, the strength of pheromones 

become weaker. Then the ant colony will forget about the past history but will still continue to search 

towards new direction. 

ACO algorithms are one of the most successful strands of swarm intelligence [5]. This swarm intelligence 

technique has been shown to perform well in solving shortest route problems [6], scheduling problems 

[7], and assignment problems [8]. However the ability of swarm intelligence was not limited to these 

types of problems as has been shown to work even within the field of image processing [9]. 

Finding the shortest path at minimum cost from the nest to the destination or food is the objective for both 

artificial and real ants [10]. Real ants do not jump; they explore the environment to find a path to reach 

the food. And they are capable of adapting to changes in the environment. For instance, finding new 

shortest path once the old the path is no longer feasible due to a new obstacle. Artificial ants has the same 

behavior, they are exploring step by step through next state of the problem without looking ahead just like 

real ants.  

In Figure 2A real ants follow a path between nest and the food source. In Figure 2B an obstacle is 

interposed and it shows the equal probability that ants will choose to turn left or right. Ants choosing the 

shortest path will rapidly reconstruct the interrupted pheromone trail compared with those ants choosing 

the longer path.  Therefore shortest path will be rich in pheromones and the larger number of ants will 

likely to choose the same path as shown in Figure 2C. 
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Figure 2: Real ant behavior in finding shortest path between nest and food source 

To improve the overall efficiency of ACO, there are now many variations of ACO with extra capabilities. 

Some of the most popular variants of ACO algorithms include Ant System (AS) [6], Ant Colony System 

(ACS) [11], Max-Min ant system (MMAS) [12], Population declining ant colony optimization algorithm 

(PDACO) [13], and Elitist ant system [14]. In [15] they have made an analysis of the effectiveness of 

these variations through observation of its several properties.  

1.1 Background 

In this thesis we will go through the elements of pathfinder and the traveling salesman problem (TSP). 

These are problems where there are no simple & cheap solutions for.  

When performing path finding over a 2 dimensional area where one wants to go from position A to B in 

the shortest amount of distance there are several ways to achieve this. One of these solutions is the 

algorithm referred to as Dijkstra’s algorithm which performs a type of distance check to every position 

between start and stop in a radial manner this can be read further in 3.1 General Path Finding. This is a 

good algorithm for multiple problems, but it quickly becomes too expensive as it has a cost of         

meaning that the cost will raise exponentially as the complexity of the problem increases.  

For the TSP, the problem is to visit every city in an area once in the least amount of cost. This problem 

differs from the shortest path in the way that in the shortest path one can only go from one point to the 

surrounding points. Whereas in the TSP every point is connected to every other point and giving rise to a 

problem therefore can be defined as NP-Hard. This means that the problem itself cannot be solved in 



13 
 

polynomial time. For TSP there are also several ways to attempt to solve it, some examples of this is the 

use of genetic algorithms (GA) which can be read more in 3.1.3.1 Genetic Algorithms (GA). 

To solve these problems there is an algorithm called ant colony optimization (ACO). ACO can be 

explained in simple terms. Let’s say there is a room with two doors, lights turned off and filled with thick 

fog so you can only see 10 centimeter in front of you. Since we do not know anything of the inside of the 

room then we can assume it has any shape or objects in it and the second door can be placed anywhere. 

So how do we solve this problem because it sounds pretty much impossible?  

Let’s give all the people entering the room one at a time shoes with fluorescent paint which diminishes 

over time on the soles. Now when the first person enters he will walk on random in the room until he 

exits, now the next person will have a base line, he can choose to either follow the paint or to do his own 

path, then over several people we will have a path most traveled, while the least traveled paths will have 

dissipated leaving us with a decent path, and might even the best path. 

Path finding is simply the plotting of the shortest route between the initial position and the final location 

potentially in difficult and unknown areas. Path finding algorithms (PFA) has many different usage areas 

such as computer games [16], robot motion and navigation [17] , automated vehicles [18], and 

transportation networks [19].  

In game programming technologies path finding is an important element. Path finding strategies are for 

the most part employed as the core of any Artificial Intelligence (AI) movement system. To know how to 

get from point A to point B is something many computer games require. Whether it is a role playing game 

(RPG) or a simple puzzle game, navigating the game world needs more intelligence from the game 

character.  

The game agents should not walk through walls, get stuck or failed to make their way to the target 

destination. This is where path finding comes in to play as an important part of computer games. These 

strategies will find a path from any coordinate in the game world in which game agents will move 

according to the calculated path. Therefore it is considered as the basic building block of most computer 

games. 

Agent movement is the greatest challenge in the design of realistic AI.  In this study they presented how 

path finders were used in computer games and their weak points particularly when dealing with real-time 

path finding [20]. They also focused on how machine learning techniques can be used to improve agents’ 

ability to deal with real-time path finding.  
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Path finders are also useful in field of robotics [17]. 

These algorithms are used to guide robots especially 

around difficult terrain without human intervention. For 

instance the Mars Pathfinder as shown in Figure 3 [21] 

was landed a base station with a roving probe on Mars in 

1997 [22]. The Mars Pathfinder successfully roamed on 

the surface of the planet while sensing the terrain. 

Moreover it had returned an unprecedented amount of 

data such as chemical analysis of rocks and soils, 

extensive data on winds and other weather means. Mobile robots roaming in indoor and outdoor 

environments have navigation and path finding units for them to move autonomously. 

Automated or driverless vehicles are another usage 

area of path finding [18].  Path finders for automated 

vehicles are generally stated as moving from one place 

to another. One of the most known development 

technologies for autonomous cars is Google’s car. The 

Google driverless car has the ability to sense the 

environment and navigate without human input [23].  

This means that automated vehicle will be able to find its way while avoiding the obstacles and reach its 

goal. The autonomous vehicle named Pharos as shown in Figure 4 which participated in 2010 

Autonomous Vehicle Competition was introduced in this study [24].   

They proposed a solution for high-speed vehicle motion control, real-time path planning for obstacle 

avoidance and long range terrain perception. In [25] they generally stated that if complete and accurate 

information about the environment will be available it will be sufficient to use a standard path finder 

algorithm. 

In transportation networks, shortest path needs to be 

immediately determined. This is mainly due to road network 

applications whereas an immediate response is required. 

Therefore most of transportation applications will depend 

upon heuristic shortest path algorithm rather than standard 

path finding algorithms [19]. Figure 5 [26] shows a proposed 

solution was successfully extracted the structure of geographic 
Figure 5: Effective Borders and Shortest Path 

Trees [26] 

Figure 3: Mars Pathfinder Sojourner Rover [21] 

Figure 4: Pharos in Autonomous Vehicle Competition [24] 
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borders inherent in multi-scale mobility networks where a new and efficient computational technique was 

presented.  Furthermore this technique identified a unique set of connections in the network and a 

network backbone that correlated strongly. Most of these algorithms that are commonly used are group 

depending on their simplicity and good complexity.   

1.2 Report Outline 

In this master thesis, we will present a novel multilevel approach to ACO. The performance of multilevel 

will be tested through comparability with other solutions within path finding such as Single-level ACO, 

Dijkstra’s algorithm and our own multi-threaded Dijkstra (MT-Dijk) implementation. We will also 

perform a comparative test on multilevel ACO on the TSP comparing against single level ACO, greedy 

(Nearest and furthest neighbor) as well as a random for a baseline. 

The thesis is structured in several chapters where each tackling their own feature or area. The introduction 

of ant colony solutions in general in Chapter 1 – Introduction is followed by a short recap of the research 

in the area within both traveling salesman and shortest path problems in 1.1 Background.  

In the following Chapter 2 – Problem Definition will present the goal of the research as well as some of 

the means for providing the results and comparability of the research. 

In Chapter 3 – State of the Art deal with the summary of some researches within several fields related to 

pathfinders, multilevel algorithms and use of ACO within search problems for shortest path compared 

against Genetic Algorithm (GA) and Dijkstra followed up by a similar review on the use of GA and ACO 

within TSP. 

Then for Chapter 4 – Proposed Solution, the simulation setups and environment is described as well 

detailing the choices made within the simulations. Also its performance with various modifications to 

runtime variables, for which the future research and comparisons where made upon allowing for coherent 

results to be collected.  

All experimental results are compiled and reviewed in Chapter 5 – Experiments & Results. And the 

conclusion of the research can be found in Chapter 6 – Conclusion followed by the indications of future 

work in Chapter 7 – Future Work. 
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Chapter 2 – Problem Definition 

The goal of this study is to research and develop methods for enabling a multilevel variant of ACO.  The 

way we propose to obtain the project goal is by deploying a multilevel approach to the ACO vertex 

scheme. By conducting empirical experiments with symmetric TSP and shortest path problem we will 

achieve knowledge from both direct and indirect observation. So we are able to test the multilevel 

variants of ACO which has not been done before.  

The methodology used is to comparatively show how multilevel variants of ACO perform in comparison 

to single level ACO, Dijkstra’s algorithm and other solutions within path finding. The comparisons will 

be done over series of synthetic and realistic tests measuring their individual capabilities under certain 

circumstances. By giving the data ranging from path distance, time and various resource consumptions, it 

will provide a comparative result upon the performance of a multilevel ACO.  

The importance of this study is to show that multilevel variant of ACO can be deployed to increase the 

performance of ACO algorithm. This means it will help to improve the optimizations ability of ACO and 

reduce the computation time in obtaining the optimal solution.  

The multilevel scheme is expected to be better than single level since vertices are grouped into vertex 

collections, allowing for the vertex set to be simplified and allowing for sets to become easier to solve as 

the amount of choices is reduced.  
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Chapter 3 – State of the Art 

This chapter will discuss the well-known general path finding followed by defining what heuristic and 

metaheuristic approaches are. The objective of this chapter is to present the elements we used for 

constructing the multilevel scheme as well as presenting an overview of different metaheuristic 

approaches applied in solving shortest path problem and TSP.  In the last section will be a discussion on 

the limitations of existing solutions for the shortest path and TSP. 

3.1 General Path Finding 

Within path finding there multitudes of algorithms 

aimed at solving the path finding problems. The 

so called Dijkstra’s algorithm is viewed as the 

most well-known method for finding optimal 

path’s in several optimal path or route problems 

[27]. The method finds the optimal path from its 

initial position to all other positions within the 

problem.  

This is done by employing a concentric expansion 

as shown in Figure 6 [28], having each vertex 

having a set of children. This allows for taking a children and following the lineage, in that way the 

optimal path can be fetched from the child to the start. This method checks every vertex as it performs no 

prediction of the usefulness of any future or current vertex or child in the world before it reaches its target 

destination. This way the algorithm has to keep track of the cheapest discovered cost of traveling from the 

initial vertex to every vertex visited.  

Dijkstra’s method is by these facts an exponentially expensive problem to run, as it needs to go through 

               making it an exponentially expensive problem as the vertex count increases. The A* 

algorithm is an extension of Dijkstra’s algorithm [29] using heuristic method to estimate how seemingly 

good vertex is close to the target, allowing it the ability to eliminate “fruitless” branches. 

3.1.1 Heuristic 

Heuristic search methods are used to accelerate the process of finding a satisfactory solution instead of 

optimal solution when time resources are limited [30].  It is an important technique for solving different 

Figure 6: Dijkstra's algorithm searching area schematic 

diagram [28] 
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problems in artificial intelligence and operations research.  The heuristic method can be divided into two 

types: Construction Heuristic and Improvement Heuristic.  

A construct heuristic determines a tour according to some construction rules and will never try to improve 

upon this tour [31]. Whereas a tour is continuously built and parts which are already built will remain 

unchanged throughout the algorithm. Furthermore construction heuristics produce a solution 

incrementally and by iteration a new element will be selected to combine the model in solution search to 

the problem [32].  

The improvement heuristics are used to define a set of solution changes, which represents alternative 

moves that can be taken during optimization.  These types of heuristics are commonly used to a complete 

initial solution until the time of search is reached. In this manner, the initial solution can be created 

randomly [32].  

One of the well-known heuristics is A* algorithm which builds from Dijkstra’s algorithm and can make a 

choice on what vertex to grow on before others.  

3.1.2 Metaheuristic 

Metaheuristics is an iterative high-level process which guides and modifies the subordinate heuristics 

operations that may provide a sufficiently good solution to an optimization problem [33]. Genetic 

algorithms (GA) and ant colony optimization (ACO) are good examples of classical metaheuristics. Each 

of these follows different paradigms and philosophies in solving different optimization problems. 

3.1.3.1 Genetic Algorithms (GA) 

GA have been successfully studied to be able to solve complex problems in both engineering and other 

scientific fields. This algorithm was inspired by the biological approach within evolution, using concepts 

from natural selection and genetic inheritance to be able to adapt to a given environment be it static or 

changing.  

Evolution starts by randomly generating a population pool of solutions. In each generation, the 

individuals are evaluated by a function adequate to the given problem in order to determine the fittest 

individuals.  The best ranking individuals will be selected as parents to breed new generation. Through 

mutation and crossover it is more possible to construct a better population by iteration. This process will 

be performed repeatedly until an optimal solution is found or the fixed number of generation is reached. 

The graphical representation of GA metaheuristics can be seen in Figure 7 [34]. 
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Figure 7: Graphical representation of a GA metaheuristic [34] 

3.1.3.2 Ant Colony Optimization (ACO) 

The metaheuristic approach ACO has been successfully applied to many applications particularly in 

combinatorial optimization problems. ACO is defined vaguely containing very few rules on how it 

function, the only defined elements is the pheromone weighted random movement and that ants leave 

pheromones on the traversed map in some way. This leaves multiple aspects up to the implementer, such 

as how to store, increase and decrease pheromones and rules of movement. Some elements can be defined 

by the problem for an example TSP do not allow re-traversal and other such “rules”. Other than this the 

ACO is in its initial definition left as a blank slate. ACO framework is shown Figure 8 displaying the 

basics of ACO metaheuristic in Figure 8 [35].  

 

Figure 8: ACO metaheuristic framework [35] 
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In general combinatorial optimization (CO) problem one has to check every finite set of solutions in order 

to determine the best one. With ACO one defines a set of values called a pheromone model to be used in 

generating a probabilistic solution, reinforcing and improving the pheromone model with each ant ran 

over the problem.  

Figure 9 shows the technical description of ACO metaheuristics which was originally presented by [36].  

In ACO metaheuristics a finite size of artificial ant colony can generate best solutions in the shortest 

amount of time. Therefore it shows itself efficient in solving NP- hard problems.  

const Phermones = value 

VisitedEdges = new List<edges> 

 

RunAnt(from) 

 VisitedEdges.Add(from) 

 While (initPosition != goalVertice) 

  to = roulette_GetNextVertice() 

  VisitedEdges.Add(from.via_Edge.to) 

  from = to  

 Foreach(VisitedEdges as a) 

  a.DepositPhermones(Phermones / VisitedEdges.Sum(b=> b.distance)) 

 Foreach(AllEdges as a) 

  a.DecreasePhermone(); 

 

 

3.2 Multilevel Algorithms 

Multilevel techniques have been used especially in the area of multigrid methods [37]. Most of multilevel 

techniques were applied to graph-based problems such as mesh partitioning [38], graph coloring [39] and 

TSP [40].  The multilevel idea was originally proposed by Barnard and Simon to speed up the spectral 

bisection [41]. And Hendrickson and Leland made an improvement for solving graph partitioning 

problem [42]. 

The multilevel algorithm scheme is relatively simple. From the original problem, some sets of smaller 

problems are made by successive coarsening until the given limit criteria is reached. These set of 

Figure 9: Pseudo code of ant colony metaheuristics 
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problems will produce a hierarchy in which a set of problem 

in a given level is always smaller than the set of problem in 

the next lower level as shown in Figure 10. 

Afterwards, a calculated solution for the smallest problem 

will successively transform into a solution for the next higher 

level until a solution to the original problem is obtained.  

According to Barnard and Simon, multilevel algorithms 

required three elements which include contraction, 

interpolation and refinement [41]. In contraction a series of smaller graphs to be constructed must retain 

the global structure of the original large graph. Interpolation defines a given vector of a contracted graph 

whereas it is possible to interpolate this vector to the next larger graph with good approximation to the 

next vector.  While in refinement given an approximate vector for a graph, it will be expected to calculate 

more accurate vector efficiently. 

The basic idea of multilevel approaches to vertex sets or other 

concatenated sets, one usually seeks simple rules for simplifying the 

sets. One approach for this is to find branches or vertices which can 

be folded it into single cluster vertices as shown in Figure 11 where 1 

and 2 is cluster vertices or sets of   {     } and   {     } 

leaving the sets new problem set as {     }. This process can be 

repeated until there are no more possibilities to simplify the problem.  

This reduces complexity on each level allowing for the set to be solved at a simple level which eliminates 

elements from the next and more complex level. This can be performed until reaching a reduced set of the 

first level which should be substantially simpler to solve than the full set. 

Mesh partitioning problem involves partitioning a mesh into a given number of parts then each part has 

the same number of elements, and the number of vertices that straddle the parts is minimized. It is an 

important problem that has an extensive application in many areas. Multilevel algorithms are a successful 

class of optimization techniques which solves mesh partitioning problem. Mesh partitioning was used to 

investigate the multilevel ACO (MACO) which is a relatively new metaheuristic search technique for 

solving optimization problem [43]. Their goal was to suggest modification for MACO improvement and 

to evaluate them experimentally.  

Figure 11: Collapsing of vertices into 

super vertex 

Figure 10: Standard multi grid [58] 
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Graph partitioning problem is an important component of mesh partitioning. Due to its complexity they 

mainly concentrate on the partitioning itself. Multilevel techniques group of vertices together to form 

clusters and these clusters will define a new graph. The process will be performed repeatedly until the size 

of the graph reach the limit. Figure 12  illustrates the basic idea of multilevel algorithm in solving mesh 

problem from sample mesh (a) up to partitioned mesh (d).  

 

Figure 12: Mesh Partitioning using multilevel algorithm (a) sample mesh (b) mesh with induced graph (c) graph partitioning   

(d) partitioned mesh [43] 

Even though the use of multilevel algorithms already established an effective way to speed up and 

globally improve the partitioning methods, there are much room for improvement and potential for further 

investigation. One of the proposed possibilities is to perform the mapping of the graph onto the grid [43]. 

However a proper mapping convergence is required to attain better results. There is a wide range of 

possibilities to be considered in the future but the most interesting are the merger of MACO with other 

method and the possibility of parallel implementation of MACO algorithm. 

The interactive distributed multilevel ant colony algorithm (ItDMACA) and semi-independent distributed 

multilevel ant colony algorithm (SIDMACA) which is based on parallel interactive colony approach were 

presented in solving mesh partitioning problem [44].  They presented the multilevel framework in Figure 

13 that characterizes a level based refinement method in order to increase convergence of the solution to 

larger problems. 

Coarsening is a graph contraction procedure that is iterated L times by finding the largest independent 

subset of graph edges to collapse them. While refinement serves as a graph expansion procedures on a 

partitioned graph.  
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On the left side of Figure 13 the graph was coarsened down to 4 vertices and partitioned into 3 levels. The 

solution was successively extended and refined as shown on the right side of Figure 13. Moreover a high 

quality of partitioned was still achieved at each level of refinement.  

 

Figure 13: Three phases of multilevel graph partitioning 

These two distributed MACA versions shows better quality performance. Nevertheless ItDMACA 

considered being more sensitive on the parallel performance efficiency according to experimental 

evaluations and SIDMACA managed to obtain better quality solution for less computational time. 

Graph partitioning problem (GCP) is another graph-based problem 

were multilevel algorithms are used. In GCP, vertices of a graph 

have assigned colors such that two adjacent vertices will not share 

the same color and so that the number of colors will be minimized. 

A graph contraction of 4 coloring graph is shown in Figure 14 

[45].  

In 2004 a multilevel algorithm for solving GCP was presented 

[39]. Since the problem is a graph based, the same coarsening 

procedures as graph partitioning was used. The matching 
Figure 14: An example of graph contraction 

for the coloring problem [45] 
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procedure was also based on algorithms used in graph partitioning with one very important difference. 

Instead of matching nearest- neighboring vertices, matching are done between those vertices that are not 

adjacent. The coarsening is terminated once the initialization started.  

A multilevel approach was implemented for solving TSP [40]. The multilevel paradigm for TSP is 

represented in Figure 15. The top row of Figure 15 corresponds to the coarsening process where dotted 

lines represent matching of vertices. The matching process only chooses optimal edges and then the 

optimal tour will be found by the end of this process. However in the absence of information for optimal 

tour, nearest neighbors are used in matching vertices.  

 

Figure 15: A sample multilevel algorithm for TSP [40] 

The only variable parameter they have used within matching process is grid spacing h. For each 

coarsening level a maximum matching distance h are chosen allowing vertices to be matched with the 

nearest neighbors. To achieve this, the smallest rectangle containing all the vertices will be found and 

overlay it with a square grid of spacing h. On the other hand, if there are unmatched vertices found, they 

will randomly choose a cell containing unmatched vertices. In refinement step, they have used the 

chained Lin-Kernighan algorithm since it is one of the best heuristic in solving Euclidean TSP tour [46].  

From third level onwards the chains of fixed edges were decreased down to a single edge. When the 

problem was reduced to one fixed edge and two vertices the coarsening process will end. At this point the 

initialization of tour will begin.  
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Another common use of multilevel approaches is within graphics 

where one creates a mesh of a 3D model and then refines the mesh 

as the view comes closer to details of interest [47]. This is an 

iterable solution to draw vertices in the distance by employing a sort 

of dynamic multilevel approach. The main concept is placed around 

the idea of 3D being polygons and that the more polygons the higher 

the rendering cost and level of detail can attain.  

To enhance the rendering of complex features, a type of dynamic 

multi-leveling on the mesh needs to employ. This means that the 

model can dynamically collapses down to a lower polygon model as 

the model is pulled further and further away from the users view. In Figure 16 an example of several 

levels can be seen of a polygon where it can in theory be cut in half an infinite amount of times, possibly 

gaining an infinite amount of detail or one can collapse the polygons and their features to a lower 

resoluted problem.  

3.3 Shortest Path Search Problem 

The goal of shortest path problems is to find an existing path between two vertices with the lowest cost 

measured in a certain way decided by the problem, for an example distance or time. Calculating the 

shortest path is a vital combinatorial optimization problem in computational geometry and other fields 

including graph search algorithms, geographical information system, network optimization and robotics.  

Among others, the shortest path algorithms are to determine the closest distance between two 

geographical locations [26], routing in packet networks [48], and to balance network utilization [49]. 

Undoubtedly, the shortest path is one of the aspects of great significance to telecommunications and 

navigation.  In shortest path algorithms, we are given a graph         where V is the set of vertices 

and E is the set of edges with assigned cost     associated with each edge        . A path will be 

considered the shortest path if it has the minimum length from among all other paths that begin and 

terminate in given vertices. 

There are different variants of shortest path problem which involves single pair shortest path, single 

source shortest path and all pair shortest path [50]. The single pair shortest path finds the shortest path 

between a pair of vertices. While single source shortest path finds the shortest path from the initial vertex 

from all vertices. Lastly, all pair shortest path finds the shortest path between all pairs of vertices.  

Figure 16: Mesh refinement on vertices of 

interest. 
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In Figure 17 [51] presents an example solution for the shortest path problem.  This particular solution was 

used as an AI movement in the game Left 4 Dead’s programming of zombies to find a “natural” path of 

movement between present location and target destination.  

 

Figure 17: Example of a shortest path problem [51] 

The following presents some of the main algorithms that are commonly engaged for the shortest path 

search problem will be presented together with their respective features. These algorithms include the 

well-known Dijkstra’s algorithm, ACO and GA. 

3.3.1 Dijkstra for Shortest Path 

The conventional Dijkstra’s method provides the shortest path from a source to all other vertices in the 

map.  The search region of Dijkstra generally expands concentrically to check each vertex that makes the 

search time long. Consequently, this method cannot obtain a solution in real time for larger problems.  

An improved Dijkstra was proposed in order to overcome 

the drawbacks of this method [27]. The extended Dijkstra 

proposed a method for the shortest path search which limits 

the concentric expansion of the search region to lessen the 

number of vertices to be searched. It means that Dijkstra 

method was applied in both directions so it will search from 

the beginning to starting point and to target destination. The 

comparison of both algorithms was shown in Figure 18. 

The extended Dijkstra’s begins by marking the starting 

point and destination. After that it will calculate the movement cost from the starting point to every 

Figure 18: Comparison of Dijkstra method and 

extended Dijkstra method [27] 
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connecting vertex and from the destination point to every connecting vertex as well. The vertices with 

smallest or minimum cost value will be marked.  Afterwards mark the vertices with smallest movement 

cost that are connected to the visited vertices to either starting point or destination. The last step will be 

performed repeatedly while waiting for the starting point and destination search to overlap.  

Experiments show that the proposed solutions have confirmed its effectiveness by means of simulation 

[27]. Moreover, a near-optimum solution can be obtained rapidly after they positively decreased the 

search time. To conclude, extended Dijkstra can thus be applied to other path search problems that 

demands real time solution. 

Another improvement of Dijkstra’s algorithm was presented to improve the efficiency of road network 

route planning in finding optimal routes [52]. Through the analysis of strengths and weakness of Dijkstra 

they found that the main drawbacks of this method are storage structure and the searching area. They 

made an improvement of storage structure by compressing the data storage space and by storing the data 

in an adjacency list. For the improvement of searching area, they increased the road network scale and 

distance of neighbor vertices.  

To demonstrate the performance of the proposed solution Figure 19 shows the advantage and 

disadvantage of these two algorithms with 3600 vertices road network. 

 

As a result, the improved algorithm reduced the scale of algorithm searching, minimized the time 

complexity and improved the efficiency of the algorithm. Hence, for this reason this study showed that 

the improvement of Dijkstra’s algorithm was reasonable and effective. 

In China there are multiple large high-rise building and underground structures. Thus fire evacuation has 

become a huge challenge in China and other countries where the concentration of people is high. There is 

 

Figure 19: Searching area schematic diagram of classical Dijkstra and improved Dijkstra [50] 
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some evidence that fire evacuation cannot meet the people’s desired need for security, therefore 

intelligent fire evacuation plans has been the key focus of the research. Dijkstra’s algorithm was 

combined with an intelligent fire evacuation system [53].   

The Dijkstra’s method was used to the fire evacuation plan in a situation shown Figure 20. The position 

of vertex 1 is the exit where numbers are the weights, varying based on the locations condition, where a 

larger weight indicates a poor route.  

 

Figure 20: Simulation plan of a mall using Dijkstra method [53] 

Smoke, gas, temperature and other sensory units were installed at the fire scene sending signals with the 

scenes information to the intelligent fire evacuation system. The data is analyzed and processed to 

represent the new status of the environment. Figure 21 shows the environment with the escaping route 

map with safe direction arrows based on Dijkstra’s algorithm.  

 

Figure 21: Escaping route of the fire scene [53] 
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3.3.2 Genetic Algorithm (GA) for Shortest Path 

As mentioned in Section 3.2 shortest path can be also used for network utilization. Routing of data 

packets has a strong influence to network utilization. It is an important engineering task on the Internet 

which consists of finding a path from a source to destination host following a protocol. Open shortest path 

first (OSPF) is one of the most generally used intra-domain Internet routing protocol (IRP).  

A GA solution was proposed to optimize OSPF weights with the intentions of minimizing the network 

congestion [54]. The traffic flow in networking is routed along shortest paths with outgoing links towards 

the destination. The path length is the total number of weights of the links in the path. This weight 

assignment problem will be solved by using the proposed GA solution.  

To test the ability of their GA solution, a network topology with 20 vertices and 62 links was created as 

shown in Figure 22. Two vertices were assigned as source and destination then the objective was to find 

the lower cost between these two vertices (0, 19). The experiment results showed that GA found the 

shortest path in a limited time. Moreover the solution was confirmed to be used ideally with OSPF 

routing.  

 

Figure 22: Example of network topology [54] 

Another GA approach was introduced in solving the shortest path routing problem [55]. In this solution 

the basic GA operator such as crossover and mutation was applied. The crossover exchanged partial 

routes at independent crossing locations while mutation retains the genetic diversity of the population.  

To avoid having infeasible solutions a repair function as shown in Figure 23  was proposed together with 

crossover and mutation to increase the quality of solution and enhance the rate of convergence.  
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Figure 23: Overall procedure of the repair function [55] 

The proposed repair function described in Figure 23 was able to find and eliminate loops in a routing 

path. After performing crossover one of the routes became infeasible because it has a loop N2 -› N3 -› N1 -› 

N2. The repair function detects and removes the loop that violates the constraint condition.  The study 

shows that the quality of solution was better than other GA variations and the real computation time of the 

proposed GA was shorter than Dijkstra’s algorithm. 

3.3.3 Ant Colony Optimization (ACO) for Shortest Path 

ACO metaheuristic have been shown to be effective in solving NP-hard problems, mostly by generating 

optimal solution in the shortest amount of time. A research study explored the ACO’s capacity to evaluate 

length and cost in solving a unique shortest path problem [56]. Nevertheless their objective was not to 

search for all possible solutions but to look for good solution with low computation time. The proposed 

solution was based on AS metaheuristic called the shortest path ant colony optimization (SPACO). Each 

of the metrics that were used in SPACO involves cost, visibility and pheromone.  

A simple transformation was applied to cost function                       
. The equation alters the 

cost function into a desirability scale of range 0.5 to 1.15. This states that the edges with a higher cost will 

have a lower desirability to be selected while the edges with low cost will have higher desirability.  
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The visibility metric has an effect on each ant moving towards the target vertex.  The visibility problem 

was based upon the distance between the current position and the length to target vertex as shown in 

Figure 24. 

 

Figure 24: SPACO visibility definition [56] 

The equation given by             
                                               

                                              
 verifies the values that 

the visibility can carry. From the three simple cases shown in Figure 25 below it was certain how the 

visibility heuristic can give a stronger effect according to the distance from the target vertex. As 

illustrated in the same Figure the target vertex situated to the right while the calculated distance below 

was convert into equivalent visibility values. 

 

Figure 25: Visibility calculations [56] 

The pheromone metrics was the defining property of ACO techniques and also an endeavor in solving 

shortest path problem. The quantity of pheromone within the system will be distinguished from the initial 

pheromone density and the total amount of edges. The pheromone decay and pheromone update were 

constructed to manipulate the entire system pheromone constant.  

In every iteration, the edges with higher pheromone concentration will lose more pheromone than the 

edges with lower concentrations by means of decaying every edges pheromone into a set percentage. As 

given by                                       . 
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The pheromone update presented how ants deposits pheromone at a preset rate while looking for the 

problem solution. Consequently ants will deposit the preset amount of pheromone to the edge it crossed. 

In the same iteration, when two or more ants crossed an edge both ants will be given a relative amount of 

updates. This condition was defined from the equation if the edge has been traversed then           

                . To reach the total system pheromone stability condition, the following equation 

must meet                         
                                

              
 

The SPACO was tested on smaller problems as flat and mound terrains to confirm the performance and to 

justify each metric used in this algorithm. Figure 26 displays the best path produced in solving a flat 

terrain with 9 pixels (3x3 grid) that consists of 235 possible paths. 

 

Figure 26: Flat terrain [56] 

In mound terrain 25 pixels (5x5 grid), 81 pixels (9x9 grid) and 289 pixels (17x17 grid) have been tested. 

The valley terrain with 289 pixels in Figure 27 was the most difficult problem in this study that verifies 

the performance of SPACO while considering the cost and visibility.  

 

Figure 27: Valley terrain [56] 
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The smaller problems carried out in this study, SPACO have reached the optimum solution 100% of a 

time while in larger problems it found the optimal solution 90% of a time. For some cases of not finding 

the optimal solution, a near optimal solution was found instead as illustrated in Figure 27. 

The possibilities and usability of ACO for solving the Shortest Path problem were presented [57]. The 

proposed solution was called ShortestPathACO algorithm which is based on metaheuristic of ant colony. 

There are two methods introduced in this study for finding paths which includes finding path for each ant 

one by one and finding paths according to the time list. 

 In finding paths for each ant one by one method the choice of succeeding vertex was made iteratively for 

each ant and another. Once an ant reached the target vertex the pheromone trail in that path will be 

strengthen. Therefore other ants will likely to choose the same path. In the second method, finding paths 

according to the time list they used this time list for recording durations in which an ant reaches a given 

vertex. As soon as an ant arrived faster in the target vertex it will be able to lay more pheromones on the 

same path. In that manner, it will be possible to strengthen the pheromone trail in order to keep ants on 

following iterations to choose this path. The evaporation of pheromones ensues with every transition to 

the next ant on the time list. 

After the comparison of these two presented methods it was verified that both have influenced the choice 

of ants in every iteration. These conclude that using the first method of searching paths will favor paths 

that consist of a lower number of edges since in every lower number of iterations such paths can be found. 

However the redundancy effect of using time list can be compensated by stronger pheromone 

reinforcements of short paths and better adjustment. The proposed Shortest Path ACO algorithm is an 

optimization algorithm and does not guarantee to find optimal solution in all possible cases.  However the 

proposed algorithm can be improved in order to reach optimal solutions for shortest path problem.  

In previous section a Dijkstra method was proposed to find a safe escape routes in a fire scene. However 

an ACO based solution was presented to find the safest escape routes in five distinct realistic 

environments which involve static environment, dynamic environment, realistic environment with and 

without smoke, and realistic environment with ad-hoc networks [58]  . 

The first experiment done in static environment ACO was used in its simplest form with a slight 

adjustment. The Dijkstra’s algorithm was used to calculate the optimal solution. And same experiment 

with adjustments of hazard probabilities which means there always a safe path that exists. These conclude 

that ACO was able to find the near optimal solution with a very few iteration. Whereas in dynamic 

environments a function called every 200
th

 was used. Thus, per 200th iteration the route will change to the 



34 
 

exact opposite of the current optimal solution. When the evaporation rate was set to 0, ACO failed to 

adapt to the new optimal solution. On the other hand, when the evaporation rate was set to 0.2, ACO was 

able to quickly adapt to new environments and was able to interact well with dynamic environments.  

In realistic environments, a ship model consists of 290 rooms and 4 corridors in two floors were used to 

attain empirical results from ACO. The actual fires was generated and simulated by using the well-

established tool fire dynamics simulator (FDS). Figure 28 shows the visual representation of the 

temperature with a color-coded scale.  

 

Figure 28: Heat map visualization illustrating the room temperature as the fire spreads over time [58] 

In this experiment the fire spread out over a time frame of 600s. The fire reached one corridor in 150s and 

then both corridors at most 500s. For each simulated second, a certain number of ants were released. 

Three variants of ACO were used: with 10, 100 and 1000 ant for 600 different scenarios. In this 

experiment it shows that ACO can be able to attain safe escape routes even in difficult times however 

more ants are required in order to reach convergence.  

Another experiment was done in realistic environment with smoke. This experiment produced very 

different results due to fatalities from much higher smoke. Therefore smoke had much impact on 

evacuation situation compared to fire. Even though having smoke affects the performance of ACO, by 

running enough ants to reach convergence will overcome this situation. Considerably, ACO with 1000 

ants can still provide near optimal solutions.  
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The last experiment in realistic environment with ad-hoc networks using ACO with 100 ants managed to 

find a smaller value of shortest path. Even with a network of only 5 rooms, ACO was still able to find a 

very good solution. As a conclusion from all tested scenarios, ACO successfully produced the near 

optimal escape route solution in all cases.  

3.4 Traveling Salesman Problem (TSP) 

TSP is an NP-hard problem in combinatorial optimization (CO) problem that is commonly used in 

operations research since it provides a well-known application to evaluate different algorithms. TSP 

consists of a salesman and a set of cities.  In the regular form of TSP, a map of cities is given to the 

salesman. The salesman has to visit all the cities starting from the initial city and returning to the same 

city to complete a tour. The challenge for the salesman is to minimize the total length of a completed tour. 

The length of the tour should be the shortest among all possible tours in the given map. This challenge 

also means finding a cycle passing through all the cities in the map while having a minimum total weight, 

also known as Hamiltonian cycle. In a TSP framework, the Hamiltonian cycle are usually called tours. 

For instance, the Figure 29 [59] below had given a graph with weights. The optimal solution in this 

Figure will be path {A, B, C, D, E, A} which has a total length of 24.  

 

The two basic types of TSP are called symmetric and asymmetric TSP. In symmetric TSP, the distance 

between each pair of cities is independent of the route in which the salesman travels. For instance in 

Figure 29 above, vertex A to B and vice versa will have the equal distance of 2 in symmetric TSP. While 

in asymmetric TSP, distances between two cities might be different and paths may not exist in both 

directions.  This study will focus on symmetric TSP. 

Many different well-known combinatorial algorithms applicable to many areas were first developed to 

solve TSP. Therefore TSP has been often served as a touchstone for new problem-solving strategies and 

Figure 29: Example of the cyclic TSP problem [59] 
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algorithms. In the following, two different algorithms include GA and ACO will be discussed to show 

how these two algorithms improved the different parts of TSP solving process.  

3.4.1 Genetic Algorithm (GA) for TSP 

GA has been studied to solve many search and optimization problems, specifically NP-hard problems like 

TSP. In GA an individual is known as a candidate solution for a given problem. Each solution will be 

evaluated through a fitness value. The fitness value defines how close the candidate solution is to the 

optimal solution. Then set of solutions creates a population that evolves from generation to the next by 

using genetic operators such as selection, cross over and mutation. As stated by Darwin’s survival of the 

fittest approach, we retain the best candidate solution from generation to generation while allowing the 

inferior ones to die off. The same process repeats until the best candidate solution in the population will 

fulfill the fitness criterion. 

GA seeks the large and complex space of solutions towards the best answer. The effectiveness of genetic 

operators can increase the robustness of search process and has the ability to avoid being trapped in local 

minima. In 1991, a GA approach was presented to solve TSP with up to 442 cities [60].  The proposed 

solution insular genetic algorithm (IGA) was an improvement of the underlying basic operators of GA.  

The order crossover operator consists of a part of parent1 and the other part of parent2. This approach was 

used to reach a tougher merging of the genes of the parents, which is suitable particularly for large 

problems. A well-known 2-opt local search measures up all possible valid combination and makes two 

changes to single route. While or-opt heuristic changes a single route by re-arranging more than two stops 

to reduce the total distance. These two heuristic approaches are used together with the neighboring 

restriction to provide a good local optimization operator for solving large problems. 

In selection of survival of the fittest when greatest individual are chosen too often it will decrease the 

diversity of the population. For that reason the best individuals 4 times more often than the worst was 

chosen.   

In the experimental investigation indicates that population were degenerated before the optimal solution 

was found specifically in large problems. As a result, the island model was developed to optimize the 

isolated population until they degenerate. The degeneration was eliminated by refreshing the population 

on every island through individuals of other island. Thus, the evolution can proceed. This study showed 

the performance of IGA in solving TSP with up to 229 cities in less than 3 minutes average runtime and 

TSP with up to 442 cities ideally in an acceptable time limit. 
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A sample application using GA demonstrate a solution 

for TSP [61].  In this solution the crossover also known 

greedy crossover which is not completely random was 

used. In Figure 30 represents a GA solution for TSP with 

40 cities and 80 population size. In this solution the 

maximum number of cities was only up to 50. 

Apparently this solution cannot solve large problems.  

Some of traveling paths in the means of evolution 

process are shown in Figure 31 [62]. The population size 

= 40, number of cities = 40, rate of crossover = 0.6 and 

the mutation rate = 0.1. These paths were generated from 

the best individual in corresponding generation. The zig-

sag paths will only fade out after a few generations which validate the effectiveness of GA. Nevertheless, 

in the greater part of trials, the algorithm can only obtain the local minima paths in the designated number 

of generations.   

 

Figure 31: TSP using GA approach (a) after 3rd generation (b) after 18th generation [62] 

The edge assembly crossover (EAX) performances for TSP were analyzed and examined [63]. EAX is a 

recombination operator that uses edges from two parents to build disjoint sub tours.  One of the important 

traits of EAX is that it can present new edges into the offspring when connecting sub tours. Mostly edges 

in both parents and entire population were introduced into offspring. Since EAX become aware of the 

appropriate tradeoff between the ratios of edges inherited to offsprings from parents. This study showed 

that EAX can be used to generate large numbers of better offspring’s from two parents. 

  

Figure 30: Example of TSP solution using genetic 
algorithm [61] 
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3.4.2 Ant Colony Optimization (ACO) for TSP 

The Ant System (AS) was the first ACO algorithm which proposed as a means of solving the TSP [64].  

The goal is to find the shortest path to link a series of cities using artificial ants. Each ant will make 

possible round-trips along the cities while moving from one city to another. Some rules has to be 

considered such as ants must visit each city exactly once, a distant city will have less chance of being 

chosen due to visibility, and the more pheromone trail deposited between two cities the greater probability 

that it will be chosen. In addition when the path is short, ants will deposits more pheromones in the way it 

traversed and pheromones will evaporate in every iteration.  Figure 32 below [65] describes how the AS 

sends out artificial ant agents to explore the possible routes on the map. 

 

 

 

 

 

 

The ants will explore the map while depositing pheromones between cities they have crossed until they 

completed the journey. Those ants that completed the shortest journey deposits more virtual pheromones. 

The amount of pheromones is based on the journey length: the shorter the journey, the more virtual 

pheromones it deposits.  

There is still active research on improving the performance of ACO algorithms. Though there are many 

algorithms that solved TSP effectively, ACO algorithm costs too much in time to produce a nearly 

optimal solution which became a barrier. In a research study they presented a fast ACO algorithm for 

solving TSP [66].  According to this study the two basic ways for ACO improvement method are: 1) 

improvement of element information update mechanism for better optimization ability of the ant colony 

algorithm and 2) search mechanism improvement.  

A pheromone increment model called ant constant for keeping the energy conversation of ants was 

proposed to represent the pheromone difference of different paths. At the same time a pheromone 

diffusion model based on info fountain of a path was established to strengthen the cooperation among ants 

and to reflect the strength field of pheromone diffusion. The experimental results in this study displayed 

Figure 32: Trail pheromones [65] 
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that the proposed method was successful in improving the searching ability of ACO and can obtain better 

search capability in combining with existing ACO variations.  

The same study was done and a new mechanism of pheromone increment and diffusion for TSP  were 

presented [66]. A new ant-constant model was proposed to increase the purpose of ant in choosing path. 

Figure 33 illustrates the new diffusion model based on a path which was introduced to strengthen the 

communication among ants.  

 

Figure 33: The info fountain of a path [66] 

The ant traversing the Figure 33 above will go from city to depositing pheromones forming a path 

intensity field with much larger scale to influence the sets of the cities[                       ]. The 

new diffusion model reflects the intensity fields and increases the action scale of the pheromone diffusion. 

Another proposed solution in this study was mutation strategy with lower computational complexity. The 

reason for using this mutation strategy was to improve the solutions obtained by artificial ants. Moreover 

by using mutation operator will lead to much smaller computation complexity and higher search 

efficiency.  

The population declining ant colony optimization (PDACO) algorithm is an improved Ant system 

algorithm which was proposed to solve TSP [67].  The PDACO algorithm was introduced for global 

searching capability improvement without increasing the computational complexity.  

Many ACO algorithms can be combined with PDACO to improve its performance. For instance, a 

combination of PDACO with MAX-MIN ant system (MMAS) and ant colony system (ACS) for solving 

TSP was presented [68]. Though MMAS and ACS can overcome the shortcoming of AS, the searching 

range still becomes smaller with large population of ant colony.  In PDACO algorithm the population of 

the ants is much bigger in the beginning. In this manner it can enlarge the searching range and as 

iterations carried on the population declines which can reduce computational complexity. 
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In Figure 34 shows the two presented solutions applied to TSP: PDMMAS by combining PDACO with 

MMAS and PDACS by combining PDACO and ACS. According to the experimental results, it showed 

that PDMMAS and PDACS have much better performance than the corresponding ACO algorithms and 

obtained the same computation complexity as PDACO algorithm. 

 

Figure 34: (a) Average length vs. initial population of PDMMAS in St70 (b) Average length vs. initial population of PDACS in 

St70 [68] 

The pheromone diffusion model of PDACO algorithm which takes a city as info fountain is shown in 

Figure 35. The PDACO algorithm sets up a pheromone diffusion model to enhance the relations among 

neighboring ants. The main intention was the pheromone union effects among nearby paths when ants are 

searching for paths.  The pheromones deposited on path will immediately influence the selection 

behaviors of neighboring ants located on the two cities connecting the path. Furthermore pheromone 

intensity will handle these two cities as two info fountains to diffuse around. Once the pheromone 

intensity increases on nearby paths, the behavior of neighboring ants will be easily influenced.  

 

Figure 35: The pheromone diffusion (a) sketch map of the pheromone diffusion (b) reduction pheromone diffusion model [66] 

(a) (b) 
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As shown in Figure 35  the pheromone intensity     and the distance    away the info fountain has 

more inverse ratio relationship. The reduction pheromone diffusion cone shaped model in Figure 35  

helps the PDACO algorithm to accumulate pheromone influences on neighboring cities results from the 

info fountain  .  

If the city C borders on the info fountain   , ants on city   are able to experience pheromone intensity. 

The height of the cone model is represents by h while   is an angle formed by the cone plane and cone 

axis. The diffusion radius is   and   is the distance between city   and info fountain   . This model 

enhances the collaboration among ants by amending the pheromone intensity. Therefore this strategy 

improved the effectiveness of AS.  

3.5 Limitations of State of the Art 

Most of the existing approaches have been described in this chapter and some successful results regarding 

topics in solving shortest path and TSP have been summarized. In this section we will discuss the 

limitation or drawbacks of the existing solutions. 

In computer program correlation matrix, adjacent matrix and distance matrix are used to calculate the 

shortest path based on network matrix of Dijkstra’s algorithm. When the number of vertices are very 

large, it occupies more CPU memory. For instance if the number of vertices are 3000 for one layer it 

needs                       bytes or 36MB memory, just as if the number of vertices are 6000 

it will then need 144MB memory. Therefore it is very difficult to apply the Dijkstra’s algorithm in 

analysis for huge data. Moreover, the fact that it does blind search can consume a lot of time waste of 

essential resources.  

GA can deal with combinatorial problems but it has a primary drawback which results from their 

flexibility. The design of GA requires an encoding schemes and one has to make sure that the evaluation 

function assigns a meaningful fitness values to the GA. It is often unclear how the evaluation function can 

be formulated for the GA to generate an optimal solution. Since it is computationally intensive 

consequently convergence can be a problem for GA.  What may seem like simple changes in the 

algorithm will often leads to unexpected types of emergent behavior. Therefore they aim to increase the 

understandability of GA and to apply more advanced analytical approach.  

Most of recent researches presented in this chapter were on the development of new and better performing 

variants of ACO. These algorithms are more effective in global search but still have a big chance to get 

stuck on local minima. As a result, attempts have been made to alleviate the movement of the ants 

through various models. ACO has been combined with mutation operator to enrich the diversity of 
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solutions and to enhance the ability to get a nearly optimal solution. However, ACO algorithm costs too 

much in time to produce a nearly optimal solution. Though some existing ACO variants can overcome the 

shortcoming of ACO, the searching range still becomes smaller or chaotic with large population of ant 

colony.  
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Chapter 4 – Proposed Solution 

The choice of ACO is motivated by the fact that there are so many existing variations of ACO algorithms.  

And the research on how to improve the performance of ACO algorithms is still an active topic. 

For the shortest path system we had to make sure that the ants first will work as expected from a classical 

ACO solution before we could move on to multi-leveling. Then we expect that the ants favor the single 

level over the multilevel as they are to be built towards the single level and then applied to the multilevel. 

It must be noted that in the results one will see the graphs make a jump at each level change for the TSP 

but not in the shortest path. It happens on both solutions but it can be calculated and removed in the 

shortest path due to the down resolution as each level is   ⁄  the size of its parent level. Because distances 

are Euclidian this can be calculated by being 4 times larger than its parent.  

On the TSP there had to be implemented a different solution as it its cost on the edges are determined by a 

number of different elements for an example distance. This shows that the same approach cannot be used 

for the shortest path and the TSP. For solving this we chose to cluster vertices in pairs then solve the new 

problem containing only half as many cluster-vertices and imprint the solution found onto the original 

problem. This has an impact on the data in the way that the graphs will look like they are worsening but 

that are only the performance on each individual level and different simulations must be ran and evaluated 

against the same level. 

4.1 ACO 

The ants themselves are simple and will be acting fairly similar in both the shortest path and the TSP 

problem which can be further investigated in Appendix A. Conceptually the ant from classical ACO 

approaches will outline an ant that has a certain amount of pheromones and disposes them evenly over the 

path between nest and food. The ant is also obliged to have a weighted random selection of the next 

movement where the pheromones of the previous ants acts as the weight, thus over time leading to a local 

optimal solution. 

As the way an ACO algorithm is built is not a strict model but more of theoretical function model. It 

allows for the addition of modifications or additions to the algorithm as we used the common additions of 

random movement at random times to make sure that the ant has the possibility to leave the pheromone 

trail and discover or improve by modification to the trail. The occurrence odds are defined in 4.2 Shortest 

path and 4.3 Traveling Salesman Problem (TSP). 
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The world in which the ants are simulated also has a trick, for the shortest path the global amount of 

pheromones are decreased by a factor determined by the tests later in the chapter. While the TSP solution 

have the pheromones placed as lists instead of as a depot, removing a randomized pheromone variable at 

a randomized global vertex where the odds of removal is described later in the section 4.3 Traveling 

Salesman Problem (TSP).   

4.2 Shortest path 

Our contribution to the shortest path problem is to determine the advantage of a multilevel ACO solution 

over the classical ACO. The multilevel solution of the map is done in a multi grid approach as detailed in 

section 3.2 Multilevel Algorithms. The map selected for this problem was a simple empty room map 

where the ants spawn point is the upper left floor pixel and food is the lower right floor pixel, allowing for 

a simple way to calculate the shortest path. This is the straight line between the spawn and food. For the 

shortest path we decided to place the pheromone as a value on each pixel and for re-traversal of the pixels 

by the ants to make sure they do not get stuck in their own “locked” path, for the total path a traversed 

vertex is only counted once.  

4.2.1 Shortest Path ACO – Exploration Factor 

When tuning the ants for the problem we looked at what variables we had in hand and notice that both the 

exploration factor together with the pheromone dissipation were two good candidates for tuning. The first 

value to tune was the ant exploration factor on a set of variables denoted as    [               

       
   

  
 

   

  
]                  to gain an indication of how the freedom impacts the solution as 

shown in Figure 36. 

 

Figure 36: ACO exploration variable 
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Figure 37 shows that the lower the value the better it performs. Nevertheless it also impacts the discovery 

of new solutions therefore it cannot be set too low as it would decrease the usefulness of running the 

solution over time. And as we see that the multilevel approach does outperform or perform evenly with 

the single level in all simulations.  

On one note, it is valuable to see that the variable of 
  

 
 performs almost without improvement (on 

average there is a minor improvement) within the single level. But when it was applied on the multilevel 

it performs on par with       , as with multi-leveling one achieves the initial drop at each level, where at 

a classical only one of these drops. 

 

Figure 37: MG-ACO exploration variable (4 levels) 

 

4.2.2 Shortest Path ACO - Pheromone Dissipation 

For the variable of pheromone dissipation in MG-ACO it is notable that the higher the dissipation value 

is, the better the solution as shown in Figure 38. If we use 100% dissipation that would leave us at an 

initial condition (same as start) for each run with no improvement showing that we need some transfer of 

pheromone information, assumable only from antn-1 to antn in a linked list style.  
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Figure 38: MG-ACO pheromone dissipation variable (4 levels) 

4.3 Traveling Salesman Problem (TSP) 

For the TSP we deployed a fairly classical ACO approach, where every road between vertices stores a list 

containing the pheromones dropped by passing ants. And the road selected by the ant is decided by 

performing a weighted random selection where the edge pheromone sum divided by distance will be the 

edge weight, or in some cases the road is picked at random dubbed exploration factor.   

4.3.1 TSP ACO – Exploration Factor 

Figure 39 shows different exploration factors we have tested to find out which value is appropriate in 

performing experiments. As 0.05 (5%) performs the best beating 0.1 by a minor margin.  

 

Figure 39: Exploration Factor 
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As the data can become somewhat overlapping, we added a moving average to the data making it easier 

to see the differences in performance. A little surprisingly 0% freedom outperformed 0.5% therefore we 

assume that this is due to the removal of vertices which creates connectionless vertices and selects edges 

at random. 

4.3.2 TSP ACO – Pheromone Dissipation 

We performed a range of tests to find the close to optimal variable for pheromone dissipation and 

exploration factor. In these tests we initially performed them on a simple system where every vertex is 

positioned on a radial allowing for a good baseline test to check against the optimal as it would be in an 

uninterrupted circle. 

The pheromone dissipation simulations were ran with the exploration factor set to 0.005 and we see that 

when the pheromone dissipation goes well below 0.05 (5%) the performance of the ants improves 

extremely. As a side vertex the 0% performs somewhat worse than 5% and it is more expensive as the 

lists of pheromones become very large. The overall results of each pheromone dissipation values are 

shown in Figure 40. 

 

Figure 40: Pheromone dissipation distance per ant 

4.3.3 TSP ACO – Cross comparison 

As we now have a fairly good baseline for which variables to use for the 

classical approach, we also wanted to make sure that these variables 

performed expectedly in other solutions. Thus we performed the cross 
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0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1
33

5
66

9
10

03
13

37
16

71
20

05
23

39
26

73
30

07
33

41
36

75
40

09
43

43
46

77
50

11
53

45
56

79
60

13
63

47
66

81
70

15
73

49
76

83
80

17
83

51
86

85
90

19
93

53
96

87

D
is

ta
n

ce
 

Number of ants 

0%

1%

5%

10 %

Optimal

Figure 41: Vertex positioning for 

advanced TSP testing 



48 
 

We picked the best 2 solutions from both pheromone dissipation and exploration factor then combined 

these into 4 tests [Dissipation, Freedom] => {[0, 0], [0, 0.005], [0.05, 0], [0.05, 0.005]} as shown in 

Figure 42. This increased the complexion of the problem to solve and to make sure that we receive a 

solution capable of solving more than the simplest problems. 

 

Figure 42: Cross comparison of variables 

As we can see the difference between each type is fairly clear, we cannot drop both to 0 as there while be 

no change in the ant’s movements over time. Also it shows that having a little of both is better than 

having nothing of one. If we only compare the freedom, we can see that 0% freedom outperformed 0.5% 

in the simple radial position although this does not hold up when the complexity increases. Thus we see 

that [0.05, 0.005] vastly outperforms the other candidates leaving us with pretty much only one good 

candidate for the ACO configuration. 

4.3.4 TSP Multilevel ACO (ML-ACO) 

Solution description 

We notice that pairing would work out fairly well and was implemented based on the paper previously 

discussed [40] where we found that the amount of levels per set would be best suited by pairing the 

vertices one layer at a time until one had a level with 4 or less vertices in it as shown in Figure 43. This 

means that 100 vertices would become 5 levels containing [50 (pairs), 25 (pairs), 13 (12 pairs + 1 single), 

7 (6 pairs + 1 single) and 4 (3 vertices + 1 single)].  

5000

10000

15000

20000

25000

30000

35000

1

37
2

74
3

11
14

14
85

18
56

22
27

25
98

29
69

33
40

37
11

40
82

44
53

48
24

51
95

55
66

59
37

63
08

66
79

70
50

74
21

77
92

81
63

85
34

89
05

92
76

96
47

D
is

ta
n

ce
 

Number of ants 

[0, 0]

[0.05 , 0]

[0 , 0.005]

[0.05 , 0.005]

Figure 43: Leveling up from n to n+1 



49 
 

The single vertex is added in case of odd sets so that in theory the last set of 4 (3+1) could be grouped 

into 2 pairs. The vertices are paired into so called clusters where we assume that the cluster A’s 

distance/cost to another cluster B is the shortest cost from the internal vertices of cluster A to the cheapest 

vertex within cluster B as seen above. 

This simple technique for clustering can be performed over and over again on the end result to achieve a 

lowering of the problem complexity until the wanted complexity is achieved. Solving the problem leads 

to another problem, how do we add the solution to the level above?  

We went through several solutions most of which limited the solutions in a sharp way by eliminating the 

edge of level n-1 based on the solution of level n. This meant that ants would need to have rules of 

movement defeating the purpose to use them as it could be solved with a simple rule based solution. So 

the solution we selected ended up on being a weighting of level n-1 based on the solution of level n as 

seen in Figure 44.  

 

Figure 44: Propagating the solution when leveling down from level n to n-1 

The solutions of the simplified levels are then propagated up to the level above and solved it again 

continuing that solution onto the initial problem. This will make the initial problem weighted towards 

specific local minima. The local minima will be refined towards global minima, which we propose to be 

performed quicker after having the local minima as an initial start solution for the initiated level. The code 

can be seen and checked in Appendix B.  

For the next several experiments we performed a test to gain knowledge of how different leveling 

intervals performed. As we have seen that using a static interval performs fairly bad as well as using a too 

steep function makes for too many ants in total, as the top level would run indefinitely.  

So the solution we picked was ∑                       
   as shown in Figure 45 where the multiplier   

is used to scale the total amount of ants in a run and level   is the total amount of levels adjusted as 

previously described. Allowing for a more consise test enviroment and yet again it must note that only the 

same steps can be compared against each other. 
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Figure 45: Comparison of different complexity increment formulas 

4.3.5 Initial cluster testing 

To test this idea we used a fairly small map 

running a test experiment on a very small scale. 

Initially we ran a series of small tests to attempt 

in achieving a concept of what was to be 

expected. The initial test was performed in a 

circular TSP map as shown in Figure 46 with 100 

vertices, 4 levels and 300 ants versus a normal 

single level ACO.  

   Figure 46: Vertex map in the circular experiments 

The results in Figure 47 shows that the multilevel outperforms single in shear distance. It is worth noting 

that the steps in the multilevel is caused by the steps in which the multilevel ACO is leveled, thus only the 

last step is comparative to the classical single level. 
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Figure 47: Single simulation on 100 vertices with 300 ants 

Clustering variance 

Another valuable experiment is by looking at the size of the clusters. Could it be that a larger cluster 

would solve to a better solution, or find one at an earlier point in time? So we began investigating the 

different ways to run clusters of 3 –> k nearest and started running the experiments seeing that the larger 

clusters at least on a small scale looks to be worsening the solution as shown in Figure 48.  

 

Figure 48: Comparison of different types and sizes of clusters 
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When expanding the random pairing up to random triplets, we see a worsening in the final solution. It is 

worth noting that in several of the datasets, different solutions reach lower distances in sub levels than the 

best at top level. This is due to the pairing method fetching the shortest distances between clusters and it 

becomes more visible as the vertex count in a cluster increases.  

The solution is made by leveling down the problem to a simpler problem and thus solving that problem 

will bring the solution to the upper level as a base for which one can make a solution for the level. This 

allows the next problem not to start bare. Instead it can start with some knowledge of how the previous 

solution was solved to provide speedups and improvements in the final solution. Figure 49 shows how a 

solved levels solution is imprinted onto the upper level, giving as seen predefined local minima for some 

sets of vertices. This improved the speed of which ants improve the path as well as it eliminated many of 

the “dead” roads, leading to an overall better path. 

 

Figure 49: Imprint and improvement of path on per level increase 
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Chapter 5 – Experiments & Results 

The experiments performed are designed to see how the different solutions act on different problems. 

Therefore we chose two very common problems – shortest path and TSP. Shortest path problem are 

problems designed solve movement in realistic environments. TSP on the other hand is a problem of 

combinatorics popularized by academia and in recent year’s features like GPS navigation and Google 

Maps. 

5.1 Shortest path 

The initial experiments we performed were within the problem of shortest path in a uniform area. We 

made the setup as described in 4.2 Shortest path, making the map of simple flat room where we want to 

travel from corner to the opposite corner. The map was compromised of 565x428 pixels where every 

pixel is a vertex connecting to all surrounding vertices making 241, 820 vertices, 1,934,560 edges and we 

allow re-traversal of an unlimited amount of possible paths. 

5.1.1 ACO vs MG-ACO 

The ant colony (start) is placed at (3, 3) and food (finish) are 

placed onto (561, 424).  Since the map we used as a baseline 

has nothing of interest in it, meaning that a straight line can be 

used as the baseline optimal path (Optimal = 421). The first ant 

runs on random and the initial path might be vastly different 

between individual runs as the first ant might find the 100% 

best path. For the first 5 levels the amount of ants and map size 

reduction is shown in Figure 50. 

As the ants are random in nature, they are allowed in this implementation to perform re-traversal on the 

map. This makes it possible for an ant to in theory never reach the goal within an acceptable time. For 

future experiments we would recommend for the pheromones to be stored in a way such that they also 

gives directions for the next vertex. 

To attain the shortest path (Optimal), we ran an algorithm we developed (MT-Dijk) [69] which was built 

of Dijkstra’s algorithm. It uses branched strands by running each of them on its own thread instead of 

doing the radial entailed in Dijkstra’s algorithm. This was done in order to quickly calculate the shortest 

path between A and B in a 2D environment.  

Level Ants Reduction 

5 62 256 

4 125 64 

3 250 16 

2 500 4 

1 63 1 

Figure 50 : Ants and resolution reduction factor 

per level. 
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Figure 52: Average duration difference between ACO and 

MG-ACO 

0:00:00
0:10:05
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2:21:07
2:31:12

Average duration 

ACO

MG-ACO

The simulation was performed and averaged over several runs comparing single level, multilevel and 

MT-Dijk (optimal) as shown in Figure 51. The figure shows that there are not so much changes in terms 

of single or multilevel results. However specific jumps might be seen at certain stages and this is caused 

by the level change at certain stages in the ant counter. We can see that both ACO and MG-ACO have the 

same performance on a per ant basis.  

 

Figure 51: ACO vs MG-ACO vs Optimal (log scale) 10 simulations average 

For the initial simulation map the MT-Dijk is somewhere in the order of 240x faster, solving the problem 

in 0.5s. A single threaded Dijkstra spent about 1.2s on the task. This allows us to assume that the MT-

Dijk’s performance increase is about half on one core but roughly doubles on 4 cores as it uses all threads. 

As the MT-Dijk is somewhat faster it will be used for the further tests. 

5.1.2 Data comparison 

The initial results points towards MG-ACO being both 

faster and cheaper in terms of memory and time as 

shown in Figure 52. Memory consumption was lowered 

in terms of megabytes per second averaged over total 

runtime. And the peak memory consumption is the 

same on both ACO and MG-ACO. The cost of running 

ants over the top level would be the same as running 

them as ACO. In theory the cost of the problem should 

be at least 
    

        
bytes assuming that each vertex is a 

double and level 1 is top and n is the most downscaled 

one. 
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The other performance increases are time. The average time for solving the problem using the single level 

approach spent between 1,525s - 22,734s averaging at 8,434s.  These gave us a good insight to the 

variable time spent solving as it is a probabilistic approach. The same time difference can be seen in the 

MG-ACO approach spending between 208s - 906s averaging at 479s. This leaves us with an average time 

improvement factor of 17.6x, ranging in the area of 1.7x for the worst case and 25.4x in the best case, 

when looking at it from the multilevel point of view. 

This allows us to discern that the MG-ACO is better than ACO on several use-cases. However, for usage 

on shortest path problems, it does not perform better in terms of creating a path. Therefore MG-ACO is a 

viable alternative in problems un-solvable by the ACO within an acceptable timespan, as it is several 

times faster.  

The multi grid solution is in earnest similar to decreasing the resolution of the problem and then solving 

the problem at the down resolved problem. The lower problems would always become   ⁄  of the 

previous problem as one combined 4 pixels into one. This made problems previously un-manageable by 

regular ACO into problems manageable by MG-ACO. 

5.1.2 Large Maps 

As an additional test we ran the MG-ACO on a map 

with 38,286,875 vertices making it roughly 160x 

larger. The map was run using 8 layers (MG8-ACO) 

expending 1700 ants in  9000s. While the ants were 

distributed over each level making each level 

expending 225 ants. 

As we ran the MG-ACO against MT-Dijk on small 

maps 561x424, the MT-Dijk outperformed the MG-

ACO time wise in a factor of 240x as shown in 

Figure 53.  As the complexity of the problem 

increases the difference between them decreased. The 

large map is 160x larger, but the time difference to 

MG-ACO was only 70x, showing as expected that 

the performance difference decrease when the size of 

the problem increases.  
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Figure 53: Large map simulation 
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As we know the MG-ACO is around 17x (ranging from 1.49x - 25.4x averaging at 17x) faster than ACO 

then we did not even try to run it over the large problem as we can assume it should be in the range of 

9000s - 14,000s. 

The MT-Dijk solves the XXL map in 129s (70x faster than MG-ACO) peaking at 8.5 GB of memory and 

freezing (fetching) during runtime compared to the MG8-ACO’s 1.6GB peak usage.  Notably the setup 

alone without anything running just displaying and rendering the XXL image at 60 fps with double 

buffering used about 0.7 - 1.3 GB of memory idling. This means that MG-ACO is much cheaper than 

measured while MT-Dijk is only somewhat cheaper memory wise.  

We compared a multithreaded variant of Dijkstra’s algorithm (MT-Dijk) that had been optimized and 

cleaned, against a single threaded MG-ACO that is in development. This was done on a 4 Core 8 thread 

Intel i7-3820 with 16 GB of memory being highly capable of handling heavy multithreaded work. The 

MT-Dijk spent 100% on the CPU while the MG-ACO only expended 20 - 40%. This should be taken into 

account in the MG-ACO’s favor as a side note rather than definite indication of anything. 

5.2 Traveling Salesman Problem (TSP) 

TSP is a well-known problem within decision problems as explained in earlier sections. For the 

experiments setup it is explained in the proposed solution, also the setup and fine-tuning is made for 

single level “Classical” ACO. 

5.2.1 ACO 

For reference we implemented a classical approach of 

the TSP, creating a good base to perform the multi-

leveling upon. In our simulations we used 100 cities 

(vertices) yielding a total of 4950 possible edges as 

shown in Figure 54. 

The classical ACO approach is not the most interesting 

solution but it must be done as to create a sort of 

baseline for further experiment. The ant and variables 

are set to best suit the classical approach and to be ran 

on the multilevel in later experiments. 

This means that we will tune the ants on the single level 

problem. In this way we will make sure that the Figure 54: TSP 100 vertices (Blue) with road strength 

(Red) (After a classical ACO simulation) 
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multilevel ants are ran with the parameters optimized for single level, allowing for the evidence to be in 

favor of single level.  

Setup wise we have performed experiments shows that the ants perform well under an exploration factor 

at 0.5% and pheromone dissipation rate at 5%. Running ACO on a problem set with static or random start 

vertex as shown in Figure 55 and Figure 56 which appears to have some impact on the chance to end up 

on global minima. This shows us that the set can converge on series of optimal paths even though ants 

have random start for simplicity and comparativeness. The future experiments will be ran with a static 

start vertex. 

 

Figure 55: Static seed vertices 

 

 

Figure 56: Random seed vertices 
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5.2.2 Multilevel-ACO (ML-ACO) 

For the ML-ACO we started looking at different ways 

of clustering. One concept was to cluster the problem in 

large cluster as seen in Figure 57 where we have split 

the problem into 10 using k-nearest. But a different and 

simpler solution was performed where we only paired 

two and two, as explained in the experiment setup.  

This allows us to create a fairly good baseline to 

perform and compare against. We chose to run the 

multilevel by clustering two and two in a k-nearest 

fashion according to the research outlined [40] in 3.2 

Multilevel Algorithms. 

K-nearest vs Single-level  

The experiments were performed with the multiplier set to 20 for 100 vertices and 9 for 500 vertices, 

totaling at 1100 and 1200 ants per run respectively. The first natural test was done to scale the initial test 

case with 300 ants up to the new ranges.  

The first experiment performed was on the 100 vertices over 5 levels and 1100 ants as shown in Figure 

58. This experiment shows that the multilevel approach achieves a better local minima than the single 

level. The same result can be seen repeated in the data collected on the 500 vertices problem in Figure 59. 

 

Figure 58: 25 simulations on 100 vertices with 1100 ants 
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Figure 59: 25 simulations on 500 vertices with 1200 ants 

The predictable solutions were successful, one could argue how this multilevel solution performs in a 

randomized environment. Do the k-nearest have anything to do with the outcome? Can we pair the 

vertices randomly?  

K-nearest vs random pair 

To further verify the evidence we performed more extensive test. The first environment is to do the tests 

on a randomized environment instead of the circular one. The outcome of running the multilevel in the 

randomized world is shown in Figure 60. Further inclusion of randomized pairing was also performed 

alongside the experiments on random maps. Displaying the performance difference and creating a 

randomized solution baseline. 

 

Figure 60: Outcome after a multilevel run in a randomized world. Pheromone strength/edge (Width, Red) and vertices (Blue) 
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As the results shown in Figure 61, performing the multilevel on a randomized environment does not give 

the same performance difference as the circular problem. It yields better local minima for both random 

pairing and k-nearest pairing over the single level. This displays an advantage of k-nearest over random 

pairing. 

 

Figure 61: Nearest pairing vs random pairing (100 vertices) 

The 500 vertices problem seen in Figure 62 shows that the same results are true for the 500 vertices 

problem as it is on the 100 vertices problem. Displaying a probable advantage of random and k-nearest 

over single level, where k-nearest outperform them both.  

 

Figure 62: Nearest pairing vs random pairing (500 vertices) 
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To cover more basis some minor experiments was performed. This is because we wanted to make sure 

that the experiments done will remain true for more fringe cases, such as massive amounts of ants, visual 

conformation of solutions and improvements seen in graphs and the verification of nearest pair versus 

triplets and quads. 
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By comparing against a simple and naive algorithm, we chose to compare it against the Greedy Nearest 

Neighbor (NN), its counterpart Greedy Furthest Neighbor (FN) and random paths as shown in Figure 63. 

As we quickly noticed that the random path is as good as the first ant with no improvement and the FN is 

much worse. The NN is on average 25% worse than the best path [70]. But we do see that the multilevel 

converges towards the NN but the amount of ants is too small to actually display the crossing which 

requires a bigger run. 

 

Figure 63: Comparison against random path and greedy 

Large Number of Ants 

To discover other features of the multilevel approach we decided on performing experiments using an 

immense amount of ants to confirm the convergence on a path. The multiplier was set to 1000 making the 

problem expend about 55,000 ants as shown in Figure 64. 

 

Figure 64: Simulation of 55,000 ants over 100 vertices comparing random pair against nearest pair 
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The experiment in Figure 64 displays the single level ACO becoming “stuck” on local minima. The 

randomized pairing ends up on another local minimum and nearest 2 pairing method produce an even 

better local minimum than random pairing. This result conforms to the results seen in this experiments 

that we can assume based on the data that the ant count at which the problem is leveled could have been 

done at earlier a more rapid rate. 

Looking at the bigger picture allows us to achieve solutions which are seen in some cases only over a 

large number of ants. This displays problems only seen in large runs, for instance the leveling is not being 

optimally placed, for the reason that it converges on each of the level steps for some time before it 

performs the “jump”. 

Performance wise we see that multi-leveling on TSP manages to perform at the level of worst solution 

from a greedy nearest neighbor solution as shown in Figure 65. Because ACO is a probabilistic and the 

greedy algorithm is deterministic, this means that the ant cannot be forced to give the worst or a bad 

solution, in opposition to greedy being forcible to deliver the worst path in a TSP [71]. This point towards 

ACO being a good alternative to the greedy algorithm, as the 2-nearest pairing and leveling can be used to 

gain a comparable result to that of an expected result of a greedy TSP solution. 

 

Figure 65: Simulation of 55,000 ants over 100 vertices, comparing random pair and nearest pair against greedy nearest 

neighbor 
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As the leveling is something we would assume at earlier times in the multi run and thus decrease the 

runtime spent. We ran a simulation with shorter intervals on the levels over 10,000 ants, showing that the 

leveling can be performed only within the initial drop in a regular ACO run.  This shows that the ants can 

be forced to converge on a better solution in about the same time of the regular ACO as seen in Figure 66. 

 

Figure 66: Comparison of the amount of ants used to perform the leveling 

There are areas where one may have wanted to do things differently, most notably in the optimization of 

the ants for different solutions or levels as shown. We assume that one can achieve better solutions by 

using fewer ants with optimized exploration factor, pheromone dissipation, pheromone amount and/or 

keeping the levels until convergence before leveling up instead of using a rigid rule or in our case a 

formula. 

That aside, as we used the same variables for single and multilevel ants, this allowed us to see clearly the 

difference in performance when doing multilevel versus single level. Not only did the multilevel 

outperform the single level in all experiments measured on the TSP in shear distance found. But it also 

performed in a less random “noisy” manner.  

One can assume that the single level solution would get a head start while the multilevel actually 

performs the work by building the layers. However with smart structuring, the system should only have to 

be structured once and then the action of adding and removing would be worst case as big as adding k-
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Thus decreasing was the possible head start gained by the single level at initial clustering. And at each 

leveling up of the problem, the multilevel solution is multitudes faster on the lower leveled problems. As 

the complexity of the problem has been decreased to 
        

      
 , allowing for a problem of 1000 vertices 

containing      solutions. Edges to be solved as problems only contain 3+1, 7+1, 15+1, 31, 62+1, 125, 

250, 500 and 1000 vertices where the +1 is a cluster that is not full for the TSP. 

Graphical visualization of our Solution 

A more direct way where one can observe the multilevel advantage is by direct observation of samples at 

certain intervals. Allowing for a quick overview of the results at certain stages, this provides an easy 

spotting of the differences between single level and multilevel. Figure 67 illustrates that the multilevel 

imprinted solution helps to solve the solution at a much quicker pace than the single level ACO solution. 

To achieve the ant count for the multilevel we adjusted the level multiplier accordingly. 

This strongly implies that multilevel approaches will outperform single level approaches in most, if not 

all problems where one will prefer to use an ant colony optimization algorithm. By using a multilevel 

approach to ACO will give a range of advances within the solution albeit not all at the same time. 

Improvements range from improved local minima, lower memory consumption and shorter CPU time. 

This also allows us to make other assumed improvements within areas like Ethernet communications 

where one could assume that less packets would be needed to discover good paths through an 

Autonomous System.  

Figure 67: Visual comparison of multilevel vs single level on a symmetric TSP 
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Chapter 6 – Conclusion 

Ant colony optimization metaheuristic is a method inspired by foraging behavior of real ants. Ant colony 

optimization has already shown a very good performance in many combinatorial problems and for some 

real applications, but research on multilevel variants of the algorithms is almost completely missing in the 

literature. In this master thesis, contrarily to most of research on shortest path and traveling salesman 

problem are on single level ant colony optimization approach. We have presented and studied some 

multilevel variants of ant colony optimization, where the searching ability and computation time are the 

objectives to optimize. 

In this work we have proposed multilevel variants of ant colony optimization and discussed the different 

elements for multilevel algorithm from various researches which gave us a better understanding of the 

multilevel scheme. The main objective of the proposed algorithm is to increase the performance of the 

single level ant colony optimization algorithms in solving the two given problems – shortest path and 

traveling salesman problem.  

The multilevel variant in solving shortest path problem have gained advantages within hardware cost with 

a drastically lowered overall run time by a factor of about 10-20x and decent lowering of the average 

memory consumption. Traveling salesman problem multilevel achieved an overall better solution than 

single level providing a solution matching with the greedy nearest neighbor algorithm.  

Therefore indicating that the multilevel should provide a solution only 25% longer than the best path on 

randomized problems and would not, in contrast to greedy neighbor, cannot lured into providing the worst 

path. In our experiments the multilevel approach yielded a path about 20 - 50% shorter on random maps 

and on circular maps it expends about       ants to perform what single level expends     ants to do. 

We therefore conclude that the performance of multileveled approach on both shortest path and traveling 

salesman problem have achieved great advantages and successfully increased the ability of single level 

ant colony optimization algorithm. 
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Chapter 7 – Future Work 

With introduction of multilevel ant colony optimization, it opens up for additional research in the field. 

Future work includes uncovering what a distributed solution might add to the results. Other possibly more 

complex forms of clustering and/or leveling are also something one would assume being of some worth. 

For instance, the problem of shortest path, mesh refinement as seen in the world of graphics, the mesh in 

3D graphics use triangles of varying size and complexity, depending on the interest of the users view 

point. This could be used as a means for a dynamical fine-grained multilevel approach.  

For the clustering of TSP there are exists several other ways to perform it. Our approach of doing it pair 

wise is a fairly straightforward approach yielding good results. However more interesting and complex 

approaches such as the very similar approach of k-means to eliminate the outliers before clustering. This 

can be used in the final solution or even classify them at each level to solve them when they were in 

bound – at the level detected. This all shows that there are areas where other clustering approaches could 

be fitted, but we assume by looking at the collected data that multi-leveling attain better solutions.  

Furthermore, the proposed multilevel ant colony optimization algorithm can enhance the exploration 

factor, pheromone dissipation, pheromone amount or other parameters to enrich the diversity of solution 

and increase the ability of finding an optimal solution.  
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Appendices 

Appendix A 

Ant Code Shortest Path 

namespace Masters.Algorithm.ACO 
{ 
    public class Ant 
    { 
        private int ID; 
        private int[] pos; 
        private int[] posChange = new int[] { 0, 0 }; 
        private int distanceMoved = 0; 
        private Random rand; 
        bool discoveryAnt = false; 
        public bool[,] beenAt; 
        public int[,] Path; 
        public Ant(int seed) 
        { 
            rand = new Random(seed); 
            discoveryAnt = rand.NextDouble() < 0.1; 
            ID = AntStore.getID++; 
            pos = new int[] { Store.startX, Store.startY }; 
            Path = new int[Store.Width, Store.Height]; 
            beenAt = new bool[Store.Width, Store.Height]; 
            for (int y = 0; y < Store.Height; y++) 
            { 
                for (int x = 0; x < Store.Width; x++) 
                { 
                    beenAt[x, y] = false; 
                    Path[x, y] = -1; 
                } 
            } 
            StartAnt(); 
        } 
        private void StartAnt() 
        { 
            //Set first node visited 
            beenAt[pos[0], pos[1]] = true; 
            //Find path 
            while (Store.stopX != pos[0] || Store.stopY != pos[1]) //While not 
finished 
            { 
                getNextDirection(); 
                if (isMovementValid()) 
                { 
                    Move(); 
                } 
            } 
            WorkPhermone(); 
 
        } 
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        private void WorkPhermone() 
        { 
            distanceMoved = 0; 
            foreach (bool a in beenAt) 
                distanceMoved += a ? 1 : 0; 
            //Store distance 
            AntStore.distances.Add(distanceMoved); 
 
            //Pheromones/distance * how much better it is than average 
            double phermoneDeposit = (AntStore.PhermonePerAnt / 
(double)distanceMoved); 
            //phermoneDeposit = Math.Pow(phermoneDeposit, 2); 
            if (distanceMoved < AntStore.shortest)//Store best 
            { 
                AntStore.bestPath = Path; 
                AntStore.shortest = distanceMoved; 
 
                //Some console info 
                Console.WriteLine("\nBest dist: {0} ant no {1} dropped {2} 
pheromones", distanceMoved, ID, phermoneDeposit); 
            } 
            else 
            { 
                //Some console info 
                Console.Write("\rAVG dist: {0} @ ant {1}", 
Math.Round(AntStore.distances.Average(), 1), ID); 
            } 
            Store.ResultListbuff.Add(new ResultListItem() { Ant = ID, Distance = 
distanceMoved }); 
            if (distanceMoved <= AntStore.distances.Average()){ 
                AntStore.ReducePhermones(rand); 
                AntStore.IncreasePhermones(phermoneDeposit, beenAt); 
            } 
            else if (discoveryAnt) 
            { 
                AntStore.IncreasePhermones(phermoneDeposit, beenAt); 
            } 
        } 
        private void Move() 
        { 
            //Move 
            pos[0] += posChange[0]; 
            pos[1] += posChange[1]; 
            //Memory 
            /* 
            if (beenAt[pos[0], pos[1]]) 
            { 
                for (int y = 0; y < Store.Height; y++) 
                { 
                    for (int x = 0; x < Store.Width; x++) 
                    { 
                        if (Path[x, y] >= distanceMoved) 
                        { 
                            Path[x, y] = -1; 
                            beenAt[x, y] = false; 
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                        } 
                    } 
                } 
                distanceMoved = 0; 
                for (int y = 0; y < Store.Height; y++) 
                { 
                    for (int x = 0; x < Store.Width; x++) 
                    { 
                        if (beenAt[x, y]) distanceMoved++; 
                    } 
                } 
            }*/ 
            beenAt[pos[0], pos[1]] = true; 
            //Path[pos[0], pos[1]] = distanceMoved++; 
 
            //Update Position 
            AntStore.antPos[ID] = pos; 
        } 
        private void getNextDirection() 
        { 
            //Check for possible directions 
            double fermoneSum = getSurroundingSum(); 
 
            if (fermoneSum == 0 || AntStore.explorationFactor >= rand.NextDouble()) 
//first, "locked" or exploratory ants 
            { 
                posChange[0] = rand.Next(3) - 1; 
                posChange[1] = rand.Next(3) - 1; 
            } 
            else 
            { 
                //do roulette selection of the connecting nodes 
                RouletteSelection(rand.NextDouble(), fermoneSum); 
            } 
 
        } 
        void RouletteSelection(double stopAt, double degreesInCircle) 
        { 
            double tmpCounter = 0; 
            //Get new movement direction 
            for (int y = -1; y <= 1; y++) 
            { 
                int y1 = y + pos[1];//Micro optimization 
                for (int x = -1; x <= 1; x++) 
                { 
                    int x1 = x + pos[0];//Micro optimization 
                    if (x1 < 0 || y1 < 0 || (x == 0 && y == 0) || (x == posChange[0] 
&& y == posChange[1]) || x1 >= Store.Width || y1 >= Store.Height) continue;  
                    double fermoneXY = AntStore.FermoneMap[x1, y1]; 
                    if (fermoneXY >= double.Epsilon) 
                    { 
                        double nextTotalFermoneXY = tmpCounter + fermoneXY; 
                        if (tmpCounter / degreesInCircle <= stopAt && 
nextTotalFermoneXY / degreesInCircle > stopAt) 
                        { 
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                            posChange[0] = x; 
                            posChange[1] = y; 
                            return; 
                        } 
                        tmpCounter = nextTotalFermoneXY; 
                    } 
                } 
            } 
        } 
        bool isMovementValid() 
        { 
            try 
            { 
                return AntStore.FermoneMap[posChange[0] + pos[0], posChange[1] + 
pos[1]] != -1 /* not wall */ && !(posChange[0] == 0 && posChange[1] == 0) /* not 
standing still*/; 
            } 
            catch { } 
            return false; 
        } 
        double getSurroundingSum() 
        { 
            double result = 0; 
            for (int y = -1; y <= 1; y++) 
            { 
                int y1 = y + pos[1];//Micro optimization 
                for (int x = -1; x <= 1; x++) 
                { 
                    int x1 = x + pos[0];//Micro optimization 
                    if (x1 < 0 || y1 < 0 || (x == 0 && y == 0) || (x == posChange[0] 
&& y == posChange[1]) || x1 >= Store.Width || y1 >= Store.Height) continue;  
                    double fermoneXY = AntStore.FermoneMap[x1, y1]; 
                    if (fermoneXY >= double.Epsilon) 
                        result += fermoneXY; 
                } 
            } 
            return result; 
        } 
    } 
} 

Ant Code TSP 

namespace TSM_ACO 
{ 
    public class Ant 
    { 
        List<Vertice> path = new List<Vertice>(); 
        List<Node> NodePath = new List<Node>(); 
        Node At; 
        int Name = 0; 
        bool Rand; 
        public Ant(Node A, int name, bool random = false) 
        { 
            Rand = random; 
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            Name = name; 
            moveTo(A); 
            Walk(); 
        } 
        private void moveTo(Node A) 
        { 
            At = A; 
            NodePath.Add(At); 
        } 
        private void Walk() 
        { 
            SS.Reduce(); 
 
            while (NodePath.Count <= SS.Nodes.Count()) 
            { 
                Vertice tmpPath = At.getNext(NodePath, At, Rand); 
                if (tmpPath == null) 
                { 
                    break; 
                } 
                moveTo(tmpPath.getOther(At)); 
                path.Add(tmpPath); 
            } 
 
            double distance = path.Sum(a => a.Distance); 
            Console.Write("\rAnt {0} Moved {1}", Name, distance); 
 
            if (distance < SS.ShortestDistances) 
            { 
                SS.bestAntNo = SS.TopAntCount; 
                SS.ShortestDistances = distance; 
                SS.bestPath = path; 
            } 
 
            SS.Increase(path, SS.Q / distance); 
            SS.LastAntPath = path; 
            SS.distances += distance + Environment.NewLine; 
            SS.TopAntCount++; 
        } 
    } 
} 

Appendix B 

namespace TSM_ACO 
{ 
    class Cluster 
    { 
        public Node node; 
        public List<Vertice> connection = new List<Vertice>(); 
        public Color color; 
 
        public Node[] ParentNodes; 
        public Cluster(Node[] nodes) 
        { 
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            ParentNodes = nodes; 
            color = ParentNodes[0].getColor(); 
            int X = 0, Y = 0; 
            if (ParentNodes.Length == 1) 
            { 
                ParentNodes[0].setColor(Colors.Transparent); 
                X = ParentNodes[0].X; 
                Y = ParentNodes[0].Y; 
            } 
            else 
            { 
                ParentNodes[0].setColor(Colors.Transparent); 
                ParentNodes[1].setColor(Colors.Transparent); 
                X = ParentNodes[0].X - ((ParentNodes[0].X - ParentNodes[1].X) / 2); 
                Y = ParentNodes[0].Y - ((ParentNodes[0].Y - ParentNodes[1].Y) / 2); 
            } 
            node = new Node(X, Y); 
            node.setColor(color); 
        } 
        public bool nodeExist(Node n) 
        { 
            for (int a = 0; a < ParentNodes.Length; a++) 
            { 
                if (ParentNodes[a] == n) return true; 
            } 
            return false; 
        } 
    } 
    class SuperCluster 
    { 
        List<Vertice> chosenPath = new List<Vertice>(); 
        List<Vertice> RoadList = new List<Vertice>(); 
        List<Cluster> Clusters = new List<Cluster>(); 
        public List<Node> LevelNodes = new List<Node>(); 
        public SuperCluster child = null; 
        public SuperCluster(bool init = false) 
        { 
            if (init) 
            { 
                LevelNodes = SS.Nodes.ToList(); 
                RoadList = SS.RoadList.ToList(); 
            } 
        } 
        public void SolveSet() 
        { 
            SS.Nodes = LevelNodes.ToArray(); 
            SS.RoadList = RoadList.ToList(); 
            SS.ShortestDistances = int.MaxValue; 
            foreach (Node a in SS.Nodes) 
            { 
                a.setColor(Colors.Transparent); 
            } 
            solveAnt(); 
            if (child != null) 
            { 
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                child.SolveChild(SS.bestPath, SS.Nodes[0], this); 
            } 
        } 
        public void SolveChild(List<Vertice> lastSolution, Node next, SuperCluster 
parentCluster) 
        { 
            SS.RemovalFactor = 0.1d; 
            foreach (Vertice a in lastSolution.Where(aa => aa.Phermones.Count > 0))  
            { 
                for (int b = 0; b < parentCluster.Clusters.Count; b++) 
                { 
                    if (a.A == parentCluster.Clusters[b].node || a.B == 
parentCluster.Clusters[b].node) 
                    { 
                        for (int c = b; c < parentCluster.Clusters.Count; c++) 
                        { 
                            if (a.A == parentCluster.Clusters[c].node || a.B == 
parentCluster.Clusters[c].node) 
                            { 
                                foreach (Node a1 in 
parentCluster.Clusters[b].ParentNodes) 
                                { 
                                    foreach (Node b1 in 
parentCluster.Clusters[c].ParentNodes) 
                                    { 
                                        foreach (Vertice abV in 
a1.Connections.Where(g => g.getOther(a1) == b1 && g.getSum() == 0)) 
                                        { 
                                            foreach (double tF in a.Phermones) 
                                            { 
                                                abV.AddPhermone(tF); 
                                                abV.RemovePhermone(); 
                                            } 
                                        } 
                                    } 
                                } 
                            } 
                        } 
                    } 
                } 
            } 
            SS.RemovalFactor = 0.05d; 
            Console.WriteLine(); 
            SS.Nodes = LevelNodes.ToArray(); 
            SS.RoadList = RoadList.ToList(); 
            SS.ShortestDistances = int.MaxValue; 
            if (SS.Nodes.Count() > 0) 
            { 
                //Theese two lines decreases ant distance by about 30-35% 
                string t = "0,0" + SS.ExplorationFactor.ToString().Split(',')[1]; 
                SS.ExplorationFactor = double.Parse(t); 
 
                solveAnt(); 
                if (child != null) 
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                { 
                    child.SolveChild(SS.bestPath.ToList(), SS.Nodes[0], this); 
                } 
                else 
                { 
                    Color selectedColor = new Color() 
                    { 
                        A = 255, 
                        B = (byte)(SS.rand().Next(0, 205) + 50), 
                        G = (byte)(SS.rand().Next(0, 205) + 50), 
                        R = (byte)(SS.rand().Next(0, 205) + 50) 
                    }; 
                } 
            } 
        } 
        private void solveAnt() 
        { 
            double baseAntCount = 20; //5 = 300 ants, 10=600, 20 = 1200 etc 
            SS.tmpInt3++; 
            printImage("2"); 
            for (int a = 0; a < (int)(Math.Round((Math.Pow(SS.tmpInt3, 2) * 
baseAntCount)+0.2,0,MidpointRounding.ToEven)); a++) 
            { 
                new Ant(SS.Nodes[SS.rand().Next(SS.Nodes.Count())], a); 
            } 
 
            printImage("1"); 
            SS.tmpInt += 20; 
            SS.tmpInt2--; 
 
        } 
        void printImage(string add = "") 
        { 
            foreach (Node t in SS.Nodes) 
            { 
                t.setColor(Colors.Blue); 
                foreach (Vertice i in t.Connections) 
                { 
                    i.setColor(Colors.Red); 
                    i.setWidth(); 
                } 
            } 
            CreateSaveBitmap(SS.canvas, "D://Level" + SS.tmpInt2 + add+".png"); 
            foreach (Node t in SS.Nodes) 
            { 
                t.setColor(Colors.Transparent); 
                foreach (Vertice i in t.Connections) 
                { 
                    i.setColor(Colors.Transparent); 
                } 
            } 
        } 
        private void CreateSaveBitmap(Canvas canvas, string filename) 
        { 
            RenderTargetBitmap renderBitmap = new RenderTargetBitmap( 
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             (int)canvas.Width, (int)canvas.Height, 
             96d, 96d, PixelFormats.Pbgra32); 
            // needed otherwise the image output is black 
            canvas.Measure(new Size((int)canvas.Width, (int)canvas.Height)); 
            canvas.Arrange(new Rect(new Size((int)canvas.Width, 
(int)canvas.Height))); 
 
            renderBitmap.Render(canvas); 
 
            //JpegBitmapEncoder encoder = new JpegBitmapEncoder(); 
            PngBitmapEncoder encoder = new PngBitmapEncoder(); 
            encoder.Frames.Add(BitmapFrame.Create(renderBitmap)); 
 
            using (FileStream file = File.Create(filename)) 
            { 
                encoder.Save(file); 
            } 
        } 
        private void Text(double x, double y, string text, Color color) 
        { 
            TextBlock textBlock = new TextBlock(); 
            textBlock.Text = text; 
            textBlock.Foreground = new SolidColorBrush(color); 
            Canvas.SetLeft(textBlock, x); 
            Canvas.SetTop(textBlock, y); 
            SS.canvas.Children.Add(textBlock); 
        } 
        public void addCluster(Cluster a) 
        { 
            Clusters.Add(a); 
        } 
 
        public void BuildLevel() 
        { 
            //Cluster nodes into groups of 2 
            List<Node> Nodes = SS.Nodes.ToList(); 
            while (Nodes.Count > 0) 
            { 
                Color selectedColor = new Color() 
                { 
                    A = 255, 
                    B = (byte)(SS.rand().Next(0, 205) + 50), 
                    G = (byte)(SS.rand().Next(0, 205) + 50), 
                    R = (byte)(SS.rand().Next(0, 205) + 50) 
                }; 
                List<Node> tmpCluster = new List<Node>(); 
                Node baseNode = Nodes[0]; 
                tmpCluster.Add(baseNode); 
                if (true) 
                { 
                    //Cluster by using K-Nearest 
                    Vertice[] v = baseNode.Connections.Where(b => 
Nodes.Contains(b.getOther(baseNode))).OrderBy(b => b.Distance).Take(1).ToArray();  
                    foreach (Vertice b in v) 
                    { 
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                        tmpCluster.Add(b.getOther(baseNode)); 
                    } 
                } 
                else 
                { 
                    for (int a = 0; a < 3; a++) 
                    { 
                        Vertice[] tV = baseNode.Connections.Where(b => 
Nodes.Contains(b.getOther(baseNode))).ToArray(); 
                        if (tV.Length > 0) 
                        { 
                            Vertice v = tV[SS.rand().Next(tV.Length)]; 
                            while (tmpCluster.Contains(v.getOther(baseNode))) 
                            { 
                                v = tV[SS.rand().Next(tV.Length)]; 
                            } 
                            tmpCluster.Add(v.getOther(baseNode)); 
                        } 
                    } 
                } 
                foreach (Node b in tmpCluster) 
                { 
                    Nodes.Remove(b); 
                    b.setColor(selectedColor); 
                } 
                addCluster(new Cluster(tmpCluster.ToArray())); 
            } 
 
            //Init cluster values 
            int c = 0; 
            SS.RoadList = new List<Vertice>(); 
            for (int a = 0; a < Clusters.Count; a++) 
            { 
                for (int b = a + 1; b < Clusters.Count; b++) 
                { 
                    double distance = double.MaxValue; 
                    foreach (Node n1 in Clusters[a].ParentNodes) 
                    { 
                        foreach (Node n2 in Clusters[b].ParentNodes) 
                        { 
                            double tmpDist = n1.getRoad(n2).Distance; 
                            if (tmpDist < distance) 
                            { 
                                distance = tmpDist; 
                            } 
                        } 
                    } 
 
                    Vertice vert = new Vertice(Clusters[a].node, Clusters[b].node, 
distance); 
                    //vert.setColor(Clusters[a].color); 
                    Clusters[a].connection.Add(vert); 
                    Clusters[b].connection.Add(vert); 
                    RoadList.Add(vert); 
                    c++; 
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                } 
            } 
            Console.WriteLine("Reduced to {0} connections", c); 
            for (int a = 0; a < Clusters.Count; a++) 
            { 
                LevelNodes.Add(Clusters[a].node); 
                Clusters[a].node.setVertice(Clusters[a].connection.ToArray()); 
            } 
            SS.Nodes = LevelNodes.ToArray(); 
            SS.RoadList = RoadList.ToList(); 
        } 
    } 
} 
 


