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For many years, smoke detectors have been used as the most crucial fire detection sensors.

Although smoke detectors do their job very well, they are not perfect and may cause

false or late alarms. This is because they only rely on one of the fire signs which is smoke.

Fire has many other signs as well such as heat and light. It also affects its environmental

parameters such as temperature and humidity. But typically, buildings are not equipped

with sensors capable of sensing these changes. Recently, a few smartphone manufacturers

have added temperature, humidity, and barometer sensors to their products which can be

used for more reliable fire detection. In this thesis, a framework composed of one or more

smartphones and a back-end server is proposed which can detect and visualize indoor

fire. For this purpose, the smartphones continuously collect, preprocess, and analyze

data from their sensors to detect if fire exists in their surroundings. The back-end

server facilitates the analysis processes in smartphones and provides crisis management

institutions such as police, fire department, and ambulance with real-time monitoring

user interface so that they can easily grasp useful information about the fire’s location

and scale. The proposed fire detection framework is a learning system which needs to

be trained by real data. Therefore, a wide range of experiments is precisely designed

and performed to make sure that the system can immediately and accurately detect fire

in diverse environmental conditions.
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I thank Mr. Åsmund Næss and his colleagues at Safemar AS for supporting my project

and letting me to perform exciting fire experiments in their training area.

Last but not least, I thank Mr. Otto Jensen and his colleagues at Grimstad brannstasjon

(Fire Station) for performing a very difficult fire operation exclusively for this project

and sharing precious information with me about real fire behavior.

Mohammad Mahdi Mahdavi Amjad

Grimstad, Norway, June 2014

iii



Contents

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables vii

Abbreviations viii

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Key Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Importance of Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 6

2.1 Utilizing Smartphone Sensor Data . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Classification and Pattern Recognition Techniques in Smartphones . . . . 9

2.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Theoretical Background 11

3.1 Naive Bayes Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Solution 15

4.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Selecting and Extracting Features . . . . . . . . . . . . . . . . . . 17

4.2.2 Converting Numeric Data Set to Nominal . . . . . . . . . . . . . . 18

4.3 Deciding on Existence of Fire . . . . . . . . . . . . . . . . . . . . . . . . . 19

iv



Contents v

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4.1 Analysis Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4.2 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Experiments Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.6 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 FireDetection Implementation 30

5.1 Smartphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1.1 Ambient Temperature . . . . . . . . . . . . . . . . . . . . 32

5.1.1.2 Relative Humidity . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1.3 Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1.4 Barometer . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.2 Message Creator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.3 Message Sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.4 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.5 Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.6 Reasoner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.7 Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 FDBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 HTTP Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.3 Calculator Web Service . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.4 Visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Evaluation and Results 41

6.1 FireDetection Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Alternative Discretization Methods . . . . . . . . . . . . . . . . . . 42

6.2 Alternative Classification Methods . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Conclusion 43

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



List of Figures

4.1 Distributions of the four major parameters involved in fire detection process. 23

4.2 Various fire experiments in Safemar training yard. . . . . . . . . . . . . . 24

4.3 Variation diagrams of the four parameters captured in Safemar experiments. 25

4.4 Distributions of temperature, light, and humidity, in the training set and
their relation to probability of fire. . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Distributions of temperature variance and humidity variance in the train-
ing set, and their relation to probability of fire. . . . . . . . . . . . . . . . 27

4.6 The main process of the FireDetection framework. . . . . . . . . . . . . . 28

5.1 The general components of the FireDetection framework. . . . . . . . . . 30

5.2 An example of XML messages sent from smartphone to FDBS. . . . . . . 34

5.3 The fire icon on the smartphone screen when the fire is detected. . . . . . 37

5.4 The visualizer web application showing the location and the seriousness
of the fire reports. Circles diameter represent the seriousness of the report. 40

vi



List of Tables

3.1 A training set containing labeled data rows. . . . . . . . . . . . . . . . . . 13

3.2 An example of sensor values captured from smartphone sensors. . . . . . . 13

4.1 Proposed intervals for each parameter (feature) and their corresponding
nominal values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Constant values used for calculating the risks of triggering the alarm or
staying silent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 The mapping table from seriousness level or numeric ζ values to circle
diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Experiments performed in analysis phase and the parameters that are
subjects to investigate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 SAMSUNG Galaxy S4 technical sensors information. . . . . . . . . . . . . 32

5.2 Examples of conditional probabilities data stored in the shared preferences. 35

6.1 Confusion matrix representing the accuracy of the classification. . . . . . 41

6.2 Confusion matrix representing the accuracy of the classification while
variance values are removed from the training set. . . . . . . . . . . . . . 42

vii



Abbreviations

AJAX Asynchronous JavaScript And XML

FDBS Fire Detection Back-end Server

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

IIS Internet Information Services

IP Internet Protocol

ITU Internationl Telecommunication Union

JSON Java Script Object Notation

MAP Maximum A Posteriori

PDF Probability Density Function

RDBMS Relational Data Base Management System

SMS Short Message Service

SOA Service Oriented Architecture

SQL Structured Query Language

XML eXtensible Markup Language

viii



Chapter 1

Introduction

According to the International Telecommunication Union (ITU), there was about six

billion mobile-cellular subscriptions in 2011 [1]. Smartphones are also increasingly get-

ting popular and only in 2013 about one billion smartphones were sold. Smartphones

are not just used for making and receiving voice calls or sending text messages. They

are more like small computers with huge processing power and memories. They are

capable of connecting to various types of networks such as wireless, High-Speed Down-

link Packet Access (HSDPA), and Long-Term Evolution (LTE) and are also equipped

with high quality sensors such as front and back cameras, Global Positioning System

(GPS), proximity, light, accelerometer, gyroscope, etc. Newer smartphones have even

more advanced temperature, barometer, and humidity sensors.

There are many ongoing projects concentrating on the data captured from smartphones.

They typically use these data for a wide range of analyses in different areas such as

national security, health, and marketing [2][3]. Additionally, smartphones data can

be used for monitoring the surroundings of the device and consequently of the person

carrying it. For instance, it is possible to collect the temperature data perceived by

a smartphone to detect the temperature of the environment in which the smartphone

resides.

In this project, I propose a framework for using smartphones sensor data to detect fire

and also real-time monitoring the smartphones environment in a back-end server. My

approach focuses on indoor fire detection and the outdoor fire detection is left as future

work. Nevertheless, the principles of indoor and outdoor fire detection are more or less

the same, except that perhaps the outdoor sensors must meet extra requirements such as

water and dust resistance. In fact, the proposed method in this thesis can be extended

1
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for detecting much more phenomena, and from this perspective it is a general purpose

approach.

But why do we need smartphones for fire detection while buildings have fire (mostly

smoke) detection systems? The point is, a considerable percentage of conventional smoke

detectors are dead; either malfunctioning or out of battery. They also trigger many false

alarms and annoyingly beep when they are running on low battery. Moreover, the

majority of smoke detectors are only capable of triggering an alarm, while smartphones

can make calls, send messages, enable crisis management institutions to monitor the

environment, or even propose some suggestions to their owners about the nearest exit

or other necessary information in case of emergency.

The framework proposed in this thesis is designed in relation to the SmartRescue project

where the developers work on a system which uses smartphone sensors data for real-time

threat assessment. Additionally, in the SmartRescue project the system should be able

to generate evacuation plans in an immediate manner.

1.1 Problem Statement

This thesis mainly discusses the following problems:

Sensor Selection: First of all, we need to decide on the sensors which can be used in a fire

detection process. This depends on two main factors: sensors available in smartphones,

and environmental parameters that change in case of having indoor fire. Obviously, one

of the most important signs of fire is smoke, but at the moment, smartphones do not

have smoke sensors. Therefore, we need to find a way to compensate for the absence of

smoke senors in our system.

Reasoning: At the first glance, it may seem that by using the temperature sensor of a

smartphone, it is quite easy to detect fire and for this purpose, it is enough to observe

the temperature perceived by the sensor and to trigger an alarm if it exceeds a certain

threshold. According to my preliminary experiments, there are many scenarios in which

the smartphone sensors report unrealistic values. For instance, direct sunlight, heaters,

and fireplaces can strongly affect the temperature perceived by smartphone. Other

sensors such as light and humidity have similar sources of error. On the other hand,

reasoning based on thresholds causes two issue: high thresholds result in late alarm

triggering and low thresholds cause many false alarms.
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Real-Time Monitoring: The majority of existing frameworks which use smartphone

sensors, cannot perform reasoning and monitoring simultaneously. Thus, some of them

lack remote monitoring and others can only analyze sensor data in their back-end servers.

I believe a good fire detection framework must be able to work in real-time and provide

the remote monitoring interface while providing its users with the reasoning results.

Firefighting: According to our interviews with firefighters, when they arrive to a burning

place they do not have any idea about the fire phase. This can be deadly to them since the

fire behavior depends on the phase it is in. Currently, fire fighters use their experiences

to guess the fire phase and infer based on the smoke color, the burning sound, etc.

Some fire fighting groups have Infrared (IR) cameras to detect the temperature of the

burning place. Nevertheless, entering a burning building is always quite dangerous for

them mostly because they do not know what is going on inside. Existing fire detection

systems can only show them the room in which there is some smoke and no more.

Considering the above mentioned issues, lack of central visualization in existing fire

detection systems and their inability in inference on existence of fire based on diverse

sensor measurements are the most important problems addressed in this thesis.

1.2 Problem Solution

The main components of FireDetection, the framework proposed in this thesis, and their

capabilities are as follows:

Smartphones: My experiments show that indoor fire quickly affects the room temper-

ature, humidity, and air pressure. It also has some impact on light since normally, fire

causes smoke and it may reduce the room light. Light sensor already exists in the ma-

jority of smartphones, even budget ones. Temperature, humidity, and barometer sensors

are also available in limited number of high-end smartphones. Therefore, we have suffi-

cient hardware resources available now which can be efficiently used for fire detection.

For this purpose, an Android application is developed that collects values from tem-

perature, humidity, light, and pressure sensors and using a modified implementation of

Naive Bayes Classifier, analyzes them and calculates the risk of triggering an alarm. Af-

terwards, according to the analysis results the application decides to trigger the alarm.

This application also continuously sends the sensors data and analysis results along with

the location coordinates to a back-end server over the Internet. The reasoning process

is independently done inside the smartphones, i.e. smartphones does not need to be

connected to any other machine while reasoning.
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FireDetection Back-End Server (FDBS): Sensors data are sent to this server to be logged

(although each smartphone has its own log) and visualized. This feature enables remote

monitoring which lets crisis management institutions such as police, fire department,

hospitals, and ambulance to monitor fire location and scale in real-time. FDBS, also

performs some heavy calculations and produces the required results for Naive Bayes

Classification. The smartphones can access these results by invoking a web service

in FDBS; once they do, there is no more need to be connected to the Internet for

performing reasoning, although the remote monitoring feature still is dependent on the

Internet connectivity. For remote monitoring, a web application is designed that plots

the fire location, its seriousness, and all values captured from smartphones on a map.

This map can be very helpful to firefighters.

Experiments: The Naive Bayes Classifier implemented in this framework is a supervised

learning system which needs to be trained in order to be able to detect fire. This forces

us to study the behavior of fire in terms of its impacts on environmental parameters.

Hence, diverse experiments are designed and performed to train the reasoner module

of the framework and to test the accuracy of its reasoning process. Approximately 70

percent of the experiment results are used for training the reasoner and the rest is used

for performance evaluation.

1.3 Key Assumptions

In reality, environmental conditions can affect the perception of smartphone sensors.

Detecting if the smartphone resides in normal condition or not, needs more consideration

and is out of the scope of this thesis. Hence, during the reasoning process, it is assumed

that the smartphone is placed indoor, its sensors are functioning correctly, and the

generated data are valid. Moreover, the proposed framework is trained in southern

Norway and its functionality in other climate conditions is not guaranteed.

1.4 Importance of Topic

Smartphones are getting more popular, and nowadays it is almost impossible to find a

family in which no one owns one of them. According to Gartner, only in 2013 about one

billion smartphones have been sold in the world so that for the first time in history of

mobile phones, the number of smartphones sold was more than the number of feature

phones sold [4]. This is an opportunity for us to benefit from the smartphones’ features



Chapter 1. Introduction 5

in order to collect accurate data about our environment. Utilizing smartphone sensor

data, we can monitor our environment and manage catastrophes in a quicker and more

efficient way. This is the main aim of the framework proposed in this thesis. It can play

a significant role in future catastrophes detection and crisis management. Likewise, it

can be a good basis for systems generating evacuation plans.

1.5 Thesis Outline

Chapter 1 focuses on the general properties of the project such as the problem statement,

problem solution at a glance, key assumptions, and the importance of the topic. In

Chapter 2, a number of research projects related to various areas of this thesis are

discussed and their strengths and weaknesses are studied. The theoretical backgrounds

and the core concepts that my solution is based on, can be found in Chapter 3. Chapter 4

concentrates on the details of the experiments performed in order to understand indoor

fire behavior and also the solution proposed in this thesis. In Chapter 5, different

components of the prototype framework and its implementation details are explained

precisely. The result gained by the FireDetection framework are described in Chapter

6. Finally in Chapter 7, the highlights of the results gained are summarized and a few

possible improvements for the proposed framework are brought up.

1.6 Chapter Summary

The aim of this chapter was to define the research question and briefly bring up the

axioms of the proposed solution. The chapter also showed how such a framework can be

important considering the remarkable growth of smartphones popularity in the world.



Chapter 2

Related Work

As mentioned in the Introduction chapter, humidity and temperature sensors are rather

new in smartphones but these two parameters along with the smoke are the most crucial

parameters in fire detection. Of course smartphones are still not equipped with smoke

detection sensors, hence, at the moment we have to use other sensors for fire detection.

To the best of my knowledge, there is no smartphones-based fire detection systems in the

market or as a published research project. Nevertheless, utilizing smartphone sensor data

has been extensively scrutinized in a wide range of activity recognition, event detection,

and context awareness frameworks. For instance, there are a huge number of scientific

papers discussing methods for detecting the physical condition of the smartphone and

consequently its carrier’s body.

Typically, these framework more rely on motion and position sensors data to detect the

orientation and the movement pattern of the smartphone. The inference or reasoning

process is then done through a variety of classification and pattern recognition tech-

niques. Although the focus of these researches is not hundred percent the same as mine,

the principles of the two approaches are more or less similar. So, I think these sort of

research are very relevant to what I do in this project. In the following sections, I bring

up some related prior researches in two areas: utilizing smartphone sensors data and

the techniques used for analyzing smartphones data.

2.1 Utilizing Smartphone Sensor Data

Pascu et al. [5] propose a framework which concentrates on capturing the articulated

motions of hand gestures. To do this, they strap three smartphones on the person’s

6
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arm, forearm, and hand which send a combination of magnetometer, accelerometer,

and gyroscope sensor values to a back-end server to be processes and visualized. One

of the most remarkable features of this framework is its ability to work in real-time

meaning that immediately after the person moves his/her arm, the information about

the movement is sent to the back-end server and is shown by an application installed on

it. Working in real-time is missing in many similar frameworks [6][7]; they typically store

the smartphone sensor data in the device memory and then transfer it to the analyzer

machine later on. Consequently, real-time monitoring will not be possible.

In this framework, the sensor data is sent to the back-end server in the form of Java

Server Object Notation (JSON) [8] messages but before sending, data packages need

to be prepared. Hence, data preparation is a very important phase in this framework.

Data preparation is composed of noise reduction, and sensors data composition. The

main shortage in this framework is reasoning. Although it is possible to observe the

hand motion in real-time, the system cannot determine the type of the gesture. In fact,

the whole system is focused on data acquisition phase and has nothing to do with the

analytic part.

Shin et al. [9], propose an Android application which can change the layout of the

smartphone’s homepage icons and even highlight the ones that most likely the user wants

to press in the next use. As features, they collect data from a wide range of sensors

such as GPS, accelerometer, and illumination. Some Android system parameters such

as time, battery level, wireless network and Bluetooth status, and call/SMS events are

also used as other features. In this application, the inference process is performed by

using Naive Bayes Classifier.

CoenoFire is another smartphone-based system introduced by Feese et al. [10] in which

an Android application collects a wide range of information about a firefighting mission.

Firefighters must place the smartphone in their suits when going to missions so that it

can collect the required information. These information contain values reported by the

sensors such as GPS, accelerometer, barometer, and microphone. GPS fixes are used to

indicate the incident location and conditions such as being on the ground or building

floors can be derived from barometer sensor data. Microphone also records the raw

audio messages that firefighters send to other teammates and using the accelerometer

sensor data, the system detects the firefighters body movement. CoenFire system has a

back-end server containing two web services: one for handling HTTP POST messages

containing smartphone data and another web-based user interface (UI) for visualization.

The data visualization in CoenoFire is real-time meaning that it is possible to monitor

the firefighters activities in the web-based UI. However, this system can only be used for
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monitoring in back-end server and no inference takes place in it. This research does not

reveal the details of the method of using barometer sensor for detecting the floor in which

firefighters are. According to my experiments performed with a SAMSUNG Galaxy S4

and a SAMSUNG Galaxy Note II, the difference between air pressure values sensed

by barometer sensor in the first and the seconds floors of a building is not meaningful

enough to be relied on for such an inference. Additionally, the level of air pressure

strongly depends on climate condition and can even change up to 25 millibars in one

day

As another example of using smartphone sensors, Yi et al. [6] propose an Android appli-

cation for detecting the physical activity of the person carrying the smartphone from a

collection of predefined activities such as walking, going up/down stairs, running, jump-

ing, etc. To do this, they use a combination of kinematic sensors namely accelerometer,

gyroscope, and magnetic sensors. The point is that the subject person must fix the

smartphone on his chest which is a very crucial limitation. The sensor data are stored

in the device memory card and then analyzed inside the smartphone. Therefore there

is no possibility for remote activity monitoring.

Keally et al. [11], propose a framework composed of an Android application and a set

of sensors to detect the daily activity of a subject. In spite of previously mentioned

solutions in which typically smartphone sensors are the only sources of data, in this

system, a combination of smartphone sensors and some other physical sensors is fed to

the classifier. The Android application collects sensors data and performs classification.

For the classification, they exploit their Android implementation of the AdaBoost [12]

classifier. The subject needs to strap four sensors plus the smartphone to different parts

of his/her body, more specifically, head, left and right wrists, and left and right ankles.

Physical sensors capture the temperature, light, acceleration, and voice (via microphone)

and the smartphone sensors provide the classifier with the GPS and acceleration values.

Again in this paper, there is no possibility of real-time monitoring.

Hoseini-Tabatabaei et al. [13] have done a comprehensive survey on new techniques of

opportunistic mobile-centric context recognition systems. The main goals of this sur-

vey are to classify current methods, to give an overview and some analytical details of

them, and to reveal weaknesses of the current systems. It also discusses about some

of the most challenging parts of every context recognition system such as data acqui-

sition, preprocessing, feature selection or feature extraction, labeling, and classification

algorithms.
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2.2 Classification and Pattern Recognition Techniques in

Smartphones

Typically, classification and pattern recognition techniques implemented in smartphones,

imposes extra consideration on developers. Although top smartphones are equipped

with strong processors, massive memories, and robust operating systems, the battery

drain is still an unsolved problem when it comes to heavy calculations and long oper-

ations. Most of the classification techniques and technologies are memory and process

demanding. Therefore, implementing a good classification application in smartphones

is quite challenging. Nevertheless, there are many strong frameworks proposed in this

area which function very well. For instance, Derick et al. [14] propose a system referred

to as MIRAOAD that can classify the driving style into two categorize of aggressive

and typical. MIROAD is in fact a smartphones (iPhone) application running an imple-

mentation of K-Nearest Neighbors (k-NN). This framework detects right and left turns,

aggressive right and left turns, aggressive breaking, excessive speed, etc. To do this,

the smartphones is fixed on the dashboard of the car and continuously monitors the car

maneuvers and detects aggressive ones. If the system senses a potentially dangerous

maneuver, it starts to record video and optionally sends notification messages to an

external system through the Internet connectivity of mobile network. The authors use

data from accelerometer, magnetometer, and gyroscope sensors for classification. The

proposed application dramatically drains battery and the smartphones are required to

be plugged into the power outlet during its operation process. This system does not

provide real-time monitoring of the car motion.

In contrast, Kose et al. [15] propose an Android application which can detect the

physical activity of the person carrying the device in real-time. For this purpose, they

only exploit the accelerometer sensor data and classify person’s activity into four classes

namely, running, walking, standing, and sitting. The main focus of the authors of this

is on real-time classification which is entirely performed inside the smartphone. They

also compare clustered k-NN and Naive Bayes classifiers and conclude that the former

perform far better than the latter. However, the comparison is quite shallow in this

paper and its criteria is not clear at all.

Another example of pattern recognition using smartphone sensor data, is what Bujari

et al. did [16]. In this paper, authors aim to detect if the person carrying the smart-

phone is passing a road. They again exploit data captured from accelerometer sensor to

extract a pattern for road crossing. Their solution is strictly dependent on the behavior

of the pedestrian when crossing the road; the pedestrian must walk at normal speed
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to the light, then stop for a moment, pass the street a bit faster, and finally return to

his/her normal speed. They combine values of three different vectors (xyz) captured

from the accelerometer sensor into a single feature called magnitude to make sure that

the smartphones placement (hand, pocket, etc.) does not have any effect on the pat-

tern recognition process. In their paper, patter recognition is limited to a very simple

algorithm which works based on magnitude numeric value and the time. Authors of

this paper do not utilize any classification technique and only rely on thresholds to infer

the road cross. Activity recognition system proposed by Guiry et al. [17] performs in

a way same except that the data collected from smartphone is analyzed off-line using

various classifiers such as Support Vector Machine SVN [18], Naive Bayes, and C4.5 [19]

to classify the activity.

2.3 Chapter Summary

In this chapter, some of the most relevant research in the area of classification and

pattern recognition were discussed. It is now clear that majority of the systems that

collect smartphone sensors data, concentrate on positioning sensors and more specifically,

accelerometer to classify the physical activity of the person who carries the smartphones

into classes such as running, walking, or sitting. Some of the papers use well-known

classification techniques and others, propose their own algorithms. But the interesting

fact is that, none of the discussed systems, provides it users simultaneously with real-

time reasoning and remote monitoring. Moreover, due to implementation difficulties

and rather complicated experiments required, several aspects of fire detection using

smartphones are still untouched by the research community.



Chapter 3

Theoretical Background

As mentioned in Section 1.2, FireDetection framework is a learning system which exploits

Naive Bayes Classification for inference on the existence of fire. The framework proposed

in this thesis is discussed in depth in Chapters 4 and 5, however, understanding it

demands some knowledge about a few machine learning and data mining concepts which

are described in the following sections.

3.1 Naive Bayes Classifier

Naive Bayes Classifier is a probabilistic classifier based on Bayes’ theorem [20][21]. Bayes’

theorem describes the relation between conditional probabilities of a hypothesis and

observations as given in Eq. 3.1. Assume that h represents the hypothesis and O

represents the observation made.

P (h|o) =
P (o|h)P (h)

P (o)
(3.1)

where:

• P(h) = prior probability of hypothesis

• P(o) = prior probability of observations o

• P (h|o) = probability of hypothesis given o (posterior probability)

• P (o|h) = probability of o given hypothesis (likelihood)

11
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Typically, the most probable hypothesis or the maximum a posteriori hypothesis is

required to be identified. The maximum a posteriori (hMAP ) is given by Eq. 3.2.

hMAP = arg max
h∈H

P (o|h)

= arg max
h∈H

P (o|h)P (h)

P (o)

= arg max
h∈h

P (o|h)P (h)

(3.2)

Now, let H = hj ∈ {h1, h2, . . . , hm} be the hypotheses, assuming that hypotheses are

mutually exclusive and exhaustive and 〈O1 = o1, O1 = o2, . . . , On = on〉 be the various

observations made. Then the most probable hypothesis is given by Eq. 3.3.

hMAP = arg max
h∈H

P (hj |o1, o2, . . . , on)

= arg max
h∈H

P (o1, o2, . . . , on|hj)P (hj)

Po1, o2, . . . , on

= arg max
h∈H

P (o1, o2, . . . , on|hj)P (hj)

(3.3)

Naive Bayes Classifier assumes that the conditional probability of observations given

hypothesis equals to the production of conditional probabilities of each observation given

the hypothesis according to Eq. 3.4.

P (o1, o2, . . . , on|hj) =
∏
i

P (oi|hj) (3.4)

By substitution of P (o1, o2, . . . , on|hj) by
∏
i
P (oi|hj) in Eq. 3.3, Naive Bayes Classifier

is given by Eq. 3.5.

hNB = arg max
hj∈H

P (hj)
∏
i

P (oi|hj) (3.5)

Naive Bayes Classifier is a supervised learning algorithm which means it needs to be

trained before being able to do classification. Therefore, it must have a training set.

The training set contains a number of observations and the classes in which they are

classified. For example, the training set shown in Table 3.1 contains the values of four

parameters (T, L, H, P) and a class (Fire) in which various sequence of parameter values

are classified.
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Table 3.1: A training set containing labeled data rows.

T L H P Fire
A B A C NO
A A B A NO
B B A A NO
A A C C NO
B A B C YES
B C C A YES
B A B B YES

The aim of a Naive Bayes Classifier is to classify an unseen sequence of parameter values

into one of the classes in training set. Assume that the values to be classifiers is B, A,

A, C. The classifier must classify this sequence of values into one of the Fire classes:

YES or NO. According to Eq. 3.5, the hypothesis with the bigger likelihood must be

selected. The classifier needs to refer to the training set to calculate probabilities of

each class based on the probability distribution in the training set. For calculating the

probability of the class NO, the classifier must count the number of data rows in which T

equals to B when the data row is classified as NO. There is 1 data row with this criteria

while there are 3 data rows in which the T equals to B and the data row is classified as

YES. Hence, the conditional probability of T equals to B given NO equals to 1/4. The

classifier calculates all the conditional probabilities

As shown in Table 3.2 raw values of smartphone sensors are numeric (i.e. continuous)

whereas, the input data of the Naive Bayes Classifier should be nominal. Thus, a method

is required for converting numeric data to nominal data as discussed in 3.2.1.

Table 3.2: An example of sensor values captured from smartphone sensors.

Temperature ( ◦C) Light (lux) Humidity (percent) Pressure (mbar)
23 350 33 989.5
22.5 400 32 1001.5
23 410 33 1000.4
23 510 35 993.9
24 71 33 998.4
24 55 32 1002.3

3.2 Preprocessing

Typically, when working with sensor data, it is required to preprocess the raw data. The

preprocessing steps include any modification on raw data which improves the classifi-

cation process especially, detecting and removing outliers (captured data that are not

consistent with the rest of observations), feature extraction, and discretization [22][23].
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3.2.1 Discretization

Data sets containing numeric data similar to the example given in Table 3.2 are called

continuous. Modified Naive Bayes Classifiers can handle continuous input data but

typically, the data needs to be discretized in order to be classified by this classifier

[24]. The process of converting continuous data into nominal data is referred to as

discretization. To discretize a continuous data we need to define labeled ranges in

which the data can be categorized into. For instance, we can define a labeled range for

temperature values as 0 to 4 labeled A and another one as 5 to 9 labeled B.

Afterwards, we feed the classifier with a table of these labels (nominal values) instead of

real numeric values. It must be considered that the way we define these ranges affects

the accuracy of the reasoning process: bigger ranges result in less accuracy and less

calculation whereas smaller ranges improve the accuracy while imposing more calcula-

tion to the system. On the other hand, the ranges must be defined according to the

distributions of parameter values. My proposed method of discretization is explained in

detail in Subsection 4.2.2.

3.3 Chapter Summary

In this chapter, some of the most important concepts and theoretical background on

which the FireDetection framework is based were explained.



Chapter 4

Solution

The goal of this thesis is to find a method for detecting indoor fire utilizing available

sensors in smartphones. As a solution, I introduce FireDetection which is a framework

composed of one or more smartphones and a back-end server called FDBS. This frame-

work, as a single coherent system, detects fire and visualizes useful information about it

such as its location and the reports admitting it. For this purpose, smartphones collect

data from their temperature, humidity, light, and pressure sensors and after analysis

decide on the existence of fire in their surroundings. Inference in smartphones is based

on Naive Bayes Classification since it is efficient and does not need complicated and

heavy calculations.

On the other hand, the FDBS maintains the classifier’s training set and performs some

classification-associated calculations. This improves the battery consumption in smart-

phones since they do not have to perform classification calculations. Instead, they can

access these calculation results via a web service provided by the FDBS. Once a smart-

phone accesses these results it can start its classification process, hence, the smartphones

can function independently. In case the smartphones can connect to the Internet, they

send information to the FDBS that are used for real-time monitoring and visualization.

The following sections explain how this framework works assuming that the training set

is formed and loaded on the smartphones. Of course before the system starts, there are

some prerequisites which are briefly described at the end of this chapter in Section 4.6.

15
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4.1 Data Acquisition

First of all, the framework needs to capture data from its surroundings. This is possi-

ble by using the smartphone’s built-in sensors, but which ones? Today’s smartphones

have several high quality sensors such as accelerometer, gyroscope, magnetometer, light,

etc. The aim of FireDetection framework is to detect fire, hence, it must receive data

from those sensors which are affected by an indoor fire. Of course it would be nice if

smartphones have smoke sensor because in most cases fire makes smoke and in many

fire detection systems, smoke is the most (or one of the most) important signs of fire.

However, it is still possible to compensate for the lack of smoke sensor in smartphones.

According to my experiments, an indoor fire dramatically impacts the room temperature,

humidity, light, and pressure. Fire has different phases [25] but generally during all of

them, temperature is significantly higher than normal (more than 200 ◦C) and higher

temperature results in lower relative humidity. In smoky phases the room light also

decreases and fire flame consumes oxygen and affects the air pressure. As you see the

four selected parameters are decisive enough for inference on existence of fire. These

experiments and their analysis results are described in 4.4.

Now we need a mechanism for acquiring the aforementioned parameter values from

smartphones sensors. For this purpose, I developed an Android application (see 5.1)

which captures momentary values from temperature, humidity, light, and pressure sen-

sors. Whenever a sensor reports a new value, the application creates a new data row

containing all sensors values. Moreover, in each data row the location coordinates, a

time-stamp, and eight more values are added. These extra eight values, are four means

and four variances, each of which is calculated from the most recent five values reported

by the sensor.

The data collected from smartphone sensors are stored on the memory card of the device,

and another copy of them is also sent to the FDBS to be logged and visualized.

4.2 Preprocessing

As said in Chapter 3 in almost all data mining problems, raw data require preprocessing.

The preprocessing in FireDetection framework includes two main tasks which are feature

selection/extraction and discretization. Nevertheless, there may be other trivial data

modifications needed, but I prefer to perform them manually due to time limitation.
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4.2.1 Selecting and Extracting Features

One of the most critical decisions to be made when performing classification is to select

appropriate features. Some features can be simply selected among raw data samples and

others need to be calculated or in other words, extracted from existing data samples.

Considering the smartphone sensors available at the moment, and the most important

impacts of fire on a room’s spatial parameters, I use the sensors referred to in Section

4.1 to detect fire plus the GPS coordinates to determine its location. But the measure-

ments of these four sensors can be easily affected by unwanted environmental factors.

For instance, temperature sensed by a smartphone exposed to direct sunlight does not

represent the room temperature. A big part of these type of issues is solved by precisely

training the reasoner. But a Naive Bayes reasoner shows better performance when it

fed with better features.

During the reasoning process, we may encounter conditions in which one of the sensors

perceives a very high or low value and hence, the whole reasoning process is affected.

Assume that the temperature sensor normally reports temperature values around 20 ◦C.

It suddenly senses a very high temperature as 40 ◦C and reports it. In case of having a

training set only containing the values of the four sensors, most likely, such a temperature

represents fire, regardless of other parameter values. But what if the smartphone is

placed near a fireplace or a heater?

To overcome these sort of issues, I define eight more features; four mean values and four

variance values. Mean value helps the reasoner to understand if a huge change reported

by sensor is permanent. Variance value also represents the rate of changes and based

on it the reasoner can determine that the room parameters are stable or not. The mean

and the variance values are calculated from the most recent five values reported by each

sensor using Eg. 4.1 and Eq. 4.2 respectively.

µ =
1

N

N∑
i=1

Ti (4.1)

V ariance =
1

N

N∑
i=1

(xi − µ)2 (4.2)
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4.2.2 Converting Numeric Data Set to Nominal

Until now, we know how a data row containing numeric sensors data, extra features

(means and variances), GPS coordinates, and time-stamps is formed by smartphones.

However, as mentioned in Subsection 3.2.1, numeric data sets should to be converted to

nominal data sets in order to improve the performance of the Naive Bayes Classifier. To

perform the discretization process, we need to define labeled intervals.

Now, the question is that how the size and the number of intervals should be? This

is crucial since it can affect the accuracy of the classification. On the other hand,

same sized intervals are not efficient since there are areas in each parameter distribution

that does not offer any useful information. For example, as illustrated in Figure 4.1(a)

temperature values smaller than 0 ◦C are not important to be divided into many intervals

since typically in normal indoor places, such a temperature is not sensed at all.

To form efficient intervals, the mean value of each parameter is required since the decisive

intervals are always near mean values. According to my experiments, the mean value of

the room temperature is 22 ◦C and so, intervals closer to 22 are defined smaller than the

others. Afterwards, the size of each interval must be decided. The interval sizes vary in

accordance to the mean and the distribution of each parameter values.

Table 4.1 lists the proposed intervals for each parameter and their corresponding nom-

inal values (e.g. A, B, C, etc.) where T, L, H, P, TM, LM, HM, and PM stand for

temperature, light, humidity, pressure, temperature mean, light mean, humidity mean,

and pressure mean respectively. In this table, the temperature unit is centigrade degree

( ◦C), the light unit is lux, the humidity unit is percent (%), and the pressure unit is

millibar.

Table 4.1: Proposed intervals for each parameter (feature) and their corresponding
nominal values.

A B C D E F G H I
T [1-] [0-7] [8-12] [13-15] [16-19] [20-24] [25-35] [30-39] [40+]
L [0] [1-149] [150-799] [800-10000] [+10000]
H [0-9] [10-19] [20-24] [25-29] [30-34] [35-39] [40-50] [50+]
P [-979] [980-999] [1000-1024] [1025+]
TM [1-] [0-7] [8-12] [13-15] [16-19] [20-24] [25-29] [30-39] [40+]
LM [0] [1-150] [151-500] [501-10000] [+10000]
HM [0-9] [10-19] [20-24] [25-29] [30-34] [35-39] [40-50] [50+]
PM [-979] [980-999] [1000-1024] [1025+]
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Not surprisingly, variance values of temperature, humidity, and pressure are so close to

zero in normal conditions while light variance values can get very big because smart-

phones can be exposed to direct sunlight. Therefore for the first three parameters two

intervals A (close to zero with a very tiny range for each one) and B (otherwise) and

for the light variances twenty intervals with the same width from 0 to 200,000 lux are

defined.

4.3 Deciding on Existence of Fire

Once the smartphones sensor data are discretized, the Naive Bayes Classifier (reasoner)

can start its inference process to determine if a fire exists in the smartphone’s surround-

ings. To do this, the reasoner receives a data row containing nominal values of temper-

ature, light, humidity, pressure, 4 means, and 4 variances. At this stage, the reasoner

must refer to the training set and fetch required conditional probabilities. According

to Eq. 4.3, Naive Bayes Classifier needs the conditional probabilities of each observa-

tion (parameter values) given hypotheses (Fire, Normal) along with the probabilities of

hypotheses to calculate the maximum likelihood:

P (Fire|O) = P (Fire)
n∏

i=1

P (O = oi|Fire)

P (Normal|O) = P (Normal)
n∏

i=1

P (O = oi|Normal)
(4.3)

where O represents the set of nominal value of each parameter. After this calculation,

the reasoner has the conditional probabilities of both Fire and Normal classes. The

original Naive Bayes Classifier can only decide on the class in which the input sequence

of values must be classified. In our case, the result of such a classification would be Fire

or Normal which only relies on the bigger likelihood to one of the classes (Fire/Normal).

This can be useful in activity recognition frameworks in which the classification result

does not have any risk. But fire detection, naturally, is a risky process and even a correct

classification has some risk.

On the other hand, we want to visualize the fire in the FDBS and by this classification

in case of having fire, the visualizer can only show a point on the map in which the

probability of having fire is bigger than the probability of having normal condition and

nothing more. The ideal visualization would be a map that not only illustrates the

location of a fire, but also depicts the seriousness of the condition. This can be also
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used for alarm triggering. Therefore, I modify the original classifier so that firstly, it can

produce two numbers representing the risk of triggering alarm and staying silent and

secondly, this numbers can be easily visualized to show the momentary probability of

having fire.

The proposed reasoner uses a method for calculating the risks of the two actions (trig-

gering alarm and staying silent). Each action imposes a risk to the system and therefore,

is assigned a numeric value. The risk values of each action in cases of fire and normal

are listed in Table 4.2.

Table 4.2: Constant values used for calculating the risks of triggering the alarm or
staying silent.

Alarm Silence

Fire 1.0 10.0

Normal 5.0 0.0

As an example, assume that the reasoner have calculated both of the conditional proba-

bilities of fire and normal classes given a sequence of observations as x and y respectively.

According to the risk values, the risk of triggering alarm is calculated as:

R(Alarm) = 1.0× x+ 5.0× y
and the risk of staying silent in case of having fire is calculated as:

R(Silence) = 10.0× x+ 0× y = 10.0× x

The action with smaller risk will be the final result of the reasoning process. Once the

Risk(Silence) becomes bigger than Risk(Alarm) the reasoner triggers the alarm. This

also means that the visualizer module of FDBS must render a circle on the map using

fire location coordinates. The diameter of this circle shows the seriousness of a fire case

(ζ) which is given by Eq. 4.4.

ζ =
P (Fire|O)

P (Normal|O)
(4.4)

The value of ζ can be very big or very small therefore, it cannot be directly associated

with the circles diameter. Hence, the mapping mechanism is defined which maps the

seriousness values to circle diameters as shown in Table 4.3. The logic behind this

mapping is simple. For example, if the ratio of P (Fire|O) to P (Normal|O) is 0.6, it

means that the conditional probability of fire given a specific sequence of parameter
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values is 40 percent smaller than the probability of normal given the same sequence of

parameter values and so on.

Table 4.3: The mapping table from seriousness level or numeric ζ values to circle
diameter.

Seriousness Level ζ Range Circle Diameter

1 (0.6-1) 1000

2 (1-1.6) 2000

3 (1.6-2) 3000

4 (2+) 4000

An example of visualized smartphones data is depicted in Figure 5.4 in the next chapter.

4.4 Experiments

Typically, in supervised learning systems, the training set is extremely important and

the FireDetection framework is not an exception. To make a good training set, we have

to design and perform many experiments. We also need to evaluate the accuracy of the

classification or reasoning process. For this thesis, I designed and performed experiments

in two phases: analysis and training which are explained in the following subsections.

4.4.1 Analysis Phase

The analysis phase of experiments can be done in normal condition (i.e. absence of fire)

since in this phase, the goal is to extract mean values of each parameter. Mean values

are used to form the intervals required for discretization process (see 4.2.2). By normal

condition, I mean possible combinations of the room’s parameter values given that there

is no open fire in the room. To do this, I modified the Android application so that it

only stored raw numeric sensor values plus means and variances as discussed in 4.2.1.

Then the smartphone running the application was exposed to diverse normal conditions

as listed in Table 4.4.
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Table 4.4: Experiments performed in analysis phase and the parameters that are
subjects to investigate.

Place and Condition Parameter(s) to Investigate

table, near closed window light

table, near open window temperature, light, humidity

table, near heater temperature, humidity

desk, under the room light light

desk, under the reading lamp temperature, light

university’s corridors temperature, light, humidity, pressure

supermarket temperature, light, humidity, pressure

The variance values are used as features to show sudden changes in room parameter

values. But as mentioned earlier, the variance values in normal condition are so frail

because changes in room parameters take place gradually when there is no fire. Typically,

room’s parameter values do not change significantly, but there are factors which can

affect them. For instance, toggling the windows status (open to close or close to open)

or starting a cooler or heater may make some changes in the room’s temperature and

humidity but these are not as significant as changes made by fire. There are cases

in which the smartphone senses extra ordinary values such as when it is exposed to

direct sunlight. In such a case, although the smartphone perceives massive amount of

luminance (e.g. 50000 lux), this condition is still steady and consequently, the light

variance will be decreasing after a while.

The data captured in analysis phase were numeric and so, they could not be used

in training set. It was required that the whole experiment was done again while the

smartphone discretized sensors values. The results of the experiments of this phase

performed according to the scenarios listed in Table 4.4, are illustrated in Figure 4.1.
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(a) Temperature. (b) Light.

(c) Humidity. (d) Pressure.

Figure 4.1: Distributions of the four major parameters involved in fire detection
process.

4.4.2 Training Phase

In spite of the analysis phase, the training phase should contain data from a real fire.

Although it was possible to use applications such as Fire Dynamics Simulator (FSD)

[26] for forming the training set, we decided to perform real experiments. Therefore, we

asked Safemar AS [27] to let us participate in their firefighting drills. Safemar AS trains

participants in a wide range of courses related to security and safety such as firefighting,

first aid, sea rescuing operations, etc.



Chapter 4. Solution 24

(a) The ship. (b) The container and the wood fire insde it.

(c) A fire fighter brings out the smartphones. (d) A fire fighter controls the condition inside the con-
tainer.

Figure 4.2: Various fire experiments in Safemar training yard.

At Safemar AS, we collected data from two various indoor fires made inside an old ship

and a container. The ship and the container can be seen in Figure 4.2. The ship room

was bigger than the container. The former was approximately 150 square meters and

the latter was 20 square meters. Both rooms were completely dark and during the drills

the doors were sealed. Inside the ship room they made fire in big lamp oil containers,

hence, the fire made a huge amount of smoke and soot. But the fuel in the container was

a dump of wooden stuff and so, it was more realistic and more similar to room furniture.

During the fire drills, the smartphones were held by the firefighter in the height of a

table (approximately one meter from ground).

The ceiling of the ship room was about three times higher than the normal rooms’

(2.8-3.0 meters). Considering that the high temperature air, gases, and smoke go up

to the ceiling, in the ship room the rise of the temperature could not be sensed by

smartphones. Therefore, I decided to use the results of the container experiment for

forming the training set and ignore the data captured in the ship room. A portion of
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the data captured from the container experiment is illustrated in Figure 4.3 where the

left side vertical axes represent the parameter values in aforementioned units and the

horizontal axes hold the record number or time (since the records are captured in equal

time intervals). Note that in this phase the results are not shown as distribution graphs,

instead, they are plotted as variation diagrams to show the dependency between the

four parameter values.

(a) Temperature. (b) Light.

(c) Humidity. (d) Pressure.

Figure 4.3: Variation diagrams of the four parameters captured in Safemar experi-
ments.

In order to form the training set, it is required to manually set the value of the fire

column in all data rows, i.e. classify the data rows into to the classes of fire and normal.

To do this, the data collected from the Safemar experiment and also the data collected

in normal condition during one week, were merged together. Figure 4.4 depicts the

distributions of the temperature, light, and humidity values in the FireDetection training

set.
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(a) Temperature. (b) Light.

(c) Humidity.

Figure 4.4: Distributions of temperature, light, and humidity, in the training set and
their relation to probability of fire.

In above figures, the two classes of fire and normal are illustrated with different colors

(red for fire and blue for normal) and the values of the probability of fire are shown

by black lines. In the Safemar experiment, fires did not have any meaningful effect on

the room’s air pressure since the container room had a good ventilation system and air

could easily enter it. The ventilation system compensated for the lack of oxygen. That

is why the distribution of pressure values has not been included in Figure 4.4. However,

according to interview with firefighters, in many fire cases especially in smaller rooms,
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the level of pressure drastically changes during fire. Therefore, the pressure and its mean

and variance values are used in the reasoning process.

The distributions of the temperature and humidity variance values were also impressive

and clearly show their association with the probability of fire where bigger variance

values in both parameters is mostly seen when fire exists in smartphone’s surroundings.

(a) Temperature variance. (b) Humidity variance.

Figure 4.5: Distributions of temperature variance and humidity variance in the train-
ing set, and their relation to probability of fire.

The distributions of these two parameters with the curves of fire probability are shown

in Figure 4.5.

4.5 Experiments Analysis

The results gained in Safemar experiments are quite interesting in terms of explaining

indoor fire behavior. Comparing the four graphs in Figure 4.3 the change in all four

parameter values is evident near record number 12. At the beginning, when there is no

fire all parameters especially temperature and humidity, show steady curves near their

corresponding mean values. As expected, at the time-step 13 when the room temperature

goes up to 53 ◦C 4.3(a) the level of relative humidity falls down to almost 25 percent

4.3(c). Fire consumes oxygen and if the room does not have an appropriate ventilation

system the vacuum condition happens which mean decrease in pressure. But if the

room have an air conditioning or ventilation system (as in our experiments) then the

fluctuations in air pressure happens 4.3(d). The impact of fire on the room light is more
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complicated and cannot be judged simply. According to this experiment, interviews

with firefighters, and also other fire guides such as [25], each fire has different phases

such as pre-ignition, flaming, glowing, and smoldering. In each of these phases the room

light can be increased or decreased due to smoke covering lights or flame or ignition. At

least we can be sure that an indoor fire changes the value of the room’s light (increase

or decrease) and this can be seen in Figure 4.3(b).

After performing these experiments, it is quite safe to state that smartphones with their

current set of sensors can detect fire. In other words, changes in room parameters in

case of fire are big enough to be sensed by smartphone sensors.

4.6 Prerequisites

FireDetection framework is a learning system and hence, before it can start to infer on fire

existence it must be trained. As mentioned in Section 3.1 for training the classifier, a data

set must be formed containing all possible classes (fire and normal in our FireDetection

framework). Forming the training set mandates several prerequisite tasks.

 Training Mode
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Acquiring
Nominal 
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Loading 
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Results
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Figure 4.6: The main process of the FireDetection framework.

Prerequisite tasks are mostly about data acquisition and training the reasoner so that

it can detect fire accurately. This includes all the tasks that must be finished before

the system can start detecting fire. As shown in Figure 4.6 these tasks are performed

when the framework is in its training mode. Once the prerequisites are fulfilled, the

framework changes to reasoning mode and the smartphones are ready to observe their

environment and detect fire and the FDBS can visualize the fire information.
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The first prerequisite task is to collect numeric data from smartphone senors and based

on it to decide on the size of the discretization intervals. When the intervals are decided,

the discretization process can start and hence, the smartphone can create the training

set. At this stage, the smartphones receive their sensor data, discretize them, and send

them to the FDBS to be stored in the database. Afterwards, The FDBS calculates the

results required for classification and makes them available to smartphones through a

web service. I think going deeper into the details of prerequisite tasks is not necessary

since they are done once and in fact, are not a part of the FireDetection functionalities.

4.7 Chapter Summary

In this chapter, I focused on the details of the proposed solution. I mentioned that

the proposed framework is called FireDetection and is composed of the smartphones

and the FDBS. The smartphones detect fire based on Naive Bayes Classification in

an independent way and the FDBS provide users with remote monitoring and data

visualization graphical user interface. The experiments performed during this project

and the results gained were also brought up and discussed in this chapter. These results

strongly indicated that the idea behind this project is valid.
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FireDetection Implementation

FireDetection framework is composed of two main entities namely the smartphones and

the FDBS each of which contains several components as demonstrated in Figure 5.1.

The framework is designed so that it can independently detect fire and trigger the alarm

which can be an on-screen notification, an SMS or phone call, or a message to the FDBS.

Smartphone

Backend Server

HSLS

Preprocessor

Message Creator

TS

Message Sender

HTTP Handler

Reasoner-Naive 
Bayes Classifier

Alarm

Internet

Visualizer

Database

Training Set

Data Storage

Network Interface

Network Interface

Calculator
Web Service

PS

Storage

Figure 5.1: The general components of the FireDetection framework.

Currently, the FDBS can serve more than one smartphone, although as a proof of concept

it only interacts with one. Nevertheless, in case of having more than one smartphone, the

FDBS should have some additional components such as big data handler, aggregation

module, and a more complex analyzer which can consider all smartphones measurements

30
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together. Following sections address the roles of FireDetection components and reveal

the framework’s implementation details.

5.1 Smartphone

The smartphones used in our system must have temperature, humidity, and barometer

sensors in addition to other usual sensors. Temperature and humidity are the most

important parameters in fire detection since indoor fire increases the temperature of

the room and decreases the level of relative humidity. Additionally, the selected smart-

phones should be high performer in terms of processing power and memory. Currently,

SAMSUNG Galaxy S4 is one of the best choices for this purpose because it has required

sensors, a quad-core 1.6 gigahertz processor and 2 gigabytes of random access memory

(RAM). This smartphone is an Android device so the prototype is designed for Android

smartphones.

Although the smartphones can detect fire independently, the raw data and the seri-

ousness of the report in each time interval are stored in FDBS’s database to be used

for visualization and further analyses. The smartphone sensor data are sent through

the Internet, so, the smartphone must be connected to the Internet to be able to send

them, otherwise, the data is only stored in its SD card. The smartphones start sending

messages to the FDBS as soon as they are connected to the Internet.

Basically, the smartphones in FireDetection framework have two working modes: train-

ing mode and reasoning mode. The training mode is used to form the training set.

Although in this mode the sensor values and other parameters are generated and sent

to the FDBS, but the whole process is not fully automatic in this mode and some mod-

ifications are needed on the training set. Nevertheless, the process in reasoning mode is

completely automatic and independent from external resources.

5.1.1 Sensors

The technical information of the sensor of the SAMSUNG Galaxy S4 which are used in

FireDetection framework are listed by the Table 5.1. Note that mA in this table is an

abbreviation of milliampere.
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Table 5.1: SAMSUNG Galaxy S4 technical sensors information.

Sensor Power Maximum Range Unit

Ambient Temperature 0.3 mA 165.0 ◦C

Relative Humidity 0.3 mA 100 percent

Light 0.75 mA 60000.0 lux [28]

Barometer 1.0 mA 1013.25 millibar

5.1.1.1 Ambient Temperature

The temperature sensor plays the most important role in fire detection because indoor

fires impact the ambient temperature and heat dramatically. There is no straight forward

way of detecting heat using smartphone sensors but using the ambient temperature

sensor the temperature of the surrounding space of the smartphone can be sensed in

centigrade degrees. As shown in the Table 5.1 the maximum value that the smartphone

temperature sensor can sense is 165 ◦C. This is sufficient for fire detection since the

mean value of the room temperature is much less (see experiments in Chapter 4).

5.1.1.2 Relative Humidity

Fire also consumes the water vapor in the air and consequently affects the level of

humidity in its environment. The humidity sensor gives the relative humidity which is

useful when detecting fire. Relative humidity takes values from 0 to 100 and φ is defined

by the Eq. 5.1 where the ew and e∗w represent the pressure of the water vapor existing

in the air and the biggest possible pressure at the same temperature respectively.

φ =
ew
e∗w
∗ 100 (5.1)

5.1.1.3 Light

Light is another parameter that can potentially be impacted by fire. It is difficult to

determine the exact effect of indoor fires on the room light since depending on environ-

mental parameters, fire may show different behaviors in terms of flame, smoke, etc. For

instance, different materials burn in diverse speed and make various types and amounts

of smoke. Also the level of oxygen in the room directly affects the flame where more

oxygen typically results in bigger flames. In such various conditions, we cannot exactly
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state that the fire increases the light because of its flame or decreases it because of its

soot or smoke. Therefore, the only thing that can be safely stated is that fire in a room

affects the level of light, so, it is used as a parameter in FireDetection framework.

There are special situation in which the smartphone is exposed to the direct sun light.

In such a case, the system must be able to distinguish between high temperatures caused

by direct sun light from the ones made by a real fire. The light sensor is one possible

option that helps the system to detect cases with high temperatures caused by direct

sunlight. Typically, the sunlight is much stronger than any other light sources that can

be found in indoor spaces (see experiments in Chapter 4).

5.1.1.4 Barometer

The barometer sensor measures the air pressure in millibar. Generally in physics, pres-

sure is defined as the proportion of force to a surface as shown in Eq. 5.2 where P is

pressure, F is force and A is area which the force applies [29].

P =
F

A
(5.2)

Note that in Table 5.1 the air pressure unit is millibar although there are other units for

air pressure (and in general pressure) such as Pascal and Torr [28]. According to this

definition, air pressure is the weight of air pillar above a surface. The air pressure has a

complicated relation with the air temperature. But in indoor places, this relation is easier

to explain where higher temperatures result in lower air pressure. High temperatures

in a room causes air molecules (oxygen, nitrogen, etc.) to move more quickly and

consequently the density of the room’s air decreases. However, there is one caveat that

is the room’s ventilation system. If the room has an appropriate ventilation system then

the pressure does not notably change.

5.1.2 Message Creator

This module is responsible for creating XML messages that are supposed to be sent

to the FDBS. Another version of the sensor data is stored in a text file on the device

memory card in the form of tab-separated values. This text file is only used as a log

file. An example of XML file generated by this module and received by the FDBS is

illustrated in Figure 5.2.
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<?xml version="1.0" encoding="UTF-8" standalone="true"?>
<parameters>
  <temperature>18.024141311645508</temperature>
  <light>87.0</light>
  <humidity>31.517568588256836</humidity>
  <pressure>1016.0999755859375</pressure>
  <latitude>58.33534591</latitude>
  <longitude>8.57539572</longitude>
  <temperatureMean>15.773664315541586</temperatureMean>
  <lightMean>55.0</lightMean>
  <humidityMean>33.77412827809652</humidityMean>
  <pressureMean>1016.096669514974</pressureMean>
  <temperatureVariance>0.3704314972424072</temperatureVariance>
  <lightVariance>0.0</lightVariance>
  <humidityVariance>0.4241601758622466</humidityVariance>
  <pressureVariance>2.226564619301547E-5</pressureVariance>
  <seriousness>1000</seriousness>
  <currentDateTime>Apr 1, 2014 7:48:21 PM</currentDateTime>
</parameters>

Figure 5.2: An example of XML messages sent from smartphone to FDBS.

In Android programming, the application cannot request the sensor values. Instead

the system calls a method called OnSensorChanged() each time a sensor has a new

value to report. Therefore, technically there is no control on the time intervals that

this method is invoked [30]. The message creator updates the XML message parameters

each time one of the sensor values changes and leaves others without any changes. This

assures us that the XML messages always contain the most recent sensor values.

5.1.3 Message Sender

The XML message created by MessageCreator module is wrapped up in an HTTP POST

request and is sent to the FDBS by the message sender module. In Android applications,

blocking processes cannot be implemented in the main threads and since all network

related components are considered as blocking processes, the message sender module

is put in a separate thread. The message sender, sends the XML message every five

second, if the smartphone is connected to the Internet. Otherwise, the XML messages

are overwritten and the sensors data are only stored in the device memory card.

5.1.4 Storage

As illustrated in Figure 5.1 the main training set required for the reasoning process

is maintained and manipulated by the FDBS. Therefore, there is no need to perform

heavy calculations inside the smartphone. However, the calculation results must be sent
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to the smartphone and kept somewhere inside it. According to Android official docu-

mentation, there are currently five options for storing data in an Android application as

shared preferences, SQLite database [31], internal storage, external storage, and network

connection [32]. The FireDetection framework is a prototype so its storage performance

is not the most important issue, but I briefly mention that since the information I want

to store is not particularly large, database is not necessary. On the other hand having

text files forces the application to parse them regularly which is not a good idea as well.

I utilize the shared preferences which is a storage space managed by the Android oper-

ating system (OS) and can be used to store rather small amount of data in the form of

key-value. Typically, the shared preference space is used to keep the application configu-

rations but I use it to store the results of the calculations required by the reasoner. The

information stored in shared preference are the values of the conditional probabilities of

various observations given fire and normal based on data in training set. Table 5.2 lists

some examples of the data items stores in the shared preferences.

Table 5.2: Examples of conditional probabilities data stored in the shared preferences.

Key (string) Value (float) Description

TAgF 0.0035 cond. prob. of temperature equals to A given fire

TBgN 0.002 cond. prob. of temperature equals to B given normal

HCgF 0.00081 cond. prob. of humidity equals to C given fire

LMCgN 0.0066 cond. prob. of light mean equals to C given normal

PVFgF 0.009 cond. prob. of pressure variance equals to F given fire

The most important advantage of the shared preference is that reading from and writing

to it are quite easy in terms of programming and there is no need to implement a text

parser in the Android application. Moreover, it is private and other applications cannot

access its values.

5.1.5 Preprocessor

Preprocessor module of the smartphones is responsible for calculating mean and vari-

ance values and also performing discretization on numeric sensors data in respect to

the intervals given in Table 4.1. The momentary means and variances are calculated

by CalculateMean() and CalcualteVariance() methods respectively. The dis-

cretization process is also performed continuously by the Discretize() method.

These three methods are called when a new sensor value is reported and hence, the
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momentary nominal values of sensors’ numeric values are immediately accessible to rea-

soner.

5.1.6 Reasoner

The reasoner module of the smartphone is where the classification takes place. The

inputs to this module are the sensor data and the other features previously generated

by the preprocessor. The input of every single reasoning round contains the nominal

values of 12 features as mentioned in Subsection 4.2.2. For instance, assume that the

sequence of feature values is like A, A, B, . . . . Knowing the order of the parameters in

this sequence, the reasoner refers to the probability values kept in the storage and fetches

them according to the input. It needs to find the conditional probability of temperature

equals to A given fire and normal, conditional probability of humidity equals to A

given fire and normal and so on. To do this, the reasoner invokes a method called

LoadTrainingSet(String key) and provides it with the “key” associated to the

desired “value”. Considering the rule of making key names explained in 5.2, the value of

conditional probability of temperature equals to A given fire is stored in association with

the “TAgF” key. Therefore, invoking the LoadTrainingSet(String key) method

with input string of “TAgF” will return “0.0035” which is our desired probability. Once

all conditional probability values are fetched from shared preference storage, the reasoner

calculates the conditional probabilities of fire and normal given the sequence of values.

Then it calculates the risks of triggering alarm or staying silent in accordance to the

risk calculation explained in 4.3, and decides if the alarm should be triggered. The

momentary value of seriousness of the case is sent to the FDBS to be used by visualizer

for plotting maps and other monitoring purposes.

It is possible that the training set does not have the value of the conditional probability

associated with a specific key. For instance, the temperature observed by the sensor is

converted to the value X but calling the LoadTrainingSet(X) returns 0. Therefore,

considering Eq. 4.3, the value of P (Fire|T = x, L = y, . . . ) will be equal to zero

regardless of other conditional probabilities. This issue is called zero-frequency and

must be treated somehow since in reality we know that even if we do not have such a

record in our training set it does not mean that the probability of its occurrence is zero.

There a few solution to overcome this issue such as using Laplace Estimator [33] but

the easiest solution is to simply remove the effect of such a case by putting “1” instead

of “0”. This, results in extraordinarily high probability. Another option is to put a

very small value instead of zero but this may also affect the correctness of the reasoning
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since it means that the reasoner is relying on something other than the training set. In

FireDetection framework this problem is solved by manually checking the training set

and making sure that all possible keys have one value.

5.1.7 Alarm

There can be many types of notification generated in case of having fire such as a beep

(or ring), a voice call or an SMS sent to fire station or any other involved authorities, etc.

In this project the smartphone plays an alarm sound when detecting fire and shows a

fire icon on the application screen as depicted in Figure 5.3. Moreover, the visualization

module of the FDBS continuously observes the smartphone environment and visualize

the status of the probable fire.

Figure 5.3: The fire icon on the smartphone screen when the fire is detected.

5.2 FDBS

Battery duration is one of the main challenges in every project putting the burden of

heavy calculations on smartphones. So, I try to strip down the smartphone calculation

tasks as much as possible and perform them in FDBS. The two main tasks performed in

FDBS are maintaining the training set and calculating conditional probabilities based
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on it. As illustrated in Figure 5.1, the FDBS has a visualizer component as well that

provides us with remote monitoring.

5.2.1 HTTP Handler

In FireDetection framework, smartphones send their sensors data in the form of a Hyper

Text Transfer Protocol (HTTP) POST request containing an XML message as its body

to the FDBS to be stored and visualized. Therefore, the FDBS must be able to handle

HTTP POST requests. By handling I mean receiving the request, parsing XML message

in its body, extracting parameters and their values, and passing them to database and

visualizer modules. To do this, the HTTP handler must be deployed in a web server. All

modules in FDBS are developed using Microsoft technologies and the HTTP handler is

not an exception. Microsoft’s Internet Information Services (IIS) is used for deploying

the HTTP handler. The IIS must be configured so that it can redirect incoming requests

to different handlers and web applications that are deployed in it. For this purpose, the

IIS checks the extension of the incoming request and based on it, chooses the right

handler or web application to hand over the request. I defined a new extension for

requests sent from smartphones as .smrtrsq. Hence, smartphones must send HTTP

POST request to the following Uniform Resource Locator (URL):

http://IP-Address/FireDetector/request.smrtrsq

Once the extension is defined and the HTTP handler is deployed in IIS, all incom-

ing requests having the above mentioned extension will be automatically redirected to

FireDetection HTTP handler.

5.2.2 Database

The smartphone sensor data received and parsed by HTTP handler, are then delivered

to the database which is implemented in Microsoft SQLServer 2008 R2. developed by

Microsoft. The database consists of a number of tables and stored procedures available

to the handler enabling it to manipulate the database. General functionality that the

stored procedures provide is “insert into database” so that the HTTP handler can insert

the sensor data into the database. The database consists of two tables: one for storing

the training set and the other one for storing the raw data received from smartphones.
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5.2.3 Calculator Web Service

Although in Figure 5.1 the calculator web service is depicted as a single module, its

implementation is a bit different. The implementation details of this module is out of

the scope of this project, however, it is composed of a stored procedure in the database

and a web service in the FDBS. This module has two responsibilities: first, to calculate

the conditional probabilities required by the reasoner (i.e. classifier) and second, to

make them accessible to the reasoner as a web service. Consequently, the smartphone

does not need to perform heavy calculations during its reasoning process and the web

service helps the reasoner to keep its resources updated.

5.2.4 Visualizer

XML messages containing sensor data, GPS coordinates, and the seriousness value are

sent to the FDBS in every five seconds. Therefore, the visualizer module of the FDBS

can visualize the location of the smartphones and the momentary seriousness of fire

reports in a real-time manner. To do this, the Google Maps Application Programming

Interface (API) [34] is used for visualization. Google Maps API is a JavaScript library

that can be integrated to web applications and web sites. The map is embedded in a

C Sharp web application which interacts with the Microsoft SQLServer database and

fetches the most recent records received by executing a stored procedure. The visualizer

web application, executes this stored procedure and refreshes the map every five seconds

which means any changes in database is visualized in the map almost immediately. To

refresh the map, an Asynchronous JavaScript And XML (AJAX) library called Ajax

Control Toolkit is used.
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Figure 5.4: The visualizer web application showing the location and the seriousness
of the fire reports. Circles diameter represent the seriousness of the report.

As illustrated in Figure 5.4 the GPS coordinates of the fire reports are used to draw

four red circles on the map representing the places of the fire incidents. The diameters

show the seriousness of the case calculated and sent by the smartphones based on the

values of the ζ explained in Section 4.3. This map also provides users with some useful

information about the temperature, humidity, light, and the air pressure sensed by the

smartphones which have sent the fire report. These information are available by clicking

on each circle.

5.3 Chapter Summary

In this chapter, implementation details of the components of the proposed framework

were described. We saw how different components of the FireDetection framework inter-

act each other to detect and visualize probable fires. Collecting data from smartphones’

surroundings, preprocessing, analyzing, logging, and sending it to the FDBS machine,

reasoning based on it and finally, visualizing it were among the FireDetection tasks

highlighted in this chapter.
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Evaluation and Results

In this chapter, the results achieved by the Naive Bayes Classifier are offered. The results

are expressed in a confusion matrix which shows the percentage of correctly classified

and wrongly classified parameter sequences. A comparison between performance of the

Naive Bayes Classifier with a few other classifiers is also made and its discussion can be

found in this chapter.

6.1 FireDetection Performance

Reasoner module of the smartphones in FireDetection framework showed 76.3 percent

accuracy in classification of normal cases and 89.7 percent in classification of fire cases.

This results are given as a confusion matrix in Table 6.1.

Table 6.1: Confusion matrix representing the accuracy of the classification.

Predicted Classes
Normal Fire

Actual Classes
Normal 76.3 23.7

Fire 10.3 89.7

To test the importance of the variance values, I removed all variance values from the

training set and tested the reasoner again. As shown in Table 6.2 although the accuracy

of the classification of normal cases improves, the classification of fire cases degrades to

70.7 from 89.7 percent. Considering that the accuracy of the system on detecting fire

is more important to FireDetection framework, I decided to keep the variance values.

We can compensate for the rather low accuracy of the classification of normal cases by

exploiting the proposed risk calculation method explained in Section 4.3.
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Table 6.2: Confusion matrix representing the accuracy of the classification while
variance values are removed from the training set.

Predicted Classes
Fire Normal

Actual Classes
Fire 93.1 6.9

Normal 29.31 70.7

6.1.1 Alternative Discretization Methods

The proposed discretization method is used in FireDetection framework, however, there

are alternative discretization methods which can affect the classification accuracy. Data

mining tools such as Weka [35] and Orange [36] offer different discretization methods.

For example in the Orange framework, there are three discretization options: Entropy-

MDL, equal-width, and equal-frequency. Studying the Entropy-MDL algorithm [37] is

out of the scope of this thesis but the equal-length and equal-frequency method were

considered when designing intervals. These two methods can be useful when the type

of the data set and its characteristics are unknown to the classifying system, and from

that perspective the classifier is a multi-purpose system which does not care about the

data set semantics, whereas, the FireDetection framework is specialized to work with a

constant training set and can only detect fire. Therefore, it does not need automatic

discretization algorithm.

6.2 Alternative Classification Methods

There are many alternative classification methods that could be used in FireDetection

framework. To see if they show better classification accuracy, I used the Orange data

mining tool. The Orange provides many classifiers, but I chose three of them that

are: Neural Network, k-NN, and Logistic Regression. As expected [38], all three show

slightly better accuracy than the Naive Bayes Classifier but judging about their efficiency

is difficult unless all classifiers are implemented on the smartphone.

6.3 Chapter Summary

In this chapter, the results achieved by the FireDetection framework were offered. We

discussed the accuracy of the classification process and also the possible alternative

methods and technologies that could have been engaged.
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Conclusion

In the present thesis, I introduced the FireDetection framework which detects indoor

fire and visualizes its location and scale based on reports containing smartphone sensors

data. The FireDetection is composed of the smartphones and the FDBS. The inference

process on existence of fire is performed using Naive Bayes Classifier implemented inside

the smartphones. The smartphones also send data to FDBS for visualization purposes.

The implemented classifier, has been modified so that it can produce the ζ metric of

fire which represents the seriousness of the case, i.e. the fire report. Under defined

criteria, this metric along with GPS coordinates are plotted on a web based map. This

framework is a learning system and has been trained in southern Norway. Therefore, its

functionality is only valid in similar climates. The reason for this is that the reasoning

process is based on parameters such as temperature, humidity, and air pressure, subject

to change in different environmental conditions. As a conclusion, the highlights of the

results obtained in this project are listed as follows:

Sensor Selection: It is now safe to state that currently available smartphones can feasibly

infer on existence of fire in their surroundings. The classification (or inference) results

offered in 6.1 and also the experiments presented in Sections 4.4 and 4.5 prove our

hypothesis of fire detection using smartphone senors.

Reasoning: The reasoning process proposed in this thesis was also quite efficient both in

term of results and battery consumption in smartphones. In total Naive Bayes Classifier

gained 83.5 percent accuracy that considering the defined mechanism for triggering the

alarm, is sufficiently reliable.

Experiments: The valuable opportunity of performing exclusive fire experiments in a

real environment is definitely one of the strong points of this thesis. Highly accurate
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results gained in the reasoning process approves the quality of performed experiments

and motivates further research and development in this area.

Visualization: One of the most important goals of this project was to provide crisis

management institutions with a real-time monitoring tool helping them to know more

about a fire. The output of the visualizer web application is one step towards safer

firefighting operations.

7.1 Future Work

Some of the possible improvements of the present framework are rooted in the limitations

and assumptions we had to define at the beginning of the project. For instance, the

framework has been designed and implemented to be used in Norway and using it in

other countries with significant climate differences may lead to false results unless the

training set is updated according to the new environmental parameters. Therefore,

the first possible improvement of this framework can be the possibility of updating the

training set directly from the smartphone user interface so that there will be no need to

manipulate the code both in the smartphone and the FDBS.

The proposed framework can be extended to be used in outdoor locations as well. Mon-

itoring forests to prevent probable fires from getting too large can be an interesting

expansion of this system. But then, we need to replace the smartphone sensors with a

huge number of sensors mounted (or dropped) on various places in the forest. Outdoor

sensors must be a bit different in terms of thresholds, being water and dust resistant,

etc. However, the principles of reasoning and fire detection seems to be the same.

Another potential functionality of the FireDetection framework is providing its users

with survival hints. Currently, our smartphones can detect fire individually and the

FDBS can visualize the fire according to the information received from them. Another

reasoner residing in FDBS can analyze smartphones reports, find the best way to save

more people, and send them messages containing useful information. This interactive

system needs huge amount of prior information about the place of fire (emergency exits,

stairs, etc.) and it demands lots of memory and processing power, but it can save lives.

During the data collection and experiment phases in this project, we noticed that the

level of pressure and humidity are extremely dependent to the weather. These two

parameter can have a wide range of values. For instance, we had pressures from 1001

to 1025 millibar in different days. It would be useful if the smartphone could access the
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momentary mean values of the four parameters through an external web service. The

main advantage of such a web service is that the smartphone can dynamically adapt its

reasoning to the weather condition. This should be discussed in the future. Moreover,

in this project we assumed that the data captured from smartphone senors are accurate

and valid but in reality not all smartphones sense the same in the same condition.

This happens because there are various sensor vendors and smartphone manufacturers.

Although we did not have enough time to address this issue, a combination of the

external web service and data quality techniques could reduce such impacts on the

reasoning process.
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[36] Janez Demšar, Blaž Zupan, Gregor Leban, and Tomaz Curk. Orange: From exper-

imental machine learning to interactive data mining. Springer, 2004.

[37] Ron Kohavi and Mehran Sahami. Error-based and entropy-based discretization of

continuous features. In KDD, pages 114–119, 1996.

[38] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of super-

vised learning algorithms. In Proceedings of the 23rd international conference on

Machine learning, pages 161–168. ACM, 2006.


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Problem Solution
	1.3 Key Assumptions
	1.4 Importance of Topic
	1.5 Thesis Outline
	1.6 Chapter Summary

	2 Related Work
	2.1 Utilizing Smartphone Sensor Data
	2.2 Classification and Pattern Recognition Techniques in Smartphones
	2.3 Chapter Summary

	3 Theoretical Background
	3.1 Naive Bayes Classifier
	3.2 Preprocessing
	3.2.1 Discretization

	3.3 Chapter Summary

	4 Solution
	4.1 Data Acquisition
	4.2 Preprocessing
	4.2.1 Selecting and Extracting Features
	4.2.2 Converting Numeric Data Set to Nominal

	4.3 Deciding on Existence of Fire
	4.4 Experiments
	4.4.1 Analysis Phase
	4.4.2 Training Phase

	4.5 Experiments Analysis
	4.6 Prerequisites
	4.7 Chapter Summary

	5 FireDetection Implementation
	5.1 Smartphone
	5.1.1 Sensors
	5.1.1.1 Ambient Temperature
	5.1.1.2 Relative Humidity
	5.1.1.3 Light
	5.1.1.4 Barometer

	5.1.2 Message Creator
	5.1.3 Message Sender
	5.1.4 Storage
	5.1.5 Preprocessor
	5.1.6 Reasoner
	5.1.7 Alarm

	5.2 FDBS
	5.2.1 HTTP Handler
	5.2.2 Database
	5.2.3 Calculator Web Service
	5.2.4 Visualizer

	5.3 Chapter Summary

	6 Evaluation and Results
	6.1 FireDetection Performance
	6.1.1 Alternative Discretization Methods

	6.2 Alternative Classification Methods
	6.3 Chapter Summary

	7 Conclusion
	7.1 Future Work


