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Abstract

The purpose of this thesis is to investigate which of the selected models that forecasts the out-

of-sample volatility most accurate and to see if the regression based models can outperform the

historical volatility models. Using the data from the S&P500, NASDAQ Composite, DJIA, CBOE

Interest Rate, LBMA Gold and USD/GBP return series. The data is forecasted under di�erent

distribution assumptions and then evaluated against each other. Trough this thesis, it can be con-

cluded that the asymmetric GJR-GARCH under Student-t distribution most accurately describes

the S&P500 and DJIA while GJR-GARCH under the normal distribution provides the most ac-

curate forecast for NASDAQ Composite. The asymmetric EGARCH under Student-t distribution

and under normal distribution most accurately describes the CBOE Interest Rate return series

and the LBMA Gold return series respectively. When it comes to the USD/GBP return series

the EWMA model provided the best forecast. Among the models classi�ed as historical volatility

models in this thesis only the EWMA model could compete with the asymmetric GARCH models

by being the preferred model for one of the series and close in terms of MSE for the other series.
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1 Introduction

Volatility forecasting is an important component in asset allocation, risk management and option

pricing. High volatility means large deviations from the mean and deviation implies risk (see Figlewski

(1997)[1]). For instance in the Black and Scholes (1973)[2] options pricing model volatility is the

only unknown variable so the one with the most accurate volatility estimate is able to pinpoint the

theoretical price most accurately and this has a lot of potential value. In modern portfolio theory when

minimizing risk for a given level of expected return using Markowitz (1952)[3] optimization the return

volatility is an important part of the optimization calculations. Similarly in the other �elds obviously

the better the prediction the better you will preform. This has pushed practitioners and researchers to

develop a plethora of forecasting models as new features common to �nancial data has been discovered

and technology have improved. It has still proven hard to beat the naive models of predicting next

months volatility using the previous months volatility.

Previous research is ambiguous in its conclusions regarding what model predicts the volatility most

accurately as shown in Poon and Granger (2003)[4] where the �ndings of 93 papers on the subject

where summarized. This makes it meaningful to test several models against the naive models on a set

of di�erent �nancial time-series. There are several factors that are important when modeling volatility

that might be the cause of the ambiguity in previous research results: di�erent forecast horizons, data,

sample periods and proxy for realized volatility are used to mention some.

The purpose of this thesis is to investigate which of the �tted models forecast the out-of-sample

volatility most accurate and to see if the regression based models can outperform the historical volatility

models. The models used in in this thesis is RW (random walk), SMA (simple moving average),

EWMA ( exponentially weighted moving average), ARMA (auto-regressive moving average), GARCH

(generalized auto regressive conditional heteroskedasticity), exponential GARCH, Threshold GARCH

and Glosten -Jagannathan-Runkle GARCH. These are some of the models that have been recommended

in previous papers. There is a lot of models not tested in this thesis, so there might still be superior

models available for forecasting the out-of-sample one month ahead volatility of the return data. It is

important that when evaluating the models to have an accurate estimate of the true variance in the

out-of-sample period and this is computed on the base of daily returns of each month.. To investigate

the phenomena of non-normal distribution in �nancial time-series data, the ARCH-family models are
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also analyzed under di�erent distributions. The distributions include the normal distribution, and

distributions that allow for more skewness and kurtosis the skewed Student-t, and skewed general

error distribution. As shown in Section 5.1 non of the return series follow the normal distribution

manly due to large excess kurtosis and some skewness.

Following the introduction part is Section 2 is the literature review where I will present some

previous research on volatility forecasting, some stylized facts of �nancial time-series, models and the

tests used in this thesis. In Section 3 and 4 the models and tests used is presented. Section 5 presents

the data and the descriptive statistics of the daily return series. In Section 6 I will describe the forecast

evaluation method used to generate the results. Section 7 is a presentation of the results starting with

the in-sample tests and parameter estimation followed by they out-of-sample comparison of the models.

Section 8 is a discussion of the �ndings contrasted to �ndings of others, and pointing out new questions

that could be explored. In Section 9 you �nd the conclusion with a short summary of the approach

and the main �ndings. Then the acknowledgments are given followed by the reference list and an

Appendix where the R code used to generate the results and the full URLs to the data sources can be

found.

2 Literature review

Modeling volatility have for a long time been of grate interest among researchers. It was discovered

that the volatility in �nancial where clustering meaning that for instance low volatility where more

likely to be followed by low volatility than high and so on.Volatility clustering - a phenomenon in

�nancial time-series modeling is that one turbulent trading day tends to be followed by another and

vice versa concerning tranquil periods Poon (2005)[5]. In 1971 Box and Jenkins[6] popularized the

ARMA model which could be used to identify a linear process that could have generated a given time

series provided it is stationary. The ARMA model gained attention as a method for capturing the

volatility movement. This volatility clustering can in principle be captured by ARMA models but it

could breach the non-negativity cosnstrant and it had problems besting the naive benchmark model

(RW). This lead to the development of new volatility forecasting models. The ARCH model by Engle

(1982)[7] was the �rst one, and it was groundbreaking due to its ability to explain the non-linear

dynamics of �nancial data in a better way. There are limitations to the ARCH-model due to the
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possibility of it braking the non-negatively constraints and need for many variables to capture the

dynamics. A more parsimonious model that avoids over-�tting and is less likely to breach the non-

negativity constraints than the ARCH-model was presented by Bollerslev and Taylor (1986)[8] the

GARCH-model.

One weakness with the GARCH-model is that it is symmetric, meaning if shocks with di�erent

signs and the same magnitude have di�erent e�ects on the volatility it can't capture it. This is called

the leverage e�ect in �nancial data. Levrage e�ect - negative news leading to a fall in stock price

shifts a �rm's debt to equity ratio upwards. This means that the �rm have increased leverage and

thus higher risk. Christie (1982)[9] acknowledged this e�ect as the �leverage e�ect�, and reference the

observation that stock price volatility increases more from a negative shock than a positive shock of

the same magnitude. This e�ect gave rise to the asymmetric GARCH-models. One such model is the

exponential GARCH presented by Nelson (1991)[10] the model works on logarithmic volatility values

and can not brake the non-negatively constraints. The Threshold-GARCH by Zakoian 1991[11]and the

GJR-GARCH by Glosten, Jagannathan, and Runkle (1993)[12] use an indicator function I to model

the positive and negative shocks on the conditional variance asymmetrically. Many other asymmetric

models heave since been produced.

Most �nancial return series su�er from excess kurtosis and skewness. Kurtosis - also known as �the

fourth moment�, measures how fat the tails of the distribution are (see Brooks (2008)[13]). Skewness

� also known as �the third moment�, measures how the distribution deviates from its mean value (see

Dowd (2005)[14]). This leads to data that does not follow the normal distribution and justify testing

models using di�erent distributions.

Poon and Granger (2003)[4] summarized the �ndings of 93 papers on volatility forecasting and

found that GARCH-models preform better than ARCH-models, while asymmetric GARCH-models

outperform symmetric GARCH-models. They did however not �nd the results homogenous. Vill-

helmsson (2006)[15] suggests that one reason for this is that researchers use di�erent data, sampling

periods, sample frequency and forecast horizon. He also states the proxy used for ex-post variance,

the loss function and distribution used can in�uence the result. The results from Poon and Granger

(2003)[4] show that the historical volatility models often outperform the more complex regression based

models. For instance in the case of the studies where historical volatility models where compared to
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the GARCH models the historical volatility models where preferred in almost 50% of the cases

3 Models

Here I present the models used with an addition of the original ARCH-model. The ARCH-family and

ARMA formulas presented are in line with the formulas used by the rugarch package in R[16].

3.1 SMA

Simple moving average model takes the equally weighted average of the returns in a given historical

period and presents this average as the prediction for the next periods volatility. The model can be

presented as:

rt = µ+ εt (1)

σ2
t =

∑T
l=1 r

2
t−l

T
, (2)

where r is the daily returns consist of a mean µ and ε which account for the volatility. t = 1, . . . , T

denotes the time at which each return is measured. For daily returns µ ≈ 0 which is why the model is

estimated only using r2t−l and not (rt−l − E [r])
2
. The square root of time rule can be used to extend

the the forecast horizon.

This models main weakness is that it dose not react well to large jumps in �nancial asset prices.

When a long averaging period is used, the importance of a single extreme event is averaged out within

a large sample of returns (see Frank J. Fabozzi (2008)[17]).

The random walk model is estimated using SMA with one month look back. The model assumes

that the best forecast of next period's volatility is the volatility of the period prior σ2
t+1 = σ2

t .

3.2 EWMA

The EWMA model is similar to the SMA model the only di�erence lies in the weighting of the

observations. The model tries to address the unresponsiveness that the SMA model have to extreme
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events by implementing exponential weighting such that the data points gets exponentially more weight

the more recent they are. The model can be presented as:

σ2
t = (1− λ)

∞∑
i=1

λi−1r2t−i, (3)

or in the form of recursions:

σ2
t = (1− λ)r2t−1 + λσ2

t−1, (4)

Where r is the daily returns assumed to be normally distributed with a zero mean and t = 1, . . . ,∞

denotes the time at which each return is measured. The λis a constant, 0 < λ < 1, called the smoothing

or the decay constant. The term (1−λ)r2t−1determines the intensity of reaction of volatility to market

events. The smaller the λ the more the volatility responds to the market information in yesterday's

return. λσ2
t−1 is the persistence term that determines how much of yesterdays volatility will carry

over to today irrespective of what happens in the market. The closer λ is to 1, the more prescient

is volatility following a market shock (see Frank J. Fabozzi (2008)[17]). Similar to the SMA model a

h-day ahead forecast can be obtained by using the square root of time rule.

The shortcomings of this model lies in the assumptions used as they contradict the features pre-

sented in the stylized facts of Section 2.2 that return series hardly ever is i.i.d. When i comes to the

decay constant, one can use the λ presented in the RiskMetrics� or try to estimate it.

3.3 ARMA

The ARMA-model popularized by Box and Jenkins (1971)[6] has been suggested to provide a good

forecast of volatility in a lot of academic literature. It is less complex than many other models and

relatively simple to implement. The ARMA(p,q)-model can be written as:

σt = c+ εt +

p∑
i=1

φiσt−i +

q∑
j=1

θjεt−j , (5)

where |φ| < 1and |θ| < 1 for a stationary process. The innovations εt are assumed to be i.i.d. The

variable σt depends on its own past which is the moving average part and and previous values of linear

combinations of the withe noise process of the error term Verbeek (2008)[18].
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3.4 ARCH

The auto-regressive conditional heteroskedasticity model by Engle in 1982[7] modeled the variance of

a regression model's disturbances as a linear function of the lagged values of the squared regression

disturbances. An ARCH(q) model can be written as:

rt = µ+ εt, (6)

σ2
t = ω + α1ε

2
t−1 + α2ε

2
t−2 + · · ·+ αqε

2
t−q, (7)

where equation (6) is the conditional mean and equation (7) is the conditional variance, with the

intercept ω, and where the innovations εt that are normally distributed with mean zero and standard

deviation σ. αi is the ARCH parameters. The model is useful when the data is of a non-linear

character. In �nancial time-series heteroskedasticity might be present which means that the variance

is not constant over time, also volatility of similar magnitude might appear in clusters. ARCH-family

models have the ability to capture these e�ects.

This model have a few problems for instance it might need a large q to capture all of the dependence

and as the q gets large the non-negatively constrain might get breached. It can also not handle

asymmetric e�ects. I will not use this model, but it is important as it is the �rst of the ARCH-family

models.

3.5 GARCH

The GARCH-model was developed by Bollerslev and Taylor in 1986[8] and was designed to get around

some of the drawbacks in the ARCH-model. The GARCH-model is more parsimonious as in generally a

lower order is required to capture the dynamics and its is thus less likely to breach the non-negatively

constraints. The past squared residuals capture high frequency e�ects, while the lagged variance

captures long term in�uences. The GARCH(q,p) model can be written as:

σ2
t = ω +

q∑
j=1

αjε
2
t−j +

p∑
j=1

βjσ
2
t−j , (8)
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where ω , α , β need to be non-negative to ensure the non-negatively constrain is not breached and

with α+ β < 1 but should be close to unity for an accurate model speci�cation.

3.6 EGARCH

The exponential GARCH model presented by Nelson 1991[10] is one of the models used in this thesis

able to capture the asymmetric e�ect referred to as the levered e�ect in �nancial time series. The

model have the ability to account for negative shocks and positive shocks of the same magnitude

having an unequal destabilizing e�ect. The model also can not breach the non-negatively constraint.

The EGARCH(q,p) model can be written as:

log(σ2
t ) = ω +

q∑
j=1

(αjεt−j + γj(|εt−j | − E|εt−j |)) +

p∑
j=1

βj log(σ2
t−j), (9)

where in the conditional variance equation (9) the coe�cient αjcaptures the sign e�ect and γj the size

e�ect of the asymmetry. Positive estimates of the volatility is guaranteed due to working on the log

variance. There is no restrictions on ω, α, and γ, but to maintain stability β must be positive and less

than one.

3.7 GJR-GARCH

The GJR-GARCH model following the work of Glosten, Jagannathan, and Runkle (1993)[12] uses a

indicator function I to model the positive and negative shocks on the conditional variance asymmet-

rically. The GJR-GARCH(q,p) model can be written as:

σ2
t = ω +

q∑
j=1

(αjε
2
t−j + γjIt−jε

2
t−j) +

p∑
j=1

βjσ
2
t−j , (10)

where γj is the leverage term. The indicator function I takes the value 1 for ε < 0 and 0 otherwise.

The parameters have the same restrictions as for the GARCH model with addition of γ > 0. It is easy

to recognize that the GARCH model is in fact a restricted version of the GJR-GARCH, with γ = 0 .

3.8 TGARCH

The threshold GARCH model proposed by Zakoian 1991[11] is similar to the GJR-GARCH with

the only noticeable di�erence being that it woks on the conditional standard deviation as opposed

11



to the conditional variance and thus on the innovations directly not the squared innovations. The

TGARCH(q,p) model can be written as:

σt = ω +

q∑
j=1

(αjεt−j + γjIt−jεt−j) +

p∑
j=1

βjσt−j , (11)

where γj is the leverage term. The indicator function I takes the value 1 for ε < 0 and 0 otherwise.

The parameters have the same restrictions as for the GARCH model with addition of γ > 0.

4 Statistical Tests

In this Section I present the di�erent test used on the data. The tests consist of the Jarque-Bera test

for non-normality, augmented Dickey-Fuller (1979)[19] test for unit roots, Engle's (1982)[7] ARCH LM

test for ARCH e�ects and the sign bias test by Engle and NG (1993)[20] for leverage e�ects.

4.1 Jarque-Bera test

The Jarque-Bera (1987)[21] test is used to test if a sample follows a normal distribution.The following

formula is used:

JB =
n

6

(
S2 +

1

4
(K − 3)

2

)
, (12)

where n is the sample size, S is the sample skewness and K the sample kurtosis. The test is χ2

distributed and have a joint null of S = 0 and (K−3) = 0. Rejecting the null suggests that the sample

does not follow a normal distribution.

4.2 ADF

The augmented Dickey-Fuller (1979)[19] test is used to determine if a time-series is stationary by

checking for unit roots. This is important when applying an ARMA model to determine if the data

needs to be di�erentiated. The formula is:

4rt = α+ βt + θrt−1 + δ14rt−1 + · · ·+ δk−14rt−k + εt, (13)

where α is a constant, β the coe�cient on a time trend t and k the lag order of the auto-regressive

process. Imposing constrains on the parameters α and β can be used to model random walk (α =
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0, β = 0) and random walk with a drift (β = 0). The null for the test is θ = 0 suggests non-stationary

data versus the alternative θ < 0 for stationary data.

4.3 ARCH LM test

Financial time-series data are often assumed to be non-linear and a test to con�rm this and thus

warrant the use of non-linear models should be conducted. For this purpose I use Engle's ARCH

test which is a Lagrange multiplier to assess the signi�cance of ARCH e�ects Engle 1982[7]. The

conditional heteroskedasticity inn a variance process is equal to the autocorrelation inn the squared

innovation process. The residual is series given by:

et = rt − µ̂t, (14)

where µtis the conditional mean of the process and et the innovation. The alternative hypothesis for

autocorrelation in the squared residuals is given by the regression

Ha : e2t = α0 + α1e
2
t−1 + · · ·+ αme

2
t−m + ut,

where utis a withe noise error process. The null suggesting no autocorrelation in the squared residuals

is

H0 : α0 = α1 = . . . = αm = 0

4.4 Test for asymmetries in volatility

To test for asymmetry in the data the sign bias test by Engle and Ng's (1993) [20] is used. The test

indicates if the residuals in the GARCH-model are sign biased suggesting that the leverage e�ect is

present in the time-series or not. The joint test can be states as

ε̂2t = /O0 + /O1S
−
t−1 + /O2S

−
t−1εt−1 + /O3S

+
t−1εt−1 + νt, (15)

where the residuals form the symmetric GARCH take value 1 if εt−1 < 1 and gives the slope dummy

value S−t−1. S
+
t−1 is de�ned as 1− S−t−1 . If /O1is signi�cant it suggests sign bias and that negative and

positive shocks have di�erent destabilizing e�ect. If /O2is signi�cant it indicates negative size bias. A
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signi�cant /O3 indicates the presence of positive size bias. If positive or negative size bias is signi�cant

it suggests that the size of a shock will have an asymmetric impact on volatility. The null for the

joint test is /O1 = /O2 = /O3 = 0 for no signi�cant asymmetry in the squares residuals. The alternative

hypothesis that at least one /Oi is signi�cant fori = 1, 2, 3 which suggests that the use of asymmetric

models are reasonable.

5 Data

The closing price data form S&P500, NASDAQ Composite, DJIA and CBOE Interest Rate(TNX) have

been gathered from Yahoo Finance. LBMA Gold prices can be found at Open Financial Data Project.

The currency rate series for USD/GBP is from oanda.com. The period used is from 1990-01-01 to

2014-02-07. The returns are calculated according to,

rt =
pt − pt−1
pt−1

(16)

where rt is the return at time t and pt is the daily closing price of the index at time t.

As described in Section 4.1, the Jarque-Bera test is χ2distributed with a joint null of skewness

and kurtosis equal to zero and tree respectively. At a one present signi�cant level, the normality are

rejected for all the series. This is not surprising given the high kurtosis in the return series. The heavy

tails indicate that the returns su�er from extreme events that fall outside the normal distribution

assumption.
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Table 3.1: Descriptive statistics of the daily return series including the Jarque-Bera test

S&P-500 NASDAQ Composite DJIA

Mean 0.0001959 0.000244 0.0003426

Median 0.0005437 0.001105 0.0004450

Maximum 0.1037823 0.124138 0.1108000

Minimum -0.0993237 -0.107034 -0.0787300

Std.dev 0.01157099 0.0151518 0.01095204

Skewness -0.4190841 -0.2621505 0.013709

Kurtosis 8.731976 5.91227 8.512445

JB p-value 0.00000 0.00000 0.00000

CBOE Interest Rate LBMA Gold USD/GBP

Mean -0.0003003 0.0001503 -0.0000011

Median 0.0000000 0.0002556 0.0000000

Maximum 0.0875332 0.0676617 0.047700

Minimum -0.1857708 -0.1007168 -0.031900

Std.dev 0.01562485 0.01030453 0.004453823

Skewness -0.2533819 -0.4081641 0.3459726

Kurtosis 7.237176 7.407597 6.609938

JB p-value 0.00000 0.00000 0.00000

In Table 3.1, the descriptive statistics of the daily return series are presented. The results for the

S&P500 and NASDAQ Composite series is consistent with Glosten et al. (1993)[12], who found that

stock index returns often exhibits negative skewness. The DJIA series does not share this feature

as the skewness is low and positive. I have not removed any outliers in the raw data so the excess

kurtosis found in all the series is not unexpected. Figlewski (1997)[1] stated that equities and many

other securities su�er from fatter tails since the log normal di�usion model is inconsistent with large

price changes. This implies that using di�erent distributions that might capture the extreme events

in the tails is justi�ed.

It is worth to note that the statistics between the series is relatively similar except for the USD/GDP

series where the min-max range is a lot closer and the skewness is relatively large and positive. The

standard deviation is also less than half of all of the other series.
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6 Forecast Evaluation

6.1 Data and sampling procedure for the model based forecast

I am going to investigate which of the forecasting models earlier presented in the theory (Section 3)

that produce the most accurate forecast for the six return series earlier presented (Section 5), and see

whether the regression based models outperform the naive models. The return series used are chosen

to re�ect the variety among �nancial time series. The tree stock exchange indexes represent di�erent

types of stocks, S&P500 where the largest stocks are listed DJIA represent the industrialized sector

and NASDAQ Composite the technology sector in USA. I have also included the LBMA Gold returns,

the exchange rate series USD/GBP and options index on 10 year US treasury notes the CBOE Interest

Rate. I �nd it interesting to see how the di�erent forecasting model preform on a varied selection of

series. Most of the series are collected form Yahoo Finance the full URLs will be provided in the

Appendix.

Market micro-structure problems, also referred to as noise in the data, is frequently found in real

markets due to bid-ask spreads, non-trading, and serial correlation. This makes most intraday data

unusable for calculations (see Figlewski (1997)[1]). I use the daily closing prices to produce the return

series as earlier described (Section 5.1). However Figlewski (1997)[1] points out that positive serial

correlation is often found in daily closing prices for equities and other securities. A way to limit

the e�ect of serial dependence at high frequencies is to use longer sampling intervals, but this means

reducing the amount of data points assuming one does not extend the time period in question to

compensate for this. Having fewer data points leads to increased sampling error. The best choice

of sampling frequency must depend on the statistical properties of the particular price series under

consideration according to Figlewski (1997)[1]. The length of the forecasting horizon should also

be taken into consideration when deciding which historical data to elaborate on. Having a large data

sample does not guarantee an accurate model that provides unbiased volatility, because volatility tends

to change over time. There is a trade-o� between trying to collect as much data as possible and trying

to eliminate data that is obsolete. When the forecasting horizon is short, it is more appropriate to

choose a short sample of the latest observations, which captures volatility clustering, thereby, capturing

the abilities/phenomenon of the current market conditions (see Figlewski (1997)[1]).

One can reduce the sampling error by using a large number of daily observations. Figlewski
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(1997)[1] shows that the choice of frequency at which the data is collected can have a large e�ect on

volatility. Practitioners and researchers tend to use the very recent past when producing forecasts.

Figlewski (1997)[1] shows that this might fail to produce an accurate forecast and instead advocate

the use of a longer horizon. With this in mind I have chosen the in-sample data to consist of �ve years

of daily observations 1990-01-01 to 1994-12-31 and the out-of-sample forecasted period 1995-01-01 to

2014-02-07.

Before testing, the behavior of the raw data is analyzed and presented in the descriptive statistics

(Section 5). No �ltering of outliers have been preformed. The reason for not �ltering the outliers is

the assumption that the outliers represent extreme events like war, natural disasters, and �nancial

crisis. Filtering the outliers might give better forecasts for tranquil periods should such events no

longer occur. Including the outliers will lead to the opportunity of capturing such events. I believe it

is naive to assume such events will stop to occur when looking at our history which is �lled with them.

The raw data is tested for normality according to the earlier presented (Section 4.1) Jarque-Bera

test. The results of the test combined with the skewness and excess kurtosiss shown in the descriptive

statistics (Section 5) of all the series is used to justify the use of di�erent distributions for forecasting

with ARCH-family models.

The data is imported to R where all the results is generated manly by the use of the rugarch

package. The code is available in the Appendix.

6.2 Forecasting procedure

The volatility in the out-of-sample period is forecasted through the in-sample data using a rolling

window which is adjusted to forecast the amount of data points in the next month. This results in a

forecast which produce as many data points for each of the months in the forecast horizon as there

is observations in the out-of-sample data, which is more accurate than just using a 21-day window as

an approximation. This implies that the �rst forecasted month uses the entire in-sample data. For

the next month the oldest month of the in-sample data is excluded and the realized daily values of

the �rst forecast period is used in-sample to produce the next forecast. This is repeated throughout

the out-of-sample period giving the conditional variance for the forecast. The monthly forecast of the

standard deviation is than produced by,
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σ̂m =

√√√√ N∑
i=1

σ̂2
i , (17)

where the monthly standard deviation σ̂m is calculated by the square root of the sum of squared daily

variance σ̂2
i in month m.

The proxy used for monthly realized volatility is computed by �nding the daily standard deviation

using the realized returns in each moth and than applying the square root of time rule to get the

monthly standard deviation using the formula:

σm =

√√√√ N∑
i=1

(ri − r̄)2, (18)

where N is the number of days in month m.

6.3 Model speci�cations and tests

6.3.1 Naïve models

I use tree models that is considered naive: RW, SMA, and EMWA which are earlier presented (Section

3). The reason that the models are considered naive is that the model bases forecasts of future volatility

on past realizations, with di�erent weighting schemes. In the paper by Poon and Granger (2003)[4]

the naive model fall under the category of historical volatility models. For the RW model the realized

volatility is estimated using a one month look back SMA. When it comes to the SMA model it is a

question of how many periods the forecast is based on. Having too few data points contains to little

information, while including to many data points runs the risk of adding obsolete observations that

have no added explanatory power with regards to the volatility in recent time. I will forecast on the

bases of 1-,6-, and 12-months where the 1 month is referred to as the RW model. When forecasting

with the EWMA-model the selection of the smoothing parameter value (λ) is an empirical issue. I

have chosen to follow RiskMetrics� and thus setting λ = 0.97.

6.3.2 In-sample tests

It is important for sake of an ARMA model that the data is stationary for it to avoid giving misleading

statistics. The ADF test describes earlier (Section 4.2) is used to test the in sample absolute returns
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for unit roots. There are several other test for stationarity that could be applied but the use of many

tests is more relevant for data with few observations as that is the main weakness of the tests.

Engle's ARCH LM test is run on the residuals from an ARMA(1,1)-model to test for presence

of volatility clustering in the in-sample data. Rejecting the null implies that there is signi�cant het-

eroskedasticity in the data, which in turn justi�es producing forecasts by applying the more complex

ARCH-family models to the data.

The sign bias test by Engle and Ng's (1993)[20] is than applied based on �tting a GARCH(1,1)-

model to the in-sample data. The tests is a joint sign bias tests for asymmetries. The standard

GARCH model is symmetric and is unable to capture asymmetric e�ects like the leverage e�ect which

is commonly found in asset return series. Signi�cant presence of such asymmetry is cause for forecasting

using the asymmetric models in the ARCH-family.

6.3.3 Regression based forecast models

When is comes to regression based models used for forecasting the ARMA(1,1) is commonly used and

recommended over higher order ARMA models that might be a better �t for in-sample data in some

cases, but tend to be unstable when used for forecasting. The ARMA(1,1) is the one chosen in this

thesis and applied to the squared returns which is a proxy for realizes daily volatility. One alternative

approach could be to �nd the optimal model for the in-sample data with the intention of �nding the

model which gives the best forecast when the optimal model speci�cation is known but this su�ers

form look ahead bias, and is not used in this thesis.

In recent times the ARCH-family models have become more popular than the ARMA model for

volatility forecasting and a wide array of them have been produced. The most common one used

for forecasting is no doubt the GARCH(1,1)-model and is the only symmetric ARCH-family model

that I will apply for forecasting. The asymmetric model speci�cations used is EGARCH(1,1), GJR-

GARCH(1,1) and t-GARCH(1,1). All the ARCH-family model will be run using the normal, skewed

Student-t, and skewed Generalized Error Distribution. The reason for trying multiple distributions

is that the descriptive statistics and JB test show that the excess skewness and kurtosis found in the

return series suggests that the normal distribution might not produce the best forecasts.
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6.4 Problems with ARCH-family models

The ARCH-type models require a large amount of data to give robust estimations. As previously

mentioned models with many parameters might �t in-sample data better, but often fall apart when

used for out-of-sample, thus failing to produce an accurate forecast. To produce an accurate forecast

the model has to be su�ciently stable and continue to hold over time Figlewski (1997)[1].

For some of the models coe�cients might be non-positive or sum to values grater than one. Should

a model have coe�cients which sum to be larger than one it will experience long run instability. If

the coe�cients are negative or do not sum to one, the maximum might lie outside of the theoretically

accepted region Figlewski (1997)[1]. Verbeek (2008)[18] points out that a parameter value that sums

to more than one gives a non-stationary process, but is a typical �nding in empirical studies.

6.5 Evaluation with loss functions

The evaluation models chosen need to be robust against the presence of noise. The impact from

extreme outcomes may have a dominating in�uence on the forecast evaluation. According to Patton

(2011)[22], a robust loss function is not only a function that is robust to noise in the proxy Huber

(1981)[23] but also to an expected loss ranking of between two volatility forecasts is the same. Results

produced by Patton (2011)[22] indicate that the only evaluation model that is robust is the Mean

Squared Error (MSE). The preferred forecasting models in this thesis will be selected by MSE. The

inputs are given by the realized volatility proxy at time t and the forecasted variance from the di�erent

models at time t. They are summed up for every month in the out-of-sample period giving an average

for the loss which can be compared between the di�erent models.

Villhelmsson (2006)[15] opted to use the mean absolute error (MAE) instead of MSE, due to the

fact that MSE is a loss function sensitive to outliers. MAE does not square the errors so larger errors

does not dominate the evaluation to the extent they do for the MSE. The MAE will be presented to

show that the choice of evaluation model can in�uence the ranking of the models signi�cantly.

MSE is de�ned by,

MSE =
1

n

n∑
t=1

(σ̂t − σt)2 , (19)

20



where n is the number of observations and σ̂t − σt is the deviation of the estimated - and the proxy

realized standard deviation.

MAE is de�ned by,

MAE =
1

n

n∑
t=1

|̂σt − σt|, (20)

where n is the number of observations and σ̂t − σt is the deviation of the estimated - and the proxy

realized standard deviation.

7 Empirical results and analysis

7.1 In-sample test results

Table 5.1 shows the results of the augmented Dickey-Fuller test that is applied to the in-sample absolute

returns. For all the series the null is rejected on a 1% level suggesting that all the series are stationary

Table 5.1 : ADF test for unit roots

ADF S&P-500 NASDAQ Composite DJIA

Statistic -8.6851 -8.6158 -8.65

P-value <0.01 <0.01 <0.01

CBOE Interest Rate LBMA Gold USD/GBP

Statistic -7.8495 -6.5575 -7.9207

P-value <0.01 <0.01 <0.01

Table 5.2 shows the results of Engle's ARCH LM test described in 2.4.3 at lag 5 for all the series.

The null is rejected at a 1% level for all the series. This is evidence that all the series have squared

residuals for previous lags that are correlated with the squared residuals at time t. This indicates

that there is heteroskedasticity in the data, and motivates the use of models that does not assume a

constant variance, as they might provide a better forecast.

Table 5.2: Engle's ARCH LM test at lag 5
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ARCH LM S&P-500 NASDAQ Composite DJIA

Statistic 57.23 84.05 34.71

P-value <0.01 <0.01 <0.01

CBOE Interest Rate LBMA Gold USD/GBP

Statistic 17.10 15.792 39.69

P-value <0.01 <0.01 <0.01

In Table 5.3 the results from the sign bias test for asymmetry in volatility. Two of the series the

NASDAQ Composite index and the USD/GBP have asymmetry that is signi�cant on a 1% level. DJIA

have a negative sign bias that is signi�cant at a 10% level while the S&P-500 index have a joint e�ect

that is signi�cant at a 15% level. The CBOE Interest Rate and LBMA Gold series does not have

any signi�cant in-sample asymmetry at levels 15% or lower. This result is ambiguous as some series

display clear signs of leverage e�ects in the standardized residuals while other series have no clear

signi�cant asymmetry. Still there might be asymmetry in the out-of-sample data even if the in-sample

data show no signi�cant sign of it. The fact that the leverage e�ect is commonly found in �nancial

time series gives reason to apply asymmetric model to all the series even though the in-sample results

are ambiguous.

Table 5.3: Sign Bias Test of Engle and Ng (1993) t-value with p-values in the brackets

Sign Bias Test S&P500 NASDAQ Composite DJIA

Sign Bias 1.22(0.222) 2.998(<0.01) 0.602(0.547)

Negative Sign Bias 0.569(0.569) 0.239(0.811) 1.915(0.056)

Positive Sign Bias 0.082(0.934) 0.425(0.664) 0.653(0.514)

Joint E�ect 5.482(0.140) 18.80(<0.01) 5.200(0.158)

CBOE Interest Rate LBMA Gold USD/GBP

Sign Bias 1.367(0.172) 0.100(0.921) 2.453(0.014)

Negative Sign Bias 1.422(0.155) 0.768(0.443) 0.128(0.898)

Positive Sign Bias 0.330(0.741) 0.487(0.626) 0.647(0.518)

Joint E�ect 3.036(0.386) 1.278(0.735) 13.20(<0.01)
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7.2 In-sample parameter estimates

There are in total 5 regression based models used for producing the results of each of the 6 series 4

of them using 3 distributions which gives a total of 78 di�erent in-sample parameter estimates. I will

limit this Section to contain only the in-sample parameter estimates of the most accurate models in

terms of MSE for the out-of-sample period, with the best preforming distribution. This totals to �ve

models as EWMA where the preferred model for the USD/GBP series. The notation follows the one

used in Section 3.

7.2.1 S&P500 GJR-GARCH(1,1)-skew.Student-t

Table 5.4 shows the parameter estimates of the preferred model for the S&P500 series in terms of

the MSE loss function. The ω is zero and α close to zero and the P-value suggests that they are

not signi�cantly di�erent from zero. The rest of the parameters are signi�cant at a 1% level. I see

that α+ b+ γ > 1 which according to Verbeek (2008)[18] gives a non-stationary process which is not

uncommon in empirical work but might result in getting a sample outside the accepted region when

maximizing. The persistence in this case being larger than one means that the volatility persists and

grows. The signi�cant γ parameter suggests that the levered e�ect is present in the in-sample data,

even if the sign bias test only suggests that the joint e�ect is signi�cant given a 15% level.

Table 5.4 : In-sample parameter estimates for S&P500 GJR-GARCH(1,1)-skew.Student-t model

GJR-GARCH(1,1)-skew.Student-t Estimate P-value

ω 0.000000 0.691004

α 0.000027 0.978187

β 0.984377 0.000000

γ 0.029456 0.000046

7.2.2 NASDAQ Composite GJR-GARCH(1,1)-norm

Table 5.5 shows the parameter estimates of the preferred model for the NASDAQ Composite series

in terms of the MSE loss function. All the parameters are signi�cant at a 5% level. The parameters

α + b + γ < 1 the sum being lower than 1 but relatively high indicates a relatively high persistence

and slow decay of the volatility shocks. The signi�cant γ parameter suggests that the levered e�ect is
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present in the in-sample data, which is in line with the in-sample sign bias test for the series.

Table 5.5 : In-sample parameter estimates for NASDAQ Composite GJR-GARCH(1,1)-norm model

GJR-GARCH(1,1)-norm Estimate P-value

ω 0.000019 0.001677

α 0.059612 0.036893

β 0.552284 0.000002

γ 0.231844 0.003250

7.2.3 DJIA GJR-GARCH(1,1)-skew.Student-t

Table 5.6 shows the parameter estimates of the preferred model for the DJIA series in terms of the MSE

loss function. The ω is zero and α close to zero and the P-value suggests that they not signi�cantly

di�erent from zero. The rest of the parameters are signi�cant at a 5% level. I see that α + b + γ >

1 which according to Verbeek (2008)[18] gives a non-stationary process which is not uncommon in

empirical work but might result in getting a sample outside the accepted region when maximizing.

The persistence in this case being slightly larger than one means that the volatility persist and grows.

The signi�cant γ parameter suggests that the levered e�ect is present in the in-sample data, which is

in line with the in-sample sign bias test for the series.

Table 5.6: In-sample parameter estimates for DJIA GJR-GARCH(1,1)-skew.Student-t model

GJR-GARCH(1,1)-skew.student-t Estimate P-value

ω 0.000000 0.731614

α 0.001047 0.963420

β 0.982396 0.000000

γ 0.028907 0.012486

7.2.4 CBOE Interest Rate EGARCH(1,1)-skew.Student-t

Table 5.7 shows the parameter estimates of the preferred model for the CBOE Interest Rate series

in terms of the MSE loss function.The ω and α is close to zero and the P-value suggests that they
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not signi�cantly di�erent from zero. The rest of the parameters are signi�cant at a 5% level. The

persistence of the EGARCH model is determined by the beta parameter alone which is close to 1,

which indicates high persistence and a slow decay of the volatility shocks. The signi�cant γ parameter

suggests that the levered e�ect is present in the in-sample data, even if the in-sample sign bias test

does not show signi�cant asymmetry in the data.

Table 5.7: In-sample parameter estimates for CBOE Interest Rate EGARCH(1,1)-skew.Student-t

model

EGARCH(1,1)-skew.Student-t Estimate P-value

ω -0.068147 0.385855

α -0.014669 0.232351

β 0.992875 0.000000

γ 0.066451 0.002524

7.2.5 LBMA Gold EGARCH(1,1)-norm

Table 5.8 shows the parameter estimates of the preferred model for the LBMA Gold series in terms

of the MSE loss function.The ω is close to zero and the P-value suggests that it is not signi�cantly

di�erent from zero. The rest of the parameters are signi�cant at a 1% level. The persistence of the

EGARCH model is determined by the beta parameter alone which is close to 1, which indicates high

persistence and a slow decay of the volatility shocks. The signi�cant γ parameter suggests that the

levered e�ect is present in the in-sample data, even if the in-sample sign bias test does not show

signi�cant asymmetry in the data.

Table 5.8 : In-sample parameter estimates for LBMA Gold EGARCH(1,1)-norm model

EGARCH(1,1)-skew.Student-t Estimate P-value

ω -0.009504 0.663625

α 0.048995 0.000001

β 0.998449 0.000000

γ 0.086810 0.000000
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7.3 Out-of-sample comparison

In this Section, I present the out-of-sample predictive power of the forecasting models described in

Section 2.3. The main results of model evaluation in tables ranked by MSE and MAE. For every series

a �gure showing the graph of the preferred models forecast versus the realized volatility is provided.

As stated in Section 6.5, a robust loss function is not only a function that is robust to noise in the

proxy Huber, (1981)[23] but also to an expected loss ranking of between two volatility forecasts is the

same Patton (2011)[22]. Patton's results indicate that only MSE ful�lls his criterion and is the loss

function I will use to choose the most accurate forecasting model. The raw data have not been �ltered

for outliers and thus I expect there to be several large residuals that MSE are sensitive towards and

a case could certainly be made for choosing the most accurate model based on MAE which is more

robust against outliers. It will in any case be interesting to see the deviation in ranking between the

loss functions.

7.3.1 Evaluation models for S&P500 index

Table 5.9 shows that the model with the best out-of-sample volatility forecast for the S&P500 series is

the GJR-GARCH(1,1) under the skewed Student-t distribution. This is not to surprising with regards

to distribution as the descriptive data show in Section 3 that the series have excess skewness and

kurtosis and the Jarque-Bera test rejected the null for normality on a 1% level. The sign bias test

done on the in-sample data did however not show a signi�cant asymmetry unless the level where set

to 15% but the fact that a asymmetric model is the most accurate suggest that the levered e�ect is

present in the data. There where high signi�cant arch e�ects in the data according the the ARCH LM

test and it is reasonable that the ARCH-family models dominate the ranking for both MSE and MAE.

The only regression based models that failed to beat all the naive models where the ARMA(1,1),

EGARCH(1,1)-norm, EGARCH(1,1)-skew.GED w.r.t MSE and ARMA(1,1) w.r.t MAE. MAE also

favors the tGARCH model over the GJR-GARCH model, shown by the tGARCH(1,1) with a skewed

GED having the lowest MAE.
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Table 5.9:Evaluation of predictive power of the forecast models for the S&P500 index series.

S&P500 MSE* Rank MAE Rank

RW 0.041705 11 0.013991 14

SMA-6 months 0.060146 16 0.015810 16

SMA-12 months 0.073863 17 0.017760 17

EWMA 0.042749 14 0.013665 13

ARMA(1,1) 0.052120 15 0.014712 15

GARCH(1,1)-norm 0.038017 7 0.013391 10

GARCH(1,1)-skew.Student-t 0.038196 8 0.013589 12

GARCH(1,1)-skew.GED 0.038248 9 0.013541 11

EGARCH(1,1)-norm 0.041919 12 0.012978 9

EGARCH(1,1)-skew.Student-t 0.040983 10 0.012848 4

EGARCH(1,1)-skew.GED 0.041982 13 0.012940 8

tGARCH(1,1)-norm 0.036775 6 0.012789 3

tGARCH(1,1)-skew.Student-t 0.035631 4 0.012612 2

tGARCH(1,1)-skew.GED 0.035975 5 0.012608 1

GJR-GARCH(1,1)-norm 0.035331 3 0.012874 6

GJR-GARCH(1,1)-skew.Student-t 0.033764 1 0.012851 5

GJR-GARCH(1,1)-skew.GED 0.034139 2 0.012936 7

*MSE is multiplied by 100
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Figure 1: Histogram of the MSE sorted by rank

Figure 2: GJR-GARCH(1,1)-skew.Student-t forecasted std.dev vs proxy realized std.dev for S&P500
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Figure 2 shows the predicted volatility vs the proxy realized volatility for the out-of-sample period.

The volatility clustering is evident just by looking a the graph, one can see that periods with high

volatility tend to persist followed by periods with relative tranquility. The model seem to �t reasonably

well in the tranquil periods while there is some large deviations in periods with high volatility most

pronounced during the �nancial crisis 2007-2008 where the model estimate is of by about 0.05 at a

forecasted standard deviation of approximately 0.19 while the proxy realized volatility is at almost

0.25. the large deviation during this period and a few other periods with relative high volatility will

be punished greatly by the MSE loss function. It is no surprise after looking at the result that MAE

gives di�erent ranking as there might very well be a model that predict the volatility a bit better on

average but slightly worse during periods with high volatility.

7.3.2 Evaluation models for NASDAQ Composite index

Table 5.10 shows that the model that best predict the out-of-sample volatility for the NASDAQ

Composite index series is the GJR-GARCH(1,1) under the normal distribution. This is not expected

with regard to the distribution as the descriptive data show in Section 3 that the series have excess

skewness and kurtosis and the Jarque-Bera test rejected the null for normality on a 1% level. The

sign bias test done on the in-sample data show a signi�cant asymmetry at the 1% level, thus it is

no surprise that an asymmetric model is the most accurate given the signi�cant in-sample levered

e�ect present in the data. The ARCH LM test showed signi�cant arch e�ects in the in-sample data,

and it is reasonable that the ARCH-family models outperforming the ARMA(1,1) in terms of MSE.

The only regression based models that failed to beat all the naive models where the ARMA(1,1) and

EGARCH(1,1)-norm w.r.t MSE. In the case of MAE the story is quite di�erent as the EWMA was

the second best only beaten by EGARCH(1,1) with a skewed Student-t distribution. This shows how

one can very easily have a methodology and a time series where the conclusion that the naive model

outperform the more complex regression based models holds, and this is quite frequently the case in

studies. This is also the case for the USD/GDP series as shown under. As shown by the massive study

of 93 papers by Poon and Granger (2003)[4] the ARCH-family models are about equal to the historical

volatility models which contain among others the models referred to in this thesis as the naive models

when it came to giving the best forecasts.
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Table 5.10:Evaluation of predictive power of the forecast models for the NASDAQ Composite index

series.

NASDAQ Composite MSE* Rank MAE Rank

RW 0.065848 14 0.017643 14

SMA-6 months 0.082203 15 0.018748 15

SMA-12 months 0.097158 17 0.021382 17

EWMA 0.061012 12 0.016409 2

ARMA(1,1) 0.085893 16 0.019357 16

GARCH(1,1)-norm 0.056858 6 0.016653 6

GARCH(1,1)-skew.Student-t 0.056420 4 0.016762 10

GARCH(1,1)-skew.GED 0.056500 5 0.016751 9

EGARCH(1,1)-norm 0.063464 13 0.016879 11

EGARCH(1,1)-skew.Student -t 0.058488 9 0.016390 1

EGARCH(1,1)-skew.GED 0.059245 10 0.016442 3

tGARCH(1,1)-norm 0.059597 11 0.016693 8

tGARCH(1,1)-skew.Student-t 0.057351 7 0.016621 5

tGARCH(1,1)-skew.GED 0.057795 8 0.016619 4

GJR-GARCH(1,1)-norm 0.056006 1 0.016675 7

GJR-GARCH(1,1)-skew.Student-t 0.056282 3 0.017103 13

GJR-GARCH(1,1)-skew.GED 0.056218 2 0.017102 12

*MSE is multiplied by 100
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Figure 3: Histogram of the MSE sorted by rank

Figure 4: GJR-GARCH(1,1)-norm forecasted std.dev vs proxy realized std.dev for NASDAQ Compos-
ite
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Figure 4 shows the predicted volatility vs the proxy realized volatility for the out-of-sample period.

The volatility clustering is evident just by looking a the graph one can see that periods with high

volatility tend to persist followed by periods with relative tranquility. The model leave something to

be desired in both the tranquil and the more turbulent periods. The collapse of the dot-com bubble

1999-2001 is easy to recognize in the graph, as well as the 2007-2008 �nancial crisis by the missive

spikes in volatility. Similar to the S&P500 series the model preforms rather poorly in the high volatility

periods leaving large residuals which will have a heavy in�uence on the MSE. Also for this series the

di�erent scoring among the MSE and MAE is not surprising as this series seam to have even more

extreme event than the S&P500 series.

7.3.3 Evaluation models for DJIA index

Table 5.11 shows that the model that best predict the out-of-sample volatility for the DJIA series

is the GJR-GARCH(1,1) under the skewed Student-t distribution. The descriptive data show in

Section 3 that the series have excess skewness and kurtosis and the Jarque-Bera test rejected the null

for normality on a 1% level so one would expect the distributions that allow for more kurtosis and

skewness to outperform the normal distribution. The sign bias test done on the in-sample data did

show a signi�cant negative sign bias at the level 10%, and it is reasonable that a asymmetric model is

the most accurate given signi�cant levered e�ect is present in the data. There where signi�cant arch

e�ects in the data according the the ARCH LM test which is consistent with the ARCH-family models

outperforming the ARMA(1,1) model in terms for both MSE and MAE.The only regression based

models that failed to beat all the naive models where the ARMA(1,1) w.r.t MSE, and ARMA(1,1) as

well as the GARCH(1,1) with a skewed GED w.r.t MAE. MAE also favors the tGARCH model over

the GJR-GARCH model, shown by the tGARCH(1,1) with a skewed GED having the lowest MAE.
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Table 5.11 :Evaluation of predictive power of the forecast models for the DJIA index series.

DJIA MSE* Rank MAE Rank

RW 0.039424 13 0.013584 14

SMA-6 months 0.054270 16 0.015472 16

SMA-12 months 0.065622 17 0.017081 17

EWMA 0.040017 14 0.013438 12

ARMA(1,1) 0.047652 15 0.013836 15

GARCH(1,1)-norm 0.035321 9 0.012945 10

GARCH(1,1)-skew.Student-t 0.035389 12 0.013165 11

GARCH(1,1)-skew.GED 0.035337 10 0.013478 13

EGARCH(1,1)-norm 0.035785 11 0.012220 6

EGARCH(1,1)-skew.Student-t 0.034431 7 0.011983 3

EGARCH(1,1)-skew.GED 0.035305 8 0.012058 4

tGARCH(1,1)-norm 0.032214 6 0.012112 5

tGARCH(1,1)-skew.Student-t 0.031381 3 0.011891 2

tGARCH(1,1)-skew.GED 0.031589 4 0.011881 1

GJR-GARCH(1,1)-norm 0.031794 5 0.012263 9

GJR-GARCH(1,1)-skew.Student-t 0.030668 1 0.012242 8

GJR-GARCH(1,1)-skew.GED 0.030955 2 0.012238 7

*MSE is multiplied by 100
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Figure 5: Histogram of the MSE sorted by rank

Figure 6: GJR-GARCH(1,1)-skew.Student-t forecasted std.dev vs proxy realized std.dev for DJIA
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Figure 6 shows that the DJIA are very similar to the S&P500 in terms of volatility during the out-

of-sample period. It is not unreasonable that the same model speci�cation predicts the out-of-sample

volatility best for both series. The model seem to �t reasonably well in the tranquil periods while

there is some large deviations in periods with high volatility most pronounced during the �nancial

crisis 2007-2008. The large residuals created by extreme events will in�uence MSE more than MAE

so the di�erence in ranking the models is to be expected.

7.3.4 Evaluation models for CBOE Interest Rate

The CBOE Interest Rate is based on 10 times the yield-to-maturity on the most recently auctioned

10-year Treasury note. Table 5.12 shows that the model that best predict the out-of-sample volatility

for the CBOE Interest Rate series is the EGARCH(1,1) under the skewed Student-t distribution. The

descriptive data show in Section 3 that the series have excess skewness and kurtosis and the Jarque-

Bera test rejected the null for normality on a 1% level so one would expect the distributions that allow

for more kurtosis and skewness to outperform the normal distribution. The sign bias test done on the

in-sample data did however not show a signi�cant asymmetry, but the fact that a asymmetric model

is the most accurate suggest that the levered e�ect is present in the data.There where signi�cant arch

e�ects in the data according the the ARCH LM test which is consistent with the ARCH-family models

outperforming the ARMA(1,1) in terms for both MSE and MAE. Only the ARMA(1,1) failed to beat

the naive models among the regression based models and got the lowest rank w.r.t MSE and MAE. In

terms of MAE the GJR-GARCH(1,1) with a skewed GED where the most accurate model.
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Table 5.12 :Evaluation of predictive power of the forecast models for the CBOE Interest Rate series.

CBOE Interest Rate MSE* Rank MAE Rank

RW 0.040573 14 0.014352 14

SMA-6 months 0.060462 15 0.018080 16

SMA-12 months 0.065560 16 0.018026 15

EWMA 0.038607 13 0.014015 13

ARMA(1,1) 0.068767 17 0.018493 17

GARCH(1,1)-norm 0.034128 10 0.013224 11

GARCH(1,1)-skew.Student-t 0.034402 12 0.013331 12

GARCH(1,1)-skew.GED 0.034212 11 0.013219 10

EGARCH(1,1)-norm 0.032962 9 0.013216 9

EGARCH(1,1)-skew.Student-t 0.032446 1 0.013081 5

EGARCH(1,1)-skew.GED 0.032558 3 0.013063 4

tGARCH(1,1)-norm 0.032847 8 0.013201 8

tGARCH(1,1)-skew.Student-t 0.032774 6 0.013161 7

tGARCH(1,1)-skew.GED 0.032743 5 0.013085 6

GJR-GARCH(1,1)-norm 0.032827 7 0.012839 2

GJR-GARCH(1,1)-skew.Student-t 0.032675 4 0.012877 3

GJR-GARCH(1,1)-skew.GED 0.032552 2 0.012804 1

*MSE is multiplied by 100
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Figure 7: Histogram of the MSE sorted by rank

Figure 8: EGARCH(1,1)-skew.Student-t forecasted std.dev vs proxy realized std.dev for CBOE Interest
Rate
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Figure 8 shows the predicted volatility vs the proxy realized volatility for the out-of-sample period.

Also for this series the volatility clustering is easy to recognize with the volatility relative calm until

the �nancial crisis starts in 2007-2008. This looks allot di�erent than the stock index series with

more persistent volatility in the period after the crash in 2007-2008. The reason for this might be the

uncertainty with regard to the interest rate in the USA during this period. The predicted volatility

seam to �t reasonably well for this series not leaving to many large residuals. The prediction in the

period 1995-2000 would seam to be the weakest part. with a lower amount of large residuals the

similarity in the ranking of the models between MSE and MAE compared to the stock index series is

reasonable.

7.3.5 Evaluation models for USD/GBP

Table 5.13 shows that the model that best predict the out-of-sample volatility for the USD/GBP series

is the EWMA model for both MSE and MAE. The second best model where the GJR-GARCH(1,1)

with a normal distribution for both loss functions. The implementation of other distributions had a

clear negative e�ect on the predictive power even if the descriptive data showed excess kurtosis and

skewness and the Jarque-Bera test rejected the null at a 1% level. The e�ect of the distributions where

dramatic to the point where the software failed to produce results in the case of tGARCH(1,1) with

a skewed GED. There are some large di�erences between this and the other series which might cause

the instability, one of them is as pointed out in the descriptive statistics is that the standard deviation

of the returns is less than half of the other series. The series also have a positive skewness where most

of the other series have negative skewness. The exchange rate is recorded for every day in the month

not only on trading days like the other series this leads to a larger n-step ahead prediction for every

month which might be a reason for the unstable behavior under distributions other than the normal

distribution.
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Table 5.13 :Evaluation of predictive power of the forecast models for the USD/GBP series.

USD/GBP MSE* Rank MAE** Rank

RW 0.04393 4 0.04675 4

SMA-6 months 0.05204 7 0.04868 6

SMA-12 months 0.06113 9 0.05358 7

EWMA 0.03870 1 0.04270 1

ARMA(1,1) 0.09045 11 0.06627 11

GARCH(1,1)-norm 0.04044 3 0.04474 3

GARCH(1,1)-skew.Student-t 0.06003 8 0.06007 8

GARCH(1,1)-skew.GED 1.15835 14 0.13459 14

EGARCH(1,1)-norm 0.04544 6 0.04786 5

EGARCH(1,1)-skew.Student-t 0.10091 12 0.07545 12

EGARCH(1,1)-skew.GED 100.674 16 1.20295 16

tGARCH(1,1)-norm 0.04501 5 0.06626 10

tGARCH(1,1)-skew.Student-t 0.31981 13 0.07886 13

tGARCH(1,1)-skew.GED NA 17 NA 17

GJR-GARCH(1,1)-norm 0.04006 2 0.04363 2

GJR-GARCH(1,1)-skew.Student-t 0.06591 10 0.06222 9

GJR-GARCH(1,1)-skew.GED 13.6575 15 0.17104 15

*MSE is multiplied by 1000, **MAE is multiplied by 10
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Figure 9: Histogram of the MSE sorted by rank

Figure 10: EWMA forecasted std.dev vs proxy realized std.dev for USD/GBP
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Figure 10 shows the proxy realized volatility and the predicted volatility of the EWMA over the

period. The model estimates the volatility quite well for the most part and the series seem to have a

volatility ranging form 0.01-0.03 during most of the period only interrupted by a large spike peeking

at above 0.07 in volatility during the �nancial crisis 2008-2009 and seam to have stabilized after that.

The series have allot lower volatility in general than all the other series that peek at 0.2+ during the

�nancial crisis.

7.3.6 Evaluation models for LBMA Gold

For the last series I take a look at the gold returns during the out-of-sample period. Table 5.14

shows that the model which best predict the out-of-sample volatility for the LBMA Gold series is the

EGARCH(1,1) with the normal distribution. The descriptive data show in Section 3 that the series

have excess skewness and kurtosis and the Jarque-Bera test rejected the null for normality on a 1%

level so one would expect the distributions that allow for more kurtosis and skewness to outperform

the normal distribution. When looking at the other ARCH family models the skewed GED improved

the accuracy for all of them. The sign bias test done on the in-sample data did however not show a

signi�cant asymmetry, but the fact that a asymmetric model is the most accurate suggest that the

levered e�ect is present in the data.There where signi�cant arch e�ects in the data according the the

ARCH LM test which is consistent with the ARCH-family models outperforming the ARMA(1,1) in

terms for both MSE and MAE. Only the EWMA among the naive models manage to beat several

regression based models getting rank 7 for MSE and 5 in terms of MAE. The most accurate model

given the MAE loss function were the EGARCH(1,1) with a skewed GED.
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Table 5.14 :Evaluation of predictive power of the forecast models for the LBMA Gold series.

LBMA Gold MSE* Rank MAE Rank

RW 0.034340 15 0.012150 14

SMA-6 months 0.034297 14 0.013079 15

SMA-12 months 0.042021 17 0.014815 17

EWMA 0.029720 7 0.011615 5

ARMA(1,1) 0.040559 16 0.013479 16

GARCH(1,1)-norm 0.030807 9 0.012013 11

GARCH(1,1)-skew.Student-t 0.031451 10 0.011961 10

GARCH(1,1)-skew.GED 0.030622 8 0.011771 7

EGARCH(1,1)-norm 0.027768 1 0.011337 3

EGARCH(1,1)-skew.Student-t 0.028404 3 0.011332 2

EGARCH(1,1)-skew.GED 0.027931 2 0.011037 1

tGARCH(1,1)-norm 0.029547 6 0.011853 8

tGARCH(1,1)-skew.Student-t 0.029315 5 0.011646 6

tGARCH(1,1)-skew.GED 0.028580 4 0.011356 4

GJR-GARCH(1,1)-norm 0.031694 12 0.012084 13

GJR-GARCH(1,1)-skew.Student-t 0.032209 13 0.012072 11

GJR-GARCH(1,1)-skew.GED 0.031651 11 0.011935 9

*MSE is multiplied by 100
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Figure 11: Histogram of the MSE sorted by rank

Figure 12: EGARCH(1,1)-norm forecasted std.dev vs proxy realized std.dev for LBMA Gold
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Figure 12 shows that the model have a fairly close �t in the period 1995-2000 but there are several

short bursts in volatility in the early 2000 that leaves large residuals. Also for gold returns the highest

volatility during the out of sample period comes at the start of the �nancial crisis 2007-2008 with a

standard deviation reaching 0,15. From 2010 until the end of the period the model does a relatively

good job predicting the volatility. The ranking of models in terms of the loss functions are fairly even

despite the set of lager residuals which MSE is sensitive for.

8 Discussion

The result is consistent with the previous research presented by Poon and Granger (2003)[4] that

generally the GARCH models outperform the ARMA model and the asymmetric GARCH models

outperform the symmetric GARCH models. Also the ambiguous results when it comes to �nding a

superior model shown in previous research is re�ected as there are tree di�erent models that provide

the most accurate forecast among the six time series. When it comes to the distributions used the

skewed Student-t improved forecast accuracy of the preferred model in tree of the series but the gain

where very small. However when looking at all the models where several distributions was used, and

not only the best models both the skewed Student-t and the GED improved the forecast accuracy for

the majority of the models, but the gain is still very small in most cases.

The RW model were only able to beat a few of the GARCH-family models for the USD/GBP

and the S&P500 series. In the case of the USD/GBP series the GARCH-family models were unstable

and produced signi�cantly worse predictions than they did for the other series. The RW model did

however outperform the 6 and 12 month SMA model as well as the ARMA(1,1) model consistently.

The 6 month SMA gave better prediction than the 12 month SMA for all the series implying that

increasing the period used to predict the volatility decrease the forecast accuracy for this model. The

EWMA model were the best of the historical volatility models it was preferred for the USD/GBP series

and only slightly worse than the best asymmetric GARCH-models that were preferred for the other

series. The di�erence in complexity between an EWMA model and the asymmetric GARCH models

combined with the small gain they give in terms of forecast accuracy makes it questionable whether it

is worth it to implement the much more complex models for the marginal gain in forecasting accuracy.

As I have studied the subject of volatility forecasting and worked with this thesis there are several
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questions that became apparent, which I do not address but could be explore in future research. It

would be interesting to see how the preferred models in this thesis hold up when compared to implied

volatility which is assumed to contain not only historic information, but also the markets expectation

of future volatility. Expanding on the amount of models used might lead to �nding models that

provide better forecasting accuracy. There are several GARCH-family models both symmetric and

asymmetric which have not been applied to the data like IGARCH and asymmetric power GARCH

just to mention a few. I am also curious about how the models would preform when extending the

forecasting horizon from one month to for instance half a year or a year. One interesting observation

is that the GARCH-family models used became unstable when the skewed Student-t and the skewed

GED distribution were used for the USD/GBP series. A closer diagnostic of this would be interesting

as there is no di�erence in the procedure applied to this series than used on the other series, which

did not su�er from this problem.

9 Conclusion

Most previous research show that data from �nancial time series have excess kurtosis and skewness.

This have been accounted for by using skewed Student-t and skewed GED, in addition to the normal

distribution. Student-t and GED allow for more observations in the tails. In-sample test suggests

on a 1% level that all the series are stationary, and that there are volatility clustering. The test

for asymmetry show ambiguous results with NASDAQ Composite and USD/GBP having signi�cant

in-sample asymmetry on a 1% level while S&P500 and DJIA have signi�cant asymmetry on a 10%

level. CBOE Interest Rate and LBMA Gold did not show any signi�cant in-sample asymmetry. The

volatility is tend to be persistent, meaning that the lags of previous volatility tend to die away slowly.

For S&P500 and DJIA the volatility persistent in the in-sample data is slightly above 1, which according

to Verbeek (2008)[18] gives a non-stationary process which is not uncommon in empirical work but

might result in getting a sample outside the accepted region when maximizing. The models used in

this thesis can be grouped into historical volatility models containing: RW, SMA and EWMA and

regression based models containing: ARMA(1,1), GARCH(1,1), EGARCH(1,1) GJR-GARCH(1,1)

and TGARCH(1,1). To evaluate the models with regards to forecasting performance I have used two

loss functions MSE and MAE. The preferred models have been selected on the basis of the MSE loss

function that is robust against noise while the MAE that is robust against outliers is produced to show

that the model selection is sensitive to choice of loss functions. It is important that a good proxy for
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realized volatility is calculated. This have been done using the daily data in each month which is easy

to attain compared to intraday data that might give a even more accurate proxy.

Poon and Granger (2003)[4] summarized the �ndings of 93 papers on volatility forecasting showed

that historical volatility models beat the regression based models in about 50% of the cases. In

this case only the USD/GBP series preferred a historical volatility model namely the EWMA model

over the GARCH-family models. However in all the series the ARMA(1,1) got outperformed by one

or more historical volatility models. For the stock index series S&P500, NASDAQ Composite and

DJIA it was the GJR-GARCH(1,1) that gave the most accurate forecast. For S&P500 and DJIA the

GJR-GARCH(1,1) with the skewed Student-t distribution did best while for NASDAQ Composite the

normal distribution preformed best despite the Jarque-Bera test rejected normal distributed returns

on a 1% level. When it comes to the CBOE Interest Rate and LBMA Gold series EGARCH(1,1) was

the most accurate model. The normal distribution was the most accurate for LBMA Gold while the

skewed Student-t provided the best forecast for the CBOE Interest Rate series. With the exception

of the USD/GBP series where there were stability problems when producing forecast with regression

based models the GARCH-family models out-preformed the historical volatility models. The EWMA

model was the only model that could compete with the GARCH-family models. The results when

looked at in the histograms show that there is very small di�erences in predictive power between the

top 3-5 models depending on the series. There is not much lost by choosing a less complex model for

instance in the NASDAQ Composite series the EWMA model got rank 12 and is still very close to the

best model in terms of MSE.
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Appendix

Credit to the creators of the packages used tseries by Trapletti and Hornik (2013) [24], rugarch by

Ghalanos (2013) [16], xts by Ryan and Ulrich (2013) [25], e1071 by Meyer et al. (2012) [26], and a

special tanks to Valeriy I Zakamulin for providing some of his personal functions.

1 rm( l i s t=l s ( a l l=TRUE) )

2 l ibrary ( t s e r i e s )

3 l ibrary ( rugarch )

4 l ibrary ( xts )

5 l ibrary ( e1071 )

6 source ( "Functions .R" )

7

8 # Read the p r i c e data from a f i l e

9

10 data <− read . table ( "LBMA Gold Pr i ce . csv " , header=TRUE, sep=" , " )

11 dates <− as . Date (data$Date , "%Y−%m−%d" )

12 dataxts <− as . x t s (data$Close , order .by=dates )

13

14 # DEFINE THE PARAMETERS

15

16 # de f i n e the s t a r t i n g po in t f o r the f i r s t p o r t f o l i o re turn

17 year . start <− 1995

18 month . start <− 1

19

20 # The l en g t h o f the r o l l i n g window , in the number o f months

21 # Set to 1 ,6 and 12 when computing SMA

22

23 nLookback <− 5*12

24

25 # Compute re turns

26
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27 Close <− coredata ( dataxts )

28 n <− length ( Close )

29 rt <− d i f f ( Close )/Close [ 1 : ( n−1)]

30 rt <− rt [−1]

31

32 #Dai ly s tandard d e v i a t i on s

33

34 sigmaD <− abs ( rt )

35

36 # Decr i p t i v e s t a t i s t i c s

37

38 summary( rt )

39 sd ( rt )

40 skewness ( rt )

41 ku r t o s i s ( rt )

42 jarque . bera . t e s t ( rt )

43

44 # In−sample t e s t s

45

46 #Number o f in−sample o b s e r va t i on s f o r the s e r i e s

47 #1246 NASDAQ 1824 USD/GBP

48 #1254 LBMA Gold 1264 S&P500

49 #1250 CBOE In t e r e s t Rate 1264 DJIA

50

51 sigmaDis <− sigmaD [ 1 : 1 2 5 4 ]

52 adf . t e s t ( sigmaDis )

53

54 arimaspec <− ar f imaspec (mean .model = l i s t ( armaOrder = c (1 , 1 ) ) )

55 show( ar imaspec )

56

57 arimaF <− a r f im a f i t ( arimaspec , rt , out . sample = 4810)
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58 arimaF # ob j e c t con ta in ing Engle ' s ARCH LM t e s t

59

60 Gspec <− ugarchspec ( var i ance .model = l i s t (model = "sGARCH" ,

61 garchOrder = c (1 , 1 ) , submodel = NULL)

62 ,mean .model = l i s t ( armaOrder = c ( 0 , 0 ) , i n c lude .mean = T) ,

63 d i s t r i b u t i o n .model = "norm" )

64 Gspec

65

66 garchF <− uga r ch f i t (Gspec , rt , out . sample = 4810)

67 garchF # ob j e c t con ta in ing Sign b i a s t e s t

68

69

70 # EVALUATION OF THE OUT−OF−SAMPLE FORECAST

71

72 # Find the s t a r t and end date

73

74 start <− as . yearmon (paste ( year . start , month . start ) , "%Y %m" )

75 end <− as . yearmon ( dates [ nobs ] )

76

77 # compute the number o f months

78

79 nMonths <− numMonthsBetween ( start , end)

80

81 # rese r v e the p l ace to ho ld p r ed i c t e d and ac tua l s tandard d e v i a t i o n s

82

83 std . predict <− rep (0 , nMonths )

84 std . a c tua l <− rep (0 , nMonths )

85

86 year <− year . start

87 month <− month . start

88
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89 #RW model

90

91

92 for ( i in 1 : nMonths ) {

93

94 # s e l e c t r e turns from the s t a r t to the end o f IS per iod

95 r e t . past <− se l ec tRange ( ret , dates , year , month , nLookback )

96

97 # prepare next i t e r a t i o n

98

99 l s t <− futYearMon ( year , month , 1)

100 year <− l s t $year ; month <− l s t $month

101

102 # s e l e c t r e turns f o r the next month

103

104 r e t . f u tu r e <− se l ec tRange ( ret , dates , year , month , 1)

105

106 # compute the a c t ua l s t d and conver t to monthly va l u e s

107

108 std <− sd ( r e t . f u tu r e )

109 nDays <− length ( r e t . f u tu r e )

110 std . a c tua l [ i ] <− std*sqrt ( nDays )

111 }

112

113 # A lag o f k=1 app l i e d to the a c t ua l s t d to ge t the naive p r e d i c t i on

114 # Done by removing the f i r s t month in ac t ua l and l a s t month in the p r ed i c t e d

115

116 std . predict <− std . a c tua l

117 std . predict <− std . predict [−231]

118 std . a c tua l <− std . a c tua l [−1]

119
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120 #SMA model

121

122 for ( i in 1 : nMonths ) {

123

124 # s e l e c t r e turns from the s t a r t to the end o f IS per iod

125

126 r e t . past <− se l ec tRange ( ret , dates , year , month , nLookback )

127

128 # prepare next i t e r a t i o n

129

130 l s t <− futYearMon ( year , month , 1)

131 year <− l s t $year ; month <− l s t $month

132

133 # s e l e c t r e turns f o r the next month

134

135 r e t . f u tu r e <− se l ec tRange ( ret , dates , year , month , 1)

136

137 # compute the a c t ua l s t d and conver t to monthly va l u e s

138

139 std <− sd ( r e t . f u tu r e )

140 nDays <− length ( r e t . f u tu r e )

141 std . a c tua l [ i ] <− std*sqrt ( nDays )

142

143 # compute the f o r e c a s t e d v o l a t i l i t y and conver t ing to monthly v o l a t i l i t y

144

145 n . days . past <− length ( r e t . past )

146 std . predict [ i ] <− sqrt ( (sum( r e t . past ^2)/n . days . past ) )*sqrt ( nDays )

147 }

148

149

150 #EWMA model
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151

152 for ( i in 1 : nMonths ) {

153

154 # s e l e c t r e turns from the s t a r t to the end o f IS per iod

155

156 r e t . past <− se l ec tRange ( ret , dates , year , month , nLookback )

157

158 # prepare next i t e r a t i o n

159

160 l s t <− futYearMon ( year , month , 1)

161 year <− l s t $year

162 month <− l s t $month

163

164 # s e l e c t r e turns f o r the next month

165

166 r e t . f u tu r e <− se l ec tRange ( ret , dates , year , month , 1)

167

168 # compute the a c t ua l s t d and conver t to monthly va l u e s

169

170 std <− sd ( r e t . f u tu r e )

171 nDays <− length ( r e t . f u tu r e )

172 std . a c tua l [ i ] <− std*sqrt ( nDays )

173 k <− length ( r e t . past )

174 var . ewma <− covEWMA( as . data . frame ( r e t . past ) , lambda=0.97)

175 var <− var . ewma [ k ]

176 std . predict [ i ] <− sqrt (var*nDays )

177 }

178

179

180 # ARMA model

181

54



182 # Define ARIMA spec

183

184 arimaspec <− ar f imaspec (mean .model = l i s t ( armaOrder = c (1 , 1 ) ) )

185

186 for ( i in 1 : nMonths ) {

187

188 # s e l e c t r e turns from the s t a r t to the end o f IS per iod

189

190 s i g . past <− se l ec tRange ( sigmaD , dates , year , month , nLookback )

191

192 # prepare next i t e r a t i o n

193

194 l s t <− futYearMon ( year , month , 1)

195 year <− l s t $year ; month <− l s t $month

196

197 # s e l e c t r e turns f o r the next month

198

199 r e t . f u tu r e <− se l ec tRange ( ret , dates , year , month , 1)

200

201 # compute the a c t ua l s t d and conver t to monthly va l u e s

202

203 std <− sd ( r e t . f u tu r e )

204 nDays <− length ( r e t . f u tu r e )

205 std . a c tua l [ i ] <− std*sqrt ( nDays )

206

207 # f i t the ARIMA model

208

209 f i t . arima = a r f ima f i t ( spec = arimaspec , data = s i g . past , s o l v e r = ' hybrid ' )

210

211 # fo r e c a s t f o r the next month , day by day

212 for . arima <− a r f ima f o r e c a s t ( f i t . arima , n . ahead = nDays )
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213

214 # monthly var iance i s the sum of squared d a i l y s tandard d e v i a t i on s

215

216 sigmapred <− f i tted ( for . arima )

217 std . predict [ i ] <− sqrt (sum( sigmapred ^2))

218 }

219

220

221 #ARCH−f ami l y models

222

223 # Define the GARCH model

224

225 uspec <− ugarchspec ( var i ance .model = l i s t (model = "eGARCH" ,

226 garchOrder = c (1 , 1 ) , submodel = NULL)

227 ,mean .model = l i s t ( armaOrder = c (0 , 0 ) ,

228 inc lude .mean = FALSE) , d i s t r i b u t i o n .model = "norm" )

229

230 for ( i in 1 : nMonths ) {

231

232 # s e l e c t r e turns from the s t a r t to the end o f IS per iod

233

234 r e t . past <− se l ec tRange ( ret , dates , year , month , nLookback )

235

236 # prepare next i t e r a t i o n

237

238 l s t <− futYearMon ( year , month , 1)

239 year <− l s t $year ; month <− l s t $month

240

241 # s e l e c t r e turns f o r the next month

242

243 r e t . f u tu r e <− se l ec tRange ( ret , dates , year , month , 1)
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244

245 # compute the a c t ua l s t d and conver t to monthly va l u e s

246

247 std <− sd ( r e t . f u tu r e )

248 nDays <− length ( r e t . f u tu r e )

249 std . a c tua l [ i ] <− std*sqrt ( nDays )

250

251 # f i t the GARCH model

252

253 f i t . garch = uga r ch f i t ( spec = uspec , data = re t . past , s o l v e r = ' hybrid ' )

254

255 # fo r e c a s t f o r the next month , day by day

256

257 for . garch <− uga r ch f o r e ca s t ( f i t . garch , n . ahead = nDays )

258

259 # monthly var iance i s the sum of squared d a i l y s tandard d e v i a t i on s

260

261 std . predict [ i ] <− sqrt (sum( sigma ( for . garch )^2)) }

262

263

264 # computation o f the

265 #Mean Squared Forecas t ing Error

266 #Mean ab s o l u t e f o r e c a s t i n g Error

267

268 MSFE <− mean( ( residuals )^2)

269

270 MSFE MAFE <− mean(abs ( residuals ) ) MAFE
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� S&P500 http://�nance.yahoo.com/q/hp?s=%5EGSPC&a=00&b=1&c=1995&d=01&e=7&f=2014&g=d

� NASDAQ http://�nance.yahoo.com/q/hp?s=%5EIXIC&a=00&b=1&c=1995&d=01&e=7&f=2014&g=d

� DJIA http://�nance.yahoo.com/q/hp?s=%5EDJI&a=00& b=1&c=1995&d=01&e=7&f=2014&g=d

� CBOE Interest Rate http://�nance.yahoo.com/q/hp?s=%5ETNX&a=00&b=1&c=1995&d=01&e=7&f=2014&g=d

� USD/GBP http://www.oanda.com/currency/historical-rates/

� LBMAGold http://www.quandl.com/OFDP/GOLD_2-LBMA-Gold-Price-London-Fixings-P-M
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