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Abstract

Preceding research is inconclusive on the empirical performance of optimized portfolios. In
this thesis I evaluate the out-of-sample performance of a minimum-variance portfolio, a mean-
variance portfolio, an equally-weighted portfolio, and a value-weighted market portfolio across
eight U.S. datasets and seven different out-of-sample time periods. This is done in order to
determine if any of the asset-allocation strategies deliver statistically significantly, higher
Sharpe ratios compared to the other implemented portfolio models. Although the minimum-
variance portfolio is persistent in delivering the highest out-of-sample Sharpe ratio, I find
that none of the optimized or equally-weighted portfolios consistently deliver statistically
distinguishable Sharpe ratios from each other. The value-weighted market portfolio is found to
frequently be statistically suboptimal when compared to the other asset-allocation strategies,
suggesting that this strategy should generally be avoided in face of the others. By comparing
the in-sample and out-of-sample Sharpe ratio of the mean-variance portfolio, I find that there
is estimation error affecting the performance.
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1 Introduction

The empirical performance of asset-allocation strategies sparks both curiosity and conflict
among investors and academics alike. Indeed, examining the vast academic literature reveals
that much research has been devoted to finding which asset-allocation strategy delivers the
best performance when implemented empirically. The empirical findings of these different
studies are often opposing, suggesting no definitive answer as to which strategy dominates
the others and eventually which one to implement. While several studies produce empirical
results supporting the supremacy of optimization, there are also numerous research efforts
proposing that a naively constructed portfolio, where each of the portfolio assets are weighted
equally, performs just as good or better in terms of Sharpe ratios. Effectively, research
related to portfolio optimization is a subject of conflict for many theorists. Naturally, one
would expect that optimized portfolios, which depend on expectations about the future and
is constructed for this purpose, would perform better than allocation strategies that require
no input estimation.

To elucidate this debate, I present two studies with conflicting results that lay the foun-
dation for the development of this thesis. Based on data formed on portfolios of U.S. stocks,
DeMiguel, Garlappi, and Uppal (2009) found no evidence to support that optimized portfolios
deliver statistically significantly higher Sharpe ratios compared to that of an equally-weighted
portfolio (EWP), out of sample. In addition to focusing on the Sharpe ratio of each strategy
across each dataset, they also focus on the p-value of the test statistic when determining if
the difference in Sharpe ratios between the portfolios are statistically distinguishable. In re-
sponse to this, Kritzman, Page, and Turkington (2010) presented results where two optimized
portfolios, a minimum-variance portfolio (MinVP) and a mean-variance portfolio (MeanVP),
delivered higher Sharpe ratios than that of the market portfolio and an EWP in out-of-sample
backtesting. They argued for the superiority of optimization by focusing solely on a strategy’s
Sharpe ratio as an average across the datasets, without any statistical testing.

In addition to the comparison between different optimized portfolios and those constructed
in a more naive fashion, there has also been several studies focusing on optimized low-volatility
portfolios, such as the MinVP, and their performance compared to a value-weighted market
portfolio (VWMP). Recently, these research efforts examining low-volatility investing has
immensely increased in popularity. Many papers find that stock portfolios with low volatility
or low beta deliver higher risk-adjusted return, than those with higher volatility or higher-
beta. These findings are contradictory to traditional financial assumptions, which suggest
that taking on more risk should offer a higher expected return. Several findings also suggest
that these low-risk asset-allocation strategies perform better than the VWMP, in terms of
Sharpe ratio. This surprising empirical finding is often termed as the low-volatility anomaly
in the literature.

In this thesis I intend to replicate and extend the existing studies by DeMiguel et al. (2009)
and Kritzman et al. (2010) by examining the out-of-sample performance of four different
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portfolio models. These are the minimum-variance and mean-variance optimized portfolios,
in addition to the EWP and the VWMP. The performance of these portfolios will be evaluated
based on their out-of-sample Sharpe ratio. In addition, the mean excess return, volatility, and
capital accumulation of every implemented strategy will be examined. These portfolio models
will be compared based on their out-of-sample performance across eight different datasets.
I will replicate certain parts of the findings in Kritzman et al. (2010) and extend on these
results by testing the statistical significance of the difference between the out-of-sample Sharpe
ratios of the portfolios. Kritzman et al. (2010) and several other studies conclude that certain
strategies outperform in terms of Sharpe ratio without testing if the difference is statistically
distinguishable from the other Sharpe ratios. While the numerical values of the Sharpe ratios
alone can be sufficient for a lot of practitioners, I seek to draw my conclusions from a statistical
and scientific standpoint. In addition, I implement the same out-of-sample time period used
in DeMiguel et al. (2009) in order to examine if my results are similar to theirs.

As revealed in the literature, the empirical performance of optimized portfolios is clearly
ambiguous. Considering the numerous conflicting results, it is plausible that a certain strat-
egy’s out-of-sample performance is closely related to a particular dataset or time period.
Although a strategy appears to be superior during an isolated time period and dataset, one
should be cautious with interpreting this result as though it holds in general. In this regard,
I will investigate if the choice of out-of-sample period has any impact on the performance
of the implemented strategies. This is done by testing the out-of-sample performance of the
portfolios during five additional time periods. The initial out-of-sample time period will be
from 1961 to 2012 and from then the time period will decrease by a decade at the time, until
the final time period from 1991 to 2012 is reached.

The comparison of the portfolios will enable me to observe if optimized portfolios deliver
better empirical performance than portfolios that require no historical information, such as
the EWP and the VWMP. In this process I can also investigate the low-volatility anomaly by
comparing the performance of the MinVP to portfolios with higher volatility.

The remainder of the thesis is organized as follows. Section 2 will give a review of theory
and literature that is relevant for the research problem and the framework of this thesis. In
Section 3 I present the data that has been used in the empirical study and from where it
has been obtained. The methodology I have followed for portfolio construction and empirical
backtesting will be explained in Section 4 of the thesis. Section 5 presents the empirical results
that were obtained from this study, while the discussion of these results will be conducted
in Section 6. Finally, a conclusion of this empirical study and its findings will be given in
Section 7. The R programs in addition to the tables that have been omitted from Section 6
will be presented in the Appendix.
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2 Review of relevant theory and literature

2.1 Modern portfolio theory and capital asset pricing theory

As an introduction to the literature, it is beneficial to start with the theoretical framework that
modern finance is based upon. According to modern portfolio theory pioneered by Markowitz
(1952) an investor should invest in the portfolio that is mean-variance optimal. This statement
assumes that the investor cares only about the expected return offered by the portfolio and
the risk attributed by holding this portfolio. When the mean-variance assumptions hold, the
investor would only be interested in the asset allocations that offer the highest expected return
for a given amount of risk. If one considers only risky assets, these mean-variance efficient
portfolio allocations make up the efficient frontier. Presented graphically in an expected
return-standard deviation space, the efficient frontier is the upper part of the hyperbola of
feasible portfolio allocations. The exact allocation chosen by the investor is based on his or
her tolerance of risk, or level of risk aversion.

If introducing a risk-free asset that offers a given return at no risk as well as the ability
to lend and borrow at the risk-free rate, the efficient frontier shifts from the hyperbola to
the optimal capital allocation line (CAL) which is a straight line drawn from the risk-free
asset and is a tangent to the hyperbola of risky assets. This tangent point is the optimal
combination of risky assets and is known as the tangency portfolio. Every mean-variance
rational investor should invest in a portfolio somewhere along this CAL, which is attainable
by holding a certain weight of the portfolio in the risk-free asset and a certain weight in the
tangency portfolio. The expected return of investing in a portfolio p somewhere along the
CAL can be expressed by the following equation:

E[rp] = rf + σp
E[rtan]− rf

σtan
, (2.1)

where rf is the risk-free rate of return, σp is the standard deviation of returns from portfolio
p, σtan is the standard deviation of returns from the tangency portfolio and E[rtan] is the
expected return on the tangency portfolio.

Investing on the optimal CAL implies that every investor allocates his or her wealth
in a portfolio that offers the best tradeoff between risk and return. The Sharpe ratio is a
measure that quantifies this tradeoff. Originally introduced in Sharpe (1966) as the reward-
to-variability ratio and later revised in Sharpe (1994) to hold for any benchmark, it has
during the times come to be known as simply the Sharpe ratio. Formally, the Sharpe ratio
for a portfolio p is given as:

SRp = E[rp]− rf

σp
. (2.2)

As pointed out in Bodie, Kane, and Marcus (2011) the slope of the CAL equals the increase
in the expected excess return of portfolio p per unit of additional standard deviation. When
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studying Equation (2.2) it is apparent that the Sharpe ratio expresses this same relationship
and that the optimal Sharpe ratio is indeed the slope of the optimal CAL. Therefore a portfolio
that is allocated along the CAL offers the highest Sharpe ratio.

Where on the CAL the investor will allocate his or her portfolio is determined by the
individual investor’s utility function. This utility function is ultimately shaped by the in-
vestor’s risk aversion. Based on the investors utility curves and using leverage, the investor
will choose a position somewhere on the CAL that offers the highest Sharpe ratio. Investors
who do not want to take on too much risk, will choose an allocation along the CAL closer to
the the risk-free asset. Conversely, investors who are very risk tolerant can choose to borrow
at the risk-free rate and thus be able to choose an allocation on the CAL that is beyond the
tangency portfolio. This implies a mixture of a negative weight in the risk-free asset and a
weight larger than 100 percent of the initial capital in the tangency portfolio.

Traditional financial theory states that portfolio returns can be explained by the Capital
Asset Pricing Model (CAPM), given that certain assumptions are fulfilled. The development
of the CAPM is often attributed to Sharpe (1964), Lintner (1965), and Mossin (1966). CAPM
theory states that a portfolio’s expected return can be expressed as the sum of the risk-free
rate and the product of the expected market premium and the portfolio’s beta risk exposure.
This beta coefficient can be interpreted as the systematic risk associated with the asset. The
CAPM can therefore be formulated as follows:

E[rp] = rf + βp(E[rm]− rf ), (2.3)

where βp is the beta coefficient of portfolio p and E[rm] is the expected return on the market
portfolio. According to CAPM theory, every investor will allocate a part of his or her wealth
in the tangency portfolio. Because of this, the tangency portfolio must be equal to the
market portfolio of risky assets which consists of all existing assets weighted by their market
capitalization (Asness, Frazzini, and Pedersen, 2012). This implies that investing in the
market portfolio delivers the optimal Sharpe ratio, and thus every investor should allocate a
part of their wealth in this portfolio.

Based on this theoretical framework one would expect that, if markets are efficient, invest-
ing in the real-world equivalent to the VWMP would be the allocation strategy that has the
highest Sharpe ratio. However, the empirical literature suggests that there are many asset-
allocation strategies that perform better than the market portfolio. The rest of this section
will review several studies that investigate how different asset-allocation strategies perform
out-of-sample and also finds that investing in the VWMP does not provide the highest Sharpe
ratio.

2.2 Low-volatility anomaly

A popular strand of research is that which centers on low-volatility portfolios. Because the
MinVP and its performance relative to the market is often central in these studies, they are
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interesting for this thesis. Low-volatility strategies are portfolios consisting of less risky assets,
with the purpose of lowering the portfolios volatility. Based on traditional assumptions about
the risk-reward relationship, such strategies would be expected to deliver lower risk-adjusted
returns than their more volatile siblings. This is based on the notion that when taking on
more risk one would expect to be compensated by earning higher returns. The same is also
expected to hold for another important factor in low-volatility investing, namely low-beta
portfolios. This is because, according to the CAPM, portfolios with high beta have higher
expected returns than portfolios with low beta. Contrasting this theoretical framework, many
studies have uncovered anomalies to this risk-reward relationship. By empirically testing low-
beta strategies out-of-sample, they find that such portfolios often deliver equal or higher
risk-adjusted returns than high-beta strategies.

The debate concerning the CAPM and its prediction of the risk-reward relationship is not
new. Both Black, Jensen, and Scholes (1972) and Haugen and Heins (1975) critiqued the
CAPM in their studies, in which they found that low beta stocks deliver higher risk-adjusted
returns than high beta stocks. In more recent times, the topic of low-volatility strategies has
become more frequently mentioned and several papers reach the same conclusions. Empirical
evidence demonstrating that low-volatility stocks perform as well as, or better than, the
market, seem to be ever increasing.

Haugen and Baker (1991) performed a study where a MinVP of the 1000 largest U.S. stocks
outperformed the VWMP in terms of higher return and lower volatility, further contradicting
the notion of higher risk offering higher expected return. Studies by Jagannathan and Ma
(2003) and Clarke, de Silva and Thorley (2011) both found similar results in that the MinVP
delivered higher returns while having a lower realized volatility, when compared to a value-
weighted benchmark. Baker and Haugen (2012) showed in a study that low-risk stocks deliver
have higher returns than riskier stocks, for equity markets in 21 developed countries and 12
emerging markets.

The literature suggests several different explanations as for why the MinVP outperforms
the market. One approach is to implement factor models in an attempt to explain the returns
by their exposure to different sources of risk. Blitz and van Vliet (2007) found that there
was still significant alpha present in their low-volatility portfolios after controlling for size,
value and momentum effects. Thus they concluded that regression analysis with classical risk
factors could not explain the volatility effect in full. They also noted that low-volatility stocks
had low betas. Scherer (2011) found that the returns of the MinVP in excess of the returns
of the VWMP can be attributed to Fama/French risk factors. The paper also discusses that
by constructing a portfolio that loads up on certain risk factor will lead to a statistically
significant outperformance over the MinVP.

Others argue from a behavioral standpoint. Baker, Bradley, and Wurgler (2011) found
that regardless of whether risk was specified as beta or volatility, both low-beta and low-
volatility portfolios outperformed their higher risk counterparts. They argue that the low-risk
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portfolio prevails through time because institutional investors focus on the benchmark and the
information ratio, instead of the benchmark-free Sharpe ratio. This way the mispricing will
not be arbitraged away. A similar conclusion is drawn by Brennan, Cheng, and Li (2012) who
suggest that the presence of high tracking error in low-volatility stocks makes low-volatility
portfolios unattractive for portfolio managers.

Another recently popularized low-volatility asset-allocation worth mentioning is the risk
parity strategy. Although there are several approaches to constructing a risk-parity portfolio
(RPP), the general objective is to weight each asset in proportion to their risk so that every
asset will have an equal risk contribution to the total risk of the portfolio. This way, the
portfolio overweights less volatile assets and underweights assets with higher volatility. An
advantage of the RPP, similar to that of the MinVP, is that it only requires the covariance
matrix in its construction. Asness et al. (2012) compared the historical performance of a
VWMP, a 60/40 stock/bond portfolio and a RPP for three different datasets. They found
that the RPP delivers a superior Sharpe ratio compared to the other strategies, although it
provided lower average returns. The authors discuss the effects of real-life leverage constraints
and that even though the RPP is superior in terms of Sharpe ratio, investors may refrain from
pursuing a risk-parity strategy due to the lower average returns. However, an investor willing
and able to apply leverage can benefit by investing in a portfolio that overweights low-beta
assets and underweight high-beta assets and applying leverage to this portfolio.

Frazzini and Pedersen (2014) finds that portfolios of low-beta assets deliver higher alpha
and Sharpe ratios, than portfolios of high-beta assets. They also find that the security market
line is flatter than the relationship suggested by the CAPM not only for U.S. equities, similarly
to the results of Black et al. (1972), but that this also holds for international equity markets.
They suggest that the good performance of low-beta portfolios can be exploited by a betting
against beta (BAB) factor, which is a portfolio that holds low-beta assets leveraged to a
beta of one, and shorts high beta-assets deleveraged to a beta of one. Because of the BAB
factor rivals standard asset pricing factors such as the size, value and momentum factors in
terms of robustness, statistical significance and robustness, the authors suggests that this is
a important factor for cross-sectioning portfolio returns.

Chow, Hsu, Kuo, and Li (2013) provides a comprehensive survey of low-volatility strate-
gies. The paper points out that since the global financial crisis, low volatility portfolios based
on U.S assets have outperformed the market by delivering higher returns and Sharpe ratios,
with only two-thirds the volatility risk. In their study they also found that low volatility port-
folios generally deliver superior returns in the long term across several countries. In terms of
the different low volatility strategies, they do not find that one construction method is better
than the other from a return perspective.
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2.3 Research on the performance of optimized portfolios

Because the minimum-variance and the mean-variance portfolios are part of the Markowitz
mean-variance optimization framework, they can be considered as optimized portfolios. The
following is a review of studies that focus their research problem on the performance of portfo-
lio optimization compared to more naively implemented strategies that require no preliminary
estimation.

By studying 14 different portfolio models on seven datasets of monthly returns, DeMiguel
et al. (2009) found that none of the various mean-variance optimized models delivered consis-
tently better performance than an equal-weighting strategy in terms of Sharpe ratio, certainty-
equivalent return and turnover. They implemented several portfolio models where some had
no constraints, and others with long-only or shrinkage constraints. The performance of these
portfolio models were then compared to the performance of the EWP. In terms of Sharpe ratio
alone, they find that the EWP delivers higher or statistically indistinguishable Sharpe ratios
compared to constrained strategies, which in turn were higher than unconstrained strategies.
The time periods used for estimating the needed parameters for the particular allocation
strategy consisted of rolling 60- and 120-month windows. The main out-of-sample period im-
plemented in their study was from July 1963 to November 2004. The authors relate the poor
performance of the optimized portfolios relative to the equal-weighting strategy to estimation
error. In an analytic study of the estimation error they find that based on data from the
U.S. stock market data, a portfolio of 25 assets would require an estimation window of more
than 3000 months for the sample-based mean-variance strategy to outperform the EWP. If
the number of assets is increased to 50, the required estimation window would double.

In an out-of-sample comparison of a long-only MeanVP and an EWP, Duchin and Levy
(2009) found that when the portfolios consisted 15, 20 and 25 assets the naive diversification
strategy delivered higher average returns. However, for a portfolio consisting of 30 assets the
MeanVP had higher average returns than the EWP. They conclude that the naive strategy
is better for portfolios of relatively few assets, while the optimized portfolio strategy will
outperform the EWP when the number of assets is relatively high. They also found that,
in-sample, the MeanVP is superior regardless of the number of assets.

Kritzman et al. (2010) argue against the many findings where the EWP outperforms
optimized portfolios. Using what they define as naive but plausible estimates of expected
returns, volatilities and correlations, they find that optimized minimum-variance and mean-
variance portfolios deliver superior out-of-sample performance, compared to both the VWMP
and an EWP. In order to demonstrate that optimization outperforms even in simple forms,
the authors only implemented a long-only constraint on the portfolios. The authors’ critique
as to why the optimized portfolios of other papers deliver poor performance is due to too short
sample intervals for mean estimation. Because mean estimates based on trailing 60 or 120-
month historical samples might lead to implausible assumptions about future returns, these
estimates might cause suboptimal asset allocations. To circumvent this, they obtain their
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mean estimates by simply computing the mean return of the previous 50 years of historical
data, for the relevant dataset. These mean return estimates are held constant for the out-
of-sample implementation. The covariance matrix is estimated based on lookback periods
of 5, 10 and 20 years, in addition to an expanding-window approach. Eight datasets are
considered and the out-of-sample Sharpe ratios for the implemented portfolio strategies are
averaged across the datasets. The out-of-sample period used in this paper is from 1978 to 2008.
Additionally, they argue that the effect of estimation error is exaggerated. The methodology
implemented in this study is not very clear. In addition, the authors proclaim the superiority
of optimization without testing for the statistical significance of the difference between Sharpe
ratios. This may render the conclusion inaccurate from a statistical standpoint.

2.4 Estimation error

Because the true future values of the means, variances and covariances are not known, the
MinVP and MeanVP implemented for out-of-sample testing are dependent on parameter es-
timation in their construction. These estimates can be obtained using historical information
or expectations about the future, and thus the precision of these estimates is uncertain. Due
to the findings of many researchers that will be discussed in the sequel, it is reasonable to
believe that the performance of the optimized portfolios will be suboptimal when tested out-
of-sample. This is often attributed to estimation error, which occurs because of the difference
between the estimated parameters and their realized values.

Michaud (1989) reported that unconstrained mean-variance optimization can lead to sub-
optimal or financially unwise asset allocations. In addition, these portfolio are often sig-
nificantly outperformed by equal-weighting strategies. He mentions that the term “error
maximization” is often used to refer to mean-variance optimization because small estimation
errors in the input estimates can lead to large output errors. The paper proposes that intro-
ducing several constraints, such as no short-selling and shrinkage estimators can help enhance
mean-variance optimization.

Chopra and Ziemba (1993) found that misspecifications of means are more severe than
errors in covariances. They suggest that estimates of covariances are the least critical in
terms of the errors influence on the optimal portfolio. The relative importance of errors also
depends on the investor’s risk tolerance. The authors conclude that due to estimated means
being more prone to error, investors seeking to minimize the estimation error should consider
removing the need for mean return as an input in the portfolio construction. This could
be done by considering a minimum-variance allocation as portfolios based on variance and
covariance estimates are less affected by errors.

Ledoit and Wolf (2004) suggest that a sample covariance matrix constructed based on
historical information, contains errors due to extreme observations and periodical variations.
This leads to extreme observations that should be accounted for. The authors propose a new
way of estimating the covariance matrix, by shrinking the sample covariance matrix towards
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the constant-correlation matrix. This is a method that can be implemented in order to reduce
the estimation error in the covariance matrix. In the study, they also test the out-of-sample
performance of the proposed shrinkage method. They conclude that their suggested shrinkage
estimator outperforms the other alternatives. This thesis will implement such a strategy in
order to reduce the error in estimation. This will be explained more thoroughly in Section 4.
In addition, DeMiguel et al. (2009) finds that portfolios computed with long-only constraints
combined with shrinkage usually are more effective in reducing estimation error. In fact, they
find that a long-only minimum-variance portfolio with shrinkage delivers better Sharpe ratio
than the EWP in five out of seven datasets. Although, only statistically distinguishable in
one of the cases.

Opposing these findings, Best and Grauer (1991)Best and Grauer (1991) and Kritzman
(2006) argues that the effects of estimation error is not as serious as much of the literature
suggests. Although the asset weighting scheme can differ a great deal from the truly optimal
weights, the resulting return distribution will not be very different. Kritzman (2006) concludes
that the concern for estimation error is exaggerated.

3 Data

The data used in this study is obtained from the Kenneth French online data library,1 which
have been collected and sorted by Fama and French. I will utilize eight different datasets as the
investment universe for the MinVP, MeanVP and EWP, each consisting of monthly returns.
Six of the datasets covers the time period of January 1927 to December 2012, while the
two remaining datasets starts in January 1928 and January 1931, respectively. The relevant
datasets along with their purpose, abbreviation and available time periods are summed up
in Table 3.1. An additional dataset used is the Fama/French factors which serve multiple
purposes. The Fama/French factors dataset contains the risk-free rate of return and the
value-weighted market premium. The value-weighted market premiums are utilized when
constructing the VWMP and the risk-free rate is subtracted from the three other portfolios
in order to obtain the excess returns.

Fama and French constructed the datasets by including all relevant NYSE, AMEX and
NASDAQ stocks and sorting them into portfolios based on different properties. This implies
that the study will be limited to assets based on U.S. stocks. From this online library I
use returns sorted by industry, size, book-to-market, momentum, dividend yield, short-term
reversal and long-term reversal to function as the investable universe. Because all the data is
collected from the same data source and is restricted to U.S. stocks, they are consistent and
comparable. For further details on the construction of each dataset, the reader is encouraged
to check out the website in the aforementioned footnote.

The data which serves the purpose of the investable universe are the same as that imple-
1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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mented in the study by Kritzman et al. (2010). This was a natural choice as the empirical
results of this thesis will be directly comparable to the results of Kritzman et al. (2010).

Table 3.1: Datasets utilized for the empirical study

Dataset Purpose Abbreviation Available time period

10 industries Investable universe 10 ind 01/1927-12/2012
30 industries Investable universe 30 ind 01/1927-12/2012
10 size deciles Investable universe size 01/1927-12/2012

10 book-to-market deciles Investable universe book 01/1927-12/2012
10 momentum deciles Investable universe mom 01/1927-12/2012

10 short-term-reversal deciles Investable universe short-term 01/1927-12/2012
10 dividend yield deciles Investable universe div 01/1928-12/2012

10 long-term reversal deciles Investable universe long-term 01/1931-12/2012
Fama/French factors rm and rf NA 01/1927-12/2012

4 Methodology

This section presents the methodology that has been implemented in order to reach the em-
pirical results. I will show how the MinVP, MeanVP, EWP, and VWMP were constructed for
this study, the considerations in relation to moment estimation, how portfolio performance
was measured, how the statistical tests are implemented, and which out-of-sample time pe-
riods that were considered. Naturally, some of the methods and considerations are heavily
influenced by the papers of DeMiguel et al. (2009) and Kritzman et al. (2010). The construc-
tion and out-of-sample implementations of the portfolios has been managed by using the free
programming language and R, developed by the R Core Team (2013). The specific R code
that reproduces my results will be given in the Appendix. In the computation of the portfolio
models, transaction costs or taxation related to capital gains will not be considered.

4.1 Description of implemented models and the estimation process

To facilitate the different portfolio strategies implemented in this thesis, it is advantageous
to further explore the foundations of which they are built upon, along with the presentation
of the notation utilized for the rest of the thesis. Additionally, I introduce the implemented
portfolio strategies and how they were constructed along with considerations on how to reduce
the possible estimation error. The construction of the different models will be viewed from
the perspective of a utility-maximizing investor, who cares only about the ratio between
risk and return. This implies that the investor wants to invest in the portfolio strategy
that offers the highest Sharpe ratio. According to the CAPM, which was discussed in the
literature review, the Sharpe-efficient portfolio is the VWMP. Although other characteristics
of the portfolios will be discussed, it will be the Sharpe ratio that ultimately ranks the asset-
allocation strategies.
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The investor’s utility-maximization problem can be stated as a maximization problem
where the assets of a portfolio p are weighted in such a way that the investor’s utility is
maximized:

max
w

U(rp) = E[rp]− γ

2V ar[rp], (4.1)

where γ is a scalar that represents the investor’s risk aversion. As discussed in the literature
review, it is the investor’s risk aversion that decides where on the CAL the investor will
position him- or herself. Graphically, it is where the specific indifference curve produced
by a given γ in Equation (4.1) is a tangent to the CAL. Investing in this portfolio is the
theoretically optimal allocation for that given investor.

Because the slope of the CAL is constant, all points on the CAL will have the same Sharpe
ratio. This implies that the Sharpe ratio will be the same whether the portfolio is invested
in only risky assets or if it is partitioned between the risk-free asset and the portfolio of risky
assets. Because of this, the Sharpe measure can be implemented as a performance measure
for all the portfolios regardless of how the assets are weighted. In the formal presentation
of the different portfolio models, which is given later in the thesis, only the MeanVP will be
constructed by explicitly considering the investor’s level of risk aversion. The MinVP will
be the portfolio allocation that offers the highest expected return for the lowest variance for
all the risky assets. The inclusion of the VWMP will be the empirical equivalent to the
market portfolio from the CAPM theory which is the theoretical tangency portfolio. The
EWP will also consist of allocations limited to risky assets. Due to this, the remainder of the
formulations and assumptions presented in this section will relate to a scenario where only
risky assets are available for investment. The inclusion of a risk-free asset will be discussed
in the section concerning the construction of the MeanVP.

Assume that the investor holds a certain amount of wealth and wants to allocate this
wealth in a portfolio of N risky assets. The condition is that the investor must be fully
invested, so the portfolio weights must sum to unity. This is commonly termed as the budget
constraint. The return on the investor’s portfolio can now be expressed as:

rp =
N∑

i=1
wiri, subject to

N∑
i=1

wi = 1, (4.2)

where rp is the return on the portfolio, wi is the weight invested in asset i, and ri is the return
from asset i. Because the future returns are not known beforehand, expected values must be
considered:

E[rp] =
N∑

i=1
wiE[ri], subject to

N∑
i=1

wi = 1, (4.3)

where E[ri] is the expected value of the return on asset i. The variance of the portfolio return
can be expressed as:
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V ar[rp] =
N∑

i=1

N∑
j=1

wiwjCov[ri, rj ], (4.4)

where V ar[rp] is the variance of the portfolio return and Cov[ri, rj ] is the covariance of asset
i and asset j.

Expected values and variances of the returns can be reformulated so that the expected
value of asset i can be expressed as E[ri]=µi and the variance of asset i can be expressed as
V ar[ri] = σ2

i . Vector and matrix notation is often utilized in the literature to simplify the
mathematical formulation, and this thesis will also rely on such an approach. Then, µ will
denote an N × 1 vector containing the expected returns from all of the the N assets, with w
being an N×1 vector of the weight invested in each of the N assets. The riskiness of the assets
is given by the covariance matrix, Σ, which is an N ×N matrix with elements consisting of
the variance of all the N assets and the pair wise covariance between all the N assets. Now,
the vector of expected asset returns, the vector of asset weights and the covariance matrix are
given as:

µ =


µ1

µ2
...
µN

 w =


w1

w2
...
wN

 Σ =


V ar[r1] Cov[r1, r2] · · · Cov[r1, rN ]

Cov[r2, r1] V ar[r2] · · · Cov[r2, rN ]
...

... . . . ...
Cov[rN , r1] Cov[rN , r2] · · · V ar[rN ]

 .

The mean return of a portfolio can now be denoted by:

µp = w′µ, (4.5)

while the variance of the portfolio returns can be expressed as in the following equation:

σ2
p = w′Σw. (4.6)

Because every portfolio model will be weighted differently, the formulas (4.5) and (4.6) holds
in general for all portfolios consisting of only risky assets, and will give the unique measures
for each respective portfolio. It is assumed that the asset returns are linearly independent
and that the covariance matrix is nonsingular.

In this case Equation (4.3) can be expressed as:

µp = w′µ, subject to w′1 = 1, (4.7)

where w′1 = 1 is the budget constraint. In this study I will base the expected return on a
sample of the historical mean return. This implies that the notation µ will be used inter-
changeably to denote both the expected return and the mean return. Table 4.1 displays the
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Table 4.1: The different portfolio models implemented for the empirical study

Portfolio model Abbreviation Input estimates

Minimum-variance portfolio MinVP Covariance matrix
Mean-variance portfolio MeanVP Mean returns and covariance matrix

Equally-weighted portfolio EWP None needed
Value-weighted market portfolio VWMP None needed

four different portfolio models that will be implemented in this study. As shown in the table,
the two optimized portfolios are dependent on moment estimation while the EWP and the
VWMP do not depend on any preliminary estimation.

4.1.1 Moment Estimation

The MinVP is dependent on the covariance matrix, while the MeanVP needs both the co-
variance matrix and the mean return when being computed. As one does not know the true
realizations of these moments, they must be estimated. In order to obtain certain inputs for
constructing the optimized portfolios, a certain period of the dataset must be reserved for
estimation. These periods are often referred to as in-sample or lookback periods and can be
of different length. While much of the literature reviewed for this study only consider an in-
sample period of a fixed length, such as in Blitz and van Vliet (2007) where they implement a
rolling-window covariance matrix of 36 months, I will implement several in-sample periods of
different lengths and compute the out-of-sample results for each of these cases. This will also
reveal if differences in the in-sample length, will affect the out-of-sample results accordingly.

The following is an explanation of the rolling-window approach I have utilized to estimate
the both the sample covariance matrix and the sample mean return. In this example, I
assume that the allocation strategy starts in 1951, but the same principle holds for every time
period tested. Even though the following exemplification utilizes the covariance matrix, the
same rolling-window approach also holds for the mean estimation process. The covariance
matrix is estimated over a rolling window of T months, where T is set to 60, 120, 240 and
an all-data approach. The choice of in-sample length is purposely equal to that of Kritzman
et al. (2010). If T=60 the relevant portfolio weights at the time of the investment will be
based on the covariance matrix from January 1946 to December 1950. The period for the
next covariance-matrix estimate will be rolled one month forward, so that it picks up the
month T+1 while discarding the first one. Hence, the new relevant weights are based on the
period February 1946 to January 1951. In this manner a new sample covariance matrix will
be estimated every month, and the weights of the relevant portfolio will be updated. This
means that the portfolio is rebalanced every month.

In the case where T=all data, I will implement an expanding estimation window. In this
approach the first covariance matrix estimation will be based on the n months of observations
up until the start of the out-of-sample testing. When assuming that the out-of-sample testing
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starts in 1951 and if the relevant dataset contains historical observations starting from 1927,
all 24 years worth of data from January 1927 to December 1950 will constitute the basis for
the initial covariance estimate. At time T+1, the first month of 1951 will be included but the
observation from January 1927 will not be excluded. This way, the estimation window will
expand in time along with the portfolio strategy. This implies that the entire history present
in the dataset will be considered.

When considering that in theory an investor’s expectations reflect the information set that
consists of all previous information available up until the current time, and assuming that this
information is relevant the all-data expanding approach would reflect this. However, with this
expanding-window approach every observation will be deemed as of equal importance towards
the future expectations, which might be unrealistic as well as detrimental for the out-of-sample
results.

Formulated mathematically, the estimation process is explained in the sequel. First, I
assume that the vector of monthly asset returns at time t follows a random walk and is given
by:

rt = µ + εt, (4.8)

where r is the vector of monthly returns, µ is the vector of mean returns and ε is a vector
of random disturbance attributed at time t which is a normally distributed random variable
with zero mean and constant variance. Now, the rolling window of estimated means can be
specified as:

µ̂t = 1
T

t−1∑
i=t−T

ri, (4.9)

while the rolling window of estimated covariance matrices is given as:

Σ̂t = 1
T

t−1∑
i=t−T

εiε
′
i, (4.10)

where T is the length of the rolling window.
While many scientific papers implement mean estimates computed by a shorter rolling

window of 60 and 120 months, Kritzman et al. (2010) argue that such periods are too short
to be economically wise. While implementing rolling covariance matrices of different lengths,
they use a constant mean return estimate based on the first 50 years of data when constructing
the mean-variance optimized portfolio. In order to achieve results that are directly comparable
to that of their study, I will also do this for the out-of-sample period from 1978 to 2008. This
implies that the historical mean from the first 50 years of data, or 47 in the case of the “long-
term” dataset due to fewer historical observations, will serve as the mean estimate input for
the computation of the MeanVP during the Kritzman et al. (2010) replication. The means are
assumed to be constant in the entire out-of-sample test in line with Kritzman et al. (2010).
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However, for the rest of the out-of-sample periods tested, the means will be estimated in a
rolling-window manner.

As mentioned earlier, certain methods can be implemented in order to reduce the effect
of the estimation error on the portfolios when working with historical samples. In this thesis,
the Ledoit and Wolf (2004) shrinkage of the covariance matrix will be implemented when
constructing both the MinVP and the MeanVP. The authors explain that their method will
pull extremely high coefficients in the sample covariance matrix downwards and pull extremely
low coefficients upwards. This is because extremely high coefficients tend to be estimated
with a lot of positive error, while extremely low coefficients tend to be estimated with a lot of
negative error. It becomes clear that this is a process that shrinks the extreme values towards
the constant-correlation matrix.

The shrinkage estimator proposed in Ledoit and Wolf (2004) can be expressed as:

Σ̂Shrink = δ̂∗F + (1− δ̂∗)Σ̂, (4.11)

where Σ̂Shrink is the shrunk estimated covariance matrix, δ̂∗ is the estimated optimal shrinkage
constant which is a number between 0 and 1, F is the sample constant-correlation matrix and
Σ̂ is the sample covariance matrix. The optimal value of δ∗ is the one that minimizes the
expected value of the quadratic loss function between the shrinkage estimator and the true
covariance matrix. Put more simply, minimizing the distance between the shrinkage estimator
and the true covariance matrix. This constant is an estimate which is why it is denoted with a
hat in Equation (4.11). The shrinkage estimator assumes that asset returns are independent
and identically distributed over time and have finite fourth moments. When implementing
the shrinking of the covariance matrix in the statistical software R, I utilize the package
constructed by Burns Statistics (2012), which applies the method proposed in Ledoit and
Wolf (2004). Because the paper by Kritzman et al. (2010) did not apply shrinkage estimates
to the covariance matrix, I will not implement the technique explained above during the
out-of-sample replication period from 1978 to 2008.

I will expect that the estimation error in the inputs will be less severe due to several
reasons:

• If the amount of investable assets are large compared to the available observations of
historical returns, the sample covariance matrix is estimated with a lot of error. This is
pointed out in Ledoit and Wolf (2004). Because the datasets I implement in this study
only consist of 10-30 different investable assets, I would expect that the error in the
estimates are somewhat lower than if this was a problem.

• All the portfolio models will implement a long-only approach. As pointed out by Ja-
gannathan and Ma (2003), restricting short selling does reduce estimation error to some
degree.

• Because I implement a shrinkage estimator I would expect that the estimation error
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will decrease since extreme values from the estimation process are shrunk towards the
constant-correlation matrix

4.1.2 Minimum-variance portfolio

The MinVP is the portfolio that offers the lowest variance possible of all risky assets on the
efficient frontier. Because the minimum-variance portfolio depends only on the covariance
matrix as an input, there is no estimation error contributed from the sample mean. Although
estimation error also exists in the sample covariance matrix, Chopra and Ziemba (1993) found
that this error is significantly less than that generated when estimating the means. This
implies that there should be less estimation risk associated to the MinVP. The MinVP that
is constructed in this paper will have certain constraints. This is done in order to make it a
more realistic strategy for an investor as well as reduce estimation error. The first constraint
will be that the investor’s position in the different assets will be long-only. This means that
the investor cannot short-sell assets that are expected to give negative returns in the future.
Chopra and Ziemba (1993) and Jagannathan and Ma (2003) discuss the benefits of such a
constraint. Other reasons for why this constraint is reasonable is that real life investors may
not always be permitted to taking short positions in certain assets, not to mention that short
selling is a risky endeavor.

When constructing the MinVP, I will not introduce any constraints on how much of the
total wealth that can be invested in a single asset. Of course, this can lead to extreme weights
in certain assets and a portfolio consisting of very few assets. However, I implement this
approach for several reasons. In the papers by DeMiguel et al. (2009) and Kritzman et al.
(2010) there are no limitations on the weights. As my methodology is closely related to theirs
I will disregard this as well. The second reasoning is that because the datasets used already
consists of many stocks sorted into a certain amount of assets. This implies that the MinVP
invests in assets that already consist of several single securities. This will also make sure that
the portfolio has a certain degree of risk diversification, even though the weights are limited
to a few assets of the dataset. Additionally, the primary objective of a MinVP is to achieve
minimum variance and not a certain degree of diversification.

If the MinVP allocation were to be rational from a theoretical standpoint, it would have to
be the portfolio which offered the highest Sharpe ratio. This would hold if one assumes that
the expected return would be equal for every asset. In this scenario, it is obvious that the
reasonable thing to do for a mean-variance optimizer is to choose the assets with the lowest
standard deviation. The MinVP would then be a point on the CAL that offers the highest
Sharpe, and the investor should allocate his wealth somewhere along this CAL.

As the name implies, the MinVP is constructed by finding the weights that return a
portfolio with the lowest variance of all feasible portfolios. The weights are found by solving
the following minimization problem, expressed in matrix notation:
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min
w

σ2
p = 1

2w′Σw, subject to w′1 = 1, (4.12)

where 1 is an N × 1 vector of ones, w is an N × 1 vector of portfolio weights, Σ is an
N ×N covariance matrix and 1

2 has been added for mathematical convenience. Solving this
minimization problem returns the following solution for the vector of weights:

wMinV P = Σ−11
1′Σ−11

. (4.13)

Because the true covariance matrix is unknown and I have implemented an estimate that is
shrunk towards the constant-correlation matrix, this yields the following formulation for the
weights:

wMinV P = Σ̂−1
Shrink1

1′Σ̂−1
Shrink1

. (4.14)

At each rebalancing point, the wMinV P is reestimated and thus providing an updated weight-
ing scheme for the MinVP.

Because the MinVP implemented in this thesis has short-selling constraints, this has to
be implemented in the minimization problem. There are now several constraints, namely
(i) that the weights must sum to one, such that

∑N
i=1 wMinV P

i = 1, and (ii) the weights
cannot be negative, such that

∑N
i=1 wMinV P

i ≥ 0. I have solved the problem using a quadratic
programming solver developed by Turlach and Weingessel (2013). This optimizer will solve
quadratic programming problems on the matrix form min (−d−1b + 1/2b−1Db) with the
constraints A−1b >= b0. Considering this, the minimization problem for obtaining the weights
for the MinVP can now be specified in the following form:

min
w

1
2w′Σ̂Shrinkw, subject to A′w >= b, (4.15)

where A is an (m+ l)×N matrix and b is an (m+ l)×1 vector, both consisting of m equality
constraints and l inequality constraints. This is the reason that the notation “>=” is used
in Equation (4.15), as some constraints are equalities and other inequalities. By solving this
quadratic program I obtain the weights that minimize the variance of the portfolio. Of course,
in the case where the MinVP was constructed without the shrinkage estimator the covariance
estimate Σ̂Shrink was replaced with the sample covariance estimate Σ̂.

4.1.3 Value-weighted market portfolio

Because the true market portfolio is unattainable in real-life financial markets, large value-
weighted indices often hold as market portfolio proxies. The proxy for the market portfolio
will in this case be constructed by utilizing the market returns provided by Kenneth French,
which is computed by taking the return of all the stocks on the NYSE, AMEX and NASDAQ
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stock exchanges sorted by their market capitalization, as mentioned in Section 3. If one
believes the CAPM assumptions to hold, the theory tell us that the optimal strategy for the
investor is to hold the market portfolio of risky assets. Based on the investor’s preferences, he
will be best off when holding a mixture of the risk-free asset and the VWMP of risky assets.
Therefore, the VWMP would be expected to be the best performing portfolio according to
the CAPM, and the out-of-sample Sharpe ratio of this portfolio should be superior to the
other models considered.

By investing in the VWMP one does not pay attention to expected means, variances or
covariances, as I would expect the VWMP to already reflect this information. This strategy
does not require any portfolio rebalancing, as it should reflect the movement of the market.
That implies that this is a buy-and-hold or passive investment strategy. An advantage to this
is that there is no need to do consecutive active trading. This is due to the portfolio weights
being automatically rebalanced as the price movements of the stocks reflect the current market
trend. The only time the investor needs to actively manage the portfolio is when new stocks
are to be implemented into the portfolio. This implies that the VWMP has very low turnover,
and thus there are very little transaction costs.

To construct the total returns on the VWMP, I have added the risk free rate to the market
premium, both measures found in the factor data from the Kenneth French online data library.
By its construction the VWMP includes every risky asset available in the investment universe,
where each asset is weighted in accordance to their market capitalization. In this study I have
chosen an allocation such that all of the investor’s wealth is invested in the VWMP and none
is allocated to the risk-free asset.

Black et al. (1972) and Haugen and Heins (1975) are among several studies concluding
that the CAPM does not hold empirically, and thus not being mean-variance efficient. This
can be a reason as for why several studies find that the VWMP does not perform as well
out-of-sample.

4.1.4 Equally-weighted portfolio

The equally-weighted portfolio is constructed so that one invests an equal percentage in every
available asset. This way, each of the N risky assets are weighted in a manner so that
wEW P

i = 1
N and the weights sum to unity such that

∑N
i=1w

EW P
i = 1. Obviously, investing in

the EWP does not require any moments estimation or optimization, thus there is no estimation
error from inputs. Several contributions to the literature suggest that the naively diversified
EWP is a better benchmark to assess the performance of other asset-allocation strategies.
DeMiguel et al. (2009) concludes that because of the simplicity and low implementation costs
the strategy it would serve as a natural benchmark. The empirical evidence suggesting that the
EWP performs well out-of-sample is also a convincing addition as to why the strategy should
be considered as a benchmark. Therefore, when testing for the statistical distinguishability
between Sharpe ratios, I will use the Sharpe ratio delivered by the EWP as the benchmark. As

18



previously mentioned, multiple research efforts suggest that popular asset-allocation strategies
do not produce significantly better Sharpe ratios compared to the EWP. By using the EWP
as a benchmark I can examine this as well.

The literature mentions several theories on why the EWP performs so well out-of-sample.
The following reasonings are mentioned in DeMiguel et al. (2009) and Kritzman et al. (2010):

• Because the estimation of parameters carries with it estimation error, optimization will
be suboptimal. The loss in performance due to the naive diversification may be less
than of the optimization, and thus EWP could perform better out-of-sample.

• Easy to implement with no prerequired estimation.

• As the strategy weights all assets equally, the portfolio is diversified and there are no
concentrated positions.

• The strategy will never perform worse than the worst performing asset, while it will
invest in the best performing asset.

• The investable assets provided by the datasets are from 10 to 30 portfolios that already
have been presorted based on several individual stocks. This makes them diversified
portfolios with lower idiosyncratic volatility than individual stocks. This will probably
reduce the loss from an equally-weighted strategy compared to the optimal weighting,
and thus the performance from the EWP will be closer to that of the other portfolio
models.

4.1.5 Mean-variance portfolio

I will implement the mean-variance model of Markowitz (1952), which optimizes the risk-
return tradeoff based on an investor’s utility function. Because the construction method is
based on the principles of modern portfolio theory, the empirical behavior of this strategy
will be interesting and one should expect it to also perform well empirically. The optimal
allocation is found given the investors risk aversion. The portfolio weights are optimized so
that the portfolio achieves a return that is satisfactory for the investor at the lowest variance
feasible. In addition to this, the portfolio needs estimates of mean return and the covariance
matrix for construction.

Now assuming that there exists N + 1 assets, the investor will partition his or her wealth
between N risky assets and the additional asset 0 which is the risk-free asset that offers the
risk-free rate of return, rf , so that the portfolio’s total expected return is given as:

µp = w0rf +
N∑

i=1
wiE[ri], subject to

N∑
i=0

wi = 1, (4.16)
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where w0 is the weight invested in the risk-free asset. Because the amount invested in the
risk-free asset can be expressed as w0 = 1 −

∑N
i=1, I can rid the equation of the budget

constraint so that Equation (4.16) can be rearranged such that:

µp = rf +
N∑

i=1
wiE[ri]−

N∑
i=1

wirf = rf +
N∑

i=1
wi(E[ri]− rf ), (4.17)

or in matrix notation:

µp = w′(µ− 1rf ) + rf . (4.18)

I compute the optimal MeanVP by maximizing the investors utility function. The problem
can be specified in matrix notation as:

max
w

U(µp) = (w′(µ − 1rf ) + rf )− γ

2w′Σw. (4.19)

The weights of the MeanVP are chosen so that the portfolio with the lowest variance for the
target mean return, µp, computed by Equation (4.19) is obtained. This is expressed by the
following minimization problem:

min
w

1
2w′Σw, subject to w′(µ− 1rf ) + rf = µp. (4.20)

Solving the minimization problem, returns the weights which are given as:

wMeanV P = Σ−1(µ− 1rf )
1′Σ−1(µ− 1rf )

. (4.21)

As one does not know the true mean and covariance matrix, the sample mean and sample
covariance matrix will be used as inputs. This implies that there will be a certain degree of
estimation error which might affect this portfolio out of sample. Also in this portfolio the
sample covariance matrix has been shrunk. The formulation that has been used in order to
obtain the implemented MeanVP is given as:

wMeanV P = Σ̂−1
Shrink(µ− 1rf )

1′Σ̂−1
Shrink(µ− 1rf )

. (4.22)

I must also take the short-selling constraint into consideration when constructing the MeanVP,
so that the portfolio weights are long only. Similarly to the construction of the MinVP, I
implement a quadratic programming solver and find the weights by specifying the problem as
follows:

min
w

1
2w′Σ̂Shrinkw− d′w, subject to A′w > b, (4.23)

where A is now an l×N matrix and b is now an l×1 vector consisting of inequality constraints
and d is a vector of (µ−rf )/γ. Also note that I only use the “>” sign as there are no equality
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constraints. Solving this problem returns the vector of optimized weights for the MeanVP.
Additionally, in the case where the MeanVP was constructed without the shrinkage estimator
the covariance estimate Σ̂Shrink was replaced with the sample covariance estimate Σ̂.

4.2 Measuring portfolio performance

This section will cover the computations of the Sharpe ratio, the mean return, the standard
deviation and the capital accumulation. All of these measures will be reported in Section 5
and will reveal important characteristics of the different empirical portfolios.

4.2.1 Mean return and standard deviation

The computation of the standard deviations and excess returns are discussed in the sequel.
First, the standard deviation and mean return is found from the time series of the respec-
tive asset-allocation strategy’s excess return. Next, these measures are converted to annual
measures by implementing the fact that t=12. The measures are annualized so that they are
more easily comparable to other studies. The annualized mean return of a given portfolio
strategies implemented in the thesis is computed in the following manner:

µ̄p = µ̂p12, (4.24)

where µ̄p is the annualized mean return of the portfolio and µ̂p is the realized monthly mean
return of the portfolio. The standard deviation of the portfolio’s returns is given as the square
root of the portfolio variance:

σp =
√
σ2

p, (4.25)

and the annualized standard deviation of a given portfolio strategy is found in the following
way:

σ̄p = σ̂
√

12, (4.26)

where σ̄p is the annualized standard deviation of the portfolio’s returns and σ̂ is the realized
monthly standard deviation of the portfolio’s returns.

This process is repeated for every relevant dataset and for every specified lookback period.
Eventually, the measures are averaged across datasets, to obtain a more general result.

4.2.2 The Sharpe ratio

The main performance measure for judging the performance of the different portfolios will be
the out-of-sample Sharpe ratio. While the Sharpe ratio has also been criticized for its flaws,
it is still popularly implemented in the literature because of its ability to compare investment
with different risk exposures. This thesis will not be concerned with the limitations of the
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Sharpe ratio. Because the mean-variance optimizing investor would prefer the portfolio that
offers the highest Sharpe ratio, it serves as an important measure for this study.

When computing the monthly out-of-sample Sharpe ratio of the implemented models, the
parameters µ and σ are replaced with their realized equivalents µ̂ and σ̂. Now, the monthly
out-of-sample Sharpe ratio for a portfolio p is given as:

ˆSRp = µ̂p − rf

σ̂p
, (4.27)

where µ̂ is the monthly out-of-sample mean return and σ̂ is the out-of-sample standard devi-
ation of the portfolio’s monthly excess returns. The annualized, out-of-sample Sharpe ratio
that is computed based on the out-of-sample performance of a portfolio p, can be expressed
as:

¯SRp = ˆSRp

√
12. (4.28)

The Sharpe measures reported in the empirical results section are computed in accordance
with Equation (4.28).

Many of the papers that compare Sharpe ratios of different asset allocation strategies do
not test if these ratios are statistically distinguishable. As a response to this I will implement
such a test. Specifically, I will implement the test discussed in Jobson and Korkie (1981)
with the correction pointed out in Memmel (2003). This test works in a pair-wise manner,
comparing if the Sharpe ratio of a given strategy is statistically different from that of another
strategy. Considering the out-of-sample performance of the portfolios, the null hypothesis
that H0 : ˆSR1 − ˆSR2 = 0 is tested where the test statistic is given as:

ẑ =
ˆSR1 − ˆSR2√

1
n [2(1− ρ̂2) + 1

2( ˆSR2
1 + ˆSR2

2 − 2 ˆSR1 ˆSR2ρ̂2)]
, (4.29)

where ˆSR1 and ˆSR2 are the monthly out-of-sample Sharpe ratios of portfolio strategy 1 and
2 respectively, n is the sample size, ρ is the out-of-sample correlation coefficient, and ẑ is the
standard normal distributed test statistic.

In line with DeMiguel et al. (2009) and Kritzman et al. (2010), I also compute the in-
sample Sharpe ratio of a mean-variance strategy. This measure is found by treating the out-
of-sample period as it was in-sample, and thus I find what would be the optimal allocation for
a mean-variance strategy during that period. By doing this I will know how close the asset
allocation strategies came to the optimal strategy, which would also be a way of assessing
the effect of estimation error. The monthly in-sample Sharpe ratio from the mean-variance
strategy is computed in the following manner:

SRIS =
√

(µ̂IS − 1rf )Σ̂−1
IS (µ̂IS − 1rf ), (4.30)

where µ̂IS is the monthly in-sample mean return, Σ̂IS is the in-sample covariance matrix and

22



rf is the in-sample risk-free rate. Additionally, this measure is annualized by multiplying with
√

12.
In addition to reporting the individual Sharpe ratios for every strategy, every T and for

all the eight datasets, I also report the average Sharpe ratios across the datasets. This can
be exemplified as follows: If I compute the MinVP with T=120 for the eight datasets, I end
up with eight different Sharpe ratios. The average of these Sharpe ratios is computed so that
I have an average Sharpe for that T. The reason for why this is done is because the results
will be more general. If a certain strategy performs very well over a given dataset, this might
just be a random occurrence. However, if a strategy consistently performs well over several
datasets it is more likely that this strategy actually is better. The average measures are also
easier to compare across the different strategies and the different T.

4.2.3 Capital accumulation

As an additional performance measure, I will track the capital accumulation by looking at how
the portfolio returns will affect the growth of $1 invested at the start of the out-of-sample
period. By doing this, I will see which strategy provides the best return, strictly money
wise. Because a mean-variance rational investor would only care about the maximum Sharpe
ratio, this implementation might seem unintuitive. However, in the real world with restrictive
borrowing an investor might be unable to sufficiently lever his position in the optimal portfolio
so that it matches his preferred level of expected return. With this argumentation I feel it is
interesting to also look at this factor. As I will implement the portfolio strategies using several
datasets, also this measurement will also be reported as an average across the datasets.

4.3 Testing periods

Because the focus of the thesis is on replicating and extending previous studies and to de-
termine the consequences of the choice of the out-of-sample period, the empirical testing will
be repeated for several time periods. An overview of the implemented periods is presented
in Table 4.2. The first time period tested, will be the replication period from January 1978
to December 2008. Following this, will be the out-of-sample time period used in DeMiguel
et al. (2009) which is from July 1963 to November 2004. Because DeMiguel et al. (2009)
apply different datasets than those I implement in this study; the results cannot be directly
comparable. However, I will implement the same out-of-sample period as them in order to see
if the empirical results of my study is different than the conclusions reached in their study.

For the rest of the empirical testing I will implement different out-of-sample periods that
are not based on any previous studies. The first will be the full sample period from January
1951 to December 2012. Covering 62 years, this is the longest time period allowed by the
“div” dataset after setting aside the first 20 years as the in-sample period for estimation
purposes. Because the time period is relatively long and includes both market upturns and
downturns, the long-term behavior of the implemented portfolios will be apparent. From then,
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Table 4.2: Out-of-sample time periods implemented for determining the empirical performance
of portfolios

Time period classification Time period by date

Kritzman et al. (2010) replication period 01/1978-12/2008
DeMiguel et al. (2009) replication period 07/1963-11/2004

Full sample period 01/1951-12/2012
Subsample 01/1961-12/2012
Subsample 01/1971-12/2012
Subsample 01/1981-12/2012
Subsample 01/1991-12/2012

I decrease the out-of-sample period a decade at a time until the last period from January 1991
to December 2012 is reached. This produces four different out-of-sample subperiods starting
in 1961, 1971, 1981, and 1991 respectively. By doing this, I will be able to see if the portfolios
perform differently when the out-of-sample period has different starting points.

5 Empirical Results

This section will present the results of the empirical study. I will compare the performance
of the different asset-allocation strategies in the manner presented in Section 4. The replica-
tion of results from previous studies will be introduced first. Results from the procedure of
implementing different out-of-sample periods are presented second. The empirical results will
be discussed further in Section 6. When presenting the results I will simply use the terms
Sharpe ratio, mean returns and standard deviation although I actually refer to the annualized
measures.

5.1 Replication of the Kritzman et al. (2010) results

The first empirical backtesting will be the replication of the results found by Kritzman et al.
(2010). These out-of-sample results covers the time period from January 1978 to December
2008 and there is no shrinkage of the covariance matrix. In addition the sample mean has
been held constant. The results will be presented in the sequel, but the comparison of my
findings to those of Kritzman et al. (2010) will be postponed until Section 6.

5.1.1 Sharpe ratios

I will start by considering the Sharpe ratios based on their numerical value and focus on the
p-values returned by the statistical test later. Kritzman et al. (2010), along with much of the
literature, only report the Sharpe ratios without testing the statistical distinguishability. This
can result in erroneous conclusions about a strategy’s out-of-sample performance. Figure 5.1
displays graphical comparisons of the out-of-sample Sharpe ratios produced by the different
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Figure 5.1: Graphical comparison of average annualized out-of-sample Sharpe ratios over the
period 01/1978-12/2008

strategies when averaged across all eight investable universes. The different colors of the
bars reflect the various length of the lookback period T. Of course, the EWP, VWMP, and
in-sample MeanVP do not depend on T which is why the bars are of constant height. This
idea of graphically comparing the average Sharpe ratios is in line with Kritzman et al. (2010),
the results however are not especially similar. The differences in the results will be covered in
Section 6. The numerical values of the averages are reported in Table 5.1 where the first row
reports the Sharpe ratios when a constant mean was used, while last row reports the Sharpe
ratios when a rolling mean was used. Figure 5.1a displays the Sharpe ratios when the MeanVP
is constructed with a constant mean. From the graphical comparison it is evident that the
optimized MeanVP delivers lower Sharpe ratios than both the MinVP and the EWP, while
the VWMP has the lowest of the Sharpe ratios. This ranking holds for every T. Additionally,
the in-sample Sharpe ratio is considerably higher than those out-of-sample. This suggests
that mean-variance optimization in its theoretical construction delivers better performance
than the other strategies, but the estimation error reduces the out-of-sample performance
considerably. Another observation from the graphical comparison is that the length of T,
when averaged across datasets, seems to have little effect on the empirical Sharpe ratio,
except for a few cases.

For the sake of curiosity I also implemented a MeanVP with mean estimates based on a
rolling window, as seen in Figure 5.1b, which is the approach I have implemented for the other
results. Interestingly enough, this approach delivers a slightly higher Sharpe ratio compared
to the MeanVP with a constant mean. Due to Kritzman et al. (2010) suggesting that a
rolling mean estimation will result in poor out-of-sample portfolio performance, this result is
somewhat surprising. However, this increase in performance does not make a considerable
difference to the implications of the results.

When decomposing the analysis of the Sharpe ratios further, it seems as a portfolio’s
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Table 5.1: Average annualized out-of-sample Sharpe over the period 01/1978-12/2008

MinVP MeanVP EWP VWMP
T=60 T=120 T=240 T=all T=60 T=120 T=240 T=all in-sample

0.4806 0.4632 0.4717 0.4689 0.3996 0.3872 0.3955 0.3988 0.8269 0.4326 0.3757
0.4806 0.4632 0.4717 0.4689 0.4467 0.4147 0.4342 0.4155 0.8269 0.4326 0.3757

Note: The bottom row reports the Sharpe ratios when the MeanVP is constructed with a constant mean as
shown in Figure 5.1a, while the row above reports the Sharpe ratios when the MeanVP is constructed with a
rolling mean as in Figure 5.1b.

performance is somewhat dependent on the dataset. These results are listed in Table 5.2,
stating the Sharpe ratio for every strategy and every dataset in addition to the p-value of
the test statistic obtained by Equation (4.29). When determining the significance I consider
a 5 percent significance level. The MinVP delivers a higher and statistically distinguishable
Sharpe ratio than the benchmark EWP in two cases, when T=120 and T=all data during the
“mom” dataset, while the MeanVP delivers a higher and statistically distinguishable Sharpe
ratio for every T during the “mom” dataset. This suggests that both of the optimized strate-
gies do very well when the momentum deciles are considered as an investable universe. The
MeanVP has very poor performance during the “short-term” dataset, and delivers statistically
significant lower Sharpe ratios compared to the EWP in the cases where T=60, 240 and all
data. The VWMP has Sharpe ratios that are statistically distinguishable and lower than the
EWP in three out of the eight datasets.

5.1.2 Other portfolio measures

I will now consider the empirical standard deviation, mean and capital growth of the imple-
mented portfolio models, as they are reported in Table 5.3. The paper by Kritzman et al.
(2010) did not report these measures, so they cannot be directly compared. Yet, I wish to
investigate them to get additional information about the portfolios. As observed in the table
it becomes clear that the MinVP does indeed deliver the lowest portfolio variance as it has
the lowest standard deviation. The VWMP and the EWP end up with being equally volatile,
while the MeanVP has the highest standard deviation.

Concentrating on the mean returns, there are some interesting observations. The VWMP
actually delivers the lowest of all portfolios with a mean return of 5.89 percent. The MinVP
is outperformed by the EWP in all but one case, when T=all data the MinVP has a mean
return of 6.97 percent against the 6.75 percent of the EWP. The MeanVP delivers the highest
mean return of all the portfolio models, for every length of T.

The last measure reported in the table is the final value of a $1 amount if this was
invested in a portfolio at the start of the period. Regarding this capital growth provided by
the portfolios, the MeanVP is also superior. Next is the MinVP which delivers the second-
most pleasing capital gains, except for the one case where T=120 and the EWP delivers a
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Table 5.2: Out-of-sample Sharpe ratios and p-values over the period 01/1978-12/2008 without
shrinkage of the covariance matrix

Portfolio strategy 10 ind 30 ind size book mom short-term long-term div

EWP 0.4603 0.4334 0.4203 0.4749 0.3305 0.3751 0.5025 0.4637
MinVP T=60 0.4985 0.4269 0.3900 0.5188 0.3964 0.4357 0.5797 0.5984

(0.71) (0.96) (0.67) (0.43) (0.24) (0.20) (0.11) (0.15)
T=120 0.5116 0.4503 0.3985 0.4470 0.4381 0.4439 0.5366 0.4799

(0.64) (0.89) (0.77) (0.53) (0.03)* (0.16) (0.48) (0.86)
T=240 0.5439 0.5606 0.3986 0.4397 0.4013 0.4150 0.5260 0.4880

(0.42) (0.27) (0.80) (0.46) (0.14) (0.41) (0.58) (0.80)
T=all data 0.5025 0.5295 0.3590 0.4335 0.5155 0.4478 0.4945 0.4688

(0.66) (0.41) (0.54) (0.28) (0.00)* (0.07) (0.87) (0.85)
MeanVP in-sample 0.7527 1.0392 0.5416 0.7075 1.3353 0.9529 0.6517 0.6734

T=60 0.4214 0.2930 0.3219 0.4601 0.5613 0.1814 0.4641 0.4934
(0.66) (0.12) (0.20) (0.83) (0.02)* (0.02)* (0.70) (0.95)

T=120 0.3866 0.2868 0.3232 0.4078 0.5888 0.2234 0.4743 0.4071
(0.39) (0.08) (0.22) (0.32) (0.01)* (0.07) (0.79) (0.46)

T=240 0.3943 0.3163 0.3507 0.4179 0.5926 0.1943 0.4702 0.4276
(0.43) (0.16) (0.39) (0.40) (0.02)* (0.03)* (0.73) (0.61)

T=all data 0.4630 0.3213 0.3145 0.4287 0.5690 0.1612 0.4279 0.5045
(0.97) (0.27) (0.14) (0.51) (0.04)* (0.01)* (0.38) (0.57)

VWMP 0.3757 0.3757 0.3757 0.3757 0.3757 0.3757 0.3757 0.3757
(0.03)* (0.27) (0.47) (0.03)* (0.25) (0.98) (0.00)* (0.13)

Note: The p-value of the difference between the Sharpe ratio of each portfolio strategy from that of the EWP
benchmark is reported in the parentheses. Those that are significant on a 5 percent significance level are
marked with *.
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Table 5.3: Portfolio standard deviations, means and capital gains over the out-of-sample
period 01/1978-12/2008

Portfolio strategy Standard deviation Excess mean return Growth of $1

MinVP T=60 13.87% 6.63% 35.17
T=120 14.02% 6.48% 32.34
T=240 14.08% 6.59% 33.47

T=expanding 14.89% 6.97% 36.33
MeanVP T=60 17.73% 6.88% 36.75

T=120 17.81% 6.83% 37.81
T=240 18.30% 7.14% 41.91

T=expanding 18.97% 7.30% 41.72
EWP 15.67% 6.75% 32.74
VWMP 15.67% 5.89% 24.58

$0.40 higher gain. Also in this area, the VWMP displeasing by delivering the lowest capital
gain of the portfolio strategies.

5.2 Application of the time period used in DeMiguel et al. (2009)

5.2.1 Sharpe ratios

Studying Figure 5.2 and Table 5.4 reveals that some the portfolios behave a little differently
than in the previous out-of-sample time period. The VWMP is still the portfolio with the
worst performance in terms of Sharpe ratios and the EWP still maintains a Sharpe around
0.43. However, the performance of the MinVP is in general worse than both the EWP and
the MeanVP. The MeanVP performs better during this period and is the best performing
portfolio of the four. The in-sample MeanVP Sharpe ratio is still considerably higher than
the rest suggesting that large parts of the gains from optimization has disappeared due to
estimation error.

Moving on to the results presented in Table 5.5 shows that the MinVP delivers a statis-
tically higher Sharpe ratio than the EWP for the “mom” dataset while the EWP delivers
a statistically higher Sharpe ratio than the MinVP for the “book” data. In both cases the
length of the in-sample period is T=all data. Again, the MeanVP delivers statistically dis-
tinguishable and higher Sharpe ratios for all T using the “mom” dataset, although nowhere
else.

Table 5.4: Average annualized out-of-sample Sharpe ratios over the period 07/1963-11/2004

MinVP MeanVP EWP VWMP
T=60 T=120 T=240 T=all T=60 T=120 T=240 T=all in-sample

0.4306 0.4202 0.4196 0.4177 0.4716 0.4485 0.4321 0.4369 0.7800 0.4323 0.3648
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Table 5.5: Out-of-sample Sharpe ratios and p-values over the period 07/1963-11/2004 with
shrinkage of the covariance matrix

Portfolio strategy 10 ind 30 ind size book mom short-term long-term div

EWP 0.4386 0.4316 0.4405 0.4913 0.3349 0.3846 0.4823 0.4547
MinVP T=60 0.4285 0.4244 0.3504 0.4657 0.3851 0.3720 0.5192 0.4998

(0.91) (0.94) (0.25) (0.57) (0.31) (0.75) (0.37) (0.56)
T=120 0.4025 0.4171 0.3659 0.4404 0.3750 0.3894 0.5164 0.4553

(0.69) (0.89) (0.35) (0.19) (0.33) (0.90) (0.36) (0.99)
T=240 0.4138 0.4337 0.3747 0.4289 0.3540 0.3688 0.5042 0.4789

(0.78) (0.98) (0.42) (0.10) (0.62) (0.69) (0.54) (0.75)
T=all data 0.4318 0.4816 0.3315 0.3815 0.4761 0.3773 0.4282 0.4338

(0.94) (0.61) (0.22) (0.00)* (0.01)* (0.83) (0.19) (0.42)
MeanVP in-sample 0.5901 0.8620 0.6158 0.7079 1.2713 0.8132 0.6932 0.6865

T=60 0.3824 0.4091 0.4448 0.5231 0.6440 0.4936 0.5570 0.3187
(0.58) (0.82) (0.96) (0.67) (0.00)* (0.14) (0.33) (0.12)

T=120 0.3185 0.3804 0.3808 0.5845 0.6374 0.4306 0.4681 0.3874
(0.21) (0.62) (0.47) (0.12) (0.00)* (0.48) (0.86) (0.46)

T=240 0.2898 0.2918 0.3711 0.4876 0.6339 0.4298 0.4547 0.4983
(0.12) (0.16) (0.23) (0.95) (0.00)* (0.41) (0.64) (0.54)

T=all data 0.3682 0.3526 0.3310 0.5146 0.6573 0.3292 0.4371 0.5055
(0.31) (0.28) (0.01)* (0.64) (0.00)* (0.42) (0.48) (0.38)

VWMP 0.3648 0.3648 0.3648 0.3648 0.3648 0.3648 0.3648 0.3648
(0.01)* (0.12) (0.17) (0.00)* (0.35) (0.25) (0.00)* (0.04)*

Note: The p-value of the difference between the Sharpe ratio of each portfolio strategy from that of the EWP
benchmark is reported in the parentheses. Those that are significant on a 5 percent significance level are
marked with *.
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Figure 5.2: Graphical comparison of average annualized out-of-sample Sharpe ratios over the
period 07/1963-11/2004

Table 5.6: Portfolio standard deviations, means and capital gains over the out-of-sample
period 07/1963-11/2004

Portfolio strategy Standard deviation Excess mean return Growth of $1

MinVP T=60 13.97% 6.00% 88.94
T=120 14.02% 5.89% 84.50
T=240 14.08% 5.90% 84.25

T=expanding 14.85% 6.19% 89.91
MeanVP T=60 16.68% 7.89% 203.01

T=120 17.42% 7.84% 209.11
T=240 16.98% 7.33% 187.30

T=expanding 18.21% 7.92% 269.70
EWP 15.80% 6.82% 109.87
VWMP 15.54% 5.67% 66.97

5.2.2 Other portfolio measures

The results from the other portfolios measures that are listed in Table 5.6. It is evident that
these measures are very similar to those of the previous out-of-sample period. Not surprisingly
the MinVP is the least volatile strategy, followed by the VWMP, EWP and finally the MeanVP.
The means of the MinVP are higher than those of the VWMP but again, the EWP and the
MeanVP delivers better mean return along with capital accumulation.

5.3 Results from implementation of different out-of-sample periods

In this section, I report the average out-of-sample Sharpe ratios listed in Table 5.7 and shown
graphically in Figure 5.3. Additionally, the statistical distinguishability of the Sharpe ratios,
as they are summarized in the Appendix, will be briefly commented. Due to the amount of
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Sharpe ratio computations, these tables take up quite a bit of space and are therefore moved
to the Appendix in order to improve the readability of this section.

5.3.1 Sharpe ratios

When observing the empirical data reported in Table 5.7 and Figure 5.3, there are certain
characteristics that are evident. As previously, I will focus on the numerical value of the
Sharpe ratios at first, and consider their statistical differentiability later on. The first thing
that is noticeable is that the VWMP delivers the lowest Sharpe ratio of all strategies for
every out-of-sample time period implemented. These findings suggest that in lieu of the other
portfolio strategies, holding the market portfolio is not rational from a risk-adjusted return
standpoint. Secondly, the optimized portfolios do seem to outperform the EWP in most cases
except for when the out-of-sample periods start in 1981 and 1991, where the MeanVP performs
worse than the EWP. From this result one could argue that, based on the numerical value
of the Sharpe ratios alone, optimized portfolios do outperform simpler strategies. However,
one should also focus on the statistical significance. A third observation is that of the two
optimized portfolios, the MinVP consistently outperforms the MeanVP across out-of-sample
periods and for the different lengths of the lookback period. The MeanVP that is tested, in-
sample as opposed to out-of sample, reveals that if the mean-variance strategy was constructed
without estimation error, the MeanVP would do better than all the other portfolio strategies.
It also suggests that the estimation error present in the out-of-sample estimation cancels out
all the gains from optimization, as the performance of the out-of-sample MeanVP is reduced
to that of the EWP. The in-sample Sharpe ratios are nearly double that of the out-of-sample
MeanVP.

The individual Sharpe ratios reported in the Appendix show that also during these peri-
ods the choice of dataset is predictive for the performance of some of the portfolio strategies.
This is evident in the “mom” dataset as the MeanVP in most cases deliver statistically sig-
nificantly higher Sharpe ratios than the EWP. However, considering the p-values in all the
other datasets, there is no strong evidence suggesting that any of the optimized portfolios
statistically outperforms the EWP.

5.3.2 Other portfolio measures

The portfolio standard deviations, means and capital gains from the out-of-sample period
from 1951-2012 is reported in Table 5.8. Also this period delivers similar results as the ones
before. The MinVP is the least volatile strategy, followed by the VWMP, EWP and finally the
MeanVP. The means of the MinVP are higher than those of the VWMP while the EWP and
the MeanVP delivers higher mean return and capital accumulation. Because the relationship
between the different portfolio’s excess means, standard deviations and capital gains are very
similar for the remaining out-of-sample periods, I only report the findings from the 1951-2012
time period.
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Table 5.7: Average annualized out-of-sample Sharpe ratios with different out-of-sample start-
ing points

Portfolio strategy Starting point of out-of-sample period
01/1951 01/1961 01/1971 01/1981 01/1991

MinVP T=60 0.5292 0.4328 0.4503 0.5455 0.5487
T=120 0.5201 0.4219 0.4421 0.5290 0.5352
T=240 0.5188 0.4178 0.4494 0.5311 0.5537

T=all data 0.5150 0.4193 0.4532 0.5239 0.5521
MeanVP T=60 0.5330 0.4410 0.4478 0.4538 0.4884

T=120 0.5099 0.4231 0.4170 0.4308 0.5012
T=240 0.5117 0.4232 0.4271 0.4459 0.5182

T=all data 0.4967 0.4209 0.4181 0.4423 0.5237
in-sample 0.7647 0.7298 0.7236 0.8472 0.9046

EWP 0.4991 0.4164 0.4226 0.4736 0.5461
VWMP 0.4531 0.3602 0.3659 0.4170 0.4690

Table 5.8: Portfolio standard deviations, means and capital gains over the out-of-sample
period 01/1951-12/2012

Portfolio strategy Standard deviation Excess mean return Growth of $1

MinVP T=60 13.51% 7.11% 765.67
T=120 13.55% 7.01% 711.48
T=240 13.71% 7.08% 722.16

T=expanding 14.32% 7.36% 862.60
MeanVP T=60 15.92% 8.50% 1786.82

T=120 16.63% 8.49% 2118.77
T=240 16.09% 8.23% 2221.13

T=expanding 17.28% 8.55% 3791.59
EWP 15.43% 7.68% 916.71
VWMP 15.02% 6.81% 530.61
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Figure 5.3: Graphical comparison of average annualized out-of-sample Sharpe ratios with
different out-of-sample starting points
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6 Discussion

6.1 Implications of the Kritzman et al. (2010) replication

Assessing the Sharpe ratios produced by the portfolio models in the paper by Kritzman et
al. (2010), they find that the VWMP delivers the lowest, the EWP delivers the second
lowest, while the optimized MinVP and MeanVP clearly delivers the highest. In their study
the portfolios are compared graphically, in the same manner as I have shown in Section 5.
However, they do not report the exact values of the Sharpe ratios, so the reader has to
approximate them based on the value on the y-axis. Based on this approximation the VWMP
has a Sharpe ratio lower than 0.4, the EWP just below 0.5, while the MinVP and MeanVP
produces Sharpe ratios somewhere between 0.65 and 0.55. These results are quite different
from those that I reproduced. As shown in Section 5, the Sharpe of the VWMP is 0.3757,
which is very similar to that of Kritzman et al. (2010), but this is where the similarities end.
The MeanVP produces Sharpe ratios that are only a little higher than the VWMP and is
beaten by the EWP for every length of T. The MinVP outperforms the other strategies but
does not produce Sharpe ratios above 0.5 which is lower than those reported in Kritzman et
al. (2010). This suggests that one should be critical to the results from their study.

Although my Sharpe ratios are more modest, they still favor optimization to a degree
in that the MinVP delivers the highest Sharpe ratios and outperform the non-optimized
portfolios. This is a tempting conclusion, however the statistical significance of the difference
between the Sharpe ratios should be considered. Thus, a more important result is that
I find that the two optimized portfolio almost never produces statistically distinguishable
Sharpe ratios when comparing to that of the EWP. Considering this, there is no evidence
of optimization leading to better portfolio performance compared to an equally-weighted
approach.

6.2 Implication of the DeMiguel et al. (2009) replication

When implementing the out-of-sample time period from July 1963 to November 2004 it be-
comes clear that the MinVP performs worse than for the rest of the implemented periods.
This is surprising considering the better performance during the other time periods. Similarly
to the results obtained by DeMiguel et al. (2009), the EWP is one of the best performing
strategies. Considering the statistical significance of the difference between Sharpe ratios, I
reach the same conclusions as DeMiguel et al. (2009) in that, except for a few cases, none
of the optimized portfolios statistically outperforms the benchmark EWP. While DeMiguel
et al. (2009) angles their paper such that it focuses on that optimized portfolios do not sta-
tistically outperform the EWP. However, this also holds the other way around, in that an
equally-weighted strategy does not outperform optimized portfolios. Even though my data is
somewhat different to that which is implemented in their study I still find similar results.
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6.3 The general performance of the implemented portfolios

If concluding based on the numerical value of the Sharpe ratio alone, the MinVP comes across
as the best strategy. This would be the strategy that delivers the highest risk-adjusted return
of all the portfolio models considered in the study. This result is in line with the literature
on the performance of low-volatility portfolios, such as Clarke et al. (2011). However, this
outperformance does not hold statistically, as there are too few cases where the Sharpe ratio
produced by the MinVP actually is statistically distinguishable from the benchmark. The
MeanVP comes across as the second best strategy for all periods except during 1978-2008,
1981-2012 and 1991-2012 where it is beaten by the EWP, but also this portfolio fails to
produce differences in Sharpe ratios that are statistically significant in general. The EWP
statistically outperforms the VWMP in several of the cases. This suggests that holding the
market portfolio provides the investor with the lowest risk-adjusted return, and that a investor
who wants to maximize the Sharpe ratio should rather choose one of the other portfolios. This
is perhaps one of the most apparent results of the out-of-sample comparison.

Because the MinVP in general delivers higher empirical Sharpe ratios than the MeanVP,
this suggests that including estimates of mean returns in the optimization process does not
add any advantage as opposed to just estimation the covariance matrix. In a situation where
no plausible estimates for mean returns are obtainable, it might be best to stick with the
optimized minimum-variance strategy. As pointed out by DeMiguel et al. (2009), the differ-
ence between the in-sample MeanVP Sharpe ratio and the one produced by the EWP shows
the difference between a truly optimal allocation and a naive allocation. It also hints at the
severity of the estimation error, due to that fact that the out-of-sample MeanVP is reduced
from the optimal in-sample Sharpe ratio to one that equals the EWP which does not require
any optimization or stock-picking skill. This suggests that the effect of estimation error is
severe enough to impact the out-of-sample performance to a degree where all gains from op-
timization is lost. The possible gain from optimization, as expressed by difference between
the in-sample MeanVP Sharpe ratio and the EWP Sharpe ratio, is completely eroded due to
estimation error. This is the same conclusion that DeMiguel et al. (2009) reached.

Another thing to note regarding the in-sample MeanVP is that the Sharpe ratio delivered
by this strategy is the highest of all the models. This result helps to justify optimization,
because this proves that, at least when the estimates are known, optimization leads to better
results. This means that the naive-diversification strategy is not a recommended strategy if
somehow one is certain of the true means, variances and covariances. This result is in line
with DeMiguel et al. (2009) and Kritzman et al. (2010).

An interesting result is that the MeanVP often performs fairly well out-of-sample, even
though some of the literature suggests that due to estimation error it is expected to do poorly.
Because constraints on the optimization procedure are present, this may be the reason for
why these problems are not evident. This could imply that the portfolio does so well that the
negative effect of the estimation error is not severe enough to halt the performance sufficiently.
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The comparison between the MinVP and the MeanVP has shown that the less risky MinVP
often delivers equal or better risk-adjusted returns as the MeanVP. However, the study shows
that capital accumulation is often far greater when implementing the Markowitz strategy.
Investors demanding a certain monetary amount at the end of the investment period might
be put off by the MinVP. In financial theory one would circumvent this by implementing
a levered strategy that would lead to the same amount of capital growth. However, real
world investors often face borrowing restrictions and cannot implement such a strategy. Such
investors would therefore choose the MeanVP over the MinVP in a decision between the two.

6.4 Implications of choice of dataset and out-of-sample time period

When studying the results it becomes clear both of the optimized strategies often deliver
a statistically higher Sharpe ratio than the EWP in some of the cases when considering
the dataset formed on momentum deciles. This holds for most of the periods tested and
the MeanVP stands out in terms of statistically significance. For example, implementing
a MeanVP strategy on the “mom” dataset over the time period 1951 to 2012 will return a
portfolio with the highest risk-adjusted return, which is also statistically distinguishable for all
T. This gives the impression that an optimized mean-variance strategy strongly outperforms
an equally-weighted strategy, but when considering the other datasets as well, it turns out
that the MeanVP does not perform nearly as good as in the “mom” data. This demonstrates
the importance of analyzing the performance over several datasets, as a strategy can be found
to perform well under certain choices.

Analyzing the time period on which the portfolio strategies are tested shows that the
Sharpe ratios of the portfolio strategies are higher for some of the time periods while lower
for others. However, this holds for most of the portfolios collectively so that when the MinVP
delivers a high Sharpe ratio, so do the other portfolios as well. This implies that there is
none of the time periods implemented where a single strategy suddenly outperform the other
as they are always within a certain relation from each other. The only period where this
found to a degree is the out-of-sample period from 1963 to 2004, where the MinVP is not
the best performing portfolio in terms of numerical value of the Sharpe ratios. This suggests
that the choice of out-of-sample period does not make a significant difference to the empirical
performance of the portfolios. Furthermore, there is no single out-of-sample period where a
portfolio strategy suddenly and consistently delivers a statistically significantly higher Sharpe
ratio when compared to the benchmark.

6.5 Suggested explanations for MinVP performance

Considering the common assumption that taking on more risk should lead to higher expected
return, it is surprising that the MinVP delivers higher risk-adjusted return than the other
more risky strategies. In terms of the MinVP and MeanVP a possible explanation could be
that misspecification of the mean return estimates leads to estimation error severe enough to
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deteriorate all possible gains from optimization. This is evident when comparing the out-of-
sample Sharpe ratios of the MeanVP to the in-sample Sharpe ratios, which is also in line with
the findings of DeMiguel et al. (2009). Because the covariance estimates are found to be more
accurate (Best and Grauer, 1991; Chopra and Ziemba, 1993) and in addition are shrunk as
proposed in Ledoit and Wolf (2004), the out-of-sample MinVP might produce less estimation
error so that there is still some gains from optimization remaining.

The literature suggests additional explanations for the good performance of the MinVP.
Several studies (Asness et al., 2012; Blitz and van Vliet, 2007; Frazzini and Pedersen, 2013)
argue that due to leverage constraints and leverage aversion investors will overweight high-
beta securities in their portfolios. This causes the riskier assets to be overpriced and thus
offer lower risk-adjusted returns, while less risky assets are underpriced and thus offer higher
risk-adjusted return. Indeed, inspecting the capital accumulations of the portfolios reveals
that the MinVP generally delivers low capital growth when compared to the MeanVP and the
EWP. It becomes evident that investors seeking to maximize capital gain might refrain from
investing in the MinVP even though it offers the higher risk-adjusted return.

Papers such as Frazzini and Pedersen (2014) and Scherer (2011) connect the MinVP per-
formance to risk-factor exposure by performing regression analysis and finding that the MinVP
loads up on certain risk factors, while Baker and Haugen (2012) argue from a behavioral stand-
point suggesting that agency problems make low-volatility stocks unattractive for portfolio
managers.

7 Conclusion

Reviewing the academic literature on the empirical performance of various asset allocation
strategies, reveals that there is little consensus on whether or not optimization leads to outper-
formance. Can optimized portfolios deliver better performance than strategies such as equal
weighting of assets or investing in the VWMP? To facilitate the opposing views of this area of
research I concentrated on two research papers with conflicting conclusions. DeMiguel et al.
(2009) suggest that optimized portfolios do not consistently outperform an EWP, and that
the out-of-sample Sharpe ratios of the optimized portfolios are not statistically distinguishable
from those of the EWP. However, Kritzman et al. (2010) claimed that optimized portfolios
definitely perform better. They based this on out-of-sample results where the minimum-
variance and mean-variance portfolios deliver considerably higher Sharpe ratios, compared to
the EWP and VWMP.

The aim of this thesis has been to compare the out-of-sample performance of optimized
portfolios and naively diversified portfolios. This was done by studying the empirical perfor-
mance of the MinVP, MeanVP, EWP, and VWMP in order to determine if any of the portfolio
strategies deliver consistently better performance. By utilizing the same eight datasets and
out-of-sample time period implemented in Kritzman et al. (2010), I attempted to replicate
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their results for further comparison and analysis. In addition to this, I also tested the data on
the same out-of-sample time period that was implemented in DeMiguel et al. (2009) to see
if I reached similar conclusions. To determine if the choice of out-of-sample time period had
any influence on the performance of the portfolios, I performed backtests on five additional
out-of-sample time periods.

Assuming a mean-variance optimizing investor, the out-of-sample Sharpe ratio of the
portfolios was used to measure the performance. While a strategy might outperform another
in terms of the numerical value of the out-of-sample Sharpe ratio, the properties of the data
might reveal that the ratios are actually statistically equal to each other. To distinguish the
Sharpe ratios from each other, a test examining if the difference between them is statistically
significant was applied. Furthermore, the annual mean and standard deviation of a portfolio
strategy, as well as the capital accumulation of a $1 initial investment into each of the strategies
was examined.

By replicating the results obtained by Kritzman et al. (2010) and following their approach
of implementing a constant mean estimate based on the historical data and a covariance
matrix estimated on 5, 10 and 20-year rolling windows, as well as an expanding approach,
I find dissimilar results in that the out-of-sample Sharpe ratios obtained in this thesis are
considerably lower. In addition, I find no consistency in the statistical tests of the difference
between the Sharpe ratios of the MinVP, MeanVP, and the EWP. From this I conclude that
the out-of-sample performance of the optimized portfolios and the EWP are not statistically
distinguishable from each other. When performing the rest of the empirical backtesting I then
estimated the means in the same manner as the covariance matrix, in addition to shrinking
the covariance matrix estimate towards the constant-correlation matrix. For the remaining
periods as well, I find that the difference between the out-of-sample Sharpe ratios of the
MinVP, MeanVP, and EWP were not consistently statistically significant. This suggests that
the optimized portfolios do not outperform a naively-weighted benchmark, but also that
an EWP do not outperform optimized portfolios. This is important considering that some
researchers tend to look at the performance of the strategies from a single perspective of either
good or bad. The results also suggest that the choice of out-of-sample time period does not
affect the performance of the portfolios when compared to each other.

I also find that a MeanVP that is constructed using in-sample estimates obviously out-
performs the other strategies. This suggests that in theory optimization does indeed deliver
superior Sharpe ratios. However, the apparent estimation error from misspecifications of the
inputs is so large that most of the performance is lost. Because the MinVP performs so well,
it could be that misspecification of the mean estimates will affect the out-of-sample portfolio
performance.

In addition, I find that the VWMP underperforms compared to the other portfolio strate-
gies during all the implemented out-of-sample time periods. The lower Sharpe ratios produced
by the VWMP is often found to be statistically distinguishable as well, suggesting that in-
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vesting in the market portfolio is the least attractive of the four strategies.
When only considering the numerical value of the Sharpe ratios, the optimized portfolios

generally deliver higher Sharpe ratios. This suggests that they should be expected to deliver
higher Sharpe ratios on average. From a practitioner’s point of view, this might lead to
optimized portfolios being preferable. The MinVP is found to be the strategy that performs
the best out-of-sample. This is particularly interesting considering that it is the least volatile
of all the portfolios. Considering the findings of papers examining the low-volatility anomaly,
this result might come as no surprise.

If the findings of this thesis should imply anything, it would have to be that more re-
search must be devoted to increasing the accuracy of the parameters used when constructing
optimized portfolios. This would further diminish the effects of estimation error.
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A Presentation of omitted tables

This part of the appendix presents the tables reporting the out-of-sample Sharpe ratio of every
portfolio strategy for every dataset, as well as the p-values stating the statistical significance
of these measures, from the five different out-of-sample time periods starting in 1951, 1961,
1971, 1981 and 1991 respectively.

Table A.1: Out-of-sample Sharpe ratios and p-values over the period 01/1951-12/2012 with
shrinkage of the covariance matrix

Portfolio strategy 10 ind 30 ind size book mom short-term long-term div

EWP 0.5392 0.5032 0.4941 0.5437 0.4155 0.4515 0.5231 0.5222
MinVP T=60 0.5788 0.5648 0.4584 0.5698 0.4642 0.4665 0.5370 0.5944

(0.59) (0.45) (0.55) (0.49) (0.22) (0.63) (0.68) (0.20)
T=120 0.5642 0.5490 0.4677 0.5469 0.4543 0.4818 0.5522 0.5449

(0.73) (0.58) (0.66) (0.92) (0.27) (0.32) (0.36) (0.69)
T=240 0.5675 0.5605 0.4622 0.5154 0.4761 0.4711 0.5535 0.5438

(0.70) (0.48) (0.61) (0.37) (0.07) (0.52) (0.31) (0.69)
T=all data 0.5523 0.5842 0.4308 0.4611 0.5854 0.4908 0.5069 0.5083

(0.84) (0.30) (0.36) (0.01)* (0.00)* (0.14) (0.63) (0.57)
MeanVP in-sample 0.7350 0.8835 0.5730 0.6552 1.0593 0.8263 0.6689 0.7159

T=60 0.5093 0.5042 0.4871 0.5738 0.6516 0.5575 0.5227 0.4581
(0.71) (0.99) (0.92) (0.60) (0.00)* (0.06) (0.99) (0.33)

T=120 0.4470 0.4662 0.4272 0.6215 0.6669 0.5102 0.4755 0.4650
(0.22) (0.66) (0.26) (0.11) (0.00)* (0.24) (0.42) (0.39)

T=240 0.4484 0.4243 0.4342 0.5529 0.6805399 0.5005 0.4697 0.5829
(0.22) (0.31) (0.16) (0.83) (0.00)* (0.27) (0.23) (0.25)

T=all data 0.4595 0.5082 0.3968 0.5388 0.6865 0.3861 0.4447 0.5531
(0.13) (0.94) (0.00)* (0.90) (0.00)* (0.23) (0.12) (0.47)

VWMP 0.4531 0.4531 0.4531 0.4531 0.4531 0.4531 0.4531 0.4531
(0.00)* (0.14) (0.34) (0.00)* (0.14) (0.91) (0.00)* (0.03)*

Note: The p-value of the difference between the Sharpe ratio of each portfolio strategy from that of the EWP
benchmark is reported in the parentheses. Those that are significant on a 5 percent significance level are
marked with *.
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Table A.2: Out-of-sample Sharpe ratios and p-values over the period 01/1961-12/2012 with
shrinkage of the covariance matrix

Portfolio strategy 10 ind 30 ind size book mom short-term long-term div

EWP 0.4396 0.4178 0.4255 0.4651 0.3337 0.3645 0.4565 0.4284
MinVP T=60 0.4660 0.4502 0.3530 0.4641 0.3957 0.3624 0.4812 0.4897

(0.73) (0.71) (0.27) (0.98) (0.16) (0.95) (0.50) (0.33)
T=120 0.4515 0.4320 0.3638 0.4338 0.3823 0.3802 0.4976 0.4339

(0.88) (0.87) (0.35) (0.38) (0.20) (0.64) (0.22) (0.93)
T=240 0.4538 0.4472 0.3662 0.4073 0.3659 0.3718 0.4892 0.4415

(0.85) (0.73) (0.38) (0.08) (0.37) (0.82) (0.30) (0.83)
T=all data 0.4493 0.4942 0.3300 0.3831 0.4816 0.3903 0.4052 0.4207

(0.89) (0.36) (0.20) (0.02)* (0.00)* (0.37) (0.15) (0.75)
MeanVP in-sample 0.6322 0.8651 0.5644 0.6440 1.0194 0.7852 0.6502 0.6778

T=60 0.3897 0.4036 0.4210 0.4626 0.5751 0.4677 0.4548 0.3538
(0.57) (0.87) (0.95) (0.97) (0.00)* (0.10) (0.98) (0.31)

T=120 0.3366 0.3822 0.3637 0.5112 0.6010 0.4102 0.4231 0.3572
(0.22) (0.70) (0.35) (0.37) (0.00)* (0.41) (0.61) (0.34)

T=240 0.3395 0.3119 0.3670 0.4421 0.5993 0.4119 0.4227 0.4910
(0.23) (0.22) (0.22) (0.62) (0.00)* (0.32) (0.49) (0.28)

T=all data 0.3699 0.3929 0.3334 0.4766 0.6008 0.2967 0.4256 0.4715
(0.22) (0.71) (0.01)* (0.78) (0.00)* (0.25) (0.58) (0.37)

VWMP 0.3602 0.3602 0.3602 0.3602 0.3602 0.3602 0.3602 0.3602
(0.00)* (0.11) (0.16) (0.00)* (0.36) (0.79) (0.00)* (0.06)

Note: The p-value of the difference between the Sharpe ratio of each portfolio strategy from that of the EWP
benchmark is reported in the parentheses. Those that are significant on a 5 percent significance level are
marked with *.
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Table A.3: Out-of-sample Sharpe ratios and p-values over the period 01/1971-12/2012 with
shrinkage of the covariance matrix

Portfolio strategy 10 ind 30 ind size book mom short-term long-term div

EWP 0.4453 0.4220 0.4174 0.4695 0.3373 0.3717 0.4772 0.4406
MinVP T=60 0.4983 0.4626 0.3670 0.4908 0.4134 0.3737 0.4929 0.5041

(0.55) (0.68) (0.49) (0.64) (0.13) (0.96) (0.71) (0.40)
T=120 0.5019 0.4689 0.3713 0.4467 0.4107 0.3984 0.4974 0.4416

(0.53) (0.64) (0.54) (0.58) (0.10) (0.49) (0.60) (0.99)
T=240 0.5282 0.5101 0.3754 0.4372 0.4006 0.3886 0.4891 0.4663

(0.33) (0.37) (0.58) (0.39) (0.12) (0.66) (0.74) (0.72)
T=all data 0.5234 0.5478 0.3406 0.4089 0.4896 0.4047 0.4568 0.4537

(0.31) (0.18) (0.36) (0.11) (0.01)* (0.31) (0.61) (0.60)
MeanVP in-sample 0.6804 0.9057 0.5265 0.6093 1.0438 0.7372 0.6029 0.6832

T=60 0.4433 0.4203 0.4606 0.4624 0.5303 0.4687 0.4464 0.3508
(0.99) (0.99) (0.62) (0.92) (0.04)* (0.74) (0.68) (0.28)

T=120 0.3476 0.3615 0.3844 0.5214 0.5566 0.3969 0.4377 0.3300
(0.33) (0.57) (0.67) (0.37) (0.01)* (0.69) (0.60) (0.21)

T=240 0.3579 0.3160 0.3906 0.4710 0.5666 0.3904 0.4179 0.5065
(0.37) (0.30) (0.63) (0.98) (0.01)* (0.73) (0.28) (0.33)

T=all data 0.3845 0.3927 0.3263 0.4750 0.5659 0.2850 0.4042 0.5116
(0.35) (0.70) (0.02)* (0.90) (0.02)* (0.20) (0.24) (0.19)

VWMP 0.3659 0.3659 0.3659 0.3659 0.3659 0.3659 0.3659 0.3659
(0.01)* (0.18) (0.32) (0.01)* (0.40) (0.74) (0.00)* (0.08)

Note: The p-value of the difference between the Sharpe ratio of each portfolio strategy from that of the EWP
benchmark is reported in the parentheses. Those that are significant on a 5 percent significance level are
marked with *.
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Table A.4: Out-of-sample Sharpe ratios and p-values over the period 01/1981-12/2012 with
shrinkage of the covariance matrix

Portfolio strategy 10 ind 30 ind size book mom short-term long-term div

EWP 0.5328 0.4869 0.4420 0.5097 0.3882 0.4046 0.5301 0.4946
MinVP T=60 0.6395 0.5916 0.4464 0.5548 0.4654 0.4538 0.5724 0.6404

(0.30) (0.37) (0.96) (0.42) (0.18) (0.25) (0.39) (0.10)
T=120 0.6359 0.5840 0.4509 0.4985 0.4696 0.4791 0.5667 0.5473

(0.34) (0.42) (0.91) (0.82) (0.13) (0.09) (0.42) (0.56)
T=240 0.6477 0.6211 0.4568 0.4731 0.4614 0.4692 0.5634 0.5558

(0.27) (0.26) (0.86) (0.41) (0.15) (0.15) (0.43) (0.50)
T=all data 0.6372 0.6504 0.4104 0.4642 0.5285 0.4902 0.5114 0.4988

(0.23) (0.13) (0.74) (0.27) (0.02)* (0.03)* (0.69) (0.88)
MeanVP in-sample 0.8507 1.0972 0.6143 0.6927 1.1481 0.9268 0.6854 0.7626

T=60 0.4479 0.5417 0.4622 0.4905 0.4169 0.4046 0.4602 0.4065
(0.39) (0.64) (0.79) (0.79) (0.75) (1.00) (0.27) (0.31)

T=120 0.3504 0.3500 0.3917 0.5552 0.4916 0.3976 0.5030 0.4073
(0.06) (0.23) (0.50) (0.48) (0.26) (0.90) (0.66) (0.29)

T=240 0.3886 0.3588 0.3560 0.5232 0.5065 0.3846 0.5031 0.5468
(0.13) (0.28) (0.20) (0.82) (0.20) (0.73) (0.65) (0.49)

T=all data 0.4914 0.4995 0.2835 0.5240 0.5113 0.1948 0.4745 0.5594
(0.56) (0.89) (0.00)* (0.78) (0.31) (0.01)* (0.38) (0.28)

VWMP 0.4170 0.4170 0.4170 0.4170 0.4170 0.4170 0.4170 0.4170
(0.00)* (0.18) (0.68) (0.04)* (0.49) (0.53) (0.00)* (0.17)

Note: The p-value of the difference between the Sharpe ratio of each portfolio strategy from that of the EWP
benchmark is reported in the parentheses. Those that are significant on a 5 percent significance level are
marked with *.
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Table A.5: Out-of-sample Sharpe ratios and p-values over the period 01/1991-12/2012 with
shrinkage of the covariance matrix

Portfolio strategy 10 ind 30 ind size book mom short-term long-term div

EWP 0.5780 0.5427 0.5458 0.5722 0.4598 0.4592 0.6614 0.5495
MinVP T=60 0.5498 0.4617 0.4917 0.6231 0.5422 0.5344 0.5993 0.5873

(0.81) (0.55) (0.58) (0.46) (0.28) (0.16) (0.32) (0.67)
T=120 0.5529 0.4519 0.4897 0.5555 0.5553 0.5285 0.6659 0.4821

(0.84) (0.52) (0.58) (0.79) (0.19) (0.22) (0.94) (0.50)
T=240 0.5958 0.5222 0.4954 0.5623 0.5458 0.5152 0.6806 0.5125

(0.89) (0.89) (0.64) (0.87) (0.21) (0.32) (0.74) (0.73)
T=all data 0.5345 0.5200 0.4264 0.5634 0.6298 0.5466 0.6240 0.5724

(0.66) (0.86) (0.34) (0.87) (0.04)* (0.09) (0.56) (0.52)
MeanVP in-sample 0.8166 1.2102 0.7363 0.7059 1.1284 0.9931 0.8280 0.8186

T=60 0.4954 0.4870 0.4935 0.4675 0.5297 0.4985 0.4996 0.4360
(0.52) (0.71) (0.61) (0.23) (0.54) (0.61) (0.05)* (0.25)

T=120 0.4432 0.4412 0.4818 0.5354 0.5959 0.4947 0.6224 0.3950
(0.24) (0.49) (0.52) (0.64) (0.25) (0.55) (0.59) (0.10)

T=240 0.4930 0.3310 0.4887 0.5258 0.6273 0.5083 0.6105 0.5607
(0.41) (0.10) (0.52) (0.50) (0.15) (0.39) (0.38) (0.90)

T=all data 0.5774 0.5376 0.4522 0.5441 0.6061 0.2552 0.6469 0.5698
(1.00) (0.97) (0.01)* (0.62) (0.38) (0.05)* (0.83) (0.78)

VWMP 0.4690 0.4690 0.4690 0.4690 0.4690 0.4690 0.4690 0.4690
(0.04)* (0.32) (0.34) (0.12) (0.88) (0.72) (0.00)* (0.34)

Note: The p-value of the difference between the Sharpe ratio of each portfolio strategy from that of the EWP
benchmark is reported in the parentheses. Those that are significant on a 5 percent significance level are
marked with *.

B Implemented R code for achieving the empirical results

This part of the appendix will state the R code that has been used in order to reach the
empirical results. The purpose of including this code is to ease the replicability of my results.
The package “BurStFin” by Burns Statistics (2012) was applied for computing the Ledoit and
Wolf (2004) shrinkage estimator, while the package “quadprog” by Turlach and Weingessel
(2013) was used for the quadratic programming problems.

B.1 Program for the rolling-window approach

The following R code shows how the empirical results were obtained when implementing a
rolling-window estimation approach. Note that some of the code is changed depending on the
relevant datasets, time period, mean estimation approach and whether or not the shrinkage
estimator has been applied.

1 rm( l i s t=l s ( a l l=TRUE) ) # c l e a r environment
2
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3 # load p r e r e q u i s i t e s
4 source ( " f unc t i on s_t h e s i s .R" )
5 l ibrary ( " quadprog " )
6 l ibrary ( " BurStFin " )
7
8 # read data s e t implemented as the inves tment un ive r se
9 r e t <− read . table ( " 10_i n d u s t r i e s . txt " , header=TRUE)
10
11 # read data on f a c t o r re turns
12 f a c <− read . table ( "FF3_f a c t o r s . txt " , header=TRUE)
13
14 # cons t ruc t the time s e r i e s o b j e c t
15 r e t . ts <− ts ( r e t [ , 2 : ncol ( r e t ) ] /100 , start=c (1927 ,1 ) , frequency =

12)
16 f a c . ts <− ts ( f a c [ , 2 : ncol ( f a c ) ] /100 , start=c (1927 ,1 ) , frequency =

12)
17
18 # d e f i n e the s t a r t and end da te s and s e l e c t the r e l e v a n t time

window
19 nYears <− 5 # years s e t a s i de f o r

pre l iminary e s t ima t ion
20 year . start <− 1951
21 start <− c ( year . start−nYears , 1 ) # OOS s t a r t i n g year and month
22 end <− c (2012 ,12) # OOS ending year and month
23 r e t . ts <− window( r e t . ts , start=start , end=end)
24 f a c . ts <− window( f a c . ts , start=start , end=end)
25
26 # return to data frame
27 r e t <− as . data . frame ( r e t . ts )
28 f a c <− as . data . frame ( f a c . ts )
29
30 # d e f i n e lookback per iod and index s t a r t
31 nobs <− nrow( f a c )
32 lookback . per iod <− nYears∗12
33 f i r s t <− lookback . per iod + 1
34
35 # c o n s t r u c t i n g the market p o r t f o l i o (VWMP)
36 f a c . per iod <− f a c [ f i r s t : nobs , ]
37 r f <− f a c . per iod [ , "RF" ]
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38 r e t .mkt <− f a c . per iod [ , "Mkt .RF" ] + r f # return on VWMP
39
40 # c o n s t r u c t i n g the e qua l l y−weigh ted p o r t f o l i o (EWP)
41 N <− ncol ( r e t )
42 w. naive <− rep (1/N, N) # d e f i n i n g the we i gh t s
43 naive . per iod <− r e t [ f i r s t : nobs , ]
44 r e t . na ive <− rowSums( t (w. na ive )∗naive . per iod ) #return on EWP
45
46 # c o n s t r u c t i n g the minimum var iance (MinVP) and the mean var iance

p o r t f o l i o (MeanVP)
47 n <− length ( r f )
48 r e t . minvar <− rep (0 , n )
49 r e t . markowitz <− rep (0 , n )
50
51 for ( i in 1 : n ) {
52 # f i n d the i n d i c e s o f the l ookback per iod
53 per iod . end <− f i r s t + i − 2
54 per iod . start <− per iod . end − lookback . per iod + 1
55 i f ( per iod . start < 1) per iod . start <− 1 # index cannot be l e s s

than 1
56
57 # es t imate the covar iance matrix
58 covmat <− var . sh r ink . eqcor ( r e t [ per iod . start : pe r iod . end , ] ) # using

shr inkage es t imator
59 #covmat <− cov ( r e t [ per iod . s t a r t : per iod . end , ] ) #

wi thout shr inkage es t imator
60
61 # compute the minimum−var iance p o r t f o l i o
62 w. minvar <− minvarport ( covmat , sho r t s=FALSE) # MinVP

weights , no s h o r t s
63 r e t . minvar [ i ] <− sum(w. minvar∗ r e t [ ( per iod . end+1) , ] ) # return on

the MinVP
64
65 # compute the mean−var iance p o r t f o l i o
66 er <− apply ( r e t [ per iod . start : pe r iod . end , ] , 2 , mean) # mean

re turn in the per iod
67 w. markowitz <− tanmaxut i l i ty ( er , covmat , r f [ i ] ) # mean

var iance we i gh t s
68 r e t . markowitz [ i ] <− sum(w. markowitz∗ r e t [ ( per iod . end+1) , ] ) #
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re turn on the MeanVP
69 }
70
71 # p o r t f o l i o c a p i t a l accumulat ion
72 ind .mkt <− cumprod(c (1 , 1+r e t .mkt) ) # VWMP
73 ind . minvar <− cumprod(c (1 , 1+r e t . minvar ) ) # minimum var iance

p o r t f o l i o
74 ind . na ive <− cumprod(c (1 , 1+r e t . na ive ) ) # 1/N p o r t f o l i o
75 ind . markowitz <− cumprod(c (1 ,1+ r e t . markowitz ) ) # mean var iance

p o r t f o l i o
76
77 # accumulated wea l th at the end o f the per iod
78 f i n a lwe a l t h . minvar <− round( ind . minvar [ n+1] , d i g i t s =2) #

minimum var iance p o r t f o l i o
79 f i n a lwe a l t h . market <− round( ind .mkt [ n+1] , d i g i t s =2) # VWMP
80 f i n a lwe a l t h . na ive <− round( ind . na ive [ n+1] , d i g i t s =2) # 1/N

p o r t f o l i o
81 f i n a lwe a l t h . markowitz <− round( ind . markowitz [ n+1] , d i g i t s =2) # mean

var iance p o r t f o l i o
82
83 # p l o t the accumulated wea l th
84 ind <− ts (cbind ( ind .mkt , ind . minvar , ind . naive , ind . markowitz ) ,

start=c ( year . start , 1 ) , frequency = 12)
85 plot ( log ( ind ) , plot . type = " s i n g l e " , col = c ( " red " , " b lue " , " green

" , " pink " ) ,
86 ylab="Log␣growth␣ o f ␣$1 " , xlab="Year " )
87 legend ( x=" t o p l e f t " , legend=c ( "Market " , "Minimum␣ var iance " , " Naive " ,

"Markowitz " ) ,
88 col = c ( " red " , " b lue " , " green " , " pink " ) , l t y =1)
89
90 # computing exce s s re turn
91 mkt <− r e t .mkt − r f # VWMP
92 minvar <− r e t . minvar − r f # MinVP
93 naive <− r e t . na ive − r f # EWP
94 markowitz <− r e t . markowitz − r f # MeanVP
95
96 # annua l i zed out−of−sample Sharpe r a t i o
97 Sharpe .mkt <− Sharpe (mkt) # VWMP
98 Sharpe . minvar <− Sharpe (minvar ) # MinVP
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99 Sharpe . na ive <− Sharpe ( naive ) # EWP
100 Sharpe . markowitz <− Sharpe (markowitz ) # MeanVP
101
102 # computing max sharpe when t r e a t i n g out−of−sample per iod as in−

sample
103 insample . r e t <− r e t [ f i r s t : nobs , ] # re turns in in−

sample per iod
104 insample . e r <− apply ( insample . ret , 2 , mean) # mean re turns in in−

sample per iod
105 insample . covmat <− cov ( insample . r e t ) # in−sample

covar iance matrix
106
107 # in−sample Sharpe from mean var iance s t r a t e g y
108 insample . Sharpe . markowitz <− maxsharpe ( insample . er , insample . covmat

, mean( r f ) )
109
110 # var ious annua l i zed measures
111 an .mean(minvar ) # mean exce s s re turn on MinVP
112 an . std (minvar ) # sample v o l a t i l i t y o f MinVP
113 an .mean(mkt) # mean exce s s re turn on VWMP
114 an . std (mkt) # sample v o l a t i l i t y o f VWMP
115 an .mean( na ive ) # mean exce s s re turn on EWP
116 an . std ( naive ) # sample v o l a t i l i t y o f EWP
117 an .mean( markowitz ) # mean exce s s re turn on MeanVP
118 an . std (markowitz ) # sample v o l a t i l i t y o f MeanVP
119
120 # t e s t i n g s t a t i s t i c a l s i g n i f i c a n c e o f Sharpe r a t i o s across

p o r t f o l i o s
121 SharpeTest (minvar , na ive )
122 SharpeTest (markowitz , na ive )
123 SharpeTest (mkt , na ive )

Listing 1: R code for the rolling-window approach

B.2 Program for the expanding-window approach

The following R code shows how the empirical results were obtained when implementing a
expanding-window estimation approach. Note that some of the code is changed depending
on the relevant datasets, time period, mean estimation approach and whether or not the
shrinkage estimator has been applied.
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1 rm( l i s t=l s ( a l l=TRUE) ) # c l e a r environment
2
3 # load p r e r e q u i s i t e s
4 source ( " f unc t i on s_t h e s i s .R" )
5 l ibrary ( " quadprog " )
6 l ibrary ( " BurStFin " )
7
8 # read data s e t implemented as the inves tment un ive r se
9 r e t <− read . table ( " 10_i n d u s t r i e s . txt " , header=TRUE)
10
11 # read data on f a c t o r re turns
12 f a c <− read . table ( "FF3_f a c t o r s . txt " , header=TRUE)
13
14 # cons t ruc t the time s e r i e s o b j e c t
15 r e t . ts <− ts ( r e t [ , 2 : ncol ( r e t ) ] /100 , start=c (1927 ,1 ) , frequency =

12)
16 f a c . ts <− ts ( f a c [ , 2 : ncol ( f a c ) ] /100 , start=c (1927 ,1 ) , frequency =

12)
17
18 # d e f i n e the s t a r t and end da te s and s e l e c t the time window
19 year . start <− 1951
20 nYears <− year . start−1927 # years s e t a s i de f o r

pre l iminary e s t ima t ion
21 start <− c ( year . start−nYears , 1 ) # OOS s t a r t i n g year and month
22 end <− c (2012 ,12) # OOS ending year and month
23 r e t . ts <− window( r e t . ts , start=start , end=end)
24 f a c . ts <− window( f a c . ts , start=start , end=end)
25
26 # return to data frame
27 r e t <− as . data . frame ( r e t . ts )
28 f a c <− as . data . frame ( f a c . ts )
29
30 # d e f i n e lookback per iod and index s t a r t
31 nobs <− nrow( f a c )
32 lookback . per iod <− nYears∗12
33 f i r s t <− lookback . per iod + 1
34
35 # c o n s t r u c t i n g the market p o r t f o l i o (VWMP)
36 f a c . per iod <− f a c [ f i r s t : nobs , ]
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37 r f <− f a c . per iod [ , "RF" ]
38 r e t .mkt <− f a c . per iod [ , "Mkt .RF" ] + r f # return on VWMP
39
40 # c o n s t r u c t i n g the e qua l l y−weigh ted p o r t f o l i o (EWP)
41 N <− ncol ( r e t )
42 w. naive <− rep (1/N, N) # d e f i n i n g the we i gh t s
43 naive . per iod <− r e t [ f i r s t : nobs , ]
44 r . i <− naive . per iod∗w. naive
45 r e t . na ive <− rowSums( r . i ) # return on EWP
46
47 # c o n s t r u c t i n g the minimum var iance p o r t f o l i o (MinVP) and the mean−

var iance p o r t f o l i o (MeanVP)
48 n <− length ( r f )
49 r e t . minvar <− rep (0 , n )
50 r e t . markowitz <− rep (0 , n )
51
52 for ( i in 1 : n ) {
53 # f i n d the i n d i c e s o f the l ookback per iod
54 per iod . end <− f i r s t + i − 2
55 per iod . start <− f i r s t − lookback . per iod
56 i f ( per iod . start < 1) per iod . start <− 1 # index cannot be l e s s

than 1
57
58 # es t imate the covar iance matrix
59 covmat <− var . sh r ink . eqcor ( r e t [ per iod . start : pe r iod . end , ] ) #

using shr inkage es t imator
60 #covmat <− cov ( r e t [ per iod . s t a r t : per iod . end , ] ) #

wi thout shr inkage es t imator
61
62 # compute the we i gh t s o f the minimum var iance p o r t f o l i o
63 w. minvar <− minvarport ( covmat , sho r t s=FALSE) #

MinVP weights , no s h o r t s
64 r e t . minvar [ i ] <− sum(w. minvar∗ r e t [ ( per iod . end+1) , ] ) #

return on the MinVP
65
66 # compute the mean var iance p o r t f o l i o
67 er <− apply ( r e t [ per iod . start : pe r iod . end , ] , 2 , mean) # mean

re turn in the per iod
68 w. markowitz <− tanmaxut i l i ty ( er , covmat , r f [ i ] ) # mean
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var iance we i gh t s
69 r e t . markowitz [ i ] <− sum(w. markowitz∗ r e t [ ( per iod . end+1) , ] ) #

return on the MeanVP
70 }
71
72 # p o r t f o l i o c a p i t a l accumulat ion
73 ind .mkt <− cumprod(c (1 , 1+r e t .mkt) ) # VWMP
74 ind . minvar <− cumprod(c (1 , 1+r e t . minvar ) ) # minimum var iance

p o r t f o l i o
75 ind . na ive <− cumprod(c (1 , 1+r e t . na ive ) ) # 1/N p o r t f o l i o
76 ind . markowitz <− cumprod(c (1 ,1+ r e t . markowitz ) ) # mean var iance

p o r t f o l i o
77
78 # accumulated wea l th at the end o f the per iod
79 f i n a lwe a l t h . minvar <− round( ind . minvar [ n+1] , d i g i t s =2) #

minimum var iance p o r t f o l i o
80 f i n a lwe a l t h . market <− round( ind .mkt [ n+1] , d i g i t s =2) # VWMP
81 f i n a lwe a l t h . na ive <− round( ind . na ive [ n+1] , d i g i t s =2) # 1/N

p o r t f o l i o
82 f i n a lwe a l t h . markowitz <− round( ind . markowitz [ n+1] , d i g i t s =2) # mean

var iance p o r t f o l i o
83
84 ind <− ts (cbind ( ind .mkt , ind . minvar , ind . naive , ind . markowitz ) ,

start=c ( year . start , 1 ) , frequency = 12)
85 plot ( log ( ind ) , plot . type = " s i n g l e " , col = c ( " red " , " b lue " , " green

" , " pink " ) ,
86 ylab="Log␣growth␣ o f ␣$1 " , xlab="Year " )
87 legend ( x=" t o p l e f t " , legend=c ( "Market " , "Minimum␣ var iance " , " Naive " ,

"Markowitz " ) ,
88 col = c ( " red " , " b lue " , " green " , " pink " ) , l t y =1)
89
90 # computing exce s s re turn
91 mkt <− r e t .mkt − r f # VWMP
92 minvar <− r e t . minvar − r f # MinVP
93 naive <− r e t . na ive − r f # EWP
94 markowitz <− r e t . markowitz − r f # MeanVP
95
96 # annua l i zed out−of−sample Sharpe r a t i o
97 Sharpe .mkt <− Sharpe (mkt) # VWMP
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98 Sharpe . minvar <− Sharpe (minvar ) # MinVP
99 Sharpe . na ive <− Sharpe ( naive ) # EWP

100 Sharpe . markowitz <− Sharpe (markowitz ) # MeanVP
101
102 # var ious annua l i zed measures
103 an .mean(minvar ) # mean exce s s re turn on MinVP
104 an . std (minvar ) # sample v o l a t i l i t y o f MinVP
105 an .mean(mkt) # mean exce s s re turn on VWMP
106 an . std (mkt) # sample v o l a t i l i t y o f VWMP
107 an .mean( na ive ) # mean exce s s re turn on EWP
108 an . std ( naive ) # sample v o l a t i l i t y o f EWP
109 an .mean( markowitz ) # mean exce s s re turn on MeanVP
110 an . std (markowitz ) # sample v o l a t i l i t y o f MeanVP
111
112 # t e s t i n g s t a t i s t i c a l s i g n i f i c a n c e o f Sharpe r a t i o s across

p o r t f o l i o s
113 SharpeTest (minvar , na ive )
114 SharpeTest (markowitz , na ive )
115 SharpeTest (mkt , na ive )

Listing 2: R code for expanding-window approach

B.3 R code for the different functions used

The following R code shows how the various functions implemented in the main programs
have been created.

1 # computes the we i gh t s f o r the minimum var iance p o r t f o l i o
2 minvarport <− function ( covmat , sho r t s=TRUE) {
3 covmat <− as .matrix ( covmat )
4 i f ( sho r t s==TRUE) {
5 # t h i s par t w i l l a l l ow f o r s h o r t s
6 inv . cov <− solve ( covmat ) # computes the in v e r s e o f the

var iance covar iance matrix
7 ones . vec <− rep (1 , nrow( covmat ) ) # c r e a t e s a vec to r o f ones
8 w. minvar <− ( inv . cov %∗% ones . vec )/as .numeric ( ones . vec %∗% inv .

cov %∗% ones . vec ) # c r e a t e s the we i gh t s
9 }
10 else i f ( sho r t s==FALSE) {
11 # t h i s par t w i l l not a l l ow f o r s h o r t s
12 N <− nrow( covmat )
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13 ze ro s <− rep (0 , N) # making d a vec to r o f z e ros in
order to ge t the r i g h t e xpre s s i on

14 Amat <− cbind ( t (array (1 , dim = c (1 ,N) ) ) , diag (N) )
15 bvec <− c (1 , rep (0 , N) ) # making the r e s t r i c t i o n s vec t o r
16 r e s u l t <− solve .QP(Dmat=covmat , dvec=zeros , Amat , bvec , meq=1)
17 w. minvar <− r e s u l t $ s o l u t i o n # c r e a t e s the we i gh t s
18 }
19 return (w. minvar )
20 }
21
22 # computes the mean−var iance p o r t f o l i o we i g th s
23 tanmaxut i l i ty <− function ( er , covmat , r , A=1000) {
24 # compute the tangency p o r t f o l i o by maximizing mean−var iance

u t i l i t y
25 # in the presence o f r e s t r i c t i o n s on shor t s a l e and borrowing
26 # U t i l i t y f unc t i on : U( x ) = E[ x]−A∗Var [ x ]
27 #
28 # inpu t s :
29 # er N x 1 vec to r o f expec ted re turns
30 # covmat N x N covar iance matrix o f r e turns
31 # r sca lar , r i s k−f r e e ra t e re turn
32 # A sca lar , r i s k−aver s ion c o e f f i c i e n t
33 #
34 # output i s a vec t o r o f p o r t f o l i o we i gh t s
35
36 #
37 # check f o r v a l i d inpu t s
38 #
39 er <− as . vector ( er )
40 covmat <− as .matrix ( covmat )
41 i f ( ! i s .numeric ( r ) | | length ( r ) !=1)
42 stop ( " Risk−f r e e ␣ ra t e ␣ i s ␣not␣a␣ s c a l a r " )
43 i f ( length ( er ) != nrow( covmat ) )
44 stop ( "Mismatch␣ in ␣number␣ o f ␣ rows " )
45 i f (any(diag ( chol ( covmat ) ) <= 0) )
46 stop ( " Covariance ␣matrix ␣ i s ␣not␣ p o s i t i v e ␣ d e f i n i t e " )
47
48 n = nrow( covmat )
49 Dmat <− covmat
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50 dvec <− ( er−r )/A
51 Amat <− cbind ( rep(−1 ,n) , diag (1 , n ) )
52 bvec <− c(−1 , rep (0 , n ) )
53 r e s u l t <− solve .QP(Dmat=Dmat , dvec=dvec ,Amat=Amat , bvec=bvec ,meq=0)
54 w <− round( r e s u l t $ s o lu t i on , 6)
55 i f ( ! a l l (w == 0) ) w <− w/sum(w)
56
57 return (w)
58 }
59
60 # performs the Sharpe s i g n i f i c a n c e t e s t i n g
61 SharpeTest <− function ( ex1 , ex2 ) {
62 # t e s t f o r e q u a l i t y o f two Sharpe r a t i o s
63 # re turns the p−va lue o f the t e s t
64 i f ( length ( ex1 ) != length ( ex2 ) )
65 stop ( " D i f f e r e n t ␣ l eng th s ␣ o f ␣two␣ re tu rn s ! " )
66
67 SR1 <− mean( ex1 )/sd ( ex1 )
68 SR2 <− mean( ex2 )/sd ( ex2 )
69 ro <− cor ( ex1 , ex2 )
70 n <− length ( ex1 )
71 z <− (SR2−SR1)/sqrt ( (2∗(1− ro )+0.5∗ (SR1^2+SR2^2−2∗SR1∗SR2∗ro ^2) )/

n )
72 pval <− 2∗pnorm(−abs ( z ) )
73 return ( pval )
74 }
75
76 # computes the in−sample Sharpe r a t i o
77 maxsharpe <− function ( er , covmat , r ) {
78 # compute the maximum Sharpe r a t i o
79 #
80 # inpu t s :
81 # er N x 1 vec to r o f expec ted re turns
82 # covmat N x N covar iance matrix o f

r e turns
83 # r sca lar , r i s k−f r e e ra t e re turn
84 #
85 # output i s the maximum Sharpe r a t i o
86
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87 #
88 # check f o r v a l i d inpu t s
89 #
90 er <− as . vector ( er )
91 covmat <− as .matrix ( covmat )
92 i f ( ! i s .numeric ( r ) | | length ( r ) !=1)
93 stop ( " Risk−f r e e ␣ ra t e ␣ i s ␣not␣a␣ s c a l a r " )
94 i f ( length ( er ) != nrow( covmat ) )
95 stop ( "Mismatch␣ in ␣number␣ o f ␣ rows " )
96 i f (any(diag ( chol ( covmat ) ) <= 0) )
97 stop ( " Covariance ␣matrix ␣ i s ␣not␣ p o s i t i v e ␣ d e f i n i t e " )
98
99 #

100 # computat ions
101 #
102 ones <− rep (1 , nrow( covmat ) ) # vec to r o f ones
103 covmat . inv <− solve ( covmat ) # inve r s e o f covar iance matrix
104 er <− er − r∗ones
105 s <− sqrt ( er %∗% covmat . inv %∗% er )
106 annual . s <− s∗sqrt (12) # NB! input must be monthly re turns

!
107 return ( as .numeric ( annual . s ) )
108 }
109
110
111
112 # computes the annua l i zed Sharpe r a t i o from monthly
113 Sharpe <− function ( er ) {
114 return (mean( er )/sd ( er )∗sqrt (12) )
115 }
116
117 # computes the annua l i zed mean re turn from monthly
118 an .mean <− function ( er ) {
119 return (mean( er )∗12)
120 }
121
122 # computes the annua l i zed standard d e v i a t i o n from monthly
123 an . std <− function ( er ) {
124 return ( sd ( er )∗sqrt (12) )
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125 }

Listing 3: R code of functions used

B.4 R code for creating the bar charts

The following R code shows how the graphical plots from Section 5 has been created. Note
that the numbers has been changed for each out-of-sample time period.

1 ### Barp lo t s o f average Sharpe r a t i o s ###
2
3 # MinVP
4 SRmvp5y <− 0 .4306
5 SRmvp10y <− 0 .4202
6 SRmvp20y <− 0 .4196
7 SRmvpall <− 0 .4177
8 mvp . vector <− c (SRmvp5y , SRmvp10y , SRmvp20y , SRmvpall )
9 vector .names <− c ( " 5␣yr . " , " 10␣yr . " , " 20␣yr . " , " a l l " )
10 names(mvp . vector ) <− vector .names
11
12 # MeanVP
13 SRmv5y <− 0 .4716
14 SRmv10y <− 0 .4485
15 SRmv20y <− 0 .4321
16 SRmvall <− 0 .4369
17 mv. vector <− c (SRmv5y , SRmv10y , SRmv20y , SRmvall )
18 names(mv. vector ) <− vector .names
19
20 # EWP
21 SRewp <− 0 .4323
22
23 # VWMP
24 SRvwmp <− 0 .3648
25
26 # In−sample MeanVP
27 SRins <− 0 .7800
28
29 # Creat ing the p l o t
30 group <− cbind (mvp . vector , mv. vector , SRewp , SRvwmp, SRins )
31 rownames( group ) <− vector .names
32 colnames ( group ) <− c ( "MinVP" , "MeanVP" , "EWP" , "VWMP" , " in−sample " )
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33 n <− ncol ( group )
34 colors <− heat . colors (n)
35 barplot ( group , be s ide=TRUE, col=colors , yl im=c ( 0 , 1 ) , main=" Average␣

Sharpe␣ r a t i o s " )
36 legend ( " t o p l e f t " , rownames( group ) , f i l l = colors , bty = "n" , ho r i z=

TRUE)

Listing 4: Creating the bar charts
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