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Summary

The demanding mobility features of communication technologies call for the need

to advance channel models (among other needs), in which non-stationary aspects

of the channel are carefully taken into consideration. Owing to the mathematical

complexity imposed by mobility features of the mobile station (MS), the number

of non-stationary channel models proposed in the literature is very limited. The

absence of a robust trajectory model for capturing the mobility features of the MS

also adds to the depth of this gap. Not only statistically non-stationary channels, but

also physically non-stationary channels, such as vehicle-to-vehicle channels in the

presence of moving scatterers, have been rarely investigated.

In the literature, there exist two fundamental channel modelling approaches,

namely deterministic and stochastic approaches. Deterministic approaches, such as

measurement-based channel modelling, are known to be accurate, but site-specific

and economically expensive. The stochastic approaches, such as geometry-based

channel modelling, are known to be economically inexpensive, computationally

fair, but not as accurate as the deterministic approach. Among these approaches,

the geometry-based stochastic approach is the best to capture the non-stationary

aspects of the channel.

In this dissertation, we employ the geometry-based stochastic approach for the

development of three types of channel models, namely stationary, physically non-

stationary, and statistically non-stationary channel models. We geometrically track

the plane waves emitted from the transmitter over the local scatterers up to the re-

ceiver, which is assumed to be in motion. Under the assumptions that the scatterers

are fixed and the observation time is short enough, we develop the stationary chan-

nel models. In this regard, we propose a unified disk scattering model (UDSM),

which unifies several well-established geometry-based channel models into one ro-

bust channel model. We show that the UDSM is highly flexible and outperforms

several other geometric models in the sense of matching empirical data. In addi-

tion, we provide a new approach to develop stationary channel models based on

delay-angle joint distribution functions.

Under the assumption that the scatterers are in motion and the observation time

is again short enough, we develop a physically non-stationary channel model. In

this connection, we model vehicle-to-vehicle (V2V) channels in the presence of

moving scatterers. Proper distributions for explaining the speed of relatively fast

and relatively slow moving scatterers are provided. The statistical properties of the

proposed channel model are also derived and validated by measured channels. It

is shown that relatively fast moving scatterers have a major impact on both V2V
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and fixed-to-fixed (F2F) communication links, as they are significant sources of the

Doppler spread. However, relatively slow moving scatterers can be neglected in

V2V channels, but not in F2F channels.

Under the assumption that the scatterers are fixed and the observation time is

not necessarily short anymore, we develop the statistically non-stationary channel

models. To this aim, we first introduce a new approach for generating fully spatial

random trajectories, which are supposed to capture the mobility features of the MS.

By means of this approach, we develop a highly flexible trajectory model based

on the primitives of Brownian fields (BFs). We show that the flexibility of the

proposed trajectory is threefold: 1) its numerous configurations; 2) its smoothness

control mechanism; and 3) its adaptivity to different speed scenarios. The statistical

properties of the trajectory model are also derived and validated by data collected

from empirical studies.

We then introduce a new approach to develop stochastic non-stationary channel

models, the randomness of which originates from a random trajectory of the MS,

rather than from the scattering area. Based on the new approach, we develop and an-

alyze a non-stationary channel model using the aforementioned Brownian random

trajectory model. We show that the channel models developed by this approach are

very robust with respect to the number of scatterers, such that highly reported sta-

tistical properties can be obtained even if the propagation area is sparsely seeded

with scatterers. We also show that the proposed non-stationary channel model su-

perimposes large-scale fading and small-scale fading. Moreover, we show that the

proposed model captures the path loss effect.

More traditionally, we develop and analyze two non-stationary channel models,

the randomness of which originates from the position of scatterers, but not from the

trajectory of the MS. Nevertheless, the travelling path of the MS is still determined

by a sample function of a Brownian random trajectory. It is shown that the proposed

channel models result in a twisted version of the Jakes power spectral density (PSD)

that varies in time. Accordingly, it is demonstrated that non-stationarity in time is

not in line with the common isotropic propagation assumption on the channel.
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Chapter 1

Introduction

1.1 Channel Modelling: Principles and State-of-the-

Art

For the development of communication systems, the accurate knowledge of the

radio propagation environment is of crucial importance. This calls for the need to

realistic channel models that provide sufficient insight into the radio propagation

mechanisms. The mechanisms that rule plane waves in a radio propagation medium

are complex and diverse. Accordingly, an important step toward the development

of realistic channel models is to better understand these mechanisms. This actuates

the so-called channel modelling, which has been a subject of thorough studies from

the very beginning of mobile communications until today.

Standard channel models allow the designers of communication systems to eval-

uate the performance of different modulation schemes, coding techniques, and re-

ceiver algorithms through computer simulations. Therefore, the costly need for

scenario-dependent hardware prototypes and/or field trials can be minimized [8]. In

this connection, exploiting properties of channel models can be of great help for the

performance analysis of the overall communication system. These properties often

include the distribution of the angle-of-departure (AOD), angle-of-arrival (AOA),

time-of-arrival (TOA), from which other important characteristics of the channel

model, such as the power spectral density (PSD) of the Doppler frequencies, power

delay profile (PDP), and time (frequency) correlation functions can be derived.

While the channel models should be accurate enough in capturing properties

of real-world propagation mediums, they should also be simple enough to yield

feasible implementations and reasonable short simulation times. Therefore, in the

design of a channel model, the tradeoff between accuracy and simplicity should al-

1
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Base station
Moving foliage 

Fixed building

Mobile  station

Moving bus

Figure 1.1: A typical propagation scenario illustrating the effect of multipath prop-
agation in terrestrial radio environments.

ways be taken into account. In a typical propagation scenario, the transmitted signal

arrives at the receiver via several paths, each of which encounters various propaga-

tion mechanisms such as reflection, scattering, and/or diffraction. Fig. 1.1 depicts

a typical fixed-to-mobile (F2M) propagation scenario illustrating the effect of mul-

tipath propagation in terrestrial radio environments. In this figure, we simplify the

illustration of the propagation mechanism, e.g., by assuming that a wave transmit-

ted from the base station (BS) reaches the mobile station (MS) after only a single

reflection by one of the scatterers. On the other hand, we boost the accuracy of the

illustrative model by taking the effect of moving scatterers into consideration. One

of the objectives of this dissertation is to show that this consideration is of great

importance in some applications/frequencies.

The number of research works dealing with channel modelling is relatively high.

From the investigation of time-variant linear channels [9] over the statistical theory

of radio reception [10] up to spectral properties of mobile communications [11]

are all preceding examples of studies on characteristics of radio fading channels.

An evolution trend of channel modelling can be found, e.g., in [8, 12, 13], while a

comprehensive and critical comparison among the most established channel models

can be found in the assessment studies in [14] and [15]. This research line still goes

forward and never stops as long as new communication technologies are demanded.
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1.2 Channel Modelling: Approaches and Features

According to the literature [8, 12, 16, 17], there exist two fundamental approaches

in channel modelling: the deterministic approach and the stochastic approach, each

of which has several advantages/disadvantages. In what follows, we highlight the

principles and the most important features of each approach.

There are two major subcategories of the deterministic approach, namely the

measurement-based approach and the ray-tracing approach. Measurement-based

channel models are developed by collecting empirical data from measurement cam-

paigns carried out in real-world propagation environments. The measured channel

impulses are thus very accurate, which allows us to obtain accurate channel mod-

els. The disadvantage of this approach is, however, the fact that the measured data is

quite scenario-dependent. In addition, channel measurements are very costly, thus

the amount of data that can be collected is very limited. The literature includes

numerous measurement-based channel models, such as those developed in [2–5].

In the ray-tracing approach, a simulation tool allows us to launch and trace the

propagation mechanism in an unreal propagation environment. In this approach,

Maxwell’s equations are often needed to be solved under some boundary conditions

imposed by the underlying site-specific radio propagation environment. To develop

a ray-tracing-based channel model, the topographic and electromagnetic features of

the corresponding propagation area are required. Although, this approach is less

costly than the measurement-based approach, it is computationally more expensive.

Similar to measurement-based channel models, the channel models designed by the

ray-tracing approach are very site-specific. Therefore, they cannot be readily used

for extensive system-level simulations of communication systems [17]. Different

ray-tracing-based channel models have been proposed in the literature, such as those

proposed in [18–22].

The main idea of the stochastic approach is to generate synthetic channel re-

sponses that represent physical propagation channels with an acceptable level of

accuracy. Mathematically, stochastic channel models are often less complex than

deterministic ones. Nevertheless, some realistic considerations, such as the non-

stationarity of the mobile radio channel, may make a stochastic channel model very

complex. Different from the deterministic approach, stochastic channel models can

be tuned to imitate various propagation areas, which is the main advantage of these

models. The stochastic approach can be classified into two major groups, namely

the correlation-based approach and the geometry-based approach.

In the correlation-based approach, the aim is to model the second-order statistics

of the channel and their correlation functions. The advantage of this approach is its
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computational simplicity and analytical tractability whereby it needs less input pa-

rameters as compared to the other approaches [8]. Nonetheless, the model explains

only the second-order statistics of the channel, but not the physical specifications of

the propagation environment. Examples of such models are [23–26] among others.

In the geometry-based approach, the stochastic channel model is developed by

assuming that scatterers are randomly distributed in a standard geometric shape,

such as a ring, disk, ellipse, etc. Given a certain distribution function to explain the

position of local scatterers, the statistical properties of the channel model are derived

and then validated by empirical data collected from measurement campaigns. These

models are known to be well suited for the modelling of non-stationary mobile radio

channels [17, 27, 28]. Owing to the high number of model parameters, these mod-

els can be tuned to model distinct propagation mediums. Nevertheless, optimizing

the model parameters is sometimes a difficult task. Analytically, these models often

benefit from a so-called infinity assumption, which states that the number of scat-

terers in the reference model tends to infinity. Accordingly, another difficulty of

this approach is to find a good match between the reference model, which relies on

the infinity assumption, and the simulation model, which assumes a limited num-

ber of scatterers. Numerous geometry-based stochastic channel models have been

proposed in the literature, the most important ones are listed and compared in [14]

and [15].

1.3 Motivations and Contributions of the Disserta-

tion

Although, channel modelling has been the topic of thorough studies for several

decades, there exists a great potential for further advancements in the field. The de-

velopment of new upcoming technologies, such as vehicle-to-vehicle (V2V) com-

munication systems, massive MIMO systems, and ad hoc networks is in immense

need of robust channel models, in which further properties of real-world radio prop-

agation channels are taken into consideration.

The non-stationarity of mobile radio channels, polarization of plane waves, and

the multiple-bounce scattering effect are among those features that have rarely been

considered in the channel models proposed in the literature. These features may

automatically be taken into account in measurement-based channel models, but not

in the models developed by means of the geometry-based stochastic approach. For

instance, none of the mobile radio channel models listed in [14] has been stud-

ied under non-stationary conditions. Many empirical and analytical investigations,
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e.g., [29–31], however, show that the stationary assumption for mobile radio chan-

nels is only valid for extremely short travelling distances [32]. The lack of non-

stationary channel models in the literature is mainly due to the mathematical com-

plexity imposed by mobility features of the MS. The absence of a robust trajectory

model for capturing mobility features of the MS also adds to the depth of this gap.

In this regard, no fully spatial trajectory model can be found in the literature.

In addition to the aforementioned lacks, the effect of moving scatterers has been

studied very rarely. Nonetheless, the importance of this effect has been shown both

via empirical studies [6, 17, 33] and via analytical investigations [34, 35]. Another

notable lack is the fact that correlation-based channel models do not provide any

physical insight to the underlying propagation area. The literature also needs a

unification of a large variety of established stochastic channel models, such as those

listed in [14], via a unified model.

This dissertation strives to fill these gaps by eightfold:

1. Developing a unified stationary channel model to capture the scattering effect

of numerous propagation areas;

2. Proposing a new approach in channel modelling by means of which obtaining

the desired statistical properties is assured, while the physical explanation of

the propagation area is possible;

3. Developing a vehicle-to-vehicle channel model considering the effect of mov-

ing scatterers;

4. Proposing a new approach for the development of fully spatial trajectory mod-

els;

5. Developing a highly flexible trajectory model based on the primitives of Brow-

nian fields (BFs) to capture the mobility features of the MS;

6. Proposing a random trajectory approach for the development of non-stationary

channel models;

7. Developing several non-stationary channel models based on the random tra-

jectory approach;

8. Superimposing large-scale fading and small-scale fading under non-stationary

conditions.
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1.4 Classification of the Developed Channel Models

Based on the standard classification modules in the area of channel modelling, we

group the channel models developed in this dissertation in what follows.

From the channel modelling approach perspective, the main focus of this dis-

sertation is on the geometry-based stochastic approach. This does not necessarily

mean that the developed channel models rely on standard geometric shapes. In this

dissertation, we call a channel model geometry-based if the wave emitted from the

transmitter is geometrically (analytically) traced until its arrival at the receiver.

Another classification is based on the mobility features of the transmitter and the

receiver. In this dissertation, we often provide F2M channel models. Nevertheless,

vehicle-to-vehicle (V2V) channels, as well as fixed-to-fixed (F2F) channel models

will also be designed and analyzed.

A third perspective is the frequency-selectivity of the channel models. The en-

tire channel models provided in this dissertation are frequency-nonselective. In ad-

dition, we focus only on modelling single-input single-output (SISO) communica-

tion channels.

Another important perspective is the stationarity of the channel models. In this

dissertation, we provide three different classes of channel models: stationary, physi-

cally non-stationary, and statistically non-stationary channel models, each of which

is defined and discussed in the corresponding chapter. Very briefly, for the devel-

opment of stationary channel models, we consider the propagation scenarios (see,

e.g., Fig. 1.1) in which: 1) the presence of moving scatterers is ignored; 2) the ob-

servation time is assumed to be short enough such that the statistical properties of

the channel model do not change in time.

To design physically non-stationary channel models, we consider the propaga-

tion scenarios in which: 1) the local scatterers are in motion; 2) the observation

time is assumed to be short enough such that the statistical properties of the channel

model do not vary in time.

To design statistically non-stationary channel models, we consider the propa-

gation scenario in which: 1) the presence of moving scatterers is ignored; 2) the

observation time is not necessarily short such that the statistical properties of the

channel model may vary in time.

We remark that in real-world propagation scenarios, the radio channel may be

not only statistically non-stationary, but also physically non-stationary (in the sense

of local scatterers). The mathematical complexity imposed by such a combined

scenario, however, does not allow us to develop the corresponding channel model.

It is noteworthy that the major contribution of this dissertation is on the development
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of statistically non-stationary channel models.

1.5 Organization of the Dissertation

The dissertation is organized as an assortment of fifteen technical papers, eight of

which are included at the end of this dissertation as Appendices A–H. Those papers

which focus on similar topics are combined to form a chapter. The concordance

between different papers is highlighted in the chapters. The dissertation is organized

as follows

• Chapter 2 covers Papers I and II, along which we explain Contributions 1

and 2. In this chapter, we focus on the development of statistically stationary

channel models. These models include: 1) a unified disk scattering model

(Paper I); and 2) a channel model developed based on given joint delay-angle

distributions (Paper II). Moreover, the statistical properties of the developed

channel models are briefly addressed.

• Chapter 3 covers Paper III, along which we explain Contribution 3. In this

chapter, we focus on the development of a physically non-stationary channel

model to capture the propagation mechanism in V2V channels in the presence

of moving scatterers. Proper distribution functions for modelling the speed of

moving scatterers are also given. In addition, the statistical properties of the

proposed channel model are briefly discussed.

• Chapter 4 covers Papers IV and V, along which we explain Contributions 4

and 5. In this chapter, we provide a fully spatial random trajectory model

based on the primitives of BFs (Paper IV) and study its statistical properties

(Paper V). Indeed, the objective of this chapter is to prepare one of the basic

materials for the development of non-stationary channel models.

• Chapter 5 covers Papers VI-VIII, along which we explain Contributions 6-8.

In this chapter, we focus on the development of statistically non-stationary

channel models based on the random trajectory model designed in Chapter 4.

These models include: 1) a non-stationary channel model capturing differ-

ent scales of fading (Paper VI); 2) a non-stationary channel model based on

Brownian random paths (Paper VII); and 3) a non-stationary channel model

based on drifted Brownian random paths (Paper VIII). Moreover, the statis-

tical properties of the developed non-stationary channel models are briefly

addressed.
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• Chapter 6 summarizes the dissertation and highlights some open problems

pertaining to the design and development of non-stationary channel models

that call for further attention.

Each chapter comprises various sections that discuss the sub-topics addressed

in the chapter. The layout for each chapter has the following structure.

• The introduction provides an overview and state of the art of the main topic

of the chapter.

• The section presents a joint discussion of those papers which address a similar

sub-topic under the umbrella of the main topic of the chapter. Particularly,

- Each section begins with a short introduction of the sub-topic.

- It then presents the problem description followed by a brief discussion on

the motivation behind the problem(s) of interest. Additionally, the sig-

nificance of the expected outcome(s) is elucidated

- Afterwards, the main results of the paper(s) are reviewed. The discussion

includes advantages and disadvantages of the proposed method.

• The chapter summary and conclusion highlights the peculiar findings of the

chapter.



Chapter 2

Stationary Channel Models

2.1 Introduction

Strictly speaking, a channel is called stationary if its statistical properties do not

vary in time (position). In practice, this time-independency is never fulfilled in

mobile radio fading channels, as the MS is in motion. Considering a very short

observation time, however, allows us to assume that the channel is statistically sta-

tionary. In this case, the primary statistical properties of the corresponding channel

model, such as its AOA and AOD, do not change in time. Therefore, the statisti-

cal quantities derived from those properties, such as the Doppler frequencies, also

become time-independent.

The uniform ring model [36–38], uniform hollow-disk model [39, 40], uniform

circular scattering model [41–46], uniform elliptical model [40, 42, 46, 47], Gaus-

sian scattering model [48–52], conical scattering model [53], inverted-parabolic

model [54], and the Rayleigh scattering model [55, 56] are the most important

geometry-based channel models that have been proposed in the literature, which all

benefit from the wide-sense stationary uncorrelated scattering (WSSUS) assump-

tion.

A comprehensive comparison among all the above-mentioned geometric scatter-

ing models can be found in the assessment study in [14]. Comparing the statistical

properties derived from these models with the measurement data reported in [2–5]

(among others listed in [14]) reveals that none of these geometric scattering models

is the best by all the selected criteria and for all considered scenarios. However,

unimodal AOD PDFs seen in real-world channels are well fitted by the AOA PDF

of the Gaussian scattering model, as well as that of the uniform elliptical model. It

was also shown that bimodal AOD PDFs are best fitted by the AOD PDF of the uni-

form hollow-disk model [14]. The mathematical complexity of the models above

9
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also plays an important role in their useability.

2.1.1 A Unified Disk Scattering Model

According to the discussion above, an important lack in the literature is a flexi-

ble scattering model that can unify several established scattering models into one

robust, mathematically simple, and compact model. The motivation of Paper I is

to fill this gap by adding one degree of freedom to the disk-based scattering model

proposed in [57]. Paper I introduces the unified disk scattering model (UDSM) with

two degrees of freedom, allowing us to unify several circularly-symmetric scatter-

ing models. The novelty of the UDSM arises from the fact that the distribution of

the scatterers can be fashioned in various concentration patterns, where the shape

of the concentration pattern is controlled by a so-called shape factor. By adjusting

the shape factor, one can gradually change the concentration of the local scatterers

from a high concentration close to the MS via the uniform distribution inside the

full disk up to a high concentration on a ring centred on the MS. Therefore, the

proposed UDSM not only covers the Gaussian, uniform, hollow-disk, and ring scat-

tering models, but also covers any continuous circularly-symmetric concentration

of local scatterers between these established scattering models. Fig. 2.1 shows the

effect of the shape factor on the scatter diagram obtained by distributing 1000 scat-

terers according to the PDF of the UDSM. It is assumed that the MS is located at

the centre of the disk, while the BS is highly elevated to scattering-free levels.

In Paper I, we show that the UDSM can efficiently describe the AOD and TOA

characteristics of several different propagation areas including rural, suburban, and

urban areas. To validate the UDSM, we compare its statistical properties with both

unimodal and non-unimodal empirical data sets collected from distinct measure-

ment campaigns [2–5]. It turns out that the UDSM is highly flexible and outper-

forms several other geometric models proposed in the literature. It is shown that the

UDSM competes closely with the uniform elliptical model for providing the best

curve-fitting to the unimodal empirical data sets. However, the UDSM outperforms

considerably the uniform elliptical model in the sense of matching bimodal empir-

ical data sets. An interesting feature of the UDSM is that by calibrating the shape

factor, its AOD (TOA) PDF changes to a bimodal shape with two smooth peaks,

while its mathematical expression is always unimodal. This smooth bimodal curve

fits better to the non-unimodal empirical data set than the best already proposed

model, i.e., the uniform hollow-disk model, which gives a biomodal shape with two

sharp peaks. The UDSM is mathematically presented by a joint PDF in polar co-

ordinates. Nevertheless, the Cartesian representation of the UDSM is also provided
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Figure 2.1: Scatter diagram illustrating 1000 randomly distributed scatterers (*)
generated by using the unified disk scattering PDF with different shape factors: (a)
k = 0, (b) k = 1, (c) k = 8, and (d) k = 25.
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in Paper I. The polar representation of the PDF associated with the UDSM allows

a mathematically simple geometry-based channel model, whereas other standard

models are often more complex.

From the UDSM, one can derive stochastic and deterministic channel simulators

by using the generalized principle of deterministic channel modelling [58, Sec. 8.1].

The designed channel simulator can then be used for the test, the parameter opti-

mization, and the performance analysis of communication systems under different

propagation conditions.

2.1.2 A Channel Model Based on Delay-Angle Joint Distribu-

tions

To verify a geometry-based stochastic channel model, its statistical characteristics

need to be compared to empirical data collected from measured channels. A good

match cannot necessarily be found, as the proposed scattering model might be over-

simplified (overrestricted). As an example, many measurement campaigns (see,

e.g., [3–5]) and specified channel models (see, e.g., [1]) show that the TOA PDF

often follows a multiple negative exponential function (abbreviated by MNE TOA

PDF). However, none of the scattering models studied in Paper I (including the

UDSM itself) results in an MNE TOA PDF. The same disagreement might also

arise by comparing measured AOA PDFs with the ones obtained from predefined

scattering models.

To cope with this issue, Paper II proposes a new approach to the design of sta-

tionary channel models, via which obtaining the desired TOA (AOA) PDF is as-

sured. Different from the original geometry-based channel modelling approach, the

starting point of the new approach is not a predefined scattering model. Instead, we

start from a given joint PDF of the TOA and AOA, from which the distribution of the

local scatterers is derived. The given joint (marginal) PDF of the TOA and AOA can

originate from either measured channels or channel specifications. In this way, we

develop a channel model in which a perfect match between the statistical properties

of the channel model and those of the measured (specified) channels is guaranteed.

This approach also allows the physical explanation of the propagation area, which

is not possible when using the correlation-based channel modelling approach [8]

(see Chapter 1). In this approach, the obtained scattering area is not confined by

firm geometric constraints, which often restrict geometry-based stochastic channel

models proposed in the literature (see [14]).

In Paper II, we derive a mathematical representation for the scatterer distribution

for given joint PDFs of the TOA and AOA. The result is presented in both polar and
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Figure 2.2: Scatter diagram for the typical urban channel with the TOA PDF speci-
fied in [1] and uniformly distributed AOAs.

Cartesian coordinates. As an exemplary application, the MNE TOA PDF specified

in COST 207 is employed to derive the distribution of the local scatterers where

the AOA is uniformly distributed around the MS and is independent of the TOA.

The distribution of the scatterers in the propagation area is then illustrated in scatter

diagrams (see, e.g., Fig. 2.2). Moreover, the marginal PDF of the distance from the

scatterers to the MS is derived, displayed, and compared with simulation results.

An excellent match between the analytical and simulation results is observed. It

is shown that for the MNE TOA PDF, the local scatterers are not symmetrically

distributed around the MS, which is in contrast with the circularly symmetric scat-

tering assumption that is often made in the literature (see Paper I). In Paper II, we

show that a typical urban area might be modelled by a disk centred on the BS-to-MS

connecting line, while complicated urban environments [1] cannot be modelled by

standard geometric shapes.

2.2 Chapter Summary and Conclusion

In this chapter, the principles of the UDSM, as well as its superiority over several

established geometry-based channel models have been studied (see Paper I). It has

been shown that the UDSM flexibly captures scattering effects caused by differ-
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ent propagation environments, such as rural, sub-urban, and urban areas. We have

shown that the UDSM unifies the Gaussian, uniform, hollow-disk, and ring scat-

tering models into one compact model. It has been demonstrated that the UDSM

outperforms its competitors in the sense of matching empirical data sets, in particu-

lar non-unimodal ones.

We have also proposed a new approach to the channel modelling under station-

ary conditions, in which the starting point of the design is an already established

statistical property, such as the exponential PDP (see Paper II). Different from the

correlation-based channel modelling approach, the new approach allows the phys-

ical explanation of the propagation area. We have employed the new approach to

develop a stationary channel model, from which obtaining the MNE PDP is assured.

We have also demonstrated that a typical urban area might be modelled by a disk

centred on the line between the BS and the MS, but not necessarily on the MS,

whereas bad urban areas [1] cannot be modelled by standard geometric shapes.



Chapter 3

Physically Non-Stationary Channel

Models

3.1 Introduction

In this dissertation, a channel is called physically non-stationary if the local scat-

terers are in motion. We model such channels under the assumption that the ob-

servation time is very short, thus the corresponding channel model is statistically

stationary. The motivation of developing such channel models is that moving scat-

terers are undetachable parts of real-world radio propagation environments. Moving

foliage, walking pedestrians, and passing vehicles are only a few examples of scat-

terers in motion. In this connection, Fig. 3.1 exhibits a typical V2V propagation

scenario in the presence of moving scatterers. Owing to the non-stationary nature

of V2V communication channels, considering the effect of moving scatterers is of

particular importance in the corresponding channel models. It has been reported

in [34] that even if the transmitter and receiver are fixed (F2F communications), the

received signal may still experience the Doppler effect. This means that moving

scatterers can be a significant source for the Doppler spread, especially at millime-

ter wavelengths [35]. This phenomenon was studied empirically in [6] and [33], as

well as analytically in [34] and [35].

3.2 Modelling of V2V Channels in the Presence of

Moving Scatterers

The statistical properties of V2V channels in the presence of moving scatterers with

random velocities and random directions have never been investigated in the litera-
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Figure 3.1: Typical V2V propagation scenario in the presence of moving scatterers
(Photo from http://www.dd3d.hr).

ture. The aim of Paper III is to fill this gap by investigating the statistical properties

of a narrowband V2V channel in which the local scatterers are moving with random

velocities in random directions. The proposed V2V channel model does not impose

any constraints on the position of the moving scatterers, thus it is somewhat differ-

ent from geometry-based stochastic channel models, where local scatterers are often

located on a standard geometric shape. Starting from the complex channel gain, we

derive the temporal ACF and the corresponding PSD in integral form, which will

then be simplified and examined under the assumption of different scatterer velocity

distributions. In the area of transportation engineering, the most popular distribution

models for the velocity of moving vehicles (fast moving scatterers) are the Gaus-

sian and the Gaussian mixture (GM) models [59–64]. For the GM, exponential, and

the uniform distributions of moving scatterers’ velocity, the derived ACF is illus-

trated and compared to the classical ACF, which follows under the assumption of

fixed scatterers. Moreover, the PSD of the channel is plotted and compared to the

measurement data reported in [6]. These analyses are carried out at a carrier fre-

quency of 5.9 GHz assigned to the dedicated short range communications (DSRC)

standard as part of the intelligent transportation system (ITS). The results are shown

for both relatively slow and relatively fast moving scatterers. The Doppler spread of

the channel is also provided in closed form. It is shown that the Doppler spread of

the channel model can be perfectly matched to the Doppler spread of the measured

channel reported in [7].

Considering the effect of moving scatterers allows us to explain the non-zero
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value of the Doppler spread obtained from F2F measurement campaigns. We re-

mark that the non-zero value of the Doppler spread cannot be described by the

channel models relying on the assumption of stationary scatterers. In Paper III, we

have shown that relatively fast moving scatterers have a major impact on both V2V

and F2F communication links, as they are significant sources of the Doppler spread.

However, relatively slow moving scatterers can be neglected in V2V channels, but

not in F2F links. It has been shown that the GM model can accurately describe the

velocity distribution of relatively fast moving scatterers, while the exponential dis-

tribution can appropriately model the velocity of relatively slow moving scatterers.

The generality of the physically non-stationary channel model proposed in Pa-

per III, allows us to derive the ACF, PSD, and the Doppler spread of the one-ring,

two-ring, and elliptical model from the presented results in this paper. The proposed

V2V channel model is a general model that includes the F2V and F2F channel mod-

els as special cases. Furthermore, the classical channel models, where the local

scatterers are either fixed or in motion with deterministic velocities, can also be ob-

tained as special cases of the proposed stochastic model. Paper III bridges to traffic

modelling in the area of transportation engineering by employing the GM model in

our analysis as a realistic distribution model describing the velocity of moving ve-

hicles. The verification of the analytical results with measured real-world channels

is another original contribution of this work.

3.3 Summary and Conclusion

In this chapter, we have discussed the concept of physically non-stationary chan-

nels, in which scatterers are moving. Particularly, we have designed a V2V channel

model in which scatterers move with random velocities in random directions (see

Paper III). The statistical properties of the proposed channel model have been de-

rived and verified by empirical data obtained from measurement campaigns. We

have shown that the GM and the exponential distributions are the best to explain

the speed of relatively fast and relatively slow moving scatterers, respectively. It

has been shown that moving objects have a major impact on many communication

channels, especially those that are working in millimeter wavelengths.
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Chapter 4

Trajectory Models Based on

Brownian Fields

4.1 Introduction

For the development of non-stationary channel models, the MS needs to be tracked

along its travelling path. Before developing non-stationary channel models, we first

need to design a robust trajectory model to capture mobility patterns of the MS. The

preparation of this material is the objective of the following chapter.

There are two major approaches for modelling the mobility of users: the user

tracing approach and the synthetic approach [65–67]. The first approach extracts

mobility patterns directly from real-world observations [68–71]. Despite the accu-

racy of these models, they are completely deterministic and entirely scenario de-

pendent. Therefore, the performance of communication systems cannot easily be

judged by these models. Nevertheless, there exist some trustworthy mobility mod-

els created by tracing thousands of wireless users over a long period of time [67].

The second approach develops a synthetic mobility model based on a given veloc-

ity distribution [72–74]. The physical location (trajectory) of the user is then de-

termined by mapping given distributions of the speed and angle-of-motion (AOM)

on the Euclidian space. The random walk [75, 76], random waypoint [77], Gauss-

Markov [78], city section [79], and the pursue [66] mobility models are among

the most important models designed by the aforementioned approach. A survey of

mobility models proposed in the literature can be found in [72, 73, 80].

19
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4.2 A Highly Flexible Trajectory Model Based on the

Primitives of Brownian Fields

4.2.1 Fundamental Principles and Implementation Aspects

A fundamental drawback of synthetic mobility models is that the spatial character-

istics of the path are forced to be determined by the temporal specifications of the

user, such as his/her speed. A quick question that arises is, why should a physical

configuration of a path be a function of the user’s speed? This is in contrast to real-

ity, where users try to adapt their speed and AOM to sideways, roads, and highways.

This issue can also be extracted from [67], where the empirical user tracings reveal

that the spatial characteristics of the mobility models are determined by the features

of typical roads and walkways, but not by the temporal behaviour of road users.

Paper IV obviates the aforementioned drawback by providing a fully spatial tra-

jectory model to which different speed scenarios (temporal features) can be applied.

The main idea of this paper is to model the trajectory in position, but not in time. To

achieve this, we need to expand the concept of stochastic processes to random fields

in their very general form. We recall that stochastic processes are essentially math-

ematical models of random phenomena in time. On the other hand, random fields

are generalized stochastic processes defined over a countable parameter, which is

not necessarily time. The outcomes of random fields fall into some manifolds, mul-

tidimensional vectors, or points, which are also not necessarily measurable. Such a

concept allows us to generate the random components (random vectors) of the path

model in position, but not necessarily in time. The stepwise description of applying

the new approach is provided in Paper IV.

In Paper IV, we employ the new approach to develop a novel random trajectory

model using the primitives of Brownian fields (BFs). We design a partial random

bridge from a predefined starting point to a partially random destination point, in

which some drift components are employed to build targeted trajectories. The pro-

posed trajectory model in Paper IV allows: 1) arriving at a predefined destination

point if the bridge is fully established, 2) arriving at a circular boundary (target

zone) with a predefined radius and centre if the bridge is partially established, 3) a

totally random point in the 2D plane if the bridge is broken, and finally 4) bridg-

ing back (closed loop) to the starting point if the bridge is fully established, but the

drift component does not exist. The first and the second configuration are shown in

Figs. 4.1 and 4.2. More examples, as well as the description of the figures, can be

found in Paper IV.
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Figure 4.1: Random trajectories connecting a fixed starting point and a fixed desti-
nation point via fully random bridges based on the first primitive of BFs.
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Figure 4.2: Random trajectories connecting a fixed starting point and a random
destination point located in a certain target zone via partially random bridges based
on the second primitive of BFs.
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In this paper, we show that the proposed path model renders a great number of

configurations, while the smoothness level of each path configuration can be con-

trolled by the primitives of BFs. We also demonstrate that the proposed trajectory

model can describe both targeted and non-targeted dynamics of users in motion.

The resulting trajectories can be travelled with different speeds without influencing

the path configuration. In addition, we show that the path model proposed in Pa-

per IV is useful to model the trajectory of many daily life activities, such as possible

trajectories of vehicles trying to perform U-turns, possible trajectories starting from

the tourist information office to a historical zone, and possible trajectories from the

police department to a crime scene, only to name a few. Moreover, we provide a

MATLAB� code for simulating paths generated by the proposed trajectory model,

showing that the code is fast and easy to implement.

4.2.2 Analysis of the Statistical Properties

To highlight the usefulness of the proposed trajectory model in Paper IV, we study

its statistical properties in Paper V. It is worth mentioning that the number of math-

ematical studies on the spatial properties of mobility models is very limited in the

literature. From this perspective, Paper V is quite unique.

Given the discussed stochastic trajectory model in Paper IV, Paper V derives

its spatial mean and variance, as well as a closed-form expression for the ACF of

the path process. Moreover, we introduce a complex spatial increment process,

by which the AOM and the incremental travelling length processes are computed.

The first-order density of these processes is presented in closed form. By summing

up the incremental travelling lengths, we calculate the overall travelling length and

then derive its PDF.

In Paper V, we show that the path process is in general non-stationary. Further-

more, it is shown that the AOM and the incremental travelling length processes are

modelled by the phase and the envelope of a complex Gaussian process with non-

identical means and variances of the quadrature components. We also demonstrate

that the AOM and the incremental travelling length are in general non-stationary

processes. In this connection, we prove that the AOM process does not follow the

uniform distribution, which agrees with empirical traces reported in [67]. However,

the uniform AOM can be obtained as a special case. In addition, we illustrate that

the incremental travelling length process follows the Rice and Nakagami-q distribu-

tions as special cases. For the path based on the primitives of the standard BFs, we

show that the overall travelling length follows closely the lognormal distribution,

which is in line with many real-life tracing records [67, 81–83]. For the path based
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on the standard BF, we prove that the overall travelling length follows the Gaus-

sian distribution, which has been reported from empirical studies in dense urban

environments [59–64, 84].

4.3 Chapter Summary and Conclusion

The spatial configuration of the path travelled by the MS has a key role in the devel-

opment of non-stationary mobile fading channels. In this chapter, we have reviewed

Paper IV and V, in which the fundamental principles and the statistical properties of

a highly flexible trajectory model are studied, respectively.

From Paper IV, it can be concluded that the flexibility of the proposed trajectory

is threefold: 1) its numerous configurations, 2) its smoothness control possibility,

and 3) its adaptivity to various speed scenarios. In addition, it has been shown that

the proposed model can easily be implemented in simulation environments, such as

MATLAB�, NS2, and OPNET.

Among other findings reported in Paper V, we have shown that the incremental

travelling length process follows the Rice and Nakagami-q distribution as special

cases. More importantly, Paper V concludes that depending on the primitive order,

the length of the total travelling path follows either the Gaussian distribution, or

the lognormal distribution, both of which have been widely reported in empirical

studies.
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Chapter 5

Statistically Non-Stationary Channel

Models

5.1 Introduction

Mobile radio channels are inherently non-stationary, meaning that their statistical

properties change in time (position). Causes for this non-stationarity are manifold.

In principle, any event that changes the wave propagation between the transmit-

ter and the receiver to a significant amount regarding time, frequency or direction,

causes a non-stationary change in the channel statistics [85]. Typical causes for the

non-stationarity of the channel are the moving transmitter, moving receiver, and/or

moving scatterers. A single moving entity is enough to have a time-varying prop-

agation area (mechanism), which results in changes in the AOD, AOA, TOA, and

AOM in time. The time-variation of these quantities is then injected to the statis-

tical properties of the channel such as the PDP, the PSD, and the time (frequency)

correlation functions.

The strength of the non-stationary changes depends heavily on the considered

environment. In indoor environments, it is likely that the channel changes signif-

icantly even if the mobile moves insignificantly [85]. In outdoor scenarios, the

mobile can possibly move in the order of a few tens of the wavelength of the car-

rier signal before the channel statistics change [86]. Many empirical and analytical

investigations, e.g., [29–31] show that the stationary assumption for the channel is

only valid for extremely short travelling distances [32]. In the literature, different

metrics have been proposed to measure the non-stationarity of mobile radio chan-

nels. In [30], the correlation coefficient between consecutive PDPs is considered as

a metric to define a local region of stationarity, namely a region where the PDP does

not vary significantly. Comparing the PDPs estimated at different time instances is

25
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another test to determine the stationarity level of the radio channel [31]. Several

other metrics together with their validity tests can also be found in [87–89].

The main objective of the aforementioned metrics is to determine the region in

which the channel can be assumed as WSSUS or at least quasi-WSSUS. However,

real-world mobile radio channels never fulfill the stationary assumption not only in

the strict sense, but also in the wide sense. In this chapter, the aim is to develop

channel models that capture the non-stationarity of mobile radio channels in the

strict sense. Therefore, we rely on a strict definition according to which a channel

model is called statistically non-stationary if its statistical properties vary in time

(position). This definition is in line with the one in [90]. We remark that determining

the stationary region of our proposed channel models is outside of the scope of this

dissertation.

The geometry-based stochastic channel modelling approach is known to be suit-

able for capturing the non-stationarity of mobile radio channels [17, 27, 28]. The

basic idea behind the development of geometry-based non-stationary channel mod-

els is to update the channel characteristics along the travelling path of the MS. In

this connection, Fig. 5.1 displays a typical F2M propagation scenario, in which the

AOA at the MS and the AOM of the MS vary in position (time). By adding random-

ness to the position of scatterers, the model then becomes stochastic. The number

of channel models proposed by this approach is very limited. A geometry-based

non-stationary channel model for high-speed train communications was developed

in [91]. Therein, it is assumed that the high-speed train is moving along a straight

line surrounded by an infinite number of scatterers. The authors of [17] also pro-

posed a geometry-based non-stationary channel model for V2V channels in high-

way environments, where it is assumed that the vehicles are moving along a straight

path. A non-stationary T-junction channel model for V2V communication was also

proposed in [92]. The unique geometric structure of these models, unfortunately,

restricts their usability in modelling different propagation areas. In addition, the

utilized path models in [17, 91, 92] are somewhat unrealistic, as the AOM of the

MS cannot not change in time. This is in contrast with real-world moving scenarios

in which the AOM varies along the travelling path.

The limited number of non-stationary channel models in the literature on the one

hand, and some drawbacks of existing models on the other hand, call for the need

to develop new, robust, and flexible non-stationary channel models. To this aim, we

first introduce a new approach to develop geometry-based stochastic non-stationary

channel models, the randomness of which originates from a random trajectory of

the MS, rather than from the scattering area. It is shown that the channel models
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Figure 5.1: A typical F2M propagation scenario assuming single-bounce scattering.

developed by this approach have great benefits that cannot easily be obtained by the

former approaches. A robust non-stationary channel model superimposing large-

scale fading and small-scale fading is designed by means of the new approach. To

generate the travelling path of the MS, we employ the random trajectory model pro-

posed in Paper IV. In addition, a more traditional approach, in which the randomness

of the channel model originates from the distribution of scatterers (scattering area)

is also considered. This approach is utilized to develop two non-stationary channel

models, in which the travelling path of the MS is a sample function (single realiza-

tion) of a Brownian random path, which is assumed to be surrounded by a ring of

randomly distributed scatterers.

5.2 A Random Trajectory Approach for the Develop-

ment of Non-Stationary Channel Models

5.2.1 Principles of the New Approach

The traditional approach in geometry-based stochastic channel modelling is to start

from a geometric pattern with randomly distributed scatterers. An example of such

models is the channel model proposed in Paper I. The randomness of the scatterer

positions is then injected to the characteristics of the channel model, such as its

envelope, PDP, PSD, and correlation properties. One of the key factors influencing

the characteristics of the channel models designed by this approach is therefore the
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number of scatterers. To develop a so-called reference model, this number is as-

sumed to tend to infinity. In this dissertation, we call this the infinity assumption.

The infinity assumption then allows designers to apply some limit theorems, such as

the central limit theorem (CLT) of Lindeberg-Lévy, to conclude that the proposed

channel model behaves like a Rayleigh, Rice, or lognormal (CLT for products) fad-

ing channel. The obvious shortcoming of the reference model is that the infinity

assumption does not hold in real-world propagation environments. Even if such a

highly rich scattering area would exist, moving through this area would be impos-

sible. Therefore, proposing any mobile radio channel model with dense scattering

scenarios is mathematically convenient but physically meaningless. Another issue

is the restriction of computer-based simulation environments, where applying the

infinity assumption is not possible. Accordingly, designers provide a so-called sim-

ulation model, in which the infinity assumption is relaxed by reducing the number

of scatterers. However, this reduction degrades the characteristics of the channel

model somewhat from those of reference models.

In Paper VI, we introduce a new geometry-based stochastic channel modelling

approach, the base of which is that the trajectory of the MS is random, whereas

the scattering area is fixed. The positions of the scatterers are determined either

by realizing any desired distribution function, or by setting them manually. Let us

assume that the MS is moving along a sample trajectory generated by a random

trajectory model. For a fixed scattering area, each realization of the trajectory re-

sults in different AOMs of the MS, different AOAs at the MS, as well as different

travelling distances of the plane wave emitted from the transmitter. Therefore, the

randomness of the trajectory model makes the characteristics of the corresponding

channel model random. It follows that we provide a geometry-based non-stationary

channel model, the randomness of which originates from the trajectory of the MS,

rather than the scattering area.

We show that applying the new approach results in very robust non-stationary

channel models, in which the infinity assumption does not need to be fulfilled. In

Paper VI, we also discuss how the new approach can be used for simulating/interpreting

measurement campaigns, in which a certain propagation area (fixed scattering area)

undergoes several measurement trials (random trajectories).

5.2.2 Employment of the New Approach

Paper VI employs the new approach by allowing the MS to move along random

paths generated by a special case of the trajectory model proposed in Paper IV. This

special case allows the MS to arrive at a fixed destination point via random paths.
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It is also assumed that the position of scatterers (scattering area) is obtained by

realizing a 2D Gaussian distribution function.

We provide an additive complex channel gain model, in which not only the

Doppler frequencies, but also the propagation path delays and the propagation path

gains are stochastic processes that vary in position. In our model, the path gains are

determined by a negative power law applied to the total travelling distance of the

plane waves, which is in line with the basic idea of any path loss model. We also for-

mulate the AOA process and the AOM process, from which the Doppler frequency

process is derived. The corresponding first-order densities are computed. Thus, we

fully characterize the complex channel gain of the proposed non-stationary channel

model. We then step further by deriving the first-order density of the channel gain

envelope, the first-order density of the total received power, as well as the local PDP,

and the local PSD processes.

Simulation results at the operating frequency 2.1 GHz of the UMTS show that

the statistical properties of the proposed non-stationary channel model are very ro-

bust with respect to the number of scatterers. For instance, it is demonstrated that

the envelope of the complex channel gain closely follows a Suzuki process, even if

the number of scatterers is only four. It is worth mentioning that many measure-

ment campaigns have reported that multi-scale fading channels under non-line-of-

sight propagation conditions are best modelled by a Suzuki process [93, 94]. For

the same number of scatterers, we show that the local received power follows the

lognormal distribution, indicating that the channel model captures the shadow fad-

ing even for a very limited number of scatterers. The merit of the proposed channel

model is not only its robustness with respect to the number of scatterers, but also its

capability to take non-stationary aspects of the channel into account.

Moreover, it is shown that the proposed channel model in Paper VI allows two

degrees of freedom to control the spread of the shadowing. Moreover, we illustrate

that the spread of the shadowing is approximately independent of the position of

the BS, which is in line with the empirical experiences reported, e.g., in [95–99]. In

addition, it is demonstrated that the mean received power decreases by increasing

the BS-to-MS distance, affirming that the model captures the path loss effect. We

also show that the time-varying effect of each scatterer on the local PDP and the

local PSD can perfectly be tracked if the channel is sufficiently sparse.

The proposed non-stationary channel model superimposes different levels of

fading via a physically explainable multipath fading model, rather than a multiplica-

tive one. The proposed channel model provides a physical (geometrical) insight to

the theoretical studies in [100, 101]. The results provided in this paper are very
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useful for the development of mobile communication systems, e.g., for the design

of Rake receivers [102], power control and handoff algorithms.

5.3 A Random Scattering Approach for the Develop-

ment of Non-Stationary Channel Models

In this section, we focus on a more traditional approach in which a non-stationary

channel model is developed by updating the channel characteristics along the trav-

elling path of the MS, which is surrounded by randomly distributed scatterers. In

this regard, the travelling path of the MS can be an outcome of a random trajec-

tory, while the propagation area can be modelled by any standard geometry-based

stochastic scattering model discussed in Chapter 2. This approach is used to pro-

pose the non-stationary channel models in Paper VII and VIII, where the infinity

assumption needs to be held. Thus, Papers VII and VIII differ from Paper VI not

only in the utilized approach, but also in the number of scatterers.

Paper VII employs a special case of the proposed trajectory model in Paper IV to

generate the travelling path of the MS. The path is a realization of the manipulated

standard Brownian motion processes, via which either a random or a predefined des-

tination point can be reached. In this regard, the straight (line) path model in [103]

is obtained from the proposed model if the random components of the path along

each axis are ignored, but the drift components exist, but not the random compo-

nents. To capture the scattering effects of the propagation environment, we use a

non-centred one-ring scattering model, in which the MS is surrounded by a ring of

scatterers centred not necessarily on the MS.

In Paper VII, we track the MS along a fixed Brownian path to record the varia-

tions of the wave propagation mechanism in time. Accordingly, we derive the local

AOAs, local AOMs, local PSD of the Doppler frequencies, and the ACF of the

complex channel gain, showing that even for a walking speed scenario, the channel

model shows non-stationary behaviors. It is proved that non-stationarity in time

is not in line with the common isotropic propagation assumption on the channel.

Numerical results at 2.1 GHz shows that the proposed channel model results in a

twisted version of the Jakes PSD that varies in time. Furthermore, it is shown that

the stationary one-ring scattering model [36–38] can be obtained as a special case

of the proposed channel model.

In Paper VIII, we follow almost the same procedure. The difference is that in

Paper VIII, the employed trajectory model incorporates random fluctuations only

along a specific line (axis). In this connection, by increasing the slope of the drift
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towards infinity, the fluctuations occur only along the vertical axis. Again, a non-

centred one-ring scattering model is used to capture the scattering effect of the

propagation area. The displacement of the MS from the ring’s center results in a

non-isotropic channel model.

In Paper VIII, we show that the proposed path model results in a non-stationary

non-isotropic channel model, from which the stationary isotropic one-ring scatter-

ing model can be obtained as a special case. The statistical properties of the pro-

posed channel model are derived and explained physically. It is shown that the

AOA process is first-order non-stationary, while the PDF of the AOM is station-

ary. The corresponding PSD of the Doppler frequencies and ACF of the complex

channel gain are also provided, showing that these characteristics are heavily time-

dependent. It is shown that the proposed channel model results in a twisted Jakes

PSD that changes in time, indicating that the non-stationarity in time is in contrast

with the isotropic propagation assumption on the channel.

5.4 Chapter Summary and Conclusion

We have introduced two different approaches for the development of non-stationary

channel models. In the first approach, the randomness of the channel model origi-

nates from the randomness of the trajectory of the MS, while in the second one, the

randomness of the scattering area makes the model stochastic. The first approach is

very new and renders robust non-stationary channel models. The second approach

is somewhat similar to the approach used in [17, 91, 92] with the difference that in

Papers VII and VIII, the AOM of the MS can change in time, while in [17, 91, 92],

the AOM remains fixed.

We have shown that both approaches are very useful for the modelling of non-

stationary mobile fading channels. Highly reported physical channel statistics can

be obtained from the channel models developed by these approaches. We have

demonstrated that in the channel models developed by the first approach, the infin-

ity assumption does not need to be fulfilled. Even a very limited number of scat-

terers is sufficient to develop a non-stationary channel model resulting in a Suzuki

distributed envelope of the complex channel gain (among other useful properties).

To obtain the desired statistical properties by means of the second approach, the

infinity assumption, however, needs to be held. It was also realized that the non-

stationarity of the channel model can better be seen in the PSD as compared to the

ACF of the complex channel gain.

We have also shown that Brownian processes (fields) are very useful for captur-
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ing the mobility features of the MS. It can be concluded that one alternative to the

development of robust non-stationary channel models in the sense of matching dif-

ferent propagation environments, is to employ flexible trajectory models that allow

variations of the AOM.

We finish this chapter by remarking that Paper XV (not included in this disser-

tation) also develops a new non-stationary channel model, in which the effect of

velocity variations of the mobile station is studied.



Chapter 6

Summary of Contributions and

Outlook

6.1 Major Contributions

This dissertation dealt with the modelling of mobile fading channels under station-

ary, physically non-stationary, and statistically non-stationary conditions. The top-

ics covered the range from providing stationary and non-stationary channel models,

over analyzing the effect of moving scatterers, up to the trajectory modelling by

means of Brownian fields. In the following, the contributions of this doctoral dis-

sertation are summarized.

• A unified stationary channel model called the UDSM was proposed. The

statistical properties of the UDSM were derived and validated by empirical

data. It was shown that the UDSM is very flexible and robust in the sense of

matching empirical data obtained from different measurement campaigns.

• A new approach for the development of stationary channel models based on

desired statistical properties was proposed. It was shown that the new ap-

proach allows the physical explanation of the propagation area, while obtain-

ing the desired statistical characteristics is assured.

• A physically non-stationary channel model for explaining V2V channels in

the presence of moving scatterers was developed. The statistical properties of

the channel were derived and verified by empirical data. Proper distributions

for explaining the speed of relatively fast and relatively slow moving scatter-

ers were proposed. It was shown that relatively fast moving scatterers have

a major impact on both V2V and fixed-to-fixed (F2F) communication links,

33
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whereas relatively slow moving scatterers can be neglected in V2V channels,

but not in F2F channels.

• A new approach for generating fully spatial random trajectory models was

proposed. A highly flexible trajectory model based on the primitives of BFs

was developed. It was shown that the proposed trajectory model can explain

numerous mobility patterns of the MS. The statistical properties of the trajec-

tory model were also derived and validated by empirical data obtained from

user tracings.

• A random trajectory approach for the development of non-stationary channel

models was introduced. It was shown that the new approach develops very

robust channel models in the sense of the number of scatterers. It was also

remarked that the new approach is useful for simulating/interpreting measure-

ment campaigns.

• A new non-stationary channel model based on the proposed Brownian ran-

dom trajectory model was developed. It was shown that the proposed channel

model superimposes large-scale and small-scale fading. It was demonstrated

that the characteristics of the proposed channel model are in line with those

of physical channels even if the scattering area is sparsely seeded.

• Two non-isotropic non-stationary channel models in which the travelling path

of the MS is the outcome of a Brownian trajectory model were developed. It

was shown that the proposed channel model results in a twisted Jakes PSD

that changes in time, indicating the non-stationarity in time is in contrast with

the isotropic propagation assumption on the channel. It was also realized that

the effect of changing the mobility pattern can better be seen in the PSD as

compared to the ACF of the complex channel gain.

6.2 Outlook

This dissertation was an attempt to probe into the issues related to the modeling and

analysis of mobile fading channels with different levels of stationarity. There still

exist problems that remain unaddressed. Some few problems are highlighted in the

following.

• The entire analysis presented in this dissertation is based on the assumption

that the wave emitted from the transmitter arrives at the receiver after a single
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bounce by one of the local scatterers. This assumption can be extended by

considering the effect of multiple-bounce scattering.

• The entire analysis presented in this dissertation is based on the assumption

that the wave emitted from the transmitter is not polarized. This assumption

can be relaxed such that the polarization effect of the propagation area is taken

into consideration.

• The physically non-stationary channel model designed in this dissertation

needs to be analyzed under statistically non-stationary conditions.

• Channel models capturing the mixture of fixed and moving scatterers need to

be developed.

• The entire channel models presented in this dissertation consider a single an-

tenna at both the transmitter and the receiver side. The models can be ex-

panded by considering multiple antennas at the transmitter and/or the receiver.

• The approach used to develop the highly flexible trajectory model based on

the primitives of the BFs may also be used to generate other spatial trajectory

models.

• The non-stationary channel models relying on Brownian random trajectory

models may also be developed by utilizing other trajectory models.
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[81] B. C. Csáji, A. Browet, V. A. Traag, J. Delvenne, E. Huens, P. V. Dooren,

Z. Smoreda, and V. D. Blondel, “Exploring the mobility of mobile phone

users,” Physica A: Statistical Mechanics and its Applications, vol. 392, no. 6,

pp. 1459 – 1473, 2013.



References 45

[82] T. Garske, H. Yu, Z. Peng, M. Ye, H. Zhou, X. Cheng, J. Wu, and N. Fer-

guson, “Travel patterns in China,” PLOS ONE, vol. 6, no. 2, pp. 1–9, Feb.

2011.

[83] M. A. P. Taylor and Susilawati, “Modelling travel time reliability with the

Burr distribution,” Procedia - Social and Behavioral Sciences, vol. 54, pp.

75–83, 2012.

[84] S. B. Young, “Evaluation of pedestrian walking speeds in airport terminals,”

Journal of the Transportation Research Board, vol. 1674, no. 2, pp. 20–26,

1999.

[85] M. Herdin, Non-Stationary Indoor MIMO Radio Channels. PhD disserta-

tion, Technical University of Wien, 2004.

[86] J. D. Parsons and A. S. Bajwa, “Wideband characterisation of fading mobile

radio channels,” Communications, Radar and Signal Processing, IEE Pro-

ceedings F, vol. 129, no. 2, pp. 95–101, Apr. 1982.

[87] G. Matz, “On non-WSSUS wireless fading channels,” IEEE Trans. Wireless

Commun., pp. 2465–2478, Sep. 2005.

[88] L. Bernado, T. Zemen, F. Tufvesson, A. F. Molisch, and C. F. Meck-
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A Unified Disk Scattering Model and its

Angle-of-Departure and Time-of-Arrival Statistics

Alireza Borhani and Matthias Pätzold

Abstract — This paper proposes a novel probability density function (PDF)

for the distribution of the local scatterers inside a disk centered on the mobile

station (MS). The new scattering model is introduced as the unified disk scat-

tering model (UDSM), as it unifies a variety of typical circularly-symmetric

scattering models into one simple model. By adjusting a designated shape fac-

tor controlling the distribution of the scatterers, both the uniform circular and

uniform ring scattering models can be obtained as special cases. Furthermore,

the original Gaussian and uniform hollow-disk scattering models can be ap-

proximated with a high level of accuracy. Besides these established scattering

models, any continuous concentrations of the local scatterers from a high den-

sity near the MS to a high density close to the outer edge of the disk can also

be achieved. Under the assumption of single-bounce scattering, the joint PDF

of the the angle-of-departure (AoD) and angle-of-arrival (AoA), as well as the

joint PDF of the time-of-arrival (ToA) and AoA are derived. Subsequently,

the corresponding marginal PDFs are provided in closed form. Finally, the

UDSM is validated by several measured channels, showing that the UDSM

outperforms several other geometric models proposed in the literature. The

proposed model is useful for the designers of cutting-edge vehicular communi-

cation technologies to study the system performance under different scattering

conditions.

Index terms — Unified disk scattering model, geometric model, angle-of-
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I. INTRODUCTION

In radio communication systems, the temporal and spatial statistical properties of

the received multipath signal play an important role in the performance analysis. For

instance, for the development of transmit-beamforming schemes and antenna array

systems, the information on the distribution of the AoD is of primary importance.

In wideband communication systems, it is essential to know the ToA statistics in

order to perform the delay analysis of the overall system in terms of the average

delay and the delay spread. Consequently, for mobile communication systems, a

rigorous analysis and performance evaluations cannot be attained without knowing

the statistical properties of the channel. The statistical properties of the disk scatter-

ing model under different distributions of the local scatterers have been investigated

widely in the literature listed below.

The geometric shape of the propagation area and the distribution of the local

scatterers within this area can be identified as the main aspects affecting the AoD

and ToA statistics. The geometric assumptions include the position of the MS, BS,

and the shape of the scattering area. Typical scattering areas have been mainly mod-

eled by rings, disks, and ellipses. The uniform ring model, in which the local scatter-

ers are uniformly distributed on a thin ring centered on the MS, has been the subject

of thorough studies in [1–3]. The ToA and AoA PDFs of the uniform hollow-disk

model have been proposed in [4] and were then further studied in [5]. The uniform

circular scattering model, where the scatterers are uniformly distributed inside a full

disk centered on the MS has been analyzed in [6–11]. The uniform elliptical model

has been the scattering object under study in [5, 7, 11], and [12]. The Gaussian

scattering model is another well-known scattering model proposed in [13–17]. The

AoD and ToA PDFs of the conical scattering model were derived in [6] and [18],

respectively. The inverted-parabolic model was first proposed in [19]. Finally, we

mention that the Rayleigh scattering model was first presented in [20], which has

been further developed in [21].

The lack of a comprehensive and critical comparison among all the above-

mentioned geometric scattering models was filled by the assessment study in [22].

The comparisons with different measured channels [23–26] (among others reported

in [22]) showed that none of these geometric scattering models is the best by all the

selected criteria and for all considered scenarios. However, for the unimodal empir-

ical data sets, the well-fitting geometric models are the Gaussian and the uniform

elliptical models. If a closed-form AoD PDF is required, the choice falls on the uni-

form elliptical model [22], because a closed-form expressions for the AoD PDF of

the Gaussian scattering model does not exist. Furthermore, for the bimodal empiri-
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cal data sets, the uniform hollow-disk model is an appropriate geometric model [22].

It is intuitively obvious that by applying a curve-fitting algorithm on an empirical

data set using a geometric model with two degrees of freedom, such as the uniform

elliptical and the uniform hollow-disk models, has a higher chance of outperform-

ing a model with only one degree of freedom, like the Gaussian, uniform circular,

conical, and the inverted-parabolic models.

Despite the intensive work on geometric scattering models, the literature still

lacks of a unification of a large variety of these established geometric models via

a simple, compact, and unified PDF. The motivation of this paper is to fill this

gap by adding one degree of freedom to the disk-based scattering model proposed

in [27]. This paper introduces the UDSM with two degrees of freedom allowing

to unify several circularly-symmetric scattering models. The novelty of the UDSM

arises from the fact that the distribution of the scatterers can be fashioned in various

concentration patterns, where the shape of the concentration patterns is controlled

by a so-called shape factor. Indeed, by adjusting the shape factor, one can gradually

change the concentration of the local scatterers from a high concentration close to

the MS via the uniform distribution inside the full disk up to a high concentration

on a ring centered on the MS. Therefore, the proposed UDSM not only covers

the Gaussian, uniform, hollow-disk, and ring scattering models, but also covers

any continuous circularly-symmetric concentration of the local scatterers between

these original scattering models. Moreover, by introducing the UDSM in polar

coordinates, we avoid the high mathematical complexity entailed by some of the

aforementioned scattering models.

Given the proposed UDSM, the joint PDF of the AoD and AoA, as well as the

joint PDF of the ToA and AoA are derived. Subsequently, the marginal PDFs of

the AoD and ToA are provided in closed form. The correctness of the analytical ex-

pressions is then validated by simulation results. Furthermore, the marginal PDFs

are compared with those of other well-known geometric models as well as with

empirical data [23–26] collected in different propagation areas including rural, sub-

urban, and urban regions. It turns out that by adjusting the shape factor, the UDSM

coincide with the uniform circular scattering model and tends asymptotically to the

uniform ring model. In addition, the uniform hollow-disk and the Gaussian scatter-

ing models can be approximated with a high level of accuracy. Moreover, the com-

parisons between our analytical results and the empirical data reported in [23–26]

show that the AoD and ToA PDFs of the UDSM match the data sets better than

several other geometric models. Furthermore, it will be shown that for all values

of the shape factor–except those that result in the ring scattering models–the ToA
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PDF follows a negative exponential-like distribution, which has often been adopted

in specified channel models, such as the ones specified in [28]. It should be men-

tioned that the negative exponential characteristics of the propagation delays have

also been confirmed by many measurement campaigns (see, e.g., [25]).

The UDSM can efficient describe the AoD and ToA characteristics of several

different propagation areas including rural, suburban, and urban areas. This novel

feature is attributed to from the fact that the UDSM introduces two degrees of free-

dom. From the unified geometric scattering model, one can derive stochastic and

deterministic channel simulators by using the generalized principle of deterministic

channel modelling [29, Sec. 8.1]. The designed channel simulator can then be used

for the test, the parameter optimization, and the performance analysis of modern

communication systems under different propagation conditions.

The remainder of this paper is organized as follows: Section II presents the

geometric disk scattering model and describes the underlying assumptions. The

UDSM is introduced in Section III. Section IV studies the joint PDF of the AoD

and AoA, as well as the joint PDF of the ToA and AoA. Section V derives the

marginal PDFs of the AoD and ToA. The verification of the analytical results with

empirical data is described in Section VI. Finally, Section VII summarizes our main

findings and draws the conclusions.

II. GEOMETRIC DISK SCATTERING MODEL AND ASSUMPTIONS

The geometric disk scattering model is presented in Fig. A.1. The BS and the

MS presented in this figure serve as the transmitter and the receiver, respectively.

The BS antenna is per definition fixed and highly elevated to scattering-free levels,

while the MS antenna is moving with velocity vector�v in a rich scattering area. The

distance between the BS and the MS is supposed to be D. Furthermore, we assume

that the local scatterers are randomly and independently distributed within a disk of

radius R centered on the MS. The location of each scatterer is described by polar

coordinates (r,αR), where r describes the distance of the scatterer from the MS and

αR denotes the AoA. Owing to the high path loss, we neglect the contribution from

remote scatterers and assume that a wave transmitted from the BS with an AoD α T

reaches the MS after a single bounce by one of the randomly distributed scatterers

located inside the disk. Notice that the upperscripts R and T in the notation used

for the AoA and AoD, i.e., αR and αT , refer to the receiver and the transmitter,

respectively.

In this paper, it is also assumed that both the BS and the MS are equipped with

single omnidirectional antennas. This assumption is the same as the one in [5,
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Figure A.1: The geometric disk scattering model for a single-bounce scattering
scenario.

7, 11], but in contrast to [10, 30, 31], where it is assumed that the antennas are

directional. In this regard, we also suppose that each of the scatterers acts as an

omnidirectional lossless re-transmitter and is independent from other scatterers.

It is also assumed that the polarization effects of the transmitter antenna, scat-

terers, and the receiver antenna are ignored. This assumption differs from the one

in [32], where the polarization effects of the aforementioned components on the

emitted wave have been fully considered. Furthermore, it is assumed that the sig-

nals received at the MS antenna are plane waves travelling in the horizontal plane,

and thus the AoA has only an azimuth component. This simplification is widely

accepted in the literature [13–17]. However, it differs from the azimuth-elevation

AoA derived from the three-dimensional scattering region proposed in [33].

III. UNIFIED DISK SCATTERING MODEL

A. Idea of the UDSM

The main idea of the UDSM is to extend the novel simplistic scattering model

proposed in [27]. There, it has been assumed that the local scatterers are uniformly

distributed in polar coordinates within a disk centered on the MS. Such a distribu-

tion is called the joint uniform distribution in polar coordinates. This model results
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in a higher concentration of scatterers around the disk center and a lower concen-

tration far from it. Accordingly, the joint uniform distribution in polar coordinates

differs greatly from the uniform distribution of the scatterers in Cartesian coordi-

nates (known as the uniform circular model). The proposed model in [27] has only

one degree of freedom, which is the radius R of the disk. Due to the uniform dis-

tribution of the radius r within its range [0,R], the PDF of the distribution of the

scatterers in [27, Eq. (1)] is independent of r. The motivation of this paper is to

generalize the aforementioned scattering model by adding one degree of freedom

to the PDF in [27, Eq. (1)], such that the new model (UDSM) is not generally in-

dependent of r anymore. Accordingly, this paper proposes the UDSM according to

which the location of the scatterers are described as follows

p(k)r,αR(r,αR) =

⎧⎪⎨
⎪⎩

(k+1)
2πR(k+1) r

k, if 0 ≤ r ≤ R and

π ≤ αR < π ,
0, otherwise.

(A.1)

In the equation above, it is also assumed that the local scatterers are randomly and

independently distributed within a disk of radius R centered on the MS. In this

equation, k > −1 is a real-valued parameter called the shape factor that controls

the distribution of the scatterers within the disk presented in Fig. A.1. In fact, the

shape factor k provides the additional degree of freedom, which will greatly help us

to find excellent curve-fittings several established scattering models (see Section V)

as well as to empirical data (see Section VI). As can be seen, the proposed UDSM

described by (A.1) depends generally on r, except for k = 0. Notice that by setting

k = 0, (A.1) reduces to [27, Eq. (1)], which has only one degree of freedom.

The term 2π in the denominator of (A.1) accounts for the fact that the AoA α R is

uniformly distributed between −π and π . In other words, the UDSM is a circularly-

symmetric scattering model. The other constant terms in (A.1) guarantee the unity

area under (A.1). In this connection, one can show that the proposed distribution

in (A.1) allows the following Cartesian representation

p(k)X ,Y (x,y)=

⎧⎪⎨
⎪⎩

(k+1)
2πR(k+1) (x

2 + y2)
k−1

2 , if

x2 + y2 ≤ R2,

0, otherwise.

(A.2)

B. Role of the Shape Factor k

The UDSM with its scattering distribution described by (A.1), or equivalently

in (A.2), has two degrees of freedom, namely the radius R and the shape factor
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k. The first degree of freedom, R, is common between several geometric models,

such as the uniform circular, conical, inverted-parabolic, and the model in [27].

The second degree-of-freedom, k, has never been proposed fore in the literature.

Indeed, k is a concentration control factor that allows to shape continuously the

distribution of the local scatterer around the MS. For a given radius R, a chosen

value of k from (−1,1) will primarily include only scatterers near the MS, which

is useful for modelling of urban and suburban propagation areas. A purely uniform

distribution of the scatterers within a disk around the MS is obtained by choosing

k = 0. By increasing k, the scatterers will be concentrated on a hollow-disk centered

on the MS, which provides a reasonable propagation model for rural areas. In what

follows, we describe the influence and significance of this key parameter in more

depth.

Let us assume that k is chosen from the range (−1,1). This means that the term

(x2 + y2) appears in the denominator of (A.2). Accordingly, the UDSM distributes

the local scatterers such that one can find a high concentration of scatterers close

to the disk center and a low concentration at the edge of the disk. In this paper,

we use the term Gaussian-like to address such a kind of distribution in a simple

manner. Although, several other distributions can also lead to a similar non-uniform

distribution of the scatterers with a higher density around the center, we use the term

Gaussian-like in absence of any other proper terminology. A second reason is that

the UDSM is also able to approximate the AoD and the ToA PDFs of the Gaussian

model (see Section V).

For the simple special case within this range, k= 0, the joint distribution in (A.1)

reduces to the joint uniform distribution in polar coordinates [27, Eq. (1)], i.e.,

p(0)r,αR(r,αR) =

⎧⎪⎨
⎪⎩

1
2πR , if 0 ≤ r ≤ R and

π ≤ αR < π ,
0, otherwise.

(A.3)

To provide a better visualization, we present several scatter diagrams in Fig. A.2.

Using the PDF in (A.1), a number of 1000 scatterers have randomly be distributed

around the origin. We have repeated this procedure for four different values of the

shape factor k. Figure A.2(a) demonstrates the distribution of the random scatterers

generated by using the special case of (A.3), where the shape factor k is set to 0.

As expected, a Gaussian-like distribution of the local scatterers inside a limited area

can be observed. Referring to [27], the PDF presented in (A.3) can be considered as

an approximation of the original Gaussian scattering model studied in [13–17]. In

this paper, we widen the scope of (A.3) by considering the general form of the PDF
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in (A.1). This means that we do not focus solely on the special case of k = 0. In

turn, we search over a wider range of k to achieve the maximum similarity between

the UDSM and the Gaussian scattering model in terms of the AoD and ToA PDFs.

This can be done, e.g., by optimizing the model parameters, R and k, by minimizing

the least-squares error (LSE) between the AoD (ToA) PDFs of the two models.

Section V deals with this issue in more details.

Now, let us assume that the shape factor k equals 1. By substituting this in (A.1)

and (A.2), the UDSM reduces to the special cases

p(1)r,αR(r,αR) =

⎧⎪⎨
⎪⎩

1
πR2 r, if 0 ≤ r ≤ R and

π ≤ αR < π ,
0, otherwise,

(A.4)

and

p(1)X ,Y (x,y) =

{
1

πR2 , if x2 + y2 ≤ R2,

0, otherwise,
(A.5)

respectively. Notice that the radius r in the nominator of (A.4) can be identified as

the Jacobian-inverse of the transformation of (A.5) to (A.4). In this case, (A.5) (or

equivalently (A.4)) represents the uniform circular scattering model, which has been

explored widely in the literature (see, e.g., [6–11]). Figure A.2(b) shows the location

of the scatterers distributed by using (A.4). Notice that the joint PDF in (A.4) is

completely different from the joint uniform PDF in polar coordinates presented

in (A.3).

So far, we have observed that by changing the shape factor k from -1 to 1, the

concentration of the local scatterers varies from a high concentration around the disk

center to the uniform distribution inside the disk. In the same vein, by increasing

the shape factor from 1 towards higher values k � 1, we expect to observe that the

concentration of the local scatterers changes from the uniform distribution inside

the full disk to a high concentration at the edge of the disk, and thus forming a ring

of scatterers if k → ∞.

In this regard, Fig. A.2(c) demonstrates the distribution of the local scatterers

generated by using (A.1), in which the shape factor is set to k = 8. As can be seen

in Fig. A.2(c), for medium values of the shape factor k, the UDSM joint distribution

in (A.1) can be considered as an approximation of the uniform hollow-disk model,

which has been studied in [4] and developed further in [5]. For large values of the

shape factor k (e.g., k = 25), the well-known uniform ring model studied in [1–3]

can be well approximated. If the shape factor k tends to infinity, the proposed PDF
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in (A.1) behaves like a shifted and scaled delta function of the form δ (r−R)/2π ,

which equals the polar representation of the uniform distribution of the scatterer

placed on a ring of radius R shown in Fig. A.2(d). This means that the UDSM

results asymptotically in the uniform ring scattering model if k → ∞.

In brief, the proposed UDSM distribution in (A.1) provides: a Gaussian-like

distribution of the local scatterers inside the full disk if the shape factor k is chosen

from the range (−1,1); the uniform circular distribution within a full disk if k =

1; the hollow-disk model if k is chosen moderately, e.g., k = 8; and the uniform

ring model if k → ∞ [see Fig. A.2(a)-(d)]. It is worth mentioning that since k is

a continuous variable within its range, any continuous concentration of the local

scatterers that emerges between the aforementioned original scattering models can

also be generated. As we will see in Section VI-D, this novel feature fills the gap of

need for a flexible scattering model linking two established models.

IV. JOINT PROBABILITY DENSITY FUNCTIONS

In this section, we investigate the statistical properties of the proposed model,

such as the joint PDF of the AoD and AoA, as well as the joint PDF of the ToA and

AoA.

A. Joint PDF of the AoD and AoA

Referring to the geometric disk model in Fig. A.1 and using the law of sines,

one can write

αT (r,αR) = arctan
( r sin(αR)

D+ rcos(αR)

)
. (A.6)

By considering the auxiliary function A(r,α R) = αR, we have the following roots

r =
Dsin(αT )

sin(αR−αT )
and αR = A. (A.7)

By applying the concept of transformation of random variables [34, p. 130], we

reach the joint PDF of the AoD and AoA

pαT ,αR(αT ,αR) = |J|−1pr,αR

( Dsin(αT )

sin(αR−αT )
,αR
)
, (A.8)
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Figure A.2: Scatter diagram illustrating 1000 randomly distributed scatterers (*)
generated by using the unified disk PDF [see (A.1)] with different shape factors: (a)
k = 0, (b) k = 1, (c) k = 8, and (d) k = 25. The disk radius R has been set to 250 m
in all cases.
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where |J| denotes the Jacobian of the transformation, which is determined by the

following determinant

|J| =

∣∣∣∣∣
∂ r

∂αT
∂ r

∂αR

∂αR

∂αT
∂αR

∂αR

∣∣∣∣∣
−1

(A.9)

Noting that |J| can be readily simplified to |∂ r/∂α T |−1 and recalling the general

form of the UDSM distribution in (A.1), it follows that the joint PDF pαT ,αR(αT ,αR)

of αT and αR can finally be written in closed form given by

p(k)αT,αR(αT,αR)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dk+1 (k+1)

2πR(k+1)

|sin(αR)|sink(αT )

sink+2(αR −αT )
, if

(αT ,αR) ∈D,

0, otherwise,

(A.10)

where D denotes the region

D ∈
{
(αT ,αR)

∣∣∣ 0 ≤ Dsin(αT )

sin(αR−αT )
≤ R,αR �= αT

}
(A.11)

for −π ≤ αR < π and −arcsin(R/D)≤ αT ≤ arcsin(R/D). It is worth mentioning

that whenever αT ·αR < 0, then p(k)αT ,αR(αT ,αR) is zero. This is obvious, because

by choosing αR and αT such that αT ·αR < 0, it is impossible to find a scatterer

in the disk scattering area shown in Fig. A.1. It can be easily shown that the two-

fold integral of (A.10) over its range is one. Space limitation prevents us from

illustrating the results in (A.10) here. However, in Section V, the analytical results

for the marginal PDFs, which are much more important for us, are illustrated and

discussed in detail.

B. Joint PDF of the ToA and AoA

By taking the single-bounce scattering mechanism into account and referring to

Fig. A.1, the total path length, which an emitted plane wave travels from the BS via

a scatterer to the MS, equals

Ds(r,αR) = r+
√

r2 +D2 +2rDcos(αR). (A.12)

To derive the joint PDF of the ToA and AoA, it is advantageous to introduce the

functions τ ′(r,αR) = Ds(r,αR)/c0 and A(r,αR) = αR, where τ ′ denotes the ToA
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p(k)τ ′,αR(τ ′,αR)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(k+1)c0

2π(2R)(k+1)

[(τ ′c0)
2 −D2]k

(τ ′c0 +Dcos(αR))k+2 if τ ′min ≤ τ ′ ≤ τ ′max

×[(τ ′c0)
2 +2τ ′c0Dcos(αR)+D2], and −π ≤ αR < π ,

0, otherwise.

(A.16)

and c0 designates the speed of light. It can be shown that the roots of these functions

are given by

r =
(τ ′c0)

2 −D2

2(τ ′c0 +Dcos(αR))
and αR = A. (A.13)

By applying again the concept of transformation of random variables, the joint PDF

of the TOA and AoA can be represented by

p(k)τ ′,αR(τ ′,αR)=|J|−1p(k)r,αR

( (τ ′c0)
2 −D2

2(τ ′c0 +Dcos(αR))
,αR
)
, (A.14)

in which

|J| =

∣∣∣∣∣
∂ r
∂τ ′

∂ r
∂αR

∂αR

∂τ ′
∂αR

∂αR

∣∣∣∣∣
−1

= c0
−1 2(τ ′c0 +Dcos(αR))2

(τ ′c0)2 +2τ ′c0Dcos(αR)+D2 . (A.15)

Substituting this expression into (A.14) and using the general form of the UDSM

distribution in (A.1), it follows that the joint PDF of the ToA and AoA can be

expressed by (A.16) [see the top of the current page]. The symbols τ ′
min and τ ′max

in (A.16) denote the minimum and maximum ToA, respectively. With reference to

Fig. A.1, the minimum ToA τ ′
min occurs if the scatterer has its minimum distance

from the MS, i.e., τ ′
min = c−1

0 D if r → 0. Analogously, the maximum ToA τ ′
max

occurs if the scatterer has its maximum distance from the BS, i.e., τ ′
max = c−1

0 (2R+

D) if r → R and αR → 0. In this regard, the two-fold integral of (A.16) over τ ′
min ≤

τ ′ ≤ τ ′max and −π ≤ αR < π meets unity. Again, due to the space restriction, the

analytical results for the joint PDF in (A.16) are not exemplified here. However, the

marginal PDFs are illustrated and discussed in what follows.
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V. MARGINAL PROBABILITY DENSITY FUNCTIONS

Next, we derive the marginal PDF of the AoD (ToA) from the joint PDF of

the AoD (ToA) and AoA. This is different from the common approach, e.g., [18],

where the AoD (ToA) PDF is derived from the joint PDF of the AoD and ToA. This

approach may result in simpler expressions for marginal PDFs, which cannot be

presented in closed form. In this regard, besides providing a closed-form expression

for the AoD (ToA) PDF of the UDSM, one may derive a new integral-form solution

for the AoD (ToA) PDF of the Gaussian scattering model different from the one

provided in [13]. In what follows, we derive the marginal PDFs of both the AoD

and the ToA in closed form. Then, the obtained analytical results are confirmed by

simulation results. Subsequently, we show that the AoD (ToA) PDF of the UDSM is

able to either precisely or approximately meet that of the Gaussian, uniform circular,

uniform hollow-disk, and the uniform ring models. The validation of our analytical

results by means of empirical data is deferred to Section VI.

A. Marginal PDF of the AoD

The marginal PDF p(k)αT (αT ) of the AoD αT can be obtained by integrating the

joint PDF p(k)αT ,αR(αT ,αR) presented in (A.10) over the AoA αR, i.e.,

p(k)αT (αT ) =
(k+1)γk+1

2π
sink(αT )

∫
DαR

|sin(αR)|dαR

sink+2(αR−αT )
(A.17)

where −arcsin(γ−1) ≤ αT ≤ arcsin(γ−1), the parameter γ denotes the ratio

D/R, and DαR determines the domain of integration for a given value of the AoD

αT . This domain can be readily derived by solving (A.6) with respect to α R. Fur-

thermore, since αT (r,αR) in (A.6) is a monotonically increasing function in r, one

can set r to its maximum value R. Following this procedure, the limits of the in-

tegral in (A.17) range from arcsin(γ sin(αT ))+αT to π − arcsin(γ sin(αT ))+αT ,

which determine DαR .

After solving the integral in (A.17) with due regard to DαR and some math-

ematical manipulations, the marginal PDF p(k)αT (αT ) of the AoD αT is given by

the closed-form1 expression in (A.18) (see the top of the next page), in which

αT ∈ [−arcsin(γ−1),arcsin(γ−1)]. In this equation, Γ(·) and β (·; ·, ·) denote the

gamma and incomplete beta functions [35], respectively.

1In the open literature, analytical expressions in terms of gamma, beta, erf, erfc, Bessel, Meijer,
Appell, and hypergeometric functions, are mostly addressed as closed-form solutions.
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p(k)αT (αT )=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(k+1)γk+1

2π
sink(αT )cos(αT )

×
[√

πΓ(− k
2 )

Γ( 1−k
2 )

−β (γ2 sin2(αT );− k
2 ,

1
2)
]
, k �= 0,

γ
π cos(αT ) lg

∣∣1+√1−γ2 sin2(αT )
γ sin(αT )

∣∣, k = 0,

(A.18)

It is noteworthy that for k = 1, the PDF p(k)αT (αT ) in (A.18) can be simplified to

p(1)αT (αT ) =
2γ
π

cos(αT )

√
1− γ2 sin2(αT ) (A.19)

which is the same as the AoD PDF of the uniform circular scattering model studied

in [6–11]. Notice that by considering the uniform distribution of the local scatterers

inside a hollow-disk, in which the radius of the inner border is set to 0, the AoD

PDF of the uniform hollow-disk model [4, Eq. (6)] meets also the AoD PDF of the

UDSM for k = 1, i.e., p(1)αT (αT ) in (A.19).

Figure A.3 demonstrates the PDF p(k)αT (αT ) corresponding to the UDSM for

different values of the shape factor k, where the MS-to-BS distance D and the disk

radius R have been set to 2 km and 250 m, respectively. To validate the closed-form

expression of the AoD PDF in (A.18), a histogram is computed by generating 105

scatterers inside a disk of radius R using (A.1). Measuring the AoD at a distance of

2 km away from the center of the disk, creating a histogram containing 50 equally-

spaced bins, and dividing the number of events in each bin by the total number of

events results finally in the normalized histogram shown in Fig. A.3. We repeat this

procedure for different values of the shape factor k. For all selected values of k, an

excellent match between the analytical result and the normalized histogram can be

observed, which validates the correctness of the AoD PDF in (A.18). As can also

be seen in this figure, by setting the shape factor k to -0.5 or 0, a high density of

the AoD close to the origin is obtained. In general, this behavior of the AoD PDF

was expected if the shape factor k is selected from the range −1 < k < 1. This

can be attributed to the fact that within this range, the UDSM distribution in (A.1)

distributes the local scatterers in a Gaussian-like fashion [see Fig. A.2(a)]. On the

contrary, if the shape factor k is larger than one, e.g., k = 8 or k = 25, a high density

of the AoD close to the outer edge of the disk scattering area and a low density

near the origin of the disk is achieved. This property originates from the fact that

the proposed PDF in (A.1) includes an approximation of the hollow-disk model if

k is moderately large, e.g., k = 8 [see Fig. A.2(c)] and the ring model if a large
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Figure A.3: PDF p(k)αT (αT ) of the AoD αT for the proposed UDSM for different
values of the shape factor k, where γ = D/R = 8.

value is chosen for k, e.g., k = 25 [see Fig. A.2(d)]. In addition, Fig. A.3 plots the

AoD PDF p(1)αT (αT ) of the uniform circular scattering model, which is presented

in (A.19). Notice that for all values of the shape factor k, the symmetrical behavior

of p(k)αT (αT ) with respect to αT implies that the mean value of αT equals zero.

Furthermore, independent of the shape factor k, the AoD has been spread between

about -7 and 7 degrees. The aforementioned independency was to be expected, as

the disk radius R and the distance D between the BS and the MS are the only factors

affecting the limits of the AoD.

In this regard, Fig. A.4 depicts the effect of γ = D/R on the AoD PDF p(k)αT (αT )

of the UDSM, in which the shape factor k has been set to 0. As can be seen by

decreasing γ , p(0)αT (αT ) in (A.18) spreads over a wider range. Again, a high density

of the AoD around the origin, implying α T = 0, and a low density close to the

circumference of the disk, meaning |αT | = arcsin(γ−1), can be observed. This is

simply due to the fact that by choosing the shape factor k = 0, the joint uniform PDF

in polar coordinates (A.3) distributes the local scatterers in a Gaussian-like fashion.

In what follows, we try to fit the AoD PDF of the UDSM to that of the Gaus-

sian, uniform circular, uniform hollow-disk, and the uniform ring model. First, let

us stress the importance of these models. As mentioned in Section I, one of the
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common assumptions on the distribution of the local scatterers is the Gaussian dis-

tribution around the MS [13–17]. It has be shown in [22] that the Gaussian model is

a proper choice to describe the scatterer distribution in many propagation areas. The

AoD PDF pG
αT (αT ) of this model can be found in, e.g., [13, Eq. (29)]. The uniform

circular model is also another well-known geometric model, which has been widely

discussed in the literature [6–11]. The AoD PDF of this model has been provided

in, e.g, [9, Eq. (12)]. Referring to [22], the uniform hollow-disk model [4] can

provide a good fitting to bimodal empirical data sets. The corresponding AoD PDF

has been derived in [4, Eq. (6)]. In this connection, the uniform ring model [1–3]

is another classical scattering model, which can be interpreted as a special case of

the uniform hollow disk model. The objective of the following is to show that the

AoD PDF of the UDSM is able to match either precisely or approximately all those

of the above-mentioned established models.

Figure A.5 shows the curve-fitting results of the AoD PDF of the UDSM and

that of the established scattering models, while Table A.1 lists the corresponding

LSEs. Here, the goodness-of-fit is the LSE with respect to the AoD PDF, which

is denoted by LSEAoD. To determine the LSEAoD, the model parameters γ−1 and

k have been optimized within their ranges. The used optimization procedure is the

same as that in [22]. Choosing the parameters of the considered scattering models

as listed in the second row of Table A.1, we obtained the corresponding LSEAoD to

each model shown in the third row.

As can be seen in Fig. A.5 and with more details in Table A.1, the UDSM is

able to match closely the established scattering models by optimizing the model

parameters γ−1 and k. The minimum and the maximum LSEAoD belong to the

uniform circular and uniform hollow-disk scattering models, respectively. Further-

more, both the uniform hollow-disk and Gaussian models lead almost to the same

error (LSEAoD ≈ 0.6). In these cases, the curve-fitting is poor around the sharp

peaks of the uniform hollow-disk model. This is due to the fact that the hollow-disk

model has a bimodal AoD PDF [4, Eq. (6)], while the UDSM has a unimodal AoD

PDF. Furthermore, the poor match between the UDSM and the Gaussian model in

the tails of the distribution is caused by the large difference between the scatterer

domains of these two models. Indeed, the UDSM has a limited scatterer domain (a

disk of radius R) for scatterers, while the scatterer domain of the Gaussian model is

infinite. Notice that a very close agreement (LSEAoD = 0.0061) between the AoD

PDF of the UDSM and that of the uniform ring model can also be observed. This

agreement is theoretically perfect if k → ∞ (see Section III-B). However, in our

computations, we have upper-bounded the shape factor by k = 25, which explains
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the non-zero LSEAoD.

B. Marginal PDF of the ToA

Starting from the joint PDF p(k)τ ′,αR(τ ′,αR) in (A.16) and integrating over the

AoA αR result in the marginal PDF p(k)τ ′ (τ
′) of the ToA τ ′, i.e.,

p(k)τ ′ (τ
′)=

(k+1)c0

2π(2R)(k+1)
[(τ ′c0)

2 −D2]k

×
∫

DαR

[(τ ′c0)
2 +2τ ′c0Dcos(αR)+D2]

(τ ′c0 +Dcos(αR))k+2 dαR (A.20)

for τ ′ ∈ [τ ′min,τ
′
max]. The notation DαR in the equation above denotes the domain

of integration for a given value of τ ′. Recalling τ ′(r,αR) = c−1
0 Ds(r,αR) and using

(A.12), it follows

τ ′(r,αR) = c−1
0 (r+

√
r2 +D2 +2rDcos(αR)). (A.21)

Clearly, (A.21) is a monotonic increasing function in r. This means that for a

given value of the AoA αR, the ToA τ ′(r,αR) takes its maximum value, denoted

by τ ′max(αR), if the scatterer is located on the circumference of the disk, i.e.,

τ ′max(αR) = c−1
0 (R+

√
R2 +D2 +2RDcos(αR)). (A.22)

Similarly, τ ′
max(αR) takes its maximum value τ ′

max = c−1
0 (2R+D) if αR → 0 [see

Fig. A.1]. On the contrary, regardless of the AoA αR, the ToA τ ′(r,αR) takes its

minimum value τ ′
min = c−1

0 D if the scatterer is closest to the MS, which is the case

if r → 0.

Now, in order to determine the domain of integration DαR in (A.20), one needs

to solve (A.22) with respect to αR. Finding the roots of this function for a given

value of the ToA, say τ ′, it follows

αR
1 =−αR

2 = arccos(
(τ ′c0)

2 −D2 −2τ ′c0R
2RD

). (A.23)

Indeed, the domain between αR
1 and αR

2 determines the integral limits in (A.20).
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After solving the integral presented in (A.20) with due regard to the integral

limits presented in (A.23), the PDF p(k)τ ′ (τ
′) of the ToA τ ′ can be expressed by

p(k)τ ′ (τ
′) =

c0[(τ ′c0)
2 −D2]k

2π(2R)k+1

[
Dsin(αR)

(τ ′c0 +Dcos(αR))k+1

+

∫ τ ′c0 + kDcos(αR)

(τ ′c0 +Dcos(αR))k+1 dαR

]∣∣∣∣∣
αR=αR

1

αR=αR
2

(A.24)

for τ ′ ∈ [τ ′min,τ
′
max]. It is worth mentioning that for a given shape factor k, the

integral in (A.24) can be represented in terms of another integral of lower order.

This statement can be supported by comparing the order of the denominator under

the integral in (A.20), which is k+2, with that one shown in (A.24), which is k+1.

A recursive solution for this type of integrals can be found in [36, Eq. (2.554-1)].

This means that for a given value of k, the integral part of the PDF p(k)τ ′ (τ
′) presented

in (A.24) can be solved in closed form. By way of example, the final expressions

for the PDF p(k)τ ′ (τ
′) in which the shape factor k is set to 0 and 1 are given by

p(0)τ ′ (τ
′) =

c0

2πR

[
D
√

1−u2

τ ′c0 +Du
+

2τ ′c0√
(τ ′c0)2 −D2

× arctan(

√
(τ ′c0 −D)(1−u)
(τ ′c0 +D)(1+u)

)

]
(A.25)

and

p (1)
τ ′ (τ

′) =
c0

4πR2 [(τ
′c0)

2 −D2]

[
D
√

1−u2

(τ ′c0 +Du)2

+
2√

(τ ′c0)2 −D2
arctan(

√
(τ ′c0 −D)(1−u)
(τ ′c0 +D)(1+u)

)

]
(A.26)

respectively, for τ ′ ∈ [τ ′min,τ
′
max], where

u =
(τ ′c0)

2 −D2 −2τ ′c0R
2RD

. (A.27)

The PDF p(1)τ ′ (τ
′) in (A.26) represents the distribution of the ToA in a radio

propagation environment, in which the local scatterers are uniformly distributed

within the disk centered on the MS. This result exactly meets the ToA PDF of the
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p(k)τ ′ (τ
′) =

c0[(τ ′c0)
2 −D2]k−

1
2

2πk(2R)(k+1)

[
2(k+1)τ ′c0

(τ ′c0 +Dcos(αR))k g1

− k((τ ′c0)
2 −D2)

(τ ′c0 +Dcos(αR))k+1 g2

]∣∣∣∣∣
αR=αR

1

αR=αR
2

(A.28)

where

g1 = F1

(
−k;

1
2
,
1
2

;1− k;
τ ′c0 +Dcos(αR)

τ ′c0 −D
,
τ ′c0 +Dcos(αR)

τ ′c0 +D

)
(A.29)

g2 = F1

(
−k−1;

1
2
,
1
2

;−k;
τ ′c0 +Dcos(αR)

τ ′c0 −D
,
τ ′c0 +Dcos(αR)

τ ′c0 +D

)
. (A.30)

uniform circular model provided, e.g., in [11, Eq. (65)].

Besides the aforementioned recursive solution in (A.24) for the ToA PDF p(k)τ ′ (τ
′)

of the UDSM, a general (except for k = 0) closed-form solution for p(k)τ ′ (τ
′) can be

presented by (A.28) [see the top of the current page], in which F1(·; ·, ·; ·; ·, ·) de-

notes Appell’s hypergeometric function [37]. Notice that for k = 0, the closed-form

solution is given by (A.25).

Figure A.6 plots the logarithmic scale of the PDF p(k)τ ′ (τ
′) of the UDSM for

different values of the shape factor k, where the MS-to-BS distance D and the disk

radius R have been again set to 2 km and 250 m, respectively. To validate the closed-

form expression of the ToA PDF in (A.24) (or equivalently in (A.28)), the normal-

ized histogram of the simulation results is also plotted in this figure. The procedure

to obtain the normalized histogram is the same as the one discussed in Section V-A.

As can be observed, for the considered values of k, there exists a good agreement

between the analytical result and the normalized histogram, demonstrating that the

derived ToA PDF of the UDSM is correct. Furthermore, for all given values of k, a

high density of the ToA τ ′ around the minimum propagation delay τ ′
min and a low

density around the maximum propagation delay τ ′
max can be observed. In addition,

except the PDF p(25)
τ ′ (τ ′), all logarithmic-scaled PDFs plotted in Fig. A.6 can be

approximated over a large interval by linear lines with negative slopes. This means

that each of the ToA PDFs, except the aforementioned one, follows approximately

a negative exponential distribution in linear scale. Such a decaying exponential

behavior has often been adopted in specified channel models, such as in [28]. In

this connection, it has been shown in [4, Fig. 5] that the ToA PDF of the uniform



74 Modelling and Analysis of Non-Stationary Mobile Fading Channels

6.8 7 7.2 7.4 7.6 7.8 8 8.2

x 10
−6

10
4

10
5

10
6

10
7

 

 

ToA, τ’ (μs)

T
oA

 P
D

F,
 p

(k
)

τ’
(τ

’)

Analytical results
Normalized histogram

τ’
min

 = c
0
−1D τ’

max
 = c

0
−1(2R+D) 

k = −0.5

k = 0

k = 25
k = 8

Figure A.6: PDF p(k)τ ′ (τ
′) of the ToA τ ′ for the unified disk scattering model for

different values of the shape factor k, where γ = D/R = 8.

hollow-disk model does not exhibit a decaying exponential behavior if the radius of

the inner border tends to the radius of the outer one. In Fig. A.6, the changes of the

curve when k increases from k = 8 to k = 25 support this statement.

Figure A.7 is devoted to show the linear scale of the PDF p(0)τ ′ (τ
′) for different

values of the disk radius R, where the shape factor k is set to 0, meaning that the

local scatterers are distributed according to the joint uniform PDF in polar coordi-

nates [see (A.3)]. Referring to this figure, we can observe that for an assumed value

of D, an increase of R results in a higher probability of receiving signals with larger

delays. This is in concert with Fig. A.4, showing that an increase of R spreads the

distribution of the AoD. Figure A.7 presents clearly that the ToA τ ′ follows a de-

caying exponential-like distribution function. It should also be mentioned that the

measurement results reported in [25] indicate that the propagation delays in typical

urban environments can be modeled by a negative exponential function. A more

detailed comparison between the analytical and empirical ToA PDFs is provided in

Section VI.

In accordance with Section V-A, we try to fit the ToA PDF of the UDSM to

that of the Gaussian, uniform circular, uniform hollow-disk, and the uniform ring

model. The importance of these models has been discussed in Section V-B. The
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ToA PDF pG
τ ′(τ

′) of the Gaussian model can be found in, e.g., [13, Eq. (39)]. No-

tice that a drawback of the Gaussian scattering model is the lack of a closed-form

solution for the ToA PDF implying that numerical integration techniques have to

be invoked [13]. The ToA PDF of the uniform circular model can also be found in,

e.g., [11, Eq. (65)]. Meanwhile, the ToA PDF of the uniform hollow-disk model

and the uniform ring model can be found in [4, Eq. (9)].

Figure. A.8 shows the curve-fitting results of the ToA PDF of the UDSM and

that of the established scattering models, while Table A.1 lists the corresponding

LSEs in detail2. As can be observed in Fig. A.5, the ToA PDF of the UDSM agrees

closely with those of the considered scattering models. Referring to Table A.1, the

minimum and the maximum LSEToA belong to the uniform circular and Gaussian

scattering models, respectively. Furthermore, the LSEToA corresponding to the uni-

form hollow-disk model is very close to that of the Gaussian model. This consents

2In agreement with the curve-fitting in Fig. A.5, we have used the same model parameters ob-
tained by identifying the LSE with respect to the AoD PDF. This means that the model parameters
have not been optimized again to determine the LSE with respect to the ToA PDF. Nevertheless, we
still use the term LSEToA to address this error in Table A.1. This is due to the fact that determining
the LSEToA results in very close values (not shown in Table A.1) of the model parameters to those
listed in Table A.1, which have been optimized by identifying LSE AoD.
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to the result presented in Section V-A, in which the maximum LSEAoD belongs to

the uniform hollow-disk model. The curve-fitting is again poor for the tail of the

Gaussian model, which is again owing to the substantial difference between the

scatterer domains of the UDSM and the Gaussian model. Moreover, a very close

compromise between the ToA PDFs of the UDSM and the uniform ring model can

be observed. In this case, the non-zero value of the LSEToA is again caused by

upper-bounding the shape factor by k = 25. So far, this paper has shown that by

calibrating the shape factor k in the UDSM characterized by (A.1), the Gaussian,

uniform circular, uniform hollow-disk, and the uniform ring scattering model (in-

cluding any continuous concentration of the local scatterers between these models)

can be either precisely obtained or well approximated. This statement holds not

only for the apparent shape of the disk scattering area, but also for the correspond-

ing AoD and ToA PDFs. In this regard, Figs. A.5 and A.8, as well as Table A.1

demonstrate the effectiveness of this unification. Adding the fact that both the AoD

and ToA PDFs of the UDSM have closed-form expressions, it can be concluded

that the UDSM is a general robust geometric model to describe effectively the dis-

tribution of the local scatterers in different propagation areas. In what follows, the

robustness of the UDSM in the sense of matching empirical data sets will be evalu-
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ated as well.

VI. COMPARISON WITH MEASURED CHANNELS

The objective of the following section is to assess the validity of the UDSM

by comparing the derived analytical results with several measured channels in the

literature. In this connection, the goodness-of-fit of the UDSM is also compared

with that of several candidate geometric models. The corresponding curve-fitting

results are illustrated in Figs. A.9-A.13, while their details are listed in Table A.2.

A. Goodness-of-Fit Metric

Here, the goodness-of-fit between each candidate geometric model and an em-

pirical data set is the LSE between the two. The first step is to normalize each em-

pirical data set to guarantee the unity area under the data sets. Then, the calibrated

parameters of each model are determined by searching over the ranges of the pa-

rameters to identify the LSE. This procedure is the same as the one used in [22, Eq.

(1)]. There, the LSEAoD is the chosen metric to judge the goodness-of-fit. How-

ever, in this paper, we do not focus solely on the LSEAoD. If the empirical AoD is

not available (denoted by N.A.), but the corresponding ToA exists, we optimize the

model parameters to determine the LSEToA and to judge the curve-fitting results.

If both the empirical AoD and ToA PDFs of a measured channel are at hand, we

calibrate the model parameters by identifying the LSEAoD as the goodness-of-fit

metric. The calibrated parameters will then be used to plot the corresponding ToA

PDF. This means that we do not search again over the model parameters to deter-

mine the LSEToA. Nevertheless, we still use the term LSEToA to address this error.

The aforementioned procedure can fairly provide a simultaneous comparison with

respect to both the AoD and ToA PDFs. Furthermore, this allows us to compare our

results with the ones reported in [22].

B. Candidate Geometric Models

The candidate geometric scattering models are the uniform circular, Gaussian,

inverted-parabolic, conical, uniform hollow-disk, uniform elliptical, and the pro-

posed UDSM as listed in Table A.2. Notice that the first four models have only

one degree of freedom, while the last three allow two degrees of freedom. Further-

more, all the aforementioned scattering models result in unimodal PDFs for the ToA

(AoD), except the uniform hollow-disk model, which yields bimodal PDFs for both

the ToA and the AoD. All the candidate models assume that the BS (served as the

transmitter) is located outside of the scatterer domain, except the Gaussian model

which allows an infinite scatterer domain. Notice that in all the above-mentioned
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models, except the Gaussian model, the support region for the scatterers is a limited

disk centered on the MS (served as the receiver).

C. Candidate Empirical Data sets

The candidate empirical data sets are the measured channels reported in [23–26].

The candidates have been chosen such that three different propagation areas includ-

ing rural, suburban, and urban environments are covered (see Table A.2). Based on

the classification reported in [22], the first three [23–25] measured channels have

a unimodal shape of the ToA (AoD) histogram, while the last one [26] follows a

bimodal shape. The environment and the BS hight corresponding to each measure-

ment scenario consent to our first assumptions in Section II. A more compact de-

tailed information about other characteristics of the candidate measured channels

can also be found in [22].

D. Comparison Results

Starting from the measured channel in [23], the curve-fitting results of the AoD

PDF of the candidate geometric models and that of the empirical data are shown in

Fig. A.9. The optimized model parameters and the LSEAoD corresponding to each

geometric model are listed in Table A.2. Notice that the same curve-fitting, except

for the UDSM, to the same measured channel has also been provided in [22]. The

calibrated model parameters and the corresponding LSEAoD in [22], are very close

to those obtained in this paper. Referring to Table A.2, the uniform elliptical model

leads to the minimum LSEAoD = 1.6601 among the other geometric models. The

UDSM also suffers a close LSEAoD = 1.7021 to the minimum one and is quite

far from the LSEAoD of the other models. This can also be observed in Fig. A.9,

where both the uniform elliptical model and the UDSM follow the empirical data

very well. In this regard, the UDSM matches around the peak of the empirical

data better than the uniform elliptical model, while the uniform elliptical model

provides a better fitting in the tails of the distribution. Needless to say, the most

important part of a PDF corresponds to the peak of the curve. It is also noteworthy

that the performance of the other geometric models is considerably less than the

two aforementioned ones. We finish analyzing the third column of Table A.2 by

noticing that the ToA PDF of the measured channel in [23] is not available there.

The next column of Table A.2 is devoted to the curve-fitting results shown in

Fig. A.10. This figure compares the match between the ToA PDF of the candidate

geometric scattering models and that of the measured channel in [24]. The delay

histogram in [24, Fig. 6] has a standard deviation of τ ′
rms = 0.9 μs. The optimized

model parameters result almost in the same τ ′
rms, hence the data in Fig. A.10 is
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Figure A.9: Curve-fitting results after matching the various geometric models to the
empirical data in [23, Fig. 1].

shown for τ ′rmspτ ′(τ ′) versus τ ′ − τ ′min. The AoD PDF of this channel has not been

measured in [24], hence denoted by N.A. in Table A.2. Referring to Table A.2, the

UDSM and the uniform circular models lead to the minimum and the maximum

LSEToA, respectively. Besides the UDSM, the uniform elliptical and the conical

models also experience a very small LSEToA. This is in concert with the results

reported in [18], where it has been shown that the conical model outperforms the

uniform circular and the inverted-parabolic models.

The curve-fitting results to the empirical ToA and AoD PDFs derived from the

measured channel in [23] are illustrated in Figs. A.11 and A.12, respectively. The

calibrated parameters in Table A.2 are obtained by identifying LSEAoD of each

model. These parameters are very close to those reported in [22]. We use the

same calibrated parameters to plot the corresponding ToA PDFs. The delay his-

togram in [23, Fig. 11] has a standard deviation of τ ′
rms = 0.68 μs as reported

in [13]. The calibrated model parameters result almost in the same τ ′
rms, hence the

data in Fig. A.12 is shown for τ ′
rmspτ ′(τ ′) versus τ ′ − τ ′min. Referring to Table A.2,

the uniform elliptical model with the minimum LSEAoD = 0.08501 outperforms

the other considered geometric models. However, this model does not provide the

best fitting to the empirical ToA PDF. In this case, the UDSM with the minimum

LSEToA = 0.06283 provides the best fitting. Meanwhile, although, the LSEAoDs
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Figure A.10: Curve-fitting results after matching the various geometric models to
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of the uniform elliptical and the UDSM are very close to each other, these errors

have two different origins. Referring to Fig. A.11, the LSEAoDs corresponding to

the uniform elliptical and the UDSM originate mainly from around the peak and the

tails of the curves, respectively. In addition, referring to Table A.2, the LSEAoDs

of the Gaussian model is considerably less than that of the uniform circular model,

which agrees with the conclusion of [13].

Finally, the last column of Table A.2 lists the details of the curve-fitting illus-

trated in Fig. A.13. This figure depicts the curve-fitting results of the AoD PDF of

the candidate geometric scattering models and that of the measured channel in [26].

The discussion on this figure show explicitly the importance of the UDSM and its

novel features. In [22], it has been shown that the best two geometric models to

describe the measured channel in [26] are the uniform hollow-disk and the uniform

circular (Rx-inside) models, respectively. This is due to the fact that the empirical

data set in [26] has indeed neither a unimodal nor a bimodel shape. It has almost

a flat peak with some fluctuations, which can be fitted by both the aforementioned

models. However, the uniform circular model cannot sufficiently cover the flat peak.

While, the uniform hollow-disk model fits to the data through two sharp peaks.

These sharp peaks are caused by the bimodality nature of the AoD PDF [4, Eq. (6)]
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Figure A.11: Curve-fitting results after matching the various geometric models to
the empirical data in [25, Fig. 4].
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Figure A.13: Curve-fitting results after matching the various geometric models to
the empirical data in [26, Fig. 6].

of this model. Now, recall from Section III-B that one of the unique features of the

UDSM is to generate a flexible distribution between the uniform circular and the

uniform hollow-disk models, which are quite solid geometric models. The effect of

this feature can be seen in Fig. A.13, where the AoD PDF of the UDSM has a shape

between those of the uniform hollow-disk and the uniform circular models. This

shape is obtained by choosing k = 2.1 as shown in Table A.2. Notice that for k = 1,

the UDSM results absolutely in the uniform circular model and for higher values,

approximates the uniform hollow-disk model. Referring to Table A.2, the UDSM

results in the minimum LSEAoD = 0.002109, which is almost half of the LSEAoD

corresponding to the uniform hollow-disk and the uniform circular models.
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VII. CONCLUSION

Starting from a unified disk scattering model (UDSM) controlled by a shape

factor to model the distribution of the local scatterers confined to a disk centered on

the MS, closed-form expressions have been provided for the joint PDF of the AoD

and AoA as well as the joint PDF of the ToA and AoA. From these joint PDFs, the

marginal PDFs of the AoD and ToA have been also derived in closed form. The

correctness of the analytical results has been confirmed by the simulation results. It

has been also shown that by calibrating the shape factor, the uniform circular and

the uniform ring scattering models can be obtained exactly, while the Gaussian and

uniform hollow-disk models can be well approximated. The numerical results have

shown that the AoD and ToA PDFs of the UDSM can either precisely or closely

follow those of the Gaussian, uniform circular, uniform hollow-disk, and the uni-

form ring scattering models. The derived analytical results have also been validated

by both the unimodal and non-unimodal empirical data sets obtained from several

measured channels in the literature. The curve-fitting results have shown that the

UDSM is highly flexible and outperforms several other geometric models proposed

in the literature. Taking several candidate measured channels from different propa-

gation areas into account, it has been shown that the LSE of the UDSM is always

around half of that of the Gaussian model. The UDSM competes closely with the

uniform elliptical model for providing the best curve-fitting to the unimodal empir-

ical data sets. However, the UDSM outperforms considerably the uniform elliptical

model in the sense of matching bimodal empirical data sets. This is due to the fact

that by calibrating the shape factor, the AoD (ToA) PDF of the UDSM renders a

bimodal shape with two smooth peaks, while its mathematical expression is always

unimodal. This bimodal curve fits even better to the non-unimodal empirical data

set than the uniform hollow-disk model, which was to date the best proposed model

in this case. Further statistical characterizations devoted to, e.g., the average delay,

delay spread, and correlation properties of the channel can also be a topic for further

research.
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On the Spatial Configuration of Scatterers for Given

Delay-Angle Distributions

Alireza Borhani and Matthias Pätzold

Abstract — This paper investigates the distribution of scatterers located

around the mobile station (MS) for given delay-angle distributions. The delay-

angle distribution function represents the joint probability density function

(PDF) of the time-of-arrival (TOA) and angle-of-arrival (AOA). Given such

a joint PDF, we first derive a general expression for the distribution of the scat-

terers in both polar and Cartesian coordinates. We then analyze an important

special case in which the TOA and the AOA follow the multiple negative ex-

ponential (MNE) and the uniform distributions, respectively. The considered

MNE PDF is the sum of several decaying exponential functions, which allows

us to describe the TOA in a variety of propagation environments. For the de-

lay profiles specified in COST 207, the scatterer distribution is simulated and

visualized in scatter diagrams. The marginal PDF of the distance from the scat-

terers to the MS is also computed, illustrated, and confirmed by simulations.

For the MNE TOA PDF, it is shown that the local scatterers are not symmet-

rically distributed around the MS even if the AOAs are uniformly distributed.

In addition, the obtained scattering area is not confined by firm geometric con-

straints, which complies with real propagation environments. The importance

of the work is to provide a novel approach to channel modelling, in which ob-

taining the desirable TOA (AOA) PDF is assured.

Index terms — Channel modelling, spatial configuration, scatterer distribu-

tion, scatter diagram, delay-angle distribution, multiple negative exponential.
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I. INTRODUCTION

In the area of channel modelling, the distribution of scatterers is of crucial im-

portance, as it allows us to study the statistical properties of the received multipath

signal, such as the AOA and TOA distributions. These functions are essential for

determining other characteristic quantities of the channel, like the Doppler spread,

average delay, and delay spread. The spatial configuration of scatterers also plays a

key role in the characterization of non-stationary channel models [1–4]. A variety of

scatterer distributions have been proposed in the literature (see [5] and [6]). Among

them, the unified disk scattering [6], uniform elliptical [7–9], and the Gaussian

scatterer distribution model [10–14] are the most flexible ones, since they describe

various propagation mediums with respect to the TOA and the angle-of-departure

distributions [6].

According to the literature, the conventional approach to develop a new geometric-

based channel model is to start from a given scatterer distribution and then to derive

the statistical properties of the channel model, such as the AOA and TOA PDFs. To

validate the proposed channel model, the obtained PDFs must then be validated by

empirical data collected from measured channels. A good match, however, cannot

always be found due to the restrictions of the proposed scattering model. As an

example, many measurement campaigns (see, e.g., [15–17]) and specified channel

models (see, e.g., [18]) show that the TOA PDF often follows a sum of negative

exponential functions (acronymed by MNE TOA PDF). However, none of the scat-

tering models studied in [5] and [6] results exactly in an MNE TOA PDF. The same

disagreement might also arise by comparing measured AOA PDFs and the ones

obtained from predefined scattering models.

To cope with this issue, we propose a new approach to design channel models,

in which obtaining the desired TOA (AOA) PDF is incontrovertible. The starting

point of our approach is not a predefined scattering model. Instead, we start from

a given joint PDF of the TOA and AOA, from which the distribution of the local

scatterers is derived. The given joint (marginal) PDF of the TOA and AOA can

originate from either measured channels or channel specifications. In this way,

we develop a channel model in which a perfect match is guaranteed between the

statistical properties of the channel model and those of the measured (specified)

channels. In addition, the obtained scattering area is not confined by firm geometric

constraints.

Given the joint PDF of the TOA and AOA, we derive a mathematical represen-

tation for the scatterer distribution in both polar and Cartesian coordinates. As an

exemplary application, the MNE TOA PDF specified in COST 207 is employed
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to derive the distribution of the local scatterers on the assumption that the AOA is

uniformly distributed around the MS and independent of the TOA. The distribu-

tion of the scatterers in the propagation area is then illustrated in scatter diagrams.

Moreover, the marginal PDF of the distance from the scatterers to the MS is de-

rived, displayed, and compared with simulation results. An excellent agreement

between the analytical and simulation results is observed. It is shown that for the

MNE TOA PDF, the local scatterers are not symmetrically distributed around the

MS. Notice that circularly symmetric scattering models have often been proposed

in the literature (see [5] and [6]).

The rest of this paper is organized as follows. Section II is devoted to the math-

ematical description of the problem, whereas its general and specific solutions are

provided in Section III. The simulation results are illustrated and discussed in Sec-

tion IV. Finally, the conclusions are drawn in Section V.

II. PROBLEM DESCRIPTION

Fig. B.1 demonstrates a typical propagation scenario with some local scatter-

ers. Each plane wave arrives at the MS after a single-bounce caused by one of the

scatterers. It is assumed that the base station (BS) acts as the transmitter, while the

MS serves as the receiver. Furthermore, we assume that both the BS and the MS

are equipped with single omnidirectional antennas. The position of each scatterer

can be described by polar coordinates (r,αR), where r denotes the distance of the

scatterer from the MS, and αR stands for the AOA seen at the MS.

With reference to Fig. B.1, the total path length that an emitted plane wave

travels from the BS via a scatterer to the MS equals

Ds = r+
√

r2 +D2 +2rDcos(αR). (B.1)

The TOA τ ′ at the MS equals τ ′ = Ds/c0, where c0 represents the speed of light.

Owing to the random nature of propagation environments, the TOA τ ′ is a random

variable, whose distribution pτ ′(τ ′) depends on the environment. The same state-

ment holds for the AOA αR described by the PDF pαR(αR). It is worth mentioning

that τ ′ and αR can often be considered as independent random variables, as a certain

mathematical relation between the two does not exist in most of the real propagation

scenarios.

Given the joint PDF pτ ′αR(τ ′,αR) of τ ′ and αR, we are interested in finding the

joint PDF prαR(r,αR) of the radius r and the AOA αR. Notice that the joint PDF

prαR(r,αR) represents the distribution of scatterers in polar coordinates, which is

the first concern of this paper. Providing the Cartesian representation pxy(x,y) of
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the scatterer distribution is also of interest, as it allows us to visualize the scattering

area in the 2D plane. In what follows, we fulfil the main objectives of this paper by

deriving prαR(r,αR) and pxy(x,y).

III. PROBLEM SOLUTION

In this section, we first provide a general solution for the problem stated in

Section II. Subsequently, a specific solution is presented under the assumptions of

the MNE TOA PDF and the uniformly distributed AOAs.

A. General Solutions

By solving (B.1) with respect to r, we obtain

r(τ ′,αR) =
(τ ′c0)

2 −D2

2(τ ′c0 +Dcos(αR))
. (B.2)

In the equation above, the radius r is a function of the random variables τ ′ and αR.

Besides this function, the auxiliary function A(τ ′,αR) = αR is beneficial, allowing

us to derive the joint PDF of the radius r and the AOA α R. It can be shown that the

roots of these functions are given by

τ ′=c−1
0

(
r+
√

r2 +D2 +2rDcos(αR)

)
and αR = A. (B.3)

By applying the concept of transformation of two random variables [19, p. 130],

the joint PDF prαR(r,αR) of r and αR is given by the following expression

p rαR(r,αR) = |J|−1

× pτ ′αR

(
c−1

0 (r+
√

r2 +D2 +2rDcos(αR)),αR
)

(B.4)

in which |J| stands for the Jacobian of the transformation. This quantity can be

obtained by computing the following determinant

|J| =

∣∣∣∣∣
∂τ ′
∂ r

∂τ ′
∂αR

∂αR

∂ r
∂αR

∂αR

∣∣∣∣∣
−1

= c0

∣∣∣∣∣1+ r+Dcos(αR)√
r2 +D2 +2rDcos(αR)

∣∣∣∣∣
−1

. (B.5)

To derive the Cartesian representation pxy(x,y) of the scatterer distribution from

its polar representation in (B.4), we use the following transformations x= rcos(α R)
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Figure B.1: A typical multipath propagation scenario with some local scatterers (�).

and y = r sin(αR). Applying again the concept of transformation of random vari-

ables, we obtain

p xy(x,y)=c−1
0

∣∣∣∣∣ 1√
x2 + y2

+
1+ Dx

x2+y2√
(x+D)2 + y2

∣∣∣∣∣ (B.6)

× pτ ′αR

(
c−1

0 (
√

x2+y2+
√

(x+D)2 + y2),arctan
(y

x

))
.

An important special case occurs if the TOA τ ′ and the AOA αR are indepen-

dent random variables. In this case, the joint PDF pτ ′αR(·, ·) in (B.4) (or equiv-

alently (B.6)) can be represented as the product of the marginal PDFs pτ ′(·) and

pαR(·). These marginal PDFs can be obtained either from measured channels (see,

e.g., [15–17]) or from specified channel models (see, e.g., COST 207 final re-

port [18]).

The obtained PDF in (B.4) (or equivalently (B.6)) provides the statistical de-

scription of the scattering area from which obtaining pτ ′αR(τ ′,αR) is assured. A

remarkable feature of the proposed approach is that the obtained scattering area is

not confined by geometric constraints (see (B.6) or (B.4)). However, most of the

geometric channel models proposed in the literature are restricted by tight mathe-
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matical boundaries, which might spoil the performance of the overall system.

B. Specific Solutions

One of the widely addressed TOA PDFs is the negative exponential distribu-

tion function, which has been confirmed by many measurement campaigns [15–17].

Furthermore, the COST 207 working group developed specifications for the delay

distribution in different propagation areas, showing that the delay distribution can

be formulated by one or two decaying exponential functions. For instance, the TOA

PDF pτ ′(τ ′) of the channel model associated with a typical urban area is specified

by the following single negative exponential function [18]

pτ ′(τ ′) =

{
1

1−e−7 eτ ′/μs, if 0 ≤ τ ′ < 7 μs,

0, otherwise,
(B.7)

For the bad (complicated) urban area, pτ ′(τ ′) is presented by the following two

decaying exponential functions

pτ ′(τ ′)=

⎧⎪⎪⎨
⎪⎪⎩

2
3(1−e−5)

eτ ′/μs, if 0 ≤ τ ′ < 5 μs,
1

3(1−e−5)
e−τ ′/μs+5, if 5 μs ≤ τ ′ < 10 μs,

0, otherwise.

(B.8)

Motivated by the discussion above, we model the TOA PDF pτ ′(τ ′) by the following

sum

pτ ′(τ ′) =
I

∑
i=1

aie
−λi(τ ′−τ ′2i−2)

× [
u(τ ′ − τ ′2i−2)−u(τ ′ − τ ′2i−1)

]
(B.9)

which is called the MNE TOA PDF. In the equation above, I is the total number

of exponential functions, the parameters ai are normalizing constants to guarantee

the unity area under the PDF pτ ′(τ ′), and u(·) stands for the unit step function. In

addition, λi is the decaying factor of the ith negative exponential function, which

ranges from τ ′2i−2 to τ ′2i−1. Accordingly, the window u(τ ′ − τ ′2i−2)− u(τ ′ − τ ′2i−1)

is the domain of the ith exponential function.

The MNE TOA PDF in (B.9) is very useful, as it allows us to model a variety

of power delay profiles by adjusting the domain and the other parameters of each

negative exponential functions. All these parameters can be attained from mea-

sured (specified) TOA PDFs. For example, the representation of pτ ′(τ ′) in (B.9)

is equal to the specified TOA PDFs in (B.7) and (B.8) by choosing the model pa-
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rameters listed in Table B.1. It is also worth mentioning that typical and simple

propagation areas need a small number I of the exponential functions to be ex-

plained (see (B.7)), whereas atypical and complicated ones require a higher number

I (see (B.8)).

To obtain a specific solution, we also assume that the AOA is uniformly dis-

tributed between −π and π , i.e., pαR(αR) = 1/(2π) if αR ∈ (−π ,π ]. It is also

assumed that the AOA αR is independent of the TOA τ ′, allowing us to write

pτ ′αR(τ ′,αR) = pτ ′(τ ′)pαR(αR). Using this property and substituting (B.9) and

pαR(αR) = 1/(2π) in (B.4) and (B.6), the polar and Cartesian representations of

the scatterer distribution are given by (B.10) and (B.11), respectively [see the bot-

tom of this page].

IV. SIMULATION RESULTS

We assume that the MS is located at the origin of the Cartesian coordinates,

while the BS is placed on the negative part of the x-axis at a distance of D = 1 km

from the MS (see Fig. B.1). To specify the TOA PDF presented in (B.9), we use the

two sets of the model parameters listed in Table B.1, which permits us to analyze

prαR(r,αR) =
c−1

0

2π

∣∣∣∣∣1+ r+Dcos(αR)√
r2 +D2 +2rDcos(αR)

∣∣∣∣∣
×

I

∑
i=1

aie
−λi(c

−1
0 (r+

√
r2+D2+2rDcos(αR))−τ ′2i−2)

×
[
u

(
c−1

0 (r+
√

r2 +D2 +2rDcos(αR))− τ ′2i−2

)

− u

(
c−1

0 (r+
√

r2 +D2 +2rDcos(αR))− τ ′2i−1

)]
(B.10)

pxy(x,y) =
c−1

0

2π

∣∣∣∣∣ 1√
x2 + y2

+
1+ Dx

x2+y2√
(x+D)2 + y2

∣∣∣∣∣
×

I

∑
i=1

aie
−λi(c

−1
0 (

√
x2+y2+

√
(x+D)2+y2)−τ ′2i−2)

×
[
u

(
c−1

0 (
√

x2 + y2+
√

(x+D)2 + y2)− τ ′2i−2

)

− u

(
c−1

0 (
√

x2 + y2+
√

(x+D)2 + y2)− τ ′2i−1

)]
(B.11)
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the distribution of the scatterers in typical and bad urban areas. For the two sets, we

first display the corresponding joint PDF pxy(x,y) and then evaluate its correctness

by the scatter diagrams obtained from simulation results. The marginal PDF pr(r)

of the radius r is also plotted and verified by simulation results.

Table B.1: Model parameters according to the channel specifications reported in
COST 207 [18].

COST 207 Model parameters
channel models I c1 c2 λ1 λ2 τ ′0 τ ′1 τ ′2 τ ′3
Typical urban 1 1.0009 - 1 - 0 μs 7 μs - -

Bad urban 2 0.6712 0.3356 1 1 0 μs 5 μs 5 μs 10 μs

Fig. B.2 shows the joint PDF pxy(x,y) (see (B.11)) in the logarithmic scale for a

typical urban area with the delay characteristics listed in Table B.1. A higher density

of scatterers can be observed close to the MS (but not exactly at (0,0)), while this

density decreases with increasing the distance from the MS. This is in agreement

with the exponential distribution of the TOA in (B.7), in which the large values

of the distribution function are associated with the delays of incoming waves from

nearby scatterers, whereas the tail of the function is due to far scatterers. Referring

to Fig. B.2, a very low density of scatterers is observed along the BS-MS connecting

line. This could be attributed to the fact that the highest value of pτ ′(τ ′) in (B.7)

belongs to the shortest path.

To confirm the analytical result shown in Fig. B.2, we have simulated the scat-

tering area by distributing 1000 scatterers by means of the TOA PDF in (B.7). The

uniform distribution between −π and π has been considered to distribute the scat-

terers in azimuth. The result is shown in Fig. B.3. The scatter diagram complies

with the joint PDF pxy(x,y) shown in Fig. B.2, as the scatterers are distributed in

the same manner in both figures. Moreover, Fig. B.3 shows that this propagation

area might be approximated by a disk centred on a point on the BS-MS connecting

line, within which the local scatterers are non-uniformly distributed. This geometry

originates from the statistical properties of the channel, but not from imposed geo-

metric restrictions. It is also noteworthy that the BS-MS connecting line is almost

free of the scatterers, which meets the result presented in Fig. B.2.

Fig. B.4 illustrates the joint PDF pxy(x,y) in (B.11) for the bad urban channel

specified by the model parameters in the last row of Table B.1, which result in the

piecewise TOA PDF pτ ′(τ ′) in (B.8). To highlight the impact of this piecewise

function on the joint PDF pxy(x,y), we have used two different colours in Fig. B.4.

The darker (lighter) colour shows the density of the scatters associated with the
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Figure B.2: The joint PDF pxy(x,y) (see (B.11)) for the typical urban channel with
the TOA PDF in (B.7) and the uniformly distributed AOA (D = 1 km).

first (second) exponential function, i.e., the one ranged from 0 to 5 μs (5 to 10 μs).

Referring to this figure, the darker graph is almost like the one shown in Fig. B.2, as

both have been produced from almost the same delay distribution. Worth noticing is

that in order to fulfill the second exponential function in (B.8), which is ranged from

5 to 10 μs, a larger scattering area is required. This can be observed by comparing

the coverage area under the lighter and darker graphs.

Again, to validate the analytical result shown in Fig. B.4, we have simulated

the scattering area in such a way that the TOA PDF in (B.8) is satisfied. Fig. B.5

shows the corresponding scatter diagram. A close agreement between the simulated

scattering area and the joint PDF pxy(x,y) shown in Fig. B.4 can be observed. By

increasing the distance from the MS, the density of scatterers varies in a complicated

manner. Roughly, the density first decreases, then increases rapidly, and finally

decreases gradually. The extent of these variations also changes with the azimuth

AOA. An unexpected high density of scatterers near the BS can also be observed.

Notice that the same behaviour can also be observed in Fig. B.4.

Fig. B.6 demonstrates the marginal PDF pr(r) of the radius r shown in Fig. B.1

for the two sets of parameters listed in Table B.1. This PDF can be obtained by
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Figure B.3: The scatter diagram for the typical urban channel with the TOA PDF
in (B.7) and uniformly distributed AOAs (D = 1 km).

integrating the joint PDF prαR(r,αR) in (B.10) over the azimuth AOA αR, i.e.,

pr(r) =

π∫
−π

pr,αR(r,αR)dαR. (B.12)

As can be seen from this figure, pr(r) decays gradually for both the typical and

bad urban areas. However, for the bad urban channel model, a jump in pr(r) can

be observed. An excellent match between the analytical and the simulation results

can be seen. The characteristics of the plots are entirely in line with the simulated

scattering areas shown in Figs. B.3 and B.5.

V. CONCLUSION

In this paper, we have investigated the distribution of scatterers for given delay-

angle joint PDFs. Exact analytical expressions have been provided for the polar

and Cartesian representation of the scatterer distribution. The proposed approach

does not impose any specific geometric constraint on the propagation area. An

important special case in which the TOA follows the MNE PDF and the AOA is

uniformly distributed has also been analyzed. The corresponding scattering areas

have been simulated, demonstrating that a typical urban area might be modelled by
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Figure B.4: The joint PDF pxy(x,y) (see (B.11)) for the bad urban channel with the
TOA PDF in (B.8) and the uniformly distributed AOA (D = 1 km).
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Figure B.5: The scatter diagram for the bad urban channel with the TOA PDF
in (B.8) and uniformly distributed AOAs (D = 1 km).
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Figure B.6: The marginal PDF pr(r) (see (B.12)) for the typical and bad urban
channels shown in Figs. B.2 and B.4.

a disk centred on the line between the BS and the MS. The scattering area of the bad

urban channel model cannot be modelled by standard geometric shapes, as its power

delay profile is mathematically complex. In such cases, the proposed approach gives

a statistical representation for the scattering area. Analyzing further characteristics

of the channel, such as the angle-of-departure PDF, can be investigated in future

works.
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lustrated, and confirmed by the available measurement data. It is shown that
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describe the velocity distribution of relatively fast and slow moving scatterers,

respectively. Since the proposed V2V channel model flexibly covers several

communication scenarios as special cases, including fixed-to-vehicle (F2V) and
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I. INTRODUCTION

The drastic increase in road traffic density leads to congestion on streets and

accidents, which cause immense costs in time, health, and money. V2V communi-

cation systems have emerged as a state-of-the-art technology to effectively alleviate

the number of deaths, injuries, and delays caused by road accidents. In this re-

gard, IEEE 802.11p is a promising standard for enabling wireless communication

between vehicles moving under different driving conditions. For the development

of future V2V communication systems and standards, a deep knowledge of the un-

derlying fading channel characteristics is indispensable.

Different V2V channel models have been proposed in the literature. Geometry-

based V2V channel models have been proposed, e.g., in [1–5]. The two-ring chan-

nel model, proposed in [4] and [5], is a typical example of a geometry-based model

which allows a statistical characterization of V2V channels in urban areas. An

empirical study, which reports on measured Doppler delay profiles of frequency-

selective V2V channels can be found in [6]. Narrow-band channel measurements

of a V2V channel and its characterization under realistic driving conditions have

been reported in [7] and [8]. Other campaigns have also been conducted to mea-

sure MIMO V2V and vehicle-to-infrastructure channels [9–15]. As special cases of

V2V channels, the statistical properties of F2V and F2F channels have been studied

analytically, e.g., in [16–22] and empirically, e.g., in [23–28].

The majority of channel models that can be found in the literature relies on the

assumption of stationary scatterers. However, moving scatterers are unavoidable in

V2V communications. Moving foliage, walking pedestrians, and passing vehicles

are only a few examples of scatterers in motion, which can be observed in most

of the real-world radio propagation environments. Only a relatively small number

of analytical studies, e.g., [29–31], have so far studied the effect of moving scat-

terers with random velocities and random directions on the statistical properties of

the channel. Recall that in wireless communications, the frequency spread of the re-

ceived signal is a result of the Doppler effect. This effect originates mainly from the

moving transmitter and/or the moving receiver. However, even if the transmitter and

receiver are fixed (F2F communications), the received signal can still experience

the Doppler effect if the scatterers are non-stationary [29]. This means that moving

scatterers can be a significant source for the Doppler spread, especially at millimeter

wavelengths [30]. This phenomenon was studied empirically in [12], [25] and [26],

as well as analytically in [29] and [30]. The Doppler spectrum of indoor channels

in the presence of moving scatterers was also studied in [32] and [33]. In [29], the

ACF and the PSD of an F2F communication link surrounded by moving scatterers
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with deterministic velocities and deterministic directions were derived. There, it

was shown that the velocity of moving scatterers can be modeled appropriately by

a negative exponential distribution function. The authors of [29] focused solely on

an F2F channel in which the moving scatterers are located on a ring centered on a

fixed receiver. The effect of moving scatterers on F2V and F2F channels was also

studied in [30] and [31], respectively. In addition, the impact of moving scatterers

with deterministic velocities and deterministic directions on V2V links assuming

the straight street model has been discussed in [34]. Accordingly, to the best of the

authors’ knowledge, the statistical properties of V2V channels in the presence of

moving scatterers with random velocities and random directions have neither been

investigated analytically nor empirically so far. Although, the authors of this paper

have recently studied the effect of moving scatterers solely on the ACF of V2V fad-

ing channels in [35], further statistical characteristics of the same channel under the

assumption of a realistic scatterer velocity distribution will be investigated for the

first time in this paper.

This paper strives to alleviate the current lack of analytical studies on V2V

channels by investigating the statistical properties of a narrowband V2V channel

in which the local scatterers are moving with random velocities in random direc-

tions. The proposed V2V channel model does not impose any constraints on the

position of the moving scatterers. Starting from the complex channel gain, we de-

rive the temporal ACF and the corresponding PSD in integral form, which will then

be simplified and examined under the assumption of different scatterer velocity dis-

tributions. In the transportation research area, the most popular distributions for

the velocity of moving vehicles (fast moving scatterers) are the Gaussian and the

GM models [36–41]. For the GM, exponential, and the uniform distributions of

moving scatterers’ velocity, the derived ACF is illustrated and compared with the

classical ACF, which follows under the assumption of fixed scatterers. Moreover,

the PSD of the channel is plotted and compared with the measurement data reported

in [25]. These analyses are carried out for relatively slow and fast moving scatter-

ers. Furthermore, the Doppler spread of the channel is provided in closed form. It

is shown that the Doppler spread of the channel model can be perfectly matched to

the Doppler spread of the measured channel reported in [7].

The novelty of this paper arises from the following features. First, owing to

the generality of our proposed geometrical model, one is able to derive the ACF,

PSD, and the Doppler spread of the one-ring, two-ring, and elliptical model from

the presented results in this paper. Second, the proposed V2V channel model is

a general model that includes the F2V and F2F channel models as special cases.
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Furthermore, the classical channel models, where the local scatterers are either fixed

or in motion with deterministic velocities, can also be obtained as special cases

of the proposed stochastic model. This study bridges to traffic modeling in the

area of transportation engineering by employing the GM model in our analysis as

a realistic distribution model describing the velocity of moving vehicles. Utilizing

the GM model for the first time in this paper, as well as analyzing further statistical

properties of the channel as compared to [35] determine the main differences of this

work with [35]. Herein, we also provide closed-form solutions for the analytical

results, which have been presented in integral form in [35]. The verification of the

analytical results with measured real-world channels is another original contribution

of this work.

The remainder of this paper is organized as follows. Section II presents the

propagation scenario by means of a geometrical scattering model. In Section III,

we introduce several appropriate candidates for the velocity distribution of moving

scatterers. The complex channel gain is presented in Section IV. Sections V and VI

investigate the ACF of the V2V and F2F fading channels, respectively. The PSD

of the V2V and F2F channels are presented in Sections VII and VIII, respectively.

The corresponding Doppler spread is discussed in Section IX. Numerical results

and verification of the analytical results by means of empirical data are provided in

Section X. Finally, Section XI summarizes our main findings and draws the conclu-

sions.

II. GEOMETRICAL SCATTERING MODEL

The geometrical scattering model, presented in Fig. C.1, is an appropriate model

to describe typical propagation scenarios in urban areas, where both the transmit-

ter and receiver vehicles are surrounded by N local scatterers denoted by Sn (n =

1,2, ...,N). It is assumed that the transmitter and receiver move with constant ve-

locities vT and vR in the directions determined by the fixed angles α T
v and αR

v ,

respectively. Each of the local scatterers Sn (n = 1,2, ...,N) is in motion with a

random velocity vSn in a random direction determined by αSn
v . Owing to high path

loss, we neglect the energy contribution of remote scatterers and assume that a wave

emitted from the transmitter vehicle at an angle-of-departure (AOD) αT
n reaches the

receiver vehicle at an angle-of-arrival (AOA) αR
n after a single bounce by the nth

moving scatterer Sn inside the propagation area. Notice that the upperscripts R and

T in the notation used for the AOA and AOD, i.e., αR and αT , refer to the receiver

and the transmitter, respectively. Finally, we assume that both the transmitter and

receiver are equipped with single omnidirectional antennas.
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Figure C.1: Typical propagation scenario with moving transmitter (Tx) and moving
receiver (Rx) illustrating the effect of single-bounce scattering in the presence of
moving scatterers.

III. SCATTERER VELOCITY DISTRIBUTION CANDIDATES

In what follows, we review briefly the most important distributions that can

realistically describe the velocity of moving vehicles in transportation engineering.

These candidates then will be used either to derive a closed form solution or to carry

out a numerical integration for the statistical characteristics of interest.

Confirmed by measurements, the classical Gaussian and the GM models are

the most popular distributions for describing the velocity of vehicles moving along

roads and highways [36–41]. The GM model attempts to cluster vehicles into spe-

cific groups so that the vehicles in the same group have more similarity in motion

features than in other groups [41]. This random model can effectively describe the

velocity of the vehicles, where the characteristics of the speed data are not homoge-

neous [38]. The GM distribution can be formed as follows [37]

pvS(vS) =
I

∑
i=1

wiNi(vS;mivS,σ
2
ivS

) (C.1)

where wi ≥ 0 is the mixing proportion, which is subject to ∑i wi = 1. The number

of individual Gaussian densities Ni(·; ·, ·) is denoted by I, where each of them has a

mean mivS and a variance σ2
ivS

. As a special case, the classical Gaussian distribution

can be obtained from (C.1) by setting I = 1. It is worth mentioning that owing to

the apparent bimodality of speed distributions, the classical Gaussian model can-
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not properly describe the distribution of the moving vehicles under heavy traffic

congestion conditions [38]. For such cases, it was recommended in [37] to use a

mixture of two different Gaussian distributions. The first mixture component repre-

senting the moderate-speed regime can be modelled as N1(vS;m1vS ,σ 2
1vS

), and the

second mixture component indicating the high-speed regime can be expressed by

N2(vS;m2vS ,σ 2
2vS

). Thus,

pvS(vS) = (1−w1)N1(vS;m1vS ,σ
2
1vS

)+w1N2(vS;m2vS ,σ
2
2vS

) (C.2)

exhibits the bimodal Gaussian distribution as a model for the probability that the

non-stationary scatterers move with speed vS. Notice that, setting the mixing pro-

portion w1 to either 0 or 1 in (C.2) results in the classical Gaussian distribution.

We have used the bimodal GM distribution to describe the velocity of relatively

fast moving scatterers, while the negative exponential distribution has been chosen

to model the velocity of relatively slow moving scatterers1. In fact, as the scatterer

velocity vS is always larger than or equal to zero, the negative tail of the Gaussian

distribution excludes the use of this distribution for describing the velocity of slow

moving scatterers. However, the contribution of the negative tail can be neglected if

the average velocity is sufficiently large. The importance of the decaying exponen-

tial distribution to model the velocity of slow moving scatterers was comprehen-

sively studied in [29] and [30]. For comparison reasons, the uniform distribution

has also been examined in this paper.

IV. CHANNEL CHARACTERIZATION

The propagation scenario described in Section II is an extended version of the

typical fixed-to-mobile scenario in the presence of fixed scatterers studied in [42,

pp. 56–60]. It was shown there that the complex channel gain μ(t) of frequency-

nonselective F2V channels can be modeled by a complex stochastic process repre-

senting the sum of all scattered components in the following form

μ(t) =
N

∑
n=1

cne j(2π fnt+θn) (C.3)

where cn designates the attenuation factor caused by the interaction of the emitted

wave with the nth scatterer Sn, and fn represents the Doppler frequency2 caused by

1For V2V scenarios, we use the term relatively fast (slow) moving scatterers if the mean velocity
mvS of the scatterers is about or greater (smaller) than the speed of the fastest (slowest) vehicle, i.e.,
mvS ≥ max{vT ,vR} (mvS < min{vT ,vR}).

2The frequency shift caused by the Doppler effect is given by f = f max cos(α), where fmax =
f0v/c0 denotes the maximum Doppler frequency, f 0 is the carrier frequency, c0 denotes the speed of
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the movement of the receiver. Moreover, the random variable θn denotes the phase

shift of the nth path, which is usually assumed to be uniformly distributed between

0 and 2π [42].

The complex channel gain μ(t) in (C.3) can be used to model the propagation

scenario described in Section II after taking the effects of both the moving transmit-

ter and the moving scatterers into account. Indeed, the main differences between

the proposed V2V channel in the presence of moving scatterers and the model pre-

sented in (C.3) are the additional Doppler shifts originating from the mobile trans-

mitter and the moving scatterers. To capture the overall Doppler effect attributed to

the moving vehicles and the moving scatterers, we have to replace fn in (C.3) by

fn = f T
n + f TS

n + f SR
n + f R

n . (C.4)

In the equation above, the first frequency shift f T
n is caused by the movement of the

transmitter. The second shift f TS
n is due to the fact that the transmitted signal im-

pinges on the nth moving scatterer. The third frequency shift f SR
n is the contribution

which arises when the moving scatterer redirects the signal to the receiver. Finally,

the last Doppler shift f R
n is due to the movement of the receiver. In [35], it has been

shown that the overall Doppler frequency fn in (C.4) can be written in the following

compact form

fn =
k0

2π

[
vT cos

(
αT

v −αT
n

)− vSn

(
cos
(

αT
n −αSn

v

)

+ cos
(

αSn
v −αR

n

))
+ vR cos

(
αR

v −αR
n

)]
(C.5)

where k0 = 2π f0/c0 denotes the free-space wave number. Accordingly, in the pres-

ence of moving scatterers, the complex channel gain of the considered V2V channel

can be modeled by (C.3) in which we replace fn by (C.5).

It is worth mentioning that if the number of paths N tends to infinity, then one

may invoke the central limit theorem, which states that the complex channel gain

μ(t) in (C.3) equals a complex-valued Gaussian process with zero mean and vari-

ance 2σ2
0 = limN→∞ ∑N

n=1 E{c2
n} [42].

light, and α is the difference between the AOA and the angle of movement [43].



114 Modelling and Analysis of Non-Stationary Mobile Fading Channels

V. AUTOCORRELATION FUNCTION OF THE VEHICLE-TO-VEHICLE

CHANNEL MODEL

The ACF rμμ(τ) of the complex channel gain μ(t) can be determined by using

the definition rμμ(τ) := E {μ∗(t)μ(t+ τ)} in which E{·} denotes the expectation

operator.

Under the assumption of isotropic scattering, which implies that the AOA α R
n is

uniformly distributed between 0 and 2π , and that all path gains cn have the same

size, namely cn = σ0
√

2/N [42], it can be shown (see [35]) that the ACF of the

underlying V2V channel model is given by (C.6) [see the top of the next page], in

which pαS
v
(αS

v ) and pvS(vS) denote the distribution of the direction and the velocity

distribution of the moving scatterers, respectively. Furthermore, pαT αR(αT ,αR)

describes the joint distribution of the AOD α T and the AOA αR.

The proposed ACF in (C.6) provides a suitable platform to study the statisti-

cal properties of different geometric channel models, such as the street, T-junction,

U-turn, as well as one-ring, two-ring, and elliptical model, which are all widely

used to describe typical V2V and F2F propagation areas. This is due to the fact

that in the presented form of (C.6), the joint PDF pαT αR(αT ,αR) can be optionally

used to present one of the aforementioned geometric channel models. From this

standpoint, the proposed formulation is widely useful and implementable in typical

propagation areas. However, due to the often complex nature of pαT αR(αT ,αR),

simplifying (C.6) under the assumption of other typical geometric channel models

is possible, although not mathematically tractable. In what follows, we first ex-

emplify several possible ACFs, which can be obtained by simplifying (C.6) under

specific assumptions, and then we study the proposed propagation scenario of this

paper.

From (C.6), the ACF of the classical F2V scenario with fixed scatterers is ob-

tained by setting both vT and vS to zero. In this case, the ACF results in rμμ(τ) =
2σ 2

0 J0(k0vRτ), where J0(·) denotes the zeroth-order Bessel function of the first kind.

This model is known in the literature as the Jakes model [43].

Another special case can be obtained by substituting pαT αR(αT ,αR) associated

with the elliptical model in (C.6). This joint distribution can be derived from the

exact relationship between the AOD αT and the AOA αR of the elliptical model

presented in [44]. In this way, one can attain the ACF of the elliptical model in the

presence of moving scatterers.

Let us return to the proposed V2V communication scenario and assume that

the AOD αT is uniformly distributed between 0 and 2π . The same assumption

holds for αSn
v . It is also assumed that αT is independent of the AOA αR. Now, if
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rμμ(τ) = 2σ 2
0

∞∫
0

2π∫
0

2π∫
0

2π∫
0

exp

{
j

[
k0vT cos

(
αT

v −αT)−2k0vS cos

(
αT −αR

2

)

× cos

(
αT +αR

2
−αS

v

)
+ k0vR cos

(
αR

v −αR)]τ
}

× pαS
v

(
αS

v

)
pαT αR

(
αT ,αR) pvS(vS)dαS

v dαRdαT dvS (C.6)

rμμ(τ) =
σ 2

0

2π2

∞∫
0

2π∫
0

2π∫
0

exp
{

jk0vT cos
(
αT

v −αT)τ
}

J0

(
2k0vS cos

(
αT −αR

2

)
τ
)

× exp
{

jk0vR cos
(
αR

v −αR)τ
}

pvS(vS)dαT dαRdvS (C.7)

vS = 0, the ACF in (C.6) results in rμμ(τ) = 2σ 2
0 J0(k0vT τ)J0(k0vRτ), which equals

the ACF of the classical V2V channel model in the presence of fixed scatterers

reported in [4, Eq. (46)] and [5, Eq. (19)]. If vS �= 0, one can integrate over the uni-

formly distributed random variable α Sn
v in (C.6), which simplifies the ACF rμμ(τ)

to (C.7) [see the top of the current page]. The result in (C.7) represents the ACF of

the proposed V2V channel in the presence of moving scatterers. This presentation

of the ACF has an appropriate form which needs to be examined for the different

scatterer velocity distributions discussed in Section III. We depict the behavior of

the ACF rμμ(τ) in (C.7) by means of numerical integrations in Section X-A.

VI. AUTOCORRELATION FUNCTION OF THE FIXED-TO-FIXED

CHANNEL MODEL

To study the effect of moving scatterers on the ACF of the F2F channel, as a

special case of the proposed V2V channel, let us consider non-moving transmitter

and receiver vehicles, i.e., vT = vR = 0. Then, the ACF in (C.7) reduces to the

equation

rμμ(τ)=
σ 2

0

2π2

∞∫
0

2π∫
0

2π∫
0

J0

(
2k0vS cos

(
αT −αR

2

)
τ
)

pvS(vS)dαT dαRdvS (C.8)
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which after some intricate mathematical manipulations [see Appendix A] is simpli-

fied to the following expression

rμμ(τ) = 2σ 2
0

∞∫
0

J2
0 (k0vSτ) pvS(vS)dvS. (C.9)

In this paper, we address the ACF presented in (C.9) as the ACF of the proposed

F2F channel with moving scatterers. This result allows us to study the effect of

different scatterer velocity distributions pvS(vS) on the ACF rμμ(τ). In what fol-

lows, we present (without proof) several closed-form expressions for the ACF of

the proposed F2F channel model under the assumption of different scatterer veloc-

ity distributions.

Let us first assume that the velocity vS of the scatterers is a known constant

vS0, i.e., vS = vS0. Hence, the probability density function pvS(x) of vS is given

by pvS(vS) = δ (vS − vS0). In this case, the ACF in (C.9) can be presented in the

following closed-form expression

rμμ(τ) = 2σ 2
0 J2

0 (k0vS0τ). (C.10)

The expression above equals the ACF of V2V channels [4, Eq. (46)] in the presence

of fixed scatterers if the transmitter and the receiver vehicles both move with speed

vS0.

If vS follows the exponential distribution with mean mvS , then the ACF of the

proposed F2F channel model is given by the expression

rμμ(τ) = 2σ 2
0

2F1

(
1
2 ,

1
2;1;

(2k0mvS τ)2

1+(2k0mvSτ)2

)
√

1+(2k0mvSτ)2
(C.11)

in which pFq(a1, ...,ap;b1, ...,bq;x) stands for the generalized hypergeometric func-

tion [45, p. 1010].

If vS is uniformly distributed between 0 and 2mvS , then the ACF in (C.9) results

in

rμμ(τ) = 2σ 2
0 2F3

(
1
2
,
1
2

;1,1,
3
2

;−(2k0mvSτ)2
)
. (C.12)

If vS follows the GM distribution presented in (C.1), then the ACF in (C.9)

cannot be written in closed form. In this case, the following expression for the ACF
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of the proposed F2F channel model in the presence of moving scatterers holds

rμμ(τ) = 2σ 2
0

I

∑
i=1

wi

∞∫
0

J2
0 (k0vSτ)Ni(vS;mivS,σ

2
ivS

)dvS. (C.13)

Notice that in the expression above, it is supposed that the mean velocity mivS of

each mixture component is sufficiently large, which allows us to neglect the negative

tail of each Gaussian distribution.

Owing to flexibility of the proposed channel model, the ACF of the F2F one-ring

model can also be derived from the general form of the ACF in (C.6). Accordingly,

the ACF of the F2F one-ring model can be obtained by setting vT = vR = 0 and

using the joint distribution pαT αR(αT ,αR) of the AOD αT and the AOA αR of the

one-ring model in (C.6). This joint distribution equals (see Appendix B)

pαT αR(αT ,αR) =
1

2π
δ
(

αT − arctan

(
γ−1 sin(αR)

1+ γ−1 cos(αR)

))
(C.14)

in which γ = D/R denotes the ratio of the distance D between the two fixed stations

(transmitter, receiver) and the radius R of the one-ring model. Now, by assuming a

uniform distribution between 0 and 2π for the direction of movement α Sn
v , substi-

tuting (C.14) in (C.6), and performing some mathematical manipulations, the ACF

of the F2F one-ring model can finally be written as

rμμ(τ) =
σ 2

0

π

∞∫
0

2π∫
0

J0

⎛
⎝2k0vS cos

⎛
⎝arctan

(
γ−1 sin(αR)

1+γ−1 cos(αR)

)
−αR

2

⎞
⎠τ

⎞
⎠

× pvS(vS)dαRdvS. (C.15)

It is noteworthy that the ACF above differs from the ACF of the F2F one-ring model

derived in [29, Eq. (17)]. This is due to the fact that the dependency of the AOD

αT and the AOA αR has not been considered there. However, it can be proved

that in the asymptotic case, when γ → ∞, the ACF in (C.15) meets the one reported

in [29, Eq. (17)]. Furthermore, it was shown there that the exponential distribution

is the best statistical description of the velocity of relatively slow moving scatter-

ers, but not for relatively fast moving ones, like passing vehicles. This result was

obtained by comparing the Fourier transform of the ACF, namely PSD, with the

measurement data reported in [25]. In Section X-E, we show that the GM dis-

tribution describes the velocity of relatively fast moving scatterers better than the

exponential distribution.
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VII. POWER SPECTRAL DENSITY OF THE VEHICLE-TO-VEHICLE

CHANNEL MODEL

The PSD Sμμ( f ) can be obtained by taking the Fourier transform of the tem-

poral ACF rμμ(τ) of the complex channel gain with respect to the time difference

τ . Accordingly, the Fourier transform of the ACF of the proposed V2V channel

given by (C.7) results in the PSD of the considered V2V channel in the presence of

moving scatterers. Generally, this PSD cannot be written in closed form. Further-

more, due to the fact that the scatterer velocity vS is supposed to be a random vari-

able, it follows from (C.5) that the maximum Doppler frequency fmax = max{ fn}=
f0(vT +2vS + vR)/c0 is also a random variable. In Section X-B, we show the PSD

of the V2V channel in the presence of moving scatterers by means of numerical

integrations.

VIII. POWER SPECTRAL DENSITY OF THE FIXED-TO-FIXED

CHANNEL MODEL

Although, finding a closed-form expression for the PSD of V2V channels is

generally not possible, the PSD of several types of F2F channels can be written

in closed form. In what follows, we have derived the PSD of the proposed F2F

channels for different scatterer velocity distributions.

If the velocity is constant, i.e., vS = vS0, then the PSD Sμμ( f ) of the proposed

F2F channel is obtained by taking the Fourier transform of (C.10), which results in

Sμμ( f ) =
4σ 2

0

πk0vS0
K

(√
1− (

π f
k0vS0

)2

)
(C.16)

where K(·) denotes the complete elliptic integral of the first kind [45, Eq. (8.110.3)].

It is worth mentioning that the expression above equals the PSD of the proposed

V2V channel in the presence of fixed scatterers in [4], if the transmitter and the

receiver vehicles both move with speed vS0.

If vS follows the exponential distribution, then the PSD is the Fourier transform

of (C.11). It follows

Sμμ( f ) =
2σ 2

0

πk0mvS

K0

(
π | f |

2k0mvS

)
(C.17)

where K0(·) represents the zeroth-order modified Bessel function of the second

kind [45, Eq. (8.447.3)].
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If vS is uniformly distributed between 0 and 2mvS , then the Fourier transform

of (C.12) results in the PSD

Sμμ( f ) =
σ 2

0

2k0mvS

G3,0
3,3

(
π2 f 2

(2k0mvS)
2

∣∣∣∣∣
1
2 ,

1
2 ,1

0,0,0

)
(C.18)

where Gp,q
m,n

(
·
∣∣∣∣∣ a1, ...,ap

b1, ...,bp

)
denotes the Meijer G-function [45, Eq. (9.301)].

If vS follows the GM distribution presented in (C.1), then the PSD is obtained

by taking the Fourier transform of (C.13), which can finally be simplified as

Sμμ( f ) =
4σ 2

0

πk0

I

∑
i=1

wi

∞∫
0

K
(√

1− ( π f
k0vS

)2
)

vS
Ni(vS;mivS ,σ

2
ivS

)dvS. (C.19)

We depict the PSD of the F2F channel under the assumption of the above-

mentioned scatterer velocity distributions in Section X-D and show its validity in

Section X-E.

IX. DOPPLER SPREAD OF THE VEHICLE-TO-VEHICLE CHANNEL

MODEL

The Doppler spread B(2)
μμ of the channel is defined as the square root of the

second central moment of the PSD Sμμ( f ). Referring to [42, p. 64], the Doppler

spread B(2)
μμ can be expressed in terms of the ACF rμμ(τ) of the complex channel

gain μ(t) as follows

B(2)
μμ =

1
2π

√(
ṙμμ(0)

rμμ(0)

)2

− r̈μμ(0)

rμμ(0)
(C.20)

where the overdot indicates the derivative with respect to the time difference τ . It

can be proved that the first time derivative ṙμμ(τ) of the ACF rμμ(τ) in (C.7) equals

zero at the origin, i.e., ṙμμ(0) = 0 [see Appendix C]. This property indicates that the

PSD Sμμ( f ) of the proposed channel is even and real, which is not surprising due

to the isotropic scattering assumption. In Section X, we depict this property of the

PSD not only for F2F channels, but also for V2V channels. Considering ṙμμ(0) = 0

also simplifies B(2)
μμ to

B(2)
μμ =

√
β ′

2π
√

2σ0
(C.21)
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in which β ′ denotes the negative curvature of the ACF rμμ(τ) at the origin, i.e.,

β ′ = −r̈μμ(0). Taking the second derivative of rμμ(τ) in (C.7) with respect to

τ , then setting τ to 0, and performing some intricate mathematical manipulations,

allows us to present the characteristic quantity β ′ in its final form

β ′ = k2
0σ 2

0

⎛
⎝v2

T + v2
R +2

∞∫
0

v2
SpvS(vS)dvS

⎞
⎠ (C.22)

which is valid for a given scatterer velocity distribution pvS(vS). In what follows,

the characteristic quantity β ′ will be studied for different scatterer velocity distribu-

tions. If the velocity of the scatterers is a deterministic value vS = vS0, then

β ′ = k2
0σ 2

0

(
v2

T + v2
R +2v2

S0

)
. (C.23)

If vS follows the exponential distribution, then

β ′ = k2
0σ 2

0

(
v2

T + v2
R +4m2

vS

)
. (C.24)

If vS is uniformly distributed between 0 and 2mvS , then

β ′ = k2
0σ 2

0

(
v2

T + v2
R +

8
3

m2
vS

)
. (C.25)

If vS follows the GM distribution, then

β ′ = k2
0σ 2

0

(
v2

T + v2
R +

I

∑
i=1

wi(σ 2
ivS

+m2
ivS

)

× (1+ erf(
mivS√
2σivS

))+
2mivSσivS√

2π
e
−

m2
ivS

2σ2
ivS

⎞
⎟⎠ (C.26)

where erf(·) stands for the error function [45, Eq. (8.250.1)].

Now, different expressions for the Doppler spread B(2)
μμ of the channel can be

obtained by substituting each of the characteristic quantities β ′ given by (C.23)–

(C.26) in (C.21). These expressions can be written in the following general form

B(2)
μμ =

1√
2λ

√
v2

T + v2
R + v2

effS
(C.27)

in which λ = 2π/k0 is the wavelength and veffS stands for the effective velocity of

the moving scatterers. Notice that referring to (C.23)–(C.26), veffS mainly depends
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on the the average velocity of the moving scatterers mvS and varies from one scat-

terer velocity distribution to another. In Section X-F, we show the Doppler spread

of the channel for the aforementioned scatterer velocity distributions and verify its

validity in Section X-G.

X. NUMERICAL RESULTS

According to the operating frequency range of the IEEE 802.11p standard, the

carrier frequency f0 = 5.9 GHz has been chosen in our numerical computations.

This carrier frequency has been adopted in the dedicated short range communica-

tions (DSRC) standard being part of the intelligent transportation system (ITS) [7].

Furthermore, according to Section III, we have used the GM, negative exponen-

tial, and the uniform distribution to describe the velocity of moving scatterers. The

bimodal GM parameters have been set to m1vS = 80 km/h, m2vS = 120 km/h, and

σ1vS =σ2vS = 20 km/h. Moreover, the mixing proportion w1 varies between 0 and 1.

As an example, setting w1 = 0 means that the velocity of all the moving vehicles is

normally distributed around the average velocity of m1vS = 80 km/h with a standard

deviation of σ1vS = 20 km/h. For a mixing proportion w1 of 0.5, it is assumed that

the velocity of half of the vehicles is normally distributed around m1vS = 80 km/h,

and the other half is normally distributed around m2vS = 120 km/h. The directions

of motion of the transmitter and the receiver are supposed to be the same and equal

π/3, i.e., αT
v = αR

v = π/3. It is also assumed that the signal power 2σ 2
0 has been

set to 1.

A. ACF of the V2V Channel

Figs. C.2 and C.3 demonstrate the ACF rμμ(τ) of the proposed V2V link ac-

cording to (C.7) in the presence of moving scatterers for different scatterer velocity

distributions. For comparison, the classical ACF corresponding to fixed scatterers

has been plotted in these figures as well. A considerable difference between the

ACF of the proposed V2V channel in the presence of relatively fast moving scatter-

ers and the ACF of the classical V2V channel with fixed scatterers can be seen in

Fig. C.2. However, if the average velocity of the moving scatterers is relatively slow,

this difference is not very significant as can be concluded from the results shown in

Fig. C.3. Referring to Fig. C.3, the ACF rμμ(τ) of the V2V link in the presence of

relatively slow moving scatterers follows closely that of fixed scatterers around the

origin. This comparison allows us to conclude that relatively slow moving scatter-

ers, like runners and bikers do not significantly contribute to the mean Doppler shift

and the Doppler spread if both the transmitter and the receiver vehicles move rela-

tively fast compared to the mean velocity of the scatterers. This conclusion holds
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Figure C.2: The behavior of the ACF rμμ(τ) in (C.7) for V2V scenarios with rela-
tively fast moving scatterers, where vT = vR = 80 km/h. The GM parameters have
been set to m1vS = 80 km/h, m2vS = 120 km/h, and σ1vS = σ2vS = 20 km/h.

especially for very slow moving scatterers, such as foliage movements and walking

pedestrians. Accordingly, their contribution to the Doppler effect can be neglected

in typical V2V communication scenarios. As we will see later, this conclusion is no

longer valid when we consider F2F communication scenarios. Moreover, as can be

observed in both figures, different scatterer velocity distributions result in distinct

curves for the ACF.

B. PSD of the V2V Channel

Figs. C.4 and C.5 depict the PSD of the channel for different scatterer velocity

distributions. The results presented therein have been obtained by computing the

Fourier transform of (C.7) numerically. As can be seen in Fig. C.4, by decreas-

ing the mean velocity of the scatterers, the PSD increases around the origin and

decreases in tails. This behavior approaches a delta function at the origin if the

velocity of the scatterers, transmitter, and the receiver tends to zero. Furthermore,

referring to Fig. C.5, it can be observed that the scatterer velocity distribution has no

significant effect on the PSD of the V2V channel in the presence of relatively slow

moving scatterers. This again points out that moving scatterers are not a dominant

source of Doppler shifts in V2V communication channels if the transmitter and/or
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Figure C.3: The behavior of the ACF rμμ(τ) in (C.7) for V2V scenarios with rela-
tively slow moving scatterers, where vT = vR = 80 km/h.
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Figure C.4: The behavior of the PSD Sμμ( f ) obtained by taking the Fourier trans-
form of the ACF rμμ(τ) in (C.7) for V2V scenarios with relatively fast mov-
ing scatterers, where vT = vR = 80 km/h. The GM parameters have been set to
m1vS = 80 km/h, m2vS = 120 km/h, and σ1vS = σ2vS = 20 km/h.
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Figure C.5: The behavior of the PSD Sμμ( f ) obtained by taking the Fourier trans-
form of the ACF rμμ(τ) in (C.7) for V2V scenarios with relatively slow moving
scatterers and vT = vR = 80 km/h.

the receiver vehicles move relatively fast relative to the average speed of scatterers.

However, as mentioned before, even very slow moving scatterers are a significant

source of the Doppler effect in F2F scenarios. Furthermore, according to Figs. C.4

and C.5, the PSD Sμμ( f ) of the proposed channel model is even and real, which

emphasizes that the ACF rμμ(τ) in (C.7) is also even and real.

C. ACF of the F2F Channel

Figs. C.6 and C.7 illustrate the ACF rμμ(τ) of the underlying F2F link according

to (C.9) for various scatterer velocity distributions. In this regard, Fig. C.6 shows

the effect of moving scatterers on the ACF of the channel, where the velocity vS of

the scatterers has been modeled by the GM distribution (see (C.13)) and the uniform

distribution (see (C.12)). Fig. C.7 also demonstrates the impact of moving scatterers

on the ACF of the F2F link, in which vS follows either the exponential (see (C.11))

or the uniform distribution (see (C.12)). To study the impact of very slow moving

scatterers, the average velocity mvS in both cases has been set to 3.6 km/h (1 m/s).

To observe this effect, one just needs to compare the ACF in the presence of mov-

ing scatterers with that of fixed scatterers. Owing to triviality of the F2F channel

model with fixed scatterers, we omit these results from Figs. C.6 and C.7. Indeed,
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Figure C.6: The behavior of the ACF rμμ(τ) presented in (C.12) and (C.13) for
F2F scenarios with moving scatterers. The GM parameters have been set to m1vS =
80 km/h, m2vS = 120 km/h, and σ1vS = σ2vS = 20 km/h.

by fixing the local scatterers, i.e., vS = 0, the ACF in (C.10) results in the con-

stant value 2σ 2
0 , which substantially differs from the graphs plotted in Figs. C.6

and C.7. In addition, from Fig. C.7, it can be concluded that the Doppler shifts

due to even very slow moving objects, like foliage or walking pedestrians, are more

important to be considered in the statistical analysis of F2F links as compared to

V2V links. The importance of moving scatterers in F2F channels was extensively

studied in [25, 26, 29], and [30]. It should be mentioned as well that in both F2F

and V2V communication scenarios, relatively fast moving scatterers are regarded

as significant sources of Doppler shifts.

D. PSD of the F2F Channel

Figs. C.8 and C.9 illustrate the PSD of the presented F2F channels for different

scatterer velocity distributions. The general form of the PSD can be obtained by

taking the Fourier transform of the ACF in (C.9). From Fig. C.8, as in Fig. C.4, a

tendency to the delta function at the origin can be inferred if the mean velocity of

the moving scatterers decreases. This behavior meets the results provided in [32]

and [33]. Again, it can be seen that the PSD of the proposed channel model is even



126 Modelling and Analysis of Non-Stationary Mobile Fading Channels

0 2 4 6 8 10

10
−0.3

10
−0.2

10
−0.1

10
0

Time difference, τ (ms)

A
C

F
,
r μ

μ
(τ

)

 

 

Exp., mvS
= 3.6 km/h

Uni., mvS
= 3.6 km/h

Figure C.7: The behavior of the ACF rμμ(τ) presented in (C.11) and (C.12) for F2F
scenarios with moving scatterers.

and real. This complies with our results presented in Section IX.

E. Confirming the PSD with Empirical Data

Recall that our investigated scenarios are based on a narrowband V2V channel,

in which both the transmitter and the receiver vehicles are located in an urban area

surrounded by local moving scatterers. Regarding the effect of moving scatterers,

the channel can be assumed as a quasi-stationary channel for a relatively short pe-

riod of time. Now, to confirm the derived analytical results from such a channel

by empirical data from measured channels, an appropriate measurement scenario

should be considered. To the best of the authors’ knowledge, there exists a lack

of measurement data for V2V propagation scenarios in which the effect of moving

scatterers on vehicular communications has been precisely studied. Issues that need

to be addressed for a fair comparison include the stationarity and the frequency-

selectivity aspects of the measured channel. Moreover, the geographic area of the

measured channel is another important issue affecting the fairness of the compari-

son. Owing to the mismatch between the aforementioned properties of the proposed

channel model of this paper and the ones reported in [6, 8, 9, 23] and [27], none of

these measured channels can be used to validate the analytical results. Among the
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measured channels studied in the literature, we focus on the empirical data reported

in [7] and [25], which are taken from a flat-fading quasi-stationary channel. Notice

that the validity of the stationarity and frequency-selectivity in V2V channels have

been investigated, e.g., in [14] and [15].

Referring to [25], each snapshot for recording the empirical data was short

enough to justify the quasi-stationary channel assumption. It is also mentioned

there that the channel is frequency-nonselective. These properties comply with the

features of our proposed reference channel model. Fig. C.10 shows the analytical

PSD of the F2F one-ring model in comparison with the PSD that has been measured

at 29.5 GHz in [25]. The analytical PSD plotted in this figure is obtained from the

Fourier transform of the ACF presented in (C.15). We have used the exponential

distribution to model the velocity of slow moving scatterers, like foliage movement,

while the GM distribution has been used to model the velocity of fast moving scat-

terers, such as passing vehicles. A very close agreement between the analytical and

empirical results can be observed in Fig. C.10. This close match can be seen not

only for relatively slow moving scatterers, but also for relatively fast moving ones.

It is also worth mentioning that this agreement is much better than the one provided

in [29, Fig. 4(a,b)]. This is due to the fact that the derivation of the PSD in our

proposed F2F one-ring model is based on considering the dependency of the AOD

and the AOA (see (C.14)). However, the authors of [29] and [30] did not take this

dependency into account. Furthermore, in those papers, the velocity of passing ve-

hicles has been modeled by an exponential distribution, which does not accurately

describe the velocity of relatively fast moving vehicles [29]. Indeed, the authors

mentioned in [29] that the exponential distribution cannot precisely describe the

velocity of relatively fast moving scatterers, like passing vehicles and more inves-

tigations need to be done to find an appropriate distribution in this case. For this

reason, we have employed the GM distribution, which is one of the most reported

distributions to statistically model the velocity of fast moving vehicles [36–41].

We finish this part by emphasizing that the system configuration reported in [25]

differs from a typical V2V scenario. Indeed, channel measurements at 29.5 GHz

are mostly carried out to analyze local multipoint communication systems (LMCS),

which are supposed to provide multimedia services with quality of service assur-

ance. In this regard, the acceptable match shown in Fig. C.10 acknowledges the

usefulness of the proposed channel model even for such scenarios.

F. Doppler Spread of the Channel

Fig. C.11 shows the Doppler spread presented in (C.21) (or equivalently in (C.27))

versus mvS for different scatterer velocity distributions, where both the transmitter
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velocity vT and the receiver velocity vR have been set to 80 km/h. As it can be

seen in this figure, for a given value of mvS , the exponential distribution results in a

higher Doppler spread B(2)
μμ as compared to the uniform and the Gaussian distribu-

tions. However, for small values of mvS , they behave almost the same. Furthermore,

for a given average scatterer velocity mvS , the exponential distribution results in a

higher Doppler spread B(2)
μμ as compared with the uniform and Gaussian distribu-

tions.

G. Confirming the Doppler Spread with Empirical Data

To validate the derived Doppler spread, we have compared B(2)
μμ with the Doppler

spread measured in a suburban driving environment close to Carnegie Mellon Uni-

versity in Pittsburgh, PA [7, Fig. 8(b)]. The empirical data reported in [7] was

obtained from a measured frequency-nonselective channel. The measurement was

carried out at 5.9 GHz. It turned out that the measured Doppler spread B�(2)
μμ of the

quasi-stationary channel can be expressed by the following regression line

B�(2)
μμ =

0.428√
2λ

veff +11.5 Hz (C.28)



130 Modelling and Analysis of Non-Stationary Mobile Fading Channels

0 20 40 60 80
20

25

30

35

40

Average scatterer velocity, mvS
(km/h)

 

 

D
op

pl
er

sp
re

ad
,
B

2 μ
μ

(H
z)

GM, w1 = 0 (Classical)
Uniform dist.
Exponential dist.

Figure C.11: The behavior of the Doppler spread B(2)
μμ in (C.21) or equivalently

in (C.27) for different scatterer velocity distributions. The transmitter and the re-
ceiver velocities have been set to vT = vR = 80 km/h and the GM parameters are
m1vS = 80 km/h and σ1vS = 20 km/h.

0 20 40 60 80
0

20

40

60

80

100

120

140

160

Effective vehicle velocity, veff (km/h)

 

 

D
o
p
p
le
r
sp
re
a
d
,
B

2 μ
μ
(H

z)

Measured channel [7]

Analytical results

Figure C.12: Comparison between the Doppler spread B(2)
μμ presented in (C.27) and

the measured Doppler spread B�(2)
μμ at 5.9 GHz [7].



C – Modelling of V2V Channels in the Presence of Moving Scatterers 131

in which veff =
√

v2
T + v2

R denotes the effective velocity of the transmitter and the

receiver. An interesting point in the latter equation is that the measured Doppler

spread does not vanish even if both the transmitter and the receiver are fixed, i.e.,

vT = vR = veff = 0. The model presented in [7] cannot describe this constant shift

at the origin, as the effect of moving scatterers has not been taken into account.

However, our analytical model provides a clear evidence for the non-zero value of

the Doppler spread even for F2F scenarios. In this regard, a close agreement be-

tween the expressions of the analytical and the empirical Doppler spread presented

in (C.27) and (C.28) can be seen. This means that for a given scatterer velocity

distribution, a perfect match between the regression line, presenting the Doppler

spread of the channel, and the analytical one can be found by solving the equation

B(2)
μμ = B�(2)

μμ for veffS . Fig. C.12 shows an excellent match between the measured

and the analytical Doppler spread of the channel under the assumption that the ve-

locity of moving scatterers is exponentially distributed. The non-zero value of the

Doppler spread at the origin, where veff = 0, can now be explained by the Doppler

effect caused by moving scatterers located around the fixed transmitter and the fixed

receiver vehicles. Notice that the non-zero value of the Doppler spread cannot be

described by the channel models relying on the assumption of stationary scatterers.

XI. CONCLUSION

Starting from a typical propagation scenario, the complex channel gain of a V2V

communication channel in the presence of moving scatterers has been presented.

The ACF, PSD, and the Doppler spread of the V2V channel have been derived. By

fixing either the transmitter or the receiver vehicles or both, the analytical results

for the F2V and the F2F scenarios have been derived. Furthermore, the effect of

fixing local scatterers in all above-mentioned scenarios has been studied. It has

been shown that relatively fast moving scatterers have a major impact on both V2V

and F2F communication links, as they are significant sources of the Doppler spread.

However, relatively slow moving scatterers can be neglected in V2V channels, but

not in F2F channels. Validating the analytical results with proper measurement data

has been done in terms of the PSD and the Doppler spread of the channel. It has

been shown that the GM model can accurately describe the velocity distribution

of relatively fast moving scatterers while the exponential distribution can appropri-

ately model the velocity of relatively slow moving scatterers. More investigations

concerning other statistical properties of the channel, e.g., the coherence time, and

the influence of the local distribution of the moving scatterers in specific areas, may

be addressed in future works.
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APPENDIX C.A

In order to obtain (C.9) from (C.8), let us start from the following reduction [46,

Eq. (9-59)]

T∫
0

T∫
0

f (x− y)dxdy =

T∫
−T

(T −|u|) f (u)du, (C.29)

in which u = x− y and f is an auxiliary function. If f is periodic, i.e., f (u±T ) =

f (u), then the double integral above can be even more simplified to T
∫ T

0 f (u)du.

Considering the fact that J0

(
2k0vS cos

(
αT−αR

2

)
τ
)

in (C.8) is a periodic function

with respect to (αT −αR)/2, and changing the random variables αT and αR to 2x

and 2y, respectively, the reduction above can be used to simplify the inner double

integral (denoted by I) in (C.8) as follows

I =

2π∫
0

2π∫
0

J0

(
2k0vS cos

(
αT −αR

2

)
τ
)

dαT dαR

= 4

π∫
0

π∫
0

J0 (2k0vS cos(x− y)τ)dxdy

= 4π
π∫

0

J0 (2k0vS cos(u)τ)du (C.30)

= 4π2J2
0 (k0vSτ) (C.31)

where we have used
∫ π

0 J0 (2zcos(u))du= πJ2
0(z) [45, Eq. (6.681.5)] to obtain (C.31)

from (C.30). Finally, replacing the inner double integral I in (C.8) by (C.31) gives (C.9).

APPENDIX C.B

Let us assume that the mathematical relation between the AOD α T and the

AOA αR in a given geometric channel model is presented by α T = g(αR). Using

the concept of [47, Eq. (3.15)], the joint PDF pαT αR(αT ,αR) of αT and αR is given

by

pαT αR(αT ,αR) = pαR(αR)δ
(
αT −g(αR)

)
(C.32)
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in which δ (·) stands for the delta dirac function. For the classical one-ring model,

the function g is given by [22, Eq. (6)]

αT = g(αR) = arctan

(
γ−1 sin(αR)

1+ γ−1 cos(αR)

)
. (C.33)

Substituting the function above in (C.32) and noticing the fact pαR(αR) equals 1/2π
in the one-ring scattering model, the joint PDF pαT αR(αT ,αR) presented in (C.14)

can be attained.

APPENDIX C.C

Starting from the ACF rμμ(τ) in (C.7), the aim is to show ṙμμ(0) = 0. To ease

the proof, we set

a = 2k0vS cos

(
αT −αR

2

)
(C.34)

and

b = jk0
(
vT cos

(
αT

v −αT )+ vR cos
(
αR

v −αR)) . (C.35)

Accordingly, rμμ(τ) in (C.7) can be rewritten as follows

rμμ(τ) =
σ 2

0

2π2

∞∫
0

2π∫
0

2π∫
0

J0 (aτ)ebτ pvS(vS)dαT dαRdvS (C.36)

where, both a and b are the functions of αT and αR, but not τ . The first derivative

of rμμ(τ) with respect to the time difference τ becomes

ṙμμ(τ) =
σ 2

0

2π2

∞∫
0

2π∫
0

2π∫
0

(
bJ0(aτ)ebτ −aJ1(aτ)ebτ

)

× pvS(vS)dαT dαRdvS (C.37)

in which we have used the following derivation rule dJ0(aτ)/dτ = aJ−1(aτ) =
−aJ1(aτ). Setting τ = 0 in (C.37) and considering the fact that J0(0) = 1 and

J1(0) = 0, we obtain

ṙμμ(0) =
σ 2

0

2π2

∞∫
0

2π∫
0

2π∫
0

b pvS(vS)dαT dαRdvS
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=
σ 2

0

2π2

2π∫
0

2π∫
0

bdαT dαR. (C.38)

Eventually, owing to the sinusoid nature of b [see (C.35)], the double integral

in (C.38) over its range is zero, i.e., ṙμμ(0) = 0.
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WSSUS vehicular channel characterization at 5.2 GHz - spectral divergence



136 Modelling and Analysis of Non-Stationary Mobile Fading Channels

and time-variant coherence parameters,” in Proc. Union Radio Scientifique

Internationale-URSI. Illinois, USA, Aug. 2008.

[16] D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation

and its effect on the capacity of multielement antenna systems,” IEEE Trans.

Commun., vol. 48, no. 3, pp. 502–513, Mar. 2000.

[17] A. Y. Olenko, K. T. Wong, and E. H. O. Ng, “Analytically derived TOA-DOA

statistics of uplink/downlink wireless multipaths arisen from scatterers on an

hollow-disc around the mobile,” IEEE Antennas Wireless Propag. Lett., vol. 2,

pp. 345–348, 2003.

[18] A. Y. Olenko, K. T. Wong, and M. Abdulla, “Analytically derived TOA-DOA

distributions of uplink/downlink wireless-cellular multipaths arisen from scat-

terers with an inverted-parabolic spatial distribution around the mobile,” IEEE

Signal Processing Lett., vol. 12, no. 7, pp. 516–519, Jul. 2005.

[19] R. B. Ertel and J. H. Reed, “Angle and time of arrival statistics for circular and

elliptical scattering models,” IEEE J. Select. Areas Commun., vol. 17, no. 11,

pp. 1829–1840, Nov. 1999.

[20] J. C. Liberti and T. S. Rappaport, “A geometrically based model for line-of-

sight multipath radio channels,” in Proc. IEEE Veh. Technol. Conf., VTC 1996,

Apr./May 1996, pp. 844–848.

[21] K. N. Le, “On angle-of-arrival and time-of-arrival statistics of geometric scat-

tering channels,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 4257–4264,

Oct. 2009.

[22] A. Borhani and M. Pätzold, “A unified disk scattering model and its angle-of-

departure and time-of-arrival statistics,” IEEE Trans. Veh. Technol., vol. 62,

no. 2, pp. 473–485, Feb. 2013.

[23] D. S. . Baum, D. Gore, R. Nabar, S. Panchanathan, K. V. S. Hari, V. Erceg, and

A. J. Paulraj, “Measurement and characterization of broadband MIMO fixed

wireless channels at 2.5 GHz,” in Proc. IEEE Int. Conf. Personal Wireless

Communications. Hyderabad, India, Dec. 2000, pp. 203–206.

[24] X. Zhao, J. Kivinen, and K. Skog, “Characterization of Doppler spectra for

mobile communications at 5.3 GHz,” IEEE Trans. Veh. Technol., vol. 52, no. 1,

pp. 14–23, Jan. 2003.



C – Modelling of V2V Channels in the Presence of Moving Scatterers 137

[25] N. Naz and D. D. Falconer, “Temporal variations characterization for fixed

wireless at 29.5 GHz,” in Proc. IEEE Vehicular Technology Conference, VTC.

Tokyo, Japan, May 2000, pp. 2178–2182.

[26] A. Domazetovic, L. J. Greenstein, N. B. Mandayam, and I. Seskar, “Esti-

mating the Doppler spectrum of a short-range fixed wireless channel,” IEEE

Communications Letters, vol. 7, no. 5, pp. 227–229, May 2003.

[27] R. P. Torres, B. Cobo, D. Mavares, F. Medina, S. Loredo, and M. Engels,

“Measurement and statistical analysis of the temporal variations of a fixed

wireless link at 3.5 GHz,” Wireless Personal Communications (WPC), vol. 37,

no. 1-2, pp. 41–59, Apr. 2006.

[28] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, “A stochastic model of the

temporal and azimuthal dispersion seen at the base station in outdoor propa-

gation environments,” IEEE Trans. Veh. Technol., vol. 49, no. 2, pp. 437–447,

Mar. 2000.

[29] V.-H. Pham, M. H. Taieb, J. Y. Chouinard, S. Roy, and H.-T. Huynh, “On

the double Doppler effect generated by scatterer motion,” REV Journal on

Electronics and Communications, vol. 1, no. 1, pp. 30–37, Jan.-Mar. 2011.

[30] S. Roy, H. T. Huynh, and P. Fortier, “Compound Doppler spread effects of

subscriber motion and scatterer motion,” International Journal of Electronics
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spatial random trajectory (mobility) models to which different speed scenar-

ios can be applied. We employ the new approach to propose a highly flexible

trajectory model based on the primitives (integrals) of Brownian fields (BFs).

We construct a drifted partial random bridge from a given starting point to a

random terminating point in the two-dimensional (2D) plane. If the bridge

is partially established, a target zone with a predefined radius and centre can

be reached via random paths. If the bridge is fully established, a certain des-

tination point can be achieved by means of random bridges. For the broken

bridge, totally random terminating points are obtained. The smoothness of the

path can be controlled by the primitives of the employed BF. The implemen-

tation aspects of the path model in simulation environments are discussed. In
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location of the MS, performance analysis of mobile ad hoc networks, and chan-

nel modelling under non-stationary conditions.
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I. INTRODUCTION

Trajectory models are of great importance in many avenues of science, includ-

ing communications engineering. The demanding mobility features of cutting-edge

communication technologies add to the vitality of these models. Traffic offering,

handover management, adaptive routing control, localization, and registration are

only a few examples of challenges caused by the mobility of users. The perfor-

mance of ad hoc network protocols depends heavily on the mobility of nodes as

well. Channel modelling is another main task, which is influenced strongly by the

mobility features of the MS.

There are two major approaches for modelling the mobility of users: the user

tracing approach and the synthetic approach [1–3]. The first approach extracts mo-

bility patterns directly from real-life observations [4–7]. Despite the accuracy of

these models, they are fully deterministic and entirely scenario dependent. There-

fore, the performance of communications systems cannot easily be judged by these

models. Nevertheless, there exist some trustworthy mobility models created by

tracing thousands of wireless users over a long period of time [3].

The second approach is to build a synthetic mobility model based on a given ve-

locity distribution [8–10]. The physical location (trajectory) of the user is then de-

termined by mapping given distributions of the speed and angle-of-motion (AOM)

on the Euclidian space. The random walk [11, 12], random waypoint [13], Gauss-

Markov [14], city section [15], and the pursue [2] mobility models are among the

most important models designed by the aforementioned approach. A survey of mo-

bility models proposed in the literature can be found in [8, 9, 16]. Each of these

models has some advantages and disadvantages. For instance, sudden changes in

the AOM and (or) the speed of the MS are the most important disadvantages that

some of these models suffer from. Furthermore, an important lack in the available

mobility models is that none of them can provide a random path that leads to a pre-

defined target zone or destination point1. Even the perfect simulation model of [17]

does not cover random, but targeted, motions of the MS. The only exemption is the

temporal mobility model proposed in [18], which allows targeting a predefined des-

tination point (zone) via a recursive algorithm. One of the major drawbacks of the

model proposed in [18] is its code-based structure, which needs significant changes

if its objective changes from arriving at a predefined destination point to arriving

at a predefined destination zone. In addition, the trajectory model in [18] does not

1Notice that the pursue mobility model emulates scenarios, in which pursuing nodes attempt to
capture a moving pursued node ahead, which is substantially different from arriving at a predefined
target zone via random paths.
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support any smoothness control mechanism. Another disadvantage of this model

comes in what follows.

A fundamental drawback of synthetic mobility models is that the spatial char-

acteristics of the path are forced to be determined by the temporal specifications of

the user, such as its speed. A quick question that arises is that why should a phys-

ical configuration of a path be a function of the user’s speed? This is in contrast

to reality, where users try to adapt their speed and AOM to sideways, roads, and

highways. Although the physical and temporal characteristics of the user cannot be

separated into two concepts, the spatial characteristics of a path are totally separated

from the temporal behaviour of the users. This issue can also be extracted from [3],

where the empirical user tracings reveal that the spatial characteristics of the mobil-

ity models are determined by the features of typical roads and walkways, but not by

the temporal behaviour of road users. Notice that in reality, one often tries to find a

destination point (zone) via possible trajectories heading to that destination. In such

a scenario, the chosen path and speed vary from user to user.

Motivated by the discussion above, this first part of our paper proposes a third

approach to design fully spatial trajectory models to which different speed sce-

narios can be applied. The main idea is to model the trajectory in position, but

not in time. We employ the new approach to propose a novel random trajectory

model using the primitives of BFs. To this end, we expand the standard temporal

Brownian motion (BM) process to the standard unitless BF, which later actuates the

random component of the path model. The standard BF is almost surely nowhere

differentiable, which results in infrequently seen trajectories with sudden changes

of direction. Therefore, we introduce and utilize the differentiable primitives of the

standard BFs, which then allows us to generate trajectories with different levels of

smoothness. By adding a drift component to the random components, we are about

to provide a random trajectory model with a bias causing the user to move in a pre-

ferred direction. Moreover, we add to the novelty of the model by establishing a

partial random bridge from a given starting point to a predefined target zone. The

proposed spatial trajectory model is thus ready to allow: 1) arriving at a predefined

destination point if the bridge is fully established, 2) arriving at a circular boundary

(target zone) with a predefined radius and centre if the bridge is partially estab-

lished, 3) a totally random point in the 2D plane if the bridge is broken, and finally

4) bridging back (closed loop) to the starting point if the bridge is fully established,

but the drift component does not exist. Various other configurations are also pos-

sible, which will be discussed in the paper. Depending on the chosen primitive of

the standard BF, the smoothness level of the entire configuration of paths can also
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be controlled. This means that a given path configuration can be obtained in a quite

erratic, relatively smooth, or very smooth manner. The proposed path is a 2D local

vector with components along the x- and y-axis over which different speed scenar-

ios can be tested. It is shown that the random walk trajectory model can be obtained

as a special case of the proposed model. In another special case, the path config-

uration becomes very similar to that of the Gauss-Markov mobility model with a

tuning parameter close to one.

In this first part of our paper, we also discuss the implementation of the path

model in simulation environments, such as MATLAB�. A brief MATLAB� code

for simulating the trajectory model is provided. Furthermore, the parametrization of

the model is discussed and a practical scheme for determining the model parameters

is provided. The results are illustrated and potential applications are discussed. The

results demonstrate the high flexibility of the proposed path model in terms of its

large configuration range and smoothness control mechanism. In the second part of

our paper, we study the statistical properties of the proposed path model, showing

that they are in line with those of real-world user tracings [3].

The proposed trajectory model has the potential to attract the interest of re-

searchers from different branches of science, including communications engineer-

ing. Researchers focusing on ad hoc networks, cellular networks, localization,

tracking, and mobile radio channel modelling2 are among the potential enthusiasts

of the proposed trajectory model. The model can also be used in traffic engineering,

risk engineering, crime control, and social science. We will show that the trajectory

model proposed in this paper is useful to model many daily life activities, such as

possible trajectories from the police department to a crime scene, possible trajec-

tories started from the tourist information office to a historical zone, and possible

trajectories of vehicles trying to perform U-turn, only to name a few.

The remainder of this paper is organized as follows. Section II introduces the

concept of the new approach, while Section III employs the new approach to pre-

pare the random and deterministic components of the path model in position. The

components are then combined to develop the spatial trajectory model in Section IV.

The implementation aspects of the proposed path model are addressed in Section V,

and the simulation results are discussed in Section VI. Finally, Section VII draws

the conclusions.

2In the area of mobile radio channel modelling, the authors of [19] and [20] utilize very elemen-
tary Brownian mobility models for the development of non-stationary channel models.
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II. THE CONCEPT OF THE NEW APPROACH

The common approach for generating synthetic mobility models is to start from

given distributions of the speed and the AOM [8–10]. The speed and AOM are then

combined to determine the heading destination point of the MS. Accordingly, the

MS trajectory is determined by its temporal characteristics. This is in contrast to

real-life scenarios, where road users adapt their speed and AOM to the course of the

road [3].

To cope with this issue, we propose a new approach in which the starting point

is a local random vector multiplied by a measurable parameter in metre, while its

final outcome is a spatial trajectory in the 2D Euclidian space. Virtual drivers and

pedestrians can then travel along the designed trajectory with different speeds. To

achieve this, we need to expand the concept of stochastic processes to random fields

in their very general form (see, e.g., [21]). We recall that stochastic processes are

essentially mathematical models of random phenomena in time. On the other hand,

random fields are generalized stochastic processes defined over a countable param-

eter, which is not necessarily time. The outcomes of random fields fall into some

manifolds, multidimensional vectors, or points, which are also not necessarily mea-

surable. Such a concept allows us to generate the random components (random

vectors) of the path model in position, but not necessarily in time. The compo-

nents of the random vectors are considered as unitless random gains, which can

be multiplied by measurable parameters that control the physical length of the tra-

jectory in metre. The outcome then falls into the Euclidian space. The random

vectors can also be added to some deterministic drift components to construct spa-

tial trajectory models. This approach is very useful if the random components are

generated by BM processes. Notice that measurability of non-synthetic processes

both in their arguments and outcomes restricts their utilization in other domains.

However, the concept of random fields allows mapping the argument and outcome

of non-synthetic processes into desired manifolds and (or) vectors, while keeping

the statistical characteristics of the original processes. An important property of our

approach is that the argument of the process, namely the position index, is inher-

ently discrete. We divide the new approach in the following five steps:

1. Choosing a stochastic process with desired statistical properties, which then

determines the statistical properties of the random components of the path

model.

2. Expanding the chosen stochastic process to the corresponding random field

defined in position.
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3. Adding physical features to the random field, if needed.

4. Preparing the random components, as well as the drift and bridge compo-

nents, if required.

5. Combining the components and generating the trajectory model in the 2D

Euclidian space.

The steps above can be divided into two major parts, where Steps 1–4 comprise

the preparation part and Step 5 the generation part. Both parts will be described

separately in the two following sections.

III. PREPARATION OF THE TRAJECTORY COMPONENTS

Let us assume that the desired properties are the statistical properties of tempo-

ral BM processes. We prepare the components of the trajectory model by means

of Steps 1–4 of the new approach. The reason for choosing BM processes as fa-

vorable processes is their non-synthetic nature and favorable statistical properties,

including their non-differentiability, which will be discussed in what follows in de-

tail. Furthermore, BM processes are quite well-established in proposing mobility

models [8, 9, 16].

A. The Temporal BM Process

In 1827, the microscopic observations carried out by the famous botanist, Robert

Brown, revealed the chaotic motions of pollen grains in water. The same erratic be-

havior was also reported from other experimentalists focusing on particle motions

in a fluid or gas [22]. In honour of its discoverer, such a motion was then called

BM. For the rest of that century, the BM became the centre of many analytical and

empirical investigations. In the 1860s, experimentalists realized that the motion

originates from suspending molecules. In 1906, Albert Einstein [11] accomplished

the basic investigations by providing an exact physical explanation for such motions

based on the bombardment of the suspended particles by the atoms of the suspend-

ing fluid. Two years later, a perfect mathematical representation of the BM was

offered by Langevin [23]. Owing to its importance, Langevin’s explanation was

later translated into English [24].

The utilization of BM processes in modelling of sophisticated phenomena has

been a hot topic from the late 19th century until now. Modelling of stock mar-

ket fluctuations is one of the earliest applications of such processes in daily life.

Medical imaging and fractal theory (see [25] and [26]) are also two more recent
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examples, which benefit from BM processes in practice. Modelling the rough-

ness of electromagnetic surfaces and signal processing are further applications (see,

e.g., [27] and [28]). In mobile ad hoc networks, 2D BM processes (random walk)

are employed to model irregular motions of mobile nodes [8], which are then used

to perform network layer analysis. Moreover, 3D BM processes have been used to

model fully random motions of mobile users [29].

A stochastic process {B(t) : t ∈ [0,T ]} is said to be a standard temporal BM

process if the following three conditions are satisfied:

1. B(0) = 0.

2. ∀ 0 ≤ s < t ≤ T , the random variable given by the increment B(t)− B(s)

follows the Gaussian distribution with zero mean and variance t − s, i.e.,

B(t)−B(s)∼ N(0, t− s).

3. ∀ 0 ≤ s < t < v < w ≤ T , the increments B(t)−B(s) and B(w)−B(v) are

statistically independent.

From the conditions above, it can be concluded that B(t) is a Wiener process with

independent and normally distributed increments. It can be shown that the stan-

dard BM process is a continuous-type stochastic process in time, but almost surely

nowhere differentiable (see, e.g., [30]).

B. The Proposed Brownian Field

We recall that a random field is defined over a countable parameter with out-

comes in some manifolds, multidimensional vectors, or points. Herein, the idea is

to consider the position variable l ∈ [0,L] as the countable parameter of the standard

BF and a 2D vector space as the corresponding sample space. Subsequently, we de-

fine the standard BF over the position variable l ∈ [0,L], satisfying the following

three conditions:

1. B(0) = 0.

2. ∀ 0 ≤ li < l ≤ L, the random variable given by the increment B(l)− B(li)

follows the Gaussian distribution with zero mean and variance l − li, i.e.,

B(l)−B(li)∼ N(0, l− li).

3. ∀ 0 ≤ li < l < l j < lq ≤ L, the increments B(l)−B(li) and B(lq)−B(l j) are

statistically independent.
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We denote the standard BFs along the x- and y-axis by Bx(l) and By(l), respectively.

The outcomes of these two processes are then multiplied by a measurable quantity

in metre, enabling to locate the corresponding points in the 2D plane.

C. Featuring (Filtration)

In accordance with the standard BM process, the standard BF is almost surely

nowhere differentiable. As a result, with probability approaching 1, any 2D trajec-

tory model based on the direct combination of Bx(l) and By(l) experiences sudden

changes of direction (see Section VI). This results in an erratic path, which can of

course be observed in nature. An obvious example of such a trajectory is the BM

itself, in which sudden variations in the AOM of suspended particles can be seen

in fluids. Nevertheless, due to physical restrictions of man-made applications, the

phenomenon of sudden changes in the AOM can rarely be observed in daily life.

To cope with this issue, we employ Step 3 of the new approach, in which physical

features are added to the utilized BF. Accordingly, we expand the pth (p≥ 1) primi-

tive of the BM process [31] to that of the BF pB(l) by defining the p-fold integrated

(filtered) standard BF B(l) as follows

pB(l) =
∫ l

0
p−1B(l′)d l′ ∀p = 1,2, ... (D.1)

where 0B(l) = B(l). Accordingly, the first condition B(0) = 0 of the standard BF

(see Section III-B) is extended to pB(0) = 0. By the fundamental theorem of cal-

culus, the p-fold integrated BF pB(l) in (D.1) is p times differentiable and its qth

derivative equals p−qB(l).

The case p = 1 is often called Kolmogrov diffusion [32], provided that l takes a

temporal dimension and that the outcomes fall into the 3D Euclidian space. Similar

to the pth primitive of the temporal BM process [31], the pth primitive of the BF

pB(l) in (D.1) also follows the Gaussian distribution of the form N(0,σ 2
pB(l)), where

σ 2
pB(l) =

l2p+1

(p!)2(2p+1)
. (D.2)



D – Trajectory Models Based on the Primitives of Brownian Fields–Part I 151

In general, the autocovariance function rc
pBpB(li, l j) of pB(l) is given by the follow-

ing expression3

rc
pBpB(li, l j) =

1
(p!)2

min(li,l j)∫
0

(li− l′)p(l j − l′)pd l′. (D.3)

The special case li = l j = l simplifies rc
pBpB(l, l) in (D.3) to the variance σ 2

pB(l)

in (D.2). These quantities will play important roles in the analysis of the statistical

properties of the trajectory model proposed in Section IV.

D. Components

The aim is to model a path which starts from (xs,ys) and terminates at or about

a given destination point (xd,yd). To reach this aim, we define the deterministic

increments δx = (xd −xs)/L and δy = (yd−ys)/L for some positive integer L. These

increments act as the drift component of the path. Moreover, let pBx(l) and pBy(l)

represent the pth primitive of the BF along the x- and y-axis, respectively. We

manipulate the random field pBx(l) to build a partial random bridge of the following

form

pWx(l,kb) = pBx(l)− kb l
L pBx(L) (D.4)

where the bridge parameter kb ∈ [0,1] controls the partial availability of the bridge4.

The term partial bridge has been coined due to the fact that pWx(0,kb) = 0, whereas

the value of pWx(L,kb) depends on the bridge parameter kb. If kb tends to 1, then

pWx(L,kb) tends to 0. If kb tends to 0, then pWx(L,kb) can be any random value

generated by pBx(L). For l �= 0,L, the process pWx(l,kb) can also take any random

value. As a result, we address the cases: kb = 1, 0 < kb < 1, and kb = 0 by the

following terms: full bridge, partial bridge, and broken bridge, respectively. This

terminology becomes much more meaningful if pWx(l,kb) is utilized as a compo-

nent of the proposed trajectory model (see Section IV). In the same way, the par-

tial bridge pWy(l,kb) associated with the y-axis can be constructed. The designed

bridges are considered as the random components of the path model.

3The proof is similar to the one provided for the pth primitive of the temporal BM process (see,
e.g., [33]).

4The partial random bridge in (D.4) has never been proposed before in the literature.
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IV. THE PROPOSED TRAJECTORY MODEL

We combine the deterministic drift component discussed in Section III-D and

random component in (D.4) to construct the proposed trajectory model, which al-

lows us to generate trajectory pT of the following form

pT :

{
(px(l), py(l))

∣∣∣∣∣ px(l) = xs + kd lδx +σx pWx(l,kb)

py(l) = ys + kd lδy +σy pWy(l,kb)

}

(D.5)

where the parameter σx (σy) in metre enables the superposition of the unitless bridge

component pWx(l,kb) (pWy(l,kb)) and the drift component kd lδx (kd lδy) along the

x-axis (y-axis)5. The drift parameter kd = 0 or 1 provides the option to include a

drift component. Notice that the starting point ( px(0), py(0)) of the path is always

(xs,ys). In what follows, we discuss the model parameters and their influence on

the configuration of the trajectory pT .

A. Standard Deviation σx

The standard deviation σx in metre maps the random increments generated by

pWx(l,kb) to the x-axis. This parameter directly controls the variance of the process

px(l) associated with the path pT along the x-axis6. Indeed, σx provides an addi-

tional degree of freedom to control the randomness of the process px(l) along the

x-axis. For instance, by setting σx = σy = 0, any point on the straight line repre-

sented by y(l) = ax(l)+b can be reached, in which the slope a equals arctan(δy/δx)

and the constant shift b is given by ys −axs. A comprehensive discussion about ad-

justing the model parameters, including the standard deviation σx, is provided in

Section V-B.

B. Bridge Parameter kb

The effect of the parameter kb on the random bridge pWx(l,kb) has been dis-

cussed in Section III-D. To clarify its role in the trajectory model, let us first fix the

drift parameter kd to 1. For the full bridge scenario, i.e., kb = 1, the terminating

point (px(L), py(L)) of the path pT in (D.5) is nothing else than the planned des-

tination point (xd,yd). At any other position between the starting and terminating

points determined by 0 < l < L, the term pWx(l,1) contributes effectively to the

5Owing to fluency reasons, henceforth, we avoid repeating the similarity between the essential
properties of the path along the x- and y-axis. Due to the symmetry of the trajectory model, the
statistical properties of px(l) and py(l) are the same.

6The statistical properties of the path model, including the variance of the process px(l), are
studied in Part II of our paper.
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randomness of the path. Accordingly, each realization of the path pT results in

an almost surely unique path in the sense that all path realizations have the same

starting and terminating points.

If the bridge is partially established, i.e., 0 < kb < 1, the path pT has a tendency

to approach the destination point (xd,yd). The rule of thumb is that the closer kb is to

1, the closer is the terminating point (px(L), py(L)) to the destination point (xd,yd).

In this regard, the broken bridge, i.e., kb = 0, results in a completely random ter-

minating point (px(L), py(L)) in the 2D plane. The following theorem provides a

sound understanding of the bridge parameter kb.

Theorem 1. Let Dd denote the distance between the terminating point

(px(L), py(L)) and the destination point (xd,yd). If the drift exists, i.e., kd = 1, and

the variances along both axes are equal, i.e., σ 2
x = σ 2

y , then we have

P

⎧⎨
⎩Dd ≤ cσx(1− kb)

p!

√
L2p+1

2p+1

⎫⎬
⎭= 1− e−

c2
2 (D.6)

where c is a positive constant.

Proof: See Appendix A. �
Corollary 1. If the conditions of Theorem 1 are fulfilled, then the terminating

point (px(L), py(L)) falls with probability 1− e−c2/2 into a circular boundary of ra-

dius rb = cσx(1−kb)
√

L2p+1/(2p+1)/p! centred on the destination point (xd,yd).

In other words, the random trajectories lead us to a vicinity of (xd,yd), but not nec-

essarily to (xd,yd).

Accordingly, if kb = 1, the radius of the circular boundary becomes 0, which

means that arriving at (xd,yd) is guaranteed with probability 1 − e−c2/2. Notice

that the constant parameter c is to control the tightness of the circular boundary. In

Section VI, we show this boundary is quite tight for any values of kb and proper

choices of c.

C. Drift Parameter kd

The drift parameter kd acts as a switch to control the presence of the drift to the

destination point (xd ,yd). If the drift exists, i.e., kd = 1, then the path configuration

is as discussed in Section IV-B. Therefore, we only need to discuss the case in which

the drift does not exist, i.e., kd = 0. In this case, the presence of a destination point

(xd ,yd) is meaningless. Depending on the partial availability of the bridge, which

is controlled by the value of kb, distinctive path configurations are possible.

For the broken bridge scenario, i.e., kb = 0, the terminating point (px(L), py(L))

is a fully random point in the 2D plane. Given this case, the primitive p = 0 sim-
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plifies pT in (D.5) to the random walk trajectory model in [11, 12]. For p ≥ 1, the

path pT behaves very similar to the Gauss-Markov trajectory model in [14] with

the tuning parameter close to 1.

For the full bridge scenario, i.e., kb = 1, the path pT describes a random closed-

loop walk starting from and terminating at (xs,ys).

For the partial bridge scenario, i.e., 0 < kb < 1, the path pT forms semi-circular

configurations between those obtained by setting kb = 0 and kb = 1. In Section VI,

we show that a proper choice of 0 < kb < 1 allows the path pT to bridge circularly

to random points in the 2D plane.

Theorem 2. Let Ds denote the distance between the terminating point

(px(L), py(L)) and the starting point (xs,ys). If the drift does not exist, i.e., kd = 0,

and the variances along both axes are equal, i.e., σ 2
x = σ 2

y , then we have

P

⎧⎨
⎩Ds ≤ cσx(1− kb)

p!

√
L2p+1

2p+1

⎫⎬
⎭= 1− e−

c2
2 (D.7)

where c is a positive constant.

Proof: Similar to the proof of Theorem 1. �
Corollary 2. If the conditions of Theorem 2 are fulfilled, then the terminating

point (px(L), py(L)) falls with probability 1− e−c2/2 into a circular boundary of

radius rb = cσx(1− kb)
√

L2p+1/(2p+1)/p! centred on the starting point (xs,ys).

In other words, pT forms random radial trajectories within a circle of given radius.

Accordingly, if kb = 1, the radius of the circular boundary equals 0, with the

consequence that the path bridges back (closed loop) to the starting point (xs,ys).

D. Primitive p

To discuss the role of the primitive p, it is beneficial to assume that L tends to

infinity. If so, the path pT is continuous. Referring to Section III-C, the pth primi-

tive of the BF pB(l) in (D.1) is p times differentiable. Therefore, the partial random

bridge pWx(l,kb) is also p times differentiable. This means that for p = 0, the path

0T is not differentiable, as it experiences sudden changes of direction. These sud-

den changes are due to the low correlation between the random components of the

path 0T (see Part II). The higher primitives, however, allow a differentiable path

pT , as the integral in (D.1) adds greatly to the correlation of the random compo-

nents. Therefore, one might conclude that the primitive p determines the smooth-

ness level of the path. Depending on the primitive p, the entire configurations of

the path pT can be obtained in a totally erratic, relatively smooth, or very smooth

manner.
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Notice that the need to a smoothness control mechanism is due to the fact that

the smoothness level of our daily life trajectories varies from activity to activity. For

instance, the trajectory of our motion when we are looking for an address is not as

smooth as that when we perfectly know how to reach that address. Even the age

of mobile users may affect the smoothness of their trajectories. For example, the

trajectory of a child that is asked to go to a certain place is normally not as smooth

as that of an adult person. The smoothness level also depends on the application. As

an example, the erratic motions of a car roof antenna, which is of great importance

in the area of channel modelling, should be modelled by an erratic trajectory, rather

than a smooth one. Therefore, it is very beneficial to have smoothness control

mechanisms to capture different levels of smoothness.

The effect of the model parameters on the configuration of every single real-

ization of the path is listed in Table D.1. For simplicity reasons, we consider the

special case of σx = σy. The table does not cover the effect of the primitive p, as

this effect is substantially different from those of the other parameters. Furthermore,

the figures listed in Table D.1 are to provide a quick preview of the path pT . An

extensive description of the figures is given later in Section VI.

Notice that the substantial difference between the proposed trajectory model in

this paper and the one in [18] is that we propose a solid mathematical trajectory

model based on the concept of partial random bridges, which allows arriving at a

destination point or zone, whereas the model in [18] is a code-based approach. The

authors of [17] also use a simulation approach to design a class of path models in

NS2, which differs substantially from our new analytical approach. Furthermore,

to distinguish between arriving at a certain destination point or destination zone,

we just need to tune the bridge parameter. For doing the same regarding the model

in [18], the major parts of the code have to be updated. In addition, the mobility

model in [18] is a temporal-spatial model, whereas our proposed trajectory model

is a fully spatial model. Finally, our proposed model has a smoothness control

mechanism, while the one in [18] has not.
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To clarify the speed adaptivity of the proposed trajectory model, let us consider

the path obtained by connecting the L+1 points, i.e., (px(l), py(l)) (l = 0,1, ...,L),

generated by (D.5). There exist L sub-trajectories that connect pairs of consecutive

points. An arbitrary speed sl can then be assigned to the lth sub-trajectory. Accord-

ingly, an arbitrary speed vector (s1,s2, ...,sL) of size L explains the speed records

of the mobile user along the trajectory pT . The corresponding mobility model

can then be used for the design of non-stationary channel models, handover man-

agement in cellular networks, and performance analysis of ad hoc networks, only

to name a few. We stress that investigating suitable choices of the speed vector is

outside of the scopes of this paper.

We finish this section by remarking that the flexibility of the path pT is three-

fold: 1) its numerous configurations, 2) its smoothness control possibility, and 3) its

adaptivity to different speed scenarios.

V. IMPLEMENTATION OF THE TRAJECTORY pT

In this section, we discuss the implementation aspects of the proposed trajectory

pT in (D.5). We provide a simplified MATLAB� code for simulating pT as well

as a practical scheme for the parametrization of the proposed trajectory model.

A. Implementation of the Path pT

One of the important advantages of the trajectory model in (D.5) is that it can

easily be implemented in simulation environments, such as MATLAB�, NS2, and

OPNET. The corresponding code is straightforward to develop. In this regard,

Table D.2 describes the five main steps to simulate the process px(l) in (D.5) in

MATLAB�7. Before Step 1, the model parameters, p, L, σx, xs, xd , kd , and kb need

to be set (see Section V-B). The code provided in Table D.2 is written under the

assumption of p = 1, meaning that we integrate over the standard BF Bx(l) only

once. For higher values of p, Step 3 needs to be repeated. However, this step must

be skipped if p = 0 is the assumption. The same approach can be used to generate

the process py(l) associated with the path along the y-axis. Plotting (px(l), py(l))

for l = 0,1, ...,L gives then the trajectories shown in Figs. D.1–D.11, which will be

discussed in Section VI. Given the 2D vector of (px(l), py(l)), one can study the

statistical characteristics of the path of his (her) own design by means of simulation

results, while the reference statistical properties are provided in Part II. It is also

note worthy that the path generation by means of the provided code is very fast. For

7For more information about the description of the commands and their functionality, see
www.mathworks.com.
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instance, generating the twenty paths shown in Fig. D.2 takes only about 0.8 s.8

B. Setting the Model Parameters

The path model in (D.5) is very flexible with respect to the configuration of the

path. This configuration is determined by the model parameters. Among the model

parameters, the primitive p, the drift factor kd , and the bridge factor kb are com-

pletely application-oriented. Given an application, depending on our knowledge of

the smoothness of the path and of the availability of any destination point (zone) of

interest, these parameters can readily be set. For instance, if the aim is to model the

trajectory of a long antenna installed on a moving car, the lower value of p might

be better, as the erratic motions of the antenna are indispensable. However, if the

antenna is short enough and the motion is sufficiently smooth, the primitive p can

be set to higher values.

In Section VI, we also provide some examples to explain the impact of an ap-

plication on setting the values of the drift factor kd and the bridge factor kb.

Herein, we put our main emphasis on adjusting the parameter σx (σy), which is

of special importance. To provide a practical approach for determining this param-

eter, we employ the following theorem.

Theorem 3. The variance σ2
px(l) of the process px(l) associated with the path

pT along the x-axis is given by

σ 2
px(l) = σ 2

x

(
rc

pBxpBx
(l, l)−2

kbl
L

rc
pBxpBx

(l,L)+
k2

bl2

L2 rc
pBxpBx

(L,L)

)
(D.8)

where the autocovariance function rc
pBxpBx

(li, l j) is given by (D.3), in which we re-

place the superscript pB by pBx.

Proof: See Section III-D of Part II. �
From the theorem above, it is obvious that the parameter σx can directly affect

the variance σ2
px(l) of the process px(l). We remark that the variance σ 2

px(l) is in

general not a constant value, but varies in the position index l. Given an applica-

tion, what we normally know about these variations is their maximum value. For

instance, for a police officer who is patrolling a main street and its vicinity, the max-

imum variance from that main street has been predefined by the police department.

8We have used a regular PC with a Core i7 Processor 2.67 GHz and 4 GB of RAM.
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Motivated by this, let σ 2
pxmax denote the maximum value of σ 2

px(l) in (D.8), in

which the parameter σx is unknown. The maximum variance σ 2
pxmax can be ob-

tained by any parametric maximum finding algorithm. As an example, for p = 0,

kd = kb = 1, one can obtain σ 2
0xmax = σ 2

x L/4 (see Section IV-A in Part II). Accord-

ingly, the value of σx can be written in terms of σpxmax and the other previously set

parameters. For instance, to generate an L = 100 points path 0T with a maximum

standard deviation of σpxmax = 10 m, one needs to set σx = 2 m.

According to Theorem 3, the parameter σx only controls the variance of the path

along the x-axis. This means that σx together with σy determine the distance of the

random trajectories from the shortest path. We finish this section by briefing that the

best way to set the value of σx is to use a predefined application-oriented standard

deviation σpxmax and then to follow the aforementioned procedure.

VI. SIMULATION RESULTS

The results have been produced by following the procedure described in Sec-

tion V. In the entire simulations, the starting point (xs,ys) is set to the origin of the

Cartesian coordinate system, i.e., (0m,0m), whereas the destination point (xd,yd),

if any, is set to (50m,50m). The number of points L is set to 100. Regardless of the

primitive p, the maximum standard deviation σ pxmax along the x-axis is supposed to

be equal to the one along the y-axis, i.e, σpxmax =σpymax =σmax. If σpxmax >σpymax

(σpxmax < σpymax), the random trajectories show larger variations along the x-axis

(y-axis), as compared to the y-axis (x-axis). The values of the primitive p, drift

parameter kd , and the bridge parameter kb are displayed in the figures and/or their

captions. The constant c, introduced in (D.7), has also been set to 4. In what follows,

we demonstrate the possible configurations of the path pT in Figs. D.1–D.11, and

we discuss their potential applications. In these figures, the starting point (xs,ys) of

the path is signed by an upward triangle, while the terminating point ( px(L), py(L))

is marked by a square. The statistical properties of the paths designed in Part I of

this paper are extensively discussed in Part II.

Figs. D.1–D.3 show different realizations of the path pT in (D.5) for distinct

values of the primitive p. It is assumed that the bridge between the starting point

(xs,ys) and the destination point (xd ,yd) is fully established, i.e., kb = 1. Accord-

ingly, setting kd = 1 guarantees terminating at (px(L), py(L)) = (xd,yd), namely the

destination point. In this regard, Fig. D.1 shows different realizations of the path

0T , where sudden changes in the AOM are expectable. Figs. D.2 and D.3 demon-

strate different realizations of the paths 1T and 2T , respectively. These paths do

not experience unexpected changes of direction. In this connection, the paths in
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Figure D.1: Different realizations of the path 0T in (D.5) with kd = 1 and kb = 1
(full bridge scenario).

Fig. D.3 are smoother than those in Fig. D.2, which show the impact of the prim-

itive p on the trajectory pT . Notice that the length of the paths in Fig. D.3 are in

probability smaller than those of the other two figures. This can also be confirmed

by simulating the overall travelling length PDF, which comes in Part II. It is also

noteworthy that by increasing (decreasing) σmax, the distance of the random trajec-

tories from the shortest path increases (decreases), thus the total travelling distance

increases (decreases). We stress that changing the value of σmax does not change

the general trend of the trajectory in arriving at a certain destination point (zone).

Notice that the primitive p might also be related to the level of knowledge about

finding a path to a known destination. If the knowledge is relatively low, one needs

to travel a larger distance before arriving at the destination, which corresponds to a

high number of changes of direction. If the knowledge is relatively high, a shorter

travelling distance might allow one to reach the destination in a smoother way. Such

paths can often be seen in daily life, such as potential trajectories to reach a tourist

information office. Indeed, the starting and terminating point of many of our daily

life activities are perfectly known to us. However, the way that we travel to reach

the target point is not unique. Notice that none of the mobility models in [8], allows

to generate such targeted, but random, trajectories.
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Figure D.2: Different realizations of the path 1T in (D.5) with kd = 1 and kb = 1
(full bridge scenario).
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Figure D.3: Different realizations of the path 2T in (D.5) with kd = 1 and kb = 1
(full bridge scenario).
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Figure D.4: Different realizations of the path 0T in (D.5) with kd = 1 and kb = 0.9
(partial bridge scenario).

Figs. D.4–D.6 demonstrate numerous realizations of the path pT in (D.5) for

different values of the primitive p, in which the bridge is partially (kb = 0.9) es-

tablished. For kd = 1, the terminating point (px(L), py(L)) falls into the circular

boundary of Corollary 1 as shown in Figs. D.4–D.6. In these three figures, we have

increased the number of realizations to show the tightness of the circular boundary.

However, we have avoided a very high number of realizations to keep the visibility

of the paths9. The effect of the primitive p is the same as what has been discussed

in the first set of the figures. This scenario has again many real-life applications.

The path started from the tourist information office to the historical zone of the city

is one of the handy examples. The possible trajectories from the police department

to a crime zone is another example.

The random walk trajectories and its filtered (integrated) versions are illustrated

in Figs. D.7–D.9. In this set of figures, there is neither drift, nor bridge to a prede-

fined point, i.e., kd = kb = 0. Given a position index l, the heading destination point

(px(l+1), py(l+1)) is totally random and is not subject to any drift. Nevertheless,

for p ≥ 1, the high correlation between the points does not allow sudden changes

of direction (see Figs. D.8 and D.9). Herein, the angular tendency of the path is

9By increasing the number of realizations, it can easily be shown that the circular boundary is
quite tight.
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Figure D.5: Different realizations of the path 1T in (D.5) with kd = 1 and kb = 0.9
(partial bridge scenario).
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Figure D.6: Different realizations of the path 2T in (D.5) with kd = 1 and kb = 0.9
(partial bridge scenario).
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mainly determined by the point next to the starting point, i.e., ( px(1), px(1)). Owing

to the randomness of this point, the location of the terminating point ( px(L), py(L))

is completely random. For a predefined σmax, a circular boundary (see Corollary

2) centred on the starting point, however, can fence the possible locations of the

terminating point. Again, if we increase the number of realizations, it can be veri-

fied that the bounds shown in Figs. D.7–D.9 are quite tight. However, to keep the

visibility of the paths, we have not increased this number. Fig. D.7 shows the origi-

nal random walk trajectories, while Figs. D.8 and D.9 display their once and twice

integrated versions, respectively. It is worth mentioning that the paths shown in

Figs. D.8 and D.9 are very similar to the ones obtained from the Gauss-Markov mo-

bility model with a tuning parameter close to 1. Nonetheless, the superiority of our

proposed model is that herein, different speed scenarios can be applied to a given

trajectory. We remind that the position (px(l), py(l)) corresponding to the Gauss-

Markov model is a function of the velocity of the motion. The applications of the

random walk trajectory model have been studied in the literature (see, e.g, [8, 9]).

However, its integrated versions are totally new. From the application perspective,

the paths shown in Figs. D.8 and D.9 can represent radial distancing from a starting

point in random directions.

A very novel trajectory model is obtained if we set the drift parameter kd to 0

and the bridge parameter kb to 1. This allows the distance between (px(l), py(l))

and the starting point to first increase and then decrease, enabling the trajectory pT

to bridge back to the starting point. In this way, the configuration of the path pT is

determined by random closed loops. Fig. D.10 shows different realizations of such

a scenario, in which the maximum standard deviation σmax along each axis has been

set to 10 m. The closed loops can also be obtained by choosing other values of p,

which only affects the smoothness level of the path. Such trajectories can also be

seen in real life. Assume a main hall (as the starting point) that connects different

sections of a museum. The trajectories of visitors might then be modelled by the

paths shown in Fig. D.10.

Fig. D.11 illustrates another set of trajectories obtained under the assumption

of kd = 0 and kb = 0.5. The resulting paths first show a sort of circular behavior

near the starting point. By increasing l, these circular shapes, however, are opened

to straight lines. The reason of this special configuration is that for 0 < kb < 1, the

variance of the path along each axis is a combination of a concave and a convex

function (see Fig. 5 of Part II). Such paths can be very useful to model vehicle

trajectories in roundabouts and U-turns.
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Figure D.7: Different realizations of the path 0T in (D.5) with kd = 0 and kb = 0
(broken bridge scenario).
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Figure D.8: Different realizations of the path 1T in (D.5) with kd = 0 and kb = 0
(broken bridge scenario).
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Figure D.9: Different realizations of the path 2T in (D.5) with kd = 0 and kb = 0
(broken bridge scenario).
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Figure D.10: Different realizations of the path 2T in (D.5) with kd = 0 and kb = 1
(full bridge scenario).
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Figure D.11: Different realizations of the path 2T in (D.5) with kd = 0 and kb = 0.5
(partial bridge scenario).

We finish the discussion about the possible configurations of the path by remark-

ing that the above-mentioned configurations are not the only ones that the proposed

trajectory model in (D.5) can render.

VII. CONCLUSION

In the first part of our paper, we have introduced a third approach to trajectory

modelling, through which fully spatial trajectory models can be obtained. We have

proposed a highly flexible trajectory model based on the primitives of BFs. We have

shown that the proposed path model renders a great number of configurations, while

the smoothness level of each path configuration can be controlled by the primitives

of BFs. We have demonstrated that the proposed trajectory model can describe both

targeted and non-targeted dynamics of users in motion. In addition, random closed-

loop trajectories can be obtained as a special case of the proposed model. The

resulting trajectories can be travelled with different speeds without influencing the

path configuration. The potential applications of the path configurations have been

discussed, showing that the proposed path model can explain many of our daily-life

activities. Furthermore, we have provided a MATLAB� code for simulating paths

generated by the proposed trajectory model. It has been shown that the code is fast
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and easy to implement. A practical scheme for the parametrization of the model has

also been provided.

In the second part of our paper, we study the statistical prosperities of the pro-

posed trajectory model. Other possible path configurations can be studied in future

works. For example, combinational trajectories to reach a target point via one or

several predefined mid-points might be another potential research line. In the fu-

ture, the proposed approach of this paper can be followed to design other spatial

trajectory models, which are not necessarily based on BFs. The new approach can

also be extended to generate three-dimensional trajectory models. The smoothness

control mechanism proposed in this paper is not flexible in the sense of generat-

ing multiple smoothness levels along a single trajectory. This also calls for further

investigations on smoothness control mechanisms with applications in trajectory

modelling.

APPENDIX D.A

PROOF OF THEOREM 1

Setting kd = 1, σx = σy, and computing the terminating point ( px(L), py(L)) of

the path pT in (D.5) allows us to write

px(L) = xd +σx pWx(L,kb) (D.9)

py(L) = yd +σy pWy(L,kb) (D.10)

in which pWx(L,kb) = (1− kb)pBx(L) and pWy(L,kb) = (1− kb)pBy(L) (see (D.4)).

The distance Dd from the terminating point (px(L), py(L)) to the destination point

(xd ,yd) is then given by

Dd =
√
(px(L)− xd)2 +(py(L)− yd)2

= σx(1− kb)
√

pB2
x(L)+ pB2

y(L). (D.11)

In the equation above, pBx(L) is a normally distributed random variable (see Sec-

tion III-C) of the form N
(

0,σ 2
pBx

(L)
)

, where

σ 2
pBx

(L) =
L2p+1

(p!)2(2p+1)
. (D.12)

The same distribution holds for pBy(L). Owing to the independency of pBx(L)

and pBy(L), the distance Dd in (D.11) follows the Rayleigh distribution with the
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parameter (not variance) σ2
Dd

= σ 2
x (1− kb)

2σ 2
pBx

(L). Therefore, the probability

P

⎧⎨
⎩Dd ≤ cσx(1− kb)

p!

√
L2p+1

2p+1

⎫⎬
⎭ (D.13)

is determined by the cumulative distribution function FDd(d) of the distance Dd

(see, e.g., [34, p. 168]). It follows,

FDd

⎛
⎝cσx(1− kb)

p!

√
L2p+1

2p+1

⎞
⎠

= P

⎧⎨
⎩Dd ≤ cσx(1− kb)

p!

√
L2p+1

2p+1

⎫⎬
⎭

= 1− exp

⎧⎨
⎩−

c2σ2
x (1−kb)

2L2p+1

(p!)2(2p+1)

2σ 2
Dd

⎫⎬
⎭

= 1− e−
c2
2 . (D.14)
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A Highly Flexible Trajectory Model Based on the

Primitives of Brownian Fields—Part II: Analysis of

the Statistical Properties

Alireza Borhani and Matthias Pätzold

Abstract — In the first part of our paper, we have proposed a highly flexible

trajectory model based on the primitives of Brownian fields (BFs). In this sec-

ond part, we study the statistical properties of that trajectory model in depth.

These properties include the autocorrelation function (ACF), mean, and the

variance of the path along each axis. We also derive the distribution of the

angle-of-motion (AOM) process, the incremental travelling length process, and

the overall travelling length. It is shown that the path process is in general

non-stationary. We show that the AOM and the incremental travelling length

processes can be modelled by the phase and the envelope of a complex Gaussian

process with nonidentical means and variances of the quadrature components.

In accordance with empirical studies, we proof that the AOM process does not

follow the uniform distribution. As special cases, we show that the incremen-

tal travelling length process follows the Rice and Nakagami-q distributions,

whereas the overall travelling path can be modelled by a random variable fol-

lowing either the Gaussian or the lognormal distribution. The usefulness of the

results is demonstrated and discussed extensively. It is shown that the results

are in line with those of real-world user tracings. The results can be used in

many areas of wireless communications.

Index Terms — Trajectory model, mobility model, Brownian fields, auto-

correlation function, angle-of-motion, travelling length.
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I. INTRODUCTION

To evaluate the usefulness of mobility models for system-level analysis, the sta-

tistical properties of these models need to be studied thoroughly. Many spatial

features of the models listed, e.g., in [1–3] are revealed by investigating their statis-

tical characteristics. However, a gap in the related literature is that there exist very

limited solid mathematical studies on the spatial properties of mobility models.

These models have often been proposed in form of Java-based simulation models

from which obtaining a sound understanding of the statistical characteristics is not

an easy task. The path processes’ mean, variance, ACF, AOM, and the travelling

length are among the most important spatial characteristics that play important roles

in the performance analysis of the overall system. These quantities can also be very

useful for the parametrization of the mobility model itself.

The random walk [4, 5], random waypoint [6], Gauss-Markov [7], city sec-

tion [8], and the pursue [9] mobility models are only to name some few of the

mobility models for which their spatial (statistical) characteristics have not been

perused. Despite the spatial properties of these models, the temporal properties of

these models have often been studied in the literature (see, e.g., [10] and [11]). The

expected epoch time and the number of states visited at a fixed time are two impor-

tant temporal properties of a mobility model that have often been investigated [10].

In this second part of our paper, we focus on the statistical properties of the

trajectory model that has been introduced in the first part. We recall that the pro-

posed path model belongs to the class of spatial trajectory models that are based

on the primitives of BFs. The random components of the path model are derived

from Gaussian processes, which are defined in position rather than time. Herein,

we derive the spatial mean and variance of the stochastic trajectory model. We also

provide a closed-form expression for the ACF of the path process. Moreover, we

introduce a complex spatial increment process, from which the AOM and the in-

cremental travelling length processes are derived. The first-order density of these

processes is presented in closed form. By summing up the incremental travelling

lengths, we compute the overall travelling length and its probability density func-

tion (PDF). The results are illustrated and discussed in detail.

We proof that the path process is in general non-stationary. Furthermore, it is

shown that the AOM and the incremental travelling length processes are modelled

by the phase and the envelope of a complex Gaussian process with nonidentical

means and variances of the quadrature components. We show that the AOM and

the incremental travelling length are in general non-stationary processes. In this

connection, we demonstrate that the AOM process does not follow the uniform dis-
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tribution, which agrees with empirical traces reported in [12]. However, the uniform

AOM can be obtained as a special case. In addition, we proof that the incremental

travelling length process follows the Rice and Nakagami-q distributions as special

cases. For the path based on the primitives of the standard BFs, we show that the

overall travelling length follows closely the lognormal distribution, which is in line

with many real-life tracing records [12–15]. For the path based on the standard BF,

we proof that the overall travelling length follows the Gaussian distribution, which

has been reported from studies in dense urban environments [16–22].

The statistical properties provided in this second paper are very useful in many

areas of science, such as wireless communications and vehicular technologies. The

results of this paper can be used by researchers dealing with ad hoc networks, local-

ization (positioning), network mobility protocols, and mobile radio channel mod-

elling under non-stationary conditions1.

The remainder of this paper is organized as follows. Section II recalls the prin-

ciples of the trajectory model proposed in the first part of our paper. The statistical

properties of the model are investigated in Section III. Section IV studies the spa-

tial characteristics of the proposed model. To provide a sound understanding of the

results, two important special cases of the path model are discussed in Section V.

The numerical results are presented in Section VI. Eventually, the conclusion is

presented in Section VII.

II. A BRIEF REVIEW OF THE TRAJECTORY MODEL

With reference to the first part of out paper, we model a path starting from (xs,ys)

and terminating at or in the proximity of a given destination point (xd,yd) by the

trajectory pT designed by the following pair

pT :

{
(px(l), py(l))

∣∣∣∣∣ px(l) = xs + kd lδx +σx pWx(l,kb)

py(l) = ys + kd lδy +σy pWy(l,kb)

}

(E.1)

For a positive integer L, the terms δx = (xd −xs)/L and δy = (yd −ys)/L denote the

deterministic increments along each axis. The drift parameter kd acts as a switch

to control the presence of such a deterministic drift that forces the path to evolve

towards the destination point (xd,yd) (see Section IV-C of Part I). The parameter σx

(σy) is to control the randomness of the path px(l) (py(l)) along the x-axis (y-axis)2

1For the application in channel modelling, see [23] and [24].
2Due to the symmetry of the trajectory model, the statistical properties of px(l) and py(l) are the

same. Therefore, and for fluency reasons, we henceforth avoid repeating the analogy between the
essential properties of the path along the x- and y-axis.
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(see Section IV-A of Part I). Furthermore, the objective of the partial random bridge,

defined as

pWx(l,kb) = pBx(l)− kb l
L pBx(L) (E.2)

is to model the randomness of the path along each axis by means of the pth primitive

pBx(l) of the standard BF Bx(l) associated with the x-axis. The parameter kb is

called the bridge parameter, which determines the integration degree of the bridge

to the destination point (see Section IV-B of Part I). In addition, the primitive p

determines the smoothness level of the path. We remind that the level of smoothness

increases by increasing p (see Section IV-D of Part I).

The trajectory pT in (E.1) has been designed in such a way that allows 1) arriv-

ing at a predefined destination point (xd,yd) if the bridge is fully established, i.e.,

kb = 1, 2) arriving at a target zone with a predefined radius and centre (see Theorem

1 and Corollary 1 of Part I) if the bridge is partially established, i.e., 0 < kb < 1,

3) a totally random point in the two-dimensional (2D) plane if the bridge is broken,

i.e., kb = 0, and finally 4) bridging back (closed loop) to the starting point (xs,ys) if

the bridge is fully established, i.e., kb = 1, but the drift component does not exist,

i.e., kd = 0. The entire configurations above plus several others have been shown

and extensively discussed in Part I of our paper.

III. STATISTICAL PROPERTIES OF THE PROCESS px(l) (py(l))

In this section, we investigate the statistical properties of the process px(l)

(l = 1,2, ...,L). We first derive the first-order density of px(l) and then study the

corresponding mean, ACF, and variance. Owing to the statistical equivalence of the

path pT along the x- and y-axis (see (E.1)), the statistical characteristics of the pro-

cess py(l) can be obtained from those of px(l) by replacing x by y in the respective

equations.

A. First-Order Density of px(l)

The process px(l) in (E.1) is a shifted version of the bridge process pWx(l,kb),

which is consist of the pth primitive of the standard BF Bx(l), given by

pBx(l) =
∫ l

0
p−1Bx(l

′)d l′ ∀p = 1,2, ... . (E.3)
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With reference to Part I of the series of two papers, the process pBx(l) in (E.3)

is a Gaussian process of the form N(0,σ 2
pB(l)), where

σ 2
pBx

(l) =
l2p+1

(p!)2(2p+1)
. (E.4)

Referring to (E.2), the bridge process pWx(l,kb) is a linear combination of two

Gaussian processes. This allows us to conclude that the first-order density of px(l)

in (E.1) is a normal distribution of the form N(mpx(l),σ 2
px(l)), where the mean

mpx(l) and the variance σ 2
px(l) are derived in Sections III-B and III-D, respectively.

It is also worth mentioning that the autocovariance function rc
pBx pBx

(li, l j) of

pBx(l) is given by the following expression

rc
pBx pBx

(li, l j) =
1

(p!)2

min (li,l j)∫
0

(li− l′)p(l j − l′)pd l′. (E.5)

The variance σ2
pBx

(l) and the autocovariance function rc
pBpB(li, l j) of pBx(l) play key

roles in the analysis of the statistical properties of the trajectory pT in (E.1).

B. Mean of px(l)

The mean mpx(l) of the process px(l) in (E.1) can be computed as follows

mpx(l) = E
{

xs + kdlδx +σx pWx(l,kb)
}

= xs + kdlδx +σxE

{
pBx(l)− kbl

L pBx(L)

}

= xs + kdlδx +σxE
{

pBx(l)
}− kbl

L
E
{

pBx(L)
}

= xs + kdlδx (E.6)

where we have used E{pBx(l)} = 0 for l = 0,1, ...,L. For kd = 1 and δx > 0, the

mean mpx(l) in (E.6) increases linearly with the position index l, which means that

the process px(l) is neither strict-sense stationary nor wide-sense stationary. This

can be attributed to the drift of the path, which establishes the dependency of the

mean mpx(l) upon the position index l. If the drift does not exist, i.e., kd = 0, then

the mean mpx(l) equals the starting length xs.
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C. Autocorrelation Function of px(l)

The expectation E
{

px(li) px(l j)
}

equals the ACF rpxpx(li, l j) of the process px(l)

at the position indices li and l j. It can be shown (see Appendix A) that

rpxpx(li, l j) = mpx(li)mpx(l j)+σ 2
x

(
rc

pBxpBx
(li, l j)

− kbl j

L
rc

pBxpBx
(li,L)− kbli

L
rc

pBxpBx
(L, l j)

+
k2

blil j

L2 rc
pBxpBx

(L,L)

)
(E.7)

where the autocovariance function rc
pBxpBx

(li, l j) is given by3 (E.5), in which we

replace the superscript pB by pBx. The ACF rpxpx(li, l j) in (E.7) cannot be written

as a function of the difference ld = li − l j, which confirms that px(l) is not wide-

sense stationary.

An important special case occurs if we set one of the arguments of the ACF

in (E.7) to 0. In this case, (E.7) reduces to the following expression

rpxpx(0, l j) = mpx(0)mpx(l j)+σ 2
x

(
rc

pBxpBx
(0, l j)− kbl j

L
rc

pBxpBx
(0,L)

)
= mpx(0)mpx(l j)

= xs(xs + kdl jδx) (E.8)

where we have used rc
pBxpBx

(0, l j) = rc
pBxpBx

(0,L) = 0. The recent reduction origi-

nates from the fact that min(0, l j) = 0 in (E.5) forces rc
pBxpBx

(0, l j) to 0. With the

same token, it can be shown that rpypy(0, l j) = mpy(0)mpy(l j), from which it can be

concluded that the correlation between the starting point and any heading point is

determined by the product of the corresponding mean values. If one of the mean

values is zero, no correlation exists. It can also be shown that if the bridge is fully

established, i.e., kb = 1, then rpxpx(L, l j) = rpxpx(l j,L) =mpx(L)mpx(l j). In this case,

the correlation between the terminating point and its posterior points is also deter-

mined by the product of the corresponding mean values.

D. Variance of px(l)

3To cope with the discreteness of the position index l, one may simply use the equivalent Rie-
mann sum of the integral in (E.5).
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The variance σ2
px(l) of the process px(l) is computed as follows

σ 2
px(l) = rpxpx(l, l)−m2

px(l)

= σ 2
x

(
rc

pBxpBx
(l, l)−2

kbl
L

rc
pBxpBx

(l,L)+
k2

bl2

L2 rc
pBxpBx

(L,L)

)
. (E.9)

It can be shown that the variance σ 2
px(l) of the process px(l) in (E.9) is a monotoni-

cally increasing function in p. This is intuitively due to the fact that the integration

over the standard BF increases the correlation between the random components.

Furthermore, it can be verified that liml→0 σ 2
px(l) = 0. Analogously, one can write

liml→0 σ 2
py(l) = 0. The two recent limits state that the randomness of the points

near the starting point (px(0), py(0)) (or equivalently (xs,ys)) tends to zero. The

randomness of the terminating point (px(L), py(L)) and the points in its close vicin-

ity, however, do not vanish, as the limit

lim
l→L

σ 2
px(l) = σ 2

x (1− kb)
2rc

pBxpBx
(L,L)

= σ 2
x (1− kb)

2σ 2
pBx

(L) (E.10)

is in general not equal to 0. If kb → 1, then liml→L σ 2
px(l) = 0. It is also worth

mentioning that the result in (E.10) is equal to the parameter σ 2
Dd

of the Rayleigh

distributed distance Dd between the terminating point (px(L), py(L)) and the des-

tination point (xd,yd), which opens an alternative way to proof Theorem 1 of Part

I. We also remark that the variance σ 2
px(l) of the process px(l) is very useful for

adjusting the standard deviation σx as one of the important model parameters (see

Section V-B of Part I).

IV. SPATIAL CHARACTERISTICS OF THE TRAJECTORY pT

This section deals with the spatial processes, which consist of the elements px(l)

and py(l) of the trajectory pT along the x- and y-axis.

A. Spatial Increment Process

Let the complex process ps(l) = psx(l)+ j psy(l) (l = 1,2, ...,L) define the spa-

tial increment process of the trajectory pT , where psx(l) = px(l)− px(l − 1) and

psy(l) = py(l)− py(l−1) are the increments along the x- and y-axis, respectively.

Theorem 1. The spatial increment ps(l) follows the complex Gaussian distri-

bution of the form CN
(
mps,Cps

)
, where mps = [kdδx, kdδy]

T ,
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Cps =

(
σ 2

psx
(l) 0

0 σ 2
psy
(l)

)
(E.11)

σ 2
psx
(l) = σ 2

x

(
rc

pBxpBx
(l, l)+ rc

pBxpBx
(l−1, l−1)

+
k2

b

L2 rc
pBxpBx

(L,L)−2rc
pBxpBx

(l, l−1)

− 2kb

L
rc

pBxpBx
(l,L)+

2kb

L
rc

pBxpBx
(l−1,L)

)
(E.12)

and σ 2
psy
(l) can be obtained from (E.12) by replacing the superscript x by y.

Proof: See Appendix B. �
From Theorem 1, it can be concluded that the spatial increment process ps(l) is

not strict-sense stationary, as its first-order density CN
(
mps,Cps

)
varies in l. The

spatial increment process ps(l) is very useful for deriving the AOM process and the

incremental travelling length process of the path pT , as will be shown in the next

two subsections.

B. AOM Process

The AOM pαv(l) process, defined as

pαv(l) = arctan

(
py(l)− py(l−1)

px(l)− px(l−1)

)

= arctan

(
psy(l)

psx(l)

)
(E.13)

can be considered as the phase of the spatial increment process ps(l).

Corollary 1. The first-order density ppαv(αv; l) of the AOM process pαv(l)

in (E.13) is given by the following expression

ppαv(αv; l) =
1

4πg1(αv; l)σpsx(l)σpsy(l)

× exp

{
−1

2

(
k2

dδ 2
x

σ 2
psx
(l)

+
k2

dδ 2
y

σ 2
psy
(l)

)}

×
(

1+

√
πg2(αv; l)

2
√

g1(αv; l)
erfc

(
−g2(αv; l)

2
√

g1(αv; l)

)
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× exp

{
g2

2(α
v; l)

4g1(αv; l)

})
(E.14)

where

g1(αv; l) =
1
2

(
cos2(αv)

σ 2
psx
(l)

+
sin2(αv)

σ 2
psy
(l)

)
(E.15)

g2(αv; l) = kd

(
δx cos(αv)

σ 2
psx
(l)

+
δy sin(αv)

σ 2
psx
(l)

)
(E.16)

and erfc(·) stands for the complementary error function [25, p. 887].

Proof: With reference to Theorem 1, the spatial increment ps(l) follows the

complex Gaussian distribution of the form CN
(
mps,Cps

)
. The phase and the enve-

lope of complex Gaussian processes with correlated quadratures and non-identical

means (variances) have been studied in [26] and [27]. Herein, the correlation ρ be-

tween the inphase and quadrature components of the spatial increment process ps(l)

is zero, i.e., ρ =C12 =C21 = 0. Starting from the phase distribution of a complex

Gaussian distribution with uncorrelated quadratures in [27, Eq. (2)], setting ρ = 0,

and performing some straightforward mathematical manipulations results in (E.14).

�
In accordance with the spatial increment process ps(l), the AOM process pαv(l)

in (E.13) is not first-order stationary, as its first-order density ppαv(αv; l) in (E.14)

depends on position index l. The special case of p = 0, however, results in a sta-

tionary AOM process pαv(l). In this case, it is straightforward to show by means

of (E.5) that the variance σ 2
psx
(l) in (E.12) reduces to

σ 2
0sx

= σ 2
x

(
1+

k2
b

L
−2

kb

L

)
(E.17)

which does not change in l, stopping the variations of ppαv(αv; l) in l as well

(see (E.14)–(E.16)). Another stationary case occurs if we decrease the variances σ 2
x

and σ 2
y towards zero. In this case, ppαv

l
(αv; l) in (E.14) tends to the delta function

located at αv = arctan(δy/δx), which is independent of l. Notice that arctan(δy/δx)

indicates the general drift of the path pT in (E.1).

An important property of the AOM pαv(l) of the proposed trajectory model is

that pαv(l) is in general not uniformly distributed. This is in agreement with the re-

sults obtained from real-world tracings [12]. Nonetheless, under special conditions,

the first-order density ppαv(αv; l) in (E.14) can be simplified to a constant value,



186 Modelling and Analysis of Non-Stationary Mobile Fading Channels

indicating that the AOM pαv(l) is uniformly distributed. Notice that the uniform

distribution of the AOM is one of the widely made assumptions in the synthetic

mobility models proposed in the literature, which is, however, not necessarily true.

C. Incremental Travelling Length Process

The incremental travelling length process pd(l) is defined by the following ex-

pression

pd(l) =

√
(px(l)− px(l−1))2 +(py(l)− py(l−1))2

=
√

ps2
x(l)+ ps2

y(l) (E.18)

which is the envelope of the spatial increment process ps(l).

Corollary 2. The first-order density ppd(d; l) of the incremental travelling

length process pd(l) equals

ppd(d; l) =
d

σpsx(l)σpsy(l)
exp

{
−

σ 2
psx
(l)+σ 2

psy
(l)

4σ 2
psx
(l)σ 2

psy
(l)

d2

−
k2

d

(
δ 2

x σ 2
psy
(l)+δ 2

y σ 2
psx
(l)
)

2σ 2
psx
(l)σ 2

psy
(l)

⎫⎬
⎭

×
∞

∑
n=0

εn cos(ng3(l)) In

(
σ 2

psx
(l)−σ 2

psy
(l)

4σ 2
psx
(l)σ 2

psy
(l)

d2

)

× I2n

⎛
⎝kd

√
δ 2

x σ 4
psy
(l)+δ 2

y σ 4
psx
(l)

σ 2
psx
(l)σ 2

psy
(l)

d

⎞
⎠

(E.19)

where

g3(l) = 2arccos

⎛
⎝ δxσ 2

psy
(l)√

δ 2
x σ 4

psy
(l)+δ 2

y σ 4
psx
(l)

⎞
⎠ (E.20)

and In(·) denotes the nth order modified Bessel function of the first kind [25, p.

629]. The parameter εn stands for the Neumann factor [28], which equals 1 for

n = 0, and 2 for n = 1,2, ....

Proof: Following the discussion provided in the proof of Corollary 3, setting

ρ = 0 in the envelope distribution in [27, Eq. (1)], and applying simple mathemati-

cal manipulations give the PDF in (E.19). �



E – Trajectory Models Based on the Primitives of Brownian Fields–Part II 187

It has been shown in [27] that the infinite series in (E.19) is convergent. It is

also not difficult to verify that ∀p, limd→∞ p
pd(l)(d; l) → 0. This means that the

probability of jumping far from (px(l−1), py(l−1)) to (px(l), py(l)) tends to zero

for all p = 0,1, ..., which is a prerequisite for a realistic path model. An important

property of the PDF ppd(d; l) in (E.19) is its dependency on l, which allows us to

conclude that the incremental travelling length process pd(l) in (E.18) is in general

non-stationary in the strict sense. Analogously to the discussion in Section IV-B,

this dependency can be relaxed by setting p = 0. In this case, σ 2
psx
(l) is given

by (E.17), which makes ppd(d; l) in (E.19) independent of l.

Another important special case is attained if σx = σy = σ0 and δx = δy = δ0.

In this case, the PDF ppd(d; l) in (E.19) reduces to the Rice distribution of the

following form

ppd(d; l) =
d

σ 2
psx
(l)

exp

{
−2k2

dδ 2
0 +d2

2σ 2
psx
(l)

}
I0

(
kdδ0

√
2

σ 2
psx
(l)

d

)
.

(E.21)

It is worth mentioning that the Rice distribution above is not a function of l if p = 0.

Given this special case, the mean m0d and the variance σ2
0d of the Rician distributed

incremental travelling length 0d(l) is obtained by (see, e.g., [29, p. 28])

m0d = σ 2
0sx

√
π
2 1F1

(
−1

2
; 1; −k2

dδ 2
0

σ 2
0sx

)
(E.22)

and

σ 2
0d = 2σ 2

0sx
+2k2

dδ 2
0 −m2

0d (E.23)

respectively, where the function pFq(a1, ...,ap;b1, ...,bq;x) stands for the general-

ized hypergeometric function [25, p. 1010].

If the drift component does not exist, i.e., kd = 0, the PDF ppd(d; l) in (E.19) is

simplified to the Nakagami-q distribution of the form

ppd(d; l) =
d

σpsx(l)σpsy(l)
exp

{
−

σ 2
psx
(l)+σ 2

psy
(l)

4σ 2
psx
(l)σ 2

psy
(l)

d2

}

× I0

(
σ 2

psx
(l)−σ 2

psy
(l)

4σ 2
psx
(l)σ 2

psy
(l)

d2

)
(E.24)
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which has been reported, e.g., in [29–31].

D. Overall Travelling Length

The overall travelling length pD can be obtained by the sum of all incremental

lengths pd(l), i.e., pD = ∑L
l=1 pd(l). Even if L → ∞, none of the central limit the-

orems (CLT) of Lindeberg-Lévy and Lyapunov can be applied, as the incremental

lengths pd(l) are neither identically distributed, nor independently. The correlation

between the components is also not low enough to be neglected. However, the case

p = 0 results in identically distributed incremental lengths 0d(l) (see Section IV-

C). For such a special case, the CLT for correlated random variables [32] can be

invoked. To provide a closed-form solution for the overall travelling length pD, we

focus on the special case discussed in Section IV-C, where the first-order density

p0d(d; l) = p0d(d) follows the Rice distribution. Consequently, the CLT for cor-

related random variables permits us to conclude that the travelling length 0D is a

normally distributed random variable of the form N
(

Lm0d ,Lσ2
0d

)
, where the mean

m0d and the variance σ2
0d are given by (E.22) and (E.23), respectively. This dis-

tribution can often be seen in dense and crowded areas, such as shopping centres

and airports [16–22]4. In Section VI, the simulation results show that for p ≥ 1,

the travelling length pD follows closely the log-normal distribution, which has been

widely addressed in the literature [12–15].

V. SPECIAL CASES

As discussed in the first part of our paper, the primitive p= 0 allows erratic paths

with sudden changes of direction. However, the higher primitives p > 0 result in

relatively smooth paths. The level of smoothness increases by increasing p. From

these two major categories, we choose p = 0 and p = 1 to further simplify some

of the statistical properties of the process px(l). We also assume the full bridge

scenario, i.e., kb = 1, in the presence of a drift component, i.e., kd = 1. This allows

us to get a better understanding of the behaviour of px(l).

A. The Zeroth Primitive p = 0

The mean m0x(l) in (E.6) is independent of p and remains equal to xs + lδx.

The autocovariance function rc
0Bx0Bx

(li, l j) in (E.5) of the standard BF simplifies to

min(li, l j), which complies with the result, e.g., in [33]. Subsequently, the ACF

4Notice that most of the related empirical studies concern the speed distribution of mobile users,
but not their travelling length. Nevertheless, the time-distance transformation allows us to extend
their obtained distribution to that of the travelling length.
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r0x0x(li, l j) in (E.7) reduces to

r0x0x(li, l j) = m0x(li)m0x(l j)+σ 2
x

(
min(li, l j)− lil j

L

)
. (E.25)

By setting li = l j = l and subtracting the means’ product, one can obtain the variance

σ 2
0x(l) of the process 0x(l) by means of the following equation

σ 2
0x(l) = σ 2

x l

(
1− l

L

)
. (E.26)

The function above has a concave shape with a peak at5 l = L/2 and two zeros at

l = 0 and l = L. The value σ 2
0xmax of the peak then becomes σ 2

0xmax = σ 2
0x(L/2) =

σ 2
x L/4. Furthermore, the spatial increment 0sx(l) follows the Gaussian distribution

of the form N(δx,σ 2
0sx
(l)), where

σ 2
0sx
(l) = σ 2

x

(
1− 1

L

)
(E.27)

is the simplified version of (E.12) after setting p = 0 and kb = 1. The variance

σ 2
0sx
(l) in (E.27) can also be considered as the special case, kb = 1, of its more

general form in (E.17).

B. The First Primitive p = 1

In this case, the path can be attained by substituting the outcomes of the inte-

grated (once) BF in (E.1). The mean m1x(l) remains equal to xs + lδx. The auto-

covariance function rc
1Bx1Bx

(li, l j) in (E.5) of the integrated BF reduces to

rc
1Bx1Bx

(li, l j) = lil j min(li, l j)− li+ l j

2
(min(li, l j))

2 +
1
3
(min(li, l j))

3. (E.28)

For the special case of li = l j, the auto-covariance function above becomes l3/3,

which agrees with the variance σ 2
1B(l) in (E.4) and that of reported, e.g., in [33].

The simplification of the variance σ 2
1x(l) in (E.9) to

σ 2
1x(l) = σ 2

x
l2L
3

(
1− l

L

)2

(E.29)

is also very helpful to confirm its concave shape in l. The peak of the curve is again

at l = L/2, whereas the zeros are located at l = 0 and l = L. The value σ 2
1xmax of

5The nearest natural number to L/2 is acceptable as the position index l of the peak.
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the peak equals σ 2
1xmax = σ 2

1x(L/2) = σ2
x L3/48. Notice that for a given value of σ 2

x

and for large values of L � 1, the maximum variance σ 2
1xmax of the process 1x(l)

is significantly greater than that of 0x(l), i.e., σ 2
0xmax (see Section V-A). It is worth

mentioning that for higher values of p, the peak is not at L/2 anymore. For p ≥ 2,

the position of the peak has a mild tendency to the terminating position variable,

i.e., l = L. Furthermore, despite the apparent similarity between σ 2
1x(l) in (E.29)

and σ 2
0x(l) in (E.26), a general extension to higher values of p cannot be found. For

instance, the variance σ 2
2x(l) associated with the primitive p = 2 becomes

σ 2
2x(l) = σ 2

x
l2L
60

(
1− l

L

)2

(−l2 +6Ll+3L2) (E.30)

which has less similarity to (E.26) and (E.29). Nevertheless, the zeros of σ 2
2x(l)

in (E.30) are still at l = 0 and l = L/2, while its maximum occurs at the nearest

natural number to 0.55L.

VI. NUMERICAL RESULTS

Herein, we illustrate the statistical properties of the reference (path) model. We

have also obtained these properties by means of simulation results. This means that

we have generated a large enough number of realizations of the path by following

the procedure described in Section V-A of Part I. Then, we have derived the statis-

tical properties of the simulation model. An excellent match between the analytical

and simulation results have been observed. Due to the similarity of the statistical

properties of the reference model and the simulation model, we, nevertheless, omit

to show those of the simulation model herein. In accordance with the simulation

results presented in Part I of our paper, the starting point (xs,ys) is set to the origin

of the Cartesian coordinate system, i.e., (0m,0m), whereas the destination point

(xd ,yd), if any, is set to (50m,50m). The number of points L is 100. The maxi-

mum standard deviation σpxmax along the x-axis is supposed to be equal to the one

along the y-axis, i.e, σpxmax = σpymax = σmax. The only exception is where we

plot the ACF rpxpx(li, l j) of the path 0T , which will be discussed later. Owing to

space restrictions, we focus only on a special case in which the bridge to the des-

tination point is fully established, i.e., kb = 1, and the drift component is available,

i.e., kd = 1. The values of the primitive p is displayed in the figures and/or their

captions.

Figs. E.1–E.3 depict the ACF rpxpx(li, l j) of px(l) in (E.7) for different values of

the primitive p. To show the effect of the primitive p on rpxpx(li, l j), we have used

the same standard deviation σx = σy = 2 m to plot the three figures. This results



E – Trajectory Models Based on the Primitives of Brownian Fields–Part II 191

Figure E.1: The ACF r0x0x(li, l j) in (E.7). The model parameters are kd = 1, kb = 1,
and σx = σy = 2 m.

in completely different maximum standard deviations σ pxmax of the process px(l)

(see Section V-B). The first common observation in the three figures is that the ACF

rpxpx(li, l j) varies in position index l, which indicates that the process px(l) is non-

stationary. The second one is that p, rpxpx(li,0) = rpxpx(0, l j) = 0, which agrees

with the discussion provided in Section III-C. The third observation is that the three

figures are symmetric with respect to the line represented by li = l j. Fig. E.1 shows

that the maximum correlation occurs at li = l j = L, i.e., at the terminating point. This

can be attributed to the fact that most of the contribution to the correlation between

the samples of 0x(l) is given by its drift component. As a result, the highest value of

the curve occurs at li = l j = L, where the mean value of the samples is maximum.

Notice that the correlation between the random components of 0x(l) is relatively

low, as the non-overlapping increments of the standard BF are independent (see

Section III of Part I). As opposed to this, integrating over the standard BF (p > 0)

adds greatly to the correlation between the random components of 0x(l). In this

case, the contribution of the drift component to the correlation between the samples

of 0x(l) is in minority. This can be observed in Figs. E.2 and E.3, in which the

maximum correlation occurs at (about) li = l j = L/2, where the variance σ2
px(l) is

also maximum (see Section V-B).
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Figure E.2: The ACF r1x1x(li, l j) in (E.7). The model parameters are kd = 1, kb = 1,
and σx = σy = 2 m.

Figure E.3: The ACF r2x2x(li, l j) in (E.7). The model parameters are kd = 1, kb = 1,
and σx = σy = 2 m.
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Figure E.4: The variance σ 2
px(l) in (E.9). The model parameters are kd = 1, kb = 1,

and σx = σy = 2 m.

The variance σ2
px(l) of the process px(l) in (E.9) is demonstrated in Figs. E.4

and E.5. In accordance with Figs. E.1–E.3, we remain on the assumption of σx =

σy = 2 m. Fig. E.4 shows the variance σ 2
px(l) for different values of p. As discussed

in Section III-D, σpxmax is a monotonically increasing function in p. The significant

increase in σpxmax is the result of integrating over the BF. Referring to Fig. E.4, for p

equals 0 and 1, the maximum variance σpxmax occurs at l = 50. For p = 2, the peak

position, however, moves to l = 55, which verifies the mild tendency of the peak

position to the terminating point (see Section V-B). Fig. E.5 illustrates the variance

σ 2
2x(l) in (E.9) for different values of the bridge parameter kb. Herein, we have set

the maximum standard deviation to σmax = σ2xmax = 10 m. The importance of the

figure is to show the position of the maximum variance. If kb = 1, the variance

σ 2
2x(l) is a concave function given by (E.30) with a peak at l = 50. For kb = 0,

the variance σ2
2x(l) in (E.9) turns to σ 2

2x(l) = σ 2
x l5/20, which is a monotonically

increasing function in l. Therefore, the maximum occurs at l = 100. Finally, if

0 < kb < 1, the variance σ 2
2x(l) is a combination of a concave and convex function

as shown in Fig. E.5. The combined form of σ 2
2x(l) in the recent case can describe

the special configuration of the path shown in Fig. 11 of Part I. Notice that the

curves shown in Fig. E.5 show the variances of the paths along the x-axis shown in

Figs. 3, 10, and 11 of Part I.



194 Modelling and Analysis of Non-Stationary Mobile Fading Channels

0 20 40 60 80 100
0

20

40

60

80

100

120

Position index, l

V
a
ri
a
n
ce
,
σ
2 2
x
(l
)

p = 2
σmax = 10m

kb = 0.5
kb = 0

kb = 1

Figure E.5: The variance σ 2
2x(l) in (E.9). The model parameters are kd = 1, kb = 1

and σmax = 10 m.

Figs. E.6–E.8 display the AOM PDF ppαv(αv; l) in (E.14) for different values

of p. The maximum standard deviation σmax has been set to 10 m along both axes.

These figures show the AOM PDFs of the paths shown in Figs. 1–3 of Part I. As

can be observed in Fig. E.6, the AOM PDF p0αv(αv; l) does not vary in position

(look at the similarity of the colours along any given value of α v), which indicates

that the AOM process 0αv is stationary in this case (see Section IV-B). The station-

arity, however, does not hold for p = 1 and p = 2, as ppαv(αv; l) changes in l (see

Figs. E.7 and E.8). A common observation in Figs. E.6–E.8 is that for a given l, the

peak of ppαv(αv; l) is at αv = arctan(1) = 0.78 rad, which agrees with the slope of

the drift shown in Figs. 1–3 of Part I. Moreover, by increasing p, the variance of the

AOM process decreases, which is in line with the observations in Figs. 1–3 of Part

I. Furthermore, for αv = 0.78 rad, the maximum of ppαv(αv; l) occurs at l = 50 and

l = 55 if p= 1 and p= 2, respectively. Finally, as opposed to many proposed mobil-

ity models in the literature, herein, the AOM is in general not uniformly distributed,

which complies with real-life user tracings reported in [12].

Figs. E.9 and E.10 exhibit the incremental travelling length PDF ppd(d; l) given

in (E.19) for p equals 1 and 2, respectively. The model parameters are kd = 1,

kb = 1, and σmax = 10 m. The case p = 0 simplifies ppd(d; l) in (E.19) to the Rice

distribution (see Section IV-D), which is trivial to be presented here. It is noteworthy

that Figs. E.9 and E.10 show the incremental travelling length PDF p1d(d; l) of the
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Figure E.6: The AOM PDF p0αv(αv; l) in (E.14). The model parameters are kd = 1,
kb = 1, and σmax = 10 m.

Figure E.7: The AOM PDF p1αv(αv; l) in (E.14). The model parameters are kd = 1,
kb = 1, and σmax = 10 m.
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Figure E.8: The AOM PDF p2αv(αv; l) in (E.14). The model parameters are kd = 1,
kb = 1, and σmax = 10 m.

Figure E.9: The incremental travelling length PDF p1d(d; l) in (E.19). The model
parameters are kd = 1, kb = 1, and σmax = 10 m.
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Figure E.10: The incremental travelling length PDF p2d(d; l) in (E.19). The model
parameters are kd = 1, kb = 1, and σmax = 10 m.

paths shown in Figs. 2 and 3 of Part I, respectively. As can be observed from both

Figs. E.9 and E.10, limd→∞ p
pd(l)(d; l) = 0, which is in agreement with the discus-

sion in Section IV-C. Indeed, as a prerequisite for a realistic path, the proposed path

model does not allow far jumps from (xl−1,yl−1) to (xl,yl). Furthermore, the vari-

ance of the incremental travelling lengths pd decreases by increasing the primitive

p, which can also be confirmed by the paths shown in Figs. 2 and 3 of Part I. An im-

portant observation is that for a given l, the maximum ppd(d; l) occurs slightly after

d = 0.5 m. This value can be compared with the contribution of the drift component

to (E.1), which equals (xd − xs)/L = 0.5 m. Adding the contribution of the random

component in (E.1) to this value, the recent observation in Figs. E.9 and E.10 can

be verified. Eventually, the variations of ppd(d; l) in l indicate that the incremental

travelling length process in (E.18) is non-stationary in the strict sense.

Figs. E.11 and E.12 demonstrate the simulated overall travelling length PDF

ppD(d) discussed in Section IV-D. The simulation results have been obtained by

computing the sum pD = ∑L
l=1 pd(l) for 50000 realizations of the path pT and then

creating the corresponding histogram by means of 100 equally spaced bins. The

model parameters are kd = 1, kb = 1, and σmax = 10 m. For p = 0, p0D(d) follows

the Gaussian distribution of the form N
(

Lm0d,Lσ2
0d

)
(see Section IV-D). In this
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Figure E.11: The overall travelling length PDF p0D(d) discussed in Section IV-D.
The model parameters are kd = 1, kb = 1, and σmax = 10 m.

regard, Fig. E.11 shows the aforementioned Gaussian distribution, which matches

excellently the simulation results. As mentioned before, the Gaussian distribution

of the travelling length has been reported in empirical studies such as [16–22]. It

is also worth mentioning that Fig. E.11 represents p0D(d) associated with the paths

shown in Fig. 1 of Part I. For p ≥ 1, the overall travelling length PDF ppD(d) does

not result in an analytical closed-form solution. The simulation results, however,

can be obtained by the aforementioned procedure. The results shown in Fig. E.12,

are pertinent to the paths shown in Figs. 2 and 3 of Part I. An important observa-

tion from Fig. E.12 is that the travelling length PDF ppD(d) (p ≥ 1) follows closely

the lognormal distribution, which complies with the results from real-world trac-

ings [12–15]. With reference to Fig. E.12, by increasing the primitive p, both the

variance and the mean of the travelling length pD decrease. However, the mean

value cannot be less than the travelling length of the straight path. For the con-

sidered scenario, the length of the straight path equals 50
√

2 = 70.7 m, for which

the corresponding overall travelling length PDF ppD(d) is given by the delta Dirac

function of the form δ (d − 70.7). From Fig. E.12, it can be confirmed that by in-

creasing p, the travelling length PDF ppD(d) tends to that of the straight path, i.e.,

δ (d−70.7).
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VII. CONCLUSION

This second part of our paper has investigated the statistical properties of the trajec-

tory model proposed in the first part. We have studied the spatial mean, variance,

and the ACF of the path model. We have also introduced a new process that is called

the spatial increment process, for which we have shown that it follows the com-

plex Gaussian distribution with nonidentical means and variances of the quadrature

components. From this process, the AOM and the incremental travelling length pro-

cesses of the path have been derived. We have computed the first-order density of

these processes in closed form, showing that the AOM is not uniformly distributed,

which agrees with real-life traces reported in the literature. We have also proved

that the incremental travelling length includes the Rice and Nakagami-q distribu-

tions as special cases. Furthermore, we have computed the overall travelling length

by summing up the incremental travelling lengths. Simulation results have shown

that depending on the primitive order, the length of the travelling path follows ei-

ther the Gaussian distribution, or the lognormal distribution, which both have been

widely reported in empirical studies.
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APPENDIX E.A

DERIVATION OF THE ACF rpxpx(li, l j) IN (E.7)

To compute E
{

px(li) px(l j)
}

, let us recall from (E.1) that px(li) = mpx(li) +

σxWx(li,kb)=mpx(li)+σx(pBx(li)− kbli
L pBx(L)), where we have replaced xs+kdliδx

by the mean mpx(li) (see (E.6)). This allows us to compute the ACF rpxpx(li, l j) as

follows

rpxpx(li, l j) = E
{

px(li) px(l j)
}

= E

{(
mpx(li)+σx

(
pBx(li)− kbli

L pBx(L)

))

×
(

mpx(l j)+σx

(
pBx(l j)− kbl j

L pBx(L)

))}
= E

{
mpx(li)mpx(l j)

+ σxmpx(li)

(
pBx(l j)− kbl j

L pBx(L)

)

+ σxmpx(l j)

(
pBx(li)− kbli

L pBx(L)

)

+ σ 2
x

(
pBx(li)− kbli

L pBx(L)

)

×
(

pBx(l j)− kbl j

L pBx(L)

)}
= mpx(li)mpx(l j)

+ σxmpx(li)E

{
pBx(l j)− kbl j

L pBx(L)

}

+ σxmpx(l j)E

{
pBx(li)− kbli

L pBx(L)

}

+ σ 2
x E

{(
pBx(li)− kbli

L pBx(L)

)

×
(

pBx(l j)− kbl j

L pBx(L)

)}
= mpx(li)mpx(l j)

+ σ 2
x E

{(
pBx(li)− kbli

L pBx(L)

)

×
(

pBx(l j)− kbl j

L pBx(L)

)}
= mpx(li)mpx(l j)+σ 2

x

(
E
{

pBx(li)pBx(l j)
}

− kbl j

L
E
{

pBx(li)pBx(L)
}
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− kbli
L

E
{

pBx(L)pBx(l j)
}

+
k2

blil j

L2 E
{

B2
x(L)
})

. (E.31)

Finally, using rc
pBxpBx

(·, ·) = E
{

pBx(·)pBx(·)
}

gives the result in (E.7).

APPENDIX E.B

PROOF OF THEOREM 1

With reference to the path pT in (E.1), the increment process psx(l) = px(l)−
px(l−1) along the x-axis can be written as

psx(l) = xs + kdlδx +σx(pBx(l)− kbl
L pBx(L))

− xs − kd(l−1)δx −σx(pBx(l−1)+
kb(l−1)

L pBx(L))

= kdδx +σx(pBx(l)− pBx(l−1)− kb

L pBx(L)). (E.32)

The equation above represents a linear combination of zero-mean Gaussian proces-

ses plus the constant shift kdδx. Accordingly, the increment process psx(l) follows

the Gaussian distribution of the form N
(

kdδx,σ 2
psx
(l)
)

, where

σ 2
psx
(l) = E

{
(σx)

2
(

pBx(l)− pBx(l−1)− kb

L pBx(L)

)2
}

= σ 2
x E

{
pB2

x(l)+ pB2
x(l−1)+

k2
b

L2 pB2
x(L)

− 2 pBx(l) pBx(l−1)− 2kb

L pBx(l) pBx(L)

+
2kb

L pBx(l−1) pBx(L)

}

= σ 2
x

(
rc

pBxpBx
(l, l)+ rc

pBxpBx
(l−1, l−1)

+
k2

b

L2 rc
pBxpBx

(L,L)−2rc
pBxpBx

(l, l−1)

− 2kb

L
rc

pBxpBx
(l,L)+

2kb

L
rc

pBxpBx
(l−1,L)

)
. (E.33)

With the same token, the increment process psy(l) = py(l)− py(l−1) along the y-

axis follows the Gaussian distribution of the form N
(

kdδy,σ 2
psy
(l)
)

, where σ2
psy
(l)
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is obtained from (E.33) by replacing the superscript x by y. Furthermore, the corre-

lation between the increment processes psx(l) and psy(l) is zero, as their structural

elements pBx(l) and pBy(l) are statistically independent. Therefore, the spatial in-

crement process ps(l) = psx(l)+ i psy(l) follows the complex Gaussian distribution

of the form provided in Theorem 1.
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[13] B. C. Csáji, A. Browet, V. A. Traag, J. Delvenne, E. Huens, P. V. Dooren,

Z. Smoreda, and V. D. Blondel, “Exploring the mobility of mobile phone

users,” Physica A: Statistical Mechanics and its Applications, vol. 392, no. 6,

pp. 1459 – 1473, 2013.

[14] T. Garske, H. Yu, Z. Peng, M. Ye, H. Zhou, X. Cheng, J. Wu, and N. Ferguson,

“Travel patterns in China,” PLOS ONE, vol. 6, no. 2, pp. 1–9, Feb. 2011.

[15] M. A. P. Taylor and Susilawati, “Modelling travel time reliability with the Burr

distribution,” Procedia - Social and Behavioral Sciences, vol. 54, pp. 75–83,

2012.

[16] S. B. Young, “Evaluation of pedestrian walking speeds in airport terminals,”

Journal of the Transportation Research Board, vol. 1674, no. 2, pp. 20–26,

1999.

[17] P. P. Dey, S. Chandra, and S. Gangopadhaya, “Speed distribution curves under

mixed traffic conditions,” Journal of Transportation Engineering, vol. 132,

no. 6, pp. 475–481, Jun. 2006.

[18] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learn-

ing: Data Mining, Inference, and Prediction. Springer, 2001.

[19] J. Jun, “Understanding the variability of speed distributions under mixed traf-

fic conditions caused by holiday traffic,” Transportation Research Part C:

Emerging Technologies, vol. 18, no. 4, pp. 599–610, Jun. 2010.

[20] C.-M. Hsu and F.-L. Lian, “A case study on highway flow model using 2-

D Gaussian mixture modeling,” in Proc. Intelligent Transportation Systems

Conference, ITSC07. Seattle, WA, USA, Sep. 2007, pp. 790–794.



204 Modelling and Analysis of Non-Stationary Mobile Fading Channels

[21] N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton, “SMEM algorithm

for mixture models,” Neural Computation, vol. 12, no. 9, pp. 2109–2128, Sep.

2000.

[22] W. Zhu, K. Boriboonsomsin, and M. Barth, “Microscopic traffic flow quality

of service from the drivers point of view,” in Proc. Intelligent Transportation

Systems Conference, ITSC’07. Seattle, WA, USA, Sep. 2007, pp. 47–52.

[23] A. Borhani and M. Pätzold, “Modelling of non-stationary mobile radio chan-

nels using two-dimensional Brownian motion processes,” in Proc. 6th Inter-

national Conference on Advanced Technologies for Communications, ATC’13.

Ho Chi Minh City, Vietnam, Oct. 2013.

[24] ——, “Modelling of non-stationary mobile radio channels incorporating the

Brownian mobility model with drift,” in Proc. World Congress on Engineering

and Computer Science, WCECS13. San Francisco, USA, Oct. 2013.

[25] I. S. Gradshteyn and I. M. Ryshik, Table of Integrals, Series, and Products,

7th ed. Elsevier Academic Press, 2007.

[26] V. A. Aalo, G. P. Efthymoglou, and C. Chayawan, “On the envelope and phase

distributions for correlated Gaussian quadratures,” IEEE Communications Let-

ters, vol. 11, no. 12, pp. 985–987, 2007.

[27] P. Dharmawansa, N. Rajatheva, and C. Tellambura, “Envelope and phase dis-

tribution of two correlated Gaussian variables,” IEEE Transactions on Com-

munications, vol. 57, no. 4, pp. 915–921, 2009.

[28] G. N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge

Univ. Press, 1944.

[29] M. Pätzold, Mobile Radio Channels, 2nd ed. Chichester: John Wiley & Sons,

2011.

[30] R. S. Hoyt, “Probability functions for the modulus and angle of the normal

complex variate,” Bell Syst. Tech. J., vol. 26, no. 4, pp. 318–359, 1947.

[31] N. Youssef, C.-X. Wang, and M. Patzold, “A study on the second order statis-

tics of Nakagami-Hoyt mobile fading channels,” Vehicular Technology, IEEE

Transactions on, vol. 54, no. 4, pp. 1259–1265, 2005.

[32] H. J. Hilhorst, “Central limit theorems for correlated variables: some critical

remarks,” Brazilian Journal of Physics, vol. 39, no. 2A, pp. 371–379, 2009.



E – Trajectory Models Based on the Primitives of Brownian Fields–Part II 205

[33] L. A. Shepp, “Radon-Nikodym derivatives of Gaussian measures,” The Annals

of Mathematical Statistics, vol. 37, no. 2, pp. 321–354, Dec. 1966.



206 Modelling and Analysis of Non-Stationary Mobile Fading Channels



Appendix F

Paper VI

Title: A Random Trajectory Approach for the Development of Non-

Stationary Channel Models Capturing Different Scales of Fading

Authors: Alireza Borhani†, Gordon L. Stüber‡, and Matthias Pätzold†
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Abstract — This paper introduces a new approach to develop stochastic

non-stationary channel models, the randomness of which originates from a

random trajectory of the mobile station (MS), rather than from the scattering

area. We employ the new approach by utilizing a random trajectory model

based on the primitives of Brownian fields (BFs), while the position of scat-

terers can be generated from an arbitrarily two-dimensional (2D) distribu-

tion function. The employed trajectory model generates random paths, along

which the MS travels from a given starting point to a fixed predefined desti-

nation point. To capture the path loss, we model the gain of each multipath

component by a negative power law applied to the travelling distance of the

corresponding plane wave, while the randomness of the path travelled results

in large-scale fading. It is shown that the local received power is well approxi-

mated by a Gaussian process in logarithmic scale even for a very limited num-

ber of scatterers. We also show that the envelope of the complex channel gain

follows closely a Suzuki process, indicating that the proposed channel model

superimposes small-scale fading and large-scale fading. We also derive and

analyze the local power delay profile (PDP) and the local power spectral den-

sity (PSD) of the channel model.

Index Terms — Non-stationary channels, random trajectory models, small-
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I. INTRODUCTION

The demanding mobility features of communication technologies call for the

need to advance channel models (among other needs), in which non-stationary as-

pects of the channel are carefully taken into account. In this connection, many em-

pirical and analytical investigations, e.g., [1–3] show that the stationary assumption

for the channel is only valid for extremely short travelling distances [4]. Neverthe-

less, the number of non-stationary channel models [5–9] proposed in the literature

is still very limited.

One of the approaches to the development of non-stationary channel models is

to update the channel characteristics along the travelling path of the MS, which is

surrounded by randomly distributed scatterers. For instance, the authors in [9, 10]

provide a non-stationary one-ring channel model under the assumption that the MS

is moving along a fixed trajectory surrounded by a ring of randomly distributed

scatterers. In this paper, we expanded this approach by allowing the trajectory of

the MS to be random, while the scattering area can in principle be generated by

any 2D distribution function. This expansion adds considerably to the robustness

of the channel model with respect to the number of scatterers, such that the desired

statistical properties can be obtained even if the propagation area is sparsely seeded

with scatterers.

This paper utilizes a recently proposed [11, 12] random trajectory based on the

primitives of BFs, along which the MS is assumed to move. The proposed trajec-

tory model in [12] is able to generate many different configurations of the path with

different smoothness levels. In this paper, we focus on one important path config-

uration by which the arrival at a fixed predefined destination point is assured. To

cope with the scattering effect of the propagation area, we employ a 2D Gaussian

probability density function (PDF), by means of which the positions of the scatter-

ers are generated. We keep the position of the scatterers fixed, while we allow the

MS to travel along random paths heading to a fixed destination point. Accordingly,

the randomness of the channel model originates from the randomness of the trajec-

tory, rather than that of the scattering area. We consider a fixed-to-mobile (F2M)

frequency-nonselective communication scenario, in which the waves emitted from

the base station (BS) antenna arrive at the MS antenna after a single bounce from

every scatterer.

We provide an additive complex channel gain model for the aforementioned

propagation scenario, in which not only the Doppler frequencies, but also the propa-

gation path delays and the propagation path gains are stochastic processes that vary

in position. In our model, the path gains are determined by a negative power law ap-
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plied to the total travelling distance of the plane waves, which is in line with the ba-

sic idea of any path loss model. We also provide the angle-of-arrival (AOA) process

and the angle-of-motion (AOM) process, from which the Doppler frequency process

is derived. The corresponding first-order densities are computed. Accordingly, we

fully characterize the complex channel gain of the proposed non-stationary channel

model. We then step further by deriving the first-order density of the channel gain

envelope, the first-order density of the total received power, as well as the local PDP

and the local PSD processes.

The simulation results confirm that the proposed channel model is non-stationary.

Given a sparse scattering area, we show that the power of each incoming wave, the

so-called received path power, follows closely the lognormal distribution. We also

prove that the sum of the received path powers, i.e., the total received power, is

well approximated by a Gaussian process in logarithmic scale, indicating that the

proposed channel model captures the effect of shadowing. The normality of the

total received power complies with the result reported in [13], where a ground-

breaking additive model was considered as a physical basis for modelling shadow

fading. Furthermore, it is shown that the envelope of the channel gain is well ap-

proximated by a Suzuki process, confirming that the proposed channel superim-

poses large-scale fading and small-scale fading. We note that many measurement

campaigns have reported that multi-scale fading channels under non-line-of-sight

propagation conditions are best modelled by a Suzuki process [14, 15]. Moreover,

we show that the proposed channel model has two degrees of freedom to control the

spread of the shadowing. It has been demonstrated that the spread of the shadowing

is approximately independent of the position of the BS. This also agrees with the

empirical results reported, e.g., in [16–20]. In addition, it is shown that the mean

received power decreases by increasing the BS-to-MS distance, affirming that the

model captures the path loss effect as well. Finally, we show that the time-varying

effect of each scatterer on the local PDP and the local PSD can perfectly be tracked

if the channel is sufficiently sparse.

The novelty of the paper arises from the following features. The paper in-

troduces a new approach to channel modelling under non-stationary conditions.

This approach is also useful for the simulation/interpretation of measurement cam-

paigns, in which a certain propagation area (fixed scattering area) undergoes sev-

eral measurement trials (random trajectories). The proposed non-stationary channel

model superimposes different levels of fading via a physically explainable multi-

path fading model, rather than a multiplicative one. The proposed channel model

provides a physical (geometrical) insight to the theoretical studies in [13, 21]. The



212 Modelling and Analysis of Non-Stationary Mobile Fading Channels

results provided in this paper are very useful for the development of mobile com-

munication systems, e.g., for the design of Rake receivers [22], power control and

handoff algorithms.

The remainder of this paper is organized as follows. Section II introduces the

concept of the new approach, while Sections III and IV employ the new approach to

model the propagation area and the trajectory of the MS, respectively. The complex

channel gain of the proposed non-stationary channel model is developed and char-

acterized in Section V. The statistical properties of the channel model are analysed

in Section VI, whereas the simulation results are provided in Section VII. Finally,

Section VIII draws the conclusions.

II. THE NEW APPROACH

The traditional approach in geometrical (statistical) channel modelling is to start

from a geometric pattern filled by randomly distributed scatterers. A list of such

models can be found in [23, 24]. The randomness of the position of scatterers is then

injected to the characteristics of the channel model, such as its envelope, PDP, PSD,

and correlation properties. One of the key factors influencing the characteristics of

the channel models designed by this approach is obviously the number of scatterers.

To provide a so-called reference model, this number is assumed to tend to infinity.

We call this the infinity assumption. The infinity assumption then allows designers

to apply some limit theorems, such as the central limit theorem (CLT) of Lindeberg-

Lévy, to conclude that the proposed channel model behaves like a Rayleigh, Rice,

or lognormal (CLT for products) fading channel. The obvious shortcoming of these

reference models is that the infinity assumption does not hold in real-world propaga-

tion scenarios. Even if such a dense scattering area exists, moving through this area

would not be possible. Therefore, proposing any mobile radio channel model with

dense scattering scenarios is mathematically convenient but physically meaningless.

Another issue is the restriction of computer-based simulation environments, where

applying the infinity assumption is not possible. Accordingly, designers provide a

so-called simulation model, in which the infinity assumption is relaxed by reducing

the number of scatterers. However, this reduction degrades the characteristics of the

channel model somewhat from those of reference models.

In this paper, we introduce a new approach in which the randomness of the

channel model originates from the randomness of the trajectory of the MS, while

the scattering area remains fixed. The positions of the scatterers are determined ei-

ther by realizing any desired 2D distribution function, or by setting them manually.

The new approach assumes a random trajectory, along which the MS is in motion
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through a fixed scattering area. Surveys of random trajectory models can be found

in [25–27]. Very recently, we have also proposed a highly flexible random trajec-

tory model based on the primitives of BFs [11, 12]. Let us assume that the MS is

moving along a random trajectory generated by a mobility model. For a fixed scat-

tering area, each realization of the trajectory results in different AOMs of the MS,

different AOAs at the MS, as well as different travelling distances of the plane wave

emitted from the transmitter. Therefore, the randomness of the trajectory model is

injected to the characteristics of the corresponding channel model. In this paper, we

will show that the main statistical properties of the non-stationary channel model

developed by applying the new approach are very robust with respect to the number

of scatterers. For instance, we will show that the envelope of the complex chan-

nel gain closely follows a Suzuki process, even if the number of scatterers is only

four. For the same number of scatterers, we will show that the local received power

follows the lognormal distribution, indicating that the channel model captures the

shadow fading even for a very limited number of scatterers. The merit of the new

approach is not only its robustness with respect to the number of scatterers, but also

its capability to take non-stationary aspects of the channel into account. Different

scales of fading can also be captured if the channel model is developed properly. In

what follows, we show that with the new approach, a wide range of measurement

campaigns may be simulated.

Let us first remark that the random mobility models in the literature can be di-

vided into two major categories [12]: 1) models that generate targeted trajectories,

where each trajectory realization is unique, but subject to a predefined drift (des-

tination point) and 2) models that generate non-targeted trajectories, where each

trajectory realization results in a substantially different trajectory. Now recall the

principles of the new approach based on tracking the MS and measuring the chan-

nel for different realizations of the trajectory surrounded by a fixed scattering area.

If the random trajectories are targeted, we somewhat simulate different travelling

scenarios in a fixed propagation area. A clear example is when the aim is to charac-

terize an F2M channel along a street. If we repeat this experiment, minor changes of

the travelling path are unavoidable, whereas the scattering area is fixed for all trials.

These minor changes are modelled by the targeted random trajectory. If the ran-

dom trajectories are non-targeted, we somewhat simulate measurement campaigns

carried out in distinct propagation areas. Notice that although, the new approach

assumes that the scattering area is fixed, choosing totally different travelling routs

(non-targeted trajectories) is almost similar to encountering different propagation

areas.
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It is noteworthy that with this approach, we may need a relatively large number

of trials (random trajectories) to find the average channel characteristics, such as

those reported empirically. In this regard, we stress that a large number of trials is in

contrast neither with the potentials of any physical channel, nor with the capabilities

of computer-based simulation tools, such as MATLAB�.

III. THE PROPAGATION SCENARIO

Fig. F.1 demonstrates a typical F2M propagation scenario, where the MS is trav-

elling through a scattering area, in which the BS is fixed and located at the distance

D0 from the origin of the Cartesian coordinate system. We assume that at a reference

point in time t0, the MS starts its motion from (x(0),y(0)) (or equivalently (xs,ys))

and moves along a random trajectory (see Section IV) to reach the terminating point

(x(L),y(L)) at time tL. Subsequently, the position of the MS along a random trajec-

tory at time tl ∈ [t0, tL] is represented by Cartesian coordinates (x(l),y(l)), in which

l denotes the corresponding position index. For a single realization of the trajectory

(see Fig. F.1), the position of the MS at tl is shown by (x(l),y(l)). It is also assumed

that a plane wave emitted from the BS arrives at the MS with the AOA αR
n (l) af-

ter only one bounce due to the nth scatterer Sn (n = 1,2, ...,N) located at (xS
n,y

S
n).

The MS is in motion with a constant speed of vR in the direction indicated by the

AOM αv(l). We assume that both the BS and the MS are equipped with a single

omnidirectional antenna.

To obtain the position (xS
n,y

S
n) of the scatterers, in principle,any 2D distribution

function can be used. Herein, we use a 2D zero-mean Gaussian distribution with

the standard deviation σs of 500 m to generate a sparse scattering area with only

N = 4 scatterers1. Fig. F.2 demonstrates the results, where each scatterer has been

marked by a different colour. We have placed the BS at (−500m,0m), meaning that

the distance D0 from the BS to the starting point of the MS is 500 m. Notice that

owing to the sparsity of the channel, the position of the scatterers in Fig. F.2 does

not indicate a Gaussian distribution. Accordingly, these positions could be obtained

by any other 2D distribution function. Therefore, we can conclude that the results

provided in this paper are not affected by changing the type of scatterer distribution

function, provided that the channel is sufficiently sparse. The interpretation of the

plotted random trajectories in Fig. F.2 follows in the next section.

1Notice that the number of scatterers can be set to higher values, as it may be expected in
real-world propagation environments. Nevertheless, to show the robustness of the proposed channel
model with respect to the number of scatterers, as well as for enabling visual inspections, we analyze
the channel under sparse scattering conditions.
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Figure F.1: A typical F2M propagation scenario assuming single-bounce scattering.

IV. THE TRAJECTORY MODEL

To run the new approach, we employ a recently proposed trajectory model based

on the primitives of BFs [11]. According to this model, a path starting from (xs,ys)

and terminating at or in the proximity of a predefined destination point (xd ,yd) is

modelled by the random trajectory pT given by the following set of pairs

pT :

{
(px(l), py(l))

∣∣∣∣∣ px(l)=xs+kd lδx+σx pW x(l,kb)

py(l)=ys+kd lδy+σy pWy(l,kb)

}

(F.1)

for l = 1,2, ...,L, where L is a positive integer. The terms δx = (xd −xs)/L and δy =

(yd−ys)/L denote the deterministic increments along the x- and y-axis, respectively.

The drift parameter kd acts as a switch to control the presence of such a deterministic

drift that forces the trajectory to evolve towards the destination point (xd ,yd). The

parameter σx (σy) controls the randomness of the trajectory process px(l) (py(l))

along the x-axis (y-axis).2 Furthermore, the objective of the partial random bridge,

defined as

pW x(l,kb) = pBx(l)− kb l
L pBx(L) (F.2)

2Note that owing to the symmetry of the trajectory model, the statistical properties of px(l) and
py(l) are the same.
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models the randomness of the trajectory along each axis by means of the pth primi-

tive pBx(l) of the standard BF Bx(l) associated with the x-axis. The parameter kb is

called the bridge parameter, which determines the integration degree of the bridge

to the destination point. In addition, the primitive p determines the smoothness level

of the trajectory, which increases as p grows [11].

The trajectory pT in (F.1) has been designed in such a way that it allows: 1)

arriving at a predefined destination point (xd ,yd) if the bridge is fully established,

i.e., kb = 1; 2) arriving at a target zone with a predefined radius and centre if the

bridge is partially established, i.e., 0 < kb < 1; 3) a totally random point in the 2D

plane if the bridge is broken, i.e., kb = 0; and finally 4) bridging back (closed loop)

to the starting point (xs,ys) if the bridge is fully established, i.e., kb = 1, but the

drift component does not exist, i.e., kd = 0. The entire set of configurations above

plus several others have been shown and discussed in [11]. From the configurations

above, it can be concluded that pT in (F.1) allows for the generation of both targeted

and non-targeted random trajectories (see Section II). One of the novel features of

pT in (F.1) is its representation in position, rather than time. This allows us to test

different speed scenarios without influencing the trajectory configuration (see [11]).

In this paper, we focus on a special case of the random trajectory in (F.1), where

the first primitive of BFs is employed, i.e., p = 1, and the random bridge to the

destination point (xd,yd) is fully established, i.e., kb = kd = 1. This means that

we choose the model parameters such that the trajectory model generates targeted

random travelling paths. For such a special case, it has been shown in [12] that if

σx = σy, the random trajectory takes its maximum distance from the shortest tra-

jectory (straight line from the starting point to the destination point) at the position

index l = L/2. In this paper, we denote this maximum distance by σmax, which

equals σx
√

L3/48. Since investigating the effect of the primitive p is outside of the

scope of this paper, we henceforth drop the index p from the notations.

Fig. F.2 displays several realizations of the random trajectory T in (F.1) for two

different values of σmax. It is assumed that the origin (0m,0m) of the Cartesian

coordinates is the starting point of the travelling path, whereas the point located at

(500m,500m) is the destination point.

V. THE COMPLEX CHANNEL GAIN PROCESS

To model the complex channel gain of the propagation scenario (see Figs. F.1

and F.2), we expand that of a frequency-nonselective channel given in [28, pp. 45–

48]. This expansion allows the Doppler frequencies3 f n(l), propagation path delays

3The frequency shift caused by the Doppler effect is given by f = f max cos(α), where fmax =
f0v/c0 is the maximum Doppler frequency, f 0 denotes the carrier frequency, c0 stands for the speed
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Figure F.2: A simulated sparse scattering area (N = 4), illustrating several realiza-
tions of the random trajectory T in (F.1), where L = 20.

Dn(l), and the propagation path gains cn(l) to vary in the position index l. Ac-

cordingly, we model the complex channel gain μ(tl) by means of the following

expression

μ(tl) =
N

∑
n=1

cn(l)e
j(2π f n(l)tl−k0Dn(l)+φn) (F.3)

representing the sum of all scattered components in time. In this equation, the

random variable φ n represents the phase shift of the nth propagation path caused

by the physical interaction of the transmitted signal with the nth scatterer Sn. It

is often assumed that the phases φ n are independently and identically distributed

random variables, each of which is uniformly distributed between −π and π (see,

e.g., [28, p. 47] and [30, p. 59]).

Recall the trajectory model provided in Section IV. It is assumed that the po-

sition of the MS is given by the pair of stochastic processes (x(l),y(l)) in (F.1).

Furthermore, suppose that one realization of the Gaussian scattering area is given

(see Fig. F.2), which allows us to determine the position (xS
n,y

S
n) of all N scatterers.

Thus, we can represent the model parameters f n(l), Dn(l), and cn(l) as stochas-

tic processes that vary in the position index l. As a special case, these parameters

of light, and α equals the difference between the AOA and the AOM [29].
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become deterministic values if we consider only one realization of the trajectory

T . Nevertheless, we still may have a stochastic complex channel gain μ(tl) if the

phase shifts φ n are random. Another option to obtain a stochastic complex channel

gain μ(tl) is to focus on a single trajectory realization, while the scattering area is

assumed to be random [9]. In what follows, we study the parameters of the complex

channel gain μ(tl) in (F.3).

A. Propagation Path Length Process Dn(l)

Referring to Fig. F.1, the total travelling distance Dn(l) of the nth plane wave is

the sum of a constant distance DBS−S
n from the BS to the position (xS

n,y
S
n) of the nth

scatterer Sn and a random distance DS−MS
n (l) from Sn to the position (x(l),y(l)) of

the MS, i.e.,

Dn(l) = DBS−S
n +DS−MS

n (l)

=
√
(yBS − yS

n)
2 +(xBS − xS

n)
2 +
√

(yS
n − y(l))2+(xS

n − x(l))2. (F.4)

Theorem 1. Let mx(l) (my(l)) and σx(l) (σy(l)) denote the mean and the stan-

dard deviation of the process x(l) (y(l)) in (F.1), respectively. The first-order density

pDn(dn; l) of the total travelling distance process Dn(l) in (F.4) is given by

pDn(dn; l) =
dn−DBS−S

n

σ 2
x (l)

exp

{
−(xS

n −mx(l))2

2σ 2
x (l)

− (yS
n −my(l))2+(dn−DBS−S

n )2

2σ 2
x (l)

}

× I0

(√
(xS

n −mx(l))2 +(yS
n −my(l))2

σ 2
x (l)

(dn−DBS−S
n )

)
(F.5)

where σx(l) = σy(l).

Proof: See Appendix A. �
From Theorem 1, the first-order density pτ ′n(τ

′
n; l) of the propagation delay pro-

cess τ ′n(l) = c−1
0 Dn(l) can be derived. It is straightforward to show that pτ ′n(τ

′
n; l)

is given by pτ ′n(τ
′
n; l) = c0 pDn(c0τ ′n; l).

B. Propagation Path Gain Process cn(l)

With the objective to model Rayleigh and Rice processes, one of the widely

made assumptions in the literature (see, e.g., [30, p. 85]) is that the path gains4 cn(l)

are equal, deterministic, and independent of the propagation path length Dn(l). We

relax these assumptions by allowing the path gains to be determined by cn(l) =

4Notice that cn(l) is indeed not unitless. However, for consistency reasons we use the term path
gain to address this quantity.
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CD−γ/2
n (l), where Dn(l) is the total travelling distance of the nth path given in (F.4).

The idea of this formulation originates from the fundamental concept of any path

loss model, according to which the received power (herein, the received path power

c2
n(l)) reduces by a negative power law (controlled by γ) if the travelling distance

(herein, Dn(l)) of the corresponding plane wave increases. This formulation also

captures the definition of the path magnitude provided in [28, p. 47]. The power

law γ is often called the path loss exponent, which has been reported to be γ = 2 in

the free space, while it ranges from 3 to 5 in rural and urban areas. Moreover, the

constant C accounts for the total transmission power, antenna(s) gain, wave length,

number of scatterers N, and a few more physical parameters (see [31, 32]).

The propagation path gain process cn(l) is a non-linear transformation of the

path length process Dn(l). Therefore, its first-order density pcn(yn; l) can be ob-

tained by applying the concept of transformation of random variables [33, p. 130].

It follows

pcn(yn; l) =
2
γ

(
C2y−(γ+2)

n

) 1
γ × pDn((C

2y−2
n )

1
γ ; l) (F.6)

where pDn(·; l) is the first-order density of Dn(l) given in Theorem 1.

Of great interest is also the first-order density pc2
n
(yn; l) of c2

n(l), namely the re-

ceived path power associated with the nth plane wave. It can be shown that pc2
n
(yn; l)

can be presented in the following form

pc2
n
(yn; l) =

1
γ

(
C2y−(γ+1)

n

) 1
γ × pDn((C

2y−1
n )

1
γ ; l). (F.7)

We will show in Section VII that pc2
n
(yn; l) follows closely the first-order density of

a lognormal process.

C. Doppler Frequency Process f n(l)

The local Doppler frequency f n(l) is defined by a non-linear transformation of

the local AOA αR
n (l) and the local AOM αv(l) of the MS. It follows

f n(l) = fmax cos
(
αR

n (l)−αv(l)
)

(F.8)

where αR
n (l) and αv(l) are given by (see Fig. F.1)

αR
n (l) = arctan

(
yS

n − y(l)
xS

n − x(l)

)
(F.9)
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and

αv(l) = arctan

(
y(l+1)− y(l)
x(l+1)− x(l)

)
(F.10)

for l = 0,1, ...,L−1, respectively.

Theorem 2. The first-order density pαR
n
(αn; l) of the AOA process αR

n (l) in (F.9)

is given by

pαR
n
(αn; l)=

1
2π

exp

{
−(xS

n −mx(l))2+(yS
n −my(l))2

2σ 2
x (l)

}

×
(

1+
√

2πg(αn; l)erfc
(
−
√

2g(αn; l)
)

exp
{

2g2(αn; l)
})

(F.11)

where

g(αn; l) =
1

2σx(l)

(
(xS

n −mx(l))cos(αn)+(yS
n −my(l))sin(αn)

)
(F.12)

and erfc(·) stands for the complementary error function [34, p. 887].

Proof: Following the discussion in the proof of Theorem 1, the AOA process

αR
n (l) in (F.9) can be considered as the phase of a complex Gaussian process with

(xS
n − x(l)) and (yS

n − y(l)) as the inphase and quadrature component, respectively.

The phase of complex Gaussian processes with correlated components and non-

identical means (variances) has been studied in [35] and [36]. Setting ρ = 0 in [36,

Eq. (2)] and performing some mathematical manipulations result in (F.11). �
The first-order density pαv(αn; l) of the AOM process αv(l) in (F.10) has been

derived in [12]. Accordingly, the elements αR
n (l) and αv(l) of the local Doppler fre-

quency process f n(l) in (F.8) are completely determined. Nonetheless, deriving an

analytical expression for the first-order density p f n
( fn; l) of the Doppler frequency

f n(l) is cumbersome, particularly because αR
n (l) and αv(l) are not statistically in-

dependent processes. Therefore, we study the behaviour of f n(l) by means of sim-

ulations (see Section VII).

VI. CHANNEL CHARACTERISTICS

In this section, we step further toward investigating other important character-

istics of the channel, such as the envelope (of the complex channel gain) process,

local received power process, local PDP process, as well as the local PSD (of the

Doppler frequencies) process.
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A. Envelope Process

Let ζ (tl) denote the envelope of the complex channel gain μ(tl) in (F.3), i.e.,

ζ (tl) = |μ(tl)|. By fixing the position index l and using the result in [37, Eq. (18)],

it follows that the first-order density pζ (z; l) of the envelope process ζ (tl) is given

by

pζ (z; l) = (2π)2z
∫ ∞

0

[
N

∏
n=1

∫ ∞

0
pcn(yn; l)J0(2π ynx)dyn

]
J0(2π zx)xdx (F.13)

where pcn(yn; l) is the first-order density of the propagation path gain cn(l) provided

in (F.6), and J0(·) stands for the zeroth-order Bessel function of the first kind [34,

Eq. (8.411.1)]. In agreement with [30, p. 131], the Doppler frequency f n(l), propa-

gation path delay Dn(l), and the phase shift φ n have no influence on pζ (z; l). More-

over, referring to (F.13), pζ (z; l) varies in the position index l, indicating that the

envelope process ζ (tl) is non-stationary in the strict sense. In Section VII, we show

that depending on l, pζ (z; l) can be approximated by the first-order density of differ-

ent standard processes, including the Rayleigh, lognormal, Weibull, and the Suzuki

process. However, the goodness-of-fit is not always acceptable. In this context, we

will show that among the aforementioned candidates, the Suzuki process always

gives the best fit to pζ (z; l) in (F.13). This agrees completely with many empiri-

cal studies, reporting that physical channels with both small-scale and large-scale

fading are best modelled by the Suzuki process [14, 15]. Notice that the Suzuki pro-

cess is a product process of a Rayleigh process and a lognormal process. We stress

that the aim of this paper is not to decompose the envelope ζ (tl) into Rayleigh and

lognormal processes, but to show that ζ (tl) superimposes small-scale fading and

large-scale fading (see [15]).

B. Local Received Power

It has been shown in [38] that the total received power Ω spatially averaged

around the MS is given by the sum ∑N
n=1 c2

n, in which cn denotes the gain of the nth

path. We extend this formulation by considering the non-stationarity of the total

received power Ω(l) at the position index l. It follows

Ω(l) =
N

∑
n=1

c2
n(l) (F.14)
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where c2
n(l) = C2D−γ

n (l) in Watts is the position-dependent received path power

associated with the nth incoming plane wave (see Section V-B). The first-order den-

sity pΩ(ω; l) of the total received power Ω(l) can be obtained by the following

expression

pΩ(ω; l) =

+∞∫
−∞

ΨΩ(ν; l)e j2πνω dν (F.15)

in which ΨΩ(ν; l) represents the characteristic function of the total received power

Ω(l). This function is the result of the product

ΨΩ(ν; l) =
N

∏
n=1

Ψc2
n
(ν; l) (F.16)

where Ψc2
n
(ν; l) denotes the characteristic function of the received path power c2

n(l).

The function Ψc2
n
(ν; l) is attained by taking the complex conjugate of the Fourier

transform of the first-order density pc2
n
(yn; l) of c2

n(l) in (F.7), i.e.,

Ψc2
n
(ν; l) =

+∞∫
−∞

pc2
n
(yn; l)e j2πνyn dyn. (F.17)

Providing a closed-form expression for the integral above is not possible. Neverthe-

less, this does not affect our understanding of the distribution of the total received

power Ω(l). Recall that the received path power c2
n(l) can be well approximated

by a lognormal process (see Sections V-B and VII). It has been shown theoretically

that not only a sum of a few lognormal processes, but also that of a large number

of lognormal processes can be approximated by a lognormal process [13, 21, 39].

Therefore, we conclude that the total received power Ω(l) in (F.14) follows approx-

imately a lognormal process both in sparse and rich scattering areas. In Section VII,

we show that for the considered sparse scattering area (N = 4), the local received

power Ω(l) follows closely the normal distribution in logarithmic scale.

We remark that the additive model proposed in [13] provides a physical basis

for shadow fading, whereas the traditional multiplicative approach is hard to be ex-

plained physically. In [13], different distributions of c2
n(l), including the lognormal,

gamma, chi-square, and the Weibull distribution, have been employed to show that

the sum in (F.14) follows the Gaussian distribution in logarithmic scale. However,

the reason for these choices was never discussed. In this paper, we provide a ge-

ometrical insight to the additive shadow fading model presented in [13], in which
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the distribution of c2
n(l) is determined by a physical measure, namely the travelling

distance Dn(l) of the nth plane wave (see Section V-B). Nonetheless, the objective

of our paper is not to give a physical explanation for the shadow fading.

C. Local Power Delay Profile

The PDP of stationary channel models is obtained by the product of the time-

invariant received power and the PDF of the propagation delays. In reality, however,

both the received power and the propagation delay process vary in time (position).

The non-stationary channel model proposed in this paper takes these variations into

account. Accordingly, we expand the definition of the PDP to the following local

PDP

Sτ ′(τ ′; l) =
N

∑
n=1

mc2
n
(l)pτ ′n(τ

′
n; l) (F.18)

where

mc2
n
(l) =

∞∫
−∞

yn pc2
n
(yn; l)dyn (F.19)

is the mean received power of the nth path and pτ ′n(τ
′
n; l) is the first-order density of

the delay τ ′n(l) (see Section V-A). Furthermore, pc2
n
(yn; l) is the first-order density

of the received path power associated with the nth incoming plane wave (see (F.7)).

D. Local Power Spectral Density

The PSD of stationary channel models is the product of the time-invariant re-

ceived power and the PDF of the Doppler frequencies. These quantities are, how-

ever, time-variant in practice. Toward the aims of this paper, we model the local

PSD as follows

Sμμ( f ; l) =
N

∑
n=1

mc2
n
(l)p f n

( f ; l) (F.20)

in which p f n
( fn; l) denotes the first-order density of the Doppler frequency f n(l).

As discussed in Section V-C, presenting p f n
( fn; l) in a closed form is cumbersome.

Nonetheless, numerical techniques assist us to illustrate and analyze the local PSD

Sμμ( f ; l) in (F.20). Thus, we defer the illustration of the local PSD to Section VII.



224 Modelling and Analysis of Non-Stationary Mobile Fading Channels

VII. SIMULATION RESULTS

A. Parameter Settings and Procedures

We consider the propagation area shown in Fig. F.2, in which the N = 4 scatter-

ers are distinguished in four different colours. We again emphasize that the number

of scatterers can be set to a higher value. Nonetheless, to demonstrate the robust-

ness of the proposed channel model with respect to the number of scatterers, as

well as for enabling visual inspections, we perform the simulations under sparse

scattering conditions. We recall from Fig. F.2 that the MS starts its motion from

the origin (0m,0m) of the Cartesian coordinates and travels toward the destination

point located at (500m,500m). In addition, it is assumed that the BS is located

at (−500m,0m). We use the operating frequency f0 = 2.1 GHz of the universal

mobile telecommunications system (UMTS) in our numerical computations. The

speed of the MS is supposed to be 30 km/h, which allows a maximum Doppler

frequency fmax of about 60 Hz. Furthermore, we consider the free space path loss

exponent, i.e., γ = 2, as we believe that it suits more to our lossless single-bounce

scattering scenario. Nevertheless, the effect of increasing γ will also be illustrated

and discussed. The constant C is assumed to be 0.05 W1/2 m (see Section V-B). As

stated before, the parameters of the path model have been set such that arriving at

the destination point (500m,500m) via a relatively smooth trajectory is assured (see

Section IV). The trajectory consists of 21 points indexed by l = 0 (starting point)

until l = L = 20 (terminating/destination point). We also assume that the time t l

associated with each position index l does not vary in the realization.

The simulation results have been produced by taking the following steps: 1) We

have first generated N = 4 scatterers by means of a 2D Gaussian distribution with

zero mean and variance σs = 500 m. 2) We have realized the trajectory T in (F.1)

for about 5000 times. 3) Each time, we have measured the total travelling distance

Dn(l) (see F.4), the local AOA αR
n (l) (see F.9), and the local AOM αv(l) (see F.10).

From the measured quantities, 4) we have then computed the characteristics of in-

terests, including the channel envelope, local received power, local PDP, and the

local PSD. As an example, for a given position index l, we have transformed the

measured Dn(l) via cn(l) = CD−γ/2
n (l) to obtain the received path power. The en-

tire N = 4 path powers have then been summed up to attain the total received power

Ω(l). This has been done for 5000 realizations of the trajectory. 5) The correspond-

ing normalized histograms containing a proper number of equally spaced bins have

been generated and the results have been shown in the form of a PDF.
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In what follows, the simulation results are demonstrated and discussed exten-

sively. For fluency reasons, we do not necessarily represent the results in the same

order as they have been derived.

B. Results

Fig. F.3 illustrates the PDF pζ (z; l) of the envelope ζ (tl) in (F.13) for two dif-

ferent values of l. The best standard curves to each pζ (z; l) have also been fitted.

At l = 4 (almost the first quarter of the travelling path), the envelope ζ (t4) can be

well approximated by all of the standard candidates, excluding the lognormal dis-

tribution. For l = 10 (almost in the middle of the travelling path), ζ (t10) follows

closely the Suzuki distribution, but neither the lognormal nor the Rayleigh distribu-

tion. Notice that pζ (z;10) is almost bounded by the PDFs of the lognormal and the

Rayleigh distribution, indicating that the proposed channel behaves as a lognormal-

Rayleigh fading channel, which is often called a Suzuki fading channel. We have

used the loglikelihood [40] as the goodness-of-fit metric, concluding that the Suzuki

process gives always the best fit to the envelope of the proposed multi-scale fading

non-stationary channel model. Since assessing the goodness-of-fit by visual inspec-

tions is straightforward for most of the position indices ls, we omit the results of the

loglikelihood test herein. Notice that by increasing l, the mean of the envelope ζ (tl)

decreases. This can be attributed to the fact that, by increasing the distance between

the BS and the MS, the attenuation effect of the scattering area on the plane waves

increases.

Fig. F.4 depicts the PDF pc2
2
(y2;10) of the received path power c2

2(10) associated

with the incoming wave from S2 (see Fig. F.2). In this figure, we have shown the

simulation result, the analytical result (see (F.7)), as well as the best lognormal curve

fitting result. An excellent match between them can be seen, confirming that the

pc2
2
(y2;10) in (F.7) is correct and well approximated by the PDF of the lognormal

distribution. In other words, the received path power c2
2(10) follows the Gaussian

distribution in logarithmic scale. The same conclusion holds for pc2
n
(yn; l) of c2

n(l)

associated with the other incoming waves n= 1,2, ...,4, as well as the other position

indices l = 0,1, ...,20. Nevertheless, it should be mentioned that pc2
n
(yn; l) tends to

a delta function as l tends to 0 and/or L = 20. This is due to that fact that the starting

and terminating points of T in (F.1) are fixed (realization-independent). Notice that

this does not limit the applicability of the proposed non-stationary channel model, as

by changing the parameters of the trajectory model in (F.1), we are able to generate

random trajectories that do not necessarily terminate at a fixed destination point. In

this case, the received path power c2
n(L) becomes a random variable, rather than a

fixed value.
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Figure F.5: The PDF pΩ(ω;10) (see (F.15)) of the local received power Ω(10) in
logarithmic scale for different values of σmax.

Fig. F.5 demonstrates the PDF pΩ(ω;10) (see (F.15)) of the total received power

Ω(10) in logarithmic scale, where the position index l has been set to 10 (almost in

the middle of the travelling path). Notice that according to (F.15), pΩ(ω; l) varies

in l (see Fig. F.8). To keep the visibility of the figure, we display only pΩ(ω;10),

but for different values of σmax. The excellent match between the simulation results

and the analytical ones confirms the correctness of (F.15). The best Gaussian fit to

each plot has also been displayed. As can be observed, for different values of σmax,

the total received power Ω(10) follows closely the normal distribution, which al-

lows us to conclude that the proposed channel model captures the so-called shadow

fading. It is also important to mention that by increasing σmax, the spread of the re-

ceived power increases. This is supported by Fig. F.2, where increasing σmax results

in increasing the variations of the total travelling distance Dn(l) of each trajectory.

Notice that Dn(l) is directly proportional to the local received power Ω(l) (see Sec-

tion V-B) and that the standard deviation σΩ(10) of the local received power can be

controlled by the variance of the random trajectory.

Fig. F.6 shows the effect of the path loss exponent γ on the standard deviation

σΩ(10) of the local received power at the position index l = 10. We remark that

σΩ(l) is obtained by computing the square root of the second central moment of
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Figure F.6: The standard deviation σΩ(10) of the local received power in logarith-
mic scale for different values of σmax versus the path loss exponent γ .

Ω(l). Referring to this figure, for a given σmax, the value of σΩ(10) increases by

growing γ . This can also be supported by the path gain model proposed in Sec-

tion V-B, where increasing γ magnifies the variations of the total travelling distance

Dn(10). This figure allows us to conclude that the standard deviation σΩ(10) of

the local received power can be controlled not only by σmax, but also by γ . There-

fore, the proposed channel model provides two degrees of freedom for controlling

the spread of the shadow fading. In addition, according to Fig. F.6, the proposed

channel model is able to generate large-scale fading with a spread between 0.25 dB

and 2.75 dB. This range covers the empirically reported range from 0.85 dB to 2 dB

measured in outdoor environments [41]. Furthermore, changing the two degrees of

freedom allows us to obtain even higher spreads such as those reported in [22].

The standard deviation σΩ(10) of the local received power versus the distance

D0 of the BS from the origin is depicted in Fig. F.7. As can be observed, by increas-

ing D0, the value of σΩ(10) remains approximately constant. This is in line with

the results of many measurement campaigns, such as those reported in [13, 16–20].

It is worth mentioning that by increasing the value of σmax, σΩ(10) cannot be well

approximated by a constant value.
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Fig. F.8 displays the mean mΩ(l) and the spread σΩ(l) of the local received

power by the decreasing dashed-line and the solid vertical bars, respectively. The

minimum and the maximum of the local received power (see Fig. F.5) obtained by

the simulation results have also been merged into this figure. We note that mΩ(l)

shows the time-varying path loss, whereas σΩ(l) depicts the time-varying shadow

fading. The variations of these two in l confirm that the proposed channel model is

non-stationary. From this figure, it can be concluded that the spread σΩ(l) of the

local received power is a concave function in l with a maximum at l = 10 and two

zeros at l = 0 and l = 20. This is in line with the illustration in Fig. F.2, where the

starting and the terminating points of each trajectory are fixed (independent of the

realization), while the maximum variations of the trajectory T occur at l = L/2 =

10 (almost in the middle of the travelling path)5.

Fig. F.9 exhibits the local PDP Sτ ′(τ ′; l) (see (F.18)) in the position index l,

where σmax = 50 m. The variations of Sτ ′(τ ′; l) in l once again verify that the pro-

posed channel model is non-stationary. In this figure, we have used different colours

to distinguish the contribution of each scatterer to the PDP Sτ ′(τ ′; l). These colours

are the same as those chosen in Fig. F.2. As an example, the scatterer S4 (located

5This has been proved mathematically in [12].
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at the north east of the MS) is shown in purple (see Fig. F.2). At l = 0, this scat-

terer has the greatest distance to the MS (the origin), thus the wave retransmitted

from S4 results in the largest delay τ ′
4(0) component as shown in Fig. F.9. Referring

to Fig. F.2, the total travelling distance of the 4th plane wave (τ ′
4(l)), however, de-

creases when the MS moves toward the destination point, which is located in a close

vicinity of S4. This can also be observed in Fig. F.9, where the purple part (associ-

ated with τ ′4(l)) of the plot tends to smaller delays as l increases. The contribution

of the other scatterers can also be tracked in Fig. F.9. This is, however, difficult

if the number of scatterers increases. It is also noteworthy that for a given l, the

farthest (nearest) scatterer to the MS results in the lowest (highest) PDP Sτ ′(τ ′; l)
as shown in Fig. F.9. This can be confirmed by the fact that the power of each

plane wave decreases by increasing its travelling distance, which has been mod-

elled by cn(l) =CD−γ/2
n (l) in this paper. Another important observation in Fig. F.9

is the variation of the delay spread in l. As can be observed, the delay spread first

increases and then decreases (look at each colour and follow its spread when l in-

creases). The reason is similar to what has been discussed in the interpretation of

Fig. F.4. Since the starting and the terminating point of the trajectory are always

fixed, the PDFs pτ ′n(τ
′;0) and pτ ′n(τ

′;L) tend to the delta function located at τ ′
n(0)
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and τ ′n(L), respectively. For visual reasons, however, we omit these delta functions

(associated with each scatterer). The observed maximum delay spread at l = 10 can

be attributed to the fact that the maximum variations of T happen almost in the

middle of the travelling path (see Section IV).

Fig. F.9 represents the local PSD Sμμ( f ; l) (see (F.20)) in the position index l,

where σmax has been set to 50 m. The interpretation of this figure is very similar to

that of the previous one, but in the frequency domain. Referring to Fig. F.2, for all

values of l, the wave emitted from S1 arrives at the MS with the AOA αR
n (l) almost

equal to the AOM αv(l) of the MS. Therefore, this scatterer causes the maximum

negative Doppler shift of about -60 Hz (see the green part of the plot). On the con-

trary, the scatterer located almost always in the front of the MS, i.e., S4 results in

the maximum positive Doppler shift of about 60 Hz (see the purple part of the plot).

Nevertheless, the PSD Sμμ( f ; l) associated with S4 is much smaller than that perti-

nent to S1. The reason is that the travelling distance of the 4th plane wave is much

longer than that of the first scatterer S1, thus the attenuation effect is much higher.

Worth mentioning is also the red part (associated with S3) of the PSD Sμμ( f ; l).

This part starts with a positive mean Doppler shift and ends with a negative one.

This variation can be tracked in Fig. F.2, where the wave retransmitted from S3, first
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arrives at the front of the MS and then at its back. The variations of the Doppler

spread along l can be explained in the same way as for the delay spread. An impor-

tant difference, however, is that the PSD Sμμ( f ; l) does not tend to the delta function

at l = 0 (l = 19), as the AOM α v(0) (αv(19)) of the MS varies from realization to

realization.

VIII. CONCLUSION

In this paper, we have introduced a new approach for modelling non-stationary

mobile fading channels. The new approach is based on random trajectories of the

MS, rather than random distributions of scatterers. The new approach enables us

to obtain required channel characteristics even if the number of scatterers is very

limited. We have used a random trajectory model based on the primitives of BFs

to develop a non-stationary channel model that captures multi-scale fading. The

new model is physically explainable, as it is based on the additive multipath fading

propagation mechanism. To model the path loss, we have allowed the path gains to

be determined by the travelling distance of the corresponding plane waves, while

the randomness of each distance generates large-scale fading. In this connection,

we have shown that the local received power follows closely a Gaussian process in
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logarithmic scale, while the envelope of the channel can be well-approximated by

a Suzuki process. The Suzuki process is reported to be the best for the modelling

of real-life channels showing different scales of fading. It has been demonstrated

that the proposed model enables two degrees of freedom to control the spread of

shadow fading, while this spread is weakly affected by the position of the BS. We

have also derived and displayed the local PDP process and the local PSD process. It

has been shown that these quantities vary in position, confirming that the proposed

channel is non-stationary. We have shown that if the channel is sparse enough, the

contribution of each scatterer to these quantities can be tracked, individually.

In future works, the new approach can be applied to develop new channel mod-

els with other objectives than capturing multi-scale fading. In addition, the utilized

random trajectory model in this paper can be substituted by other trajectory models

to see whether the same performance can be obtained or not.

APPENDIX F.A

PROOF OF THEOREM 1

It has been shown in [12] that the first-order density of x(l) in (F.1) is a normal

distribution of the form N(mx(l),σ 2
x (l)), where the mean mx(l) and the variance

σ 2
x (l) are given by xs + lδx and

σ 2
x (l) = σ 2

x
l2L
3

(
1− l

L

)2

(F.21)

respectively. The same statement holds for the first-order density of y(l), provided

that we replace the index x by y. This allows us to conclude that (xS
n − x(l))

and (yS
n − y(l)) are also normal processes of the form N(xS

n − mx(l),σ 2
x (l)) and

N(yS
n −my(l),σ 2

y (l)), respectively. The process DS−MS
n (l) can then be considered

as the envelope of a complex Gaussian distribution with (xS
n − x(l)) and (yS

n − y(l))

as its inphase and quadrature component. The phase and the envelope of com-

plex Gaussian processes with correlated quadratures and non-identical means (vari-

ances) have been studied in [35] and [36]. Herein, the correlation ρ between the

inphase and quadrature components is zero, as x(l) and y(l) are independent pro-

cesses (see [12]). Setting ρ = 0 in the envelope distribution in [36, Eq. (1)], and
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assuming σx = σy gives

pDS−MS
n

(d′
n; l)=

d′
n

σ 2
x (l)

exp

{
−(xS

n −mx(l))2

2σ 2
x (l)

− (yS
n −my(l))2+d′2

n

2σ 2
x (l)

}

× I0

(√
(xS

n −mx(l))2+(yS
n −my(l))2

σ 2
x (l)

d′
n

)
. (F.22)

With reference to (F.4), the total distance process Dn(l) = DBS−S
n +DS−MS

n (l) is a

linear function of DS−MS
n (l). Considering the first-order density pDS−MS

n
(d′

n; l) of

DS−MS
n (l) in (F.22) and applying the concept of transformation of random variables

give the PDF in (F.5).
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Molisch, and C. F. Mecklenbräucker, “Characterization of vehicle-to-vehicle

radio channels from measurements at 5.2 GHz,” Wireless Personal Communi-

cations (WPC), vol. 50, no. 1, pp. 19–32, Jul. 2009.

[5] G. Matz, “On non-WSSUS wireless fading channels,” IEEE Trans. Wireless

Commun., vol. 4, no. 5, pp. 2465–2478, Sep. 2005.

[6] A. Ghazal, C.-H. Wang, H. Haas, M. Beach, X. Lu, D. Yuan, and X. Ge,

“A non-stationary MIMO channel model for high-speed train communication

systems,” in Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th,

May 2012, pp. 1–5.

[7] A. Chelli and M. Pätzold, “A non-stationary MIMO vehicle-to-vehicle chan-

nel model based on the geometrical T-junction model,” in Proc. International



F – Non-Stationary Channel Models Based on Random Brownian Trajectories 235

Conference on Wireless Communications and Signal Processing, WCSP 2009.

Nanjing, China, Nov. 2009.

[8] J. Karedal, F. Tufvesson, N. Czink, A. Paier, C. Dumard, T. Zemen, C. F.
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A Novel Non-Stationary Channel Model Utilizing

Brownian Random Paths

Alireza Borhani and Matthias Pätzold

Abstract — This paper proposes a non-stationary channel model in which

real-time dynamics of the mobile station (MS) are taken into account. We uti-

lize Brownian motion (BM) processes to model targeted and non-targeted dy-

namics of the MS. The proposed trajectory model consists of both drift and

random components to capture both targeted and non-targeted motions of

the MS. The Brownian trajectory model is then employed to provide a non-

stationary channel model, in which the scattering effects of the propagation

area are modelled by a non-centred one-ring geometric scattering model. The

starting point of the motion is a fixed point in the propagation environment,

whereas its terminating point is a random point along a predetermined drift.

The drift component can be controlled by a so-called drift parameter. Track-

ing the MS on the proposed Brownian path allows us to derive the local angles-

of-arrival (AOAs) and local angles-of-motion (AOMs), which are expressed by

stochastic processes rather than random variables. We compute the first-order

densities of the AOA and AOM processes in closed form. The local power spec-

tral density (PSD) of the Doppler frequencies and the autocorrelation func-

tion (ACF) of the complex channel gain are also provided. Given a walking

speed scenario, the analytical results are demonstrated and explained in depth.

It turns out that the proposed Brownian path model results in a non-stationary

non-isotropic channel model. The proposed geometry-based channel model is

very useful for the performance analysis of mobile communication systems un-

der non-stationary conditions.

Index terms — Brownian motion processes, non-stationary channels, tar-

geted motions, non-targeted motions, non-centred one-ring scattering model.
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I. INTRODUCTION

Channel modelling is recognized as one of the fundamental tasks in the advance-

ment of communication systems. There exist three major approaches to channel

modeling: deterministic, stochastic, and geometry-based [1]. Among them, geo-

metric channel models have been found very suitable for modelling non-stationary

environments [1–3]. However, most of the geometric channel models proposed in

the literature have been simplified under the assumption that the stochastic radio

channel is stationary in time. By considering a very short observation time instant,

the AOM and AOA at the MS can be assumed as random variables such that the

stationarity assumption holds. The one-ring scattering model [4–6] and the uni-

fied disk scattering model (UDSM) [7] are two examples chosen from the list of

stationary channel models in [8] and [7].

Many empirical and analytical investigations, e.g., [9–11], however, reveal that

the stationarity of the channel is only valid for extremely short travelling distances [12].

The potential suitability of geometric channel models for explaining non-stationary

environments [1–3] on the one hand, and the results of real-life measurement cam-

paigns [9–11] on the other hand, encourage us to study geometric channel models

under non-stationary conditions.

The number of analytical investigations [13–16] with the focus on the statis-

tical properties of non-stationary channels is very limited. For instance, none of

the established geometric scattering models listed in [7, 8] has been studied un-

der non-stationary conditions. The only exception is the non-stationary one-ring

scattering model studied in [17–19], in which it is assumed that the MS travels

along either a straight line [17], or a semi-random path with drift [18], or a totally

random path [19]. Accordingly, considering the proposed paths in a ring of scatter-

ers allowed us to propose a non-stationary channel model. A disadvantage of the

model in [18] is that the path model has been equipped with a Brownian random

component only along one of the axes of the Cartesian coordinate system. This ran-

domness is then mapped to the other axis via the slope of the drift. Therefore, the

randomness might disappear if the slope is too high (low).

In this paper, we allay the aforementioned drawback by proposing a path model

in which two independent BM processes are assigned to model the random compo-

nents of the path along each axis. In this regard, the strength of the random com-

ponents can be controlled by a simple parameter. We also extend the path model

of [18] by equipping the model with a so-called drift parameter. This parameter

controls the presence of the deterministic drift components along the axes. Accord-

ingly, the straight (line) path model in [17] is obtained from the proposed model if
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only the drift components exist, but not the random components; the targeted path

model (modified and generalized version of the one in [18]) is attained if both the

random and drift components exist; the non-targeted path model in [19] is achieved

if the random components exist, but the drift components do not. To capture the

scattering effects of the propagation environment, the proposed path is supposed to

be surrounded by a ring of uniformly distributed scatterers.

By tracking the MS along the proposed Brownian path, we are able to derive the

local AOAs and the local AOMs. These quantities are modelled by stochastic pro-

cesses instead of random variables. We provide the first-order density of the AOA

and AOM processes in closed form. In addition, the local PSD of the Doppler fre-

quencies and ACF of the complex channel gain are computed. Considering the op-

erating frequency of the universal mobile telecommunications system (UMTS), we

perform numerical computations for a walking speed scenario. The analytical re-

sults are displayed to confirm the non-stationarity of the channel model. It is proved

that non-stationarity in time is not in line with the common isotropic propagation

assumption on the channel. Furthermore, it is shown that the stationary one-ring

scattering model [4–6] can be obtained as a special case of the proposed channel

model.

The rest of this paper is organized as follows. BM processes are reviewed briefly

in Section II, whereas Section III employs BM processes to provide the Brownian

path model. Section IV presents the propagation scenario by means of the non-

centred one-ring scattering model. Section V derives the complex channel gain of

the proposed channel model. Its statistical properties are investigated in Section VI.

Numerical results are provided in Section VII. Eventually, the summary of our find-

ings and the conclusions are drawn in Section VIII.

II. REVIEW OF BROWNIAN MOTION PROCESSES

A standard BM process {B(t) : t ∈ [0,T ]} is a Wiener process with normally and

independently distributed increments, satisfying the following conditions:

1. B(0) = 0.

2. ∀ 0 ≤ s < t ≤ T , the increment B(t)−B(s) is a normally distributed random

variable with zero mean and variance t − s, i.e., B(t)−B(s)∼ N(0, t − s).

3. ∀ 0 ≤ s < t < u < v ≤ T , the non-overlapping increments B(t)−B(s) and

B(v)−B(u) are statistically independent.
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BM processes have a broad range of applications in different branches of science,

such as in economy, medical science, and engineering. Stock market analysis, diag-

nosis imaging, and fractal theory [20] are some examples, which benefit from BM

processes in practice. In mobile ad hoc networks, 2D BM processes known as the

random walk mobility model, are also used to model atypical motions of mobile

nodes [21]. The mobility model is then used to perform network layer analysis. In

addition, three-dimensional BM processes have been used to model fully random

motions of mobile users in the Euclidian space [22].

III. PATH MODELLING

In what follows, we utilize the spatial representation of the BM process provided

in [18]. This representation enables us to introduce a spatial path model rather than a

temporal one. Notice that the spatial representation of the path allows us to consider

numerous speed scenarios for the MS.

A. Spatial Representation of Brownian Motion Processes

We assume that the MS starts its motion from a predefined point with Carte-

sian coordinates (xs,ys) in the two-dimensional (2D) plane. Moreover, let the point

(xd ,yd) denote a reference point (the potential destination point) along the drift

of the path. Following the procedure described in [18], we introduce the spatial

stochastic process B(x) over the range [xs,xd], satisfying the following conditions:

1. B(xs) = 0.

2. ∀ xs ≤ xp < x ≤ xd , the increment B(x)− B(xp) is a normally distributed

random variable with zero mean and variance x− xp, i.e., B(x)− B(xp) ∼
N(0,x− xp).

3. ∀ xs ≤ xp < x < xq < xm ≤ xd , the non-overlapping increments B(x)−B(xp)

and B(xm)−B(xq) are statistically independent.

Computational reasons encourage us to consider the spatial BM process at discrete

values of x. Accordingly, we define Δx = (xd − xs)/L for some positive integer L.

We also let B(x)
l denote the BM process at xl = xs+ lΔx (l = 0,1, ...,L). Referring to

the last two conditions of the spatial stochastic process B(x), one can conclude that

B(x)
l = B(x)

l−1 +ΔB(x)
l , where the increment ΔB(x)

l is a normally distributed random

variable of the form N(0,Δx).

The same procedure can be followed to obtain the spatial stochastic process B(y)

over the range [ys,yd ]. Analogously, let Δy = (yd −ys)/L stand for the deterministic
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increment along the y-axis. In addition, let the spatial stochastic process B(y)
l denote

the BM process at yl = ys+ lΔy. A direct consequence is the equality B(y)
l = B(y)

l−1+

ΔB(y)
l in which ΔB(y)

l follows the Gaussian distribution of the form N(0,Δy).

B. The Brownian Path Model

To model motions of the MS in the 2D plane, we propose a path with determin-

istic drift components along each axis. The fluctuations of the path are modeled

by two independent spatial BM processes B(x)
l and B(y)

l associated with the x− and

y−axis, respectively. Accordingly, the path P of the MS is modelled by means of

P :

{
(xl,yl)

∣∣∣∣∣ xl = xs + kdlΔx+σxB
(x)
l

yl = ys + kdlΔy+σyB
(y)
l

}
(G.1)

where l = 0,1, ...,L is the position index, and the drift parameter kd is to manage

the behaviour of the deterministic drift components along each axis. Furthermore,

the variable σx (σy) controls the randomness of the path along the x−axis (y−axis).

Notice that the randomness of the path P originates inherently from the random-

ness of the BM process Bl . Therefore, the parameters σx and σy provide additional

degrees of freedom to magnify (attenuate) the randomness.

In what follows, we study several important special cases, which simplify the

model in (G.1) to the path models proposed in [17–19]. We also remark some

potential applications of the proposed path model.

C. Special Cases

A very simple path model can be obtained from (G.1) if we set σx = σy = 0,

which ignores the random components of the path. In this case, if the drift com-

ponents exist, i.e., kd = 1, then the straight-line path model proposed in [17] can

be attained as a special case. This model is useful to explain very smooth paths,

beginning from a starting point and ending at a terminating point in the 2D plane.

The path model of [18] can also be obtained as a special case of the model

in (G.1) if we set σx = 0 and kd = 1. In this case, the only random component of the

path is along the y−axis. The drawback of such a model is that by increasing the

slope of the drift, the random component will be faded. Nevertheless, the targeted

Brownian path model in (G.1) has been equipped with two independent random

components, i.e., B(x)
l and B(y)

l , describing the fluctuations of the path along each

axis. In mobile communications, the proposed path model can be used to explain

typical dynamics of users in motion, such as pedestrians walking along a street, but

not necessarily along a very smooth path. In vehicular communications, the model
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can be utilized to describe jittery motions of the vehicle antenna, while the vehicle

is moving along a road.

Another important special case is obtained by ignoring the drift components,

i.e., kd = 0. By doing so, the path model in (G.1) reduces to the non-targeted Brow-

nian path model proposed in [19]. This model is known as the random walk mobility

model, which is very useful to explain irregular dynamics of mobile users.

IV. THE PROPAGATION SCENARIO

We use the non-centred one-ring scattering model [18] to capture the scattering

effect caused by randomly distributed scatterers in a propagation area. Fig. G.1

presents the considered model with the uniform distribution of the local scatterers

Sn (n= 1,2, ...,N) on a ring of radius R centered on the origin, but not necessarily on

the MS. Referring to this figure, αS
n denotes the angle-of-scatterer (AOS) pertinent

to the nth scatterer Sn. At a reference point in time t0, the MS starts its motion

from (x0,y0) and moves along the path P to reach the terminating point (xL,yL) at

time tL. Subsequently, the position of the MS at time tl ∈ [t0, tL] is represented by

Cartesian coordinates (xl,yl). We assume single-bounce scattering, meaning that

a wave emitted from the BS arrives at the MS with the AOA αR
n (l) after only one

bounce due to the nth scatterer Sn. Concerning the velocity scenario, we assume

that the MS is in motion with a constant speed of vR in the direction indicated by

the AOM αv(l), which is determined by the Brownian path P .

Two realizations of the proposed Brownian path P in such a geometric scatter-

ing model are shown in Figs. G.2 and G.3. It is assumed that the starting point of

the path is the origin of the Cartesian system, while the destination point (xd,yd) is

located at (100,100). The radius of the ring has also been set to R= 300 m. Fig. G.2

displays a realization of the targeted Brownian path in (G.1) with the parameters

kd = 1, L = 100, and σx = σy = 3. The drift of the path has also been shown by the

dotted line. The illustrated path P varies from realization to realization. However,

the general drift of the path does not change. Notice that averaging over differ-

ent realizations of the targeted path results in a straight line (drift line) from (0,0)

to (100,100). Fig. G.3 exhibits a realization of the non-targeted path P in (G.1),

where kd = 0, L = 100, and σx = σy = 6. As it can be observed from this figure, the

path exhibits random walk behaviour.

The illustrated propagation scenarios in Figs. G.1–G.3 differ completely from

the stationary one-ring channel model [4–6], in which the MS is located at the center

of the ring of scatterers, while the AOM is a fixed value. Therein, assuming a very

short observation time interval justifies a stationary and isotropic channel model,
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Figure G.1: The non-centred one-ring scattering model for a single-bounce scatter-
ing scenario.

while herein, the proposed path P results in a non-stationary non-isotropic channel

model.

In what follows, we first provide an expression for the complex channel gain,

and then we study the statistical characteristics of the proposed non-stationary chan-

nel model.

V. THE COMPLEX CHANNEL GAIN

For a typical fixed-to-mobile (F2M) scenario, the complex channel gain μ(tl) of

frequency-nonselective F2M channels is modeled by a complex stochastic process,

representing the sum of all scattered components as follows [18]

μ(tl) = lim
N→∞

N

∑
n=1

cne j(2π f n(tl)tl+θ n). (G.2)

Note that μ(tl) accounts for the effect of non-stationarity by the time-variant

Doppler frequencies1 f n(tl) rather than the time-invariant one, i.e., f n (see [24, p.

59]). In this equation, cn stands for the attenuation factor caused by the physical

interaction of the emitted wave with the nth scatterer Sn. In addition, the random

1The frequency shift caused by the Doppler effect is given by f = f max cos(α), where fmax =
f0v/c0 is the maximum Doppler frequency, f 0 denotes the carrier frequency, c0 stands for the speed
of light, and α equals the difference between the AOA and the AOM [23].
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Figure G.2: Realization of a targeted Brownian path P in the ring of scatterers.
The model parameters are kd = 1, L = 100, σx = σy = 3, and R = 300 m.
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Figure G.3: Realization of a non-targeted Brownian path P in the ring of scatterers.
The model parameters are kd = 0, L = 100, σx = σy = 6, and R = 300 m.
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variable θn represents the phase shift of the nth path. It is assumed that θ ns are inde-

pendently and identically distributed random variables, each of which is uniformly

distributed between −π and π [24, p. 59].

VI. STATISTICAL CHARACTERISTICS OF THE CHANNEL MODEL

We start investigating the statistical properties of the complex channel gain

in (G.2) by deriving the local AOA at the MS, which affects strongly other sta-

tistical quantities. In addition, we study the AOM process in detail. The AOA and

AOM processes will then be used to extract the PSD of the Doppler frequencies.

Finally, the ACF of the complex channel gain is derived from the provided PSD.

We remark that the illustration of the analytical results is deferred to Section VII.

A. The Local Angles-of-Arrival

According to Fig. G.1, the AOA αR
n (l) at the point (xl,yl) is computed as

αR
n (l) = arctan

(
Rsin(αS

n)− yl

Rcos(αS
n)− xl

)
. (G.3)

For a given position index l, the only random variable on the right-hand side of (G.3)

is the AOS αS
n, which is assumed to be uniformly distributed between −π and π (see

Section IV). As the number N of local scatterers tends to infinity in the reference

model, it is mathematically convenient to assume that the discrete AOS α S
n is a

continues random variable denoted by αS. Referring to [18, 19], the first-order

density pαR(αR; l) of the stochastic process αR(l) in (G.3) is given by the following

expression

pαR(αR; l)=
1

2π

⎛
⎝1− xl cos(αR)+ yl sin(αR)√

R2−(xl sin(αR)−yl cos(αR))2

⎞
⎠ (G.4)

where −π ≤ αR < π . It is worth mentioning that pαR(αR; l) in (G.4) depends

heavily on the position (xl,yl) of the MS. This means that the AOA αR(l) is first-

order non-stationary. As a special case, if the path P crosses the ring’s center (0,0),

then pαR(αR; l) in (G.4) reduces to 1/(2π), which is the AOA probability density

function (PDF) of the stationary one-ring scattering model [4–6].

B. The Local Angles-of-Motion

The path P can be changed to a continues and piecewise differentiable path

after applying simple linear interpolation techniques. Accordingly, the AOM α v(l)
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at the point (xl,yl) can be written in the following form

αv(l) = arctan

(
yl+1 − yl

xl+1 − xl

)

= arctan

(
kdΔy+σy(B

(y)
l+1−B(y)

l )

kdΔx+σx(B
(x)
l+1 −B(x)

l )

)
(G.5)

where the terms B(x)
l+1 −B(x)

l and B(y)
l+1 −B(y)

l are two independent random variables

of the forms N(0,Δx) and N(0,Δy), respectively (see Section III-A). Therefore,

the AOM αv(l) process can be considered as the phase of a complex Gaussian

process given by sl = (xl+1−xl)+ j(yl+1−yl), in which xl+1−xl ∼N(kdΔx,σ2
x Δx)

and yl+1 − yl ∼ N(kdΔy,σ2
y Δy). The phase of the complex Gaussian distribution

with non-identical means and variances has been studied in [25] and [26]. Herein,

we avoid representing the first-order density of the AOM (the phase distribution),

as it can readily be obtained by substituting the means and the variances of the

underlying complex Gaussian process in [26, Eq. (2)]. As a special case, if the drift

component does not exist, i.e., kd = 0, and σ 2
x Δx = σ2

y Δy, then the AOM follows

the uniform distribution defined over the range (−π ,π ] (see [19]). For this special

case, the AOM is first-order stationary.

C. The Local Power Spectral Density

The local Doppler frequency f (l) is defined by a non-linear transformation of

the local AOA αR(l) and the local AOM αv(l) of the MS. It follows

f (l) = fmax cos
(
αR(l)−αv(l)

)
(G.6)

where αR(l) is described statistically by the first-order density pαR(αR; l) in (G.4).

Furthermore, αv(l) describes the AOM at the point (xl,yl) after realizing the path

P (see (G.5)). Therefore, the only random variable on the right-hand side of (G.6)

is the AOA. This is in contrast with the procedure used in [18], where the AOM

is also assumed to be a random variable. To obtain the first-order density p f ( f ; l)

of the Doppler frequencies f (l), we fix the position index l, and then we apply the

concept of transformation of random variables. The result is shown in (G.7) [see

the top of the next page], where

A±( f ; l) = arctan

(
yl+1 − yl

xl+1 − xl

)
± arccos

(
f

fmax

)
(G.8)

for − fmax ≤ f ≤ fmax.
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p f ( f ; l) =
1

2π fmax
√

1− ( f/ fmax)2

×
⎛
⎝2− xl cos(A+( f ; l))+ yl sin(A+( f ; l))√

R2 − (xl sin(A+( f ; l))− yl cos(A+( f ; l)))2

− xl cos(A−( f ; l))+ yl sin(A−( f ; l))√
R2 − (xl sin(A−( f ; l))− yl cos(A−( f ; l)))2

⎞
⎠ (G.7)

With reference to [24, p. 85], the first-order density p f ( f ; l) of the Doppler

frequencies is proportional to the local PSD Sμμ( f ; l) of the complex channel gain

μ(tl). This allows us to present Sμμ( f ; l) by the following expression

Sμμ( f ; l) = 2σ 2
0 p f ( f ; l). (G.9)

In the equation above, 2σ 2
0 is the mean power of μ(tl), and p f ( f ; l) is given by (G.7).

For the special case that the path P crosses the ring’s center (0,0), the first-order

density p f ( f ; l) in (G.7) reduces to

p f ( f ; l) =
1

π fmax
√

1− ( f/ fmax)2
(G.10)

which, after its multiplication by the mean power 2σ 2
0 , results in the Jakes PSD [23].

Notice that the Jakes PSD is not only associated with the stationary one-ring scat-

tering model [4–6], but also with any other scattering model that is circularly sym-

metric with respect to the MS [7].

D. The Local Autocorrelation Function

The local ACF rμμ(τ; l) of the non-stationary complex channel gain μ(tl) is

obtained by taking the inverse Fourier transform of the local PSD Sμμ( f ; l) in (G.9)

(see [27, pp. 282-285]). Accordingly, one can write

rμμ(τ; l) =

fmax∫
− fmax

Sμμ( f ; l)e j2π f τd f . (G.11)

For the special case that the path P goes across the ring’s center, the local PSD

Sμμ( f ; l) in (G.10) can be employed to compute the inverse Fourier transform

in (G.11). In this case, the local ACF rμμ(τ; l) in (G.11) reduces to 2σ 2
0 J0(2π fmaxτ),
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where J0(·) stands for the zeroth-order Bessel function of the first kind [28, Eq.

(8.411.1)].

VII. NUMERICAL RESULTS

We use the operating frequency f0 = 2.1 GHz of UMTS in our numerical com-

putations. To study the effect of targeted and non-targeted travelling paths of the

MS, the paths P shown in Figs. G.2 and G.3 have been used, respectively. Be-

sides these two, we consider the path represented by a straight line from the starting

point (0,0) to the terminating point (100,100). This path can be obtained either by

averaging over different realizations of the targeted path shown in Fig. G.2, or by

setting σx = σy = 0 in (G.1). Given these three different paths, we illustrate the sta-

tistical properties of the channel model in terms of the AOA at the MS, PSD of the

Doppler frequencies, and the ACF of the complex channel gain. It is also assumed

that the MS is moving with a speed vR of 5 km/h, which equals an average walk-

ing speed. For the considered operating frequency, this speed allows a maximum

Doppler frequency fmax of about 10 Hz. The mean power 2σ 2
0 has been set to unity.

Figs. G.4–G.6 depict the first-order density pαR(αR; l) of the AOA process

αR(l) given in (G.4). In this regard, Fig. G.4 shows pαR(αR; l) of the AOA at the MS

travelling along the targeted path P shown in Fig. G.2, while Fig. G.5 demonstrates

that along the straight path. Furthermore, the non-targeted path shown in Fig. G.3

is used to display pαR(αR; l) in Fig. G.6. A common observation in the three fig-

ures is the uniform distribution of the AOA at l = 0, which can be attributed to the

circularly symmetric starting point of the three paths. For the two targeted paths,

the probability of receiving signals from the scatterers ahead (behind) decreases (in-

creases) if the MS continues its motion along the path P . However, this behaviour

does not hold for the non-targeted path, in which the heading destination point is

not subject to any drift. The irregular behaviour of pαR(αR; l) shown in Fig. G.6

is indeed due to the irregular behaviour of the path shown in Fig. G.3. In addition,

as can be observed in Figs. G.4 and G.5, the lowest probability of receiving signals

belongs to the average direction of the motion, i.e., the angle corresponds to the

slope of the drift.

Figs. G.7–G.9 exhibit the local PSD Sμμ( f ; l) presented in (G.9). The classical

Jakes PSD (resembling a U-shape) can be observed for the stationary case (l = 0)

in all these three figures. This is again due to the circularly symmetric position of

the MS at the beginning of the motion. At this position, Sμμ( f ,0) is a symmetric

function with respect to f , justifying that the channel is isotropic at the origin. This

property, however, does not hold if the MS moves along any of the paths P . The
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Figure G.4: The behavior of the first-order density pαR(αR; l) in (G.4) for the tar-
geted path illustrated in Fig. G.2.

Figure G.5: The behavior of the first-order density pαR(αR; l) in (G.4) for the
straight path (averaged targeted path).
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Figure G.6: The behavior of the first-order density pαR(αR; l) in (G.4) for the non-
targeted path illustrated in Fig. G.3.

variations of the PSD in the three figures can be explained as follows. If the MS

faces a lower number of scatterers ahead and a higher number of them behind, a

higher probability of negative Doppler shifts can be expected. Otherwise, positive

Doppler shifts occur with a higher probability. Given the two targeted paths, a

higher and a lower probability of negative and positive Doppler shifts in Figs. G.7

and G.8 can be explained by the radial drift of these paths. Nevertheless, owing to

the randomness of the path, some exceptions might be observed (see Fig. G.7).

Figs. G.10–G.12 demonstrate the absolute value of the local ACF rμμ(τ; l) pro-

vided in (G.11). Recalling that the PSD Sμμ( f ; l) is in general asymmetric (see

Figs. G.7–G.9), its inverse Fourier transform, i.e., the ACF rμμ(τ; l) in (G.11), is in

general complex. Nonetheless, at the starting point l = 0, the three figures display

ACFs |rμμ(τ; l)| of the form 2σ 2
0 |J0(2π fmaxτ)|. With reference to Figs. G.10–G.12,

the ACF varies in position (time), justifying that the proposed channel model is non-

stationary. Referring to Figs. G.10 and G.11, the correlation grows by increasing

l for a given value of τ �= 0. This growth, however, occurs with some fluctuations

(see Fig. G.10), which are due to the randomness of the corresponding path (see

Fig G.2). We finish this part by remarking that herein, the effect of changing mo-

tion patterns (path models) can better be observed (described) by plotting the PSD

rather than the ACF.
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Figure G.7: The behavior of the local PSD Sμμ( f ; l) in (G.9) for the targeted path
illustrated in Fig. G.2.

Figure G.8: The behavior of the local PSD Sμμ( f ; l) in (G.9) for straight path (av-
eraged targeted path).
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Figure G.9: The behavior of the local PSD Sμμ( f ; l) in (G.9) for the non-targeted
path illustrated in Fig. G.3.

Figure G.10: The behavior of the absolute value of the local ACF |rμμ(τ; l)|
(see (G.11)) for the targeted path illustrated in Fig. G.2.
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Figure G.11: The behavior of the absolute value of the local ACF |rμμ(τ; l)|
(see (G.11)) for the straight path (averaged targeted path).

Figure G.12: The behavior of the absolute value of the local ACF |rμμ(τ; l)|
(see (G.11)) for the non-targeted path illustrated in Fig. G.3.



258 Modelling and Analysis of Non-Stationary Mobile Fading Channels

VIII. CONCLUSION

This paper has proposed a Brownian path model to generate realistic trajectories

of the MS. Particularity, the proposed path model unifies both targeted and non-

targeted motions of the MS. We have employed the proposed path model to provide

a non-stationary channel model. To cope with the scattering effect, we have utilized

the non-centred one-ring scattering model, in which the MS is surrounded by a ring

of scatterers centred not necessarily on the MS. By tracking the MS on the proposed

Brownian path, we have derived analytical expressions for the time-varying AOA

and AOM. The first-order densities of AOA and AOM processes have been com-

puted. These processes have then been used to compute the PSD of the Doppler

frequencies and the ACF of the complex channel gain. It has been shown that the

proposed path model results in a non-stationary non-isotropic channel model. Nev-

ertheless, the stationary isotropic one-ring scattering model can be obtained as a

special case. Considering a walking speed scenario, we have illustrated the statisti-

cal characteristics of the proposed channel model. It has been shown that the AOA

and AOM processes are in general first-order non-stationary, which implies that the

PSD and ACF depend on time. We have also shown that the effect of changing mo-

bility pattern can better be seen in the PSD as compared to the ACF of the complex

channel gain. In future works, the analytical results will be verified by means of

empirical data.
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A New Non-Stationary Channel Model Based on

Drifted Brownian Random Paths

Alireza Borhani and Matthias Pätzold

Abstract — This paper utilizes Brownian motion (BM) processes with drift

to model mobile radio channels under non-stationary conditions. It is assumed

that the mobile station (MS) starts moving in a semi-random way, but subject

to follow a given direction. This moving scenario is modelled by a BM pro-

cess with drift (BMD). The starting point of the movement is a fixed point in

the two-dimensional (2D) propagation area, while its destination is a random

point along a predetermined drift. To model the propagation area, we pro-

pose a non-centred one-ring scattering model in which the local scatterers are

uniformly distributed on a ring that is not necessarily centred on the MS. The

semi-random movement of the MS results in local angles-of-arrival (AOAs)

and local angles-of-motion (AOMs), which are stochastic processes instead of

random variables. We present the first-order density of the AOA and AOM

processes in closed form. Subsequently, the local power spectral density (PSD)

and autocorrelation function (ACF) of the complex channel gain are provided.

The analytical results are simulated, illustrated, and physically explained. It

turns out that the targeted Brownian path model results in a statistically non-

stationary channel model. The interdisciplinary idea of the paper opens a new

perspective on the modelling of non-stationary channels under realistic propa-

gation conditions.

Index Terms — Brownian motion processes, channel modelling, local auto-

correlation function, local power spectral density, non-centred one-ring scattering

model, non-stationary channels, targeted motions.

A. Borhani and M. Pätzold are with the Faculty of Engineering and Science, University of
Agder, 4898 Grimstad, Norway (e-mails: {alireza.borhani, matthias.paetzold}@uia.no).
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I. INTRODUCTION

To develop mobile communication systems, geometric channel models are rec-

ognized as one of the most effective candidates, which allow a fairly accurate system

performance analysis. As an example, the one-ring scattering model [1–3], in which

the local scatterers are uniformly distributed on a ring centered on the MS, is an

appropriate model capturing the propagation effects in rural and sub-urban propa-

gation areas. The unified disk scattering model (UDSM) [4] is also one of the most

general geometric channel models, which covers numerous circularly-symmetric

scattering models as special cases, including the one-ring model. In this regard, an

overview of the most important geometric channel models can be found in [5].

Geometric channel models often profit from a common simplification, namely

the stationarity assumption of the stochastic channel in time. Considering a very

short observation time instant justifies a time-invariant AOA at the MS, which then

results in a statistically stationary channel model. Many empirical and analytical in-

vestigations, e.g., [6–8], however, show that this property is only valid for very short

travelling distances [9]. This calls for the need to develop and analyze stochastic

channel models under non-stationary conditions.

Despite the drastic number of investigations on stationary geometric channel

models, the literature lacks studies on non-stationary geometric channel models.

Only a small number of analytical studies, e.g., [10–13], cope with the statistical

properties of non-stationary channels. To the best knowledge of the authors, except

the non-stationary one-ring scattering model studied in [14], none of the established

geometric scattering models listed in [5] has been analyzed under non-stationary

conditions. In [14], a non-stationary one-ring channel model has been derived by

assuming that the MS moves from the center of the ring to the ring’s border on a

straight line. In this paper, we further expand the idea of [14] by allowing the MS to

randomly fluctuate around a straight line, where its starting point is not necessarily

the ring’s center. It can be any point inside the ring of scatterers. To this end, we let

the MS move in a semi-random way, but subject to follow a given preferred direc-

tion. By establishing an analogy between such a motion and the chaotic movement

of particles suspended in fluids discovered by Robert Brown (see [15]), we model

the travelling path of the MS by a BMD. We coin the term targeted Brownian path

model to address the proposed path model of the MS. For a given BM process, the

randomness of the path can be controlled by a single parameter. By eliminating the

randomness of the path, the MS arrives at a fixed destination point via a straight

path. Accordingly, the path model of [14] can be obtained as a special case of the

proposed targeted Brownian path model.
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Moving along a targeted Brownian path results in local AOAs and local AOMs,

which are modelled by stochastic processes rather than random variables. We

present the first-order density of the AOA and AOM processes in closed form.

Expressions for the local PSD of the Doppler frequencies and ACF of the com-

plex channel gain are also provided. These expressions are different from those

presented in [16]. Numerical computations at 2.1 GHz illustrate the analytical re-

sults and verify the non-stationarity of the channel model. It is shown that non-

stationarity in time contradicts the common isotropic propagation assumption on

the channel. It is also proved that the one-ring scattering model can be obtained as

a special case of the proposed channel model of this paper.

It is worth mentioning that 3D BM processes have been used to model fully

random motions of mobile users [17]. However, 1D BM processes with drift have

never been used to model semi-random motions of mobile users. Several other

mobility models have also been employed in mobile ad hoc networks [18], but not

in the area of channel modelling. In a nutshell, the novelty of this paper arises from

the pioneering utilization of the BMD process as a path model for the modelling of

non-stationary mobile fading channels.

The remainder of this paper is organized as follows. Section II gives a brief

introduction to BM processes as a physical phenomenon, while Section III utilizes

the BM process for developing the targeted Brownian path model. Section IV de-

scribes the propagation scenario by means of the non-centred one-ring scattering

model. The complex channel gain of the proposed channel model is then described

in Section V. Section VI investigates the statistical properties of the channel model.

Numerical results are provided in Section VII. Finally, Section VIII summarizes our

main findings and draws the conclusions.

II. PRINCIPLES OF BROWNIAN MOTION PROCESSES

BM was originally discovered in 1827 by the famous botanist, Robert Brown. It

describes the chaotic movement of particles suspended in a fluid or gas [15]. In the

1860s, there were experimentalists who clearly recognized that the motion is due to

the impact of suspending molecules. Finally, in 1906, Albert Einstein [19] offered

an exact physical explanation of such a motion based on the bombardment of the

suspended particles by the atoms of the suspending fluid. In 1908, a mathemati-

cal explanation of the BM was provided by Langevin [20]1. BM processes have a

wide range of applications, such as modelling of stock market fluctuations, medical

1A translation of [20] into English has been provided in [21].
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imaging, and fractal theory [22]. In mobile ad hoc networks, 2D BM processes (ran-

dom walk) are also employed to model irregular motions of mobile nodes [18]. The

model is then used for network layer analysis.

A stochastic process {B(t) : t ∈ [0,T ]} is said to be a standard BM process if:

1. B(0) = 0.

2. ∀ 0 ≤ s < t ≤ T , the random variable given by the increment B(t)− B(s)

follows the Gaussian distribution with zero mean and variance t − s, i.e.,

B(t)−B(s)∼ N(0, t− s).

3. ∀ 0 ≤ s < t < u < v ≤ T , the increments B(t)−B(s) and B(v)−B(u) are

statistically independent.

From the conditions above, it can be concluded that B(t) is a Wiener process with

normally and independently distributed increments.

III. PATH MODELLING

In what follows, we first provide an equivalent spatial representation of the tem-

poral BM process. Subsequently, the proposed local BM process is used to model

the targeted motion of the MS along a predetermined drift.

A. Spatial Representation of BM Processes

To establish an analogy between the BM process and the MS movement, let us

first assume that the MS starts from a given point with Cartesian coordinates (xs,ys)

in the 2D plane. The aim is to model the random path starting from (xs,ys) via the

BM process described in Section II. For this purpose, we establish a mapping from

the temporal representation of the BM process B(t) to the spatial representation of

the BM process B(x) by replacing the temporal variable t by the spatial variable

x. Accordingly, the first condition of the BM process, i.e., B(0) = 0, changes to

B(xs) = 0. By assuming (xd,yd) as the terminal point of the movement, we intro-

duce the scalar standard BM process over the range [xs,xd] by means of the spatial

stochastic process B(x), which satisfies the following three conditions:

1. B(xs) = 0.

2. ∀ xs ≤ xp < x ≤ xd , the random variable given by the increment B(x)−B(xp)

follows the Gaussian distribution with zero mean and variance x− xp, i.e.,

B(x)−B(xp)∼ N(0,x− xp).
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3. ∀ xs ≤ xp < x< xq < xm ≤ xd , the increments B(x)−B(xp) and B(xm)−B(xq)

are statistically independent.

For computational reasons, it is useful to consider the BM process at discrete values

of x. To this end, we define Δx = (xd − xs)/L for some positive integer L. Hence,

Bl = B(xl) denotes the BM process at xl = xs + lΔx (l = 0,1, ...,L). Now, with

reference to Conditions 2 and 3, it can be concluded that Bl = Bl−1 +ΔBl , where

each ΔBl is an independent normal distributed random variable of the form N(0,Δx).

B. The Targeted Brownian Path Model

To model the targeted motion of the MS in the 2D plane, we propose a path

with a controllable drift in a preferred direction, while the fluctuations of the path

are modeled by the spatial BM process Bl. Accordingly, the path P of the MS is

modelled as follows

P :

{
(xl,yl)

∣∣∣∣∣ xl = xs + lΔx,

yl = axl +b+σyBl,

}
(H.1)

where l = 0,1, ...,L is the position index, the variable a denotes the slope of the drift,

b is a constant shift along the y-axis, and σy allows to control the randomness of the

path. Considering the fact that the randomness of the path P originates inherently

from the randomness of the BM process Bl, the parameter σy provides an additional

degree of freedom to control the randomness. For instance, by setting σy to 0, any

point on the line represented by yl = axl + b can be reached. Whereas, increasing

the value of σy reduces the chance of arriving at that point. However, the mean

direction of the path remains unchanged. It is also noteworthy that the path model

in (H.1) reduces to that in [14] if σy = 0. The model also enables to incorporate

random fluctuations only along a specific line. For instance, by increasing a towards

infinity, the fluctuations occur only along the y-axis. The same behaviour can be

attained along any other line (axis) if we simply rotate the coordinate system.

In mobile communications, the proposed targeted Brownian path can be a very

useful model to describe typical dynamics of users in motion, such as persons walk-

ing along a street, but not necessarily along a very smooth path. In vehicular com-

munications, the model can also be used to explain the jittery motion of the vehicle

antenna, while the vehicle is moving along a given direction.

IV. THE PROPAGATION SCENARIO

To cope with the scattering effect caused by the propagation area, we propose a

non-centred one-ring scattering model, in which the local scatterers are uniformly
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Figure H.1: The non-centred one-ring scattering model for a single-bounce scatter-
ing scenario.

distributed on a ring that is not necessarily centred on the MS. The displacement of

the MS from the ring’s center results in a non-isotropic channel model. This model

is an appropriate geometric scattering model to explain environments, in which the

base station (BS) antenna is highly elevated to scattering-free levels, while the MS

antenna is surrounded by a large number of local scatterers. This situation occurs

mostly in rural and sub-urban areas.

Fig. H.1 shows the proposed non-centred one-ring scattering model with the

uniform distribution of the local scatterers Sn (n = 1,2, ...,N) on a ring of radius

R centered on the origin. In this regard, αS
n denotes the angle-of-scatterer (AOS)

associated with the nth scatterer. At a reference point in time t0, the MS starts its

movement from (x0,y0) and tracks the path P to reach (xL,yL) at time tL. The

position of the MS at time tl ∈ [t0, tL] is described by Cartesian coordinates (xl,yl).

It is also assumed that the MS is moving with a constant velocity vR in the direction

indicated by the AOM αv(l). Owing to high path loss, we assume that at time tl, a

wave emitted from the BS reaches the MS at the AOA αR
n (l) after a single bounce

by the nth randomly distributed scatterer Sn located on the ring. A realization of

the proposed Brownian path P in such a geometric scattering model is shown in

Fig. H.2, in which the starting point (x0,y0) of the path is set to the ring’s center2.

2We have chosen the ring’s center as the starting point of the movement to enable the verifi-
cation of our numerical results (see Section VII) with the ones from the one-ring scattering model.
However, the analytical results provided in the paper are not limited to such a special case.
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Figure H.2: Realization of a targeted Brownian path P in the ring of scatterers.
The model parameters are L = 100, a = 1, b = 0, σy = 2, xs = 0 m, xd = 150 m, and
R = 250 m.

The above mentioned propagation scenario is completely different from the one-

ring scattering model [1–3], in which the MS is located at the center of the ring,

while its AOM is a deterministic variable. Therein, considering a very short obser-

vation time results in a stationary and isotropic channel model, while herein, the

proposed path P justifies a non-stationary non-isotropic channel model. The pro-

posed jittery path model P is also different from the smooth path model of [14].

Indeed, the random behavior of the AOM αv(l) (see Fig. H.2) allows a much more

flexible non-stationary channel model than the one proposed in [14]. In what fol-

lows, after providing an expression for the complex channel gain, we study the

statistical properties of the proposed non-stationary channel model.

V. THE COMPLEX CHANNEL GAIN

The propagation scenario presented in Section IV is a non-stationary version of

the typical fixed-to-mobile (F2M) scenario studied in [23, pp. 56–60]. Therein, the

complex channel gain μ(tl) of frequency-nonselective F2M channels was modeled

by means of a complex stochastic process representing the sum of all scattered
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components as follows

μ(tl) = lim
N→∞

N

∑
n=1

cne j(2π f ntl+θn). (H.2)

In the equation above, cn denotes the attenuation factor caused by the physical inter-

action of the emitted wave with the nth scatterer Sn, and f n stands for the Doppler

frequency3 caused by the movement of the MS. In addition, the random variable θ n

represents the phase shift of the nth path, which is often assumed to be uniformly

distributed between 0 and 2π [23, p. 59].

The complex channel gain in (H.2) suits the proposed non-stationary one-ring

model, if we replace the Doppler frequency f n by f n(tl). This apparently minor

change adds a great deal of mathematical computations to the statistical characteri-

zation of the channel.

VI. STATISTICAL PROPERTIES OF THE CHANNEL MODEL

To investigate the statistical properties of the complex channel gain described

in (H.2), let us start from the local AOA, which plays a key role in other statistical

quantities. Notice that we defer the illustration and physical explanation of the

analytical results to Section VII.

A. The Local Angles-of-Arrival

Referring to the geometric scattering model in Fig. H.1, the AOA α R
n (l) at the

point (xl,yl) is given by

αR
n (l) = arctan

(
Rsin(αS

n )− yl

Rcos(αS
n )− xl

)
. (H.3)

For a given position l, the only random variable in the right side of (H.3) is the

AOS αS
n . Since the number N of local scatterers tends to infinity in the reference

model, it is mathematically convenient to assume that the discrete AOS α S
n is a con-

tinues random variable αS, which is assumed to be uniformly distributed between

−π and π (see Section IV). By applying the concept of transformation of random

variables [25, p. 130] and performing some mathematical manipulations, it can be

shown that the first-order density pαR(αR; l) of the stochastic process αR(l) in (H.3)

3The frequency shift caused by the Doppler effect is given by f = f max cos(α), where fmax =
f0v/c0 is the maximum Doppler frequency, f 0 denotes the carrier frequency, c0 stands for the speed
of light, and α equals the difference between the AOA and the AOM [24].
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becomes

pαR(αR;l)=
1

2π

⎛
⎝1− xl cos(αR)+ yl sin(αR)√

R2 − (xl sin(αR)− yl cos(αR))2

⎞
⎠ (H.4)

in which −π ≤ αR < π . It is worth mentioning that pαR(αR; l) in (H.4) depends

strongly on the position (xl,yl) of the MS. This means that the AOA αR(l) is not

first-order stationary. As a special case, if the path P crosses the ring’s center (0,0),

then pαR(αR; l) in (H.4) reduces to 1/(2π), which is the AOA probability density

function (PDF) of the one-ring model [1–3].

B. The Local Angles-of-Motion

By performing the linear interpolation scheme, the path P becomes continues

and piecewise differentiable. This allows us to present the AOM α v(l) at the loca-

tion point (xl,yl) by the following expression

αv(l) = arctan

(
yl+1 − yl

xl+1 − xl

)

= arctan

(
a+σy

Bl+1 −Bl

xl+1 − xl

)
. (H.5)

In the right side of (H.5), Bl+1 −Bl is the only random variable, which follows the

Gaussian distribution of the form N(0,Δx) (see Section III-A). Again, by applying

the concept of transformation of random variables, the PDF pαv(αv) of the AOM

αv(l) in (H.5) is given by

pαv(αv) =
1√

2πσ cos2(αv)
e

−(tan(αv)−a)2

2σ 2 (H.6)

where −π/2 ≤ αv ≤ π/2 and σ = σy/
√

Δx. Notice that pαv(αv) in (H.6) is inde-

pendent of the position (xl,yl) of the MS, meaning that the AOM α v is first-order

stationary. It can be shown that the mean α v equals arctan(a), in which a is the

slope of the drift of the path P .

C. The Local Power Spectral Density

The local Doppler frequency f (l) is obtained through a non-linear transform-

ation of the local AOA αR(l) and the local AOM αv(l) of the MS. It follows

f (l) = fmax cos
(
αR(l)−αv(l)

)
(H.7)
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where αR(l) is described by the first-order density pαR(αR; l) in (H.4). In addition,

the angle αv(l) denotes the AOM at the point (xl,yl) after realizing the path P

(see (H.5)). Accordingly, for a given position index l, the only random variable on

the right-hand side of (H.7) is the AOA αR(l). This is different from the approach

used in [16], where the AOM is also assumed to be a random variable. To compute

the first-order density p f ( f ; l) of the Doppler frequencies f (l), we fix the position

index l, and then we apply the concept of transformation of random variables. It

follows

p f ( f ; l) =
1

2π fmax
√

1− ( f/ fmax)2

×
⎛
⎝2− xl cos(A+( f ; l))+ yl sin(A+( f ; l))√

R2 − (xl sin(A+( f ; l))− yl cos(A+( f ; l)))2

− xl cos(A−( f ; l))+ yl sin(A−( f ; l))√
R2 − (xl sin(A−( f ; l))− yl cos(A−( f ; l)))2

⎞
⎠ (H.8)

where

A±( f ; l) = arctan

(
yl+1 − yl

xl+1 − xl

)
± arccos

(
f

fmax

)
(H.9)

for − fmax ≤ f ≤ fmax.

Referring to [23, p. 85], the first-order density p f ( f ; l) of the Doppler frequen-

cies is proportional to the local PSD Sμμ( f ; l) of the complex channel gain μ(tl).
This allows us to present Sμμ( f ; l) by the following expression

Sμμ( f ; l) = 2σ 2
0 p f ( f ; l). (H.10)

In the equation above, 2σ 2
0 is the mean power of μ(tl), and p f ( f ; l) is given by (H.8).

For the special case that the path P crosses the ring’s center (0,0), the first-order

density p f ( f ; l) in (H.8) reduces to

p f ( f ; l) =
1

π fmax
√

1− ( f/ fmax)2
(H.11)

which, after its multiplication by the mean power 2σ 2
0 , results in the Jakes PSD [24].

Notice that the Jakes PSD is not only associated with the stationary one-ring scat-

tering model [1–3], but also with any other scattering model that is circularly sym-
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metric with respect to the MS [4].

D. The Local Autocorrelation Function

With reference to the generalized Wigner-Ville spectrum [26, pp. 282-285],

the local ACF rμμ(τ; l) of the non-stationary complex channel gain μ(tl) can be

attained by taking the inverse Fourier transform of the local PSD Sμμ( f ; l) in (H.10).

Accordingly, one can write

rμμ(τ; l) =

fmax∫
− fmax

Sμμ( f ; l)e j2π f τd f . (H.12)

As a special case, if the path P goes across the ring’s center, a scaled version

of p f ( f ; l) in (H.11) can be employed to compute the inverse Fourier transform

in (H.12). In this case, the local ACF rμμ(τ; l) in (H.12) reduces to 2σ 2
0 J0(2π fmaxτ),

where J0(·) stands for the zeroth-order Bessel function of the first kind [27, Eq.

(8.411.1)].

VII. NUMERICAL RESULTS

Channel modelling at the 2 GHz band is of great importance in mobile com-

munications. With reference to the operating frequency of the universal mobile

telecommunications system (UMTS), the carrier frequency f0 = 2.1 GHz has been

chosen in our numerical computations. In addition, we consider the path P shown

in Fig. H.2 as the travelling path of the MS. This allows us to have the positions

(xl,yl) for l = 0,1, ...,L. It is also assumed that the MS is moving with a velocity vR

of 80 km/h, which results in a maximum Doppler frequency fmax of 155.5 Hz. The

mean power 2σ 2
0 has been set to unity.

Fig. H.3 illustrates the first-order density pαR(αR; l) of the AOA process αR(l)

provided in (H.4). With reference to the path P shown in Fig. H.2, the MS starts

its movement from the center of the ring. This circularly symmetric starting point

explains the uniform distribution of the AOA at l = 0. By moving along the path

P , the probability of receiving signals from the scatterers ahead reduces, whereas

the probability of receiving from the scatterers behind increases. This behavior

continuous up to l = 100, where pαR(αR,100) takes its minimum value at α R =

arctan(1) = 0.78 radian.

Fig. H.4 displays the PDF pαv(αv) of the AOM αv(l) in (H.6). The simulated

AOM is also shown in this figure. An excellent match between the simulation and

analytical results can be observed. The mean αv equals arctan(1) = 0.78 radian as

shown in the figure. The plot shows explicitly the tendency of the MS to follow the



276 Modelling and Analysis of Non-Stationary Mobile Fading Channels

−2
0

2

0

50

100
0

0.1

0.2

0.3

AOA, αR (rad)Position index, l

A
O
A

P
D
F
,
p
α
R
(α

R
;l
)

Figure H.3: The behavior of the first-order density pαR(αR; l) in (H.4) for the propa-
gation scenario illustrated in Fig. H.2.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

 

 

AOM, αv (rad)

A
O

M
P

D
F

,
p

α
v
(α

v
)

Simulation
Analytical Mean line

αv = 0.78

Figure H.4: The behavior of the AOM PDF pαv(αv) in (H.6) for the propagation
scenario illustrated in Fig. H.2.



H – A Non-Stationary Channel Model Based on Drifted Brownian Trajectories 277

Figure H.5: The behavior of the local PSD Sμμ( f ; l) in (H.10) for the propagation
scenario illustrated in Fig. H.2.

predetermined drift of the path P . This tendency depends solely on the slope a of

the drift, which has been set to 1 herein. It is noteworthy that if the randomness σy

of the path tends to zero, the AOM PDF approaches the delta function at αv = 0.78

radian.

Fig. H.5 depicts the local PSD Sμμ( f ; l) presented in (H.10). The classical Jakes

PSD with a U-shape can be observed in the stationary case (l = 0), where the MS

is located at the ring’s center. At this position, Sμμ( f ,0) is a symmetric function

with respect to f , indicating that the channel is instantaneously isotropic. However,

this feature does not hold if the MS continuous its motion along the path P . In

this regard, by increasing l, an asymmetric behavior of the local PSD Sμμ( f ; l) can

be observed. Notice that moving along the path P results in confronting a lower

number of scatterers ahead and a higher number of them behind the MS. This allows

a higher and a lower probability of negative and positive Doppler shifts as shown in

Fig. H.5.

Fig. H.4 displays the PDF pαv(αv) of the AOM αv(l) in (H.6). The simulated

AOM is also shown in this figure. An excellent match between the simulation and

analytical results can be observed. The mean αv equals arctan(1) = 0.78 radian as
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Figure H.6: The behavior of the absolute value of the local ACF |rμμ(τ; l)|
(see (H.12)) for the propagation scenario illustrated in Fig. H.2.

shown in the figure. The plot shows explicitly the tendency of the MS to follow the

predetermined drift of the path P . This tendency depends solely on the slope a of

the drift, which has been set to 1 herein. It is noteworthy that if the randomness σy

of the path tends to zero, the AOM PDF approaches the delta function at αv = 0.78

radian.

Fig. H.5 depicts the local PSD Sμμ( f ; l) presented in (H.10). The classical Jakes

PSD with a U-shape can be observed in the stationary case (l = 0), where the MS

is located at the ring’s center. At this position, Sμμ( f ,0) is a symmetric function

with respect to f , indicating that the channel is instantaneously isotropic. However,

this feature does not hold if the MS continuous its motion along the path P . In

this regard, by increasing l, an asymmetric behavior of the local PSD Sμμ( f ; l) can

be observed. Notice that moving along the path P results in confronting a lower

number of scatterers ahead and a higher number of them behind the MS. This allows

a higher and a lower probability of negative and positive Doppler shifts as shown in

Fig. H.5.

Fig. H.6 shows the absolute value of the local ACF rμμ(τ; l) given in (H.12).

Notice that due to the asymmetric behavior of the PSD Sμμ( f ; l) (see Fig. H.5), the

ACF rμμ(τ; l) is in general complex. A quite time-varying behavior of the ACF
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can be observed. It is also noteworthy that for a given time difference τ �= 0, the

correlation increases through some fluctuations if l grows.

VIII. CONCLUSION

In this paper, we have proposed a targeted Brownian path model to explain the

travelling path of the MS. The proposed path model has a tendency to follow a pre-

ferred direction. To describe the propagation area, we have proposed a non-centred

one-ring scattering model, in which the MS is not necessarily located at the ring’s

center. We have assumed that the MS is moving along the proposed targeted Brow-

nian path model in such a geometric scattering model. It has been turned out that the

proposed path model results in a non-stationary non-isotropic channel model. As a

special case, the stationary isotropic one-ring scattering model can also be obtained

from the proposed non-stationary channel model. The statistical properties of the

proposed channel model have been derived, illustrated, and discussed extensively.

It has been shown that the AOA process is first-order non-stationary, while the PDF

of the AOM is stationary. The corresponding PSD of the Doppler frequencies and

ACF of the complex channel gain have also been provided, showing that these char-

acteristics are heavily time-dependent. Validating the analytical results by means of

empirical data needs to be addressed in future works.
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