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Abstract

The focus in this thesis is on robot collision handling systems, mainly collision de-

tection and collision avoidance for industrial robots operating in harsh environments

(e.g. potentially explosive atmospheres found in the oil and gas sector). Collision

detection should prevent the robot from colliding and therefore avoid a potential

accident. Collision avoidance builds on the concept of collision detection and aims

at enabling the robot to find a collision free path circumventing the obstacle and

leading to the goal position.

The work has been done in collaboration with ABB Process Automation Divi-

sion with focus on applications in oil and gas. One of the challenges in this work

has been to contribute to safer use of industrial robots in potentially explosive en-

vironments. One of the main ideas is that a robot should be able to work together

with a human as a robotic co-worker on for instance an oil rig. The robot should

then perform heavy lifting and precision tasks, while the operator controls the steps

of the operation through typically a hand-held interface. In such situations, when

the human works alongside with the robot in potentially explosive environments, it

is important that the robot has a way of handling collisions.

The work in this thesis presents solutions for collision detection in paper A, B

and C, thereafter solutions for collision avoidance are presented in paper D and E.

Paper A approaches the problem of collision avoidance comparing an expert system

and a hidden markov model (HMM) approach. An industrial robot equipped with a

laser scanner is used to gather environment data on arbitrary set of points in the work

cell. The two methods are used to detect obstacles within the work cell and shows



a different set of strengths. The expert system shows an advantage in algorithm

performance and the HMM method shows its strength in its ease of learning models

of the environment. Paper B builds upon Paper A by incorporating a CAD model

of the environment. The CAD model allows for a very fast setup of the expert

system where no manual map creation is needed. The HMM can be trained based

on the CAD model, which addresses the previous dependency on real sensor data

for training purposes.

Paper C compares two different world-model representation techniques, namely

octrees and point clouds using both a graphics processing unit (GPU) and a central

processing unit (CPU). The GPU showed its strength for uncompressed point clouds

and high resolution point cloud models. However, if the resolution gets low enough,

the CPU starts to outperform the GPU. This shows that parallel problems containing

large data sets are suitable for GPU processing, but smaller parallel problems are

still handled better by the CPU.

In paper D, real-time collision avoidance is studied for a lightweight industrial

robot using a development platform controller. A Microsoft Kinect sensor is used

for capturing 3D depth data of the environment. The environment data is used

together with an artificial potential fields method for generating virtual forces used

for obstacle avoidance. The forces are projected onto the end-effector, preventing

collision with the environment while moving towards the goal. Forces are also

projected on to the elbow of the 7-Degree of freedom robot, which allows for null-

space movement. The algorithms for manipulating the sensor data and calculating

virtual forces were developed for the GPU, this resulted in fast algorithms and is the

enabling factor for real-time collision avoidance.

Finally, paper E builds on the work in paper D by providing a framework for

using the algorithms on a standard industrial controller and robot with minimal

modifications. Further, algorithms were specifically developed for the robot con-

troller to handle reactive movement. In addition, a full collision avoidance system

for an end-user application which is very simple to implement is presented.

The work described in this thesis presents solutions for collision detection and



collision avoidance for safer use of robots. The work is also a step towards making

businesses more competitive by enabling easy integration of collision handling for

industrial robots.
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Chapter 1
Introduction

1.1 Motivation and Problem Statement

Safety for human and environment is one of the numerous challenges many of to-

day’s industries are facing. In competitive markets, being more cost efficient can

sometimes come at the cost of safety for people and equipment. The oil and gas

industry is one of the most safety aware sectors in Norway, and is currently looking

at the possibilities for using industrial robots at petro-chemical plants and oil rigs.

Most of the easily accessible oil reservoirs are already explored and the trend

goes towards exploring fields in remote locations, such as the Barents Sea. In these

locations, the winter temperatures can range from -20oC to -50oC, and parts of

the sea are covered by ice. Due to the harsh weather conditions in these areas the

icy conditions can make them unreachable by vessels, but the long distances can

also make travel by helicopter impossible. It is therefore of interest to study the

possibilities of relocating people from oil rigs to onshore control rooms. From there

they will be able to operate the oil rig or vessel remotely with the aid of remote

operation systems and tools such as industrial robots.

Operations of large plants such as oil rigs are in themself challenging, but oper-

ations of such plants at remote locations even more so. Among these challenges is

increased level of automation and safe use of industrial robots.

Many of today’s industrial robots are regarded as reliable and have proven suc-

cessful for solving many different tasks such as assembly, painting, palletising and
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welding to name a few. It is however not enough to have robots that are only proven

to be reliable, they will also have to cope with an unreliable environment. Examples

can be unintentional relocation of a structure caused by a breakdown or intentional

object relocation to a position which unintentionally is obstructing the robot path. If

the environment blocks the robot path without a dedicated robot collision handling

system in place, the robot will inevitably collide with the surrounding structure. In-

dustrial robots may have an inbuilt collision awareness algorithm which stops the

robot if there is an unintended interaction with the environment, but this is a safety

feature that is first enabled after a collision. A collision with the environment can

have unanticipated consequences and should be avoided, but in potentially explo-

sive environments a collision is not an option as it can lead to sparks which in the

worst case will ignite a fluid or a gas causing fire or explosion.

Systems developed to address the challenges above are not only limited to the

oil and gas industry, but are also applicable for e.g. offshore wind parks. There is a

trend towards remote locations for wind parks as well (Kaldellis & Kapsali, 2013).

Further, systems for collision handling which are developed for industrial robots

can also be adapted to service robots (Ferrein et al., 2013) for safer human-machine

interaction.

The market for industrial robots in potentially explosive environments is cur-

rently small. Although this may change in the future, robots from the leading manu-

factures which are certified for potentially explosive environments do not currently

have the capability of high payloads. The technology for creating such robots is

definitely available, but the demand is currently not at a stage where it would make

sense to mass-produce them. An example of a high payload robot aimed for use

in potentially explosive environments is the Deckrobot 1500 from Robotic Drilling

Systems, which is capable of lifting 1500 kg. The robots used in the work presented

in this thesis are not certified, but the methods will of course still be applicable to

such robots.

One of the main motivations of the thesis is the development and implemen-

tation of real algorithms on real robots. Standard industrial robots are used such

that the path to realisation is not only restricted to universities or research entities.

This type of solutions can benefit and motivate small and medium-sized enterprises
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(SMEs) to invest in such systems. Consequently, this can contribute to make busi-

nesses more competitive and potentially prevent outsourcing of labour. The work

presented in this thesis contributes to solutions for industrial robots working in harsh

and potentially explosive environments in the not too distant future.

1.2 Outline

The first chapter gives an introduction to some of the topics used in the work de-

scribed by this thesis. Chapter two gives a brief description of selected concepts

and methods used in the papers. The methods are described in some detail, but

the interested reader is referred to the literature for an in-depth knowledge on the

selected topics. The third chapter presents concluding remarks and future work.

The second part consists of a collection of five contributed papers denoted paper

A—E. In section 1.6 each paper is summarised in addition to providing the reader

with background information and the research contribution.

1.3 Collision Handling

Collision detection and collision avoidance have been the main focus for the work

in this thesis. To set the nomenclature, definitions of categories within collision

handling with examples are given below.

1.3.1 Obstacle

An obstacle is an object1 which approaches the robot in an unexpected way. For

example, the object does not exist in the work cell CAD model. It blocks the ma-

nipulator’s path such that the structure of the robot will physically be in contact with

the obstacle if the path is followed. An obstacle can be static (non-moving such as

a structure) or dynamic (moving, e.g. a human) and is defined as follows.

• An object that is not initially accounted for in the programming of the path.

1An object can also be an animal or a person
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• An object that the robot is unintentionally approaching due to for example

hardware or software failure.

1.3.2 Collision

A collision is the case where the manipulator physically is in contact with an obsta-

cle. Intentional manipulation of objects is not defined as a collision.

1.3.3 Collision Awareness

Most industrial robots have incorporated a mechanism for sensing the force on the

end-effector. If it is higher than expected the manipulator may respond by a stop

action. More specifically, if the torques on one or more of the motors are higher

than predicted plus a tolerated threshold, it is flagged as an error and appropriate

action is taken. Hence, collision awareness means that a physical contact between

the robot and the obstacle has occurred.

1.3.4 Collision Detection

Collision detection as defined in this thesis refers to the case where an obstacle is

detected before collision occurs. In implementation, collision detection would raise

a software flag and typically stop the robot. Collision detection is defined as one or

more of the following:

• An obstacle enters the working volume of the object.

• The distance between the object and the obstacle is below a predefined thresh-

old.

• The object is expected to collide with an obstacle based on e.g. speed and

direction.

Collision detection as defined in this thesis does not necessarily mean that a physical

contact between the robot and the obstacle has occurred.
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1.3.5 Collision Avoidance

Collision avoidance occurs after collision detection and is the task of finding a new

path which avoids collision with the obstacles blocking the path of the robot. If

a collision free path exists, it should find a new way to the target point. Collision

avoidance can be based on the following actions.

• Purely reactive action

(R1) The manipulator follows a re-planned path until an obstacle is detected

and the collision avoidance behaviour is triggered. The obstacle avoid-

ance behaviour is an input to the system and reactive motion is generated

based on the obstacle position.

(R2) The manipulator movement is based on a virtual attraction to a target

and on virtual repulsion from the obstacles.

(R3) Impulsive behaviour based on a set of rules.

• Planned path

(P1) The manipulator follows a pre-planned path until an obstacle is detected

and the collision avoidance behaviour is triggered. The new obstacle

is added to the model and new potentially target reaching collision free

path is generated.

In the thesis approach number (R2) is used for collision avoidance.

1.3.6 Potentially Explosive Environments

All equipment operating in petro-chemical plants is exposed to an environment

which can potentially be explosive, and must therefore follow strict regulations.

Among these regulations is the ATEX directive (Leroux, 2007), describing how

equipment and protection of these must be applied for use in potentially explosive

atmospheres. This is of course a challenge for most equipment, including industrial

robots which are not certified for potentially explosive environments by default. Ac-

tually, only a handful of different models, such as paint robots, are certified by the
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European standard ATEX. The certification for operation in potentially explosive

environments is achieved by purging, meaning that the robot is pressurised with air

such that the inner pressure of the structure is higher than atmospheric pressure out-

side. This prevents gases entering the structure of the robot where it potentially can

cause a reaction with the circuitry inside the robot and ignite.

Other challenges which target equipment are different conditions of the outdoor

environment. Sunlight is a part of the outdoor environment which typically can ren-

der a sensor useless unless precautions are taken. Proper positioning of the sensor

is one of the factors that can enhance the reliability of the data, and sensor redun-

dancy can also be an alternative. Even sensors measuring the relevant conditions

for proper functionality can be an option. One example is measurements of the en-

ergy within the operation band of the sensor, and if a threshold above this level is

reached, the corresponding sensor data can be flagged unreliable. Fog, ice, rain and

snow are also conditions which can lead to unreliable sensor data. Fog and ice are

conditions which can be hard to deal with. Some applications can be dealt with by

heating the glass of a casing where the sensor is mounted. For a potentially explo-

sive environment, a heat element might not be a viable solution to make the sensor

ATEX certified. The larger size of casing required for the heat element can hamper

the application.

1.3.7 Sensors

The availability of rich sensor data of the environment, especially 3D data, was

quite limited until recently. It has to be noted that this advancement in technology

currently applies for sensors targeted for use in indoor environments. In November

2010 the Microsoft Kinect was released, initially as a human interface for interact-

ing with their game console Xbox (Zhang, 2012). The interest in the Kinect sensor

exploded, as it sold 10 million devices during the first three months after its launch,

and sat a new Guinness World Record as the fastest selling device in the category for

consumer electronics (Zhang, 2012). The device’s ability to deliver 3D environment

data at an affordable price, has led to development of Linux drivers and libraries for

gathering data from the Kinect sensor. Microsoft has also launched its own software

development kit (SDK) which is currently supported only for Windows. One of the
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challenges with using this 3D sensor data for collision avoidance purposes is that

it generates a lot of information. Rich information can lead to a better foundation

for decision making in the algorithms, but on the other hand more calculations are

needed in order to fulfil the task. On an algorithmic level this can be dealt with by

reducing the resolution and filter away unnecessary data. On another level, the rate

which the algorithm can execute at is related to the processor frequency or if it is

a parallel problem, both the frequency and the number of cores will determine the

execution time of the algorithm. Another trend is that sensors are getting cheaper,

however there is no known off-the-shelf sensor delivering 3D data which is certified

for oil and gas applications.

1.3.7.1 Evaluated sensors

(a) Industrial ultrasound sensor. (b) Novelda impulse radar.

(c) SICK laser scanner. (d) Microsoft Kinect sensor.

Figure 1.1: Four of the evaluated sensors

As a part of the work described in this thesis, numerous sensors were evaluated

in the search for suitable sensors for both collision detection and collision avoid-
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ance. Figure 1.1 shows some of these sensors and all of the above were actually

tested.

Sensor 1.1a is an ultrasound sensor which sends out sound waves in a cone

shaped volume. The sensor works by measuring the time between the sent and

received signal and then using the speed of sound in air to calculate the distance to

the perceived nearest object. The nearest object is determined by the sound wave

which first returns to the sensor, but it is not necessarily the object that is closest to

the sensor. Since the sensor is dependent on a returning sound signal, a surface with

an angle may deflect the sound wave and therefore it may never return to the sensor

and consequently the object would not be detected.

Sensor 1.1b is a radar which emits signals that are timed in a similar manner to

the ultrasound sensor. This sensor, also measuring a volume, has some of the same

weaknesses as the ultrasound sensor. The main weakness of these sensors is that it

is not possible to determine where objects are located in the volume which means

that they would not provide sufficient information for many applications.

The laser scanner 1.1c is a sensor that scans the plane each 0.5o with a 270oangular

field of view. This sensor provides depth and angle information of each beam and as

such it is possible to determine the location of each reflected surface in the scanned

plane. In addition, compared to sensor 1.1a and 1.1b, this sensor is not that sus-

ceptible to surfaces at an angle since it is based on IR. Even though it gives more

desirable results than the previous two sensors, if the laser beam hits e.g. a corner,

the measurement might not be valid.

The Microsoft Kinect sensor 1.1d consist of many different sensors; accelerom-

eter, colour camera, Infrared (IR) emitter, IR receiver and microphone. It is the IR

emitter and IR receiver that enable the depth data to be produced. The IR emitter is

located behind a lens producing a structured pattern which is reflected on a surface

in the environment. The IR receiver captures the reflected pattern and the Kinect

sensor creates depth values corresponding to pixels in the IR image. Further by

using the horizontal and vertical view of the lens, spatial data of these points can be

generated.
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1.4 State of the Art

The work in this thesis is related to the oil and gas industry and not unlike other

high-risk industries there is an evident gap between the state of the art in the industry

and academia. A gap that is caused by what is available from an academic research

perspective and what is actually implemented by industry. This gap can in some

cases be a result of the higher requirements to proper and proven functionality and

stricter regulations in industry. Another reason might be that not all state of the art

solutions make sense to adopt from a business perspective. This especially applies

to the oil and gas sector where an accident can cause large scale harm to humans,

equipment and environment.

1.4.1 Collision Handling

1.4.1.1 Industrial Robots

Industrial robots are usually not equipped with any external sensors, these are often

located on the fence around the work cell, and as such the standard robot would typi-

cally only incorporate collision awareness. Even though the robot may be limited to

collision awareness, systems built around the robot can be responsible for handling

collision detection. Typical industrial robot systems may consist of virtual lines

(e.g. laser) or virtual walls (e.g. laser scanners and safety curtains). Currently, no

known industrial robot manufacturer delivers robots equipped with sensors mounted

on the robot for handling collision detection or collision avoidance as a standard.

The solutions for collision handling are typically developed by a subsidiary of the

robot company or delegated to the system integrators.

1.4.1.2 Development Platforms

The research on collision handling is a well-studied topic in robotics. For state of

the art systems, it is common to use a depth sensor such as the Microsoft Kinect. 3D

data of the environment is one of the key factors together with a proper algorithm

for successfully achieving collision avoidance. The work by (Flacco et al., 2012)

and (De Luca & Flacco, 2012) are examples where real-time collision avoidance

9



Introduction

is made possible by reducing the representation of the robot, such that the amount

of data are kept small. For the collision avoidance part, both end-effector and the

whole manipulator body are taken into account. The collision avoidance algorithms

are based on a modified artificial potential field approach and run on a multi-core

central processing unit (CPU).

The work by (Haddadin et al., 2011) builds on the circular fields approach for

collision avoidance. Compared to potential fields, the algorithm is less prone to get

stuck in local minima, and therefore improves on one of the drawbacks with the

traditional artificial potential fields approach. This work experimentally validates

that the DLR lightweight robot (LWR) is able to avoid obstacles and find its way to

the goal.

One of the main challenges with collision avoidance is that it can involve a lot of

data representing the spatial information of the environment and the manipulator. In

many cases large data sets require filtering, which can lead to a loss in level of detail.

The loss in detail may not affect all types of applications, but when high detail is

required the processing time goes up. As the processing time increases, the collision

avoidance algorithm may not run in real-time anymore. Collision avoidance is a

constant trade-off between speed and detail, therefore smart algorithms and fast

hardware are key elements.

1.4.2 Robotic Co-Worker

The concept of a robotic co-worker is one of the considered factors for the work in

this thesis. The concept depicted in figure 1.2 is based on the idea that field operator

can perform heavy lift or precision tasks with the aid of the robot. The envisioned

cooperation scenarios typically require a person to work in close vicinity of the

robot. One of the approaches is a pre-programmed robot task, where the person uses

a human interface device (HID) to start each part of the robot task. Figure 1.2 shows

the robotic co-worker (operator) in a larger context. In many cases there can be an

advantage to control the robot manually and access the environment information

from a remote location to perform necessary operations. A remote operator can

also assist the on-site operator at different levels, such as feedback based on visuals

and assist to handle unforeseen events which require expert knowledge. The on-site
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operator is not necessarily expected to program the robot, but rather run the program

in a step-wise manner or move the robot to near points if necessary.

Off-Site

On Site

Remote Operator

Robot ControllerOperator HID Control Interface

Remote Operation 
Application

Industrial Robot

Control HUB Sensors
Other Remotely 

Accessible Equipment

Figure 1.2: A robot co-worker system

This type of system can be ideal for normally unmanned platforms. Examples of

fields developed with normally unmanned platforms are Arrol and Markham (The

Netherlands) and North Morecambe (East Irish Sea) (Centrica Energy, 2010). There

is also planned for a normally unmanned platform by Statoil at the Valemon field

in the North Sea. Such platforms can run for about 6 to 7 weeks between each visit

from maintenance personnel.

Fully unmanned platforms above sea-level are not yet a reality and are not con-

sidered realistic in the near future (unmanned subsea platforms do exist). Such

platforms would require systems for maintenance and would as such depend on au-

tomated handling of these tasks. A scenario can be remotely controlled industrial

robots changing parts that are built in a modular fashion. Since it can be almost un-

feasible to have surveillance in all areas of a rig, these robots could be mounted on

tracks performing regular inspections of equipment and structure. The robot would

in that scenario be equipped with necessary equipment for inspection purposes such

as camera and depth sensor.

1.4.2.1 Development Platforms

Development platforms are often low payload robots, and therefore fall outside the

category of heavy lifting. The work by (Plasch et al., 2012) and (Pichler et al., 2013)

11



Introduction

discuss heavy lift applications in a robot co-worker setting, but no real experiments

are conducted.

There is more research conducted on the smaller platforms with low payload

where many aspects have been taken into account. The research field of a robot

co-worker can be divided into many categories such as collision handling, human

robot interaction (HRI), physical human-robot interaction (pHRI), safe operations,

sensoring, smart task scheduling and fulfilment. (Haddadin et al., 2011) is an ex-

ample of work which addresses many of these challenges.

The typical co-worker research scenarios are bin-picking (Fuchs et al., 2010),

where the robot should fulfil the task of pick and place from an unstructured bin.

The worker should then be able to work side by side with the robot in a safe manner.

1.5 A short introduction to ABB industrial robots

ABB robots have been extensively used in the work described in this thesis. An

introduction to these robots, their functionality and selected robots that have been a

part of the experiments related to this thesis is presented.

Figure 1.3: ABB robots. From the left, low capacity IRB 1600, high capacity IRB
6600 and paint robot IRB 5500. (Photo courtesy of ABB)
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1.5.1 Interface

The main hardware interface to the robot is the teach pendant, a HID with a touch

screen typically used for jogging, path programming, program modification and

program execution control. For interfacing with the robot there are different soft-

ware approaches. First is the ABB Robot Studio which is a program for creating

a robot system using standard ABB robots. Trajectories can be created and sim-

ulated for further uploading to the robot via network or a more manual approach

such as USB transfer. The programs are programmed in the ABB propriety RAPID

programming language. The second approach is using the PC SDK (for Microsoft

Windows), which enables a developer to create programs for interacting and gath-

ering information from the robot controller. There are some restrictions on what the

SDK allows of program execution on the robot, except from starting and stopping

programs already present in the robot controller. This requires a work-around which

involves creating a RAPID program which checks for a change in the variables

(done from PC SDK), and then acts accordingly. Third there is the PC Interface

which allows socket communication with the controller. This type of communica-

tion does not limit the system which the external algorithm runs on. Socket com-

munication can in practice be performed between a microcontroller and the robot.

Devices running other operating systems than Microsoft Windows, such as Linux

or Mac OS X would then not have the possibility to benefit from the features in the

PC SDK, and are limited to communicate through e.g. a TCP/IP connection using

the PC Interface.

1.5.2 Coordinate Frames

The robot coordinate frames are used extensively when programming the robot.

The coordinate frames are related to each other (see arrows figure 1.4) and enable

programming of the robot in a more intuitive manner. For example if a tool is

replaced, it may be a millimetre longer than the previous, only the tool frame has to

be adjusted. For a system not benefiting from the tool frame, all the programmed

points would have to be modified such that new the tool would provide the same

result as the previous tool. Another scenario is a robot program that is made offline,
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e.g. using a simulated environment such as ABB RobotStudio. Simulations do not

usually correspond one-to-one with the real robot work cell and as such, the frame

which the path is programmed in will be adjusted to match the points to the work

cell. Last, if the robot should manipulate an object, this can then be programmed in

the object frame. Since there can exist multiple similar objects (see figure 1.4) the

programming of the manipulation will only be done once, but only the position of

the frame will change with regards to the user frame for the next object.

World Frame

Base Frame

User Frame

Object Frame

Object Frame

Wrist Frame

Tool Frame

Figure 1.4: Standard ABB Coordinate Frames. The red, green and blue axis corre-
spond to x-, y- and z-axis respectively. The black arrows show how each frame is
related to the other.

The coordinate frames are at the heart of robotics. Each link of a serial robot is

referenced to the previous with the aid of a transformation matrix, which describes

the frame to frame relationship:

T =

[
R d

0 0 0 1

]
(1.1)
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where R is a 3x3 rotation matrix and d is a 3x1 translation vector. The 4x4 matrix

T is called a homogeneous transformation.

The different frames are described by individual transformation matrices (T ),

where the frame for each link is a function of the current joint angles θθθ or joint

displacements for linear joints. This frame to frame relationship is described by the

robot forward kinematics, by relating the joint variable to the position of one frame

to another, e.g.

T EE
B = T (θθθ ,ddd) (1.2)

where T EE
B maps the base frame B to the end-effector frame EE. θθθ is the joint angle

vector.

Determining the orientation and position of one coordinate frame with regards

to another is key for describing concepts such as the pose of the end-effector with

respect to the robot base. Coordinate frames are among the most documented topics

in robotics, see for example (Spong et al., 2006), (Craig, 2005), (Siciliano & Khatib,

2008) and (Jazar, 2010).

1.6 Summary of papers

Paper A: Obstacle Detection in an Unstructured Industrial Robotic System:
Comparison of Hidden Markov Model and Expert System

Summary: The experimental setup consists of an industrial robot following a pre-

planned path. Both objects and obstacles can be placed inside the working area.

The difference between an object and an obstacle is that the object is allowed at

certain locations within the robot cell, everything else is regarded as obstacles. It

is expected that objects typically are to be manipulated or interacted with. At arbi-

trary, but predefined locations along the pre-programmed path, the environment is

scanned for obstacles. The 2D environment data of the robot cell is acquired by a

SICK laser scanner mounted on the first robot link. The paper compares the Hidden

Markov Model (HMM) approach with an Expert System (ES) for collision detec-

tion purposes. The HMM showed its strength by the ability to learn models of the
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environment. The ES showed a calculation advantage, but showed a time disadvan-

tage in the manual map creation.

Background and contribution: In a step towards dynamic collision detection the

paper investigates two different methods. The choice of environment observer is

important keeping in mind future implementation for real applications in an oil and

gas environment.

The paper has been pulished as:

Kaldestad, K. B., Hovland, G., and Anisi, D. A. Obstacle Detection in an Un-

structured Industrial Robotic System: Comparison of Hidden Markov Model

and Expert System. In 10th IFAC Intl. Symposiums on Robot Control. Dubrovnik,

Croatia, 2012a.

Paper B: CAD-Based Training of an Expert System and a Hidden Markov
Model for Obstacle Detection in an Industrial Robot Environment

Summary: The paper presents two methods for real-time obstacle detection using

a laser scanner and is an extension to paper A. The first method is an ES which

uses the sensor data and compares it with a map of the environment. In addition

the ES algorithm implements object edge filtering to remove false readings by the

laser when the reading is near the edge of an object. The second algorithm comes

in two versions, the first part generates the HMM λ = (A,B,π) based on discrete

positions, similar to the work in (Kaldestad et al., 2012). The sensor reading (O)

in the current position is then scored against λ to find the best state sequence. The

other advantage of the HMM method is that it can be directly trained from the map.

Depending on the model, λ , the training can be quite time consuming, but training

based on a map will allow for offline training which can be calculated when com-

puting resources are available.

Background and contribution: The work conducted in paper A is extended in

this paper in two ways. First a dynamic environment which should account for

e.g. structural movement or humans is introduced. Also CAD-based training of the
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HMMs which enables the system to do real-time obstacle detection is introduced.

The paper has been pulished as:

Kaldestad, K. B., Hovland, G., and Anisi, D. A. CAD-Based Training of an

Expert System and a Hidden Markov Model for Obstacle Detection in an

Industrial Robot Environment. In IFAC Intl. Conf. on Automatic Control in

Offshore Oil and Gas Production. Trondheim, Norway, 2012.

Paper C: 3D Sensor-Based Obstacle Detection Comparing Octrees and Point
Clouds Using CUDA

Summary: An industrial robot equipped with a Microsoft Kinect sensor on the

fourth link serves as the environment observer for collision detection purposes. The

Kinect sensor provides a point cloud of the environment and the robot is repre-

sented by points from a modified CAD model. By using the forward kinematics of

the robot, the two point clouds are transformed to the same coordinate system. The

distance from each point on the robot can now be determined for each point in the

environment. Two methods are used for the representation of the points, an uncom-

pressed point cloud and an octree representation. The paper shows that for larger

amounts of parallel calculations, the GPU outperformed the CPU. By compressing

the data using an octree representation, the speed of the GPU calculations increased

until a certain limit. At this limit the resolution was drastically decreased and the

CPU outperformed the GPU due to a small number of parallel calculations.

Background and contribution: Large amounts of data often allow for more de-

tail, but on the other hand they require more processing. The Microsoft Kinect

with libraries can provide at most 640x480 data points of the surroundings, each

point represented by e.g. [X,Y,Z] in world coordinates of the environment. Large

amounts of data which can be treated in parallel on the GPU can outperform the

CPU in certain applications dependent on memory management and program flow.

The paper demonstrated the potential for using CUDA in an industrial robot setting

for treatment of sensor data.

17



Introduction

The paper has been pulished as:

Kaldestad, K. B., Hovland, G., and Anisi, D. A. 3 D Sensor-Based Obstacle

Detection Comparing Octrees and Point clouds Using CUDA. In Modeling,

Identification and Control. 33.4 (2012c): 123-130.

Paper D: Collision Avoidance with Potential Fields Based on Parallel Process-
ing of 3D-Point Cloud Data on the GPU

Summary: The work presents a solution for real-time collision avoidance using

the potential field method with GPU calculations. The sensor used in this paper is a

Microsoft Kinect which observes the robot and the environment that it operates in.

The robot is filtered out of the observed environment such that it is not treated as an

obstacle. Further, a model of each link of the robot is transformed to the coordinate

system of the filtered environment. Then, for each point in parallel, the repulsive

forces generated by the environment are calculated for each link. These forces are

then sent to the robot controller and produces reactive movement by the robot tool

centre point (TCP). In addition, forces were projected onto the 7-Degree of Free-

dom (DoF) robot elbow allowing for collision avoiding null-space movement.

Background and contribution: Collision avoidance has high computational re-

quirements for complex models of the observed environment. It is therefore com-

mon to simplify both the obstacle and the avoiding object, e.g. reduce the robot to a

stick model, and only use a few selected points of the environment. To the authors’

knowledge this is the first time that collision avoidance is demonstrated in real-time

on a real robot using parallel GPU processing.

The paper has been accepted as:

Kaldestad, K. B., Haddadin, S., Belder, R., Hovland, G., and Anisi, D. A.

Collision Avoidance with Potential Fields Based on Parallel Processing of 3D-

Point Cloud Data on the GPU. In IEEE International Conference on Robotics

and Automation, Hong Kong, China, 2014.
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Paper E: Implementation of a Real-Time Collision Avoidance Method on a
Standard Industrial Robot Controller

Summary: The paper presents a collision avoidance solution for an industrial robot

using a standard robot controller. The collision avoidance algorithms are executed

on a separate computer equipped with a NVIDIA GPU and the environment data

is provided by a Microsoft Kinect. The separate computer communicates with the

robot controller over a TCP/IP connection, providing the robot with virtual link

forces. The algorithms for the robot controller are made for easy implementation

of collision avoidance, in fact only the function name has to be changed in order to

enable this ability. The algorithms and the system functionality were demonstrated

by experiments on an industrial robot.

Unpublished work related to this paper is attached as an appendix. The work in-

cludes an outdoor test and expands on the algorithms related to the implementation

of collision avoidance on industrial robots.

Background and contribution: The industry requires solutions that are cost effec-

tive and fast to implement. The paper is an extension to paper D and contributes with

an additional solution for collision avoidance which can be implemented quickly by

an end user without the need for a special robot controller. It demonstrates how the

standard framework for the ABB robot can be utilised with minor modifications to

program code to achieve collision avoidance. The ease of implementation is a mo-

tivating factor for companies investing in new equipment.

The paper has been submitted as:

Kaldestad, K. B., Hovland, G., and Anisi, D. A. Collision Avoidance with

Potential Fields Based on Parallel Processing of 3D-Point Cloud Data on the

GPU. In 2014 IEEE/RSJ International Conference on Intelligent Robots and

Systems Chicago, USA, 2014.
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1.7 Contributions

The work presented in this thesis has an industrial focus. The goal of the work has

been to develop and implement methods, algorithms, software and hardware which

could potentially be used in industrial practice in the not too distant future. The

main contributions are summarised below:

• The thesis contains a comparison of an expert system and a hidden markov

model for collision detection in an industrial robot system. Such a comparison

has not been previously performed.

• The thesis contains a contribution on CAD-based training of a Hidden Markov

Model for collision detection in an industrial robot system.

• Another contribution is the comparison of computational performance of two

additional methods: octrees and point clouds on a GPU for collision detec-

tion.

• Real-time collision avoidance using GPU processing is presented for the first

time on an industrial robot on a development control platform.

• Real-time collision avoidance using GPU processing is presented for the first

time on a standard industrial robot and controller.

• A solution for easy integration of collision avoidance using a standard indus-

trial robot programming language. The presented algorithms and the required

hardware are both quick to implement and set up for an end-user.
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Chapter 2
Research Methodology

This chapter gives an introduction to some of the concepts used in robotics as well as

some specifics to the ABB industrial robots. Topics which are considered common

knowledge in robotics are covered in less detail in this chapter and a referenced

instead.

2.1 Expert System

The expert system (ES) is a concept which tries to simulate the expert knowledge

such as judgement and behaviour of an operator. Because expert knowledge is

required, the literature may contain little or no information on the problem at hand.

A scenario for an expert system is the situation where something is about to have an

undesirable outcome such as a robot which is about to collide. A typical operator

reaction would be to stop the operation by e.g. a push on the emergency stop button.

In a similar scenario for an ES algorithm, the input will be some information about

the environment. An algorithm will then validate the data and make a decision

which can be based on an undesirable change to the environment. Such change can

result from a variation in the data exceeding a threshold or a geometrical comparison

by using a model of the environment. Different output scenarios are available based

on the complexity of the algorithm e.g. different severity levels. If an operator is

part of the loop, the algorithm can present a warning based on some criteria, or if

the situation is critical, the algorithm can directly halt the system. See for example
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(Jackson, 1990) for more information on ES.

2.2 Markov Models

Markov models are named after the Russian mathematician Andrey Markov. He

introduced what is known today as the Markov property which describes a memo-

ryless stochastic process, only dependent on the current state.

2.2.1 Markov Chain

The Markov chain is a type of Markov model that undergoes state transitions. Tran-

sition to the next state is only dependent on the current state, because it is assumed

to possess the Markov property.

The following example is given for clarification purposes. Equation (2.1) shows

a Markov chain with three weather states and their state transition probabilities. As

seen in the figure, if it is a sunny day it is 31% probability that the next day will be

sunny and 54% for cloudy and 15% for a rainy next day. The full transition matrix

is written as,

A =


Rainy Cloudy Sunny

Rainy 0.2805 0.5610 0.1585

Cloudy 0.2170 0.5566 0.2264

Sunny 0.1461 0.5393 0.3146

 (2.1)

where this example contains N = 3 distinctive states. The state transition matrix A

can be used to find the steady state probabilities,

lim
n→∞

An =


Rainy Cloudy Sunny

Rainy 0.2141 0.5535 0.2324

Cloudy 0.2141 0.5535 0.2324

Sunny 0.2141 0.5535 0.2324

 (2.2)

which describes the distribution of the weather in the long run. In this example, the

probability for one of the three weather types at any given day will be 55.5% for
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cloudy, 23% for sunny and 21.5% chance for rainy.

A more useful result can be obtained by considering the initial state. The state vector

would provide information about the weather the current day. The probability for a

particular weather in three days if it is cloudy today would be given by,

x Adays =
[
1 0 0

]
0.2155 0.5538 0.2308

0.2142 0.5535 0.2323

0.2126 0.5533 0.2341


3

=
[
0.2155 0.5538 0.2308

]
(2.3)

where x is the state vector. The result shows that it is over 55% chance that the

weather will be cloudy in three days.

XT−1X0
A

X1
A

X2
A

. . .
A

O O O O O

Figure 2.1: Markov Chain.

Figure 2.1 shows how the state is changing by applying the state transition ma-

trix A. It can also be seen that the states, Xt , are directly observable (O). (Ching &

Ng, 2006) can provide more information on the subject.

2.2.2 Hidden Markov Models

The Hidden Markov Models (HMMs) introduce a new layer to the Markov chain.

As can be seen in figure 2.2, the states xt are not directly observable anymore,

therefore the name hidden. The observer can now only observe a symbol vk, which

is related to the state qtat time t by a observation symbol probability matrix B. To

calculate the probability of a state or a state sequence, the A and B matrices must

be known. Additionally, the initial state distribution vector π must also be known

in order to determine the initial state.

One of the practical applications for HMMs is speech recognition. In speech,

each particular word can be divided into different combination of letters or more

precise states Xt . For the word potato, the states could be [”po”, ”ta”, ”to”] or e.g.

23



Research Methodology

qTq1
A

q2
A

q3
A

. . .
A

v1 v2 v3 vT

O1 O2 O3 Ot OT

. . .

Not
Observable

Observable

B B B B B

π

Figure 2.2: Hidden Markov Model, where A, B and π represents the parameters for
one particular model λ .

[”po”, ”tai”, ”to”]. Depending on the pronunciation of the word, the observation

sequence of the same word can be different. The actual observation O is a part of

a sound signal, such as a feature vector, and B would then be the matrix giving the

probability of observing this symbol in a given state. The observation vector OOO and

the state vector SSS are denoted as,

OOO = O1,O2,O3...OT , SSS = x1,x2,x3...xN

where t ∈ {1,2, · · · ,T} and T is the number of observation time steps. N is the

number of states in the HMM. The definition of the state transition matrix is,

A = ai j = P(qt+1 = x j|qt = xi),

where qt is the probability for being in a particular state S at time t where
N
∑
j=1

ai j = 1. The emission matrix B which relates an observation vk to all the states

S is given by,

b j(k) = P(vk = Ot |qt = x j), (2.4)
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where vk is a particular observation O at time t. Expanding on the weather exam-

ple in the previous section, the different observations vk can be done by observing a

barometer. In this particular case an observation vk will be the air pressure or rather

a range of air pressures,

B =


p1: p < 1000 p2: 1000 ≥ p < 1010 p3: 1010≥ p <1020 p4: p≥1020

Rainy 0.6585 0.3171 0.0244 0

Cloudy 0.4340 0.3868 0.1651 0.0142

Sunny 0.2889 0.5000 0.1667 0.0444


(2.5)

Given that the state qt = Cloudy and the observation vk = p < 1000, this yields

qt = 2 and vk = 1 which gives the probability for the observation symbol b21 = 0.434

on a cloudy day.

Finally, the initial state matrix π is given by

N

∑
i=1

πi = 1,

where πi is the probability of initially being in state x j at time 0. In this example

π is given by,

π =
[ Rainy Cloudy Sunny

0.2135 0.5521 0.2344
]

(2.6)

All the parameters in the HMM are introduced (see figure 2.2), but three main

problems still remain to be examined.

2.2.2.1 Three HMM problems

First, calculate P(O|λ )
The model λ =(A,B,π) is known, calculate the probability of the observation

sequence OOO = O1,O2, ...,OT .

For example what is the probability of observing the air pressures OOO = [vk] =
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x3=sunny

x1 = rainy x2 = cloudy

a31

a13

a12

a21

a32

a23

b1(O1)

b1(O2)

b1(O3)

b1(O4)

b2(O1)

b2(O2)

b2(O3)

b2(O4)

b3(O1)

b3(O2)

b3(O3)

b3(O4)

Figure 2.3: HMM transformation and emission.

[p1, p3, p3, p2]

Second, find the state sequence corresponding to the observations
The model λ and the observations are known. How can the hidden state

sequence Q = q1,q2, ...,qT be determined or ”uncovered”?

For example given OOO = [p1, p3, p3, p2] and λ , what are the most probable

weather conditions.

Third, maximise the λ = (A,B,π)

How to build the model λ = (A,B,π) and maximise P(O|λ ) given the data of

the states and the corresponding observations?

For example how to create (A,B,π) from a dataset?

These three sub problems will be considered in the following separate sections.

2.2.2.2 Calculate P(O|λ )

The probability of the observation sequence given a HMM model λ = (A,B,π) is,

P(O|λ ) = ∑
∀Q

P(O|Q,λ )P(Q|λ )
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=
N

∑
i=1

αT (i), (2.7)

where and αt(i), t ∈ {1, · · · ,T} is called the forward probability variable. The for-

ward variable αt(i) is the probability of the partial observation sequence until time

t.

Initialization:

α1(i) = πibi(O1) 1≤ i≤ N

c(1) =
N

∑
i=1

α1(i) 1≤ i≤ N

α̂1(i) = α1(i)/c(1) 1≤ i≤ N

where c(t) is a scaling factor preventing the dynamic range of αt(i) to exceed the

computer’s floating point precision.

Induction:

x̂1

t t +1

α1t(1)

x̂2

α2t(2)

x̂3

α3t(3)

x̂N

α4t(4)

x̂1

α1(t +1)

x̂2

α2(t +1)

x̂3

α3(t +1)

x̂4

α4(t +1)

a
1 3 b

i (O
t )

a2 3bi (Ot )

a3 3bi(Ot)

a4 3b i(O
t)

Figure 2.4: A trellis graph showing the computation of αt(i).
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αt(i) =
[ N

∑
j=1

α̂t−1( j)a ji

]
bi(Ot) 1≤ j ≤ N

2≤ t ≤ T

which can be written in the intuitively vectorised form,

ααα t = (ααα t−1AAA)�bbb(Ot)
T 2≤ t ≤ T

where � is the element-wise product. Figure 2.4 shows the induction step of the

algorithm.

c(t) =
N

∑
i=1

αt(i) 2≤ t ≤ T

α̂t(i) = αt(i)/c(t) 1≤ i≤ N

2≤ t ≤ T

Termination:

P(O|λ ) =
N

∑
j=1

α̂T ( j)

2.2.2.3 Decode, find the state sequence corresponding to the observations

The state sequence corresponding to the observations can be defined by,

δt(i) = max P(q1q2 · · ·qt = xi,O1,O2 · · ·Ot |λ )

which will give the probability of the most probable path given the observation

sequence. This algorithm is known as the Viterbi algorithm and is as follows:
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Initialization:

δ1(i) = πibi 1≤ i≤ N

ψ1(i) = 0 1≤ i≤ N

Recursion:

δt( j) = max
1≤i≤N

[δt−1(i)ai j]b j(Ot) 2≤ j ≤ N

ψt( j) = arg max
1≤i≤N

[δt−1(i)ai j] 2≤ j ≤ N

The recursion algorithm is similar to the calculation of α , but the calculation of

δt( j) is only concerned with which of the N state transitions i that gives the highest

probability for the next state j. The variable ψt( j) stores the index corresponding

to the value i which maximised δt( j).

Termination:

P∗ = max
1≤i≤N

[δT (i)]

q∗T = arg max
1≤i≤N

[δT (i)]

P∗ is the probability of the most probable state sequence and q∗T is the index i in

δT (i) which contains the value P∗.

Optimal state sequence backtracking:

q∗t = ψt−1(q∗t+1) 1≤ t ≤ T −1

When the probability of the most probable state sequence is determined at time T , it

is possible to find the sequence of states that created this result. Since all the indices
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(which correspond to the state transitions) that are leading to the maximum value

of δt( j) are stored in ψt−1( j), it is possible to go backwards from the known index

q∗T . q∗t is the set of states which will result in the probability P∗ given the model λ .

2.2.2.4 Generate the model λ = (A,B,π)

The model λ = (A,B,π) can be generated from both supervised and unsupervised

learning. For supervised learning the states and the observations with regards to

time must be present in the data. For the unsupervised learning it is sufficient that

the data only contain the observations, but a re-estimation algorithm such as the

Baum-Welch algorithm is needed to find a solution for the model. The following

sections present supervised model generation.

Supervised learning:

ai j =
count(ti, tj)
count(ti)

(2.8)

where count(ti, tj) is the number of times the data contains a transition from state i

to j.

bi(k) =
count(vk, tj)

count(ti)
(2.9)

where count(vk, tj) is the number of times the data contains the observation vk

when making the transition to state j. Counting the number of times each observa-

tion in the data appear at time t1 and calculate the initial distribution πi.

πi =
count(q1 = ti)

count(q1)
(2.10)
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Unsupervised learning
Since it is not possible in unsupervised learning to count transitions and the num-

ber of times in a state given the observation another definition for the variables

ai j, bi(k), πi is needed. The Baum-Welch algorithm, presented in (Rabiner, 1989),

is an expectation maximisation algorithm for re-estimating the model λ .

Baum-Welch Algorithm

The backward variable β is similar to the forward variable α , but it stores the prob-

ability from time T calculated backwards. βt(i) is the probability of the partial

observation sequence from t +1 to time T .

Initialization:

βT (i) = 1 1≤ i≤ N

β̂T (i) = 1 1≤ i≤ N

Induction:

For time t = T −1,T −2, · · · ,1

βt(i) =
N

∑
j=1

ai jβ̂t+1( j)b j(Ot+1) 1≤ i≤ N

β̂t(i) = βt(i)/c(t +1) 1≤ i≤ N

(2.11)

For the purpose of re-estimation, two new variables are introduced, γt(i) and

ξt(i, j) which are both described below. Given an observation sequence, γt(i) is the

probability of being in state i at time t where,

γt(i) = α̂t(i)β̂t(i) 1≤ i≤ N

1≤ t ≤ T

31



Research Methodology

(2.12)

The second variable required for re-estimation is ξt(i, j). It is defined as the proba-

bility of being in state i at time t and making a transition to state j at time t +1:

ξt(i, j) =
α̂t(i)ai jb j(Ot+1)β̂t+1( j)

c(t +1)
1≤ i≤ N

1≤ j ≤ N

1≤ t ≤ T

Finally a re-estimation method of the model λ can be introduced.

Re-estimation of state prior density:

π̄i = γ1(i) 1≤ i≤ N

āi j =

T−1
∑

t=1
ξt(i, j)

T−1
∑

t=1
γt(i)

1≤ i≤ N

1≤ j ≤ N

b̄i j =

T
∑

t=1
fOt γt(i)

T
∑

t=1
γt(i)

(2.13)

where fOt is defined as,

fOt =

{
1, if Ot = vk

0, otherwise
(2.14)

For further knowledge on HMMs, the following references are recommended

(Rabiner, 1989), (Fink, 2008) and (Yang, 2010)
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2.3 Octrees

An octree is a type of data suitable for representing 3D environment which, if vi-

sually interpreted, is structured into a set of nested cubes. As can be seen from

figure 2.5, representation of the two voxels 5.4 and 5.6 does not require the creation

of more nodes than needed. In this context, the voxels are the nodes at the low-

est level of the octree. The octree will be designed with as many levels as needed

to achieve the desired resolution and is then well suited for representing 3D data.

What distinguishes the octree from an unstructured list of points, is exactly that it

is structured by nature. This is very efficient when checking whether a volume is

occupied, e.g., node 7.1 which is not present in figure 2.5. This would be done by

checking node 7 for children, and if it has children, check if child 1 exists. This

would amount to only to checks being performed for the octree even though it can

contain a large number of children. Generally the octree algorithm is expected to

have a complexity of O( log N ).

5
74

0

1
Y

Z

6

Layer 1Root node

nl

Layer 2

3
5.4

5.6

X

Figure 2.5: Octree.
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2.3.1 Construction and Searching

The octree is created by first determining the resolution of the voxels and the min-

imum side length for the volume which is considered. For example the task is to

store data from a sensor with a given volume of side lengths in mm,

V = [10000,20000,8000]. The resolution of the smallest child or voxel is 20 mm.

Since the cube must be defined by its longest side, the minimum number of levels

lvs which satisfies the resolution and the minimum side length sl is given by,

lvs =

⌈
log

vr

maxV
log 1

2

⌉
(2.15)

sl =
vr

(1
2)

lvs
(2.16)

where vr is the minimum required voxel resolution. In this example the octree will

have 10 levels and side length of the root node will be 20480 mm.

When assigning data such as p = [x,y,z] to one of the voxels, the first part of the

recursive algorithm is given by,

node(ppp) = lt(x,ncx) + 2 · lt(y,ncy) + 4 · lt(z,ncz) (2.17)

where each node centre nc = [ncx,ncy,ncz] is in coordinates with respect to the base

coordinate system and lt(x,y) is given by

lt(x,y) =

{
0 if x < y

1 if x≥ y
(2.18)

The algorithm will run node(ppp) as long as the node length nl > vr, creating a

child node for each respective parent.

The search for the presence of a voxel at a certain coordinate can be done with

the same recursive approach as for insertion. The main difference is of course to

only check if there exists a child node using node(ppp) until the voxel level is reached.

There is also the case where the child nodes and the final voxel are never created. In
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this case the search will end earlier and the potentially non performed checks have

led to faster algorithm execution. (Meagher, 1982) can provide further information

on octrees.

2.4 Artificial Potential Fields

The main idea behind the potential field is to describe the energy as a set of attractive

and repulsive fields. By following the gradient of a potential field, the object should

find a path to the goal without colliding with any obstacles.

The potential field U(x) can be defined as the set of attractive and repulsive

fields,

U(x) =Uatt(x)+Urep(x) (2.19)

where x ∈ R3 is the current position of the object and U(x) is the resultant poten-

tial. Depending on the application, the attractive potential can be described by a

quadratic and a conical function,

Uatt(x) =

{
1
2γd2, if d ≤ τgoal

γτgoald− 1
2(τgoal)

2, if d > τgoal
(2.20)

where d = d(x,xgoal) is the distance between x and goal position, γ is the attrac-

tion gain and τgoal is used as a threshold because of the discontinuity of the conical

function at zero. The idea is that the object should follow the negative gradient of

Uatt(x), as shown in the upper left of figure 2.6 to reach the target. For this case,

the decline in energy is constant until the value τgoal at |2| has been reached. If the

distance between the object and the goal is less than τgoal , the decline in energy is

exponential until the object reaches the goal and the energy is zero.

∇Uatt(x) =

{
γ(x− xgoal), if d ≤ τgoal

γ
x−xgoal

d(x,xgoal)
τgoal, if d > τgoal

(2.21)

The repulsive field is defined such that the field does not affect the object when it
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Figure 2.6: The potential field function Uatt and Urep with values xgoal = 0,
x ∈ [−10,10], γ = 1, κ = 1, τgoal,τobs = 2

is further away than a distance τobs, as opposed to the attractive field which acts on

the object regardless of the distance from the goal. The repulsive potential field is

defined as,

Urep(x) =

{
1
2κ( 1

D(x) −
1

τobs
), if D≤ τobs

0, if D > τobs
(2.22)

where D is the distance from the object to the obstacle and κ is the repulsive

gain. Finally the rate of change in the repulsive energy is given by,

∇Urep(x) =

{
κ( 1

τobs
− 1

D(x))
1

D2(q)∇D(q), if D≤ τobs

0, if D > τobs
(2.23)
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Figure 2.7: Magnitude of the potential generated by the blue plane (obstacle) and
the lower right point on the robot tool.

For the case of the robot, which in this particular experiment is represented by a

number of points as in figure 2.7, each of the points will act like an object. Each of

these objects will be affected by the potential field, and they will all have their own

position x relating them to the obstacle. The obstacles can also be a set of points

such as data from point clouds. Figure 2.7 is an example of a case where only

one object, the black point at the tool tip, is depicted with its repulsive potential

field. The obstacle, the bottom plate, is represented by N points which result in the

repulsive field Urep(xi) which is calculated for i ∈ [1,2 · · ·N],

UUU rep(xxx) =
N

∑
i=1

UUU rep(xxxiii) (2.24)

In the case where the whole link of M points is considered, the repulsive field
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can be described by

UUU rep(xxx) =
M

∑
m=1

N

∑
i=1

UUU rep(xxxm,τττm,obs) (2.25)

In the case of robotics it is sometimes more preferable to use forces to control

the robot movement, and for such cases the artificial potential field can be used.

Forces are generated based on the potential field and can be defined as,

Fart(x) = Fatt(x)+Frep(x) (2.26)

where

Fatt(x) =−∇Uatt(x) (2.27)

Frep(x) =−∇Urep(x) (2.28)

The work described in this thesis is based on the artificial potential fields al-

gorithms described above. (Siegwart et al., 2011) and (Khatib, 1986) are relevant

sources for additional information on the topic.

2.5 Parallel Computing

Parallel computing has received increased interest during the last years. One of

the reasons for the increased interest is that the CPU frequency hit the roof with

regards to frequency divided by power (Ross, 2008). A way to handle this problem

is to increase the efficiency of the CPU, by lowering the size of the transistors and

therefore decreasing the heat loss. This problem is not easy to solve when the size

of the transistors is approaching the size of atoms. A trend has therefore been to

increase the number of cores in the processor. Ideally, each core acts as a separate

processor, and as such the frequency per unit power increases.

There is of course a challenge with having two processors (or cores). If the

processor has two cores running at 3GHz, this does not automatically mean that

the processor in theory runs at 6GHz and twice the amount of work will get done.

Actually, to be able to utilise the resources of the CPU fully, the application must
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Figure 2.8: Computers facilitating massive parallel computing at Amazon’s web
services data centre. (Photo courtesy of The New York Times)

be written to utilize resources in parallel. Typically, highly parallel applications are

not to a wide extent part of an end users platform, but are found on servers getting

multiple requests from different end users or other clients.

Availability of parallel computer power changed with cloud computing, allow-

ing individuals to instantiate numerous virtual machines in matter of minutes, con-

nect them in a virtual network and start processes. A few of the known service

providers are Amazon Web Services (figure 2.8), Rack Space and Windows Azure.

Cloud robotics Hu et al. (2012) is a concept where robots can utilise cloud re-

sources and services through an internet connection. The robot can benefit from the

cloud by redirecting calculations commonly performed by an on-board processor to

remote servers. For example by uploading an image of an object that is unknown

to the robot. The servers can then run the necessary image recognition algorithms

while accessing databases containing relevant information. If the object is recog-

nised, object attributes and other relevant information can be sent back to the robot.

One of the advantages with cloud robotics is that computationally intensive tasks

can be offloaded to external servers and therefore save time. Another advantage is

that lower on-board CPU utilisation can extend the time between battery charges.

Cloud resources and services are well suited for solving many research prob-
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lems, but they are not well suited for real-time applications.

For real-time applications, it is common to structure the program and simplify

the problem sufficiently such that it is possible to perform the calculations on the

CPU in the given time frame. The time frame is dependent on each particular ap-

plication but can be restricted by external components such as sensor update rates.

A typical application has a serial structure, but usually parts of it can be paral-

lelised. The typical speedup of an application is given by Amdahl’s law (Amdahl,

1967),

T (n) = t0(B+
1
n
(1−B)) (2.29)

where T(n) is the calculation time, t0 is the original calculation time with only one

core, B ∈ [0,1] is the serial fraction of the application and n is the number of cores.

All common software applications have a serial fraction which cannot be optimized.
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Figure 2.9: Speedup using parallel computing, where each line denotes the parallel
fraction of the application.

The smaller the serial fraction of the program is, the larger is the potential for in-

creased execution time. If the serial fraction of the program accounts for 10% of the
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calculation time, the remaining 90% can be improved. As the number of cores ap-

proaches infinity (n→ ∞) the only remaining fraction is the serial calculation time.

This example would lead to a maximum of 10 times increase in execution time if

the core count approaches infinity. As shown in figure 2.9, the speed increase a pro-

gram can achieve is limited to the execution time of the strictly serial fraction of the

program. Parallel processing is not limited to the CPU and can be executed on other

hardware, such as the graphics card, or more specifically the graphics processing

unit (GPU).

2.5.1 GPU

As an alternative to serial processing on the CPU, or low core count parallel pro-

cessing on the CPU, the gaming or professional versions of multicore graphic cards

have found their place. Initially, the GPU was only for processing graphics, and

was not easily accessible to developers who wanted to perform GPU computing.

In 2006, NVIDIA released the first graphics card built on the Compute Unified De-

vice Architecture (CUDA) (Sanders & Kandrot, 2010), which enabled developers to

target an architecture with components specifically designed for GPU calculations.

CUDA provides a set of drivers and libraries for transferring data to the graph-

ics card to enable calculations on thousands of cores in parallel. The technology

can be used to handle some of the challenges that constitute the parts of a collision

detection or collision avoidance algorithm. In contrast to the CPU, the graphics

processing unit (GPU) cannot run separate functions on all its cores, it has to be

the same function running on all the cores simultaneously. However, it is possible

in some versions of the architectures to have some core clusters to run independent

functions, or more precisely called kernels, of each other, but the essence is that the

problem must be calculated in a highly parallel fashion to get a good overall algo-

rithmic speed increase. Problems well suited for parallel processing are the typical

scenario where points from sensor data can be examined individually. For the more

specific problem of collision detection or collision avoidance, each point generated

from the sensor data can be examined individually based on a set of criteria. These

criteria will be part of a function which will run on all the cores in parallel. Even

though fast execution time can be achieved, it will still rely on data from sensors in
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real applications.

The programming of the GPU can be done in the supported programming lan-

guages CUDA C/C++ or FORTRAN.

2.5.2 Kernels

In the CUDA programming language, a kernel is similar to what usually is called a

function in regular programming. The main difference is in how they are called and

executed, and where the developer must put in more effort.

On the GPU there are streaming multiprocessors (SMs) which handle arith-

metic, special function units, scheduling of wraps (32 threads) and shared memory

among the threads.

Wrap (32 threads)Wrap (32 threads)

Streaming Multiprosessor (SM)

192 Cores

Figure 2.10: Each thread contains a set of instructions which are processed by the
cores in the SM. The Kepler architecture contains 192 cores per SM, and specifically
the NVIDIA TITAN contains 14 SMs.

A kernel is launched with parameters such as number of blocks and threads per

block and the product of these two determine the number of kernel launches. A

typical kernel call in C++ is given below:

MultiplyNumbers <<< numBlocks, threadsPerBlock >>> (Ain,Bin,Cout);

From this kernel it is clear that there are only two input parameters (Ain and Bin)

and one output parameter (Cout). The parameters will typically be pointers to ar-
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rays, such that each kernel will work on a data pair. The actual kernel can be defined

as,

global voidMultiplyNumbers(float∗Ain,float∗Bin,float∗Cout) (2.30)

{

int idx = blockIdx.x∗blockDim.x+ threadIdx.x;

C[idx] = A[idx] ∗ B[idx];

}

The kernel runs numBlocks · threadsPerBlock = idxmax number of times, but it

is not possible to describe the length of all arrays by this product. If idxmax is larger

than the length of the array, it will result in an out of bounds memory access. To

prevent this, an if statement can be used to prevent read and write if idx > n array

elements. Another way to circumvent the problem is to omit the ”if statement” and

rather increase the array to the size of idxmax. One might ask, will this result in extra

calculations and extra calculation time? Because all the cores which are designated

by the SM have to run the exact same kernel, it does not matter if they take a break

or not as long as one of the cores will finish at a later time, they will have to wait.

Figure 2.11 gives a visual example on how the threads are related to the blocks.

gridDim.x
gridDim.z

gridDim.y

blockDim.z

blockDim.y

Block (blockIdx.[x,y,z]) Thread (threadIdx.[x,y,z])

blockDim.x

Figure 2.11: A grid of blocks (left) and a block of threads (right).
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2.5.3 Memory management

The GPU can be used for parallel calculations to increase the speed of the applica-

tion according to Amdahl’s law, but it is important to take all the serial parts into

account. When considering computation time reduction in parallel computing, it

is very important to take the transfer time of the data to the GPU memory into ac-

count. This transfer time can in some cases account for a significant portion of the

program execution time, and can in some cases be larger than the actual calculation

(Gregg & Hazelwood, 2011). If it is possible to use a data block of known size, use

of pinned memory reserves the block and increases the transfer speed. Depending

on the hardware, the transfer rates can be several Giga Bytes per second (GB/s).

For developers of regular computer programs in C or C++, allocation and de-

allocation of memory is one of the most common tasks that must be handled. Faulty

memory management is maybe one of the most common reasons for bugs, and can

sometimes be hard to track down. But even in a multi-threaded CPU application, the

complexity of memory management does not increase significantly. All the memory

is still accessed in a similar fashion, but it is important to avoid race conditions

such as multiple writes or write/reads at the same location. The GPU memory is

structured in a different manner than the CPU memory. The three main categories

are structured as following, where each type is faster than the previous:

1. Global memory is available to:

(a) All streaming processors

(b) All threads

2. Shared memory available to:

(a) All threads in a block

3. Local memory available to:

(a) An individual thread

Each new CUDA architecture introduces additional functionality and changes

in hardware. Because the hardware more or less dictates how the developer should

44



Research Methodology

structure the program to utilise the GPU to maximise for speed, it is important to be

familiar with the architecture that is targeted. Key references on this topic are (Wilt,

2013) and (NVIDIA, 2013)

2.6 Sensor Calibration

This section describes the process used for calibrating the position and orientation

of the Kinect sensor with regards to the robot base. Recalling section 1.5.2, this is

equivalent of finding the transformation from the robot base frame to the camera

frame.

(a) (b)

Figure 2.12: (a) Snapshot from the GUI where the calibration plate is fixed on the
robot wrist. (b) The Kinect sensor mounted inside an ATEX certified casing.

A calibration plate containing two circles is mounted onto the wrist. The two

circles are parallel to the wrist plane and the left circle in figure 2.12 is centred in

the wrist. By utilising classes in the Microsoft Kinect SDK, position of each point

in the depth data can be obtained in world coordinates with regards to the optical

sensor frame. The accuracy of the obtained Kinect sensor data varies but has a mean

accuracy close to 0 mm for all three axes (Khoshelham & Elberink, 2012) thus, by

acquiring more than one point to describe the centre of tool is expected to give a

mean accuracy approaching 0 mm. By calculating the centre point on the plane, it
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is possible to find a transformation matrix from the Kinect sensors’ optical frame to

the calibration plate left centre, and from there to the robot wrist. The points on the

circles are assigned manually by the use of a graphical user interface. The manual

assignment of points should be possible to fully automate, but this has at the time

of writing not been implemented. The following algorithm generates a set of centre

points ppp(i)c based on unique sets of points (pppu, pppv, pppw) located at the circle of the

calibration plate.

ppp(i)c = fc(pppu, pppv, pppw) ∀u ∈ {1,2, ...,N−2},

∀v ∈ {v,v+1, ...,N−1},

∀w ∈ {w,w+1, ...,N}

where fc(pppu, pppv, pppw) = pppc is a function which calculates the centre point by using

Barycentric coordinates from cross- and dot-products and is calculated as follows,

pc = α pppuuu +β pppvvv + γ pppwww (2.31)

where r is the circle radius. Calculation of α , β and γ is as follows,

α =
|pppvvv− pppwww|2(pppuuu− pppvvv) · (pppuuu− pppwww)

2|(pppuuu− pppvvv)× (pppvvv− pppwww)|2
(2.32)

β =
|pppuuu− pppwww|2(pppvvv− pppuuu) · (pppvvv− pppwww)

2|(pppuuu− pppvvv)× (pppvvv− pppwww)|2
(2.33)

γ =
|pppuuu− pppvvv|2(pppwww− pppuuu) · (pppwww− pppvvv)

2|(pppuuu− pppvvv)× (pppvvv− pppwww)|2
(2.34)

pppcm =
1
M

M

∑
i=1

ppp(i)c ∀i ∈ {1,2, ...,M},

(2.35)

where pppcm is the mean centre point and M is the number of centre points in ppp(i)c .
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A unit vector representing the x-axis is calculated from the left centre point to

the right centre point on the calibration plate. The z-axis is the plane normal vector,

and the y-axis is the cross product between the x-axis and the z-axis. By using

the centre point of the left circle pppcm and the calculated axis, all parameters are

available for the frame describing the calibration plate with regards to the Kinect

sensor. Then, by using the kinematics of the robot, a transformation from the end

effector to the robot base can be performed. Since the position of the robot base

with regards to the Kinect sensor is known, the position of the robot links in the

Kinect sensor frame can be determined.

2.7 Collision Avoidance on Industrial Robots

Robot controller

Computer
with CUDA 
enbled GPU

SensorIndustrial robot

Figure 2.13: The collision avoidance setup.

To implement a collision avoidance system that is easy to interface with an indus-

trial robot can be a challenge, particularly if this implementation should be easy

to integrate for existing robot programs. For the collision avoidance systems de-

scribed in this thesis, equipment external to the robot controller is needed. This

equipment includes sensors and computers. The sensors in particular have to be

mounted somewhere such that they can observe the work cell of the robot, where

the mounting location can be on a structure or on the robot itself. The computer can

on the other hand be modified to fit inside the control cabinet.

For new solutions to be adapted by industry, plug-and-play solutions are an

advantage. A typical ABB robot move instruction and the corresponding proposed
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collision avoidance instruction is,

MoveL[pos1,ori,cfg,eAxNone],vel,zone, t1\WObj := w1; (2.36)

KMoveL[pos2,ori,cfg,eAxNone],vel,zone, t1\WObj := w1; (2.37)

where (2.36) is a regular move instruction and (2.37) is the instruction for a move

that incorporates collision avoidance. The algorithms for KMoveL are stored in a

system module, which from the operators point of view, the only change that has to

be made to an existing program in order to enable collision avoidance is to replace

function name MoveL with KMoveL.
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Chapter 3
Concluding Remarks

3.1 Conclusions

The work described in this thesis demonstrates collision handling for industrial

robots in harsh environments. The first part of the work studies collision detection

while the second part studies collision avoidance.

The ES used for collision detection shows fast execution rates suitable for real-

time systems. Even though manual map creation can be time-consuming, it is pos-

sible to generate maps automatically from a model or sensor data.

Using HMMs for collision detection can be time consuming, but an advantage is

that it can be trained off-line from CAD models. An HMM approach trained offline

from CAD models is particularly suitable for oil and gas applications where there

is lots of available time between commissioning and maintenance.

In the conducted work on collision detection using ES or HMM, the CPU was

always taking part in processing the sensor data. Processing this data on the GPU

would enable faster algorithm execution rates compared to CPU processing. By

using GPU processing, more sensors can be interfaced with the same system and

still provide desired performance.

Collision detection for sensors attached to the robot has provided useful results.

Even though the robot base position was stationary, it could be envisioned that the

robot will move on a track and therefore benefit from a sensor mounted on its struc-

ture. The laser scanner mounted on the robot is certified for outdoor use, but it is
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not certified for potentially explosive environments. One of the challenges with a

sensor that is not certified is that it has to be mounted inside an EX-certified casing.

It is expected that an EX-certified casing for a laser scanner would limit the sensors’

field of view. In addition, the size of the sensor casing needed to encapsulate the

sensor might make it undesirable to mount it on the robot. On the other hand, a

sensor which is fixed to a structure can provide good results as long as the robot

kinematics is considered in the filtration algorithm. Again, a fixed sensor can be a

challenge if the robot is moving on a track, because the track can position the robot

outside the sensors field of view.

Collision avoidance is similar to collision detection in the sense that the problem

can be made highly parallelisable. A disadvantage with collision avoidance is that

it usually requires significant computing resources, especially if 3D depth data is

used. This can be handled with filtration and simplifications. The work described

in this thesis addressed the problem by shifting many of the calculations from the

CPU to the GPU. The approach provided real-time collision avoidance while still

using a rather detailed representation of the robot and the environment. This was,

to the author’s knowledge, the first time the GPU was used for collision avoidance

using a real robot.

One of the more general depth sensor related challenges is the limited volume

they can observe. For instance if the sensor is facing an obstacle, the surface on the

opposite side is not visible. Reliable collision handling applications can address this

problem by using multiple sensors, but more sensors come at the cost of computing

resources. Since the collision detection algorithm is less complex than the collision

avoidance algorithm, it is expected to better handle a higher number of sensors and

still operate in real-time.

The work in this thesis studies methods for collision detection and collision

avoidance. Solutions for both categories have been demonstrated for industrial

robots. These solutions contribute towards offshore robotic co-workers working

in potentially explosive environments.

50



Concluding Remarks

3.2 Future Work

For developing more trustworthy systems, more outdoor tests should be conducted.

Aspects such as fog, sunlight, rain and snow are conditions which can affect the

sensor data. To address the sunlight, a light measuring sensor can be mounted side

by side with the sensor which observes the environment. Then, based on thresholds

in the data from the light sensor, a decision regarding the validity of the sensor data

can be made.

The work on the GPU and CUDA started at approximately the same time as

collision avoidance. Because this was the natural step after the work on collision

detection, proper GPU algorithms were never made specifically for collision detec-

tion. Such algorithms can be part of future work and should also be tested with

more than one sensor.

The developed algorithms for collision avoidance in CUDA C++ were made

specifically to calculate the artificial potential field for a 6-DoF and 7-DoF manip-

ulator. It will be beneficial if these algorithms are made more general such that

they can be reused for different types of manipulators or other equipment requiring

collision avoidance.

Even though GPU programming is not limited to NVIDIA graphics cards and

CUDA, only GPUs from NVIDA were programmed. AMD is another large com-

pany producing graphic cards for GPU programming. Traditionally, the graphic

cards from these manufacturers have been quite similar in performance. As shown

in Nishikawa et al. (2013), the AMD Radeon HD 7970 graphic card has a higher

throughput than the competing NVIDIA GTX 680. On the other hand, newer

graphics cards have now been released by both manufacturers and the reference

Nishikawa et al. (2013) may not be up to date.

Sensors are an important part of collision avoidance and collision detection.

Mainly two different sensors have been used, the SICK laser scanner and the Mi-

crosoft Kinect sensor. It would be interesting to look at other sensors such as profile

sensor. By mounting a profile sensor on the robot, it would be possible to scan the

environment. The sensor can be used to scan a volume which require more detail.

For example if the object which should be manipulated can have different poses,

it can be scanned for precise positioning of the tool before engaging manipulation
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and as such potentially avoid collision. This type of scanner can also be used to

scan the working area, and the data can be stored e.g. for use as a supplementary

environment model for collision avoidance or collision detection.

Regular RGB cameras were not considered because they do not provide depth

data. It is of course possible to use a stereo camera setup, but it does require ad-

ditional calibration as opposed to a purposely built depth sensor. Even though a

single camera does not provide depth information, it can be used to provide envi-

ronment information which the depth camera lacks. The use of a RGB camera as a

supplement to a collision handling application can be worth further studies.

Building on the lessons learnt from the work described in this thesis, there are

many available paths open for further studies and research.
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Abstract — This paper presents a comparison of two approaches for detecting
unknown obstacles inside the workspace of an industrial robot using a laser
rangefinder for 2-D measurements. The two approaches are based on Expert
System (ES) and Hidden Markov Model (HMM). The results presented in the
paper demonstrate that both approaches are able to correctly detect and clas-
sify unknown objects. The ES is characterised by low computational require-
ments and an easy setup when relatively few known objects are to be included
inside the workspace. HMMs are characterised by a higher flexibility and the
ability to handle a larger amount of known objects inside the workspace. An-
other significant benefit of the HMM approach taken in this paper, in contrast
to voice recognition, is the fact that the learnt parameters of the HMMs have
physical meaningful geometrical interpretations.

Keywords — Collision Detection, Industrial Robot, Hidden Markov Model, Expert

System.

1 Introduction

Traditionally, industrial robots have been used in structured indoor environments,

such as manufacturing plants or foundries. In such environments, objects inside the
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workspace of the robot are most often either fixed at a known location or moving

according to a priori determined and known patterns. Hence, the robot programs

can be written such that these objects are avoided. Recently, there have been sev-

eral initiatives to use industrial robots in unstructured outdoor environments. As

an illustrative example, consider the case of robot automation in the oil and gas in-

dustry, (Anisi et al., 2010, 2011). In such environments, due to mismatch between

existing world model (CAD) and the exact location of process components, the lo-

cation of potential obstacles inside the workspace is partly unknown and potential

collisions cannot be avoided solely by offline programming. To avoid collisions in

such settings, online, sensor-based collision detection and avoidance methods must

be adopted. Collision detection considers the problem of indicating the presence of

unmodelled obstacles while collision avoidance aims at finding an alternative path

around discovered obstacles leading to the target. To this end, use of external sen-

sors, e.g., laser-, ultrasound- and vision sensors is necessary and the robot programs

must be able to process these data and adjust accordingly online.

The work presented in this paper describes two different approaches for obstacle

detection in an unstructured environment. The two approaches are based on Hidden

Markov Model (HMM), (Fink, 2007) and Expert System (ES), (Aarts and Marzano,

2003). HMMs are based on the probabilities of a sequence of observations while

an ES calculates the state based on initial knowledge about the system. The paper

compares the two methods based on criteria such as recognition rates, limitations,

benefits, implementation time and practical use. As far as hardware is considered,

the experiments in this paper are based on a laser rangefinder sensor and an indus-

trial robot. The choice of sensor was important, due to strict regulations in the oil

and gas industry hence using laser, the equipment must be explosion certified or

certifiable, withstand tough weather conditions and be weather protected (Ingres-

sion Protection IP67 or higher). In this paper, as a first step, the performance of

the HMM and ES algorithms are verified in an indoor environment, although the

selected laser rangefinder is certified for outdoor conditions. Most industrial robots

are designed for indoor usage, but additional outdoor protection can sometimes be

optionally delivered by supplier.

There are not many articles in the literature describing the combination of obstacle
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detection and a laser rangefinder in an industrial robotics environment. In particular

the HMM approach has, to the authors’ knowledge, seldom been applied to obstacle

detection in robotics. Most of the related research in this area has focused on mobile

robots and different applications such as localisation and mapping. An example is

the research described by (Wolf et al., 2005) where the authors investigate a method

for mobile robots to detect the state of the terrain. The robots are equipped with a

laser rangefinder at an angle of 35o and 40o relative to the ground and are then able

to produce a map in 3D when driving forward. To be able to determine whether

parts of the scanned area belong to one of two states: flat terrain or rougher terrain,

the authors use a HMM approach to estimate the state. The estimation of the state

is based on comparison of successive scans. In contrast to (Wolf et al., 2005), the

approach in this paper focuses on obstacle detection and not mapping. In addition,

the presented method requires only one scan to determine the state sequence, but

the probability of the observations of many models are calculated and evaluated.

(Zhu, 1990) presents a stochastic HMM-based algorithm for describing motion of

obstacles. The work is similar to this paper by working in 2D-space. It differs by

using image data instead of laser data. Further it calculates the probability of an

object to be in a particular position, as opposed to the object being in a position that

is not allowed.

Using a laser rangefinder, (Fulgenzi et al., 2009) describes the navigation of a ve-

hicle from an initial position (A) to a destination position (B). HMMs are used to

predict pedestrians movements such that the vehicle can continuously calculate a

path with highest probability for success. The work differs from this paper in that

the car is allowed to move to the destination following any possible path, as long

as collision is avoided. The work described in this paper is restricted to follow a

predetermined path, and does not allow any deviation.

(Hovland and McCarragher, 1999) presents a HMM approach for classifying dis-

crete states in a force-controlled robotic assembly operation. The work is similar to

this paper by the fact that several HMMs are used to represent different scenarios or

workspace locations. In this paper only a single HMM is used at a given time, while

in (Hovland and McCarragher, 1999) all the HMMs were compared continuously

and the HMM with the highest score represented the actual situation.
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The paper is organised as follows: Section 2 presents the problem formulation,

Section 3 explains the ES while Section 4 introduces the HMM approach. Finally,

Section 5 presents the experimental results and Section 6 concludes the work.

2 Problem Formulation

The problem setup (Fig. A.1) considered in this paper is as follows. An industrial

robot (J) is conducting a manipulation operation. While doing so, a laser range

finder (E) scans for objects inside the workspace of the robot. If an object is de-

tected, it could either be a part of the normal situation or it could be an object that

is not expected to be inside the workspace, i.e., an obstacle to be avoided. As an ex-

ample, an object that is part of the normal situation could be tool stands, work tables

or vises with fixed and known positions. Upon detection of these known objects,

the robot operation should proceed as normal. On the other hand, the detection of

unknown obstacles should immediately raise a signal to the controller.

Figure A.1: Experiment setup.

The robot tool (B) moves along an offline-generated path (G) while manipulating

an item on the work bench (C). The laser range finder (E) continuously scans the

plane, physically limited by the walls (K), in the range of 180o (D), where it detects

the presence of known objects (A), and unknown obstacle (F). Finally, four arbitrary
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tool locations (H) have been chosen for system comparison between the ES and the

HMM approaches. Unknown obstacles are allowed to be present at any location in

the workspace, not only on the work table (C).

3 Expert System

The ES used in this paper is an intuitive, low complexity approach which is de-

scribed by the algorithm in Fig. A.2. The algorithm uses robot joints and the tool

position to calculate the relative position between the laser and the tool. Since

the tool holder is always parallel to the work bench, the tool-tip will change an-

gle relative to the laser, and thus prevent a straight forward implementation of the

algorithm. The laser measurements of the tool and the objects that are part of the

normal situation are filtered out. Further, the complex environment could be repre-

sented by a CAD model, but in the described ES experiments, the environment is

removed by the boundary filter (I) in Fig. A.1. The boundary filter is recalculated

continuously to account for laser offset and rotation. Fig.A.3 (a) shows an example

of the ES in use. The blue line shows the filter, and any measurements that are on

the sensor-side of the line, which is the workspace of the robot, is reported to the

robot controller. The tool is continuously filtered out from the laser measurements

based on its current position.

4 Hidden Markov Models

Hidden Markov Model (HMMs) are used as a statistical approach to solve the prob-

lem described in Section 2. The HMMs will give a probability measure on how

likely it is that an obstacle is inside the workspace of the robot. HMMs are based on

state transition probabilities and the probability of being in a state given an obser-

vation or a sequence of observations. The interested reader is referred to (Rabiner,

1989) for a rigorous explanation. The observation vector OOO and the individual states

SSS are denoted as,
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Figure A.2: Expert System: Algorithm.

OOOttt = O1,O2, · · · ,OT , SSSnnn = S1,S2, · · · ,SNS

where t ∈ {1,2 · · · ,T} and T is the number of observation time steps. NS is the

number of states in the HMM. In this paper a 12-by-12 transmission matrix AAA is

represented by Fig. A.4. Even if the model has 12 states, only a total of five tran-

sitions for each observation sequence is allowed. The observations, see Fig. A.5,

are divided into 30o segments. Each segment containing 60 distance measurements,

one measurement for every 0.5o. Every distance measurement has a corresponding

mean value (µ) and variance (C).

The probability of being in a state given the observation OOOttt is given by the observa-

tion probability b j(OOOttt) which is a Gaussian distribution
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Figure A.3: Expert System: Illustration of filtering.

b j(OOOttt) = N (OOOttt |µµµ j,CCC j) (A.1)

The observation vector OOOttt is equal in size to the 60 element µµµ j and CCC j vectors. For

each 10 mm absolute movement along the manipulation path, measurements are

conducted and a new model λk is created, where k ∈ {1,2 · · · ,K} and K is the total

number of models. Each model is related to a tool position coordinate. If a model

score P(O|λk) is below a predefined threshold, the model does not represent the

normal situation. In other words, an unknown object is present in the workspace.

987

1 2 3 4 5 6

Figure A.4: HMM transition matrix.

The hidden states 1-12 in Fig. A.4 describe the normal situation of the workspace.
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Figure A.5: The 30o segmentation of the laser rangefinder measurements.

Each hidden state can describe that no object is present, or it can describe the pres-

ence of a known object. The sensor data for each hidden state consists of 60 mea-

surements in a segment of 30o. The HMM is trained on a pre-classified training set.

This means that all the different scenarios defining the normal situation are included

in the training data. For example, if the normal situation for the first 30o segment

consists of two cases: A) no objects, and B) one single known object, then state 1

could represent the “no objects” case, while state 7 could represent the “known ob-

ject” case. If the sensor data for the five remaining 30o segments contain no further

known objects, the hidden state sequence 2-6 after state 7 would typically get a high

score.

The particular parallel structure of the HMM with two rows of states, shown in

Fig. A.4, was chosen to allow for a representation of two main cases: A) no known

objects and B) one known object in each of the six sensor segments as shown in

Fig. A.5. If several different known objects are to be placed inside a single sensor

segment or the location/size of the objects can vary inside a single sensor segment,

then the HMM should be expanded with additional parallel branches.
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Figure A.6: HMM decoding algorithm.

4.1 HMM Decoding

The purpose of HMM decoding is to calculate the probability of the HMM given

a measurement sequence from the laser rangefinder. If the score is high, then the

measurements correspond well to the training data. Hence, the measurements in

this case indicate a normal situation. If, on the other hand, the score is low, the

measurements do not correspond well with the training data and hence it is assumed

that one or more unknown obstacles have entered the workspace.

The employed decoding algorithm does not find the probability of the best state

sequence through the model in Fig. A.4. The decoding is only concerned with

the discovery of laser measurements that do not match the training data, such that

this information can be used by the robot controller to take appropriate action, see

algorithm Fig.A.6. However, if the setup or application should require identification
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of the segment in which the error occurred, the decoding method could be expanded

such that the probability contribution for each segment is stored and evaluated.

5 Experimental results

A laser rangefinder sensor LMS133-10100 from SICK is used for 2D length mea-

surements outputting a maximum length of 20m ±30mm associated with an angle

in a range of 180o. Combined with the HMM and ES methodology, the rangefinder

is set up to detect any object that is not supposed to be in the workspace of the robot.

In the experiments described in this paper, an unknown object at a random point in

time enters the workspace. The experimental setup is shown in Fig. A.7 and a typ-

ical measurement from the rangefinder is shown in Fig. A.8. The range from 120o

to 180o is where the robot cell wall ends, and the laser distance measurements are

reflections from objects and walls in the laboratory.

5.1 Expert System

Fig. A.9 shows the workspace with the different objects. The two objects to the right

and the tool have been removed by the filter. The red stars represent an unexpected

obstacle. Because of potential system errors the filter removes additional points in

the range ±0.5o. Further, because the accuracy of the rangefinder is approximately

±30mm, the ES creates the filter at the object distance subtracted by the rangefinder

accuracy of 30mm. An example of filtering is shown in Fig. A.3 (b). The black

dots in the figure represent the object, the green stars the filter and the pink square

the middle of the filter (for illustration purposes only). Table A.1 shows the results

obtained with the ES. The 12 scenarios are: i) No objects, ii) known objects A and

iii) the combination of known objects (A) and unknown (F) obstacles inside the

workspace. The tests are repeated for the 4 different robot positions along the tool

path shown in Fig. A.1 and the ES is able to correctly detect unknown objects in all

the 12 test cases.

68



Obstacle Detection in an Unstructured Industrial Robotic System: Comparison of
Hidden Markov Model and Expert System

Figure A.7: Experimental setup, consisting of an ABB IRB6600-175kg-2.55m robot,
obstacles and a laser range finder.

5.2 Hidden Markov Model

Since there is one HMM for each position of the robot along the path in Fig.A.1,

the notation λi is introduced, where i ∈ {1, · · · ,Np} and Np is the total number of

positions along the path. In the experiments, a total of Np = 167 positions are

used. In each position i, 192 observations (OOOttt , t ∈ {1,2 · · · ,T}) are used to train

the corresponding HMM λi for that robot position. In addition, 12 observations in

each position are used as a test set to verify the scores of the HMMs. Each model

has its own threshold value for model match decision. Tables A.2-A.5 show the

model probabilities for the test sets in the 4 different robot positions. For each

robot position, only the corresponding λi is evaluated. Note that the log[·] scores

of P(OOO|λi) are used, since the probabilities become small when the HMMs use

large observation vectors, in these experiments the observation vector OOOttt contains

61 elements. The higher the score log[P(OOO|λi)], the better is the match between
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Figure A.8: Typical measurement from the rangefinder in polar coordinates. The
area of interest is close to the origin and with angles less than 120o.

Table A.1: Expert system performance in the 4 test positions, in total 12 test cases.

Test set Pos 1, λ1 Pos 2, λ2 Pos 3, λ3 Pos 4, λ4
No object X X X X
Objects A X X X X

Object A+F X X X X

the model and the experiments. Table A.2 shows that the model score is in the

approximate range from −72 to −69 when the test data is similar to the training

data. When objects A+F are present in the workspace, the test data are different

from the training data, hence the model scores drop to the approximate range −103

to −105. Hence, a threshold value for detection of unknown objects at position 1

should lie in the range −80 to −90, depending on the acceptable level of detection

and false alarms. For example, if the HMM threshold is defined at−80, the method

has a high chance of detecting changes from the training set (unwanted objects), but

the probability of false alarms could be large. However, if the threshold is defined

higher, the method may not detect all unexpected objects, while the probability of

false alarms will be reduced. The final selection about threshold values must be

defined by the operator, case-by-case.

Tables A.3-A.5 for three other robot positions show similar results compared to
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Figure A.9: Expert System: Filtering of known objects (green) and detection of
(red) obstacle.

Table A.2: Scores log[P(Oi, j|λ1)] with 12 test sets i∈ {1, · · · ,4} and j ∈ {1, · · · ,3}.

Test set i 1 2 3 4
No object, Oi,1 -71.70 -71.70 -71.78 -71.81
Objects A, Oi,2 -69.44 -69.43 -69.60 -69.57
Object A+F , Oi,3 -103.51 -103.21 -104.43 -103.77

Table A.2, but the threshold values must be selected differently. For Table A.3 the

threshold values should lie in the approximate range −105 to −115, for Table A.4

in the approximate range −70 to −90 and for Table A.5 in the approximate range

−77 to −83.

As shown in the experimental results, the HMM approach is able to correctly clas-

sify all the different scenarios in the 12 test set observations. As seen in Tables A.2-

A.5, the threshold values for detecting unwanted objects must be set differently for

each robot position. In the first three robot positions, there is a relatively large gap

between the model scores for known objects and unknown obstacles (Tables A.2-

A.4), and it is therefore easy to define the model score thresholds. The fourth po-
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Table A.3: Scores log[P(Oi, j|λ2)] with 12 test sets i∈ {1, · · · ,4} and j ∈ {1, · · · ,3}.

Test set i 1 2 3 4
No object, Oi,1 -91.23 -95.95 -95.98 -95.96
Objects A, Oi,2 -100.18 -100.25 -100.24 -100.32
Object A+F , Oi,3 -124.67 -127.37 -125.17 -126.41

Table A.4: Scores log[P(Oi, j|λ3)] with 12 test sets i∈ {1, · · · ,4} and j ∈ {1, · · · ,3}.

Test set i 1 2 3 4
No object, Oi,1 -60.73 -60.64 -60.77 -60.73
Objects A, Oi,2 -63.69 -63.65 -63.55 -63.64
Object A+F , Oi,3 -101.03 -100.42 -101.99 -101.18

sition (Table A.5), however, has a narrower gap between the model scores which

indicates that it is more difficult to distinguish between known and unknown ob-

jects being present in the workspace.

Fig. A.10 shows all the learnt mean-distance parameters, µµµ j, inside the HMM for

6 state transitions, keeping in mind that each of these states defines a 30o range

of the laser measurements. Note that there are two different sets of mean-distance

parameters shown in Fig. A.10. These correspond to two different state transition

paths in the HMM, one corresponding to no objects and the other corresponding to

known objects. One significant benefit of defining the HMM states, transitions and

observations as in this paper, is the fact that the learnt parameters after re-estimation

with the Baum-Welch algorithm have physically meaningful interpretations such as

illustrated in Fig. A.10.

Table A.5: Scores log[P(Oi, j|λ4)] with 12 test sets i∈ {1, · · · ,4} and j ∈ {1, · · · ,3}.

Test set i 1 2 3 4
No object, Oi,1 -72.27 -72.33 -72.18 -72.28
Objects A, Oi,2 -74.82 -74.77 -74.73 -74.58
Object A+F , Oi,3 -85.20 -85.64 -86.20 -85.72
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Figure A.10: Mean distance after re-estimation. Red: Tool and no-objects, Cyan:
Tool and objects.

6 Conclusions and Future Work

This paper has presented a comparison between two approaches (Expert System

and Hidden Markov Models) for detecting unknown objects inside the workspace

of a robot. The ES quickly and accurately calculates any deviation to the normal

situation as long as the model of the environment is held at a reasonable complex-

ity level, but the method is sensitive to small adjustments in the environment. To

manually input the object positions and angles relative to the laser can turn out to

be a time-consuming task. Such is the case when many objects are placed inside the

workspace and manual input of these objects could turn out to be unfeasible.

These are some of the reasons why HMM is considered: The HMM setup is less

sensitive to application setup, therefore sensors can be positioned without knowl-

edge of the distance to robot centre or angle relative to the robot centre. With

the flexibility in position and angles, relatively short implementation time could be

achieved. The implimentation would require thresholds provided by the operator

and an auto generated HMM. If a change has been made to the environment, new

HMMs must be trained to account for the changes. Since an HMM is providing a

confidence level, the robot speed can be decreased if the score approaches the pre-

defined threshold level. If the HMM score drops below the threshold, a signal is

raised and sent to the robot controller. Another significant benefit of HMMs is the
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fact that the learnt parameters provide physical meaningful results, as demonstrated

with the experiments in this paper. The main drawbacks of the HMM approach are

perhaps the relatively high development time required to implement and verify the

algorithms as well as the high calculation time compared to the ES solution.

One could argue that the problem defined in this paper could be solved simply by

comparing laser rangefinder measurements with the same measurements taken in

the normal situation. If these measurements differ more than by the accuracy of the

sensor, an unknown object would be detected. However, such a solution would only

work if the normal situation could be described by a single measurement. In most

industrial scenarios, the normal situation consists of a number of different objects

in different sensor segments. In such cases the HMM approach provides a flexible

and robust framework which could also be easier to implement compared to an ES.

One possible extension of the work presented in this paper could be a combination

of the ES with CAD model and the HMM approach in order to reduce the amount of

training data required by HMMs. Another possible extension could be to interpolate

HMM data between robot positions to further reduce the amount of measured laser

data. Finally, outdoor tests will be conducted in order to verify the performance of

the algorithms when exposed to different environmental conditions, such as outdoor

lighting, rain, fog, snow, etc.
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Abstract — Deploying industrial robots in harsh outdoor environments require
additional functionalities not currently provided. For instance, movement of
standard industrial robots are pre-programmed to avoid collision. In dynamic
and less structured environments, however, the need for online detection and
avoidance of unmodelled objects arises. This paper focus on online obstacle
detection using a laser sensor by proposing three different approaches, namely
a CAD-based Expert System (ES) and two probabilistic methods based on a
Hidden Markov Model (HMM) which requires observation based training. In
addition, this paper contributes by providing a comparison between the CAD-
based ES and the two versions of the HMM, one trained with real sensor data,
and one where virtual sensor data has been extracted from the CAD-model
and used during the training phase.

Keywords — Obstacle Detection, Industrial Robots, Expert System, Hidden Markov

Model.

1 Introduction

Industrial robots have been used since the 1960s for solving repetitive, routine,

heavy and dangerous tasks, such as coating, painting, pick and place, welding, as-
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sembly and inspection (Nof, 1999). The traditional industrial robot works in struc-

tured, indoor environments and does not stop its process unless its safety switch

circuit is broken or it’s stopped by the operator. Standard industrial robots are pre-

programmed such that the robot path avoids any obstacles in its vicinity, and does

therefore not need to know or have any awareness of these objects’ locations.

Historically, the main driver for using robots within manufacturing industries has

been to achieve better quality and productivity by increased automation. In most

industries, this is still true today. Recently, however, the need for deploying in-

dustrial robots in rather unstructured outdoor environment has arisen. Within the

oil and gas industry, for instance, (Anisi et al., 2010, 2011) the applications gener-

ally stand out from other industries as the main driver has been to automate tasks

that have been difficult or even impossible for people to undertake based on Health

Safety and Environment (HSE) issues. Applying robotics in this way has resulted in

an improvement in HSE, but often with an associated dip in production. Although

this is contradictory to the general goal of automation, work is now being done to-

wards maintaining focus on HSE and at the same time improving the efficiency and

profitability of the facilities.

Today, industrial robots are not able to work independently in harsh and unstruc-

tured outdoor environments, which involves detection and avoidance of unmodeled

objects. The work presented in this paper takes a step in that direction by focusing

on online obstacle detection using two different approaches. The first approach is a

CAD-based Expert System (ES). The ES has initial knowledge about the environ-

ment, and therefore knows what objects are allowed and at which positions they are

allowed. The second approach is using a Hidden Markov Model (HMM). This is

a probabilistic method which relies on training of observation of the environment.

Alternative methods could, for example, be Bayesian decision networks and sup-

port vector machines. The alternative methods are however beyond the scope of

this paper, hence, the focus is on performance and limitations of the ES and HMM

methods.

Related work describing the combination of online obstacle detection and a laser

rangefinder in an industrial robotics environment are hard to find. Most of the re-

lated research has focused on mobile robots and different applications such as lo-
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calisation and mapping. In research described by (Wolf et al., 2005), the authors

investigate a method for mobile robots to detect the state of the terrain. The robots

are equipped with a laser range scanner and able to produce a map in 3D when driv-

ing forward. To be able to determine whether parts of the scanned area belong to one

of two states – flat terrain or rougher terrain – the authors use an HMM approach.

The state estimation is based on comparison of successive scans. The approach in

(Wolf et al., 2005) differs from this paper in a few ways. The approach in this paper

focuses on obstacle detection and not mapping. In addition, the presented method

requires only one scan to determine the state, a larger number of states is used, and

the probability of the observations of many models are calculated and evaluated.

The Little Helper described by (Hvilshøj et al., 2009) is an industrial robot mounted

on a mobile robot platform and provides another point of reference. The project pur-

pose is to devise and develop an industrially usable mobile robot concept. The robot

operates in a semi-structured indoor environment, where it picks up objects that are

placed at different positions and are located by vision sensors. One of the outlined

scenarios: A work station calls on the robot, the robot moves to the workstation

and performs a manipulation task with the robot arm. When the task is complete,

the robot releases the task and moves away from the work station. This approach is

similar to the approach described in this paper in the way of handling environments

that are not fully structured, and using a industrial robotic arm for manipulation

tasks. The work presented in this paper goes beyond the one conducted for the

Little helper by focusing on online obstacle detection and in particular comparing

CAD-model-based ES with HMM.

The work presented in this paper is an extension of the work described in (Kaldestad

et al., 2012). The main extension is the inclusion of a CAD-file to define the ES. The

HMM is then trained on generated data from the ES, which are indirectly generated

from the CAD-file. If accurate maps of the environment are available, the presented

method eliminates the need for measurement based training of the HMM.

The remaining of this paper is organized as follows: Section 2 presents the problem

formulation, Section 3 explains the ES while Section 4 introduces the two HMM

approaches. Finally, Section 5 presents the experimental results and Section 6 con-

cludes the work.
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2 Problem Formulation

In industrial environments, the robot movement is typically restricted to its pre-

programmed trajectories in combination with static or temporary world zones pre-

venting the robot’s tool center point (TCP) to either leave or enter the manually

defined world zones. However, as the demand for handling more dynamic environ-

ments increases, so does the demand for planning trajectories dynamically. To this

end, this paper focuses on the problem of on-line detection of unknown and un-

modeled objects which constitutes the initial part of dynamical trajectory planning.

Figure B.1: A schematic overview of the robot cell.

The laboratory setup depicted in Fig. B.1 gives a schematical overview of the robot

cell. The robot (C) is manipulating objects on the work bench (I) with a tool located

in the tool holder (J). Objects (A) and (H) are static objects in the robot cell and

together with the wall (D) these are a part of the CAD-file map. Furthermore,

objects (F) and (G) are objects that are allowed in the robot cell at these positions

and are part of the CAD-file map that includes objects. The laser (B) continuously

scans 0o−180o in the x-y plane at a height z. While manipulating, robot movement

will rotate and translate the laser which is mounted on the robot’s first axis. The

four black dots on the workbench such as (E), are the positions where laser data

have been collected for the work described in this paper.
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In the work described in this paper, two different approaches for on-line obstacle

detection will be investigated, where the Expert System will be described in the

following section.

3 Expert System

The Expert System (ES) described in this paper relies upon a description of the

environment (map and objects) in terms of a CAD-model. When a CAD-model

of the environment exists, the distances from the centre of the laser sensor to any

shape described by the model can be calculated using geometrical relations as will

be detailed below. Then by comparing this to the distances measured on-line by

the laser, it is possible to detect unmodeled obstacles entering the robot workspace.

However, a straightforward comparison between the measured and the modeled

distance would lead to an unacceptably high rate of false object detection alarms.

To remedy this behaviour, systematic sensor measurement errors (±30 mm), as

well as inaccuracies in the provided CAD-model will be taken into account before

triggering alarms.

More precisely, with an estimated CAD-model accuracy of±10 mm, the laser mea-

surements are allowed to deviate within the threshold of ε =±10 mm) before trig-

gering the alarm indicating obstacle detection. Despite this threshold, the cases

when the laser measurements deviate more than ε is observed typically when the

laser beam hits near the edge of an object. In this paper, such measurements are

recognized by being considerably greater than that of the modeled distance to the

object. This non-predictable behaviour of the laser measurements, was handled by

extending the functionality of the ES in accordance with the bottom two boxes in

Fig. B.2, which shows the overall program design.

As previously mentioned, the ES needs to calculate the modeled distances from the

laser centre to the environment described by the CAD-model. For this purpose,

the orientation of the robot’s first axis (upon which the laser sensor is mounted)

and the position and orientation of the robot tool need to be known. This data is

readily available on most industrial robot controllers of today. However, the ES also

requires knowledge about the position of the laser sensor relative to the robot base
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Figure B.3: FARO laser tracker used to calibrate the position of the laser scanner
relative to the base of the robot.

coordinate system. In practice, this quantity is most often not known or measureable

directly with sufficient accuracy. Therefore, finding the position of the laser relative

to the robot base is performed as follows.

To allow accurate calculation of the relative position between the laser scanner and

the robot base, a FARO laser tracker was utilized. It measures points in 3D space

with a worst case accuracy of 18 µm + 3 µm/m. As an example, the accuracy 5 m

out from the device will be 18 µm + 3 µm/m×5 m = 33 µm. The laser tracker was

positioned in the front-right of the robot (see Fig. B.3), and a local coordinate sys-

tem was created, with x-axis and y-axis direction in accordance with Fig. B.1, and

z-axis perpendicular to the x-y-plane to define a right-handed coordinate system.

Next, a laser tracker target which reflects the laser beam was centrally aligned on

top of the laser sensor. Then, the first axis of the robot was rotated at angles θ1 and

θ2 degrees. Measurements were conducted by the FARO laser tracker at each of the

points, enabling us to extract the radius defining a circle centered at the origin of

the robot base coordinate system, and passing through the measurement points. As

shown in Fig. B.1, this radius equals the distance between the laser to the centre of
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the robot. The angle offset from the centre of the robot to the laser was found by

maximizing the y-distance; this is when the laser position will be 90o relative to the

robot centre. At the point where y was maximized, the angle rotation of the robot’s

first axis was read from the robot controller. This equals the negative angle offset

of the laser.

Having calculated the exact position of the laser sensor in the environment, the

distance from the sensor to the closest point in the environment is calculated as

follows. The CAD-model describing the environment (map and obstacles) consists

of a number of corner points associated with each object. Each two consecutive

points belonging to the same object, are then used to define a line. Then, for each

ray centred at the laser position and defined by the angle θ ∈ [0,180] degrees from

the x-axis, the intersection point between the ray and all these line segments are

calculated. To finally arrive at the distance to the closest point in the environment,

the intersection with the lowest length value is recognized. The method is repeated

until a closest intersection for all angles in {0,0.5, · · · ,180} are extracted.

4 Hidden Markov Model

The following notation will be in accordance with (Rabiner, 1989). The HMM

approach provides a confidence value for laser length data matching the model λ =

(AAA,BBB,πππ). Here, AAA is a 12×12 transition matrix (see Fig. B.5), BBB is the observation

matrix consisting of the mean and variance – both of size 12×61. Finally πππ is the

12×1 initial state distribution vector. The observation matrix BBB contains six sets of

measured data, one for each 30o segment. The arrows in Fig. B.5 show the allowed

state transitions.

Two different sensor tranining data sets are used to estimate the HMM, λ ; one

uses measured laser data, the other uses estimated (virtual) data extracted from the

CAD-model (cf. Fig. B.2). The second approach will be an advantage if real sensor

data is not available before the system is implemented. It would not only allow for

smart scheduling of the computation time in advance of system deployment, but it

will also allow the system to instantly begin operating without making numerous

measurement of the normal situation where the robot is located. To be able to
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Figure B.4: Flowchart of the HMM training and scoring algorithm.

represent laser measurements, noise that is similar to the standard deviation of the

laser sensor is applied to the virtual data. Further, the signal mean and variance are

calculated for use in the BBB matrix.

5 Experimental Results

5.1 Expert system

The ES, being an extension of the one presented in (Kaldestad et al., 2012), has

increased complexity by adding a map of the environment where previously a filter
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Figure B.5: Illustration of the HMM transition matrix, AAA.

was used to filter out anything but the tool. If any unfiltered object entered the area,

an error would be thrown. As a result of adding a map, the system is more error

sensitive. This sensitivity is especially evident when the laser beam hits in a corner

location of an object. This situation often leads to a wrong distance measurement

by the laser. There is currently no known method of accurately correct for these

situations and as described earlier, beams in corner regions are filtered out. In the

experiments the filtering angle θ is 1o, and the systematic error of the system, η ,

is set to 40 mm. Fig. B.6 shows the ES detecting an object that is not a part of the

map, and the system responds by throwing an error.

Table B.1 shows the results of the 12 test cases in the experimental studies with the

ES. It is notable that the ES has classified all scenarios correctly in all four positions.

The “no object” and “objects” columns constitute the normal scenarios, i.e., cases

when no unexpected obstacle is present. The objects in question are (G) and (F)

from Fig. B.1. The “objects + obstacle” column represents the abnormal situation

when an arbitrary obstacle is placed in an arbitrary location in the robot cell.

Table B.1: Expert system performed succesfully in all four test positions, in total 12
test cases.

Test set No object Objects Objects + obstacle
Pos 1, λ1 X X X
Pos 2, λ2 X X X
Pos 3, λ3 X X X
Pos 4, λ4 X X X
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Figure B.6: The blue line is reflections from a laser measurement, an object which
is not a part of the CAD-model is detected and is represented by red beams.

5.2 Hidden Markov Models

The HMM results can be found in Table B.2–B.5 where each table presents the

scores based on twelve different observations at one of the four positions marked

(E) in Fig. B.1. From the tables, the log score for the “no object” and “objects”

scenarios, which constitute the normal training cases, are quite similar in all the

four tables. As for the abnormal “objects + obstacle” case goes, since the obstacle

is not a part of the model λ , it is expected that a model score with lower probability

is expected. The results show that the score for “objects + obstacle” is significantly

higher than the trained models (“no object” and “objects”).

For the virtual data to be able to function as a means for training the HMM, the pa-

rameter systematic error must be tuned. Fig. B.7 shows that the laser measurements

are not spread uniformly across the systematic error of ±30 mm. The measure-

ments are rather taking a normal distributive shape. Table B.6 shows the standard

deviation of the four different measurements presented in Fig. B.7.

The algorithm for training the HMM creates random normal distributed values for

the estimated measurement. The reason for the random variables is because the
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Table B.2: Scores − log[P(Oi, j|λ1)] with 12 test sets i ∈ {1, · · · ,4} and j ∈
{1, · · · ,3}.

Test set No object Objects Objects + obstacle
1 1868 1862 2005
2 1867 1862 2005
3 1868 1863 2005
4 1868 1862 2006

Table B.3: Scores − log[P(Oi, j|λ2)] with 12 test sets i ∈ {1, · · · ,4} and j ∈
{1, · · · ,3}.

Test set No object Objects Objects + obstacle
1 1909 1912 2046
2 1909 1912 2048
3 1909 1912 2046
4 1909 1912 2047

HMM training must have a variety of observations to perform the training on. The

effect of changing the systematic error is shown in Fig. B.8. The top part of the

figure show that by increasing the systematic error the probability of a HMM trained

on virtual data increases for a laser observation with object in the robot cell, while

it is more or less steady for a virtual data observation. The top part of the figure

also shows that the difference between a laser observation with object and a laser

observation with object and obstacle gets smaller as the value of the systematic

Table B.4: Scores − log[P(Oi, j|λ3)] with 12 test sets i ∈ {1, · · · ,4} and j ∈
{1, · · · ,3}.

Test set No object Objects Objects + obstacle
1 1870 1889 2066
2 1870 1890 2066
3 1870 1890 2069
4 1870 1889 2067
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Table B.5: Scores − log[P(Oi, j|λ4)] with 12 test sets i ∈ {1, · · · ,4} and j ∈
{1, · · · ,3}.

Test set No object Objects Objects + obstacle
1 1865 1868 2672
2 1864 1869 2664
3 1865 1869 2678
4 1865 1868 2665

Table B.6: Standard deviations from Fig. B.7.

Upper left Upper right Lower left Lower right
7.527 7.562 8.346 9.4244

error increases. This difference is clearer in the bottom part of the figure, and is

shown by the red line. It is important to have this difference sufficiently high, as

this difference tells how well an accepted HMM score (no obstacle in the robot cell)

can be differentiated from an HMM score with obstacle in the robot cell. The black

vertical line shows the chosen systematic error at 8.55 mm, which corresponds to

the mean of the standard deviation from Table B.6.

Table B.7: Scores based on virtual data − log[P(O1, j|λk)] with 20 test sets j ∈
{1, · · · ,3} and k ∈ {1, · · · ,4}.

Test set No object Objects Objects + obstacle
λ1 (VD) 1881 1880
λ1 (LD) 11646 11930 12451
λ2 (VD) 1883 1882
λ2 (LD) 11472 12110 12530
λ3 (VD) 1882 1883
λ3 (LD) 11121 11689 12573
λ4 (VD) 1885 1885
λ4 (LD) 11751 12239 12427

Table B.7 shows the probability scores for virtual data and laser data for the models
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Figure B.7: Systematic error of the laser, for four arbitrary angles. Each histogram
is created from 100 000 laser measurements.

λk that are trained from virtual data. The result shows that it is possible to distin-

guish the two allowed situations (“no object” and “objects”) from a situation where

an obstacle is present.

6 Conclusions and Future Work

The ES algorithm is computationally efficient, and is suitable in real time appli-

cations. Furthermore, it could provide the system with coordinate location of the

obstacle.

The ES is highly dependent on accurate input values (such as a map and the position

of the robot), and there are many of these values that can be improved. First, the

map of the environment could be measured more accurately by use of, e.g., the
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Figure B.8: Model score versus systematic error.

FARO laser tracker seen in Fig. B.3. Second, a small misalignment of the sensor

could have large impact on the measurements, in particular at long distances. This

might cause false classification, especially in the CAD-based ES.

An improvement of the problem experienced when measuring corners could be to

incorporate a second laser, positioned at another location on the robot.

The possibility of training the HMM directly from the virtual data is an advantage;

time can be saved and there is no need for acquiring large amounts of data after

deployment of the robot. It is possible to calculate the HMMs in advance, enabling

the system to be up and running at the time of deployment.

One limitation of the HMM is the computational requirements for the training and in

the current version of the algorithm, it could not provide information of the obstacle

location.

There are apparently some challenges with applying a CAD-based map of an un-
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structured environment, one is how to update a map of an environment that con-

tinuously changes. The idea behind the approach presented in this paper, is that

large parts of the map will be static. Some parts, however, will be dynamic, but the

update frequency of the environment will be so low that on-line updates of the map

would be feasible. Dynamic mapping is, however, beyond the scope of this paper

and would be a direction of future research.
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Abstract — This paper presents adaptable methods for achieving fast collision
detection using the GPU and Nvidia CUDA together with Octrees. Earlier re-
lated work have focused on serial methods, while this paper presents a parallel
solution which shows that there is a great increase in time if the number of op-
erations is large. Two different models of the environment and the industrial
robot are presented, the first is Octrees at different resolutions, the second is
a point cloud representation. The relative merits of the two different world
model representations are shown. In particular, the experimental results show
the potential of adapting the resolution of the robot and environment models
to the task at hand.

Keywords — Collision Detection, Industrial Robot, Hidden Markov Model, Expert

System.

1 Introduction

Traditionally, the main industrial impact of robot technology has lied in domains

containing repetitive routine tasks, in particular; manufacturing and automotive in-

dustries. In such environments, objects inside the workspace of the robot are most

often either fixed at a known location or moving according to a priori determined

and known patterns. Hence, the robot programs can be written such that these

objects are avoided. Recently, there have been several initiatives to use industrial
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robots in un-, or semi-structured outdoor environments. As an illustrative example,

consider the case of robot automation in the Oil and Gas (O&G) industry, (Anisi

et al., 2010, 2011). As a general trend within that industry, most of the easy accessi-

ble oil and gas fields have already been exploited, leaving the more remote and geo-

politically challenging reserves for future exploration. Given the importance and

focus of the oil and gas industry related to safety, environmental impact, cost effi-

ciency and increased production, the potential for more extensive use of automation

in general, and robot technology in particular, is evident.

Within the oil and gas industry, the use of robotics has so far been limited to spe-

cial functions such as sub-sea and pipeline intervention and inspections using Re-

motely Operated Vehicles (ROVs), automation of drilling operations and well trac-

tors. The degree of autonomy in these applications has however been very low,

meaning that the robots are either remotely controlled, or that the robot follows a

priori determined routes and hence has no ability to cope with environmental vari-

ations and uncertainty. The non-determinism mainly is due to mismatch between

existing world model and the exact location of process components in the physical

world. As presence of unexpected obstacles can not be ruled out in semi- structured

environments typically found in the oil and gas industry, collision-free route cannot

be guaranteed solely by offline programming. To avoid collisions in such settings,

online, sensor-based collision detection and avoidance methods must be adopted.

Collision detection considers the problem of indicating the presence of unmodelled

obstacles while collision avoidance aims at finding an alternative path around dis-

covered obstacles leading to the target. To this end, use of external sensors, e.g.,

laser-, ultrasound- and vision sensors is necessary and the robot programs must be

able to process these data and adjust accordingly online.

There are not many papers describing mapping of the environment in combination

with collision detection in an industrial robotic setup. The work presented in (Hen-

rich et al., 1998) shows the concept of modeling the robot and the environment, and

finding the shortest distance to the obstacles. However, the approach in (Henrich

et al., 1998) is based on simple models of both the robot and of the environment,

and the models are created offline. In contrast, the work presented in this paper uses

a more detailed offline generated model of the robot, which in real life applications
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will not change during the time of the operation, but as apposed to (Henrich et al.,

1998) it presents an online mapping of the environment.

Ramisa uses the Microsoft Kinect together with a robotic manipulator for grasping

wrinkled cloth (Ramisa et al., 2012). As with this paper, the Kinect is used to gather

depth data. As apposed to this paper, the Kinect is mounted on a structure external

to the robot and not on one of the robot axes.

Dziegielewski’s work on accurate mapping, (von Dziegielewski et al., 2012), shows

that combining mapping and CUDA is not a new teqnique, even though the use of

the CUDA cores are different in this paper. The mapping presented in this paper is

different from (von Dziegielewski et al., 2012) in that the presented approach uses

point clouds rather than a mesh based approach. The approach based on a point

cloud is faster, but in some cases less informative.

This paper does not discuss different techniques for fast nearest neighbour search

(NNS) such as NNS via k-d trees (Elseberg et al., 2012), because all the points are

a part of the calculation, such methods will not improve the calculation time. The

focus for this paper is to present how the calculation time in some cases could be

decreased in collision detection applications by using the GPU, the result is based

on our own algorithms developed for CUDA and CPU together with with open

source CPU-based algorithms. CPU-based algorithms distance calculation which

are performed on single core would perform better on multiple cores, this is not

considered in this paper.

The remaining of this paper is organized as follows. Section 2 provides the problem

formulation. Following that, the details of the system setup are given in Section 3.

The experimental study conducted in this work is presented in Section 4 while Sec-

tion 5 gives thorough discussions of the results. Finally, Section 6 provides con-

cluding remarks and discussions on future work.

2 Problem Formulation

For industrial robots executing pre-planned tasks within a workcell, the concept

of introducing new objects to the work cell without explicitly re-programming the

robot controller is a research topic deserving further attention and development. The
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common thing to do if a new object is added to the robot work cell is to stop the

production. If the new object does not occlude the robot path while it manipulates

any of the objects in the environment, the process could be started again without

implications. On the other hand, if the new objects obstructs the path, a new path

must be created by the operator. In the near future, it could be desirable to operate

the robot in an industrial location with a reduced amount of protective fences. In

such setups, it is important that the robot system is capable of detecting new objects

and their locations. Hence, the robot must be part of a more adaptive system, with

the possibility to dynamically introduce new objects to the scene. This raises the

question about how the information about the objects should be made available to

the robot controller. As described in previous work (Kaldestad et al., 2012b) and

(Kaldestad et al., 2012a), one of these techniques could be manual input of a map.

Depending on the application, the approach of manual input could have significant

drawbacks. In addition, there are at least two drawbacks with respect to time. A

manual human input of a map takes time and reduces performance. The second

issue is the time aspect related to the resources of the human, which may be better

utilised with other tasks. Because of these drawbacks, autonomous map generation

using an external sensor is advocated. Next, the placement of the sensor is not

trivial, and since the industrial robots to be used should potentially be capable to

move on linear tracks along the floor or the ceiling, it is often desirable to mount

the sensor on the robot.

To avoid excessive amounts of 3D sensor data, it is desirable to compress or reduce

the data to increase performance. One approach that ensures that the data in the

map does not exceed predefined space limits is the Octree approach.

Using robot manipulators in combination with Octrees has been done before (Faver-

jon, 1984), (Hayward, 1986) and there already exist methods for collision detection,

based on overlapping Octrees. In most cases however, it is not desirable to wait until

an actual collision before giving a warning, therefore using another approach such

as representing the robot by an oversized Octree solves the problem with having the

warning at time of impact, but it does not address the issue of generating a message

when the robot approaches an object.

One of the advantages of using Octrees, is that the 3D position information is
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equally distributed in the Cartesian space. This approach has of course both its

advantages and drawbacks, and for that reason we have also compared it to using

point clouds directly. One of the main advantages of using an Octree representation

of both the robot and the environment, is especially when a large number of points

are present within a small volume, and often these points may not give additional

valuable information to act on. In such settings, all of these points which belong to

their respective place in the Octree, will be reduced to one cube.

The trend is to explore more and more complex methods, but it is a necessity to

simplify in order to stay within reasonable time limits. Still, a few years back, in late

2005 the computer frequency of the Intel and, a bit later, the AMD CPUs’ stalled

(Ross, 2008). Due to the heat dissipated and the power consumed by increasing

the clock, it was found more reasonable to increase the number of processing areas

on one CPU. This was followed by Nvidia’s hardware and software architecture

Compute Unified Device Architecture (CUD, 2006) (CUDA) in 2006. Because

the programmer would benefit by Moore’s law, a doubling of the transistor count

every two years, which resulted in a doubling of the CPU frequency every second

year up to 2005, today, other technologies could be used to continue improving

application execution time. The CUDA architecture is one excellent technology

to use when there are large parallel computational problems, such as calculating

distances between points.

In this paper two main questions are addressed. First, how well will an Octree

structure behave in terms of computational efficiency, compared to a pure point

cloud. Second, what will be the fastest way to detect a collision or near collision, if

all the known location on the robot and in the environment are compared, given the

previously mentioned representations, using the CPU or CUDA (GPU).

3 System Setup

The setup depicted in Fig. C.3 consists of an ABB IRB1600-1.45 robot, an IRC5

industrial controller and a Microsoft Kinect sensor mounted on the robot’s 4th link,

see Fig. C.1. The larger environment Fig. C.2, contains a second robot, an object on

a rotary axis and protective walls inside the reachable workspace of the IRB1600
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robot. Except the IRB1600 and the Kinect, all the other objects are static and part of

the environment. Communication with the robot is done in a network connection

Figure C.1: ABB IRB1600-1.45 robot with Microsoft Kinect sensor mounted on the
4th link.

with a separate computer (PCrob). A second computer in the network (PCobs) with

Nvidia 280 GTX CUDA-Enabled graphics card, was used for managing 3D-point

data, which includes different models of the robot and the environment. The envi-

ronment map is updated by gathering the Kinect distance data and storing it to the

map. Further, robot motor angles are received from PCrob, and used to transform

the environment Kinect data in addition to transforming a point model of the robot.

Before the Kinect-data is inserted to an Octree or point cloud, it is filtered using

a distance filter, and it is also run through a statistical outliers removal to remove

noisy depth readings. The transformed environment map is then used to calculate

the distance from the robot to the environment.
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Figure C.2: ABB IRB1600-1.45 robot and surrounding environment.

4 Experiments

Given one or several concatenated point clouds of the environment as shown for

example in Fig. C.4, an Octree representation can be generated. In this paper the

Octree class in the Point PCL library (Rusu and Cousins, 2011) (PCL) is used. Six

different Octree implementations have been compared with an approach working

directly on a point cloud. The approaches were compared with respect to com-

putational time and the number of Octree elements. Different sidelengths of the

Octree cubes were used (1mm, 10mm and 100mm). In addition, the representation

of the IRB1600 robot and the environment could be with different cube sidelengths.

Fig. C.5 shows a representation where 100mm cube sidelengths were used for the

IRB1600 robot and 1mm sidelengths were used to represent the environment. No-

tice that only the centre points of the cubes are shown in the figure. The repre-

sentation of the robot was generated from a CAD file, while the representation of
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Figure C.3: Overview of system components.

the environment was generated using the Kinect sensor. Fig. C.6 shows another

representation where 10mm side lengths were used for both the robot and the envi-

ronment, here the cubes are shown.

The different approaches were compared based on computational time, which was

found when calculating the smallest distance Lmin between all the robot points Ri

and all the environment points E j, ie.

Lmin = min
i, j
‖Ri−E j‖ (C.1)

When using a point cloud, all the robot points generated from the CAD file were

compared with all the points generated by the Kinect sensor. When using an Octree,

the centre points in all the robot cubes were compared with the centre points in all

the environment cubes.

The minimum collision distance for an Octree representation of both the environ-

ment and the manipulator is given by

Lmin < ‖cs‖ (C.2)

while for an uncompressed and un-approximated point cloud it is given by

Lmin = 0 (C.3)

where cs is the vector pointing from the cube centre to one of its corners.

Table C.1 shows the experimental results for a relatively small point cloud. Eq. (C.1)
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Figure C.4: Example of concatenated point cloud of environment generated with
Kinect sensor.

was parallelised and run on a graphics card (GPU) with 240 cores using the CUDA

library. Specifically the CUDA time includes the transfer of data to the GPU mem-

ory (two float arrays), the execution of two kernels; Where the first calculates

the distance between tow coordinates in R3 and the second kernel finds the min-

imum value of the previous distances. Finally the minimum value is returned to

the CPU. In addition, the computational time of Eq. (C.1) was tested on the CPU

(Intel Core-i5 3.3 GHz) without parallelisation. As expected, the computational

time depends on the number of point-to-point distance calculations. When using

the largest Octree representation (100mm side lengths for both robot and environ-

ment) the required calculation time is 0.070 and 0.008 seconds respectively for the

GPU and the CPU. It is interesting to notice that for this coarse representation the

CPU calculation is actually faster than the GPU calculations, most likely caused

by the initial setup time required for the GPU calculations. For all the other rep-

resentations (smaller Octree cubes and directly on point cloud), the CUDA-based

GPU calculations are faster than the CPU calculations. For example for the Octree
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Figure C.5: Illustration of centre points in Octree. 100mm sidelengths were used
for the robot and 1mm sidelengths for the environment.

10+1mm representation in Table C.1 the GPU calculation takes 4.647 seconds com-

pared to the CPU calculation of 18.276 seconds which makes the GPU calculation

approximately 4 times faster. Table C.2 shows the same result for a point cloud

approximately 5 times larger. The same speed comparison for the Octree 10+1mm

representation in this case shows that the GPU calculation is more than 20 times

faster than the CPU calculation. Fig. C.7 illustrate the computational time vs. the

number of point-to-point calculations for both the GPU and the CPU. The number

of point-to-point calculations is given by the multiplication of robot and environ-

ment points. The most time consuming operation was when applying eq. (C.1)

to the point cloud. For the smallest point cloud set, Table C.1 which requires 3.7

billion operations, the GPU was approximately 20 times faster than the CPU. The

difference in speed increased even more for the largest point cloud in Table C.2,

consisting of 18 billion operations, in this case the CUDA approach was 32 times

faster than the CPU. Fig. C.7 summarises the number of elements with respect to

time. The table shows that for a small number of operations, the CPU calculation
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Figure C.6: Illustration of both centre points and cubes in Octree with 10mm side-
lengths for both the robot and the environment.

time is lower than the CUDA time, but somewhere between 250,000 to 1,700,000

operations, the GPU is faster than the CPU.

5 Discussion

From the results in Table C.1 and C.2 it can be seen that for a smaller number of

operations with 303 robot elements and 800 environment elements totaling 303 ·
800 = 242400 operations, the CPU is 8.75 times faster than the GPU. Here, one

operation is defined as one distance calculation. On the other hand, for a bit finer

resolution of the Octree, 100mm for the robot and 10mm for the environment, there

are 10,073,235 operations, but in this case the graphics card is 2.37 times faster

than the CPU. The results presented in this paper, shows that for a smaller number

of operations, it would be faster to let the CPU handle the calculations. The tipping

point comes at around 10 million operations, when it is faster to let the GPU handle

the calculations.

The graphics card used in this research, the Nvidia GTX 280 with 240 cores, was a

card introduced in 2008. In comparison, state of the art today, a Nvidia GTX 690
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Method CUDA CPU Robot Environment
Time Time Elements Elements

Point cloud 9.694 197.455 19 221 192 953
Octree 1+1mm 3.369 42.567 10 809 107 213
Octree 10+1mm 4.647 18.276 4 397 111 395
Octree 100+1mm 0.443 1.254 303 112 639
Octree 10+10mm 2.049 5.494 4 397 33 574
Octree 100+10mm 0.156 0.369 303 33 245
Octree 100+100mm 0.070 0.008 303 800

Table C.1: Experimental results with a relatively small point cloud of environment.
Octree X+Y mm means cubes with X mm sidelength for the robot and Y mm side-
length for the environment.

Method CUDA CPU Robot Environment
Time Time Elements Elements

Point cloud 25.268 833.228 19 221 958 021
Octree 1+1mm 5.29 124.213 10 809 308 069
Octree 10+1mm 2.450 52.897 4 397 322 638
Octree 100+1mm 0.754 4.101 303 370 194
Octree 10+10mm 1.459 13.639 4 397 85 277
Octree 100+10mm 0.246 1.053 303 94 670
Octree 100+100mm 0.068 0.008 303 814

Table C.2: Experimental results with a relatively large point cloud of environment.

introduced in 2012 has core count 12.8 times larger, with 3072 cores total. Based

on the number of cores, not taken the difference in clock speed into consideration,

the Nvidia GTX 690 should perform several factors better than the GTX 280. But

this speed-up would not just depend on the number of cores directly. As discussed

in (Gregg and Hazelwood, 2011), for cases where huge amounts of data have to be

copied to the graphics cards memory, which in this case is the number of elements

in the point cloud / Octree, the total time could be increased drastically.

When comparing the pros and cons of the point cloud and the Octree as two different

means to present the environment, it was found that that the Octree is ideal for

setups where the exact coordinate location is not needed. If the exact measurement

information is needed the uncompressed and un-approximate point cloud is the best
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Figure C.7: Computational time vs. number of point-to-point operations.

approach. It is notable that by increasing the resolution of the Octree to the floating

point representation, one may match the accuracy of the point cloud representation.

However, this special case may be giving the system much more total overhead

than using the point cloud directly. Another positive thing with the Octree is the

inherent compression of the sensor data, which is distributed by steps of one cube

side. Varying the cube size, gives a density and hence different compression, which

in turn reduces the number of elements and therefore also the calculation time.

By expanding the collision detection algorithms, it is possible to tell on which link,

and at which location there is soon to be a collision. This information could be very

valuable to an adaptive system, because the robot representation could be changed

on the fly to change the resolution of the robot model and there are two main rea-

sons to do so. First, by having a lower resolution of the robot when it is far away

from other objects will decrease the calculation time, which in some cases have the
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desirable outcome that the robot could follow a path at higher velocity. Second, if

the robot is approaching to do a part manipulation, the resolution of e.g. the wrist

could be increased such that no collision is reported by passing objects on a very

short range, an example of this is shown in C.8. To be able to choose when the links

should change resolution will require a modification of (C.3)

Lmin−RCdist < ‖cs‖

RCdist < Lmin +‖cs‖

where RCdist is the user defined resolution change parameter such that PCobs in-

creases the resolution of a particular joint or a collection of joints if the correspond-

ing part is greater. For a new resolution a new value for RCdist has to be chosen. Of

course the values of RCdist would be chosen before robot task program execution,

to make the system more independent from human input at execution time.

In this paper, all the points in the scene were checked, but another approach could be

to check only the points which the robot could reach in the next step (plus a safety

margin). This could be done by doing a quick conservative calculation of where

each robot joint could be positioned at the next time step and make the calculations

only in the surrounding volume.

A challenge when the robot should adapt to the environment is to differentiate be-

tween the physical changes that are expected and should happen, and the changes

that not are supposed to happen. One example of such expected changes could be

when the robot manipulates one or more objects in the environment. As this is a

part of the normal operation, it should not raise a collision detection, which again

means that the robot should be able to interact, or put in another words, “collide”

with the object. To address this, one may associate an attribute with each object.

As a simplistic example, let these attributes have the following values: “green”,

“orange” and “red”. The elements of the static part of the scene, i.e., the areas that

should not change during the time of operation and the robot is not allowed to inter-

act with it, are marked “orange”. Objects that the robot should interact with, should

be marked with “green”. Finally, objects introduced which are new to the scene

should be marked as “red”. Further, it should also be associated a distance to each

of the three attributes. The new unknown objects in the room, marked with “red”,
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are expected to have higher uncertainty associated with them, compared the original

environment, and hence, the associated collision detection distance should therefore

be larger than that for the static environment. The static environment would then

warn about collision at closer distance than for the new objects. Finally, the ob-

jects to be manipulated would have zero distance or no distance, which means that

interaction with these objects should not result in a collision detection.

Figure C.8: Example of different Octree resolutions on the robot.

6 Conclusions And Future Work

This paper shows that the traditional approach with intersecting Octree cubes could

be challenged by the emerging massively parallel GPU technology, bringing ad-
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ditional information such as near collision. CUDA could reduce the calculation

time significantly for a large number of operations, on the other hand, for a smaller

number of calculations, the CPU is faster. In addition, this paper shows that it is

beneficial to use an Octree representation of the environment if the computational

time should be kept low. In addition, it is proposed to be using different resolution

for the robot and the environment models, which will yield higher performance for

an adaptable system. It has been shown that the developed CUDA algorithms in

many cases outperforms the proposed CPU implementation and that GPU-based al-

gorithms could be a favorable choice in real-time industrial robot collision detection

applications.

Future work will focus on using and expanding the methods which have been devel-

oped in this paper. The next steps will focus on collision avoidance, which requires

an accurate mapped environment and fast calculations to the nearest objects. In

addition to this, developing methods for including newly discovered objects that

have entered into the environment during operation, to the world map needs further

attention.
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Abstract — In this paper we present an experimental study on real-time colli-
sion avoidance with potential fields that are based on 3D point cloud data and
processed on the Graphics Processing Unit (GPU). The virtual forces from the
potential fields serve two purposes. First, they are used for changing the ref-
erence trajectory. Second they are projected to and applied on torque control
level for generating according nullspace behavior together with a Cartesian
impedance main control loop. The GPU algorithm creates a map representa-
tion that is quickly accessible. In addition, outliers and the robot structure are
efficiently removed from the data, and the resolution of the representation can
be easily adjusted. Based on the 3D robot representation and the remaining
3D environment data, the virtual forces that are fed to the trajectory planning
and torque controller are calculated. The algorithm is experimentally verified
with a 7-Degree of Freedom (DoF) torque controlled KUKA/DLR Lightweight
Robot for static and dynamic environmental conditions. To the authors knowl-
edge, this is the first time that collision avoidance is demonstrated in real-time
on a real robot using parallel GPU processing.
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1 Introduction & State Of The Art

1.1 Problem Statement

Over the last decades robots carried out various autonomous operations in the real

world and were certainly a game changer in automation as we know it today. They

perform repetitive and laborious work that requires high precision and large pay-

loads. However, the success of manipulating robots in the real-world was so far

limited to pre-planned tasks that require no online re-planning on trajectory nor task

level. In particular, no technology was mature enough yet to let robots do quick and

safe low-level decision making even on collision avoidance level. The recent trend

of enabling robots to physically interact with humans in co-worker settings, how-

ever, enforces the need for viable solutions to the problem. Also the need to let

larger industrial robots carry out more flexible tasks in other domains than manu-

facturing in rather uncertain and potentially changing environments increases the

need even further. Both from a safety as well as task completion perspective, sensor

based dynamic motion planning, for both in- and outdoor robots, could avoid caus-

ing damage in an unplanned event where an obstacle comes to block the original

robot path.

1.2 State of the art

The state of the art is divided into three parts: applications, sensing and collision

avoidance. The focus is on two significant application fields, namely robotic co-

workers with light-weight robots, where the main concerns are high-performance

physical human-robot interaction (pHRI) and safety, as well as new applications for

larger industrial robots in harsh environments.

1.2.1 Applications

The KUKA/DLR Lightweight Robot (see Figure D.1) was initially developed by

DLR (Albu-Schäffer et al., 2007) and has its roots in the space mission project

ROTEX (Hirzinger et al., May). Later developments of the robot, after version
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Figure D.1: The KUKA/DLR Lightweight Robot equipped with a chuck-tool, which
enables the robot to conduct different operations equipping e.g. an umbraco bit or
a bore bit.

III onwards, have been done in cooperation with the robot manufacturer KUKA

(Bischoff et al., June). Major design considerations regarding the 7-DoF robot was

the intention to let the robot support and intuitively interact with humans in indus-

trial manufacturing domains. There has been considerable studies with the LWR in

the pHRI context (e.g. (Haddadin et al., 2010; De Luca and Flacco, June)). In the

second work e.g. the human hand is allowed to interact with the robot. A Kinect

depth sensor is used to observe the scene, a hand gesture initializes interaction, and

the hand is filtered out. The robot actively avoids all parts of the scene, which are

still present in sensor data.

Other work presented in the field of collision avoidance is the reactive real-time

motion generator by (Haddadin et al., 2010). More sophisticated path planning

algorithms need considerable time for path calculation. Reactive motion genera-

tors are typically subject to getting stuck in local minima. The reactive algorithm

in (Haddadin et al., 2010) runs at the inner control loop at 1kHz, it can gener-

ate smooth motions, while maintaining desired velocity profiles and ensure smooth

human contact through velocity profiling. The algorithm demonstrated its perfor-

mance by experiments for both statical and dynamical obstacles. The robot was able

to circumvent obstacles and reach the respective goal. Also when an external force

was applied to the robot, such that it deviated from its original path, it converged to
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the goal when the external contact force was removed. In addition, the algorithm

was validated by using different types of sensors, such as laser scanner and tracking

system for keeping track of the wrist.

The circular fields methods use an analogy to electromagnetic fields and was re-

cently extended in (Haddadin et al., 2011). In contrast to potential fields, circular

fields associate magnetic fields to environmental obstacles and take into account the

robot velocity as well. However, at the same time circular fields methods require

some additional knowledge of the environment, such as surface normals. Important

to notice is that the algorithm is not prone to local minima, which is demonstrated

in (Haddadin et al., 2011) by simulating different well-known trap scenarios. Fur-

thermore, the paper demonstrates dynamical obstacle avoidance with complex 3D

geometry.

Figure D.2: A robot located in a potentially explosive environment, among pipes
carrying gas. This shows a state of the art petrochemical related application for
industrial robots.

Industrial robots are exposed to more demanding environments than ever before

(see Figure D.2), performing on-site process inspection and manipulation while be-

ing remotely operated. Within the oil and gas industry, the strict regulations these

robots have to comply with, such as ATEX (Leroux, 2007) (French for “atmospheres
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explosibles”) certified equipment and high reliability pose a real challenge when re-

searching real-time collision avoidance. The work by (Anisi et al., 2011) presents a

robotic valve manipulation application and showcases the according demands. The

robot is located outdoor at a running hydrocarbon process facility doing valve ma-

nipulation with sensor based online trajectory planning. Two other applications are

presented in (Anisi et al., 2010), the first is an indoor vision based valve manip-

ulation with two collaborating robots. The first robot determines the orientation

and the exact position of the valve, using an end-effector mounted network camera

and a gradient based optimization algorithm. The second robot picks up the tool

from a tool change holder and moves over to the valve and conducts the manipula-

tion. The second presented application is a semi-automated scraper handling task,

where a pipe is cleaned by sending the pressure driven scraper, from one location

to the receiving destination. At the receiving end the robot opens the door to a de-

pressurized chamber and locates the scraper by a proximity switch mounted at the

tool. The scraper is extracted and the door is closed.

The literature referenced above demonstrates a few applications in an industry with

strict regulations, where safety for humans and equipment is of highest importance.

This shows that the oil and gas industry is starting to look at the opportunities that

off-the-shelf industrial robots can provide. One of the challenges in this field is

to best utilize already certified equipment and introduce new solutions to improve

operations and safety.

1.2.2 Kinect, 3D Points, Graphics Card

Since the depth camera Kinect was released in November 2010, a vast amount of

research has been done in relation to the device, such as 3rd party drivers from

OpenKinect and OpenNI, Microsoft’s own SDK for Windows and libraries for

image and point cloud processing such as Point Cloud Library (PCL) (Rusu and

Cousins, 2011). PCL version 1.6 has focus on CPU based algorithms, while algo-

rithms for the GPU is under development. The work in (Neumann et al., 2011) uses

Kinect data and processes it on the GPU, for point registration purposes. One of

the described advantages of the GPU utilization, is the transformation of the Kinect
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data to 3D points. Each pixel in the 640x480 RGB data is associated with a depth

value. The transformation of each pixel to its corresponding 3D coordinate is highly

suitable for parallel processing.

While there is significant research being done on the GPU, it has still not been a

real alternative to the CPU in the majority of robotics applications. The reason

is that the calculations need to be parallel and of a certain size before the GPU

will outperform the CPU. Another factor has been development time and increased

complexity, when comparing the complexity of C or C++ code for a CPU with

CUDA C code for a GPU.

1.2.3 Collision avoidance

Robot collision avoidance could be described as a set of instructions sent to the

robot such that it avoids unintended interaction with objects while moving to its

desired position. Such instructions could be generated from models of the environ-

ment (Henrich et al., 1998) or sensor data (Borenstein et al., 1991) (or a combination

of both). The pioneering work in real-time robot manipulator collision avoidance

and potential fields started with (Khatib, 1984) and (Khatib, 1986). The principle

of the method is that a distance dependent repulsive force is generated as a function

of the distance that is either fed as control input or modifies the path of a stable

desirably attractive dynamical system, this in turn, generates a suitable reference

trajectory. For obstacle avoidance the force will be repulsive, and is e.g. formulated

as a polynomial function. This typical, very broad class of functions could give ap-

plication desired characteristics such as the force increasing polynomially the closer

the manipulator gets to the obstacle. Even though the field of obstacle avoidance is

not new, it is still being researched heavily today. At the time of writing, a viable

solution for collision avoidance in this field has not been demonstrated. Some of the

more recent work on improving potential field like methods is the significant exten-

sion in (Haddadin et al., 2011) of the original circular fields approach developed in

(Singh et al., 1996).

The work presented in this paper is related to (Flacco et al., 2012), however in this

paper the robot is represented as a vertex model as opposed to spheres. As such, this
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gives a more realistic representation of the robot. The volume map is represented

as voxels with a user defined resolution. The calculations are performed using both

the GPU and CPU, which is one of the main contributions in this paper, in contrast

to previous work focusing only CPU implementation.

2 Algorithm

2.2 Overview of Approach

In our framework, collision avoidance behavior is incorporated on two levels:

1. on trajectory deformation level, i.e. xxxd(t) responds to the virtual forces

2. on torque control level, i.e. a control input τττv causes causes avoidance joint

torques

In order for the first level to respond to virtual forces, the trajectory generation

needs to establish a dynamical system with physical motivation (essentially a vir-

tual impedance behavior) such as the one presented in (Haddadin et al., 2010).

The virtual dynamics generate a reference trajectory that responds to disturbance

wrenches on operational task level and is then fed to a Cartesian impedance con-

troller. Clearly, this scheme can only ensure end-effector collision retraction/avoidance.

However, for kinematically redundant manipulators such as the LWR, this does not

cover appropriate nullspace reactions. Therefore, a nullspace collision avoidance

controller τττv is designed to implement according behavior. For this, the virtual

forces Fv,n that act on each link n are projected via the respective sub-Jacobians Jn

to joint space, followed by a suitable nullspace projector N (qqq). This ensures that

τττv does not interfere with the primary impedance task. The overall controller can

be written as

τττd = JT (Kxx̃xx+Dx ˙̃xxx)+ggg(qqq)+ τττv (D.1)

= JT (Kxx̃xx+Dx ˙̃xxx)+ggg(qqq)+N (qqq)
N

∑
n=1

JT
n Fv,n, (D.2)
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2.1 Notation Used

Table D.1: For ease of use our notation is summarised below.
Symbol Explanation

qqq Robot joint angle vector
τττd Desired control input
xxx Real end-effector positon
xxxd Desired end-effector position
x̃xx Difference between real and desired positions

Dx Cartesian damping matrix
Kx Cartesian stiffness matrix

ggg(qqq) Gravity compensation torque in joints
J(qqq) Robot Jacobian

N (qqq) Nullspace projector
τττv Virtual torques

fff n,mmmn Link force/moment vector
F(ddd) Reactive force
Fv,n Virtual forces/moments
Tl(qqq) Transformation matrices, one for each link:

robot base to link frame as a function of qqq
pppin Depth data from Kinect sensor
rrrin Robot vertices
rrr j Transformed vertices in robot model
d Distance between robot and env. points
dc Distance from an environment point

to the center of rotation for a robot link
rmax Threshold force distance

sl Voxel side length
vs Voxel size

x0,y0,z0 Offsets applied to measured points
xw,yh,zd Edge lengths of camera volume
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where the notation is consistent with Table D.1. The virtual disturbance wrenches

Fv,n for each link n are typically generated from sensory data and/or geometric

knowledge from the environment. Environment 3D data is gathered using a Mi-

crosoft Kinect. Applying Algorithm 1 with 3D environmental point cloud data and

a 3D vertex model of the robot, the set of virtual forces/moments Fv,n is generated

as explained next.

2.3 Calculation of reactive forces

The calculation of the reactive forces are well suited for parallel processing, because

the distance between each point represented by the robot model and each point in

the environment can be calculated separately. The distance ddd would then be used,

such that the force is a function of the distance, F(ddd). The force function could take

many forms, where as in our case, we use a second order polynomial function. To

avoid any forces from objects located at a predefined distance farther from the robot,

a threshold force distance rmax is set such that the robot only reacts to the objects

located at ‖d‖ ≤ rmax. These forces are then summed to create a force vector and a

moment vector for each link and the end effector.

fff n = ∑F(ddd) (D.3)

mmmn = ∑F(ddd)×dddc (D.4)

where fff n and mmmn are the forces and moments for each respective link nnn, and dddc is

the distance from the environment point to the center of rotation for the robot link.

2.4 Voxel map creation

When creating the voxel map, a small footprint and a parallel scheme of the data is

important. To reduce the size of the map, a simple compression method is proposed,

which is highly parallel and easily deployable on the GPU.

A regular voxel map for 3D Cartesian space representation could be represented by
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Algorithm 1: Reactive Force/Moment Calculation
Input Map:

Depth data pppin
Voxel size vs
Bounds x0, y0, z0, xw, yh, zd
Neighbours n

Input Robot:
Vertices rrrin for all n links
Joint angles qqq
Transformation matrices Tl(qqq)

Input Potential field:
Pointer to force function F(ddd)
Threshold force distance rmax

Voxel insertion:
for each point ppp in pppin within bounds do

if ppp within VoxelMap then
VoxelMap← ppp

end
end

Remove robot from VoxelMap:
for each vertex rrr in rrrin do

rrr j ← Tl(qqq)× rrr
if VoxelMap contains rrr in rrr j as voxel then

Remove rrr j from VoxelMap
end

end

Remove Outliers:
for each voxel vvv in VoxelMap do

if vvv has less than n neighbours then
Remove vvv from VoxelMap

end
end

Calculate forces and moments:
for each link n do

f̂ff ← 000, m̂mm← 000
for each voxel center vvvc in VoxelMap do

for each rrr in rrr j belonging to link n do
ddd← rrr− vvvc
if ‖ddd‖< rmax then

f̂ff ← f̂ff +F(ddd)
m̂mm← m̂mm+F(ddd)×dddc

end
end

end
Fv,n← f̂ff , m̂mm

end

return Fv,n
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points of type PPP = (x y z)T , and demonstrate its presence in a 3D array by

Map3(x,y,z) = 1 (D.5)

If the map is limited e.g. to 5 m x 5 m x 5 m with a resolution of 5 mm, the map

would consist of 109 elements, or 1 gigabyte of memory allocated in an uncom-

pressed state. Such an approach is clearly not space efficient. Methods such as

kd-trees(Bentley, 1975) could now be used to reduce the memory footprint. There,

the 3D points are structured in a 3-dimensional tree which allows for faster search.

The time to generate the tree and calculate the k nearest neighbors (kNN) is, how-

ever, not fast enough for our demands. The work in (Arefin et al., 2012) provides,

in addition to their own algorithm GPU-FS-kNN, a good overview of different kNN

algorithms for both CPU and GPU. Due to the current speed limitations of these

approaches, we chose to follow a different algorithmic path:

If the 3D-Sensor is located in a fixed position and orientation, the only input to

the map is the (x,y,z)-location of the according measurements. If the z-coordinate

changes, the map needs to be updated (we can not get multiple depth values for the

same pixel) due to the fact that originally the data is 21
2D. Because of this limitation,

the voxel map can be represented as a 2D array, where its implicit structure may be

written as

Map2.5(x,y) = z. (D.6)

This representation is in fact very similar to the original one, except for the fact

that it has now a clear structure and it is possible to index the points directly. This

is done by creating the map with seven parameters: Offsets x0, y0, z0, dimensions

xw, yh and zd and voxel size vs. This results in the following relationship between

sensor points Pk = (xk yk zk) and Map2.5(xi yi).

ẑ = zk (D.7)

x̂i = floor
(

xk− x0

vs

)
(D.8)
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ŷi = floor
(

yk− y0

vs

)
(D.9)

From eqs. (D.8) and (D.9) it should be fairly straightforward to see that large values

for vS will lower the total resolution. The consequence is that not all points Pk will

appear in the Map2.5-representation. Averaging the depth value of the points could

result in hallucinated distances in open space, e.g. the mean distance between an

object that is close to the sensor, and an object farther away. If the location of the

Kinect is chosen such that it is close to the volume that it shall observe, a reasonable

choice is to insert the point with the lowest z-value, into the Map2.5. If the depth

camera were to provide a resolution of 1 mm, a worst case with a voxel side length

of sl would lead to a loss of m = s2
l −1 points.

This loss is not of great importance as long as sl is kept reasonably low compared

to the size of the object surface area.

Some of the benefits of the Map2.5 structure are:

• Omission of the z-dimension, for 3 m depth with resolution 0.01 m which

results in a 300 times more compact structure than Map3.

• Structured in a way, which enables fast localization and removal on the GPU.

Example: The robot could be removed from the map without using any search

algorithm. The robot is simply inserted into a separate voxel map, created

with the same parameters as the environment. Then in parallel for all points,

remove the points where the robot overlaps with the environment.

• No need to search for neighbors which can be indexed directly. Example: To

find N neighbors for all points, located within radius r from point p, it is only

necessary to check exactly those voxels within radius r of the point. This can

be done for each point in parallel.

Well known problems with the depth data from the Kinect are noise and presence

of outliers (Khoshelham and Elberink, 2012). Outliers could contribute to residual

motion of the robot if it is located within the threshold range of the link. This could

severely affect the potential field force acting on the robot, if it is located close to

the link. An outlier could potentially increase the risk of collisions, jeopardizing
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the entire purpose of collision avoidance. A simple and fast algorithm for outlier

removal for the GPU is therefore proposed in algorithm 1.

Finally, the concrete robot (LWR) is represented by seven vertex models, one for

each link, base and end-effector. The robot has two representations in the algo-

rithm, the first is a voxel map (voxelrob) used for robot removal. The second is an

unstructured vertex model (see Figure D.3) used for calculating the forces. voxelrob

is created with the same parameters as the environment map (voxelenv). For each

iteration, a homogeneous transformation accordingly to the robot’s (sub) forward

kinematics are applied to each of the vertex models of the robot and inserted into

a new map voxelrob. The robot is then removed from the environment. Each voxel

in voxelrob that corresponds to a voxel in voxelenv (plus a tolerated offset) is thus

removed from voxelenv.

The unstructured vertex model of the robot, which gives its proper 3D representa-

tion, is used for calculating the forces generated from the potential field. For each

vertex on every link in the robot vertex model, a distance is calculated to all envi-

ronment voxels. Each of these distances contributes to its link with three forces and

three moments. The forces and moments are then added for every link. In the end,

three total forces and moments act on each joint, respectively.

Figure D.3: Vertices of the last arm segment, wrist, flange and tool.
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3 Experiments

3.1 System Setup

The experimental system consists of a KUKA LWR IV manipulator with 7-DoFs

and the robot controller system Beasty (Parusel et al., May) running at 1000 Hz.

The computer for the calculation of algorithm 1 is equipped with an Intel Xeon 3.3

GHz CPU, 8GB of memory and a NVIDIA Geforce GTX 680 graphics card.

3.2 Experiment Design

The experiments are carried out in an industrial setting, partly shown in Figures D.6

to D.9. The robot is located in the environment center and the Kinect depth sensor

is placed such that it captures the robot in a side view (please see accompanying

video for details).

For both experiments the voxels had a resolution of 10 mm, while the volume cov-

ered by the depth camera is xwidth=2000 mm, yheight=2000 mm and zdepth=1800 mm.

The robot model consists of two sets of 7 vertex models, which contain 2468 and

4701 vertices in total.

3.2.1 Experiment 1, Static Objects

In the static environment, the robot first runs the path simply generated by eq. (D.2)

if no collision forces modify the path. The depth data is checked for changes at the

same rate as the data becomes available. First, a box is placed in the environment

to block the robot path. Different types of objects are then placed on top of the box,

thus changing the environment. The robot actively avoids every object that partly

blocks its free movement volume.

3.2.2 Experiment 2, Dynamic Objects

In this experiment the robot end-effector is set to reach a goal location. A human

worker then enters the environment during the robot movement, causing the manip-

ulator to deviate from its nominal path.
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4 Results

The experimental evaluation indicates the performance of the algorithms for both

experimental setups. The robot shows whole-arm collision avoidance, while still

being able to reach its final goal position if the according volume is clear. The time-

stamps in the screenshots (Figure D.6 – D.9) are all relative, the entire experiment

was done in one shot.

4.1 Static Obstacles

Figure D.6 depicts the desired path if no obstacles obstruct the motion. The robot

intends to move along this path for the entire experiment. While being in motion, a

blue box is placed in the path of the robot, see Figure D.7. As can be seen from the

figure, the robot actively avoided the box. To make it more difficult for the robot to

reach its goal, the white obstacle is placed on top of the box, see Figure D.8. The

white obstacle is moved to another position further away from the robot. The robot

responds by avoiding the obstacle on the right side (not shown in the figures).

4.2 Dynamic Obstacles

The second phase of the experiment includes a dynamic obstacle, a person enters

the workspace while the robot is in motion. As one can see, the robot is able to

quickly avoid the human and prevent the collision. In the accompanying video, the

dynamic response can be seen more clearly and it is shown that the robot converges

to the goal again as soon as the human leaves the workspace.

4.3 Calculation Time

Since the map is recreated each time new sensor data becomes available, it is possi-

ble to calculate the potential forces in the mean time. Even though the environment

update rate is restricted by the Kinect, the robot state can be retrieved at a rate of

1 kHz. In parallel to waiting for new depth data, the algorithm then calculates the

current potential field forces based on the updated robot position. The potential
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Figure D.4: Algorithm performance, calculation time on the vertical axis in mil-
liseconds for 2000 samples. The robot model consists of 2468 vertices. The green
graph shows an environment voxel resolution of 5 mm, while the blue graph shows
a voxel resolution of 10 mm. The red lines depicts the average measurement value.

field force calculations continuously receive new robot joint angles, transforming

the robot vertices accordingly, and calculating the respective potential field forces.

Figure D.4 depicts the calculation time for 2468 robot vertices with 10 mm and

5 mm resolution. The average time for the full map creation is 10.41 ms and

10.44 ms, respectively. The potential field calculations take on average 4.74 ms

and 8.68 ms, respectively. Figure D.5 is generated with a robot consisting of 4701

vertices, and for two different voxel resolutions of 10 mm and 5 mm, respectively.

The average time for the map creation was 10.45 ms and 10.51 ms, while the po-

tential field calculation takes 5.70 ms and 11.29 ms, respectively.
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Figure D.5: Algorithm performance, calculation time on the vertical axis in mil-
liseconds for 2000 samples. The robot model consists of 4701 vertices. The green
graph shows an environment voxel resolution of 5 mm, while the blue graph shows
a voxel resolution of 10 mm. The red lines show the average measurement value.

4.4 Comparison GPU and CPU speeds

The results in Table 4.4 show a significantly lower calculation time for the GPU

algorithm. The performance increase varies from a factor of 68.63 to 402.07 de-

pending on voxel map resolution and number of robot vertices. The significantly

better performance on the GPU is the enabling factor allowing real-time collision

avoidance.

5 Conclusion

In this paper, a study on GPU based collision avoidance with Potential Fields is

presented, using 3D point cloud data converted to voxels as environmental rep-

resentation. The virtual forces that are fed to the trajectory planning and torque
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Archi- Voxel map Robot Algorithm Performance
tecture resolution vertices calculation time factor
CPU 10 mm 4701 1.426 s

129.63x
GPU 10 mm 4701 0.011 s

CPU 5 mm 4701 5.692 s
402.07x

GPU 5 mm 4701 0.014 s

CPU 10 mm 2468 0.755 s
68.63x

GPU 10 mm 2468 0.011 s

CPU 5 mm 2468 3.009 s
273.54x

GPU 5 mm 2468 0.011 s

Table D.2: CPU vs GPU performance. In the performance calculation xwidth and
yheight are both 2000 mm, zdepth is 1800mm and rmax is 300 mm.

control level are calculated in real-time. In fact, the proposed algorithm may even

run significantly faster than the sensor frame rate. The experimental performance of

the scheme showed good results with a 7-DoF KUKA/DLR Lightweight robot for

various static and dynamic environmental conditions. In particular, the combination

of trajectory deformation based on virtual dynamics that are affected by the virtual

forces on Operational space level, together with the projection of the forces into the

nullspace of the Cartesian impedance controller led to convincing whole body real-

time collision avoidance responses. To the authors knowledge, this paper presents

for the first time real-time collision avoidance using a real robot and parallel GPU

processing.
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Figure D.6: No obstacle: Showing the original robot path.

Figure D.7: Static obstacle: A box blocks the robot path.

Figure D.8: Static obstacle: Another object is placed in front of the robot, to make
the free movement volume even smaller.

Figure D.9: Dynamic obstacle: A human worker enters the work area and the robot
actively avoids him.
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Parusel, S., Haddadin, S., and Albu-Schäffer, A. (May). Modular state-based behav-

ior control for safe human-robot interaction: A lightweight control architecture

for a lightweight robot. In Robotics and Automation (ICRA), 2011 IEEE Intl.

Conf. on, pages 4298–4305.

Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In

IEEE Intl. Conf. on Robotics and Automation (ICRA), Shanghai, China.

Singh, L., Stephanou, H., and Wen, J. (1996). Real-time robot motion control with

circulatory fields. In Robotics and Automation, 1996. Proc., 1996 IEEE Intl.

Conf. on, volume 3, pages 2737–2742 vol.3.

140



Paper E
Implementation of a Real-Time

Collision Avoidance Method on a

Standard Industrial Robot Controller

Knut B. Kaldestad, Geir Hovland and David A. Anisi

141



Paper E

This paper has been submitted as:

Kaldestad, K., Hovland, G., and Anisi, D. Implementation of a Real-Time Colli-

sion Avoidance Method on a Standard Industrial Robot Controller. In IEEE Inter-

national Conference on Intelligent Robots and Systems. Chicago, Illinois, 2014.

After the above-mentioned paper previously unpublished work demonstrating the

developed method in an outdoor experiment is presented as an appendix.
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Abstract — This paper presents, to the authors knowledge, for the first time
real-time collision avoidance implemented on a standard industrial robot con-
troller using point clouds and parallel GPU processing. The algorithms are
developed in such a way that minimal modification of existing end-user pro-
grams are required to enable the features and benefits of real-time collision
avoidance. The proposed approach is successfully demonstrated in an exper-
imental setup consisting of an ABB IRB1600 industrial robot with an IRC5
controller, an enclosed Microsoft Kinect sensor for generating point cloud data
and an external PC with a GPU for processing the point cloud and interfacing
with the robot controller.

Keywords — Collision Detection, Industrial Robot, Hidden Markov Model, Expert

System.

1 Introduction

Real-time collision avoidance with dynamic obstacles has been demonstrated on

experimental research platforms, for example (Kaldestad et al., 2014). With such

systems algorithms for real-time avoidance can be implemented at low levels in

the controller using advanced programming languages at fast update rates, typi-

cally 1ms, (Bischoff et al., June). With an industrial robot controller, however,
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end-users usually do not have access to the low-level controller loops and the pro-

gramming language is limited by the standard robotic application languages, which

usually have smaller instruction sets and features compared to languages such as

C/C++ and are often interpreted in run-time on the controller and hence slower than

compiled programs. To the authors knowledge, real-time collision avoidance in-

cluding dynamically measured point clouds in 3D and parallel GPU processing is

demonstrated for the first time in this paper on a standard industrial robot, in this

case an ABB IRB1600 robot with an IRC5 controller. A separate Linux PC with

a GeForce GTX TITAN GPU with 2688 cores and an enclosed Microsoft Kinect

sensor are used to generate point clouds of dynamic objects in the robot station.

The point cloud data is converted to a force acting on the robot’s tool and this force

is interfaced with algorithms using the standard RAPID application programming

language on the IRC5 controller. Although a separate Linux PC is required to pro-

cess the point cloud data, the solution is implemented in such a way that minimal

modification of existing end-user RAPID programs are required to take benefit of

the collision avoidance features.

Similar to the work presented in this paper, (Winkler and Suchý, 2011) presented

an approach to collision avoidance of industrial robots based on force fields. The

force field was generated by virtual charges which were placed on obstacles. The

positions of the obstacles were determined continuously by image processing using

a camera. The method was implemented using two KUKA KR6/2 industrial robots,

where one robot moved in a straight-line path while the second robot dynamically

positioned a circular blue object in the workspace of the first robot. A colour fil-

ter, step edge detection and the Hough transform were used to process the images

with a total computation time of between 200ms and 500ms. The method presented

only worked if the colour of the obstacle was different from the surrounding en-

vironment, including the robots. Parallel computing (multi-core or GPU) was not

attempted.

In (Csiszar et al., 2012) 2D collision avoidance based on forces from a virtual elec-

tric field approach was demonstrated. An experimental setup consisting of a KUKA

KR500 industrial robot, KR C2 controller, two external PCs and a Sick laser scan-

ner S3000 were used. The laser scanner observed the area around the robot in 2D
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(XY) while the height of the obstacle was considered to be infinitely large. The

Microsoft Kinect sensor was mentioned as an alternative for extension to 3D, but

this sensor was not used in (Csiszar et al., 2012). The volume of the robot itself was

not considered, but mentioned as a future extension of the work to improve the col-

lision avoidance. The experimental results in the paper look good, but performance

of the system in terms of for example force calculation update rates, communication

speeds, etc. was not mentioned.

Apart from the two references above, most open literature related to collision avoid-

ance of industrial robots is based on offline planning and optimisation, see for ex-

ample (Rambau and Schwarz, 2010) where KUKASim was used to generate the

testdata and the software cplex was used to solve mixed-integer optimisation prob-

lems for collision avoidance. Another example of offline-based collision avoidance

is in (Asakawa and Kanjo, 2013) for welding of large structures. Collision avoid-

ance was based on the application of potential force fields generated by CAD data

of the robot and the surrounding environment.

The paper is organised as follows: Section II gives an overview of the proposed

approach, Section III presents the developed algorithms in more detail, Section IV

shows experimental results while Section V presents final conclusions.

2 Approach

An ABB industrial robot which is located in an industrial laboratory environment

generates trajectories based on RAPID robtargets1 and is modified by virtual forces

generated from distances between a vertex model of the robot and observations of

the environment. The environment is observed by a Microsoft Kinect sensor and

the 3D point cloud (coordinates [x,y,z]) is sent to an algorithm which structures

and compresses the data into a voxel map. A filtering algorithm is then applied to

the data which removes outliers. Further a one-to-one vertex model of the robot

is transformed to the position of the robot in the voxel map. This model is used

to remove the robot from the point cloud such that only the environment without

1Rapid is an ABB propriarity robot programming language. A robtarget is an object containing
information, such as position and orientation (quaternion), for trajectory planning and execution.
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the robot remains. The transformed model of the robot is then used to calculate

reactive forces and momentums on each link based on distances using a poten-

tial field algorithm. For more details, see (Kaldestad et al., 2014). As previously

mentioned, this paper focuses on the implementation of the GPU/CUDA algorithm

applied to a standard ABB industrial robot controller for real-time collision avoid-

ance. With the oil and gas industry in mind, the Kinect sensor has been mounted

inside a certified explosion proof casing and the chosen application is the opening

and closing of an industrial-type valve. The main contributions of the paper are: 1)

implementation and demonstration of a real-time collision avoidance method on a

standard industrial robot controller previuously demonstrated only on experimental

research systems and 2) the collision avoidance functionality can be added to ex-

isting end-user programs with a minimum of modifications - all MoveL instructions

have to be replaced by KMoveL (Algorithm 1) - all parameters to the function call

MoveL/KMoveL are the same.

3 Algorithms

Algorithm 1 shows the pseudo-code for the algorithm implemented on the IRC5

controller. It communicates with the external PC and interpolates long linear moves

into smaller segments. Both position and orientation (quaternion) are interpolated.

In Algorithm 1 ⊗ denotes multiplication of two quaternions. Fig. E.1a shows the

flow-chart description of Algorithm 1.

Algorithm 2 shows the pseudo-code for the algortihm implemented on the CUDA

enabled external PC. The GPU algorithm is documented in detail in (Kaldestad

et al., 2014). The point cloud data from the Kinect is sampled at 30Hz. The com-

pliance matrix k is 3× 3 and is used to convert the virtual forces to adjusted Tool-

Centre-Point (TCP) positions. The data exchange between the IRC5 controller and

the PC depends on the programmed speed of the robot, since data is exchanged be-

tween the interpolated robot movements. Fig. E.1b shows the flow-chart description

of Algorithm 2.
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Algorithm 2: RAPID Language KMoveL: Robot Communication and Move-
ment

Input Robot:
Step size s (distance)

f1: Interpolate Orientation:
Read current orientation quaternion qqq
Read target orientation quaternion q̂qq
Calculate minimum n steps to target
q̃qq = rotQuaternion(qqq, q̂qq, n)

f2: Socket Communication (ABB PC Interface):
Send joint angles θθθ out
Receive reactive TCP movement xxxin

f3: Move One Step Towards Target:
IF nactual < n THEN qqqnext = qqq ⊗ q̃qq
ELSE qqqnext = q̂qq
Read current target position ddd
Calculate unit vector vvv towards target position d̂dd
dddnext = ddd + vvv · s + xxxin
MoveL dddnext,qqqnext
nactual = nactual +1

fmain : Robot Movement:
Execute f1:Interpolate Orientation
WHILE d̂dd not reached:
Execute f2:Socket Communication
Execute f3:Move One Step Towards Target
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f1: Robot Movement

Has target been 

reached?

f2: Socket 

Communication

(ABB PC Interface)

No

f3: Move One Step 

Towards Target

Execute next RAPID line

fmain: Robot Movement

Is command type 

KMoveL?

Yes

No

Yes

f1: Robot Movement

Has target been 

reached?

f2: Socket 

Communication

(ABB PC Interface)

No

f3: Move One Step 

Towards Target

Execute next rapid line

fmain: Robot Movement

Is command type 

KMoveL?

Yes

No

Yes

(a) Robot program as implemented in RAPID
on the robot controller

fmain: Robot Movement

Have new angles
arrived?

f1: GPU Calculate 
reactive Forces

Yes

f2: Calculate Reactive 
Movement

No

Send Reactive TCP 
Movement

(b) C++ and CUDA C program flow.

Figure E.1: Flowchart of Programs
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Algorithm 3: CUDA Enabled Computer
Input:
Spring konstant k

f1: GPU Algorithm (Kaldestad et al., 2014)
Calculate reactive forces FFF

f2:Calculate reactive movement TCP
Read forces acting on TCP FFFTCP
xxxout = FFFTCP · k

fmain : Reactive Movement:
WHILE in execution state:
Receive joint angles θθθ in
Execute f1:GPU Algorithm
Execute f2:Calculate reactive movement xxxout
Send reactive TCP movement xxxout

Figure E.2: The working environment of the robot including a bottle which acts as
an obstacle.
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Figure E.3: The Microsoft Kinect monted inside an explosion proof casing.

4 Experiments

Fig. E.2 shows the experimental setup. An ABB IRB1600 robot with a special

tool to open and close a valve is used. The industrial-type valve is included for

demonstration purposes and is hence not attached to any piping in this experiment.

The bottle to the right in the picture is introduced as a dynamic obstacle. The

coordinate system used in this paper is the standard global frame of ABB robots.

The global X axis is on the floor and parallel with the upper arm of the robot in

the home position shown in Fig. E.2. The global Z axis points from the floor to the

ceiling and the y-axis equals y = z× x.

Fig. E.3 shows the Microsoft Kinect sensor mounted inside an explosion-proof cas-

ing with a glass thickness of 9.6mm. The restricted space inside the casing is ac-

commodated by modifying the Kinect by removing the foot and the casing (except

for the front). Additionally cutting parts of the metal bracket including parts of the

front casing on each side of the circuit board is necessary for mounting the Kinect

such that the infrared projectors field of view (the left most lens in Fig. E.3) is kept

to a maximum. The sensor casing allows the proposed solution to be used in ex-

zones (for example in the oil & gas industry) as long as the robot and controller
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themselves are also ex-proof.

Fig. E.4 (left) shows the robot as the TCP passes above the obstacle, while Fig. E.4

(right) shows the robot when it has reached the final target position and adjusts the

valve. Fig. E.5 shows some of the measured positions in the adjusted toolpath (red

circles). The blue arrow in Fig. E.5 shows an example of the virtual force vector

calculated by the external CUDA-enabled PC.

Figure E.4: The picture on the left shows the robot as it avoids the obstacle. To the
right, the robot manipulates a valve.

Fig. E.6 is generated using rviz (Robot 3D Visualizer) in the Robot Operating Sys-

tem (ROS) (Quigley et al., 2009) and shows the 3D point cloud data generated by

the Kinect sensor. The points to the right in the figure represent parts of the bottle,

while the points closer to the TCP represent a human entering the robot station. The

point cloud of the robot itself is removed before the virtual force is calculated. The

green arrow in the figure shows the virtual force at the TCP which in turns generates

a position adjustment calculated via a compliance matrix k.

Figs. E.7-E.9 show the 6 measured joint angles as well as the X,Y,Z TCP positions

during the experiment. The TCP moves directly above the obstacle (bottle) at about

t = 25 seconds. The measurements in Figs. E.7-E.9 were recorded by the IRC5

controller at about 100Hz.

Figs. E.10-E.12 show the virtual forces generated on the CUDA-enabled PC from
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Figure E.5: Illustration of the robot path during collision avoidance experiment. At
the third last point in the figure, the force vector applied at the tool is shown (blue
arrow).

the Kinect’s point cloud data. The force vector (blue colour) in Fig. E.5 occurs at

about t = 33 seconds where the virtual force is negative in the X ,Y directions and

positive in the Z direction which is also the case in Figs. E.10-E.12. The virtual

forces are calculated on the PC at a rate of about 100Hz, while sent to the IRC5

controller at a slower rate, typically at 5Hz to 25Hz, depending on the interpolated

step size and the programmed speed.

5 Discussion & Conclusion

This paper has demonstrated real-time 3D collision avoidance on a standard in-

dustrial robot controller communicating with a CUDA-enabled external PC and a

Microsoft Kinect sensor. Although the techniques used in the paper (artificial force

fields generated from 3D point clouds) have been published before on experimental

research control systems, to the authors knowledge, this is the first time that the

same methods have been demonstrated using a standard industrial robot controller
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Figure E.6: Example of virtul force at tool-centre-point generated by point cloud
from obstacles.
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Figure E.9: X,Y,Z Positions of TCP (m).

without any special software or hardware modifications.

Of course, the proposed real-time collision avoidance approach could be improved

if implemented in the low levels (fast sample rates) of the controller loops by the

robot manufacturer. However, such a solution as presented in this paper is currently

not available as a standard product. The proposed method in this paper allows

current end-users of a standard industrial robot to implement and start using 3D

real-time collision avoidance with relatively little effort. End-users simply have to

replace all occurences of MoveL instructions in their ABB RAPID programs with

a new function call KMoveL which is implemented as shown in Algorithm 1 and

Fig. E.1a. The parameters to the new function KMoveL are by purpose kept identical

to the parameters of the standard function MoveL.

All point cloud measurements in this paper were taken through the glass of the

enclosure. The glass did not significantly distort the Kinect measurements, but the

small sized enclosure did limit the horizontal field of view of the sensor on the side

closest to the infrared projector. The small limitation of the view did not have an

impact on this application. A study of the distortion on the point cloud is left to

future work.

Future extension of the work presented in this paper will focus on the following: 1)

experiments with the Kinect sensor and enclosed casing in an outdoor environment

when the sensor is exposed to direct sunlight, rain, snow and ice, 2) handling and

avoidance of the robot’s wrist singularity and 3) prevent situations where the robot
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arms can collide with the robot itself.
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Figure E.10: Virtual force (blue) and fil-
tered force (red) at tool-centre-point in X-
direction.
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Figure E.11: Virtual force (blue) and fil-
tered force (red) at tool-centre-point in Y-
direction.
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Figure E.12: Virtual force (blue) and filtered force (red) at tool-centre-point in Z-
direction.
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Appendix — Previously unpublished work

1 Contribution

The robot considered in this appendix is an ABB IRB 1600 industrial robot, with

a standard IRC5 robot controller. In this system, two environments are considered,

one indoor and one outdoor environment. The indoor industrial lab environment

has good lighting, and consists of a work-bench, a valve and an obstacle (see fig-

ure E.2). The environment observer is a Microsoft Kinect which provides data of

any obstacle within its view. Even though everything in its strictest sense is an ob-

stacle to the robot, the robot is allowed to interact with objects such as the valve

as long as it is the intention of the task. Motivated by the requirements of the oil

and gas industry, the Kinect sensor is mounted inside a casing certified for use in

explosive environments (see figure E.3). The particular robot model used for the

experiments is not ATEX certified, but the collision avoidance methods which are

described here, are easily adapted to such robots. The typical system that would

benefit from a proper collision avoidance algorithm is any system which has to be

able to react to an unforeseen change in the environment surrounding the robot.

These unforeseen changes can be a surrounding structure having an unintended

change of pose and blocks the path of the robot. But it can also be an intended

change, such as a human that interacts with the environment close to the robot, or

interacts with the robot itself. Whatever the reason for change in the environment

is, a proper collision avoidance system would make any robot setup more safe and

robust. The challenges in this type of setup are the quality of the data the sensors

provide. One of the challenges with a camera and projector sensor, such as the

Kinect, is the limited field of view (FOV) which may require additional sensors

to cover the whole environment around the robot. Another problem can be sensor

interference, where multiple projectors interfere with each others patterns. In the

considered system setups, only one sensor is present. The amount of data that can

be manipulated depends on algorithmic requirements, the speed that the processing

units execute at and the number of processing units. In this work, highly parallel

algorithms are used, and therefore a powerful graphics card is used to handle the
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main computation load. Because a standard industrial robot controller is used with

as few modifications as possible, the robot controller is the main bottleneck which

limits the communication frequency between the controller and the computer which

calculates the virtual forces. The second bottleneck is the speed at which the robot

controller is able to modify the path and at the same time calculate a smooth trajec-

tory with minimal jerk.

2 Methodology

2.1 Sensor calibration

The initial part of the system setup is to correctly calibrate the sensor with regards

to the robot base. Without proper calibration of the sensor, the rest of the algorithm

will not work in a predictable way. In order to filter away the robot from the Kinect

data, the position of the robot with regards to the Kinect data must be determined.

This information is described by a 4x4 transformation matrix, consisting of the

position and orientation of the robot base with regards to the Kinect frame.

For the user who is not familiar with the Microsoft Kinect sensor, the front exposes

one infrared projector and two sensors. One of the sensors is a RGB camera and

the other is an infra-red (IR) depth sensor. There are drivers and libraries for mul-

tiple operating systems for acquiring and manipulating the Kinect data. A typical

manipulation is to map pixels in the RGB data to a pixel in the IR depth data. The

depth data can then be mapped to world coordinates [x,y,z], for further analysis or

manipulation.

Figure E.13 shows the program flow of the calibration algorithm. The Kinect is

placed in a position which gives sufficient information of the environment. It is

important that the sensor remains in the same position with the same orientation

after calibration, a slight deviation would require a re-calibration. A calibration

plate is mounted on the robot (see figure E.14) and is then faced towards the sensor.

The plate has two circles which are used to determine two centre points. The first

centre of the plate is mounted in the centre of the tool flange and the other with

a vertical offset. The vector between these two points represents the x-axis. The

y-axis is normal to the plate, and finally the z-axis is determined from the cross
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Figure E.13: Kinect to robot base calibration algorithm

product between the x- and y-axis. The two centre points are determined by user

input to a graphical user interface. The user marks a number of points on each of

the two circles, the points from the colour image is transformed to the [x,y,z] depth

data and the algorithm estimates the circle centre. It would of course be possible to

directly mark the pixel in the centre, but the estimation should yield a better result

since the result would not suffer directly from the resolution of the sensor or the

ability of the user to click exactly on the centre point. By using only one point,

this value would also be very susceptible to noise. After the pose of the calibration

plate is determined in the Kinect frame, the transformation from the Kinect frame

to the robot base could be determined by the robot kinematics and current joint

angles. Even though this calibration currently is semi-automatic, it can be modified

to achieve automatic calibration. In the described system, the calibration plate is

mounted in the centre of the end-effector, but the positioning of the calibration is

not limited as long as the pose is known. For a system which operates in a fully

dynamic system, where even the position of the sensor and the robot potentially can

change, the calibration plate can be mounted on the tool itself and be of a design
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that does not prevent the intended robot motions, to account for each of the six robot

joints.

Figure E.14: Calibration plate with additional markers from graphical user inter-
face for generation of the transformation matrix between the Kinect sensor and the
robot base.

2.2 Sensor calibration

Figure E.1b shows the implementation of the collision avoidance algorithm. This

algorithm which runs on a separate computer is communicating with the robot con-

troller through TCP/IP Ethernet. The robot controller can be seen as the master,

sending angles to the computer and querying for new forces. As seen from the al-

gorithm, it waits for new angles before it proceeds to calculate the reactive forces.

One of the most important steps in generating the reactive forces is to correctly filter

out the robot from the Kinect data. This filtering depends on a model of the robot

which is transformed by using the forward kinematics using the joint angles. Cor-

rect filtration is important because if the algorithm filters out the robot with wrong

link poses, parts of the actual robot will remain in the Kinect data. The remaining

data should only consist of the obstacles, because they will be fed into the algo-

rithm which calculates the reactive forces. In essence the reactive forces will not

only be generated from the obstacles but also from the robot remaining in the data.

This can result in very large and highly undesirable reactive forces being sent to the

robot controller. The robot can in such cases be perceived to be chasing itself. This
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unfortunate scenario can be avoided by initially having proper models of the robot,

in addition to have a properly calibrated system with a reliable sensor.

2.2.1 Robot implementation

The user-friendliness for the operator has been the main focus when developing the

robot controller algorithm. The algorithm is written in RAPID, which is an ABB

propriety programming language for robots. Figure E.1a shows how the RAPID

collision avoidance algorithm executes on the robot controller. For the user who

would like to enable collision avoidance on a particular robot system, the following

steps must be performed:

• Calibrate the sensor, this is done as explained in the Sensor Calibration sec-

tion.

• Connect the computer to the robot controller to a common network (it is not

required that the user has any knowledge of the computer algorithms).

• Copy the robot collision avoidance algorithm, which is a system module, to

the robot controller.

• Replace all occurrences of the MoveL with KMoveL in the RAPID program

where the user wants to apply collision avoidance.

When developing the robot algorithm, the focus has been on developing algorithms

similar to the existing native RAPID algorithms. Further, for an elegant solution, the

PC could be mounted inside the IRC5 robot controller cabinet. Currently only the

collision avoidance for the MoveL instruction has been implemented. For instruc-

tions such as circular movements (MoveC), it is not straight forward to implement

collision avoidance. This is because the robot is programmed to follow an arc in

one instruction, and might get problems with following an arc which is segmented.

For example, if the three points defining the arc lie on a straight line after collision

avoidance, the MoveC must be replaced by two MoveLs. In addition the required in-

terpolation for collision avoidance on the arc would ideally be implemented on a

lower level in the control system to achieve the desired performance.
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3 Experiments

The experiments are divided into two parts, an indoor and an outdoor experiment.

The bottle that acts as the obstacle (see Figure E.4: Left) can only be represented

by the surface that the camera observes, which means that the side which is closest

to the robot is not represented in the data. This is one of the challenges that has

to be met in a one-camera setup and in the following two experiments this lack of

information is compensated by increasing the reactive force of the robot. In essence,

when the robot tool is on the opposite side of the obstacle, the surface closest to the

robot is not observed and the reactive forces are therefore generated by the side

facing the sensor.

3.1 Indoor Experiment

Figure E.2 shows the setup of the first experiment. This experiment is conducted

indoor in a lab environment, with good lighting conditions. It can be noted that the

infrared projector and the camera are susceptible to interference in the operating

band, and that good lighting conditions are no direct advantage, but on the contrary

could contribute to disturbance. The sensor is placed such that the view plane is

more or less parallel with the z-y-plane of the robot (see Figure E.16d) located at

about 1.7m from the robot facing in negative x-direction. The computer setup is a

multicore Intel Xeon 3.6 GHz processor with 8GB memory and a GeForce TITAN

CUDA enabled graphics card with 2688 cores and 6GB memory.

Figure E.4, left side, shows the robot as it avoids the blue bottle which acts as

the obstacle. Multiple tests where run with the bottle in different positions, where

the robot successfully created a new path around the obstacle and reached its goal

position. The right side of Figure E.4 shows the robot as it manipulates an industrial

valve. The purpose of the valve is to demonstrate the robot intentionally interacting

with the environment, and not avoiding it, since this is a part of the task. The valve

serves no functional purpose in this experiment, and is therefore not connected to

any piping.

Figure E.5 shows the path of the robot as it avoids the obstacle with final position

above the valve (not depicted in the figure). The red line is the path that the robot
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followed while avoiding the model of the bottle. In the trials without the obstacle,

the lowest point to the right would be connected to the lowest point on the left side

by segments creating a straight line.

3.2 Outdoor Experiment

Figure E.15: ABB IRB 1600 robot in outdoor environment.

The second experiment is conducted outside to introduce effects not present in the

indoor environment. The temperature is at sub-zero oC and it is dark outside. In

this experiment the Kinect is not exposed to sunlight which might interfere with the

projected infrared pattern projected and read by the sensor. As the work by (Ras-

mussen, 2012) demonstrates, the sensor can operate well in low sunlight, but in-

creasing brightness decreases the amount of useful depth data. Figure E.15 shows

the outdoor setup where the same robot is used as in the indoor experiment. The

programmed robot path goes from point (1) (see figure E.16d), to point (2). The
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obstacle (3) is placed between point (1) and (2), and is therefore blocking a straight

line path between these points. Since the obstacle blocks this path, it is left for

the obstacle avoidance algorithm to generate a new trajectory such that collision is

avoided. Figure E.16a— E.16c show the reactive forces generated by the obstacle.

The x,y,z forces shown in figure E.16a-E.16c at time 13.5s correspond to the green

force vector illustrated in figure E.16d. As seen in the figure, the green force vector

acts in the opposite direction of the obstacle (the bottle shown in green-yellow-

orange colours).

4 Conclusions

The work in this appendix has demonstrated that it should be possible to achieve

real time robotic collision avoidance in industrial explosive zones in the not too

distant future. The experiments demonstrate that it is possible to perform collision

avoidance indoor and outdoor with 3D sensor equipment in compliance with ex-

standard and using a standard off-the-shelf industrial robot. Both experiments show

avoidance of an obstacle on a standard industrial robot controller, without modifi-

cations. It is however necessary with an additional computer with a GPU, but this

additional hardware could be mounted inside the controller cabinet and hence the

overall system would appear as one unit.

While the experiments demonstrate the potential of the system, there are still chal-

lenges left to resolve for the robot’s reactive movement, such as getting stuck in

certain positions depending on the forces. But even though the algorithms are very

important on different layers, e.g. collision avoidance and goal position fulfilment,

the data that some of the algorithms operate on are initially provided by sensors. A

second sensor-related challenge is to cover the whole environment. Even if these

two aspects currently are challenges, the sensor technology related to accuracy and

field of view are certainly expected to improve. The advantages with the algorithms

are that they operate on point clouds which enable sensor fusion in an easy manner.

Any sensor capable of delivering point cloud data could be integrated.

GPUs have currently an inherent advantage as new models with increasing number

of cores appear year by year. This is in contrast to the more or less comparable CPU
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(a) Virtual forces acting in the direction of the
x-axis.

(b) Virtual forces acting in the direction of the
y-axis.

(c) Virtual forces acting in the direction of the
z-axis.

(d) The robot vertex model and the coloured
obstacle to the left. The green vector is the
generated force. Snapshot taken at approxi-
mately 13.5 seconds.

Figure E.16: Outdoor experiment results.
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frequency which has seen no significant increase since 2004 when the 3.8 GHz Intel

Pentium 4 HT 570J was released. To justify this comparison, the GPUs advantage is

massive parallel processing, and the CPU is still mainly serial processing. The serial

performance of the CPU (mostly frequency dependent) is currently not increasing

at the same rate as the parallel performance of the GPU.

The proposed solution only exposes one new function to the user, here named

KMoveL, in order to enable collision avoidance. In addition the function has the ex-

act same function parameter interface as the standard MoveL function. From the user

perspective this new function could be implemented in any existing program with

minimal effort, only introducing “K” in front of the desired MoveL function. How-

ever, the required interpolation for the new functionality should ideally be imple-

mented by the robot manufacturer on a lower level in the control system to achieve

improved performance.

166



Implementation of a Real-Time Collision Avoidance Method on a Standard
Industrial Robot Controller

REFERENCES

Rasmussen, C. (2012). Kinects for low-and no-sunlight outdoor trail-following.

RGB-D: Advanced Reasoning with Depth Cameras in conjunction with RSS.

167



Paper E

168


