
Development and Testing of Web GUI Application for the LHCb
VELO Data Quality Monitoring System

by

Pavlo Prykhodko

Master Thesis in
Information and Communication Technology

Final Version

University of Agder

Meyrin, December 4, 2013

Abstract

A great interest of IT engineers at CERN is to simplify the access to the Data Quality Monitoring
(DQM) applications that usually lay behind several layers of security firewalls. In order to make
it simple and thus help to save time for the scientist who rely on this data, additional application
for the Web had to be developed and tested. The goal of this thesis work was to develop
such a Web DQM application for CERN. First, a Web Graphical User Interface (GUI) was
developed. In parallel, an Apache server was installed and configured for testing. Moreover,
software program called ROOTJS that processes and displays CERN data files on the Web
was presented. Through this thesis project, new functionalities were developed to meet the
requirements. Furthermore, the ROOTJS program was merged with the Web GUI application
and series of tests were performed to showcase the capabilities of the application which was
developed through this thesis work.

Preface

This thesis is the result of the Master’s Thesis IKT-590 course that fulfils the requirements of
fourth semester content at the Faculty of Engineering and Science, University of Agder (UiA),
Grimstad, Norway. It was written externally at the European Organization for Nuclear Research
(CERN) facilities in Meyrin, Switzerland. The project was carried out in a period from March
1, 2013 to December 4, 2013 and its workload equals to 30 ECTS. The author has completed
the main goal of the project Development and Testing of Web GUI Application for the LHCb
VELO Data Quality Monitoring System.

I would like to express my gratitude to the thesis supervisor Professor Frank Y. Li from
UiA for his guidelines and assistances in giving feedback on both technical aspects of the thesis
project and content of the thesis. Under his supervision a lot has been learned about the project
and the thesis writing. I enjoyed many Skype conversations we had, even though we were
present at different locations.

I would like to thank the external thesis project supervisor Paula Collins from CERN for
her support, motivation and overall help during my stay at CERN. Under her supervision a
lot has been learned about the LHCb VELO detector. This knowledge helped to get a better
understanding of this thesis work.

I am also grateful to the team members of the main project Marco Gersabeck, Manuel
Tobias Schiller, Michal Adam Wysokinski and Suvayu Ali for their constructive suggestions,
motivation and feedback. A special thanks goes to Bertrand Bellenot for providing the ROOTJS
program’ source code and his support, and to Oscar Augusto de Aguiar Francisco for the im-
portant technical suggestion that helped to turn this thesis project into the right direction.

Last but not least, I am thankful to my mother Tanja Aaring and to my fiancee Olya Serediak
for their patience, understanding and support throughout this difficult year.

Meyrin, December 4, 2013

1

Contents

Contents 2

List of Figures 5

List of Tables 8

1 Introduction 9
1.1 Background and motivation . 9

1.1.1 CERN, LHC and experiments . 10
1.1.2 LHCb experiment . 11

1.2 Problem statement . 11
1.3 Problem solution . 12
1.4 Thesis organization . 13

2 System and Technology Background 15
2.1 System and configuration . 15

2.1.1 LHCb VELO . 15
2.1.2 Setup overview . 16

2.2 The VELO Web GUI application fundamentals 17
2.2.1 ROOTJS . 17
2.2.2 GUI prototype . 19

3 Framework for the VELO Web GUI Application Design 21
3.1 ROOT . 22
3.2 Tools for VELO Web GUI design . 23

3.2.1 Python . 23

2

CONTENTS

3.2.2 Django Web framework . 25
3.2.3 JavaScript . 26
3.2.4 Apache HTTP (Web) server . 26
3.2.5 mod wsgi . 26
3.2.6 X-Win32 . 27
3.2.7 PyCharm . 28

3.3 VeloMoniGUI . 29

4 Requirements and Design 31
4.1 Requirements . 31
4.2 Design . 32

4.2.1 Primary features . 33
4.2.2 Auxiliary features . 36

5 Solutions and Implementations 37
5.1 Server configuration . 38

5.1.1 Preparing the VM . 39
5.1.2 Configuring the VM . 40

5.2 GUI development . 41
5.2.1 Overview . 41
5.2.2 Layouts . 42

5.3 Development of solutions based on the ROOTJS program 47
5.3.1 Developed solutions for index.htm . 47
5.3.2 Developed solutions for JSRootInterface.js 49

5.4 ROOTJS into GUI integration . 50

6 Tests and Demonstrations 52
6.1 Test scenarios . 52
6.2 Performed tests . 52

6.2.1 Verification of implemented functionality 53
6.2.2 Browsers tests . 55
6.2.3 Basic ROOT functionality tests . 57
6.2.4 Auxiliary features tests . 58

6.3 Numerical results . 60

3

CONTENTS

6.3.1 Preparation . 60
6.3.2 Results . 61

6.4 Alternative solutions . 62

7 Discussions 64
7.1 ROOTJS alternatives . 64
7.2 Apache alternatives . 65

8 Conclusion and Future Work 67
8.1 Summary of the thesis work . 67
8.2 Contributions . 68
8.3 Future work . 68

Bibliography 70

Appendix A Configuration of the httpd.conf File 72

Appendix B Configuration of the WSGI File 74

Appendix C Configuration of the setting.py File 75

Appendix D Adjusting Correct Paths 76

Appendix E Developed Solutions for the CSS files 78

4

List of Figures

1.1 LHC map [3]. 10
1.2 LHCb and VELO. 11
1.3 DQM applications and frameworks. 12

2.1 42 VELO modules [6]. 16
2.2 Final setup diagram. 16
2.3 Zoom functionality in ROOTJS graphs. 17
2.4 The GUI of the ROOTJS program. 18
2.5 Core files of the ROOTJS program. 19
2.6 Prototype GUI [10]. 20

3.1 Examples of ROOT graphs. 23
3.2 Default Python interpreter. 24
3.3 Typical default Django admin page. 25
3.4 X-Win 2012 configuration panel. 27
3.5 Default PyCharm IDE. 28
3.6 Overview of the VeloMoniGUI [18]. 29

4.1 The VELO Web GUI application interface. 32
4.2 The VELO Web GUI application areas. 33
4.3 Tabs highlighting. 34
4.4 Navigation bars. 34
4.5 Sensor View tab. 35
4.6 ROOT file path window. 36
4.7 Collapsible and delete buttons. 36

5

LIST OF FIGURES

5.1 Implementation of the VELO Web GUI application. 37
5.2 Server Location. 38
5.3 VM preparation flow chart. 39
5.4 VM preparation flow chart. 40
5.5 Django Web GUI files. 41
5.6 The VELO Web GUI application structure diagram. 42
5.7 bbase.html inheritance diagram. 43
5.8 A piece of bbase.html code. 43
5.9 Sensor View template. 44
5.10 Inheritance blocks of specialanalyses.html file. 45
5.11 Django views diagram. 45
5.12 Views. 46
5.13 Part of the tabs code. 46
5.14 Django implementation. 47
5.15 Developing functions based on the index.htm file. 48
5.16 Part of the sensorview.html code. 48
5.17 if-statements. 49
5.18 Delay. 50
5.19 Graphs display. 50
5.20 Integration overview. 51

6.1 Active tab highlighting and Main tab title functions. 54
6.2 ROOT file path window. 54
6.3 Zoom in, zoom out of ROOT histograms. 55
6.4 Tabs comparison. 56
6.5 Zoom functionality in the VELO Web GUI application. 58
6.6 The collapsible feature. 59
6.7 The delete feature. 59
6.8 Execution start time. 60
6.9 Execution end time and the result difference. 60
6.10 Alert message in Chrome. 61
6.11 Tab navigations. 62

A.1 httpd.conf file. 73

6

LIST OF FIGURES

B.1 youprojectname.wsgi file. 74

C.1 Databases field in the setting.py file. 75
C.2 ROOT static path in the setting.py file. 75

D.1 JSRootInterface.js file. 76
D.2 Template file configuration. 77

E.1 CSS file. 78

7

List of Tables

5.1 Program versions. 40

6.1 Virtual Machines. 53
6.2 Browsers compatibility with the ROOTJS program. 55
6.3 Tested browsers. 56
6.4 Performance results. 61

8

Chapter 1

Introduction

In this thesis project, we present the development and testing of the Web GUI application for
Data Quality Monitoring (DQM) of the Large Hadron Collider beauty Vertex Locator (LHCb
VELO) detector. We refer to a program that was designed for reading specific data files called
ROOT1 files, and displaying their content in a Web browser. Then, we use it as a platform for
the development of new functionalities to meet our requirements for the final application. This
project is also part of a bigger project with the title ”DQM Application Extension and Upgrade
for the LHCb VELO detector”. It is important to mention that we use the name ”Web GUI” to
refer to our application in the development stage. The final application is called ”VELO Web
GUI application”.

1.1 Background and motivation

In this section, the background and motivation of our thesis work is presented. We mention the
connection of the thesis project to the biggest laboratory in the world. We also introduce the
reader to the Large Hadron Collider and the main experiments that are located on it. However,
the main focus will be on the experiment that is directly related to our thesis work. At the end
of this section, the problem statement and the problem solution are covered.

1ROOT is a software program that is widely used at CERN for data storing, analysing and more. It is presented
in greater detail in Section 3.1

9

CHAPTER 1. INTRODUCTION

1.1.1 CERN, LHC and experiments

The European Organization for Nuclear Research (CERN) was established in 1954 to operate
the world’s biggest particle physics laboratory. The name CERN comes from French acronym
”Conseil Europeen pour la Recherche Nucleaire” that in English means the European Council
for Nuclear Research. In 1952, this provisional body was concentrated mainly on research of
the atom’s inner part, that is why the name ”nuclear” was used. CERN headquarters are based
north-west for Geneva, Switzerland. CERN has 20 member states and 7 observer states, as of
Autumn 2013.

At CERN both physicists and engineers are searching for answers on how our Universe was
built and what was its fundamental structure. To study the fundamental particles, they built
the world’s largest and very complex tools. Purpose-built particle accelerators and detectors
are used to make particle collisions at close to the speed of light. The collisions data is ob-
served, recorded and stored for further analyses using state of the art computer facilities. Such
interaction between the particles can give the insights to the fundamental laws of nature [1].

The Large Hadron Collider (LHC) is located on a border between Switzerland and France
175m under the ground and lies in a tunnel 27km in circumference, as shown in Fig. 1.1.

Figure 1.1: LHC map [3].

10

CHAPTER 1. INTRODUCTION

It is the world’s largest and most powerful particle accelerator. ALICE, ATLAS, CMS and
LHCb are 4 biggest experiments at CERN which are located on the LHC ring [2].

1.1.2 LHCb experiment

The LHCb experiment is located 100 m below the surface. Every layer of LHCb is designed to
identify and measure a different aspect of the particles flying out from the collision, as shown
in Fig. 1.2 a) and b). It was built to study the slight asymmetries between matter and antimatter
with the help of particles called beauty quarks. These particles were common in the aftermath of
the Big Bang, but they disappeared from the Universe today. LHCb generates billions of them
together with their antimatter counterparts, the anti-beauty quarks. By studying the slight dif-
ferences in decay between the beauty quarks and their antiparticles to unprecedented precision,
the LHCb experiment is shedding light on one of the Universe’s most fundamental mysteries
[4].

(a) LHCb Schematic view [5]. (b) LHCb.

Figure 1.2: LHCb and VELO.

1.2 Problem statement

This section covers the goal of our project thesis and also our challenges and tasks.

11

CHAPTER 1. INTRODUCTION

The main goal of this thesis project is to develop and test a Web GUI application that can
read, process and display ROOT graphs. This raises up a number of challenges and tasks. We
have to find a Web framework program to build our Web GUI. We also have to develop the Web
GUI that should contain as many familiar features of the previous standalone DQM application
as possible. A ROOT program that was designed for the Web use is required. It should be
possible to merge it seamlessly into the Web GUI program. Moreover, the application has to
be tested on the performance and stability. At the same time, we are interested to construct this
application that later can be easily integrated into the bigger project.

1.3 Problem solution

In this part of the chapter, the solutions to the challenges are presented along with the tasks that
were mentioned in the previous section.

The Web version of the DQM application saves time for the scientists who rely on the
monitored data. Our thesis project is a part of the bigger project that is divided into the number
of individual parts, as shown in Fig. 1.3. The blocks that are marked with red color represent
our thesis work. We develop a Web GUI application using Django Web Framework. We also
develop new functionality for the ROOTJS program that handles ROOT files for the Web.

Figure 1.3: DQM applications and frameworks.

In the itemized list below, we address our solutions to the challenges and tasks which were
presented in the previous section of this chapter.

12

CHAPTER 1. INTRODUCTION

• Create a Web GUI application using Django Web Framework

• Develop new functionality for the ROOTJS program that handles ROOT files for the Web

• Merge new ROOTJS program into Web GUI application

• Install and configure a server to test the VELO Web GUI application

Additionally to our Web GUI application, a standalone GUI application is also being devel-
oped for the Linux OS, as it was shown in the figure above. Moreover, there are plans to create
another GUI application for smartphones and tablets later. The core framework of the project
is the analysis and data processing framework which will be used by both standalone and Web
GUI applications. However, all these parts are not in the scope of our thesis work and they are
not included in the thesis.

At the end of January 2013, the LCH was stopped for 2 years for maintenance and upgrade
along with all the experiments. That was the perfect time to begin the development of the VELO
Web GUI application.

1.4 Thesis organization

In Chapter 2, the system and the technology background is presented. The reader will be in-
troduced to the Web GUI application fundamentals. We also reveal the key part of the LHCb
experiment to which our application is connected.

In Chapter 3, we give an overview on the frameworks and the developing tools that are used for
the VELO Web GUI application design.

In Chapter 4, we cover our work in the thesis project. The requirements and the design of the
VELO Web GUI application are the main topics of this chapter.

In Chapter 5, Solutions and implementations are presented. The chapter is divided into 4 sec-
tions to give a better overview and provide more details on the development progress.

Chapter 6 covers various tests that were performed on the VELO Web GUI application. The
achieved results are introduced and commented.

13

CHAPTER 1. INTRODUCTION

In Chapter 7, we present the discussions part of the thesis project. We discuss the alternatives
for the ROOTJS program and the Apache server.

Chapter 8 contains the conclusion of this thesis work. The chapter also covers contributions and
future work.

14

Chapter 2

System and Technology Background

This chapter gives an overview of the thesis project’s technological background. The reader will
be introduced to the VELO Web GUI application fundamentals. Furthermore, the development
tools are also presented.

2.1 System and configuration

Current section covers the system and configuration of the thesis project. We start this section
with the presentation of the VELO detector which is a part of the LHCb experiment.

2.1.1 LHCb VELO

The LHCb VELO is the silicon micro strip Vertex Detector, responsible for identifying and
triggering on vertices from the interaction region. It consists of 88 silicon sensors and 200k
analogue readout channels. The control system must take track the voltages and currents of
about 1000 high and low voltage supplies and their evolution, together with a host of other
parameters, including readout streams with various levels of filtered information, the monitoring
systems of the LHC beams, the VELO position, and the relationship between the monitored
values. In Fig. 2.1 we can see 42 VELO modules.

15

CHAPTER 2. SYSTEM AND TECHNOLOGY BACKGROUND

Figure 2.1: 42 VELO modules [6].

The raw data that the LCHb VELO produces is processed by several core framework pro-
grams developed by CERN. It is saved in a database as data files with .root extension.

2.1.2 Setup overview

The final setup of the system that hosts the VELO Web GUI application after it is deployed is
shown in Fig. 2.2.

Figure 2.2: Final setup diagram.

16

CHAPTER 2. SYSTEM AND TECHNOLOGY BACKGROUND

The circle on the right side of the figure represents the CERN network. Inside it we can
see how users are connected to the Apache server that hosts the VELO Web GUI application.
On the top-left and bottom-left parts of the figure the users from various parts of the world are
accessing the server.

2.2 The VELO Web GUI application fundamentals

In this section, the prototype of the Web GUI and the prototyping program are presented. We
also present the ROOTJS program which contributes to our basics of work.

2.2.1 ROOTJS

The ROOTJS program was developed by one of the ROOT software programmers, Bertrand
Bellenot at CERN. The main purpose of the program was to show how the online monitoring
of detectors can be done through an Internet browser such as Mozilla Firefox, Google Chrome
and Internet Explorer. ROOTJS is limited and does not provide all the functionalities of the
ROOT program. Users can zoom-in and zoom-out the graphs while the y and x axis are scaled
accordingly, as shown in Fig. 2.3.

(a) Select an area to zoom in. (b) The result after zooming in.

Figure 2.3: Zoom functionality in ROOTJS graphs.

In Fig. 2.4, the ROOTJS program is shown. Left part of the image is the navigation panel.

17

CHAPTER 2. SYSTEM AND TECHNOLOGY BACKGROUND

It contains 4 main interaction parts:

• Text field

• Drop-down list

• Load button

• Reset button

Figure 2.4: The GUI of the ROOTJS program.

In the drop-down list, users can select available ROOT files. The text field on top of this
list indicates the selected file. After the desired file is selected it can be loaded using the Load
button. If the wrong file is selected one can press the Reset button to start over. When a ROOT
file is loaded, its content appears below the Load and Reset buttons in a folder tree structure.
Users can double click on any of the content files and they will be displayed.

The right part of Fig. 2.4 is reserved to display the content of ROOT files. Users can display
multiple graphs from a single ROOT file. The program adds them in separate collapsible blocks
under already existing graphs. To find all previously displayed graphs users can utilize the scroll
option and scroll up.

18

CHAPTER 2. SYSTEM AND TECHNOLOGY BACKGROUND

ROOTJS program consists mostly of JavaScript but also HTML and CSS files. A diagram
that represents the core JavaScript files of the program is presented in Fig. 2.5.

Figure 2.5: Core files of the ROOTJS program.

Their tasks are to read, process and serve the content of ROOT files to the display. In this
thesis project, we focus mainly on the JSRootInterface.js file which connects all other core files
together.

2.2.2 GUI prototype

In the starting phase of the project, a prototype of the GUI was developed. This prototype was
the same for both standalone GUI and the Web GUI. It was created using an Internet based
service called Pidoco that provides the prototyping framework [10]. In Fig 2.6, we demonstrate
the Pidoco prototype of our GUI. It has five main horizontal navigation tabs:

• VELO view

• Sensor view

• Run view

• TELL1 view

• Special analysis

Some of these main tabs contain sub-tabs with additional properties. We present them and
the entire Web GUI later in this thesis. Moreover, this prototype allows us to leave comments

19

CHAPTER 2. SYSTEM AND TECHNOLOGY BACKGROUND

Figure 2.6: Prototype GUI [10].

for the future improvements and fixes. It provides the possibility for creating discussion threads,
for example about certain functionality of the future program. Each of the project participants
can log into this Pidoco prototype through the Internet and initiate a discussion by creating a
comment.

20

Chapter 3

Framework for the VELO Web GUI
Application Design

This chapter focuses on the frameworks and the development tools that were used for the VELO
Web GUI application design. They had different purposes in the development process of the
application as presented below.

• ROOT Framework was used to create ROOT files that contained various graphs (e.g.
histograms). These were later used by our application.

• Django is built on Python. It was the key tool in the project. We used Django to build our
application.

• JavaScript builds up the ROOTJS program that we used as the platform to develop new
functionalities.

• The Apache HTTP Server was used to test the application and verify its functionalities.

• mod wsgi module was used together with the Apache server for our application.

• We used X-Win 32 to establish a remote connection to our server where the VELO Web
GUI application was located. In this way, we applied fixes and changes to our application.

• PyCharm is an IDE that we used to develop our Django application.

21

CHAPTER 3. FRAMEWORK FOR THE VELO WEB GUI APPLICATION
DESIGN

In this chapter, the previous version of the DQM application is presented. Additionally, we
describe some of its important features and write about why the Web version and the upgrade
was needed.

3.1 ROOT

Scientists and engineers work with the large amount of data. This requires a system that is
capable of analysing the data in an efficient way. ROOT program is a set of OO frameworks
which provides that functionality. It is important to mention that ROOT is a software program
and it has nothing to do with root privileges, rights or root access on computers. The data is
defined as a set of objects and in this way the specialized storage methods are used to get direct
access to the separate attributes of the selected objects, avoiding to touch unnecessarily the bulk
of data. The following methods are included in arbitrary number of:

• dimensions

• function evaluation

• minimization

• graphics

• visualization classes

The analysis system can be easily set up to query and process the data interactively or in a
batch mode. The possibility of using a general parallel processing framework called the Parallel
ROOT Facility (PROOF), to speed up analysis is also included.

ROOT contains the build-in CINT1 C++ interpreter and the command language, the script-
ing, or macro and the programming language are all C++. Moreover, ROOT is an open system
and that makes it a premier platform to make simulation, data analysis and data acquisition. It
also can be extended by linking the external libraries [7]. In the Fig. 3.1 a) and b) we can see
the examples of ROOT graphs.

1CINT is the C and C++ interpreter

22

CHAPTER 3. FRAMEWORK FOR THE VELO WEB GUI APPLICATION
DESIGN

(a) IP resolution graph. (b) LHCb average mu graph.

Figure 3.1: Examples of ROOT graphs.

There are two other versions of ROOT such as PyROOT and ROOTpy. PyROOT is simply
the Python extension of ROOT. It is a module that allows the user to interact with any ROOT
class using Python interpreter. Python wrapped code is not required to include new ROOT
classes, because the process is done generically using the ROOT dictionary [8]. ROOTpy can
be called more pythonic PyROOT. It gives a better, feature-rich, ”pythonic” interface with the
ROOT libraries on top of the existing PyROOT bindings [9].

3.2 Tools for VELO Web GUI design

In this part, we write about the tools that we used in this project. We begin this section with the
presentation of the Python programming language.

3.2.1 Python

Python is a popular high-level dynamic programming language. It is powerful and fast. Python
standard libraries cover everything from asynchronous processing to zip files. It has many
features that make it more attractive than programming languages such as Java, Ruby, Perl and
others. Theses features are:

23

CHAPTER 3. FRAMEWORK FOR THE VELO WEB GUI APPLICATION
DESIGN

• intuitive object orientation

• strong introspection capabilities

• readable and very clean syntax

• full modularity, supporting hierarchical packages

• extensive standard libraries and third party modules for every possible task

• very high level dynamic data types

• extensions and modules easily written in C, C++(or Java for Jython, or .NET languages
for IronPython)

• embeddable within applications as as scripting interface

Python is also used in variety of application domains such as Web and Internet development,
Desktop GUIs, Education and more. Moreover, it cooperates well with other objects such as
COM, .NET, and COBRA. Python runs on most operating systems like Windows, Linux/Unix,
OS/2, Amiga and Mac. In Fig. 3.2, we demonstrate an example of the default Python interpreter.

Figure 3.2: Default Python interpreter.

Additionally, it is easy to learn Python because of the well written documentation, availabil-
ity of the books, wiki page, conferences to mention few. Finally, Python is under open source
license that means that it is freely distributable and usable even for commercial use [11].

24

CHAPTER 3. FRAMEWORK FOR THE VELO WEB GUI APPLICATION
DESIGN

3.2.2 Django Web framework

Django is a Web Development Framework based on Python. It was originally developed to
avoid writing new Web applications entirely from scratch. Django was born back in 2003
at Lawrence Kansas, USA in Lawrence Journal-World newspaper environment where quick
deadlines are common. The World Online team was in charge of several local news web-sites
maintenance and production. And in 2005 when Django was efficient enough it became an open
source software. Nowadays tens of thousands users are using this well-established open source
project.

There are two key features of Django. First, it is an open source program. It is acutely
focused on dealing with day to day problems in the Web environments that Django’s developers
are facing or have faced. Second, it contains many useful features such as an admin page, as
shown Fig. 3.3.

Figure 3.3: Typical default Django admin page.

These are particularly suitable for sites as Amazon.com, craigslist.org, and washington-
post.com that offer dynamic, database-driven information. Even though Django is better for
this type of sites, it is also an effective tool in building all sort of dynamic Web sites.

In conclusion, there are plenty of educational contents available out there such as both free
and paid books, tutorials, forums and more.[12].

25

CHAPTER 3. FRAMEWORK FOR THE VELO WEB GUI APPLICATION
DESIGN

3.2.3 JavaScript

JavaScript (JS) is a scripting language that was originally developed by Netscape Communica-
tion Corporation for the Web use in 1995. JS should not be confused with Oracles’ Java pro-
gramming language. These languages are totally unrelated and have different schematics. JS
has syntax which is influenced by C programming language and it also copies many names and
naming conventions from Java. JavaScript is a lightweight object-oriented, prototype-based,
multi-paradigm scripting language that is type safe and dynamic. JS uses an interpreter and
supports also object-oriented, imperative and functional programming styles. JavaScript has a
standard called ECMAScript. The modern Internet browsers are updated and fully support the
ECMAScript v5.1, as of 2012 [13].

3.2.4 Apache HTTP (Web) server

The Apache HTTP (Web) Server is an open source code implementation of an HTTP (Web)
server that is freely available. Additionally, this server is robust, includes many features and is
on commercial-grade scale. To develop such a server a group of volunteers all over the globe
has joined their forces. Through the Internet communication they have developed and planned
the server and its documentation. The whole project is a part of Apache Software Foundation.
Moreover, the huge international user community has contributed ideas, thoughts, code and
documentation to this project [14].

3.2.5 mod wsgi

mod wsgi is a simple Apache module that is used to host applications written in Python which
supports Python Web Server Gateway Interface (WSGI). mod wsgi module is well suitable for
your own personal Web hosting services and mainly for high performance production web sites
[15].

26

CHAPTER 3. FRAMEWORK FOR THE VELO WEB GUI APPLICATION
DESIGN

3.2.6 X-Win32

X-Win 32 is a software program that provides necessary tools to establish a connection from
a Microsoft Windows based machine to a UNIX based machine such as Linux. During this
connection a Windows OS can remotely display UNIX windows or the Terminal side by side
with its other applications. The program is developed by StarNet Communications and based on
X Windows System for MS Windows. Last version of X-Win 32 program is 2012 [16]. It offers
different types of standard connection protocols such as telnet and ssh. Additionally, users
can benefit from proprietary LIVE Connection Protocol that extends the standard connection
protocols with more features. The Configuration panel and Secure Shell (SSH) Terminal of
X-Win 32 2012 program is presented in Fig. 3.4.

Figure 3.4: X-Win 2012 configuration panel.

27

CHAPTER 3. FRAMEWORK FOR THE VELO WEB GUI APPLICATION
DESIGN

3.2.7 PyCharm

PyCharm is an Integrated Development Environment (IDE) that was developed by JetBrains
software company. It is powerful and tools reach program which makes Python programming
quick and efficient. PyCharm is also a very powerful tool for developing Django applications
[17]. It provides many features such as:

• Project Navigation

• Coding Assistance

• Coding Analysis

• Graphical Debugger

• Python Refactoring

• Version Control Integration

The default IDE of PyCharm is shown in Fig. 3.5. On the left part of the figure we can see a
navigation tree and file content on the right part.

Figure 3.5: Default PyCharm IDE.

28

CHAPTER 3. FRAMEWORK FOR THE VELO WEB GUI APPLICATION
DESIGN

3.3 VeloMoniGUI

VeloMoniGUI was the previous DQM application of the LCHb VELO detector. Since the start
of the first LHC synchronization tests in August 2008, the VELO monitoring became an impor-
tant part in the development process. Such an application could make it easier to centralize all
developed tools for better maintenance. In order to establish a common and user friendly com-
munication between users and the underlying technologies, a GUI was chosen. VeloMoniGUI
was first proposed in February 2009 and later accepted as the framework for the VELO offline
monitoring [18]. The main GUI of the application is shown in Fig. 3.6.

Figure 3.6: Overview of the VeloMoniGUI [18].

VeloMoniGUI consists of Top-level menu for basics, 1 tab per ”monitoring task”, Docu-
mentation window (per tab) and Indicators of open ROOT/IV curve files. There are different
monitoring tasks that represent all relevant aspects of the detector and they are plotted into
histograms for further analyses. The monitoring task tabs are:

29

CHAPTER 3. FRAMEWORK FOR THE VELO WEB GUI APPLICATION
DESIGN

• Overview

• DQS

• Trends

• Detailed Trends

• Noise

• Cross Talk

• Pedestals

• Clusters

• Clusters 2

• Occupancies

• Tracks

• Error Banks

• Bad Channels

• Time Samples

• Gain

• IV Curves

• IV Trending

There were good reasons why the program had to be upgraded. First, the program was badly
planed. Second, VeloMoniGUI was written partly in Python and partly in C++ programming
languages. These two reasons already were causing difficulties for maintenance and debugging.
Furthermore, the program had some issues in the GUI interface and also lack of additional
features such as:

• Complicated procedure to find ROOT files and load them (too many mouse clicks)

• No automatic Data Quality Summary (DQS) status (only manual)

• No Web based application alternatives

Finally, the access to this application from outside the CERN network was complicated and
time consuming. Taking into account all these reasons for the upgrade we began to plan and
develop the Web GUI application.

30

Chapter 4

Requirements and Design

This chapter covers our work in this thesis project. The chapter is divided into two sections -
the requirements and the design of the VELO Web GUI application.

4.1 Requirements

The VELO Web GUI application was the main result of the thesis project. It was developed
with certain requirements in mind. The requirements were divided into primary requirements
and auxiliary requirements. To fulfil the primary requirements the VELO Web GUI application
should:

• read and process ROOT files

• display 2D histograms

• have basic ROOT functionality such as zooming in and out of graphs

• have a simple to use GUI

• contain familiar parts from the previous version of the application (e.g tabs)

• be user friendly

31

CHAPTER 4. REQUIREMENTS AND DESIGN

The auxiliary requirements were optional. To fulfil them the application should:

• have an option to collapse individual histograms

• have an option to delete individual histograms

These options were already present in the original ROOTJS program. Our task was to make
them work in the modified version of the ROOTJS program. All these requirements were the
guidelines for the development of the final application.

4.2 Design

In this part of the chapter, we present the design of the VELO Web GUI application and its
features. The main layout of the application is shown in Fig.4.1.

Figure 4.1: The VELO Web GUI application interface.

32

CHAPTER 4. REQUIREMENTS AND DESIGN

The corresponding structure diagram to the layout in Fig. 4.1 can be found in Subsection
5.2.2. The Design section is split into 2 subsections, where the primary and the auxiliary fea-
tures of the application are presented.

4.2.1 Primary features

In this subsection, we present the primary features of the VELO Web GUI application. The
main GUI of the application is divided into 3 areas, as shown in Fig. 4.2.

Figure 4.2: The VELO Web GUI application areas.

These areas are also summarized in a list below. Further in this subsection, we introduce all
the areas in greater detail.

• Main tab title area

• Tab navigation area

• ROOTJS graphs area

33

CHAPTER 4. REQUIREMENTS AND DESIGN

Main tab title area

The main tab title area design was developed in the following way. When users selected one of
the main tabs, its menu title name was displayed in the top-left corner of the GUI, marked with
the red line in Fig. 4.3. The menu title had bigger font size than the tab title. This was useful in
some situations for example, when people who wanted to follow the demonstration seated far
away from the screen. Moreover, the selected tab was highlighted with the blue color, as shown
in Fig 4.3. In this way, users could keep even better track of their current location.

Figure 4.3: Tabs highlighting.

Tab navigation area

The tab navigation area of the application contained 5 main horizontal tabs, marked red in Fig.
4.4. The main tabs were also divided into sub-tabs, marked green in the same figure. We
also referred to the main tabs and the sub-tabs as the first and the second level of navigation
respectively.

Figure 4.4: Navigation bars.

In our application, we decreased the amount of main tabs from 13 to 5 comparing to the
previous application, the VeloMoniGui that was presented in Section 3.3. Rest of the tabs
were moved to the sub-tabs area. In this way, the application looked more organized and still
contained the familiar parts from the earlier version, as specified in the requirements.

34

CHAPTER 4. REQUIREMENTS AND DESIGN

ROOTJS graphs area

In this area, the application read ROOT files and displayed their content using the integrated
ROOTJS program with the new functionality. In the original ROOTJS program, users had to
make upto three mouse clicks to display a single graph. First, they had to select a ROOT file
from the drop-down list, then press the Load button, wait for the folder tree structure to appear,
and finally click on one of the available graphs. In the VELO Web GUI application, this process
executed completely automatically. When users opened a tab, ROOT files started to load and
the tab layout was displayed along with graphs. Each of the tabs had different set of graphs, as
specified in the prototype of the application. In our application, we used histograms combined
in matrix of 2x2, 2x4 and there were also just single histograms in a bigger size. For example,
in the Sensor View tab users could find the 2x4 matrix of histograms, as shown in Fig. 4.5.

Figure 4.5: Sensor View tab.

Furthermore, the ROOTJS graph area also contained a small text window that displayed a
path to and a name of the ROOT file that is being read, as shown in Fig. 4.6. This window
helped to ensure that the right file was selected.

35

CHAPTER 4. REQUIREMENTS AND DESIGN

Figure 4.6: ROOT file path window.

4.2.2 Auxiliary features

The VELO Web GUI application contained the auxiliary features that were specified in our
second requirements list. The first feature enabled users to collapse undesired graphs. This
feature could be useful in various situations for example, when users are presenting a matrix of
graphs in front of an audience, or when they are discussing some specific graphs together in a
group. They can collapse the unwanted graphs and thus get better overview on the remaining
ones. When users want to get some of the graphs back later in the session, they just have to
press the collapsible button of the selected graph again and it will reappear. The collapsible
button is shown in Fig. 4.7.

Figure 4.7: Collapsible and delete buttons.

The second auxiliary feature of the VELO Web GUI application was the delete button. It
was located in the top-right corner of each graph. When users utilize this feature they can
remove undesired graphs permanently from the tab layout. However, in order to get the deleted
graphs back, users have to reload or refresh the entire page. This feature works differently in
comparison to the collapsible feature. Nevertheless, it is useful in situations when for example,
there are not important graphs in a given session, or they have some corrupted and wrong data
etc. The users have the possibility to delete these graphs and avoid them in the presentation.
The delete button is also shown in Fig. 4.7.

36

Chapter 5

Solutions and Implementations

In this chapter of the thesis, we present our solutions and implementations. The implementation
of the VELO Web GUI application was divided into 4 main individual steps, as shown in Fig.
5.1.

Figure 5.1: Implementation of the VELO Web GUI application.

37

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

• Server configuration

• GUI development

• Development of solutions based on the ROOTJS program

• ROOTJS→ GUI integration

Server configuration is the first step of the implementation that is cover in this chapter. Then,
we advance to the GUI development section. The third section presents the developed solutions
based on the ROOTJS program. Finally, the end of this chapter reveals the integration process
of the modified ROOTJS program into our GUI.

5.1 Server configuration

In this section, we write about how we prepared and configured the server for the development
and testing of our application. The server location is shown in Fig. 5.2.

Figure 5.2: Server Location.

38

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

We also present Virtual Machine (VM) that we used to host our Apache server. The VM
was a Linux PC located in the Online network which was separated from the outside world. In
order to access this network users first had to connect to the gateway PC and then to the desired
Online network computer, as shown in Fig 5.2. The location of the server was chosen due to
the security precautions.

5.1.1 Preparing the VM

In our project, we used a stationary PC with Windows 7 operative system to connect to the VM
using X-Win32 2012 program. This program was developed for the Windows OS to display
remote Linux desktops and individual applications over a LAN connection, as presented in
Subsection 3.2.6. The step by step flow chart of the VM preparation is shown in Fig. 5.3.

Figure 5.3: VM preparation flow chart.

39

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

The orange area of the flow chart represents the components which are usually pre-installed
on most of Linux distributions such as make, wget and Python. However, we had to install most
of them. The red area shows the main programs in our project that had to be installed such
as Django Web Framework, mod-wsgi and httpd server. Throughout the installation cycle we
faced several challenges with the user permissions on our Scientific Linux VM. If one plans
to install programs on Security Enhanced Linux (SELinux) computers, we recommend to have
good knowledge about the system. The used versions of the programs are shown in Table 5.1.

Table 5.1: Program versions.

Program Version
Scientific Linux 6.0, later 6.3(CARBON)

httpd (Apache) server 2.2.15 (UNIX)

mod wsgi 3.4

Django 1.5

5.1.2 Configuring the VM

When the installation of the required software was completed we went over to the initial con-
figuration of Apache, Django and mod-wsgi, as shown in Fig. 5.4.

Figure 5.4: VM preparation flow chart.

We started with the server configuration. The Apache server had a configuration file called
httpd.conf. This file had to be modified as shown and explained in Appendix A. Our next step

40

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

was to configure Django. First, we created and configured a WSGI file, as covered in Appendix
B. Then, we modified the settings.py file and saved the changes, as described in Appendix C.

5.2 GUI development

In this section, we discuss the application functionality and comment parts of the code that lay
behind it. We begin with a short overview of how the Web GUI was developed in Django.

5.2.1 Overview

The GUI of the application was developed using Django Web Framework, presented in Sub-
section 3.2.2. It consists of Python files that provide the GUI’s core functionality and Django
templates that build up the GUI’s layout, as shown in Fig. 5.5.

Figure 5.5: Django Web GUI files.

A Django template is a string of text that separates the presentation of a document from its
data. In general, Django templates can be used for any sort of text-based data. The templates
may also include parts of CSS and JavaScript codes, plus other features such as for-loops and
if-statements (template tags) [19]. We used Django templates to create Web GUI layouts which
were saved as HTML files.

41

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

5.2.2 Layouts

The VELO Web GUI application consists of many layouts, as shown in Fig. 5.6.

Figure 5.6: The VELO Web GUI application structure diagram.

42

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

If we go back to Fig. 4.1 in Section 4.2, and compare it with this structure diagram, we can
identify the 5 main tabs and see what sub-tabs they contain. Fig. 5.6 represents the structure
of the layouts, as seen from the application’s user point of view. Layout is an important part of
every application regardless if it is created for the Web or not. It is a pre-defined arrangement
of the objects such as text headers, tabs, images and buttons on a given space (e.g. Web page,
window).

Templates

The layouts of the VELO Web GUI application were built in a smart and efficient way. The
core template file was called bbase.html, positioned in the middle of Fig. 5.7 and marked red.
It inherits 5 main templates, positioned around the core file in the same figure and marked grey.

Figure 5.7: bbase.html inheritance diagram.

Using this technique we avoided many unnecessary code duplications because all the main
templates, the grey blocks, utilized the same predefined main layout, the red block. In this
structured approach, it was also more convenient to work on the code development and it was
easier to debug it. Part of the bbase.html code is presented in Fig. 5.8

Figure 5.8: A piece of bbase.html code.

43

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

This implementation is very popular in many Django applications. The first line of the code
defines the menu title of the active tab that would be changing when navigating between the
main tabs. The menu title is located in the top left corner of our GUI, as it was shown in Fig.
4.5. In general, the bbase.html template code consists of the HTML structure such as head and
body. The body part includes the blocks that inherit all the main tabs templates.

Veloview.html, sensorview.html, runview.html, tellview.html, specialanalyses.html templates
are located separately. Although these templates are saved with the HTML file extension, they
do not include the HTML head and body fields. In Fig. 5.9 we can observe how the special-

analyses.html template extends the core template and inherits sub-tabs templates. We refer to
this inheritance as the second level inheritance.

Figure 5.9: Sensor View template.

The first line of the code specifies the location of the bbase.html template and extends it.
The second line we defines the name of this template that will be shown in the GUI. Third
line of the code defines the head block that contains 6 additional blocks. These blocks inherit
templates that represent the sub-tabs of the specialanalyses.html. One of the sub templates is
demonstrated in Fig. 5.10. This is exactly the same method that was used with the bbase.html

only on the level under. Finally, the fourth line of the code represents the tab navigation system
of the application that is discussed in more details later in this chapter.

44

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

Figure 5.10: Inheritance blocks of specialanalyses.html file.

Views

In Django, the views are the Python functions that make Web responses on Web requests. To
be more precise, in our application the views serve the right templates when users request a
specific layout by clicking on the tabs, as shown in Fig. 5.11. Please note that the word ”View”
in the tab names Velo View, Sensor View, Run View, TELL1 View, does not have any relation
to Django views. The tabs could be also called Velo Tab, Sensor Tab etc.

Figure 5.11: Django views diagram.

The figure shows the VELO Web GUI user who is clicking on the Velo View tab. His request
is processed by the ”Overview” view, and then the overview.html template is served. Mark that
the veloview.html template does not exist, as mentioned in previous paragraph. That is why, the
view passed the template of the first sub-tab.

The VELO Web GUI application contains 14 individual tabs in total but only 12 views. The
reason there are 2 views less than the amount of tabs, is because the Velo View and Special
Analyses tabs display one of their sub-tab views directly. For example, when the user clicks on
Special Analyses tab he enters the IV Scans sub-tab. It is unnecessary to have empty Velo View
and Special Analyses tabs. Part of the code that lays behind some of the application’s views is

45

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

shown in Fig. 5.12

Figure 5.12: Views.

The two red markings under Overview(request) and overview.html in the code above corre-
spond to the diagram presented in Fig. 5.11.

Tab system

The tabs in the application are among the central functionality aspects. The overall purpose of
the tabs is to have separate layouts with different content. Since the Django Web Framework
does not include any native tab implementation scheme, we had to research and find our own
solution. Moreover, the additional challenge was to find a solution which could also support
tab-in-tab mode where there could be 2 levels of tabs. For example, when one of the main tabs
is opened, the additional sub-tabs are appeared for the selection.

We found a code that could be used to create tabs in the Django environment [24]. The piece
of the code is shown in Fig. 5.13.

Figure 5.13: Part of the tabs code.

Unfortunately, the original version of the code did not fulfil all of the requirements for the
tab functionality, and we developed our own solutions based on it. The code was implemented
in such a way that there existed 2 levels of tabs - main tabs and sub-tabs. The tab highlight
feature was also added. Using it users can identify the current active tab. We successfully
integrated the modified code into the application and the final result is shown in Fig. 5.14.

46

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

Figure 5.14: Django implementation.

5.3 Development of solutions based on the ROOTJS program

In this subsection, we present the developed solutions based on the ROOTJS program to fulfil
the requirements. We also demonstrate parts of the modified codes and comment them.

The main goal was to develop new solutions and include them into the ROOTJS files that
are responsible for the interface. The program was analysed and all interface related files were
found. They are presented in the list below.

• JSRootInterface.js

• JSRootInterface.css

• index.htm1

5.3.1 Developed solutions for index.htm

As mentioned earlier in this thesis, the original program was developed for the demonstration
purpose and contained many features that were unnecessary for our application. We started
the solution development process by locating these features in the code and removing them.
Then, the index.htm file was studied. In the original program, the index.htm file contained the
HTML structure of ROOTJS demo Web page. Since it was just a single page, only 1 HTML
file was needed for the layout. For our application, one such file had to be created for each
template that displays ROOT graphs. These files also had to be slightly adjusted in respect to
the specifications of the tabs.

1.htm is another extension to save HTML files

47

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

We developed new functions based on the index.htm file and copied them into the application
templates with different configurations that corresponded to the individual tab specifications, as
demonstrated in the diagram in Fig. 5.15.

Figure 5.15: Developing functions based on the index.htm file.

The new template files were the starting points that initialize the ROOTJS program. This
process was triggered when users press on any of the tabs that contained ROOT graphs. In Fig.
5.16 the sensorview.html template is presented. Some of its most important parts are covered
below.

Figure 5.16: Part of the sensorview.html code.

The first part of the template code is similar to rest of the main templates in the VELO Web
GUI application that were described earlier in the chapter. We can note that this template code

48

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

is linked to the style sheet file JSRootInterfaceSV.css and the ROOTJS interface file JSRootIn-

terface.js. Moreover, the code also specifies how many graphs will be shown in the tab. For
example, the template code presented above was created for the Sensor View tab. It contains
2x4 matrix of graphs, as it was shown in Fig. 4.5. The graph matrix request is done by set-
ting up a flag reportTwo=true that notifies the JSRootInterface.js file which if-statement should
be executed. After the flag is set, the template code calls the ReadFile function which is also
located in the JSRootInterface.js file, and the read and display processes starts.

5.3.2 Developed solutions for JSRootInterface.js

The most important solutions that were developed and applied to the JSRootInterface.js file.
This file is connected to all other core files of the ROOTJS program. A part of the code is
presented in Fig. 5.17.

Figure 5.17: if-statements.

The if-statements in the code process requests from the templates. The basic task of each
if-statement is to create a new row of graphs according to the layout specification. For example,
when the second if-statement is true the layout will contain 2x2 matrix of graphs.

The JSRootInterface.js file contain asynchronous code which means some parts of it can
finish execution earlier that the other parts. Unfortunately, this caused various problems such as
situations when graphs are not loaded at all. To avoid this undesired behaviour we implemented
a small delay in the showObject function, as shown in Fig. 5.18.

49

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

Figure 5.18: Delay.

The delay ensured that all the graphs were loaded at all times when requested. Throughout
our application tests this solution worked perfect each time when we accessed the tabs that
loaded graphs. We present the tests in greater detail in Chapter 6.

Our last set of solutions were applied to the automatic display function, as shown in Fig.
5.19.

Figure 5.19: Graphs display.

In this figure, 8 code lines are demonstrated. They are responsible for loading 8 different
graphs from a ROOT file. In the VELO Web GUI application, we utilized the same JSRootIn-

terface.js file for all the templates. It was efficient because the duplication of the same code was
avoided several times.

5.4 ROOTJS into GUI integration

This section of the report covers the last step of the implementation process of the VELO Web
GUI application. We present how we integrated the ROOTJS program with the solutions that
we developed, into the Web GUI. The main steps of that integration process were:

• to move the new ROOTJS program to the static folder of our Web GUI application

50

CHAPTER 5. SOLUTIONS AND IMPLEMENTATIONS

• to configure paths of the main interface file of the ROOTJS program (JSRootInterface.js)

• to verify the final result

The main goal of this integration process was to merge the two programs seamlessly. In
the previous section, we already started to describe that process when we explained how we
applied the developed solutions to the index.htm, as shown in Fig. 5.15. Our next challenge was
to continue the integration process and move the rest of the ROOTJS files into our Django built
Web GUI application. The static folder of the application was located and all the remaining
files were put there. Furthermore, in order to link all the ROOTJS program files together, the
paths were configured for the interface file JSRootInterface.js and all the template files that
loaded graphs, as described in Appendix D. The integration of the ROOTJS program with all
the developed solutions, into the Django GUI is demonstrated graphically in Fig. 5.20.

Figure 5.20: Integration overview.

51

Chapter 6

Tests and Demonstrations

This chapter covers the tests that were performed on the VELO Web GUI application. In the
following 4 sections scenarios, tests, alternative solutions and numerical results are presented.

6.1 Test scenarios

To get some useful test results, it is necessary to define scenarios. With this in mind, 4 scenarios
were created for the tests. They are presented in the list below.

• Scenario 1: Tests on verification of the implemented functions

• Scenario 2: Tests of the application in different browsers

• Scenario 3: Tests of the basic ROOT functionality

• Scenario 4: Tests of the auxiliary features

6.2 Performed tests

This part of the chapter shows the tests based on the 4 scenarios which were defined in the
previous section. In these series of tests, the remote connection was established to available vir-

52

CHAPTER 6. TESTS AND DEMONSTRATIONS

tual machines in the Online network. The VMs ran Microsoft Windows Server 2003 operative
system, but in addition, we managed to acquire one Microsoft Windows Server 2012 machine.
Specifications of these 2 VMs are shown in Table 6.1.

Table 6.1: Virtual Machines.

VM 1 VM2
OS Windows Server 2003 Windows Server 2012

processor Intel Xeon 2.8GHz Intel Core i7 9xx 2.39GHz

RAM 2GB 4GB

service pack 2 R2

We performed more than 20 identical tests per VM and per browser to gain good average
results. We present these tests in greater detail in the following sub-sections.

6.2.1 Verification of implemented functionality

To verify the implemented functions, we used the same browser and VM as for the development
process, Google Chrome v30.0.1599 and WS 2003 respectively. The following functionality
was verified:

• Layouts

• Main tabs navigation bar

• Sub-tabs navigation bar

• Main tab title area

• Highlighting of the navigation bars

• ROOT file path window

• ROOT graphs

• Basic ROOT functionality such as zoom in and out of graphs

53

CHAPTER 6. TESTS AND DEMONSTRATIONS

The layouts were loading correctly in each test. The position of the items in Chrome such as
text, graphs and navigation bars was exact, as specified in the parameters. Main tabs and sub-
tabs navigation bars tests revealed that these features were implemented in the right way. We
were able to navigate from tab to tab without any problems. We also verified that the main tab
title was changing accordingly, as we were switching from one main tab to another. Moreover,
the highlighting worked properly, we could easily see the active tabs shined in blue color, as
shown in Fig. 6.1.

Figure 6.1: Active tab highlighting and Main tab title functions.

ROOT file path window indicated the path to the ROOT file that was read. We observed it
many times during the tests and confirmed its functionality, as shown in Fig. 6.2

Figure 6.2: ROOT file path window.

Furthermore, we verified that ROOT graphs were loading when requested, without any er-
rors or significant delays. This also confirmed that the integration process of the ROOTJS
program with our developed solution, into the Web GUI was successful. The basic ROOT func-
tionality tests showed that it was possible to zoom in and out of graphs. In fact, that could be
utilized on multiple graphs of the same tab, as shown in Fig. 6.3. Note that the figure is cropped
and does not show the main tabs navigation bar and the main tab title area.

54

CHAPTER 6. TESTS AND DEMONSTRATIONS

Figure 6.3: Zoom in, zoom out of ROOT histograms.

6.2.2 Browsers tests

The VELO Web GUI application was designed for the Web. The users have to install an Inter-
net browser on their computers in order to use it. However, the application is not compatible
with all browsers, mainly because of the integrated ROOTJS program. The developer of this
program specified alert messages in his code for the non-compatible browsers. The browsers
compatibility with the ROOTJS program is shown in Table 6.2.

Table 6.2: Browsers compatibility with the ROOTJS program.

compatible non-compatible
Chrome Opera
Firefox Safari
IE (≥9)

55

CHAPTER 6. TESTS AND DEMONSTRATIONS

Our own tests were done using the VELO Web GUI application in order to observe how it
performs in different browsers. We also wanted to acknowledge whether the results from pre-
vious tests of the ROOTJS program could be directly applied to our application. The browsers
that were tested are shown in the Table 6.3 below.

Table 6.3: Tested browsers.

Browser Version GUI loading ROOT graphs loading Application crashes
Windows Server 2003

Chrome 30.0.1599 X X
Firefox 17.0.5 X X

IE 8.0.6001 X
Windows Server 2012

Chrome 31.0.1650 X X
Firefox 25.0.1 X X

IE 11.0.9600 X X
Opera 18.0.1284 X X
Safari 5.1.7 X X

Windows Server 2003

The results of Internet Explorer 8 tests showed that it did not support some of the modern
graphic packages. That is why corners of the tabs were not smoothed as compared to how they
looked in other browsers. The side by side comparison is shown in Fig. 6.4.

(a) Tabs in IE 8.

(b) Tabs in Chrome and Firefox.

Figure 6.4: Tabs comparison.

Unfortunately, our developed solutions based on the ROOTJS program did not work and the
graphs were not loaded. The IE 8 browser showed an alert message that one should use at least

56

CHAPTER 6. TESTS AND DEMONSTRATIONS

IE 9. Thus, the performed tests on IE 8 revealed that this browser was not compatible with the
VELO Web GUI application. They also confirmed the previous tests, done by the developer of
the ROOTJS program, that the versions of IE ≥9 were not compatible with the program.

The tests performed on Chrome and Firefox browsers showed that the application worked
very stable. The tab navigation were functioning and it was possible to go forth and back
through all the tabs without any problems. All ROOT files were loaded and displayed at all
times.

Windows Server 2012

Tests on the WS 2012 virtual machine showed similar results as compared to the WS 2003
tests. Google Chrome and Mozilla Firefox browsers worked stable and performed as expected.
All ROOT graphs functioned normally and the application did not crash. However, IE 11 tests
revealed that the browser loaded the GUI correctly, but it hanged and became unresponsive
when the ROOT graphs were loaded.

Furthermore, Opera and Safari browsers were included for the further tests. Opera delivered
a great performance despite the fact that it was suggested to avoid this browser, as stated in the
JSRootInterface.js file. Newer versions of Safari browsers were not available for Windows. For
our tests the last available Safari version for Windows was used. It was not mentioned about
any compatibility details for Windows Server 2012 (Windows 8.1) on the Apple official Web
page [20]. Nevertheless, the tests were successful and in general, we were satisfied with the
performance of this browser.

6.2.3 Basic ROOT functionality tests

The requirements for this thesis specified that the VELO Web GUI application should be able
to display 2D histograms and provide basic ROOT features such as zoom in and out of the
graphs. The functionality of this feature was demonstrated in Subsection 2.2.1. The necessary
tests were done using our application to ensure that it worked, as shown in Fig 6.5.

57

CHAPTER 6. TESTS AND DEMONSTRATIONS

(a) Select an area to zoom in. (b) The result of the zoom operation.

Figure 6.5: Zoom functionality in the VELO Web GUI application.

During the tests the zoom feature was used on 8 graphs in the same tab. We zoomed in on the
selected area and the X and Y axis were scaled accordingly. To zoom back to the default point,
we double-clicked on the white area on the graph. In conclusion, the VELO Web application
fulfilled the predefined requirements of the basic ROOT functionality.

6.2.4 Auxiliary features tests

In this subsection, the implemented auxiliary features tests are presented. They were performed
multiple times in different tabs, to ensure that the features work correctly. All the supported
browsers were utilized to perform these tests.

First, the the collapsible button feature was tested, as shown in Fig. 6.6. The word collapsi-
ble means that the histograms roll up and remain hidden until users click to roll them down
again. One can think of this as roller blinds on windows at home. Please note that the following
figures show only the ROOTJS graphs area of our application.

58

CHAPTER 6. TESTS AND DEMONSTRATIONS

Figure 6.6: The collapsible feature.

The second auxiliary feature of the VELO Web GUI application is the delete button which
is located in the right-top corner of each graph, as shown in Fig. 6.7.

Figure 6.7: The delete feature.

The tests showed that both auxiliary features functioned properly. Moreover, no errors or
crashes were observed during the tests in different compatible browsers.

59

CHAPTER 6. TESTS AND DEMONSTRATIONS

6.3 Numerical results

This section covers the numerical results that were achieved from the VELO Web GUI appli-
cation tests. In the following tests, response time of the Sensor View tab was captured. The
response time is the time it took to load the Sensor View tab content. The code that was used to
capture the data is also presented and explained.

6.3.1 Preparation

There were many other ways to perform such a test. For example, one could use available
extensions or plugins for browsers. Nevertheless, we found a small code that could capture
specific time. It was placed into the JSRootInterface.js file in the area, where the ROOT files
are processed and their content is passed for display. The first line of the code captures the time
when the JSRootInterface.js file begins the execution, as shown in Fig. 6.8.

Figure 6.8: Execution start time.

This code was specifically adjusted for the Sensor View tab that reads and displays 8 graphs,
as shown in Fig. 6.9

Figure 6.9: Execution end time and the result difference.

This part of the code captures the time after all 8 graphs are displayed. When the start and
the end time values are available, the code calculates the difference between them and displays
the result as a pop-up message inside browser, as shown in Fig. 6.10. The message shows two
fields, one with the Web page address and the second one with the execution time. This message
was used to gather all the time values and calculate the average time for the tab to load.

60

CHAPTER 6. TESTS AND DEMONSTRATIONS

Figure 6.10: Alert message in Chrome.

6.3.2 Results

In order to get a better overview of the achieved results we created a table, as shown below.

Table 6.4: Performance results.

Attempt# Response time (ms)
WS 2003 WS 2012

Chrome Firefox Chrome Opera Firefox Safari
1 932 1513 625 672 1230 1044
2 780 1652 812 640 1052 949
3 657 1685 500 672 1298 1285
4 909 1623 875 500 977 1096
5 611 1583 610 531 1156 1134
6 681 1702 750 657 1064 1184
7 872 1671 640 578 1197 1094
8 661 1678 640 562 1192 1145
9 672 1668 625 515 1007 1077

10 625 1635 438 641 939 977
11 633 1669 516 640 1413 958
12 634 1722 625 641 1538 966
13 874 1663 625 515 1054 1074
14 837 1679 625 641 1274 1014
15 625 1762 500 829 1618 1084
16 656 1689 531 532 1252 1072
17 651 1760 516 640 1074 860
18 868 1608 437 625 1267 1287
19 613 1629 563 500 1063 901
20 845 1659 609 672 1275 830

avarage: 732 1663 603 610 1197 1052

Table 6.4 presents the response time, that is, how many milliseconds it took to load the

61

CHAPTER 6. TESTS AND DEMONSTRATIONS

Sensor View tab and how many times we performed the same test. The examined results from
the WS 2003 tests led to the conclusion that the Mozilla Firefox browser used more than twice
as much time to load the Sensor View tab as the Google Chrome. We think that the reason for
that is the browser’s ability to execute JavaScript. The tests that were accomplished on the WS
2012 virtual machine, confirmed the Chrome’s superior efficiency. Another point of the result
analysis was that Opera performed almost as good as Chrome. Safari and Firefox came on 3rd
and 4th place in the response time ranking respectively.

Additionally, it was noted that when the browsers were opened for the first time and loaded
the entire application, the graphs appeared after longer delay than usually (aprox. +500ms).
The same ROOT file was used throughout these tests, so that the result differences could be
easily observed. When using different ROOT files, the results may be different.

6.4 Alternative solutions

In this part of the chapter, we discuss alternative solutions of the tab navigation that were created
and considered for the final application. We present the corresponding figures, write about the
advantages, disadvantages and make a conclusion of our selection.

In the early stage of the GUI development, two different implementations of the tab naviga-
tion were developed, as shown in Fig. 6.11.

(a) Django implementation.

(b) JavaScript implementation.

Figure 6.11: Tab navigations.

62

CHAPTER 6. TESTS AND DEMONSTRATIONS

JavaScript and Django versions were brought for the comparison where the most suitable
one would be chosen for the final application, as shown in Fig. 6.11b and Fig. 6.11a re-
spectively. JavaScript version had an advantage because it was quick and easy to implement.
Another property of the given version was the unchangeable Unique Resource Locator (URL)1

while switching between the tabs. However, implementing tabs inside tabs turned out to be
more complicated and this showed to be the disadvantage of the JavaScript solution.

We continued to experiment and tried the native Django implementation of the tab naviga-
tion. That is, using only Django features such as templates. It took more time to develop this
version, but in return it fulfilled all the requirements. The tab-in-tab navigation was developed
using a smart and easy solution which was presented earlier in the thesis. Moreover, it had a
special feature - the highlighting of active tabs. It was especially useful since the given func-
tionality was not standardised in Django and required additionally developed solutions. The
native Django implementation showed to be the clear advantage. This solution also provided
unique URLs for each tab and sub-tab.

1An example of the URL: http : //www.aftenposten.no/noenytt Idag/veldiginteressant.snd

63

Chapter 7

Discussions

This chapter of the thesis covers the discussions part of our project thesis. Alternative programs
of the ROOJS program and alternative servers are presented. We also justify why they were not
selected for the final application.

7.1 ROOTJS alternatives

In this section, the alternative programs for the ROOTJS program are introduced. The section
also covers the advantages and disadvantages of these programs.

In the beginning phase of the VELO Web GUI application development, there were 3 can-
didate programs that handle ROOT files in a Web browser:

• WebOOT

• Highcharts

• ROOTJS

WebOOT is a ROOT file viewer for the Web. The advantage of this program is that it
provides the functionality to display ROOT files on the Web. The disadvantage of WebOOT, in

64

CHAPTER 7. DISCUSSIONS

our case, is that it generates only image files (e.g. PNG) to display graphs from ROOT files.
Thus, the interactive graphs are not supported [21].

Highcharts is the JavaScript charting engine. Highcharts offers users the HTML5/JavaScript
libraries with intuitive and interactive charts [22]. However, this program was not suitable for
our thesis project because it does not include the functionality to read ROOT files.

Finally, the ROOTJS program remained the most attractive solution out of the 3. We con-
sidered the advantages and disadvantages of all three programs and finally decided to select the
ROOTJS program because it was more suitable for our project considering the requirements.

7.2 Apache alternatives

This part of the chapter covers our selection of servers. We present alternative servers and write
about why we selected the Apache server for our project.

There are many good servers available out there, both open source and proprietary. The list
below presents some of the alternative servers which were considered for this thesis project:

• Apache

• nginx

• lighttpd

All these servers are under the open source licences. Apache server was already presented
earlier in this thesis report. nginx, pronounced as ”engine x”, is a server built for high perfor-
mance. It is also good for the beginners because of its configuration simplicity. lighttpd is a
fast and efficient server that is easy to use straight out of the box, but it is not very suitable for
more advanced tasks. To chose the right server we created a list with some criteria that a server
should fulfil:

• Server should be open source

• Server should be designed for Linux OS

65

CHAPTER 7. DISCUSSIONS

• Server should be well documented

• It should be relatively easy to configure the server for Django applications

We selected Apache server for our project because it fulfils most of our criteria. We had
some experience using it before. Additionally, it is the world’s most popular and widely used
Web server, so there is big amount of help and tutorials available on the Internet. Django
project Web pages contained good examples how to configure the Apache server for Django
applications.

66

Chapter 8

Conclusion and Future Work

In this part of our thesis, the summary and the conclusions are drawn. The achieved results are
also presented together with the future work.

8.1 Summary of the thesis work

This section presents the developed Web DQM application for the VELO module of the LHCb
experiment. The development process was based on the requirements that were specified and
presented in the beginning stage of this thesis project. They served us as the guidelines through-
out the entire thesis project.

The Web GUI was created using Django Web Framework. Moreover, we referred to the
ROOTJS program that was designed for reading ROOT files, processing them and displaying
their content in a Web browser. It was used as a platform for the development of new func-
tionalities. Furthermore, the Web GUI program and the new ROOTJS program were merged
together to create the final application - the VELO Web GUI application. Then, the scenarios
were defined for testing and the application was tested according to them. Finally, the achieved
results were presented and commented.

Additionally, the alternative programs of the ROOTJS program and alternative servers were
introduced. We discussed why they were not selected for the final application.

67

CHAPTER 8. CONCLUSION AND FUTURE WORK

8.2 Contributions

This section covers the contributions of this thesis project. The list that shows the main contri-
butions is presented below. In this thesis project we:

• designed the framework for the application

• developed the VELO Web GUI application

• tested the application in various scenarios

• verified the implemented functions

More specifically, we developed the VELO Web GUI application that reads, processes and
displays the ROOT file content in a Web browser. We also fulfilled all the requirements for
the design and functionality of the application which were presented in Chapter 4. We set up
tests scenarios and tested the application according to them. We gathered and presented the
important results. Moreover, we verified that the implemented functionalities work.

8.3 Future work

The future work would be to enhance the developed functions for the JSRootInterface.js file and
Django templates. One of the proposed enhancements is to make graph display function more
flexible. This can be achieved by creating an array variable h[] that substitutes ’h1’, ’h2’,...,

’h8’ histogram names. The h[] variable can copy the names of appropriate histograms from
some configuration file. Additionally, a for loop should be set to 8 repetitions since there are
maximum 8 graphs per tab. The for loop contains a counter i that has to be placed inside the
array h[i] so that the right names of the histograms are read one by one as the counter goes.

Many Django templates of the VELO Web GUI application contain similar and identical
CSS specifications. This is quite normal, but to make it even simpler and thus gain a better
overview of the templates’ code we can cut and move similar CSS configurations into separate
files. These CSS files can be dynamically loaded upon request from the templates that require
them.

68

CHAPTER 8. CONCLUSION AND FUTURE WORK

These two improvements are valuable for the future versions of the application. However,
they have to be implemented, tested and verified.

69

Bibliography

[1] About CERN. Available: http : //home.web.cern.ch/about. Visited [July 31, 2013].

[2] Introduction to the LHC. Available:
http : //home.web.cern.ch/about/accelerators/large− hadron− collider.
Visited [August 1, 2013].

[3] ATLAS photos. Available: http : //www.atlas.ch/photos/lhc.html.
Visited [August 16, 2013].

[4] The LHCb Experiment, Communication Group, CERN-BROCHURE-2009-007-Eng,
CERN, Geneva, June 2009.

[5] The LHCb experiment image. Available: http : //en.wikipedia.org/wiki/LHCb.
Visited [November 28, 2013].

[6] VErtex LOcator (VELO). Available:
http : //lhcb− public.web.cern.ch/lhcb− public/en/Detector/V ELO − en.html.
Visited [November 29, 2013].

[7] What is ROOT? Available: http : //root.cern.ch/drupal/content/about.
Visited [March 12, 2013].

[8] How to use ROOT with Python (PyROOT)? Available:
http : //root.cern.ch/drupal/content/pyroot. Visited [March 12, 2013].

[9] About ROOTpy. Available: http : //rootpy.org. Visited [March 12, 2013].

[10] What is Pidoco. Available: https : //pidoco.com/. Visited [August 14, 2013].

[11] About Python. Available: http : //python.org/about/. Visited [June 28, 2013].

[12] Django Book, Chapter 1. Available:
http : //www.djangobook.com/en/2.0/chapter01.html#django− s− history.
Visited [June 19, 2013].

70

BIBLIOGRAPHY

[13] What is JavaScript. Available:
https : //developer.mozilla.org/en− US/docs/Web/JavaScript.
Visited [July 4, 2013].

[14] About Apache. Available: http : //httpd.apache.org/ABOUT APACHE.html.
Visited [July 5, 2013].

[15] What is mod wsgi. Available:
https : //code.google.com/p/modwsgi/. Visited [July 5, 2013].

[16] X-Win32: The Best PC X Server for X Windows Display on Your LAN. Available:
http : //www.starnet.com/xwin32/. Visited [August 16, 2013].

[17] Powerful Python and Django IDE. Available:
http : //www.jetbrains.com/pycharm/index.html. Visited [August 20, 2013].

[18] E. Rodrigues, ”A GUI Framework for Offline VELO Monitoring”, University of Glasgow,
U.K., March 2010.

[19] Django Book, Chapter 4. Available:
http : //www.djangobook.com/en/2.0/chapter04.html. Visited [September 6, 2013].

[20] About Safari 5.1.7 for Windows. Available: http : //support.apple.com/kb/dl1531.
Visited [November 26, 2013].

[21] WebOOT’s documentation. Available:
http : //weboot.readthedocs.org/en/latest/index.html. Visited [October 22, 2013].

[22] About Highcharts JS. Available:
http : //www.highcharts.com/. Visited [October 22, 2013].

[23] Quick Installation Guide. Available:
https : //code.google.com/p/modwsgi/wiki/QuickInstallationGuide.
Visited [June 24, 2013].

[24] Simple DRY Tabs using Django 1.3. Available:
https : //djangosnippets.org/snippets/2421/. Visited [November 8, 2013].

71

Appendix A

Configuration of the httpd.conf File

This appendix covers the configuration of the httpd.conf file. httpd.conf file is located at the end
of this path /etc/httpd/conf/httpd.conf. Configuration of the httpd.conf file is presented below:

1. In the LoadModule part of the file, add wsgi module modules mod wsgi.so [23].

2. At the bottom, uncomment NameVirtualHost line and add your development server com-
puter’s IP address like this NameVirtualHost xxxx.xxxx.xxxx.xxxx.

3. Uncomment VirtualHost line and add your development server computer’s IP address:
<VirtualHost xxxx.xxxx.xxxx.xxxx> .

4. Inside VirtualHost area, add Alias to navigate to your Django project static folder: Alias

/static/ /etc/wwwmain/webvelogui/static/ .

5. Inside VirtualHost add:

<Directory /etc/wwwmain/webvelogui/static>
Order deny,allow
Allow from all
</Directory>

6. Inside VirtualHost, point to the location of your Django project WSGI configuration file
as follows: WSGIScriptAlias / /etc/wwwmain/webvelogui/confile/webvelogui.wsgi

72

APPENDIX A. CONFIGURATION OF THE HTTPD.CONF FILE

We have configured our httpd.conf file, as shown in Fig. A.1.

Figure A.1: httpd.conf file.

73

Appendix B

Configuration of the WSGI File

In this appendix, we create and configure the WSGI file. A step by step guide on how to do that
is also presented.

To start with, create a WSGI file using VIM editor or any other text editor. Save the file
with the name of your Django project (e.g. webvelogui) and .wsgi extension. Then, go to the
folder where the Django projects’ setting.py file is located. Create a sub-folder there and name
it confiles for example. Put your WSGI file inside this sub-folder. This is done for the security
precautions. The detailed overview of what the WSGI file should contain is shown in Fig. B.1.

Figure B.1: youprojectname.wsgi file.

74

Appendix C

Configuration of the setting.py File

This appendix covers the configuration of setting.py file. Before proceed the readers should
be familiar with Django and have the basic knowledge of it. This appendix describes how to
configure an existing Django project to work with Apache. For more details about Django Web
Framework refer to www.djangoproject.com.

To configure the Django project, use the project’s settings.py file. Open it with either VIM
on Linux or any other file editor. In DATABASES area, if the sqlite database is used simply
create a path to the folder where the project’s database file is located, as shown in Fig. C.1.

Figure C.1: Databases field in the setting.py file.

Then, add the path to the static folder where the static files are preferred to be collected (e.g.
JS, CSS and IMG files etc), as shown in Fig. C.2. Usually, this folder is created in the root
directory of a Django project.

Figure C.2: ROOT static path in the setting.py file.

75

Appendix D

Adjusting Correct Paths

In this appendix, we explain how to add correct paths in the ROOTJS program. These are the
files that have to be modified:

• JSRootInterface.js

• templates with that load ROOT graphs

Open JSRootInteface.js file, in the top area locate var source folder = ”” and change it to
be equal ”/static/”. Make sure to use forward slash both before word static and after it. The
result should look like the one shown in Fig. D.1.

Figure D.1: JSRootInterface.js file.

Then, check that all templates that load ROOT graphs have the right paths. By default these
paths should be correct, because when the index.htm file was modified the same code was copied
to all the templates. Nevertheless, locate the lines <link rel... and <script type... and check if
the paths to JSRootInterface.js and JSRootInterface.css are correct. If not, specify new paths
/static/scripts/JSRootInterface.js and /static/style/JSRootInterface.css, as shown in Fig. D.2.

76

APPENDIX D. ADJUSTING CORRECT PATHS

Figure D.2: Template file configuration.

77

Appendix E

Developed Solutions for the CSS files

This appendix presents the solutions that were developed for the CSS files of the ROOTJS
program. The part that was modified is shown in Fig. E.1.

Figure E.1: CSS file.

The given CSS file specifies the parameters such as size and position of different HTML
items. In this particular example that was shown in the figure above, the graph sizes were
adjusted along with their positions according to the available space in a given tab.

78

