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This paper is concerned with the network-based fault detection problem for a class of nonlinear discrete-time networked control
systems with multiple communication delays and bounded disturbances. First, a sliding mode based nonlinear discrete observer is
proposed.Then the sufficient conditions of slidingmotion asymptotical stability are derived bymeans of the linearmatrix inequality
(LMI) approach on a designed surface.Then a discrete-time sliding-mode fault observer is designed that is capable of guaranteeing
the discrete-time sliding-mode reaching condition of the specified sliding surface. Finally, an illustrative example is provided to
show the usefulness and effectiveness of the proposed design method.

1. Introduction

Over the past few decades, the sliding mode control (SMC)
(also known as variable structure control) problemoriginated
in [1] has been extensively studied and widely applied,
because of its advantage of strong robustness against model
uncertainties, parameter variations, and external distur-
bances [2–11]. Since SMC possesses the ability to elimi-
nate or compensate the system uncertainties and external
disturbances, sliding mode observers techniques have been
developed to deal with the state estimation problems for
linear or nonlinear uncertain systems. For example, sliding
mode observers techniques have been applied to deal with the
fault detection problems [12–14].

In practical industrial process, various malfunction or
imperfect behavior always occurs in normal operations
resulted from the unexpected variations in external sur-
roundings and sudden changes in signals and so forth. Such
kind of phenomenons are categorized as sensor (actuator)
faults. Faults in the measurement sensors, control actuators,
or process equipment can result in serious degradation of
the system performance and may even lead to a complete
breakdown of the process operation. Due to this fact, the
subject of fault detection (FD) has become a focus of

increasing research investigation over the past few decades
in both theoretical research and practical industrial areas
[5, 15]. Fault diagnosis is aimed at detecting, isolating, and
estimating the faults. Generally speaking, a fault detection
process consists of constructing a residual signal and com-
puting a residual evaluation function which can then be
compared with a predefined threshold. When the residual
exceeds the threshold, the fault is detected, and an alarm
of fault is generated. Recently, the model-based approaches
to fault detection problems have been widely adopted for
dynamic systems. The main idea of these approaches is to
introduce a performance index and then convert the fault
detection problem into an associated optimization problem.
Accordingly, a variety of important results have been reported
in the literature. For example, the fault detection problems
have been addressed in [16] for linear time-varying systems,
in [17] for sampled-data systems, and in [18–21] for networked
control systems (NCSs). However, it is less considered for the
fault detection of networked control systems by slide mode
approach.

On another active research front, rapid development of
microelectronic, information, and communication technolo-
gies enhanced networking of intelligent sensors, actuators,
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controllers, and microprocessors and accelerated the appli-
cation of NCSs in major industrial sectors. Therefore NCSs
receive a great deal of attention [22, 23]. Integrating networks
into automatic control systems can significantly increase the
automation degree tomeet the demands for high productivity
and product qualit, and allow a flexible system configuration
with less wiring and an easy maintenance. Remarkably
different from classical control systems, the performance and
behavior of the NCSs considerably depend on the technical
characteristics of the network. In addition, accompaniedwith
the growth of the integration and automation degree the
overall failure rate will significantly increase. For example,
in [24], the NCSs with stochastic mixed time delays and
successive packet dropouts are represented by a 𝑇-𝑆 fuzzy
model, based on such mode, and a fuzzy-observer-based
approach for fault detection is developed. In [25], the fault
detection problem for NCSs have been studied where the
communication delays are described as a random Markov
jump process. It is worth mentioning that most of the
reported results have been concerned with the discrete time
delays.

A thorough literature review on the fault detection prob-
lems for NCSs has revealed that, up to now, little attention has
been paid to the study of fault detection for nonlinear NCSs
with both communication delays and bounded disturbances
by means of sliding mode observer. Summarizing the earlier
discussion, in this paper, we are motivated to study the
fault detection problem for a class of discrete-time nonlin-
ear systems involving multiple communication delays and
bounded disturbances input. In this paper, the fault detection
problem is firstly converted into a sliding mode observer
design problem. Sufficient conditions are established for the
existence of the desired sliding-mode fault observer in terms
of LMIs, and then, the sliding-mode reaching condition for
the system is established. A numerical simulation example
is provided to show the usefulness and effectiveness of the
proposed design method.

Themain contributions of this paper can be highlighted as
follows: (1) the multiple communication delays and bounded
disturbances are introduced for discrete-time networked
control systems to reflect more realistic environment, (2)
Slide mode observer approach is utilized to deal with the
fault detection, and (3) to illustrate the applicability of the
proposed results that the time of fault detect time is discussed.

Notation. The notation used here is fairly standard except
where otherwise stated. R𝑛 and R𝑛×𝑚 denote, respectively,
the 𝑛 dimensional Euclidean space and the set of all 𝑛 × 𝑚

real matrices. 𝐼 denotes the identity matrix of compatible
dimension. The notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌), where
𝑋 and 𝑌 are symmetric matrices, means that 𝑋 − 𝑌 is
positive semidefinite (resp., positive definite). 𝐴𝑇 represents
the transpose of 𝐴. E{𝑥} stands for the expectation of the
stochastic variable 𝑥. ‖𝑥‖ describes the Euclidean norm of a
vector 𝑥. diag{𝐹

1
, 𝐹
2
, . . .} stands for a block-diagonal matrix

whose diagonal blocks are given by 𝐹
1
, 𝐹
2
, . . .. The symbol ∗

in a matrix means that the corresponding term of the matrix
can be obtained by symmetric property.

2. Problem Formulation

Consider a discrete-time nonlinear systems with multiple
communication delays and bounded disturbances which can
be represented by the following dynamic model:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴
𝑑

𝑛

∑

𝑖=1

𝑀
𝑖
𝑥 (𝑘 − 𝜏

𝑖
(𝑘))

+ 𝐵𝑢 (𝑘) + 𝑔 (𝑥, 𝑘) + 𝐷𝑤 (𝑘) + 𝐺𝑓 (𝑘)

𝑦 (𝑘) = 𝐶𝑥 (𝑘)

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = −𝑑, −𝑑 + 1, . . . , 0,

(1)

where 𝑥(𝑘) ∈ R𝑛 represents the state vector; 𝑦(𝑘) ∈ R𝑝

is the measured output; 𝑢(𝑘) ∈ R𝑚 is the control input;
𝑓(𝑘) ∈ R𝑟 is the fault of the system; 𝜔(𝑘) ∈ R𝑞 is a
continuous vector function which represents the bounded
exogenous disturbance input for the system; and 𝜑(𝑘) is the
given initial conditions. 𝐴, 𝐴

𝑑
, 𝐵, 𝐷, 𝐺, and 𝐶 are known

constant real-valued matrices with appropriate dimensions.
𝑔(𝑥, 𝑘) is a Lipschitz nonlinearity with a known Lipschitz
constant 𝛾 [26]; that is,

󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑘) − 𝑔 (𝑥, 𝑘)
󵄩󵄩󵄩󵄩 ≤ 𝛾 ‖𝑥 − 𝑥‖ , (2)

where 𝑥 ∈ R𝑛 is the observer state vector, and 𝑀
𝑖
(𝑖 =

1, 2, . . . , 𝑛) has the form of

𝑀
𝑖
= diag{0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖−1

, 1, 0, . . . , 0} ∈ R
𝑛×𝑛

𝑖 = 1, 2, . . . , 𝑛.

(3)

Assumption 1. The pair (𝐴, 𝐶) is observable, and the 𝐶 is of
full row rank; that is, all the states of system are available at
every instant.

Assumption 2. The variables 𝜏
𝑖
(𝑘) (𝑖 = 1, 2, . . . , 𝑛) represent

the 𝑛 different communication delays, which are assumed to
be time-varying and satisfy 0 ≤ 𝜏

𝑖
(𝑘) ≤ 𝑑 (𝑖 = 1, 2, . . . , 𝑛),

where 𝑑 is constant positive scalars representing the upper
bound on the communication delay. Since all the system state
variables have time scale, we can obtain the 𝜏

𝑖
(𝑘) at every

instant.

Assumption 3. The exogenous disturbance input is piecewise
continuous bounded functions; that is, there exist known
positive constants 𝑤 such that

‖𝑤 (𝑘)‖ ≤ 𝑤. (4)

Remark 4. In Assumption 2, although the 𝑛 time-varying
communication delays 𝜏

𝑖
(𝑘) are assumed to have the same

upper bounds, they could actually take different values at the
same sampling instant 𝑘. Such a description is suitable for net-
worked control systems that have different communication
delays when the signals are transferred via different channels
at the same sample time 𝑘, which is very often the case in
many practical applications.
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In the next section, following the developments stated in
[27], a sliding-mode observer is introduced to reconstruct the
state vector and identify the system faults.

3. Sliding Mode Observer

In this section, a sliding mode observer will be designed.
Considering the form of the model (1), the sliding mode
observer can be designed:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴
𝑑

𝑛

∑

𝑖=1

𝑀
𝑖
𝑥 (𝑘 − 𝜏

𝑖
(𝑘))

+ 𝐵𝑢 (𝑘) + 𝑔 (𝑥, 𝑘) + 𝐿 (𝑦 (𝑘) − 𝑦 (𝑘)) + V (𝑘)

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(5)

where 𝑥
𝑘
∈ R𝑛 is the observer state vector, 𝑦

𝑘
∈ R𝑝 is the

output of the observer. 𝐿 ∈ R𝑛×𝑝 is the observer gain to
be determined. The function V(𝑘) is the nonlinear input of
observer to be determined.

Let 𝑒
𝑥
(𝑘) = 𝑥(𝑘)−𝑥(𝑘) and 𝑒

𝑦
(𝑘) = 𝑦(𝑘)−𝑦(𝑘).Then from

(1) and (6), we have the fault detection dynamics governed by
the following system:

𝑒
𝑥
(𝑘 + 1) = (𝐴 − 𝐿𝐶) 𝑒

𝑥
(𝑘) + 𝐴

𝑑

𝑛

∑

𝑖=1

𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘))

+ [𝑔 (𝑥, 𝑘) − 𝑔 (𝑥, 𝑘)] + 𝐷𝑤 (𝑘) + 𝐺𝑓 (𝑘) − V (𝑘)

𝑒
𝑦
(𝑘) = 𝐶𝑒

𝑥
(𝑘) .

(6)

Define the residual of the system 𝑟(𝑘) and the sliding
mode manifold 𝑠(𝑘) as

𝑟 (𝑘) = 𝑒
𝑦
(𝑘) , 𝑠 (𝑘) = 𝑒

𝑦
(𝑘) . (7)

Our aim in this paper is to design a slidingmode observer that
makes 𝑟(𝑘) zero when there is no fault. In this paper, we adopt
a residual evaluation stage, including an evaluation function
𝐽(𝑘) and a threshold 𝐽th of the following form:

𝐽 (𝑘) =
{

{

{

𝑘=𝑠

∑

𝑘=𝑠−𝜁

𝑟
𝑇

(𝑘) 𝑟 (𝑘)
}

}

}

1/2

𝐽th = sup
𝑓(𝑘)=0

E {𝐽 (𝑘)} , (8)

where 𝜁 denotes the length of the finite evaluating time
horizon. Based on (8), the occurrence of faults can be detected
by comparing 𝐽(𝑘) with 𝐽th according to the following rule:

𝐽 (𝑘) > 𝐽th 󳨐⇒ with faults 󳨐⇒ alarm

𝐽 (𝑘) ≤ 𝐽th 󳨐⇒ no faults.
(9)

Now, for that the system motion can get into the sliding
surface in finite time and be stable, we aim to design a sliding
mode observer such that the observer error system satisfies
the following requirements (Q1) and (Q2), simultaneously:

(Q1) the error system (6) is asymptotically stable when
𝑠(𝑘 + 1) = 𝑠(𝑘) = 0;

(Q2) sliding mode manifold satisfies ‖𝑠(𝑘 + 1)‖ < ‖𝑠(𝑘)‖.

The design problem stated above will be referred to as the
sliding mode observer problem with finding the gain matrix
𝐿 and the observer’s nonlinear input V(𝑘).

4. Main Results

First of all, we introduce the following lemmas which will be
used in this paper.

Lemma 5. For any real vectors 𝑎, 𝑏 and matrix 𝑃 > 0 of
compatible dimensions,

𝑎
𝑇

𝑏 + 𝑏
𝑇

𝑎 ≤ 𝑎
𝑇

𝑃𝑎 + 𝑏
𝑇

𝑃
−1

𝑏. (10)

Lemma 6 (Schur complement). Given constant matrices 𝑆
1
,

𝑆
2
, and 𝑆

3
, where 𝑆

1
= 𝑆
𝑇

1
and 0 < 𝑆

2
= 𝑆
𝑇

2
, then 𝑆

1
+𝑆
𝑇

3
𝑆
−1

2
𝑆
3
<

0 if and only if

[
𝑆
1

𝑆
𝑇

3

𝑆
3
−𝑆
2

] < 0 𝑜𝑟 [
−𝑆
2
𝑆
3

𝑆
𝑇

3
𝑆
1

] < 0. (11)

Theorem 7. Consider that the system error model (6) associ-
ated with the surface (7) is asymptotically stable if there exist
matrices 𝑃 > 0, 𝐿 satisfying

[

[

(2𝛾
2

− 1) 𝑃 (𝐴 − 𝐿𝐶)
𝑇

∗ −
1

2
𝑃

]

]

< 0 (12)

which holds and V(𝑘) is designed as

V (𝑘) = V
1
(𝑘) + V

2
(𝑘) (13)

with

V
1
(𝑘) = 𝑙

𝑦 (𝑘) − 𝑦 (𝑘)

󵄩󵄩󵄩󵄩𝑦 (𝑘) − 𝑦 (𝑘)
󵄩󵄩󵄩󵄩

𝑖𝑓 𝑦 (𝑘) − 𝑦 (𝑘) ̸= 0,

V
2
(𝑘) = 𝐴

𝑑

𝑛

∑

𝑖=1

𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘)) ,

(14)

where 𝑙 = −‖𝐷‖𝑤 and 𝛾 is the Lipschitz constant for 𝑔(𝑥, 𝑘).

Proof. Choose a Lyapunov functional candidate as

𝑉 (𝑘) = 𝑒
𝑇

𝑥
(𝑘) 𝑃𝑒

𝑥
(𝑘) (15)
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with 𝑃 > 0 being matrices to be determined. Then, along the
trajectory of system (6), we have

Δ𝑉 (𝑘 + 1) = 𝑒
𝑇

𝑥
(𝑘 + 1) 𝑃𝑒

𝑥
(𝑘 + 1) − 𝑒

𝑇

𝑥
(𝑘) 𝑃𝑒

𝑥
(𝑘)

= 𝑒
𝑇

𝑥
(𝑘) [(𝐴 − 𝐿𝐶)

𝑇

𝑃 (𝐴 − 𝐿𝐶) − 𝑃] 𝑒
𝑥
(𝑘)

+ [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

× 𝑃 [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]

+

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝑃𝐴
𝑑

×

𝑛

∑

𝑖=1

𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘))

+ [𝐷𝑤 (𝑘) − V (𝑘)]
𝑇

𝑃 [𝐷𝑤 (𝑘) − V (𝑘)]

+ 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝑃 [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]

+ 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝑃𝐴
𝑑

𝑛

∑

𝑖=1

𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘))

+ 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝑃 [𝐷𝑤 (𝑘) − V (𝑘)]

+ 2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝑃𝐴
𝑑

×

𝑛

∑

𝑖=1

𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘))

+ 2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝑃 [𝐷𝑤 (𝑘) − V (𝑘)]

+ 2

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝑃 [𝐷𝑤 (𝑘) − V (𝑘)].

(16)

From (2), it is derived that

[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝑃 [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]

≤ 𝛾
2

𝑒
𝑇

𝑥
(𝑘) 𝑃𝑒

𝑥
(𝑘) .

(17)

Letting V(𝑘) = V
1
(𝑘) + V

2
(𝑘), then

[𝐷𝑤 (𝑘) − V (𝑘)]
𝑇

𝑃 [𝐷𝑤 (𝑘) − V (𝑘)]

= [𝐷𝑤 (𝑘) − V
1
(𝑘) − V

2
(𝑘)]
𝑇

𝑃 [𝐷𝑤 (𝑘) − V
1
(𝑘) − V

2
(𝑘)]

= [𝐷𝑤 (𝑘) − V
1
(𝑘)]
𝑇

𝑃 [𝐷𝑤 (𝑘) − V
1
(𝑘)]

− 2[𝐷𝑤 (𝑘) − V
1
(𝑘)]
𝑇

𝑃V
2
(𝑘) + V

2
(𝑘)
𝑇

𝑃V
2
(𝑘)

≤ [‖𝐷𝑤 (𝑘)‖ +
󵄩󵄩󵄩󵄩V1 (𝑘)

󵄩󵄩󵄩󵄩]
2

‖𝑃‖

+ 2 [‖𝐷𝑤 (𝑘)‖ +
󵄩󵄩󵄩󵄩V1 (𝑘)

󵄩󵄩󵄩󵄩] ‖𝑃‖
󵄩󵄩󵄩󵄩V2 (𝑘)

󵄩󵄩󵄩󵄩

+ V
2
(𝑘)
𝑇

𝑃V
2
(𝑘)

≤ [‖𝐷‖𝑤 + 𝑙]
2

‖𝑃‖ + 2 [‖𝐷‖𝑤 + 𝑙] ‖𝑃‖
󵄩󵄩󵄩󵄩V2 (𝑘)

󵄩󵄩󵄩󵄩

+ V
2
(𝑘)
𝑇

𝑃V
2
(𝑘)

2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝑃 [𝐷𝑤 (𝑘) − V (𝑘)]

= 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝑃 [𝐷𝑤 (𝑘) − V
1
(𝑘)]

− 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝑃V
2
(𝑘)

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇

𝑥
(𝑘)

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
(𝐴 − 𝐿𝐶)

𝑇

𝑃
󵄩󵄩󵄩󵄩󵄩
[‖𝐷𝑤 (𝑘)‖ +

󵄩󵄩󵄩󵄩V1 (𝑘)
󵄩󵄩󵄩󵄩]

− 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝑃V
2
(𝑘)

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇

𝑥
(𝑘)

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
(𝐴 − 𝐿𝐶)

𝑇

𝑃
󵄩󵄩󵄩󵄩󵄩
[‖𝐷‖𝑤 + 𝑙]

− 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝑃V
2
(𝑘)

2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝑃 [𝐷𝑤 (𝑘) − V (𝑘)]

= 2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝑃 [𝐷𝑤 (𝑘) − V
1
(𝑘)]

− 2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝑃V
2
(𝑘)

≤ 2
󵄩󵄩󵄩󵄩𝑔 (𝑥𝑘, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)

󵄩󵄩󵄩󵄩 ‖𝑃‖ [‖𝐷‖𝑤 + 𝑙]

− 2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝑃V
2
(𝑘)

2

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝑃 [𝐷𝑤 (𝑘) − V (𝑘)]

= 2

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝑃 [𝐷𝑤 (𝑘) − V

1
(𝑘)]

− 2

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝑃V
2
(𝑘)

≤ 2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑑

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

‖𝑃‖ [‖𝐷‖𝑤 + 𝑙]

− 2

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝑃V
2
(𝑘) .

(18)
By using Lemma 5, we have

2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝑃 [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]

≤ 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝑃 (𝐴 − 𝐿𝐶) 𝑒
𝑥
(𝑘)

+ [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝑃 [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]

≤ 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝑃 (𝐴 − 𝐿𝐶) 𝑒
𝑥
(𝑘) + 𝛾

2

𝑒
𝑇

𝑥
(𝑘) 𝑃𝑒

𝑥
(𝑘) .

(19)

The combination of (13)-(14) and (16)–(19) results in

Δ𝑉 (𝑘 + 1) ≤ 𝑒
𝑇

𝑥
(𝑘) [2(𝐴 − 𝐿𝐶)

𝑇

𝑃 (𝐴 − 𝐿𝐶) + (2𝛾
2

− 1) 𝑃]

× 𝑒
𝑥
(𝑘) < 0.

(20)
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By the Schur complement, it is easy to obtain

Δ𝑉 (𝑘 + 1) ≤ 𝑒
𝑇

𝑥
(𝑘) [

[

(2𝛾
2

− 1) 𝑃 (𝐴 − 𝐿𝐶)
𝑇

∗ −
1

2
𝑃

]

]

𝑒
𝑥
(𝑘)

< 0

(21)

which is equivalent to the inequality in (12), and therefore, the
proof of Theorem 7 is complete.

Having established the analysis results, we are now in a
position to deal with the slidingmotion reachability problem.

Theorem 8. Considering the system (6), assume V(𝑘) is chosen
to satisfy (13). If there exists a matrix 𝐿 and 𝜀2 < 1 satisfying
the condition

[

[

(2𝛾
2

− 𝜀
2

) 𝐶
𝑇

𝐶 (𝐴 − 𝐿𝐶)
𝑇

∗ −
1

2
𝐶
𝑇

𝐶

]

]

< 0 (22)

then the system motion will get into the sliding surface in finite
time.

Proof. If sliding mode manifold satisfies ‖𝑠(𝑘 + 1)‖ < ‖𝑠(𝑘)‖,
that is,

𝑠(𝑘 + 1)
𝑇

𝑠 (𝑘 + 1) − 𝜀
2

𝑠(𝑘)
𝑇

𝑠 (𝑘)

= 𝑒
𝑇

𝑦
(𝑘 + 1) 𝑒

𝑦
(𝑘 + 1) − 𝜀

2

𝑒
𝑇

𝑦
(𝑘) 𝑃𝑒

𝑦
(𝑘)

= 𝑒
𝑇

𝑥
(𝑘 + 1) 𝐶

𝑇

𝐶𝑒
𝑥
(𝑘 + 1) − 𝜀

2

𝑒
𝑇

𝑥
(𝑘) 𝐶
𝑇

𝐶𝑒
𝑥
(𝑘)

< 0,

(23)

where 𝜀2 < 1, then substituting (6) into (23), we can obtain

𝑠(𝑘 + 1)
𝑇

𝑠 (𝑘 + 1) − 𝜀
2

𝑠(𝑘)
𝑇

𝑠 (𝑘)

= 𝑒
𝑇

𝑥
(𝑘) [(𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶 (𝐴 − 𝐿𝐶) − 𝜀
2

𝐶
𝑇

𝐶] 𝑒
𝑥
(𝑘)

+ [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝐶
𝑇

𝐶 [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]

+

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝐶
𝑇

𝐶𝐴
𝑑

𝑛

∑

𝑖=1

𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘))

+ [𝐷𝑤 (𝑘) − V (𝑘)]
𝑇

𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V (𝑘)]

+ 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶 [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]

+ 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶𝐴
𝑑

𝑛

∑

𝑖=1

𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘))

+ 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V (𝑘)]

+ 2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝐶
𝑇

𝐶𝐴
𝑑

𝑛

∑

𝑖=1

𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘))

+ 2 [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V (𝑘)]

+ 2

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V (𝑘)] .

(24)

From (2), it is derived that

[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝐶
𝑇

𝐶 [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]

≤ 𝛾
2

𝑒
𝑇

𝑥
(𝑘) 𝐶
𝑇

𝐶𝑒
𝑥
(𝑘) .

(25)

Letting V(𝑘) = V
1
(𝑘) + V

2
(𝑘), then

[𝐷𝑤 (𝑘) − V (𝑘)]
𝑇

𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V (𝑘)]

= [𝐷𝑤 (𝑘) − V
1
(𝑘) − V

2
(𝑘)]
𝑇

𝐶
𝑇

× 𝐶 [𝐷𝑤 (𝑘) − V
1
(𝑘) − V

2
(𝑘)]

= [𝐷𝑤 (𝑘) − V
1
(𝑘)]
𝑇

𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V
1
(𝑘)]

− 2[𝐷𝑤 (𝑘) − V
1
(𝑘)]
𝑇

𝐶
𝑇

𝐶V
2
(𝑘) + V

2
(𝑘)
𝑇

𝐶
𝑇

𝐶V
2
(𝑘)

≤ [‖𝐷𝑤 (𝑘)‖ +
󵄩󵄩󵄩󵄩V1 (𝑘)

󵄩󵄩󵄩󵄩]
2 󵄩󵄩󵄩󵄩󵄩
𝐶
𝑇

𝐶
󵄩󵄩󵄩󵄩󵄩

+ 2 [‖𝐷𝑤 (𝑘)‖ +
󵄩󵄩󵄩󵄩V1 (𝑘)

󵄩󵄩󵄩󵄩]
󵄩󵄩󵄩󵄩󵄩
𝐶
𝑇

𝐶
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V2 (𝑘)
󵄩󵄩󵄩󵄩

+ V
2
(𝑘)
𝑇

𝑃V
2
(𝑘)

≤ [‖𝐷‖𝑤 + 𝑙]
2
󵄩󵄩󵄩󵄩󵄩
𝐶
𝑇

𝐶
󵄩󵄩󵄩󵄩󵄩
+ 2 [‖𝐷‖𝑤 + 𝑙]

󵄩󵄩󵄩󵄩󵄩
𝐶
𝑇

𝐶
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩V2 (𝑘)
󵄩󵄩󵄩󵄩

+ V
2
(𝑘)
𝑇

𝐶
𝑇

𝐶V
2
(𝑘) .

(26)

Substituting 𝑙 = −‖𝐷‖𝑤 into (26) we have

[𝐷𝑤(𝑘) − V(𝑘)]
𝑇

𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V (𝑘)] ≤ V
2
(𝑘)
𝑇

𝐶
𝑇

𝐶V
2
(𝑘) .

(27)

In a similar way,

2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V (𝑘)]

= 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V
1
(𝑘)]

− 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶V
2
(𝑘)

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇

𝑥
(𝑘)

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
(𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶
󵄩󵄩󵄩󵄩󵄩
[‖𝐷𝑤 (𝑘)‖ +

󵄩󵄩󵄩󵄩V1 (𝑘)
󵄩󵄩󵄩󵄩]

− 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶V
2
(𝑘)

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑇

𝑥
(𝑘)

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
(𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶
󵄩󵄩󵄩󵄩󵄩
[‖𝐷‖𝑤 + 𝑙]

− 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶V
2
(𝑘)

≤ −2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶V
2
(𝑘)
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2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V (𝑘)]

= 2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V
1
(𝑘)]

− 2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝐶
𝑇

𝐶V
2
(𝑘)

≤ 2
󵄩󵄩󵄩󵄩𝑔 (𝑥𝑘, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐶
𝑇

𝐶
󵄩󵄩󵄩󵄩󵄩
[‖𝐷‖𝑤 + 𝑙]

− 2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝐶
𝑇

𝐶V
2
(𝑘)

≤ −2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝐶
𝑇

𝐶V
2
(𝑘)

2

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V (𝑘)]

= 2

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝐶
𝑇

𝐶 [𝐷𝑤 (𝑘) − V
1
(𝑘)]

− 2

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝐶
𝑇

𝐶V
2
(𝑘)

≤ 2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑑

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐶
𝑇

𝐶
󵄩󵄩󵄩󵄩󵄩
[‖𝐷‖𝑤 + 𝑙]

− 2

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝐶
𝑇

𝐶V
2
(𝑘)

≤ −2

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝐶
𝑇

𝐶V
2
(𝑘) .

(28)

By using Lemma 5, we have

2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶 [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]

≤ 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶 (𝐴 − 𝐿𝐶) 𝑒
𝑥
(𝑘)

+ [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

× 𝐶
𝑇

𝐶 [𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]

≤ 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶 (𝐴 − 𝐿𝐶) 𝑒
𝑥
(𝑘)

+ 𝛾
2

𝑒
𝑇

𝑥
(𝑘) 𝐶
𝑇

𝐶𝑒
𝑥
(𝑘) .

(29)

Therefore

𝑠(𝑘 + 1)
𝑇

𝑠 (𝑘 + 1) − 𝜀
2

𝑠(𝑘)
𝑇

𝑠 (𝑘)

≤ 𝑒
𝑇

𝑥
(𝑘) [(𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶 (𝐴 − 𝐿𝐶) − 𝜀
2

𝐶
𝑇

𝐶] 𝑒
𝑥
(𝑘)

+ 𝛾
2

𝑒
𝑇

𝑥
(𝑘) 𝐶
𝑇

𝐶𝑒
𝑥
(𝑘)

+

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝐶
𝑇

𝐶𝐴
𝑑

𝑛

∑

𝑖=1

𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘))

+ V
2
(𝑘)
𝑇

𝐶
𝑇

𝐶V
2
(𝑘)

+ 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶 (𝐴 − 𝐿𝐶) 𝑒
𝑥
(𝑘)

+ 𝛾
2

𝑒
𝑇

𝑥
(𝑘) 𝐶
𝑇

𝐶𝑒
𝑥
(𝑘)

+ 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶𝐴
𝑑

𝑛

∑

𝑖=1

𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘))

− 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶V
2
(𝑘)

+ 2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝐶
𝑇

𝐶𝐴
𝑑

𝑛

∑

𝑖=1

𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘))

− 2[𝑔 (𝑥
𝑘
, 𝑘) − 𝑔 (𝑥

𝑘
, 𝑘)]
𝑇

𝐶
𝑇

𝐶V
2
(𝑘)

− 2

𝑛

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝜏

𝑖
(𝑘))𝑀

𝑇

𝑖
𝐴
𝑇

𝑑
𝐶
𝑇

𝐶V
2
(𝑘) .

(30)

Since V
2
(𝑘) = 𝐴

𝑑
∑
𝑛

𝑖=1
𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘)), substituting V

2
(𝑘)

into (30) we have

𝑠(𝑘 + 1)
𝑇

𝑠 (𝑘 + 1) − 𝜀
2

𝑠(𝑘)
𝑇

𝑠 (𝑘)

≤ 𝑒
𝑇

𝑥
(𝑘) [2(𝐴 − 𝐿𝐶)

𝑇

𝐶
𝑇

𝐶 (𝐴 − 𝐿𝐶) + (2𝛾
2

− 𝜀
2

) 𝐶
𝑇

𝐶]

× 𝑒
𝑥
(𝑘) < 0.

(31)

By the Schur complement, it is easy to obtain

𝑠(𝑘 + 1)
𝑇

𝑠 (𝑘 + 1) − 𝜀
2

𝑠(𝑘)
𝑇

𝑠 (𝑘)

≤ 𝑒
𝑇

𝑥
(𝑘) [

[

(2𝛾
2

− 𝜀
2

) 𝐶
𝑇

𝐶 (𝐴 − 𝐿𝐶)
𝑇

∗ −
1

2
𝐶
𝑇

𝐶

]

]

𝑒
𝑥
(𝑘) < 0

(32)

which is equivalent to the inequality in (22), and therefore,
the proof of Theorem 8 is complete.

Remark 9. It is able to measure all the system states directly
under normal circumstances, sowe can use the abovemethod
to solve this problem.

Remark 10. According to Theorems 7 and 8, we can get the
slidingmode observer unknown gainmatrix 𝐿 and nonlinear
output V(𝑘) = −‖𝐷‖𝑤((𝑦(𝑘) − 𝑦(𝑘))/‖𝑦(𝑘) − 𝑦(𝑘)‖) +

𝐴
𝑑
∑
𝑛

𝑖=1
𝑀
𝑖
𝑒
𝑥
(𝑘 − 𝜏

𝑖
(𝑘)).

5. Numerical Example

In this section, we present an illustrative example to demon-
strate the effectiveness of the proposed algorithm. Consider
the following nonlinear networked system with communica-
tion delays:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴
𝑑

3

∑

𝑖=1

𝑀
𝑖
𝑥 (𝑘 − 𝜏

𝑖
(𝑘)) + 𝐵𝑢 (𝑘)

+ 𝑔 (𝑥, 𝑘) + 𝐷𝑤 (𝑘) + 𝐺𝑓 (𝑘)

𝑦 (𝑘) = 𝐶𝑥 (𝑘)

𝑥 (𝑘) = 𝜑 (𝑘) = 0, 𝑘 = −𝑑, −𝑑 + 1, . . . , 0.

(33)
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Figure 1: The time-varying communication delays 𝜏(𝑘).

The model parameters are given as follows:

𝐴 = [

[

0.075 −0.5 0

0 0.08 0

0.01 0 −0.055

]

]

,

𝐴
𝑑
= [

[

0.03 0 −0.01

0.02 0.03 0

0.04 0.05 −0.01

]

]

,

𝐵 = [

[

−0.085

0.07

0.2

]

]

, 𝐷 = [

[

−0.012

0.05

0.02

]

]

,

𝑤 (𝑘) = 2 cos (0.1𝑘) , 𝐺 = [

[

0.01

0.03

0.05

]

]

,

𝐶 = [0.3 0.1 0.2] ,

𝑔 (𝑥, 𝑘) = 0.0031
[
[

[

sin (0.1𝑥
1
(𝑘) − 0.2𝑥

2
(𝑘))

sin (0.1𝑥
1
(𝑘) + 0.5𝑥

3
(𝑘))

sin (0.5𝑥
2
(𝑘) + 0.3𝑥

3
(𝑘))

]
]

]

,

(34)

and thus the Lipchitz condition (2) can be given as 𝛾 =

0.0031, and 𝑤 = 2.
Assume that time-varying communication delays

𝜏
𝑖
(𝑘) (𝑖 = 1, 2, 3) are able to be obtained according to the

time scale. Let us show the time delays of every system state
in Figure 1. From Figure 1, we can know the 𝑑 = 3.

ApplyingTheorems 7 and 8, we can obtain the desired 𝑃,
𝐿, and 𝜀 as follows:

𝑃 = [

[

0.0151 −0.005 0.01

−0.005 0.0017 0.0033

0.01 0.0033 −0.0067

]

]

, 𝐿 = [

[

−0.0049

0.0012

−0.0015

]

]

,

𝜀 = 1.0773𝑒
−5

.

(35)
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Figure 2: System residual signal with no faults.

When there is no fault in the system, the simulation result
is shown in Figure 2. It is clear from Figure 2 that the state
observer tracks the true state of the system well and the
residual drifts in a region around 0.

To further illustrate the effectiveness of the designed
sliding fault detection, for 𝑘 = 0, 1, . . . , 200, let the fault signal
𝑓(𝑘) be given as

𝑓 (𝑘) = {
1, 50 ≤ 𝑘 ≤ 100

0, else.
(36)

The residual signal 𝑟(𝑘) and evolution of residual evalua-
tion function 𝐽(𝑘) are shown in Figures 3 and 4, respectively,
which indicate that the designed observer can detect the fault
effectively when it occurs.

For simulation purpose, the threshold is selected as
𝐽th = sup

𝑓(𝑘)=0
E{∑
200

𝑘=0
𝑟
𝑇

(𝑘)𝑟(𝑘)}
1/2

, and accordingly, it can
be obtained that 𝐽th = 0.6770 in Figure 4 represented
the dotted curve after 200 Monte Carlo simulations with
no faults. Solid curve represents the residual evaluation of
the system. From Figure 4, it can be seen that 0.4864 =

𝐽(50) < 𝐽th < 𝐽(51) = 0.8743, which means that the fault
can be detected in 1 time steps after its occurrence. From
simulation results, it can be clearly observed that the smaller
the thresholdwe obtain, the faster the fault detectionwill take.

6. Conclusions

In this paper, we have addressed the fault detection problem
for a class of nonlinear discrete-time networked control
systems comprising multiple communication delays and
bounded disturbances. A sliding mode observer-based fault
detection method has been presented. When the system
states are completely measurable, the fault detection problem
is converted into the sliding motion stable and reachable
problem.A simulation example has been used to demonstrate
the effectiveness of the fault detection techniques presented in
this paper.The results in this paper could be further extended
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Figure 3: System residual signal with faults.
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Figure 4: Evolution of residual evaluation function 𝐽(𝑘).

to state estimation for NCSs with multiple communication
delays and bounded disturbances.
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