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This paper investigates the problem of H
∞

model reduction for a class of discrete-time Markovian jump linear systems (MJLSs)
with deficient mode information, which simultaneously involves the exactly known, partially unknown, and uncertain transition
probabilities. By fully utilizing the properties of the transition probability matrices, together with the convexification of uncertain
domains, a newH

∞
performance analysis criterion for the underlyingMJLSs is first derived, and then two approaches, namely, the

convex linearisation approach and iterative approach, for the H
∞

model reduction synthesis are proposed. Finally, a simulation
example is provided to illustrate the effectiveness of the proposed design methods.

1. Introduction

Markovian jump linear systems (MJLSs), initially proposed
by Krasovskĭı and Lidskĭı [1], have been attracting increasing
attention over the past decades. The appeal for the study of
this class of hybrid systems is that MJLSs are powerful to
model plants whose structures are subject to random abrupt
changes, for example, the fault-prone manufacturing systems
[2], power systems [3], economic systems [4], networked con-
trol systems (NCSs) [5–10], and so on. As a critical factor, the
transition probabilities (TPs) in the Markov chain determine
the jump rules of different modes and are assumed to be
completely known in most of the existing literature [11–14].

However, it is noted that, in many practical engineering
systems, not all the mode transition information can be
obtained exactly. Recently, there have appeared some results
on the analysis and synthesis of MJLSs with uncertain TPs
[15–18] or partially unknown TPs [19–21]. To mention a few,
the authors in [15] considered the robust stochastic stability
analysis problem for a class of MJLSs with norm-bounded
uncertainties in the TPs; the author in [16] dealt with the
robust stability analysis and stabilization problems for MJLSs
with polytopic-type uncertain TPs; the authors in [17] studied
the robust stability analysis for a class of discrete-time

Markovian jumping neural networks with defective statistics
of mode transitions; the authors in [19] investigated theH

∞

filtering design for MJLSs with partially unknown TPs. In
particular, it is noted that the introduction of deficient mode
information, which simultaneously contains the exactly
known, partially unknown, and uncertain TPs, is very impor-
tant and useful in both theoretical advances and practical
applications of MJLSs.

On the other hand, in many engineering applications,
high- or even infinite-order complex mathematical models
are frequently used to describe physical systems and pro-
cesses [22–24]. These high-order models bring serious diffi-
culties to analysis and synthesis of the underlying systems.
Therefore, model simplification/reduction with respect to
certain criteria has received considerable attention in recent
years. Correspondingly, many important results on model
reduction have been obtained, involving various efficient
approaches such as the Hankel norm approximation method
[25], the H

2
approach [26, 27], the H

∞
approach [28–30],

and the L
2
-L
∞

approach [31]. More recently, the linear
matrix inequality (LMI) technique has been exploited to solve
the model reduction problem for different classes of systems,
such as bilinear systems [27], time-delay systems [28], and
T-S fuzzy systems [32–36]. Specifically, the authors in [4, 20]
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considered the H
∞

model reduction problem for a class of
MJLSs with completely known TPs and partially unknown
TPs, respectively. However, to the authors’ best knowledge,
few results have been reported on H

∞
model reduction for

MJLSs with deficient mode information, which simultane-
ously consists of the exactly known, partially unknown, and
uncertain TPs. This motivates us for the present study.

According to the issues mentioned previously, in this
paper, we will make an attempt to tackle the H

∞
model

reduction problem for a class of discrete-time MJLSs with
deficient mode information. Such deficient mode informa-
tion simultaneously contains the exactly known, partially
unknown, and uncertain TPs, which is a more practical
scenario. By fully utilizing the properties of the transition
probability matrices, together with the convexification of
uncertain domains, a new H

∞
performance analysis crite-

rion forMJLSs with deficientmode informationwill be firstly
derived. To solve themodel reduction problem, two distinctly
different approacheswill be then proposed.Thefirst approach
is based on a linearisation procedure, which casts the model
reduction into a convex optimization problem. The second
one, which is based on the cone complementarity linearisa-
tion (CCL) idea [37, 38], casts the model reduction into a
sequential minimization problem subject to LMI constraints.
The effectiveness and superiority of the proposed approaches
will be illustrated by a simulation example.

Notations. The notations used throughout the paper are stan-
dard. R𝑛 and R𝑚×𝑛 denote, respectively, the 𝑛-dimensional
Euclidean space and the set of all 𝑚 × 𝑛 real matrices; N+
represents the set of positive integers; the notation 𝑃 > 0
means that 𝑃 is real symmetric and positive definite; I and 0
represent the identity matrix and a zero matrix, respectively;
‖ ⋅ ‖ refers to the Euclidean vector norm; 𝑙

2
[0,∞) is the space

of square summable infinite sequence and, for 𝑤 = {𝑤(𝑘)} ∈
𝑙
2
[0,∞), its norm is given by ‖𝑤‖

2
= √∑

∞

𝑘=0
‖𝑤(𝑘)‖

2; (S,F,
P) denotes a complete probability space, in which S is the
sample space, F is the 𝜎 algebra of subsets of the sample
space, and P is the probability measure on F; E[⋅] stands
for the mathematical expectation and, for the sequence 𝑧 =
{𝑧(𝑘)} ∈ 𝑙

2
((S,F,P), [0,∞)), its norm is given by ‖𝑧‖E

2

=

√E[∑
∞

𝑘=0
‖𝑧(𝑘)‖

2

]. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic
operations.

2. Problem Formulation and Preliminaries

A discrete-time Markovian jump linear system (MJLS) on a
complete probability space (S,F,P) can be described as

(Σ) : 𝑥 (𝑘 + 1) = 𝐴 (𝑟 (𝑘)) 𝑥 (𝑘) + 𝐵 (𝑟 (𝑘)) 𝑢 (𝑘) ,

𝑧 (𝑘) = 𝐶 (𝑟 (𝑘)) 𝑥 (𝑘) + 𝐷 (𝑟 (𝑘)) 𝑢 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛𝑥 is the state vector; 𝑢(𝑘) ∈ R𝑛𝑢 is the
control input vector which belongs to 𝑙

2
[0,∞); 𝑧(𝑘) ∈ R𝑛𝑧

is the output vector. The process {𝑟(𝑘), 𝑘 ≥ 0} is described
by a discrete-time homogeneous Markov chain, which takes

values in a finite set I := {1, . . . , 𝑁} with mode transition
probabilities (TPs) Pr(𝑟(𝑘 + 1) = 𝑗 | 𝑟(𝑘) = 𝑖) = 𝜋

𝑖𝑗
, where

𝜋
𝑖𝑗
≥ 0, for all 𝑖, 𝑗 ∈ I, and ∑𝑁

𝑗=1
𝜋
𝑖𝑗
= 1. For 𝑟(𝑘) = 𝑖, 𝑖 ∈ I,

the system matrices of the 𝑖th mode are denoted by
(𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
), which are real and known. Throughout the

paper, we assume that system (Σ) is stochastically stable,
which is a prerequisite for model reduction design.

In addition, theTPs of the jumping process are considered
to be polytopic-type uncertain and partially accessed; that
is, the transition probability matrix (TPM) Π = [𝜋

𝑖𝑗
]
𝑁×𝑁

is
assumed to belong to a given polytope P

Π
:= {Π | Π =

∑
𝑀

𝑠=1
𝛼
𝑠
Π
𝑠
; 𝛼
𝑠
≥ 0,∑

𝑀

𝑠=1
𝛼
𝑠
= 1}, where verticesΠ

𝑠
= [𝜋
𝑖𝑗
]
𝑁×𝑁

,
𝑖, 𝑗 ∈ I, 𝑠 = 1, 2, . . . ,𝑀 are given TPMs containing unknown
elements still. For instance, for system (Σ) with four operation
modes, the TPMmay be as

[

[

[

[

𝜋
11
�̃�
12
�̂�
13
𝜋
14

�̂�
21
𝜋
22
�̃�
23
𝜋
24

𝜋
31
�̂�
32
𝜋
33
�̂�
34

𝜋
41
�̃�
42
�̂�
43
�̂�
44

]

]

]

]

, (2)

where the elements labeled with “̂” and “̃” represent the
unknown information and polytopic uncertainties on TPs,
respectively, and the others are known TPs. For notational
clarity, for all 𝑖 ∈ I, we denote I = I

(𝑖)

K
∪ I
(𝑖)

UC
∪ I
(𝑖)

UK

as follows:

I
(𝑖)

K := {𝑗 : 𝜋𝑖𝑗 is known} ,

I
(𝑖)

UC := {𝑗 : �̃�𝑖𝑗 is uncertain} ,

I
(𝑖)

UK := {𝑗 : �̂�𝑖𝑗 is unknown} .

(3)

Moreover, ifI(𝑖)
K
̸= 0 andI

(𝑖)

UC
̸= 0, it is further described as

I
(𝑖)

K := {K
(𝑖)

1
, . . . ,K

(𝑖)

𝑡
𝑖

} , ∀1 ≤ 𝑡
𝑖
≤ 𝑁 − 2,

I
(𝑖)

UC := {U
(𝑖)

1
, . . . ,U

(𝑖)

V
𝑖

} , ∀1 ≤ V
𝑖
≤ 𝑁,

(4)

whereK(𝑖)
𝑡
𝑖

∈ N+ represents the 𝑡
𝑖
th known element with the

index K(𝑖)
𝑡
𝑖

in the 𝑖th row of TPM and U(𝑖)V
𝑖

∈ N+ represents
the V
𝑖
th uncertain element with the indexU(𝑖)V

𝑖

in the 𝑖th row
of TPM, respectively. Obviously, 1 ≤ 𝑡

𝑖
+ V
𝑖
≤ 𝑁. Also, we

denote

𝜋
(𝑖𝑠)

UK := ∑

𝑗∈I
(𝑖)

UK

�̂�
𝑖𝑗
= 1 − ∑

𝑗∈I
(𝑖)

K

𝜋
𝑖𝑗
− ∑

𝑗∈I
(𝑖)

UC

�̃�
(𝑠)

𝑖𝑗
, (5)

where �̃�(𝑠)
𝑖𝑗

represents an uncertain TP in the 𝑠th polytope, for
all 𝑠 = 1, . . . ,𝑀.

To approximate the original MJLS (1), in this paper, we
are interested in designing the following mode-dependent
reduced-order model:

(Σ) : 𝑥 (𝑘 + 1) = 𝐴
𝑟𝑖
𝑥 (𝑘) + 𝐵

𝑟𝑖
𝑢 (𝑘) ,

�̂� (𝑘) = 𝐶
𝑟𝑖
𝑥 (𝑘) + 𝐷

𝑟𝑖
𝑢 (𝑘) ,

(6)
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where 𝑥(𝑘) ∈ R𝑛𝑟 (𝑛
𝑟
< 𝑛
𝑥
), �̂�(𝑘) ∈ R𝑛𝑧 , and 𝐴

𝑟𝑖
∈ R𝑛𝑟×𝑛𝑟 ,

𝐵
𝑟𝑖
∈ R𝑛𝑟×𝑛𝑢 , 𝐶

𝑟𝑖
∈ R𝑛𝑧×𝑛𝑟 , and 𝐷

𝑟𝑖
∈ R𝑛𝑧×𝑛𝑢 are the gains of

the reduced-order models to be determined.
Define 𝑥(𝑘) := [𝑥𝑇(𝑘) 𝑥𝑇(𝑘)]

𝑇

and 𝑧(𝑘) := 𝑧(𝑘) − �̂�(𝑘).
Then, by augmenting (1) and (6), the model error dynamics
can be described as

(Σ) : 𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐵

𝑖
𝑢 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝑖
𝑥 (𝑘) + 𝐷

𝑖
𝑢 (𝑘) ,

(7)

where

𝐴
𝑖
:= [

𝐴
𝑖

0
0 𝐴
𝑟𝑖

] , 𝐵
𝑖
:= [

𝐵
𝑖

𝐵
𝑟𝑖

] ,

𝐶
𝑖
:= [𝐶
𝑖
−𝐶
𝑟𝑖
] , 𝐷

𝑖
:= 𝐷
𝑖
− 𝐷
𝑟𝑖
.

(8)

Therefore, the purpose of this paper is to design a mode-
dependent reduced-order model in the form of (6), such
that the model error system (Σ) in (7) with deficient mode
information is stochastically stable and the induced 𝑙

2
-norm

of the operator from 𝑢(𝑘) to the model error 𝑧(𝑘) is less than
𝛾; that is, ‖𝑧(𝑘)‖E

2

< 𝛾‖𝑢(𝑘)‖
2
, under zero initial conditions

for any nonzero 𝑢(𝑘) ∈ 𝑙
2
[0,∞).

Before ending the section, we give the following lemma
on the H

∞
performance analysis of system (7) with com-

pletely knownTPs, whichwill be used in the proof of ourmain
results.

Lemma 1 (see [4]). For the MJLS (7) with completely known
TPs and a given scalar 𝛾 > 0, if the coupled inequalities

[

[

𝐴

𝑇

𝑖
P
𝑖
𝐴
𝑖
− 𝑃
𝑖
+ 𝐶

𝑇

𝑖
𝐶
𝑖

𝐴

𝑇

𝑖
P
𝑖
𝐵
𝑖
+ 𝐶

𝑇

𝑖
𝐷
𝑖

∗ − (𝛾
2I − 𝐵𝑇

𝑖
P
𝑖
𝐵
𝑖
− 𝐷

𝑇

𝑖
𝐷
𝑖
)

]

]

< 0,

∀𝑖 ∈ I,

(9)

where P
𝑖
:= ∑

𝑁

𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
, have a feasible solution 𝑃 =

{𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑁
}with 𝑃

𝑖
> 0, then the MJLS (7)with completely

known TPs is stochastically stable with anH
∞
performance 𝛾.

3. Main Results

In this section, we will first derive the H
∞

performance
analysis criterion for the model error system (Σ) in (7) with
deficient mode information. Then, two distinctly different
approaches will be proposed to solve the H

∞
model reduc-

tion problem formulated in the previous section.

3.1. H
∞

Performance Analysis. In the following, by exploit-
ing the properties of the transition probability matrices
(TPMs), together with the convexification of uncertain
domains, anH

∞
performance analysis criterion for themod-

el error system (Σ) in (7) with deficient mode information is
presented, which will play an instrumental role in solving the
H
∞

model reduction problem.

Proposition 2. TheMJLS (7)with deficient mode information
is stochastically stable with a guaranteed H

∞
performance

𝛾 if there exist positive-definite symmetric matrices 𝑃
𝑖
∈

R(𝑛𝑥+𝑛𝑟)×(𝑛𝑥+𝑛𝑟), 𝑖 ∈ I, such that the following matrix inequal-
ities hold:

Φ
(𝑠)

𝑖𝑗

:=
[

[

𝐴

𝑇

𝑖
P
(𝑖𝑠)

𝑗
𝐴
𝑖
− 𝑃
𝑖
+𝐶

𝑇

𝑖
𝐶
𝑖

𝐴

𝑇

𝑖
P
(𝑖𝑠)

𝑗
𝐵
𝑖
+ 𝐶

𝑇

𝑖
𝐷
𝑖

∗ − (𝛾
2I − 𝐵𝑇

𝑖
P
(𝑖𝑠)

𝑗
𝐵
𝑖
−𝐷

𝑇

𝑖
𝐷
𝑖
)

]

]

< 0, ∀𝑖 ∈ I, 𝑗 ∈ I
(𝑖)

UK, 𝑠 = 1, . . . ,𝑀,

(10)

where

P
(𝑖𝑠)

𝑗
:= ∑

𝑗∈I
(𝑖)

K

𝜋i𝑗𝑃𝑗 + ∑

𝑗∈I
(𝑖)

UC

�̃�
(𝑠)

𝑖𝑗
𝑃
𝑗
+ 𝜋
(𝑖𝑠)

UK𝑃𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗∈I
(𝑖)

UK

,

𝜋
(𝑖𝑠)

UK := 1 − ∑

𝑗∈I
(𝑖)

K

𝜋
𝑖𝑗
− ∑

𝑗∈I
(𝑖)

UC

�̃�
(𝑠)

𝑖𝑗
.

(11)

Proof. Based on Lemma 1, it is known that system (7) with
completely known transition probabilities (TPs) is stochas-
tically stable with an H

∞
performance 𝛾 if (9) holds. Now

due to ∑𝑁
𝑗=1
𝜋
𝑖𝑗
= 1 and with deficient mode information, we

rewrite the term ∑𝑁
𝑗=1
𝜋
𝑖𝑗
𝑃
𝑗
as

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
= ∑

𝑗∈I
(𝑖)

K

𝜋
𝑖𝑗
𝑃
𝑗
+ ∑

𝑗∈I
(𝑖)

UC

(

𝑀

∑

𝑠=1

𝛼
𝑠
�̃�
(𝑠)

𝑖𝑗
)𝑃
𝑗
+ ∑

𝑗∈I
(𝑖)

UK

�̂�
𝑖𝑗
𝑃
𝑗
.

(12)

Considering the fact that 0 ≤ 𝛼
𝑠
≤ 1, ∑𝑀

𝑠=1
𝛼
𝑠
= 1, and 0 ≤

�̂�
𝑖𝑗
/𝜋
(𝑖𝑠)

UK
≤ 1, ∑

𝑗∈I
(𝑖)

UK

(�̂�
𝑖𝑗
/𝜋
(𝑖𝑠)

UK
) = 1, (12) can be rewritten as

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗

=

𝑀

∑

𝑠=1

𝛼
𝑠
∑

𝑗∈I
(𝑖)

UK

�̂�
𝑖𝑗

𝜋
(𝑖𝑠)

UK

( ∑

𝑗∈I
(𝑖)

K

𝜋
𝑖𝑗
𝑃
𝑗
+ ∑

𝑗∈I
(𝑖)

UC

�̃�
(𝑠)

𝑖𝑗
𝑃
𝑗
+ 𝜋
(𝑖𝑠)

UK𝑃𝑗) .

(13)

Thus, with deficient mode information, the left-hand side
(LHS) of inequality (9) can be rewritten as

LHS (9) =
𝑀

∑

𝑠=1

𝛼
𝑠
∑

𝑗∈I
(𝑖)

UK

�̂�
𝑖𝑗

𝜋
(𝑖𝑠)

UK

Φ
(𝑠)

𝑖𝑗
, (14)

where Φ(𝑠)
𝑖𝑗

is defined in (10). Then (9) holds if and only if
Φ
(𝑠)

𝑖𝑗
< 0, which implies that, in the presence of unknown

and uncertain TPs, inequality (9) is equivalent to (10). This
completes the proof.



4 Mathematical Problems in Engineering

Remark 3. By fully exploiting the properties of the TPMs,
together with the convexification of uncertain domains, a suf-
ficient condition for the H

∞
performance analysis has been

derived for the model error system (Σ) with deficient mode
information in Proposition 2. It is noted that there exist prod-
uct terms between the Lyapunov matrices and system matri-
ces in condition (10), which will bring some difficulties in the
solutions of model reduction problem. By applying decou-
pling techniques, in the following, two distinctly different
approaches to solve the H

∞
model reduction problem will

be proposed.

3.2. Model Reduction via Convex Linearisation Approach. In
this subsection, based on a linearisation procedure, themodel

reduction problem described in the previous section will
be cast into a convex optimization problem. The following
theorem presents a sufficient condition for the existence of
admissible reduced-order models.

Theorem 4. Consider MJLS in (1) with deficient mode infor-
mation and reduced-order model in the form of (6). Themodel
error system in (7) is stochastically stable with an H

∞
per-

formance 𝛾 if there exist positive-definite symmetric matrices
𝑃
𝑖
= [
𝑃
𝑖(1)
𝑃
𝑖(2)

∗ 𝑃
𝑖(3)

] ∈ R(𝑛𝑥+𝑛𝑟)×(𝑛𝑥+𝑛𝑟) and matrices 𝐺
𝑖(1)
∈ R𝑛𝑥×𝑛𝑥 ,

𝐺
𝑖(2)
∈ R𝑛𝑟×𝑛𝑟 , 𝐺

𝑖(3)
∈ R𝑛𝑥×𝑛𝑟 , 𝐴

𝑟𝑖
∈ R𝑛𝑟×𝑛𝑟 , 𝐵

𝑟𝑖
∈ R𝑛𝑟×𝑛𝑢 ,

𝐶
𝑟𝑖
∈ R𝑛𝑧×𝑛𝑟 , and 𝐷

𝑟𝑖
∈ R𝑛𝑧×𝑛𝑢 , 𝑖 ∈ I, such that the following

LMIs hold:

[

[

[

[

[

[

[

[

[

[

[

P
(𝑖𝑠)

𝑗(1)
− 𝐺
𝑖(1)
− 𝐺
𝑇

𝑖(1)
P
(𝑖𝑠)

𝑗(2)
− 𝐻𝐺

𝑖(2)
− 𝐺
𝑇

𝑖(3)
0 𝐺
𝑖(1)
𝐴
𝑖
𝐻𝐴
𝑟𝑖
𝐺
𝑖(1)
𝐵
𝑖
+ 𝐻𝐵

𝑟𝑖

∗ P
(𝑖𝑠)

𝑗(3)
− 𝐺
𝑖(2)
− 𝐺
𝑇

𝑖(2)
0 𝐺
𝑖(3)
𝐴
𝑖
𝐴
𝑟𝑖

𝐺
𝑖(3)
𝐵
𝑖
+ 𝐵
𝑟𝑖

∗ ∗ −I 𝐶
𝑖

−𝐶
𝑟𝑖

𝐷
𝑖
− 𝐷
𝑟𝑖

∗ ∗ ∗ −𝑃
𝑖(1)

−𝑃
𝑖(2)

0
∗ ∗ ∗ ∗ −𝑃

𝑖(3)
0

∗ ∗ ∗ ∗ ∗ −𝛾
2I

]

]

]

]

]

]

]

]

]

]

]

< 0,

𝑖 ∈ I, 𝑗 ∈ I
(𝑖)

UK, 𝑠 = 1, . . . ,𝑀,

(15)

where

P
(𝑖𝑠)

𝑗(𝑚)
:= ∑

𝑗∈I
(𝑖)

K

𝜋
𝑖𝑗
𝑃
𝑗(𝑚)
+ ∑

𝑗∈I
(𝑖)

UC

�̃�
(𝑠)

𝑖𝑗
𝑃
𝑗(𝑚)
+ 𝜋
(𝑖𝑠)

UK𝑃𝑗(𝑚)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗∈I
(𝑖)

UK

,

𝑚 = 1, 2, 3,

𝜋
(𝑖𝑠)

UK := 1 − ∑

𝑗∈I
(𝑖)

K

𝜋
𝑖𝑗
− ∑

𝑗∈I
(𝑖)

UC

�̃�
(𝑠)

𝑖𝑗
,

𝐻 := [I
𝑛
𝑟
×𝑛
𝑟

0
𝑛
𝑟
×(𝑛
𝑥
−𝑛
𝑟
)
]

𝑇

.

(16)

Moreover, if the above conditions have a set of feasible solu-
tions (𝑃

𝑖(1)
, 𝑃
𝑖(2)
, 𝑃
𝑖(3)
, 𝐺
𝑖(1)
, 𝐺
𝑖(2)
, 𝐺
𝑖(3)
, 𝐴
𝑟𝑖
, 𝐵
𝑟𝑖
, 𝐶
𝑟𝑖
, 𝐷
𝑟𝑖
), then

an admissible 𝑛
𝑟
-order approximationmodel in the form of (6)

can be constructed as

𝐴
𝑟𝑖
= 𝐺
−1

𝑖(2)
𝐴
𝑟𝑖
, 𝐵
𝑟𝑖
= 𝐺
−1

𝑖(2)
𝐵
𝑟𝑖
,

𝐶
𝑟𝑖
= 𝐶
𝑟𝑖
, 𝐷

𝑟𝑖
= 𝐷
𝑟𝑖
.

(17)

Proof. It follows from Proposition 2 that if we can show
(10), then the claimed results follow. By Schur complement,
inequality (10) is equivalent to

[

[

[

[

[

(P
(𝑖𝑠)

𝑗
)

−1

0 𝐴
𝑖
𝐵
𝑖

∗ −I 𝐶
𝑖
𝐷
𝑖

∗ ∗ −𝑃
𝑖

0
∗ ∗ ∗ −𝛾

2I

]

]

]

]

]

< 0,

∀𝑖 ∈ I, 𝑗 ∈ I
(𝑖)

UK, 𝑠 = 1, . . . ,𝑀,

(18)

where

P
(𝑖𝑠)

𝑗
:= ∑

𝑗∈I
(𝑖)

K

𝜋
𝑖𝑗
𝑃
𝑗
+ ∑

𝑗∈I
(𝑖)

UC

�̃�
(𝑠)

𝑖𝑗
𝑃
𝑗
+ 𝜋
(𝑖𝑠)

UK𝑃𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗∈I
(𝑖)

UK

,

𝜋
(𝑖𝑠)

UK := 1 − ∑

𝑗∈I
(𝑖)

K

𝜋
𝑖𝑗
− ∑

𝑗∈I
(𝑖)

UC

�̃�
(𝑠)

𝑖𝑗
.

(19)

Performa congruent transformation to (18) by diag{𝐺
𝑖
, I, I, I},

and consider the following bounding inequality:

−𝐺
𝑖
(P
(𝑖𝑠)

𝑗
)

−1

𝐺
𝑇

𝑖
≤P
(𝑖𝑠)

𝑗
− 𝐺
𝑖
− 𝐺
𝑇

𝑖
. (20)

It is thus easy to see that the following inequality implies (18),

[

[

[

[

P
(𝑖𝑠)

𝑗
− 𝐺
𝑖
− 𝐺
𝑇

𝑖
0 𝐺
𝑖
𝐴
𝑖
𝐺
𝑖
𝐵
𝑖

∗ −I 𝐶
𝑖
𝐷
𝑖

∗ ∗ −𝑃
𝑖

0
∗ ∗ ∗ −𝛾

2I

]

]

]

]

< 0,

∀𝑖 ∈ I, 𝑗 ∈ I
(𝑖)

UK, 𝑠 = 1, . . . ,𝑀.

(21)

Furthermore, for model reduction synthesis purpose, we
choose the slack matrix 𝐺

𝑖
as

𝐺
𝑖
:= [

𝐺
𝑖(1)
𝐻𝐺
(2)

𝐺
𝑖(3)

𝐺
(4)

] , (22)
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where 𝐻 := [I
𝑛
𝑟

0
𝑛
𝑟
×(𝑛
𝑥
−𝑛
𝑟
)
]

𝑇, 𝐺
𝑖(1)
∈ R𝑛𝑥×𝑛𝑥 , 𝐺

𝑖(3)
∈ R𝑛𝑟×𝑛𝑥 ,

𝐺
(2)
∈ R𝑛𝑟×𝑛𝑟 , and 𝐺

(4)
∈ R𝑛𝑟×𝑛𝑟 . Then, similar to [22],

performing a congruent transformation to

[

𝐺
𝑖(1)
+ 𝐺
𝑇

𝑖(1)
𝐻𝐺
(2)
+ 𝐺
𝑇

𝑖(3)

∗ 𝐺
(4)
+ 𝐺
𝑇

(4)

] (23)

by [ I 0
0 𝐺
(2)
𝐺
−1

(4)

] yields

[

𝐺
𝑖(1)
+ 𝐺
𝑇

𝑖(1)
𝐻𝐺
(2)
𝐺
−𝑇

(4)
𝐺
𝑇

(2)
+ 𝐺
𝑇

𝑖(3)
𝐺
−𝑇

(4)
𝐺
𝑇

(2)

∗ 𝐺
(2)
𝐺
−𝑇

(4)
𝐺
𝑇

(2)
+ 𝐺
(2)
𝐺
−1

(4)
𝐺
𝑇

(2)

]

:=
[

[

𝐺
𝑖(1)
+ 𝐺
𝑇

𝑖(1)
𝐻𝐺
(2)
+ 𝐺

𝑇

𝑖(3)

∗ 𝐺
(2)
+ 𝐺

𝑇

(2)

]

]

.

(24)

Thus, instead of (22), one can directly specifymatrix𝐺
𝑖
of the

following form without loss of generality:

𝐺
𝑖
= [

G
𝑖(1)
𝐻𝐺
𝑖(2)

𝐺
𝑖(3)

𝐺
𝑖(2)

] , 𝑖 ∈ I. (25)

It is noted that in this way the matrix variable 𝐺
𝑖(2)

can be
absorbed by the reduced-order model gain variables 𝐴

𝑟𝑖
and

𝐵
𝑟𝑖
by introducing

𝐴
𝑟𝑖
:= 𝐺
𝑖(2)
𝐴
𝑟𝑖
, 𝐵

𝑟𝑖
:= 𝐺
𝑖(2)
𝐵
𝑟𝑖
. (26)

This feature enables one to make no congruent transforma-
tion to the original matrix inequality, and all the slack vari-
ables can be set as Markovian switching.

Then, substituting matrices 𝐺
𝑖
given in (25) into (10),

together with the consideration of the matrices defined in
(26), leads to (15) exactly.

On the other hand, the conditions in (15) imply that
−𝐺
𝑖(2)
−𝐺
𝑇

𝑖(2)
< 0, whichmeans that𝐺

𝑖(2)
is nonsingular.Thus,

the reduced-order model gains can be constructed by (17).
The proof is completed.

Remark 5. Theorem 4 provides a sufficient condition for the
solvability of H

∞
model reduction synthesis problem for

the MJLS (1) with deficient mode information. A desired
reduced-order model can be determined by solving the
following convex optimization problem.

Problem MRLA (Model Reduction via Linearisation Ap-
proach). Minimize 𝛾 subject to (15) for 𝑃

𝑖(1)
, 𝑃
𝑖(2)

, 𝑃
𝑖(3)

, 𝐺
𝑖(1)

,
𝐺
𝑖(2)

, 𝐺
𝑖(3)

, 𝐴
𝑟𝑖
, 𝐵
𝑟𝑖
, 𝐶
𝑟𝑖
,𝐷
𝑟𝑖
, 𝑖 ∈ I.

From the proof of Theorem 4, it is easy to see that the
matrix inequality linearisation procedure is based on the
bounding inequality in (20) with slack variables of a struc-
tural constraint in (25).This inevitably brings some degree of
design conservatism. Another avenue to solve the nonlinear
matrix inequality problem in (10) is by utilizing the cone
complementarity linearisation (CCL) technique [37]. To this
end, we will resort to an iterative approach to solve the model
reduction problem.

3.3. Model Reduction via Iterative Approach. In this subsec-
tion, we will solve the model reduction problem by using the
CCL technique. The following theorem gives another suffi-
cient condition for the existence of admissible reduced-order
models.

Theorem 6. Consider MJLS in (1) with deficient mode infor-
mation and reduced-order model in the form of (6). The
model error system in (7) is stochastically stable with an H

∞

performance 𝛾 if there exist positive-definite symmetric matri-
ces {P

𝑖
, 𝑋
𝑖
} ∈ R(𝑛𝑥+𝑛𝑟)×(𝑛𝑥+𝑛𝑟) and matrices 𝐴

𝑟𝑖
∈ R𝑛𝑟×𝑛𝑟 ,

𝐵
𝑟𝑖
∈ R𝑛𝑟×𝑛𝑢 , 𝐶

𝑟𝑖
∈ R𝑛𝑧×𝑛𝑟 , and 𝐷

𝑟𝑖
∈ R𝑛𝑧×𝑛𝑢 , 𝑖 ∈ I, such

that

[

[

[

[

[

X
(𝑖)

𝑗
0 ϝ(𝑠)
𝑖
(A
𝑖
+ 𝐸G
𝑟𝑖
𝑅) ϝ
(𝑠)

𝑖
(B
𝑖
+ 𝐸G
𝑟𝑖
𝑆)

∗ −I C
𝑖
+ 𝐹G
𝑟𝑖
𝑅 D

𝑖
+ 𝐹G
𝑟𝑖
S

∗ ∗ −𝑃
𝑖

0
∗ ∗ ∗ −𝛾

2I

]

]

]

]

]

< 0,

𝑖 ∈ +𝐹G
𝑟𝑖
𝑅I, 𝑗 ∈ I

(𝑖)

UK, 𝑠 = 1, . . . ,𝑀,

(27)

𝑃
𝑖
𝑋
𝑖
= I, 𝑖 ∈ I, (28)

where

X
(𝑖)

𝑗
:= diag {𝑋

K
(𝑖)

1

, . . . , 𝑋
K
(𝑖)

𝑡𝑖

, 𝑋
U
(𝑖)

1

, . . . , 𝑋
U
(𝑖)

V𝑖
, 𝑋
𝑗
} ,

ϝ
(𝑠)

𝑖

:= [√𝜋𝑖K
(𝑖)

1

I, . . . ,
√
𝜋
𝑖K
(𝑖)

𝑡𝑖

I,√�̃�(𝑠)
𝑖U
(𝑖)

1

I, . . . ,√�̃�(𝑠)
𝑖U
(𝑖)

V𝑖

I,√𝜋(𝑖𝑠)
UK

I]
𝑇

,

G
𝑟𝑖
:= [

𝐴
𝑟𝑖
𝐵
𝑟𝑖

𝐶
𝑟𝑖
𝐷
𝑟𝑖

] , A
𝑖
:= [

𝐴
𝑖
0

0 0] , B
𝑖
:= [

𝐵
𝑖

0 ] ,

C
𝑖
:= [𝐶
𝑖
0] , D

𝑖
:= 𝐷
𝑖
, 𝐸 := [

0 0
I 0] ,

𝐹 := [0 −I] , 𝑅 := [

0 I
0 0] , 𝑆 := [

0
I] ,

𝜋
(𝑖𝑠)

UK := 1 − ∑

𝑗∈I
(𝑖)

K

𝜋
𝑖𝑗
− ∑

𝑗∈I
(𝑖)

UC

�̃�
(𝑠)

𝑖𝑗
.

(29)

Proof. From Proposition 2, we know that for 𝑖 ∈ I there
exists a reduced-order model in the form of (6) such that the
model error system (7) is stochastically stable with a guar-
anteed H

∞
error performance 𝛾 if there exist matrices 𝑃

𝑖

satisfying (10). First, rewrite the matrices defined in (8) in the
following form:

𝐴
𝑖
:= A
𝑖
+ 𝐸G
𝑟𝑖
𝑅, 𝐵

𝑖
:=B
𝑖
+ 𝐸G
𝑟𝑖
𝑆,

𝐶
𝑖
:= C
𝑖
+ 𝐹G
𝑟𝑖
𝑅, 𝐷

𝑖
:= D
𝑖
+ 𝐹G
𝑟𝑖
𝑆,

(30)
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where

G
𝑟𝑖
:= [

𝐴
𝑟𝑖
𝐵
𝑟𝑖

𝐶
𝑟𝑖
𝐷
𝑟𝑖

] , A
𝑖
:= [

𝐴
𝑖
0

0 0] , B
𝑖
:= [

𝐵
𝑖

0 ] ,

C
𝑖
:= [𝐶
𝑖
0] , D

𝑖
:= 𝐷
𝑖
, 𝐸 := [

0 0
I 0] ,

𝐹 := [0 −I] , 𝑅 := [

0 I
0 0] , 𝑆 := [

0
I] .

(31)

Then, by Schur complement to (10), and with the nota-
tions I(𝑖)

K
:= {K

(𝑖)

1
, . . . ,K(𝑖)

𝑡
𝑖

},I
(𝑖)

UC
:= {U

(𝑖)

1
, . . . ,U(𝑖)V

𝑖

}, we
have that (10) is equivalent to

[

[

[

[

[

[

[

P
(𝑖)

𝑗
0 ϝ(𝑠)
𝑖
(A
𝑖
+ 𝐸G
𝑟𝑖
𝑅) ϝ
(𝑠)

𝑖
(B
𝑖
+ 𝐸G
𝑟𝑖
𝑆)

∗ −I C
𝑖
+ 𝐹G
𝑟𝑖
𝑅 D

𝑖
+ 𝐹G
𝑟𝑖
𝑆

∗ ∗ −𝑃
𝑖

0
∗ ∗ ∗ −𝛾

2I

]

]

]

]

]

]

]

< 0,

𝑖 ∈ I, 𝑗 ∈ I
(𝑖)

UK, 𝑠 = 1, . . . ,𝑀,

(32)

where

P
(𝑖)

𝑗
:= diag {𝑃−1

K
(𝑖)

1

, . . . , 𝑃
−1

K
(𝑖)

𝑡𝑖

, 𝑃
−1

U
(𝑖)

1

, . . . , 𝑃
−1

U
(𝑖)

V𝑖

, 𝑃
−1

𝑗
} ,

ϝ
(𝑠)

𝑖
:=[√𝜋𝑖K

(𝑖)

1

I, . . . ,
√
𝜋
𝑖K
(𝑖)

𝑡𝑖

I,√�̃�(𝑠)
𝑖U
(𝑖)

1

I, . . . ,√�̃�(𝑠)
𝑖U
(𝑖)

V𝑖

I,√𝜋(𝑖𝑠)
UK

I]
𝑇

.

(33)

Setting 𝑋
𝑖
:= 𝑃
−1

𝑖
and considering (33), it is easy to see that

(32) is equivalent to (27) and (28). This completes the proof.

Remark 7. Theorem 6 provides another sufficient condition
for testing the solvability of 𝑛

𝑟
-order H

∞
model reduction

synthesis for MJLS (1) with deficient mode information. It
is noted that the conditions in Theorem 6 are not strict
LMI-based conditions due to the matrix equality in (28).
However, with the CCL algorithm in [37, 38], we can resolve
this nonconvex feasibility problem by formulating it into a
sequential optimization problem subject to LMI constraints.

Based on the previous discussions and using a CCL tech-
nique, the nonconvex feasibility problem given in (27) and
(28) is converted into the following nonlinear minimization
problem that involves LMI conditions.

Problem MRIA (Model Reduction via Iterative Approach).
Minimize Trace (∑𝑁

𝑖=1
𝑃
𝑖
𝑋
𝑖
) subject to (27) and

[

𝑃
𝑖

I
∗ 𝑋
𝑖

] ≥ 0, ∀𝑖 ∈ I. (34)

Then, the suboptimal performance of 𝛾 can be found by
the following algorithm.The convergence of this algorithm is
guaranteed in terms of similar results in [37, 38].

Algorithm MRIA: Suboptimal Performance of 𝛾

Step 1. Choose a sufficiently large initial 𝛾 > 0, such that there
exists a feasible solution to (27) and (34). Set 𝛾

0
= 𝛾.

Step 2. Find a feasible set (𝑃(0)
𝑖
, 𝑋
(0)

𝑖
, 𝐴
(0)

𝑟𝑖
, 𝐵
(0)

𝑟𝑖
, 𝐶
(0)

𝑟𝑖
, 𝐷
(0)

𝑟𝑖
, for

all 𝑖 ∈ I) that satisfies the conditions in (27) and (34). Set
𝑞 = 0.

Step 3. Solve the following LMI problem over the variables
𝑃
𝑖
,𝑋
𝑖
, 𝐴
𝑟𝑖
, 𝐵
𝑟𝑖
, 𝐶
𝑟𝑖
, and𝐷

𝑟𝑖
:

Minimize Trace(
𝑁

∑

𝑖=1

(𝑃
(𝑞)

𝑖
𝑋
𝑖
+ 𝑃
𝑖
𝑋
(𝑞)

𝑖
)) (35)

subject to (27) and (34).
Set 𝑃(𝑞+1)
𝑖

= 𝑃
𝑖
and𝑋(𝑞+1)

𝑖
= 𝑋
𝑖
.

Step 4. Substituting the gains 𝐴
𝑟𝑖
, 𝐵
𝑟𝑖
, 𝐶
𝑟𝑖
, and 𝐷

𝑟𝑖
obtained

in Step 3 into (10) and if the LMIs in (10) are feasible with
respect to the variables 𝑃

𝑖
, then set 𝛾

0
= 𝛾 and return to

Step 2 after decreasing 𝛾 to some extent. If (10) are infeasible
within the maximum number of iterations allowed, then exit.
Otherwise, set 𝑞 = 𝑞 + 1, and go to Step 3.

Remark 8. It is noted that the H
∞

model reduction prob-
lem for discrete-time MJLSs has been considered in [20].
However, there are some remarkable differences between our
results and those in [20]. Firstly, it is noted that in this paper
the deficient mode information, which simultaneously con-
tains the exactly known, partially unknown, and uncertain
transition probabilities (TPs), is considered for MJLS (1),
which is more general and practical for engineering applica-
tions, whereas the TPs considered in [20] are only partially
unknown. Secondly, by fully utilizing the properties of the
TPM, including the relation ∑

𝑗∈I
(𝑖)

UK

�̂�
𝑖𝑗
= 1 − ∑

𝑗∈I
(𝑖)

K

𝜋
𝑖𝑗
−

∑
𝑗∈I
(𝑖)

UC

�̃�
(𝑠)

𝑖𝑗
, Theorem 4 gives a unified formulation of H

∞

model reduction design for MJLS (1), while in [20] the above
relation is neglected, whichmay cause possible conservatism.
In addition, two different approaches, namely, the convex
linearisation approach and iterative approach, to solve the
model reduction problem are proposed, while in [20] only the
linearisation approach was presented. It will be shown in the
simulation part that the previous points are crucial to reduce
the conservatism of model reduction design for MJLS in (1).

Remark 9. It is worth mentioning that the conditions given
in Theorem 4 are convex and thus can be readily solved with
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commercially available software. The design conservatism of
Theorem 4 mainly comes from the bounding inequality in
(20) with the slack variable of a structural constraint in (25).
In the iterative approach, the conditions given in (27)
and (34) are equivalent to the corresponding performance
analysis results. This is the main advantage of Theorem 6
over Theorem 4. However, the numerical computation cost
involved in Algorithm MRIA is also much larger than that
involved inTheorem 4 (MRLA), especially when the number
of iterations increases.

4. An Illustrative Example

In this section, we will present an illustrative example to
demonstrate the effectiveness and superiority of the proposed
approaches.

Consider a Markovian jump linear system (MJLS)
described by (Σ) with parameters as follows:

[

𝐴
1
𝐵
1

𝐶
1
𝐷
1

]

=

[

[

[

[

[

[

0.05 −0.27 0.44 0.39 0.5

0.55 0.33 0.38 0.55 0.2

0.1 0.17 0.27 0.44 0.3

0.05 0.22 0.16 0.11 0.1

1 0.1 0.2 −0.3 0.5

]

]

]

]

]

]

,

[

𝐴
2
𝐵
2

𝐶
2
𝐷
2

]

=

[

[

[

[

[

[

0.11 −0.17 0.27 0.44 −0.8

0.55 0.06 0.22 0.55 −0.2

0.05 0.17 0.28 0.44 −0.1

0.17 0.05 0.06 −0.11 −1

0.5 −0.8 0.3 0.5 0.5

]

]

]

]

]

]

,

[

𝐴
3
𝐵
3

𝐶
3
𝐷
3

]

=

[

[

[

[

[

[

0.16 0.06 −0.02 0.18 0.2

0.04 −0.37 0.53 −0.04 −0.2

−0.08 −0.32 −0.05 −0.11 −0.1

−0.17 0.40 0.04 0.29 0.1

1.4 0.7 0.2 −0.8 0.5

]

]

]

]

]

]

,

[

𝐴
4
𝐵
4

𝐶
4
𝐷
4

]

=

[

[

[

[

[

[

0.23 0.01 −0.55 −0.38 0.9

−0.33 0.36 −0.48 −0.10 −1.1

−0.20 −0.45 0.1 −0.19 −0.7

0.23 0.16 0.5 −0.30 −1.2

−0.7 1.2 1.2 −0.6 0.5

]

]

]

]

]

]

.

(36)

Four different cases for the transition probability matrix
(TPM) are given in Table 1, where the transition probabilities
(TPs) labeled “̂” and “̃” represent the unknown and
uncertain elements, respectively. Specifically, Case 1, Case

Table 1: Four different TPMs.

Case 1: completely known TPM Case 2: deficient TPM1

[

[

[

[

[

0.3 0.2 0.1 0.4

0.3 0.2 0.3 0.2

0.1 0.5 0.3 0.1

0.2 0.2 0.1 0.5

]

]

]

]

]

[

[

[

[

[

0.3 0.2 0.1 0.4

�̂�
21
�̂�
22
0.3 0.2

�̂�
31
�̃�
32
�̂�
33
�̃�
34

0.2 �̂�
42
�̂�
43
�̂�
44

]

]

]

]

]

Case 3: deficient TPM2 Case 4: completely unknown
TPM

[

[

[

[

[

0.3 0.2 0.1 0.4

�̂�
21
�̂�
22
0.3 0.2

�̂�
31
�̂�
32
�̂�
33
�̂�
34

0.2 �̂�
42
�̂�
43
�̂�
44

]

]

]

]

]

[

[

[

[

[

�̂�
11
�̂�
12
�̂�
13
�̂�
14

�̂�
21
�̂�
22
�̂�
23
�̂�
24

�̂�
31
�̂�
32
�̂�
33
�̂�
34

�̂�
41
�̂�
42
�̂�
43
�̂�
44

]

]

]

]

]

Table 2: Comparison of minimumH
∞
performance with deficient

TPM2 in Case 3.

Methods Three-order Two-order One-order
Theorem 4 1.2423 1.5231 2.5952
[20] 1.3815 1.7320 2.9094

2, Case 3, and Case 4 stand for the completely known TPs,
deficient mode information (including known, partially
unknown, and uncertain TPs), partially unknown TPs, and
completely unknown TPs, respectively.

For Case 2 shown in Table 1, the uncertain TPs comprise
two vertices Π

𝑠
, 𝑠 = 1, 2, where the third rows Π

𝑠(3)
, 𝑠 = 1, 2,

are given by

Π
1(3)
= [�̂�
31
0.1 �̂�

33
0.3] ,

Π
2(3)
= [�̂�
31
0.3 �̂�

33
0.4] ,

(37)

and the other rows in the two vertices are defined with the
same elements; that is,

Π
𝑠(1)
= [0.3 0.2 0.1 0.4] ,

Π
𝑠(2)
= [�̂�
21
�̂�
22
0.3 0.2] ,

Π
𝑠(4)
= [0.2 �̂�

42
�̂�
43
�̂�
44
] , 𝑠 = 1, 2.

(38)

The objective is to design an 𝑛
𝑟
-order model of the form

(6) to approximate the above system such that themodel error
system (7) is stochastically stable with an H

∞
performance

index 𝛾. Here, we first assume that the MJLS is subject to
the partially unknown TPs in Case 3, and then a detailed
comparison between theminimumH

∞
performance indices

𝛾min obtained based on Theorem 4 in this paper and the
results in [20] is summarized in Table 2. It is observed from
Table 2 that the design approach proposed in Theorem 4 is
less conservative than [20].

In the following, we will further demonstrate the advan-
tage and less conservatism of Theorem 6 over Theorem 4
proposed in this paper. By solving the problems MRLA
and MRIA, another detailed comparison of the minimum
H
∞

performance indices 𝛾min is listed in Table 3, where
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Table 3: Comparison of minimumH
∞
performance for different TPMs.

TPMs Three-order Two-order One-order
Theorem 4 (MRLA) Theorem 6 (MRIA) Theorem 4 (MRLA) Theorem 6 (MRIA) Theorem 4 (MRLA) Theorem 6 (MRIA)

Case 1 0.8798 0.4 (35) 0.9595 0.8 (139) 2.0057 1.5 (38)
Case 2 1.1687 0.6 (39) 1.4829 1.2 (145) 2.4748 1.9 (40)
Case 3 1.2423 0.7 (87) 1.5231 1.3 (157) 2.5952 2 (43)
Case 4 1.7332 1 (147) 2.1914 1.6 (165) 3.3299 2.4 (137)

the bold numbers in the brackets represent the number of
iterations. By inspection of Tables 1 and 2, it is easy to see
that the results inTheorem 6 are less conservative than those
in Theorem 4. It is also shown that the more information
on TPs is available, the better H

∞
performance can be

obtained, which is effective to reduce the conservatism of
model reduction design. Therefore, the introduction of the
polytopic-type uncertain TPs is significant.

Specifically, with 𝑛
𝑟
= 3, we obtain 𝛾min = 1.1687 by

Theorem 4 with deficient TPM1 shown in Table 1, and the
three-order model parameters are given by

[

𝐴
𝑟1
𝐵
𝑟1

𝐶
𝑟1
𝐷
𝑟1

]

=

[

[

[

[

−0.0540 0.2529 0.2176 −0.8490

0.3274 0.6285 0.4862 0.1883

−0.1543 0.3250 0.2913 −0.8224

−0.9425 0.1661 −0.0302 0.6282

]

]

]

]

,

[

𝐴
𝑟2
𝐵
𝑟2

𝐶
𝑟2
𝐷
𝑟2

]

=

[

[

[

[

0.1724 0.1095 0.3894 0.8742

0.3654 0.4674 0.2785 0.3566

−0.0484 0.3457 0.2416 0.1962

−0.6496 0.6678 −0.7150 0.6001

]

]

]

]

,

[

𝐴
𝑟3
𝐵
𝑟3

𝐶
𝑟3
𝐷
𝑟3

]

=

[

[

[

[

0.2655 0.2048 −0.1861 −0.2537

0.1033 −0.1618 0.2405 0.1205

−0.1747 −0.3936 0.1018 0.3127

−1.2638 −0.0046 −0.0662 0.4385

]

]

]

]

,

[

𝐴
𝑟4
𝐵
𝑟4

𝐶
𝑟4
𝐷
𝑟4

]

=

[

[

[

[

0.1162 −0.5423 −0.5004 −0.7796

−0.3767 0.0416 −0.3589 1.1859

0.0724 −0.3765 0.0533 0.6505

0.5008 −0.9345 −1.1617 0.3712

]

]

]

]

.

(39)

With 𝑛
𝑟
= 3, we obtain 𝛾 = 0.6 by solving the Algorithm

MRIA after 39 iterations with deficient TPM1 shown in
Table 1, and the three-order model parameters are given by

[

𝐴
𝑟1
𝐵
𝑟1

𝐶
𝑟1
𝐷
𝑟1

]

=

[

[

[

[

0.2800 0.0772 0.6328 −0.4352

0.5261 0.2307 0.7350 −0.1521

0.0462 0.2468 0.3092 −0.0833

−1.5239 0.2064 0.4439 0.4937

]

]

]

]

,

[

𝐴
𝑟2
𝐵
𝑟2

𝐶
𝑟2
𝐷
𝑟2

]

=

[

[

[

[

0.3132 −0.0048 0.7263 0.5510

0.4900 0.0264 0.7604 −0.2455

0.0826 0.1022 −0.0038 0.5862

−0.7215 0.8753 −0.3862 0.4679

]

]

]

]

,

[

𝐴
𝑟3
𝐵
𝑟3

𝐶
𝑟3
𝐷
𝑟3

]

=

[

[

[

[

0.1946 −0.0921 0.0870 −0.0826

0.1133 −0.2445 −0.5027 0.2327

−0.1452 0.1980 0.3471 −0.0378

−1.9205 −0.3685 0.8553 0.4941

]

]

]

]

,

[

𝐴
𝑟4
𝐵
𝑟4

𝐶
𝑟4
𝐷
𝑟4

]

=

[

[

[

[

−0.0592 −0.2981 −0.6252 −0.3605

−0.5600 −0.0061 0.0120 0.5109

0.1490 −0.0012 −0.3114 0.8336

0.5634 −2.4550 −0.7422 0.4789

]

]

]

]

.

(40)
The feasible solutions for the other cases are omitted for

brevity.
In order to further illustrate the effectiveness of the

designed approximation models, simulations have been car-
ried out. Specifically, choose the zero initial condition and
input 𝑢(𝑘) as

𝑢 (𝑘) =

{
{

{
{

{

𝑒
(−0.2𝑘+1) sin (0.2𝑘) , 10 ≤ 𝑘 ≤ 30,
0.3 cos (0.25𝑘) , 50 ≤ 𝑘 ≤ 90,

0, otherwise.
(41)

With the above obtained approximation models under Case
2 given in Table 1, and one of the possible realizations of
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Figure 1: One possible system mode evolution.
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Figure 2: Output trajectories of the original system and reduced-
order models with deficient TPM1 based onTheorem 4 (MRLA).

the Markovian jumping mode shown in Figure 1, the output
trajectories of the original system and approximation mod-
els obtained based on Theorem 4 (MRLA) and Theorem 6
(MRIA) are shown in Figures 2 and 3, respectively. It can
be clearly observed from the simulation curves that, despite
the deficient TPs, the designed reduced-order models can
approximate the original system very well.

5. Conclusions

This paper has studied the problem of robust H
∞

model
reduction for a class of discrete-time Markovian jump linear
systems (MJLSs) with deficient mode information, which
simultaneously consists of the exactly known, partially
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Figure 3: Output trajectories of the original system and reduced-
order models with deficient TPM1 based onTheorem 6 (MRIA).

unknown, and polytopic-type uncertain transition probabil-
ities and is thus more general and practical. By fully utilizing
the properties of the transition probability matrices, together
with the convexification of uncertain domains, a new H

∞

performance analysis criterion has been developed. Two dis-
tinctly different approaches, namely, the convex linearisation
approach and iterative approach, have been proposed to solve
themodel reduction problem.A simulation example has been
given to illustrate the less conservatism and effectiveness of
the proposed approaches.
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