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This paper investigates the problem of H
∞

state-feedback control for a class of two-dimensional (2D) discrete-time Markovian
jump linear time-delay systems with defective mode information. The mathematical model of the 2D system is established based
on the well-known Fornasini-Marchesini local state-space model, and the defective mode information simultaneously consists of
the exactly known, partially unknown, and uncertain transition probabilities. By carefully analyzing the features of the transition
probability matrices, together with the convexification of uncertain domains, a new H

∞
performance analysis criterion for the

underlying system is firstly derived, and then theH
∞
state-feedback controller synthesis is developed via a linearisation technique.

It is shown that the controller gains can be constructed by solving a set of linear matrix inequalities. Finally, an illustrative example
is provided to verify the effectiveness of the proposed design method.

1. Introduction

During the past decades, two-dimensional (2D) systems have
drawn considerable attention due to their extensive appli-
cations of both theoretical and practical interests in many
modern engineering fields, such as process control (thermal
processes, gas absorption, water stream heating, etc.) [1],
multidimensional digital filtering [2], and image processing
(enhancement, deblurring, seismographic data processing,
etc.) [3]. In particular, since the well-known Roesser state-
space model and the Fornasini-Marchesini local state-space
(FMLSS) model were proposed, theory on 2D systems has
progressed greatly [4–11].

On the other hand, as a class of stochastic hybrid systems,
Markovian jump linear systems (MJLSs) have been exten-
sively investigated [12–26]. The driving force behind this is
that MJLSs can model different classes of dynamic systems
subject to random abrupt variations in their structures, for
example, manufacturing systems, power systems, and net-
worked control systems, where random failure, repairs, and
sudden environment changes may occur in Markov chains
[27–29]. It is known that MJLSs are described by a set of
classical differential (or difference) equations and a Markov

stochastic process (or Markov chain) [30]. As a decisive fac-
tor, transition probabilities (TPs) in the jumping process
determine the system behavior to a large extent and, so, far,
many studies on the analysis and synthesis of MJLSs have
been carried out in the context of perfect information on TPs
[12–15, 25]. In practice, however, defective mode information
is often encountered especially when adequate efforts to
obtain the accurate TPs are costly or time consuming.Thus, it
is more practical and interesting to study more general jump
systems with defective mode information. Recently, there
have appeared some results on the analysis and synthesis of
MJLSs with uncertain TPs or partially unknown TPs [26, 31–
38]. To mention a few, the authors in [31] studied the H

∞

filter synthesis problem for a class of MJLSs with partially
unknown TPs; The author in [32] considered the robust
stability analysis and stabilization problems for a class of
MJLSs with polytopic uncertain TPs; the authors in [36]
addressed the robust stability analysis problem for a class of
MJLSs with norm-bounded uncertain TPs.

However, the above-mentioned works were only con-
cerned with one-dimensional (1D) systems. Inevitably, when
2D systems are employed to model dynamic systems with
random abrupt changes in their structures or parameters
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such as chemical process control, themathematical modeling
of such physical systems would be naturally dependent on
jumping parameters. For example, information propagation
occurs from pass to pass and along a given pass in a gas
absorption, water stream heating, and air drying [39]. There-
fore, 2D MJLSs emerge as a more reasonable description to
account for the parameter jumping phenomenon and have
a great potential in engineering applications. Recently, the
stability analysis and synthesis of discrete-time delay-free 2D
MJLSs described by Roesser model were reported in [39, 40],
which are obtained based on the traditional assumption of
complete knowledge on TPs. To the authors’ best knowledge,
the analysis and synthesis for 2DMJLSs with state-delays and
defective mode information have not drawn much attention
yet, which motivates us for this study.

In this paper, the H
∞

control problem for a class of 2D
discrete-time MJLSs with state-delays and defective mode
information will be studied. The mathematical model of the
2D system is established in terms of the FMLSSmodel subject
to state-delays, and the defective mode information simulta-
neously includes the exactly known, partially unknown and
uncertain TPs. By fully considering the properties of the
transition probabilitymatrices, together with the convexifica-
tion of uncertain domains, a new H

∞
performance analysis

criterion for the closed-loop system will be firstly derived. By
a linearisation procedure, the corresponding H

∞
controller

synthesis will then be converted into a convex optimization
problem in terms of a set of linear matrix inequalities.
Finally, an illustrative example will be performed to show the
effectiveness of the proposed controller synthesis method.

Notations. The notations used throughout the paper are stan-
dard. R𝑛 and R𝑚×𝑛 denote, respectively, the 𝑛-dimensional
Euclidean space and the set of all 𝑚 × 𝑛 real matrices; N+
represents the sets of positive integers; the notation 𝑃 > 0

means that 𝑃 is real symmetric and positive definite; I and 0
represent the identity matrix and a zero matrix, respectively;
(S,F,P) denotes a complete probability space, in which
S is the sample space, F is the 𝜎 algebra of subsets of
the sample space, and P is the probability measure on F;
E[⋅] stands for the mathematical expectation; ‖ ⋅ ‖ refers
to the Euclidean norm of a vector or its induced norm
of a matrix; 𝑙

2
{[0,∞), [0,∞)} denotes the space of square

summable sequences on {[0,∞), [0,∞)}. Matrices, if not
explicitly stated, are assumed to have appropriate dimensions
for algebra operations.

2. Problem Formulation and Preliminaries

Fix a complete probability space (S,F,P) and consider the
following two-dimensional (2D) discrete-time Markovian
jump linear systems (MJLSs), described by the Fornasini-
Marchesini local state-space (FMLSS) model with time-
delays in the states:

(Σ) : 𝑥 (𝑖 + 1, 𝑗 + 1) = 𝐴
1
(𝑟 (𝑖, 𝑗 + 1)) 𝑥 (𝑖, 𝑗 + 1)

+ 𝐴
2
(𝑟 (𝑖 + 1, 𝑗)) 𝑥 (𝑖 + 1, 𝑗)

+ 𝐴
𝑑1

(𝑟 (𝑖, 𝑗 + 1)) 𝑥 (𝑖 − 𝑑
1
, 𝑗 + 1)

+ 𝐴
𝑑2

(𝑟 (𝑖 + 1, 𝑗)) 𝑥 (𝑖 + 1, 𝑗 − 𝑑
2
)

+ 𝐵
1
(𝑟 (𝑖, 𝑗 + 1)) 𝑢 (𝑖, 𝑗 + 1)

+ 𝐵
2
(𝑟 (𝑖 + 1, 𝑗)) 𝑢 (𝑖 + 1, 𝑗)

+ 𝐷
1
(𝑟 (𝑖, 𝑗 + 1))𝑤 (𝑖, 𝑗 + 1)

+ 𝐷
2
(𝑟 (𝑖 + 1, 𝑗)) 𝑤 (𝑖 + 1, 𝑗) ,

𝑧 (𝑖, 𝑗) = 𝐶 (𝑟 (𝑖, 𝑗)) 𝑥 (𝑖, 𝑗) + 𝐵
3
(𝑟 (𝑖, 𝑗)) 𝑢 (𝑖, 𝑗)

+ 𝐷
3
(𝑟 (𝑖, 𝑗)) 𝑤 (𝑖, 𝑗) ,

(1)

where 𝑥(𝑖, 𝑗) ∈ R𝑛𝑥 is the state vector; 𝑢(𝑖, 𝑗) ∈ R𝑛𝑢 is the
control input; 𝑧(𝑖, 𝑗) ∈ R𝑛𝑧 is the controlled output; 𝑤(𝑖, 𝑗) ∈

R𝑛𝑤 denotes the disturbance input vector which belongs to
𝑙
2
{[0,∞), [0,∞)}; and 𝑑

1
and 𝑑

2
are two constant positive

integers representing delays along vertical and horizon-
tal directions, respectively. 𝐴

1
(𝑟(𝑖, 𝑗 + 1)), 𝐴

2
(𝑟(𝑖 + 1, 𝑗)),

𝐴
𝑑1

(𝑟(𝑖, 𝑗 + 1)), 𝐴
𝑑2

(𝑟(𝑖 + 1, 𝑗)), 𝐵
1
(𝑟(𝑖, 𝑗 + 1)), 𝐵

2
(𝑟(𝑖 +

1, 𝑗)),𝐷
1
(𝑟(𝑖, 𝑗 + 1)),𝐷

2
(𝑟(𝑖 + 1, 𝑗)), 𝐶(𝑟(𝑖, 𝑗)), 𝐵

3
(𝑟(𝑖, 𝑗)), and

𝐷
3
(𝑟(𝑖, 𝑗)) are real-valued system matrices. These matrices

are functions of 𝑟(𝑖, 𝑗), which is described by a discrete-time,
discrete-state homogeneous Markov chain with a finite-state
spaceI := {1, . . . , 𝑁}, and a stationary transition probability
matrix (TPM) Π = [𝜋

𝑚𝑛
]
𝑁×𝑁

, where

𝜋
𝑚𝑛

= Pr (𝑟 (𝑖 + 1, 𝑗 + 1) = 𝑛 | 𝑟 (𝑖, 𝑗 + 1) = 𝑚)

= Pr (𝑟 (𝑖 + 1, 𝑗+1) = 𝑛 | 𝑟 (𝑖+1, 𝑗) = 𝑚) , ∀𝑚, 𝑛 ∈ I,

(2)

with 𝜋
𝑚𝑛

≥ 0 and ∑
𝑁

𝑛=1
𝜋
𝑚𝑛

= 1. For 𝑟(𝑖 + 1, 𝑗) = 𝑚 ∈

I or 𝑟(𝑖, 𝑗 + 1) = 𝑚 ∈ I, the system matrices of the
𝑚th mode are denoted by (𝐴

1𝑚
, 𝐴
2𝑚

, 𝐴
𝑑1𝑚

, 𝐴
𝑑2𝑚

, 𝐵
1𝑚

, 𝐵
2𝑚

,

𝐷
1𝑚

, 𝐷
2𝑚

, 𝐶
𝑚
, 𝐵
3𝑚

, 𝐷
3𝑚

), which are known and with appro-
priate dimensions. Unless otherwise stated, similar simplifi-
cation is also applied to other matrices in the following.

In this paper, the transition probabilities (TPs) of the
jumping process are assumed to be uncertain and partially
accessed; that is, the TPM Π = [𝜋

𝑚𝑛
]
𝑁×𝑁

is assumed
to belong to a given polytope P

Π
with vertices Π

𝑠
, 𝑠 =

1, 2, . . . ,𝑀, P
Π

:= {Π | Π = ∑
𝑀

𝑠=1
𝛼
𝑠
Π
𝑠
; 𝛼
𝑠
≥ 0, ∑

𝑀

𝑠=1
𝛼
𝑠
= 1},

where Π
𝑠
= [𝜋
𝑚𝑛

]
𝑁×𝑁

, 𝑚, 𝑛 ∈ I, are given TPMs containing
unknown elements still. For instance, for system (Σ)with four
operation modes, the TPMmay be as

[

[

[

[

𝜋
11

�̃�
12

�̂�
13

𝜋
14

�̂�
21

𝜋
22

�̃�
23

𝜋
24

𝜋
31

�̂�
32

𝜋
33

�̂�
34

𝜋
41

�̃�
42

�̂�
43

�̂�
44

]

]

]

]

, (3)

where the elements labeled with “̂” and “∼” represent the
unknown information and polytopic uncertainties on TPs,
respectively, and the others are known TPs. For notational
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clarity, for all𝑚 ∈ I, we denoteI = I
(𝑚)

K
∪I
(𝑚)

UC
∪I
(𝑚)

UK
as

follows:

I
(𝑚)

K := {𝑛 : 𝜋
𝑚𝑛

is known} ,

I
(𝑚)

UC := {𝑛 : �̃�
𝑚𝑛

is uncertain} ,

I
(𝑚)

UK := {𝑛 : �̂�
𝑚𝑛

is unknown} .

(4)

Moreover, ifI(𝑚)
K

̸= 0 andI
(𝑚)

UC
̸= 0, it is further described as

I
(𝑚)

K := {K
1
(𝑚)

, . . . ,K
𝑡
(𝑚)

} , ∀1 ≤ 𝑡
(𝑚)

≤ 𝑁 − 2,

I
(𝑚)

UC := {U
1
(𝑚)

, . . . ,UV
(𝑚)

} , ∀1 ≤ V
(𝑚)

≤ 𝑁,

(5)

where K
𝑡
(𝑚)

∈ N+ represents the 𝑡
(𝑚)

th known element with
the index K

𝑡
(𝑚)

in the 𝑚th row of the TPM and UV
(𝑚)

∈ N+

represents the V
(𝑚)

th uncertain element with the index UV
(𝑚)

in the 𝑚th row of the TPM. Obviously, 1 ≤ 𝑡
(𝑚)

+ V
(𝑚)

≤ 𝑁.
Also, we denote

𝜋
(𝑚𝑠)

UK := ∑

𝑛∈I
(𝑚)

UK

�̂�
𝑚𝑛

= 1 − ∑

𝑛∈I
(𝑚)

K

𝜋
𝑚𝑛

− ∑

𝑛∈I
(𝑚)

UC

�̃�
(𝑠)

𝑚𝑛
, (6)

where �̃�
(𝑠)

𝑚𝑛
represents an uncertain TP in the 𝑠th polytope, for

all 𝑠 = 1, . . . ,𝑀.
The boundary conditions of system (Σ) in (1) are defined

by

{𝑥 (𝑖, 𝑗) = 𝜙 (𝑖, 𝑗) , ∀𝑗 ≥ 0, −𝑑
1
≤ 𝑖 ≤ 0} ,

{𝑥 (𝑖, 𝑗) = 𝜑 (𝑖, 𝑗) , ∀𝑖 ≥ 0, −𝑑
2
≤ 𝑗 ≤ 0} ,

𝜙 (0, 0) = 𝜑 (0, 0) .

(7)

Throughout this paper, the following assumption is made.

Assumption 1. The boundary conditions are assumed to sat-
isfy

lim
𝑇
1
→∞

E
{

{

{

𝑇
1

∑

𝑗=0

0

∑

𝑖=−𝑑
1

(𝜙
T
(𝑖, 𝑗) 𝜙 (𝑖, 𝑗))

}

}

}

+ lim
𝑇
2
→∞

E
{

{

{

𝑇
2

∑

𝑖=0

0

∑

𝑗=−𝑑
2

(𝜑
T
(𝑖, 𝑗) 𝜑 (𝑖, 𝑗))

}

}

}

< ∞.

(8)

In this paper, we are interested in the H
∞

controller
synthesis forMJLSs (1).The followingmode-dependent state-
feedback control law is used:

𝑢 (𝑖, 𝑗) = 𝐾 (𝑟 (𝑖, 𝑗)) 𝑥 (𝑖, 𝑗) , (9)

where 𝐾(𝑟(𝑖, 𝑗)) ∈ R𝑛𝑢×𝑛𝑥 .

Then the corresponding closed-loop system can be repre-
sented as follows:

(Σ) : 𝑥 (𝑖 + 1, 𝑗 + 1) = 𝐴
1
(𝑟 (𝑖, 𝑗 + 1)) 𝑥 (𝑖, 𝑗 + 1)

+ 𝐴
2
(𝑟 (𝑖 + 1, 𝑗)) 𝑥 (𝑖 + 1, 𝑗)

+ 𝐴
𝑑1

(𝑟 (𝑖, 𝑗 + 1)) 𝑥 (𝑖 − 𝑑
1
, 𝑗 + 1)

+ 𝐴
𝑑2

(𝑟 (𝑖 + 1, 𝑗)) 𝑥 (𝑖 + 1, 𝑗 − 𝑑
2
)

+ 𝐷
1
(𝑟 (𝑖, 𝑗 + 1))𝑤 (𝑖, 𝑗 + 1)

+ 𝐷
2
(𝑟 (𝑖 + 1, 𝑗)) 𝑤 (𝑖 + 1, 𝑗) ,

𝑧 (𝑖, 𝑗) = 𝐶 (𝑟 (𝑖, 𝑗)) 𝑥 (𝑖, 𝑗) + 𝐷
3
(𝑟 (𝑖, 𝑗)) 𝑤 (𝑖, 𝑗) ,

(10)

where

𝐴
1
(𝑟 (𝑖, 𝑗 + 1))

:= 𝐴
1
(𝑟 (𝑖, 𝑗 + 1)) + 𝐵

1
(𝑟 (𝑖, 𝑗 + 1))𝐾 (𝑟 (𝑖, 𝑗 + 1)) ,

𝐴
2
(𝑟 (𝑖 + 1, 𝑗))

:= 𝐴
2
(𝑟 (𝑖 + 1, 𝑗)) + 𝐵

2
(𝑟 (𝑖 + 1, 𝑗))𝐾 (𝑟 (𝑖 + 1, 𝑗)) ,

𝐶 (𝑟 (𝑖, 𝑗)) := 𝐶 (𝑟 (𝑖, 𝑗)) + 𝐵
3
(𝑟 (𝑖, 𝑗))𝐾 (𝑟 (𝑖, 𝑗)) .

(11)

Before proceeding further, we introduce the following
definitions.

Definition 2. System (10) is said to be stochastically stable if,
for𝑤(𝑖, 𝑗) = 0 and the boundary conditions satisfying (8), the
following condition holds:

E
{

{

{

∞

∑

𝑖=0

∞

∑

𝑗=0

(




𝑥 (𝑖, 𝑗 + 1)






2

+




𝑥 (𝑖 + 1, 𝑗)






2

)

}

}

}

< ∞. (12)

Definition 3. Given a scalar 𝛾 > 0, system (10) is said to
be stochastically stable with an H

∞
disturbance attenuation

performance index 𝛾 if it is stochastically stable with𝑤(𝑖, 𝑗) =

0, and under zero boundary conditions 𝜙(𝑖, 𝑗) = 𝜑(𝑖, 𝑗) = 0

in (7), for all nonzero, 𝑤 ∈ 𝑙
2
{[0,∞), [0,∞)} satisfies

‖�̃�‖E
2

< 𝛾‖𝑤‖
2
, (13)

where

‖�̃�‖E
2

:= √E
{

{

{

∞

∑

𝑖=0

∞

∑

𝑗=0

(




𝑧 (𝑖, 𝑗 + 1)






2

+




𝑧 (𝑖 + 1, 𝑗)






2

)

}

}

}

,

‖𝑤‖
2

:= √

∞

∑

𝑖=0

∞

∑

𝑗=0

(




𝑤(𝑖, 𝑗 + 1)






2

+




𝑤(𝑖 + 1, 𝑗)






2

).

(14)
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Therefore, the purpose of this paper is to design a mode-
dependent H

∞
state-feedback controller in the form of (9),

such that the resulting closed-loop system (10) with defective
mode information is stochastically stable with a prescribed
H
∞

performance index 𝛾.

3. Main Results

In this section, based on a Markovian Lyapunov-Krasovskii
functional (MLKF), a new formulation of bounded real
lemma (BRL) for the two-dimensional (2D)Markovian jump
linear system (MJLS) (10) with state-delays and defective
mode information will be firstly given. Then, via a lineari-
sation procedure, theH

∞
controller synthesis will be devel-

oped.

3.1.H
∞

Performance Analysis. In this subsection, by invok-
ing the properties of the transition probability matrices
(TPMs), together with the convexification of uncertain
domains, an H

∞
performance analysis criterion for the

closed-loop system (10) with state-delays and defective mode
information is presented, which will play a significant role in
solving theH

∞
controller synthesis problem.

Proposition 4. The 2D MJLS in (10) with state-delays and
defective mode information is stochastically stable with a guar-
anteedH

∞
performance 𝛾 if the matrices {𝑃

1𝑚
, 𝑃
2𝑚

, 𝑄
1
, 𝑄
2
} ∈

R𝑛𝑥×𝑛𝑥 , with 𝑃
1𝑚

> 0, 𝑃
2𝑚

> 0, 𝑄
1
> 0, and 𝑄

2
> 0,𝑚 ∈ I,

such that the following matrix inequalities hold:

A
T
𝑚
P
(𝑠)

𝑛
A
𝑚

+ C
T
𝑚
C
𝑚

+ Θ
𝑚

< 0,

𝑚 ∈ I, 𝑛 ∈ I
(𝑚)

UK, 𝑠 = 1, . . . ,𝑀,

(15)

where

Θ
𝑚

:= diag {−𝑃
1𝑚

+ 𝑄
1
, −𝑃
2𝑚

+ 𝑄
2
, −𝑄
1
, −𝑄
2
, −𝛾
2I, −𝛾

2I} ,

A
𝑚

:= [𝐴
1𝑚

𝐴
2𝑚

𝐴
𝑑1𝑚

𝐴
𝑑2𝑚

𝐷
1𝑚

𝐷
2𝑚

] ,

C
𝑚

:= [

𝐶
𝑚

0 0
𝑛
𝑧
×2𝑛
𝑥

𝐷
3𝑚

0
0 𝐶
𝑚

0
𝑛
𝑧
×2𝑛
𝑥

0 𝐷
3𝑚

] ,

P
(𝑠)

𝑛
:= ∑

𝑛∈I
(𝑚)

K

𝜋
𝑚𝑛

(𝑃
1𝑛

+ 𝑃
2𝑛
)

+ ∑

𝑛∈I
(𝑚)

UC

�̃�
(𝑠)

𝑚𝑛
(𝑃
1𝑛

+ 𝑃
2𝑛
) + 𝜋

(𝑚𝑠)

UK (𝑃
1𝑛

+ 𝑃
2𝑛
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛∈I
(𝑚)

UK

,

𝜋
(𝑚𝑠)

UK := 1 − ∑

𝑛∈I
(𝑚)

K

𝜋
𝑚𝑛

− ∑

𝑛∈I
(𝑚)

UC

�̃�
(𝑠)

𝑚𝑛
.

(16)

Proof. Consider the following MLKF for the 2D MJLS (10):

𝑉 (𝑖, 𝑗) :=

2

∑

𝑘=1

𝑉
𝑘
(𝑥 (𝑖, 𝑗 + 1) , 𝑟 (𝑖, 𝑗 + 1))

+

4

∑

𝑘=3

𝑉
𝑘
(𝑥 (𝑖 + 1, 𝑗) , 𝑟 (𝑖 + 1, 𝑗)) ,

(17)

where

𝑉
1
(𝑥 (𝑖, 𝑗 + 1) , 𝑟 (𝑖, 𝑗 + 1))

:= 𝑥
T
(𝑖, 𝑗 + 1) 𝑃

1
(𝑟 (𝑖, 𝑗 + 1)) 𝑥 (𝑖, 𝑗 + 1) ,

𝑉
2
(𝑥 (𝑖, 𝑗 + 1) , 𝑟 (𝑖, 𝑗 + 1))

:=

𝑖−1

∑

𝑘=𝑖−𝑑
1

𝑥
T
(𝑘, 𝑗 + 1)𝑄

1
𝑥 (𝑘, 𝑗 + 1) ,

𝑉
3
(𝑥 (𝑖 + 1, 𝑗) , 𝑟 (𝑖 + 1, 𝑗))

:= 𝑥
T
(𝑖 + 1, 𝑗) 𝑃

2
(𝑟 (𝑖 + 1, 𝑗)) 𝑥 (𝑖 + 1, 𝑗) ,

𝑉
4
(𝑥 (𝑖 + 1, 𝑗) , 𝑟 (𝑖 + 1, 𝑗))

:=

𝑗−1

∑

𝑘=𝑗−𝑑
2

𝑥
T
(𝑖 + 1, 𝑘) 𝑄

2
𝑥 (𝑖 + 1, 𝑘) .

(18)

Then, based on the MLKF defined in (17), it is known
that the following condition (19) guarantees that the 2D
closed-loop system (10) is stochastically stable with an H

∞

performance 𝛾 under zero boundary conditions for any
nonzero 𝑤(𝑖, 𝑗) ∈ 𝑙

2
{[0,∞), [0,∞)}:

Ω := Δ𝑉 (𝑖, 𝑗) + ‖�̃�‖
2

E
2

− 𝛾
2

‖𝑤‖
2

2
< 0, (19)

where

Δ𝑉 (𝑖, 𝑗) := E{

2

∑

𝑘=1

𝑉
𝑘
(𝑥 (𝑖 + 1, 𝑗 + 1) , 𝑟 (𝑖 + 1, 𝑗 + 1)) |

𝑥 (𝑖, 𝑗 + 1) , 𝑟 (𝑖, 𝑗 + 1) = 𝑚}

+ E{

4

∑

𝑘=3

𝑉
𝑘
(𝑥 (𝑖 + 1, 𝑗 + 1) , 𝑟 (𝑖 + 1, 𝑗 + 1)) |

𝑥 (𝑖 + 1, 𝑗) , 𝑟 (𝑖 + 1, 𝑗) = 𝑚}
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−

2

∑

𝑘=1

𝑉
𝑘
(𝑥 (𝑖, 𝑗 + 1) , 𝑟 (𝑖, 𝑗 + 1))

−

4

∑

𝑘=3

𝑉
𝑘
(𝑥 (𝑖 + 1, 𝑗) , 𝑟 (𝑖 + 1, 𝑗)) ,

(20)

and ‖�̃�‖E
2

and ‖𝑤‖
2
are defined in (14).

Taking the time difference of𝑉(𝑖, 𝑗) along the trajectories
of the 2D system in (10) yields

Δ𝑉
1
:= E [𝑉

1
(𝑥 (𝑖 + 1, 𝑗 + 1) , 𝑟 (𝑖 + 1, 𝑗 + 1)) |

𝑥 (𝑖, 𝑗 + 1) , 𝑟 (𝑖, 𝑗 + 1) = 𝑚]

− 𝑉
1
(𝑥 (𝑖, 𝑗 + 1) , 𝑟 (𝑖, 𝑗 + 1))

= 𝑥
T
(𝑖 + 1, 𝑗 + 1)( ∑

𝑛∈I

𝜋
𝑚𝑛

𝑃
1𝑛
)𝑥 (𝑖 + 1, 𝑗 + 1)

− 𝑥
T
(𝑖, 𝑗 + 1) 𝑃

1𝑚
𝑥 (𝑖, 𝑗 + 1)

= 𝑥
T
(𝑖 + 1, 𝑗 + 1)

× ( ∑

𝑛∈I
(𝑚)

K

𝜋
𝑚𝑛

𝑃
1𝑛

+ ∑

𝑛∈I
(𝑚)

UC

(

𝑀

∑

𝑠=1

𝛼
𝑠
�̃�
(𝑠)

𝑚𝑛
)𝑃
1𝑛

+ ∑

𝑛∈I
(𝑚)

UK

�̂�
𝑚𝑛

𝑃
1𝑛
)

× 𝑥 (𝑖 + 1, 𝑗 + 1) − 𝑥
T
(𝑖, 𝑗 + 1) 𝑃

1𝑚
𝑥 (𝑖, 𝑗 + 1) ,

Δ𝑉
2
:= E [𝑉

2
(𝑥 (𝑖 + 1, 𝑗 + 1) , 𝑟 (𝑖 + 1, 𝑗 + 1)) |

𝑥 (𝑖, 𝑗 + 1) , 𝑟 (𝑖, 𝑗 + 1) = 𝑚]

− 𝑉
2
(𝑥 (𝑖, 𝑗 + 1) , 𝑟 (𝑖, 𝑗 + 1))

= 𝑥
T
(𝑖, 𝑗 + 1)𝑄

1
𝑥 (𝑖, 𝑗 + 1)

− 𝑥
T
(𝑖 − 𝑑
1
, 𝑗 + 1)𝑄

1
𝑥 (𝑖 − 𝑑

1
, 𝑗 + 1) ,

Δ𝑉
3
:= E [𝑉

3
(𝑥 (𝑖 + 1, 𝑗 + 1) , 𝑟 (𝑖 + 1, 𝑗 + 1)) |

𝑥 (𝑖 + 1, 𝑗) , 𝑟 (𝑖 + 1, 𝑗) = 𝑚]

− 𝑉
3
(𝑥 (𝑖 + 1, 𝑗) , 𝑟 (𝑖 + 1, 𝑗))

= 𝑥
T
(𝑖 + 1, 𝑗 + 1)( ∑

𝑛∈I

𝜋
𝑚𝑛

𝑃
2𝑛
)𝑥 (𝑖 + 1, 𝑗 + 1)

− 𝑥
T
(𝑖 + 1, 𝑗) 𝑃

2𝑚
𝑥 (𝑖 + 1, 𝑗)

= 𝑥
T
(𝑖 + 1, 𝑗 + 1)

× ( ∑

𝑛∈I
(𝑚)

K

𝜋
𝑚𝑛

𝑃
2𝑛

+ ∑

𝑛∈I
(𝑚)

UC

(

𝑀

∑

𝑠=1

𝛼
𝑠
�̃�
(𝑠)

𝑚𝑛
)𝑃
2𝑛

+ ∑

𝑛∈I
(𝑚)

UK

�̂�
𝑚𝑛

𝑃
2𝑛
)

× 𝑥 (𝑖 + 1, 𝑗 + 1) − 𝑥
T
(𝑖 + 1, 𝑗) 𝑃

2𝑚
𝑥 (𝑖 + 1, 𝑗) ,

Δ𝑉
4
:= E [𝑉

4
(𝑥 (𝑖 + 1, 𝑗 + 1) , 𝑟 (𝑖 + 1, 𝑗 + 1)) |

𝑥 (𝑖 + 1, 𝑗) , 𝑟 (𝑖 + 1, 𝑗) = 𝑚]

− 𝑉
4
(𝑥 (𝑖 + 1, 𝑗) , 𝑟 (𝑖 + 1, 𝑗))

= 𝑥
T
(𝑖 + 1, 𝑗) 𝑄

2
𝑥 (𝑖 + 1, 𝑗)

− 𝑥
T
(𝑖 + 1, 𝑗 − 𝑑

2
) 𝑄
2
𝑥 (𝑖 + 1, 𝑗 − 𝑑

2
) .

(21)

Therefore, based on the MLKF defined in (17), together with
consideration of (10) and (21), we have

Ω = 𝜍
T
(𝑖, 𝑗) [A

T
𝑚

(P
1𝑛

+ P
2𝑛
)A
𝑚

+ C
T
𝑚
C
𝑚

+ Θ
𝑚
]

× 𝜍 (𝑖, 𝑗) , 𝑚, 𝑛 ∈ I,

(22)

where

𝜍 (𝑖, 𝑗) := [𝑥
T
(𝑖, 𝑗 + 1) 𝑥

T
(𝑖 + 1, 𝑗) 𝑥

T
(𝑖 − 𝑑
1
, 𝑗 + 1)

𝑥
T
(𝑖 + 1, 𝑗 − 𝑑

2
) 𝑤

T
(𝑖, 𝑗 + 1) 𝑤

T
(𝑖 + 1, 𝑗) ]

T
,

Θ
𝑚

:= diag {−𝑃
1𝑚

+ 𝑄
1
, −𝑃
2𝑚

+ 𝑄
2
, −𝑄
1
, −𝑄
2
, −𝛾
2I, −𝛾

2I} ,

A
𝑚

:= [𝐴
1𝑚

𝐴
2𝑚

𝐴
𝑑1𝑚

𝐴
𝑑2𝑚

𝐷
1𝑚

𝐷
2𝑚

] ,

C
𝑚

:= [

𝐶
𝑚

0 0
𝑛
𝑧
×2𝑛
𝑥

𝐷
3𝑚

0
0 𝐶
𝑚

0
𝑛
𝑧
×2𝑛
𝑥

0 𝐷
3𝑚

] ,

P
𝑙𝑛

:= ∑

𝑛∈I
(𝑚)

K

𝜋
𝑚𝑛

𝑃
𝑙𝑛

+ ∑

𝑛∈I
(𝑚)

UC

(

𝑀

∑

𝑠=1

𝛼
𝑠
�̃�
(𝑠)

𝑚𝑛
)𝑃
𝑙𝑛

+ ∑

𝑛∈I
(𝑚)

UK

�̂�
𝑚𝑛

𝑃
𝑙𝑛
, 𝑙 = 1, 2.

(23)
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Considering the fact that 0 ≤ 𝛼
𝑠
≤ 1, ∑𝑀

𝑠=1
𝛼
𝑠
= 1, and 0 ≤

�̂�
𝑚𝑛

/𝜋
(𝑚𝑠)

UK
≤ 1,∑

𝑛∈I
(𝑚)

UK

(�̂�
𝑚𝑛

/𝜋
(𝑚𝑠)

UK
) = 1, (22) can be rewritten

as

Ω =

𝑀

∑

𝑠=1

𝛼
𝑠

∑

𝑛∈I
(𝑚)

UK

�̂�
𝑚𝑛

𝜋
(𝑚𝑠)

UK

× [𝜍
T
(𝑖, 𝑗) [A

T
𝑚
P
(𝑠)

𝑛
A
𝑚

+ C
T
𝑚
C
𝑚

+ Θ
𝑚
] 𝜍 (𝑖, 𝑗)] ,

𝑚 ∈ I, 𝑛 ∈ I
(𝑚)

UK, 𝑠 = 1, . . . ,𝑀,

(24)

where

P
(𝑠)

𝑛
:= ∑

𝑛∈I
(𝑚)

K

𝜋
𝑚𝑛

(𝑃
1𝑛

+ 𝑃
2𝑛
) + ∑

𝑛∈I
(𝑚)

UC

�̃�
(𝑠)

𝑚𝑛
(𝑃
1𝑛

+ 𝑃
2𝑛
)

+ 𝜋
(𝑚𝑠)

UK (𝑃
1𝑛

+ 𝑃
2𝑛
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛∈I
(𝑚)

UK

,

𝜋
(𝑚𝑠)

UK := 1 − ∑

𝑛∈I
(𝑚)

K

𝜋
𝑚𝑛

− ∑

𝑛∈I
(𝑚)

UC

�̃�
(𝑠)

𝑚𝑛
.

(25)
According to (24), it is easy to see that (19) holds if and

only if, for all 𝑠 = 1, . . . ,𝑀,

𝜍
T
(𝑖, 𝑗) [A

T
𝑚
P
(𝑠)

𝑛
A
𝑚

+ C
T
𝑚
C
𝑚

+ Θ
𝑚
] 𝜍 (𝑖, 𝑗) < 0,

𝑚 ∈ I, 𝑛 ∈ I
(𝑚)

UK,

(26)

which is implied by condition (15). This completes the proof.

Remark 5. By fully considering the properties of TPMs,
together with the convexification of uncertain domains, a
new version of BRL has been derived for the 2D MJLS
(10) with state-delays and defective mode information in
Proposition 4. It is worth mentioning that the results for
Fornasini-Marchesini local state-space (FMLSS) model (10)
could be readily applied to Roesser model after the similar
transformation as performed in [8]. It is also noted that the
condition given in (15) is nonconvex due to the presence of
product terms between the Lyapunov matrices and system
matrices. For the matrix inequality linearisation purpose,
in the following, we shall make a decoupling between the
Lyapunov matrices and system matrices, which will be con-
venient for controller synthesis purpose.

In the sequel, we focus on theH
∞
controller design based

on the analysis condition given in Proposition 4.

3.2. H
∞

Controller Synthesis. In this subsection, based on a
linearisation procedure, a unified framework for the solvabil-
ity of theH

∞
controller synthesis problem will be proposed.

It will be shown that the parametrised representations of

the controller gains can be constructed in terms of the feasible
solutions to a set of strict linear matrix inequalities (LMIs).

Theorem 6. Consider 2D MJLS (1) with state-delays and
defective mode information and the state-feedback controller
in the form of (9). The closed-loop system (10) is stochastically
stable with an H

∞
performance 𝛾 if there exist matrices

{𝑋
1𝑚

, 𝑋
2𝑚

, 𝑅
1
, 𝑅
2
} ∈ R𝑛𝑥×𝑛𝑥 , with 𝑋

1𝑚
> 0, 𝑋

2𝑚
> 0, 𝑅

1
> 0,

and 𝑅
2

> 0 and matrices 𝐺
𝑚

∈ R𝑛𝑥×𝑛𝑥 and 𝐾
𝑚

∈ R𝑛𝑢×𝑛𝑥 ,
𝑚 ∈ I, such that the following LMIs hold:

[

[

[

[

[

[

[

−X
(𝑚)

1𝑛
0 0 ϝ

(𝑠)

𝑚
A
𝑚

0
∗ −X

(𝑚)

2𝑛
0 ϝ
(𝑠)

𝑚
A
𝑚

0
∗ ∗ −I C

𝑚
0

∗ ∗ ∗ −Θ
𝑚

G
𝑚

∗ ∗ ∗ ∗ −R

]

]

]

]

]

]

]

< 0,

𝑚 ∈ I, 𝑛 ∈ I
(𝑚)

UK, 𝑠 = 1, . . . ,𝑀,

(27)

where

X
(𝑚)

𝑙𝑛

:= diag {𝑋
𝑙K
1
(𝑚)

, . . . , 𝑋
𝑙K
𝑡
(𝑚)

, 𝑋
𝑙U
1
(𝑚)

, . . . , 𝑋
𝑙UV
(𝑚)

, 𝑋
𝑙𝑛
} ,

𝑙 = 1, 2,

ϝ
(𝑠)

𝑚
:= [

√
𝜋
𝑚K
1
(𝑚)

I, . . . ,
√

𝜋
𝑚K
𝑡
(𝑚)

I, √�̃�
(𝑠)

𝑚U
1
(𝑚)

I, . . . ,

√�̃�
(𝑠)

𝑚UV
(𝑚)

I, √𝜋
(𝑚𝑠)

UK
I] ,

A
𝑚

:= [A
1𝑚

A
2𝑚

𝐴
𝑑1𝑚

𝑅
1

𝐴
𝑑2𝑚

𝑅
2

𝐷
1𝑚

𝐷
2𝑚

] ,

C
𝑚

:= [

C
𝑚

0 0
𝑛
𝑧
×2𝑛
𝑥

𝐷
3𝑚

0
0 C

𝑚
0
𝑛
𝑧
×2𝑛
𝑥

0 𝐷
3𝑚

] ,

Θ
𝑚

:= diag {𝐺
𝑚

+ 𝐺
T
𝑚

− 𝑋
1𝑚

, 𝐺
𝑚

+ 𝐺
T
𝑚

− 𝑋
2𝑚

,R, 𝛾
2I, 𝛾2I} ,

R := diag {𝑅
1
, 𝑅
2
} ,

G
𝑚

:= [

𝐺
𝑚

0 0
𝑛
𝑥
×2(𝑛
𝑥
+𝑛
𝑤
)

0 𝐺
𝑚

0
𝑛
𝑥
×2(𝑛
𝑥
+𝑛
𝑤
)

]

T

,

A
𝑙𝑚

:= 𝐴
𝑙𝑚

+ 𝐵
𝑙𝑚

𝐾
𝑚
,

C
𝑚

:= 𝐶
𝑚

+ 𝐵
3𝑚

𝐾
𝑚
,

𝜋
(𝑚𝑠)

UK := 1 − ∑

𝑛∈I
(𝑚)

K

𝜋
𝑚𝑛

− ∑

𝑛∈I
(𝑚)

UC

�̃�
(𝑠)

𝑚𝑛
.

(28)

Moreover, if the above conditions have a set of feasible
solutions (𝑋

1𝑚
, 𝑋
2𝑚

, 𝑅
1
, 𝑅
2
, 𝐺
𝑚
, 𝐾
𝑚
), then the state-feedback

controller in the form of (9) can be constructed as

𝐾
𝑚

:= 𝐾
𝑚
𝐺
−1

𝑚
. (29)
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Proof. It follows from Proposition 4 that, if we can show (15),
then the claimed results follow. By Schur complement and
with I

(𝑚)

K
:= {K

1
(𝑚)

, . . . ,K
𝑡
(𝑚)

} and I
(𝑚)

UC
:= {U

1
(𝑚)

, . . . ,

UV
(𝑚)

}, (15) is equivalent to

[

[

[

[

[

[

−X
(𝑚)

1𝑛
0 0 ϝ

(𝑠)

𝑚
A
𝑚

0
∗ −X

(𝑚)

2𝑛
0 ϝ
(𝑠)

𝑚
A
𝑚

0
∗ ∗ −I C

𝑚
0

∗ ∗ ∗ −Θ̂
𝑚

Λ

∗ ∗ ∗ ∗ −Q−1

]

]

]

]

]

]

< 0,

𝑚 ∈ I, 𝑛 ∈ I
(𝑚)

UK, 𝑠 = 1, . . . ,𝑀,

(30)

where

X
(𝑚)

𝑙𝑛
:= diag {𝑋

𝑙K
1
(𝑚)

, . . . , 𝑋
𝑙K
𝑡
(𝑚)

, 𝑋
𝑙U
1
(𝑚)

, . . . ,

𝑋
𝑙UV
(𝑚)

, 𝑋
𝑙𝑛
} , 𝑋

𝑙𝑚
:= 𝑃
−1

𝑙𝑚
, 𝑙 = 1, 2,

ϝ
(𝑠)

𝑚
:= [

√
𝜋
𝑚K
1
(𝑚)

I, . . . ,
√

𝜋
𝑚K
𝑡
(𝑚)

I, √�̃�
(𝑠)

𝑚U
1
(𝑚)

I, . . . ,

√�̃�
(𝑠)

𝑚UV
(𝑚)

I, √𝜋
(𝑚𝑠)

UK
I] ,

A
𝑚

:= [𝐴
1𝑚

𝐴
2𝑚

𝐴
𝑑1𝑚

𝐴
𝑑2𝑚

𝐷
1𝑚

𝐷
2𝑚

] ,

C
𝑚

:= [

𝐶
𝑚

0 0
𝑛
𝑧
×2𝑛
𝑥

𝐷
3𝑚

0
0 𝐶
𝑚

0
𝑛
𝑧
×2𝑛
𝑥

0 𝐷
3𝑚

] ,

Θ̂
𝑚

:= diag {𝑋
−1

1𝑚
, 𝑋
−1

2𝑚
,Q, 𝛾
2I, 𝛾2I} , Q = diag {𝑄

1
, 𝑄
2
} ,

Λ := [

I
𝑛
𝑥

0 0
𝑛
𝑥
×2(𝑛
𝑥
+𝑛
𝑤
)

0 I
𝑛
𝑥

0
𝑛
𝑥
×2(𝑛
𝑥
+𝑛
𝑤
)

]

T

.

(31)

Now, by introducing a nonsingular matrix 𝐺
𝑚

∈ R𝑛𝑥×𝑛𝑥
and pre- and postmultiplying (30) by diag{I

2((𝑡
(𝑚)
+V
(𝑚)
+1)𝑛
𝑥
+𝑛
𝑧
)
,

𝐺
T
𝑚
, 𝐺

T
𝑚
, 𝑄
−1

1
, 𝑄
−1

2
, I
2(𝑛
𝑤
+𝑛
𝑥
)
} and its transpose the following

yields:

[

[

[

[

[

[

[

−X
(𝑚)

1𝑛
0 0 ϝ

(𝑠)

𝑚
A
𝑚

0
∗ −X

(𝑚)

2𝑛
0 ϝ
(𝑠)

𝑚
A
𝑚

0
∗ ∗ −I C

𝑚
0

∗ ∗ ∗ −Θ̃
𝑚

G
𝑚

∗ ∗ ∗ ∗ −R

]

]

]

]

]

]

]

< 0,

𝑚 ∈ I, 𝑛 ∈ I
(𝑚)

UK, 𝑠 = 1, . . . ,𝑀,

(32)

where

A
𝑚

:= [A
1𝑚

A
2𝑚

𝐴
𝑑1𝑚

𝑅
1

𝐴
𝑑2𝑚

𝑅
2

𝐷
1𝑚

𝐷
2𝑚

] ,

C
𝑚

:= [

C
𝑚

0 0
𝑛
𝑧
×2𝑛
𝑥

𝐷
3𝑚

0
0 C

𝑚
0
𝑛
𝑧
×2𝑛
𝑥

0 𝐷
3𝑚

] ,

G
𝑚

:= [

𝐺
𝑚

0 0
𝑛
𝑥
×2(𝑛
𝑥
+𝑛
𝑤
)

0 𝐺
𝑚

0
𝑛
𝑥
×2(𝑛
𝑥
+𝑛
𝑤
)

]

T

,

Θ̃
𝑚

:= diag {𝐺
T
𝑚
𝑋
−1

1𝑚
𝐺
𝑚
, 𝐺

T
𝑚
𝑋
−1

2𝑚
𝐺
𝑚
,R, 𝛾
2I, 𝛾2I} ,

R = diag {𝑅
1
, 𝑅
2
} ,

A
𝑙𝑚

:= 𝐴
𝑙𝑚

+ 𝐵
𝑙𝑚

𝐾
𝑚
, 𝐾
𝑚

:= 𝐾
𝑚
𝐺
𝑚
,

𝑅
𝑙

:= 𝑄
−1

𝑙
, 𝑙 = 1, 2,

C
𝑚

:= 𝐶
𝑚

+ 𝐵
3𝑚

𝐾
𝑚
,

(33)

andX
(𝑚)

1𝑛
,X(𝑚)
2𝑛

, and ϝ
(𝑠)

𝑚
are defined in (31).

It follows from

(𝑋
𝑙𝑚

− 𝐺
𝑚
)
T
𝑋
−1

𝑙𝑚
(𝑋
𝑙𝑚

− 𝐺
𝑚
) ≥ 0, 𝑙 = 1, 2, (34)

that

−𝐺
T
𝑚
𝑋
−1

𝑙𝑚
𝐺
𝑚

≤ −𝐺
𝑚

− 𝐺
T
𝑚

+ 𝑋
𝑙𝑚

, 𝑙 = 1, 2. (35)

Then, it is easy to see that (27) implies (32).
On the other hand, the condition in (27) implies that

−𝐺
𝑚

− 𝐺
T
𝑚

< 0, which means that 𝐺
𝑚
is nonsingular. Thus,

the controller gain can be constructed by (29). The proof is
thus completed.

Remark 7. Theorem 6 provides a sufficient condition on the
feasibility ofH

∞
state-feedback controller synthesis problem

for the 2D MJLSs with state-delays and defective mode
information. It is noted that theH

∞
state-feedback controller

synthesis problem for 2D discrete-time MJLSs has also been
considered in [40]. However, there still are some remarkable
differences between our results and those in [40]. Firstly, in
this paper, the state-delays were introduced in the system
(1), whereas the 2D delay-free MJLSs are considered in [40].
In addition, in Theorem 6, the exactly known, partially
unknown, and uncertain transition probabilities (TPs) have
been simultaneously incorporated into the TPM for 2D
MJLSs, while in [40], the TPs were assumed to be completely
known. It has been recognized that the scenario containing
time-delays and such defective TPs is more general and the
underlying MJLSs are thereby more practicable for engineer-
ing applications.

4. An Illustrative Example

In this section, we use a simulation example to demonstrate
the effectiveness of the proposed state-feedback controller
design method to two-dimensional (2D) Markovian jump
linear systems (MJLSs).
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Consider a 2D MJLS with state-delays in the form of (1)
with parameters as follows:

[

[

𝐴
11

𝐴
𝑑11

𝐵
11

𝐷
11

𝐴
21

𝐴
𝑑21

𝐵
21

𝐷
21

𝐶
1

𝐵
31

𝐷
31

]

]

=

[

[

[

[

[

[

[

[

−0.5 0 0 0.05 −0.5 0.2

0 0.5 −0.02 0 0.5 0.6

0.5 1 0.04 0 0.5 0.5

0 1 0 0.02 1 0.3

0.2 0.5 0.5 0.3

0.5 0.6 0.2 −0.5

]

]

]

]

]

]

]

]

,

[

[

𝐴
12

𝐴
𝑑12

𝐵
12

𝐷
12

𝐴
22

𝐴
𝑑22

𝐵
22

𝐷
22

𝐶
2

𝐵
32

𝐷
32

]

]

=

[

[

[

[

[

[

[

[

0.6 0 0 0.05 0.5 0.2

0.3 0.5 −0.02 0.04 0.5 0.6

0.5 0.5 0.04 0 0.5 0.5

0 0.8 0.04 0.02 1 0.3

0.2 0.5 0.5 0.3

0.5 0.6 0.2 −0.5

]

]

]

]

]

]

]

]

,

[

[

𝐴
13

𝐴
𝑑13

𝐵
13

𝐷
13

𝐴
23

𝐴
𝑑23

𝐵
23

𝐷
23

𝐶
3

𝐵
33

𝐷
33

]

]

=

[

[

[

[

[

[

[

[

0.5 0 0 0.05 0.5 0.2

0.3 0.3 −0.02 0.1 0.5 0.6

0.2 0.5 0.04 0 0.5 0.5

0 0.4 0.1 0.02 0.2 0.3

0.2 0.5 0.5 0.3

0.5 0.6 0.2 −0.5

]

]

]

]

]

]

]

]

,

[

[

𝐴
14

𝐴
𝑑14

𝐵
14

𝐷
14

𝐴
24

𝐴
𝑑24

𝐵
24

𝐷
24

𝐶
4

𝐵
34

𝐷
34

]

]

=

[

[

[

[

[

[

[

[

0.4 0 0 0.05 0.3 0.2

0.5 0.6 −0.02 0.1 0.5 0.6

0.6 0.5 0.04 0 0.5 0.5

0 0.5 0.1 0.02 0.4 0.3

0.2 0.5 0.5 0.3

0.5 0.6 0.2 −0.5

]

]

]

]

]

]

]

]

.

(36)

Four different cases for the transition probability matrix
(TPM) are given in Table 1, where the transition probabilities
(TPs) labeled with “̂” and “∼” represent the unknown and
uncertain elements, respectively. Specifically, Case 1, Case 2,
Case 3, andCase 4 stand for the completely knownTPs, defec-
tivemode information (including known, partially unknown,
and uncertain TPs), partially unknown TPs, and completely
unknown TPs, respectively.

Table 1: Four different TPMs.

Case 1: completely known TPM Case 2: defective TPM1

[

[

[

[

[

0.3 0.2 0.1 0.4

0.3 0.2 0.3 0.2

0.1 0.5 0.3 0.1

0.2 0.2 0.1 0.5

]

]

]

]

]

[

[

[

[

[

0.3 0.2 0.1 0.4

�̂�
21

�̂�
22

0.3 0.2

�̂�
31

�̃�
32

�̂�
33

�̃�
34

0.2 �̂�
42

�̂�
43

�̂�
44

]

]

]

]

]

Case 3: defective TPM2 Case 4: completely unknown TPM

[

[

[

[

[

0.3 0.2 0.1 0.4

�̂�
21

�̂�
22

0.3 0.2

�̂�
31

�̂�
32

�̂�
33

�̂�
34

0.2 �̂�
42

�̂�
43

�̂�
44

]

]

]

]

]

[

[

[

[

[

�̂�
11

�̂�
12

�̂�
13

�̂�
14

�̂�
21

�̂�
22

�̂�
23

�̂�
24

�̂�
31

�̂�
32

�̂�
33

�̂�
34

�̂�
41

�̂�
42

�̂�
43

�̂�
44

]

]

]

]

]

Table 2: Comparison of minimum H
∞

performance for different
TPMs.

TPMs Case 1 Case 2 Case 3 Case 4

𝛾min 0.9884 1.0415 1.0906 2.2398

For Case 2, it is assumed that the uncertain TPs comprise
four vertices Π

𝑠
, 𝑠 = 1, 2, 3, 4, where the third rows Π

𝑠(3)
, 𝑠 =

1, 2, 3, 4, are given by

Π
1(3)

= [�̂�
31

0.2 �̂�
33

0.4] ,

Π
2(3)

= [�̂�
31

0.5 �̂�
33

0.3] ,

Π
3(3)

= [�̂�
31

0.3 �̂�
33

0.1] ,

Π
4(3)

= [�̂�
31

0.1 �̂�
33

0.45] ,

(37)

and the other rows in the four vertices are givenwith the same
elements; that is,

Π
𝑠(1)

= [0.3 0.2 0.1 0.4] ,

Π
𝑠(2)

= [�̂�
21

�̂�
22

0.3 0.2] ,

Π
𝑠(4)

= [0.2 �̂�
42

�̂�
43

�̂�
44
] , 𝑠 = 1, 2, 3, 4.

(38)

The objective is to design a state-feedback controller of
the form (9) for the above system such that the 2D closed-
loop system is stochastically stable with anH

∞
performance

𝛾. By applying Theorem 6, a detailed comparison of the
obtained minimum H

∞
performance indices 𝛾min by the

state-feedback controller (9) with four TPM cases being
shown in Table 2. It is shown in Tables 1 and 2 that the lower
the level of defectiveness of the TPM is, the better the H

∞

performance can be obtained, which is effective to reduce
the design conservatism. Therefore, the introduction of the
uncertain TPs is meaningful.

Specifically, in the following, considering the four TPM
cases shown inTable 1 and by applyingTheorem6, the feasible
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Figure 1: One possible system mode evolution.

solution of 𝛾min = 1.0415 for the state-feedback controller is
obtained under Case 2 with controller gains given by

𝐾
1
= [−0.2467 −0.7888] ,

𝐾
2
= [−0.2125 −0.7064] ,

𝐾
3
= [−0.4563 −0.5998] ,

𝐾
4
= [−0.2015 −0.7041] .

(39)

The feasible solutions for the other three TPM cases in Table 1
are omitted for brevity.

In order to further illustrate the effectiveness of the
designed H

∞
state-feedback controllers, we present some

simulation results. Let the boundary conditions be

𝑥 (𝑡, 𝑖) = 𝑥 (𝑖, 𝑡) =

{

{

{

[−1 1.4]

T
, 0 ≤ 𝑖 ≤ 10,

[0 0]

T
, 𝑖 > 10,

(40)

where −4 ≤ 𝑡 ≤ 0, and choose the delays 𝑑
1

= 4 (vertical
direction), 𝑑

2
= 4 (horizontal direction), and disturbance

input 𝑤(𝑖, 𝑗) as

𝑤 (𝑖, 𝑗) = {

0.2, 0 ≤ 𝑖, 𝑗 ≤ 10,

0, otherwise.
(41)

With the previous obtained controllers under Case 2 in
Table 1, one possible realization of the Markovian jumping
mode is plotted in Figure 1. The state responses for the open-
loop and closed-loop systems are shown in Figures 2 and 3
and Figures 4 and 5, respectively, and Figures 6 and 7 are the
controlled output trajectories of the closed-loop system. It can
be clearly observed from the simulation curves that, despite
the defective TPs, the performance of the designed controller
is satisfactory.

5. Conclusions

This paper has addressed the problem of H
∞

control for
a class of two-dimensional (2D) Markovian jump linear

0
5

10
15

20

0
5

10
15

20

−0.5

0

0.5

1

1.5

2

2.5

St
at

e

×10
5

i = 1, 2,
. . .

j = 1, 2, . . .

Figure 2: State responses of the open-loop system: the 1st compo-
nent.
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Figure 5: State responses of the closed-loop system: the 2nd com-
ponent.

0
5

10
15

20

0
5

10
15

20

−0.1

0

0.1

0.2

0.3

0.4

C
on

tro
lle

d 
ou

tp
ut

i = 1, 2,
. . .

j =
1, 2, . . .

Figure 6: Responses of the controlled output 𝑧(𝑖, 𝑗) for the closed-
loop system: the 1st component.

0
5

10
15

20

0
5

10
15

20

−0.4

−0.2
0

0.2

0.4

0.6

0.8

1

C
on

tro
lle

d 
ou

tp
ut

i = 1, 2,
. . .

j =
1, 2, . . .

Figure 7: Responses of the controlled output 𝑧(𝑖, 𝑗) for the closed-
loop system: the 2nd component.

systems (MJLSs) with state-delays and defective mode infor-
mation. Such defective mode information simultaneously
includes the exactly known, partially unknown, and uncer-
tain transition probabilities, which contributes to the prac-
ticability of 2D MJLSs. By fully considering the properties
of the transition probability matrices, together with the
convexification of uncertain domains, an H

∞
performance

analysis criterion for the 2DFornasini-Marchesini local state-
space model has been firstly developed, and then via a lin-
earisation procedure, a unified framework has been proposed
for the state-feedback controller synthesis that guarantees the
stochastic stability of the closed-loop system with an H

∞

disturbance attenuation level. A simulation example has been
given to illustrate the effectiveness of the proposed method.
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