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This paper addresses the delay-dependent stability for systems with time-varying delay. First, by taking multi-integral terms into
consideration, newLyapunov-Krasovskii functional is defined. Second, in order to reduce the computational complexity of themain
results, reciprocally convex approach and some special transformations are introduced, and new delay-dependent stability criteria
are proposed, which are less conservative and have less decision variables than some previous results. Finally, two well-known
examples are given to illustrate the correctness and advantage of our theoretical results.

1. Introduction

Time-varying delays are often source of the degradation of
performance and the instability of practical control systems.
In the last decades, the stability of time-delay systems was
one of the hot issues in control theory, and many approaches
are proposed to study this topic, such as the properly chosen
LKFs [1–3], the delay-fraction approach [4–6], descriptor
model transformationmethod [7], integral inequality lemma
[8–10], free weighting matrices [11], and Jensen inequality
[12, 13].

Recently, in order to further reduce conservatism of the
stability results, some new methods were developed. In [14],
by constructing novel LKF with matrices that depended on
the time delays, stability conditions that depend on both the
upper and lower bounds on delay derivatives were obtained.
In [15], the convex analysismethodwas proposed, and in [16],
reciprocally convex approach was used to consider the stabil-
ity of time-varying delay systems. In [17], new LKF including
quadratic termsmultiplied by a higher degree scalar function
was proposed and this method was further improved in [18],
where the quadratic convex combination technique was used.
In [19], some triple-integral terms were introduced to LKF,

and in [20], some quadruple-integral terms were used in LKF
to discuss the stability of time-varying delay systems. These
methods reduced the conservatism of the stability results,
but more decision variables were introduced; that is, the
advantage in conservatism is obtained at the cost of high
computational complexity.The above analysis naturally leads
us to find possible solutions to this problem.

In this paper, we further discuss the stability of linear
systems with time-varying delay. The main contribution of
this paper lies in two aspects. First, a novel LKF which
contains somemulti-integral terms is introduced; second, the
derivative of LKF is estimated by using reciprocally convex
approach and some special transformations, which reduces
the conservatism as well as the computational burden of the
main results.

Throughout the paper, the used notations are standard.
R𝑛 denotes the 𝑛-dimensional Euclidean space, R𝑛×𝑚 is a set
of 𝑛 × 𝑚 real matrices, 𝐴𝑇 is the transpose of 𝐴, 𝑃 > 0 (𝑃 <

0) means symmetric positive (negative) definite matrix, ∗ in
the matrix denotes the symmetric element, 𝐼 is the identity
matrix of appropriate dimensions, and 𝑥

𝑡
= 𝑥(𝑡 + 𝜃), 𝜃 ∈

[−ℎ, 0]. Matrices, if their dimensions are not explicitly stated,
are assumed to be compatible for algebraic operations.
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2. Problem Formulations

Consider the following time-delay system:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − ℎ (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector; the initial condition 𝜙(𝑡) is
a continuously differentiable vector-valued function;𝐴,𝐴

1
∈

R𝑛×𝑛 are known real constant matrices; and ℎ(𝑡) is the time-
varying delay satisfying

0 ≤ ℎ (𝑡) ≤ ℎ, (2)

̇
ℎ (𝑡) ≤ 𝑑 ≤ ∞, (3)

where 0 < ℎ and 𝑑 ≥ 0 are constants.
To obtain the main results, the following lemmas are

needed.

Lemma 1 (see [16]). Let 𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑁
: R𝑚 → R have

positive values in an open subsetD of R𝑚.Then, the reciprocally
convex combination of 𝑓

𝑖
over D satisfies

min
{𝛼𝑖|𝛼𝑖>0,∑𝛼𝑖=1}

∑

𝑖

1

𝛼
𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) + max
𝑔𝑖𝑗(𝑡)

∑

𝑖 ̸= 𝑗

𝑔
𝑖𝑗
(𝑡) (4)

subject to

𝑔
𝑖,𝑗

: R𝑚 󳨀→ R, 𝑔
𝑖𝑗
(𝑡) = 𝑔

𝑗𝑖
(𝑡) ,

[

𝑓
𝑖
(𝑡) 𝑔

𝑖𝑗
(𝑡)

𝑔
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑡)

] ≥ 0.

(5)

Lemma 2 (see [18]). For any symmetric matrix 𝑋
0
, 𝑋
1
, 𝑋
2

and a vector 𝜉, let

𝑓 (𝛼) = 𝜉
𝑇

𝑋
0
𝜉 + 𝛼𝜉

𝑇

𝑋
1
𝜉 + 𝛼
2

𝜉
𝑇

𝑋
2
𝜉 (6)

with 𝑋
2
> 0. Then for all 𝛼 ∈ [𝛼

1
, 𝛼
2
], one has 𝑓(𝛼

1
) < 0 and

𝑓(𝛼
2
) < 0 ⇒ 𝑓(𝛼) < 0.

3. Main Results

In this section, the stability of system (1) is investigated.
Through constructing a novel LKF and estimating the deriva-
tive of it, new stability condition is provided.

Firstly, construct the following LKF candidate:

𝑉 (𝑥
𝑡
) =

5

∑

𝑖=1

𝑉
𝑖
(𝑥
𝑡
) , (7)

where

𝑉
1
(𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑥
𝑡
) = ∫

𝑡

𝑡−ℎ(𝑡)

[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑠)] 𝑄[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑠)]

𝑇

𝑑𝑠,

𝑉
3
(𝑥
𝑡
) = ∫

𝑡

𝑡−ℎ

[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑠)] 𝑅[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑠)]

𝑇

𝑑𝑠,

𝑉
4
(𝑥
𝑡
) = ℎ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

[𝑥
𝑇

(𝑠) 𝑥̇
𝑇

(𝑠)]𝑀[𝑥
𝑇

(𝑠) 𝑥̇
𝑇

(𝑠)]

𝑇

𝑑𝑠 𝑑𝜃,

𝑉
5
(𝑥
𝑡
) = 2∫

0

−ℎ

∫

0

𝜃

∫

𝑡

𝑡+𝜆

𝑥̇
𝑇

(𝑠) 𝑈𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜆 𝑑𝜃,

(8)

and matrices 𝑃, 𝑈 ∈ R𝑛×𝑛, 𝑄 = {𝑄
𝑖𝑗

(1 ≤ 𝑖 ≤ 𝑗 ≤ 2)}, 𝑅 =

{𝑅
𝑖𝑗

(1 ≤ 𝑖 ≤ 𝑗 ≤ 2)}, 𝑀 = {𝑀
𝑖𝑗

(1 ≤ 𝑖 ≤ 𝑗 ≤ 2)} ∈ R2𝑛×2𝑛 >
0.

Next, let us define a vector as

𝜒
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − ℎ (𝑡)) 𝑥
𝑇

(𝑡 − ℎ) ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑑𝑠 ∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑑𝑠] (9)

and 𝐴
𝑐

= [𝐴 𝐴
1

0 0 0], block entry matrices 𝑒
𝑖
(𝑖 =

1, 2, . . . , 5) (e.g., 𝑒𝑇
2

= [0 𝐼 0 0 0]).
Taking the time derivatives of 𝑉

𝑖
(𝑥
𝑡
) along the trajectory

of system (1) yields

𝑉̇
1
(𝑥
𝑡
) = 𝜒
𝑇

(𝑡) (𝑒
1
𝑃𝐴
𝑐
+ 𝐴
𝑇

𝑐
𝑃𝑒
𝑇

1
) 𝜒 (𝑡) , (10)

𝑉̇
2
(𝑥
𝑡
) = [𝑥

𝑇

(𝑡) 𝑥
𝑇

(𝑡)] 𝑄[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡)]

𝑇

− (1 −
̇

ℎ (𝑡)) [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − ℎ (𝑡))]

× 𝑄[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − ℎ (𝑡))]

𝑇

+ 2[𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − ℎ (𝑡))]

𝑇

× [𝑄
11
ℎ (𝑡) 𝑥 (𝑡) + 𝑄

12
∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠]

≤ 𝜒
𝑇

(𝑡) {[𝑒
1

𝑒
1
] 𝑄[𝑒
1

𝑒
1
]

𝑇

− (1 − 𝑑)

× [𝑒
1

𝑒
2
] 𝑄[𝑒
1

𝑒
2
]

𝑇

} 𝜒 (𝑡)

+ 2𝜒
𝑇

(𝑡) [𝐴
𝑇

𝑐
𝑒
0
]𝑄[ℎ (𝑡) 𝑒

1
𝑒
5
]

𝑇

𝜒 (𝑡) ,

𝑉̇
3
(𝑥
𝑡
) = [𝑥

𝑇

(𝑡) 𝑥
𝑇

(𝑡)] 𝑅[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡)]

𝑇

− [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − ℎ)] 𝑅[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − ℎ)]

𝑇
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+ 2[𝐴𝑥 (𝑡) + 𝐴
1
𝑥 (𝑡 − ℎ (𝑡))]

𝑇

× [𝑅
11
ℎ𝑥 (𝑡) + 𝑅

12
∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

= 𝜒
𝑇

(𝑡) {[𝑒
1

𝑒
1
] 𝑅[𝑒
1

𝑒
1
]

𝑇

− [𝑒
1

𝑒
3
] 𝑅[𝑒
1

𝑒
3
]

𝑇

} 𝜒 (𝑡)

+ 2𝜒
𝑇

(𝑡) [𝐴
𝑇

𝑐
𝑒
0
] 𝑅[ℎ𝑒

1
𝑒
4
+ 𝑒
5
]

𝑇

𝜒 (𝑡) .

(11)

To the time derivative of 𝑉
4
(𝑥
𝑡
), it can be calculated as

𝑉̇
4
(𝑥
𝑡
) = ℎ
2

[𝑥
𝑇

(𝑡) 𝑥̇
𝑇

(𝑡)]𝑀[𝑥
𝑇

(𝑡) 𝑥̇
𝑇

(𝑡)]

𝑇

− ℎ∫

𝑡

𝑡−ℎ

[𝑥
𝑇

(𝑠) 𝑥̇
𝑇

(𝑠)]𝑀[𝑥
𝑇

(𝑠) 𝑥̇
𝑇

(𝑠)]

𝑇

𝑑𝑠

= ℎ
2

[𝑥
𝑇

(𝑡) 𝑥̇
𝑇

(𝑡)]𝑀[𝑥
𝑇

(𝑡) 𝑥̇
𝑇

(𝑡)]

𝑇

− ℎ∫

𝑡

𝑡−ℎ(𝑡)

[𝑥
𝑇

(𝑠) 𝑥̇
𝑇

(𝑠)]𝑀[𝑥
𝑇

(𝑠) 𝑥̇
𝑇

(𝑠)]

𝑇

𝑑𝑠

− ℎ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

[𝑥
𝑇

(𝑠) 𝑥̇
𝑇

(𝑠)]𝑀[𝑥
𝑇

(𝑠) 𝑥̇
𝑇

(𝑠)]

𝑇

𝑑𝑠.

(12)

To reduce the conservatism of the main results, the last
two terms of 𝑉̇

4
(𝑥
𝑡
) were estimated by different methods.

In [11], the free matrices were introduced. Reference [13]
used convex combination by introducing an approxima-
tion on the difference between delay bounds. Reference
[16] adopted reciprocally convex approach, which achieved
performance behavior identical to approaches based on the
integral inequality lemma but with much less decision vari-
ables. Therefore, in the following, by introducing appropriate
matrix𝑁 ∈ R2𝑛×2𝑛 andusing Lemma 1,we can estimate 𝑉̇

4
(𝑥
𝑡
)

as

𝑉̇
4
(𝑥
𝑡
) ≤ ℎ
2

[𝑥
𝑇

(𝑡) 𝑥̇
𝑇

(𝑡)]𝑀[𝑥
𝑇

(𝑡) 𝑥̇
𝑇

(𝑡)]

𝑇

−

ℎ

ℎ (𝑡)

(∫

𝑡

𝑡−ℎ(𝑡)

[𝑥
𝑇

(𝑠) 𝑥̇
𝑇

(𝑠)] 𝑑𝑠)

𝑇

× 𝑀(∫

𝑡

𝑡−ℎ(𝑡)

[𝑥
𝑇

(𝑠) 𝑥̇
𝑇

(𝑠)] 𝑑𝑠)

−

ℎ

ℎ − ℎ (𝑡)

(∫

𝑡−ℎ(𝑡)

𝑡−ℎ

[𝑥
𝑇

(𝑠) 𝑥̇
𝑇

(𝑠)] 𝑑𝑠)

𝑇

× 𝑀(∫

𝑡−ℎ(𝑡)

𝑡−ℎ

[𝑥
𝑇

(𝑠) 𝑥̇
𝑇

(𝑠)] 𝑑𝑠)

≤ 𝜒
𝑇

(𝑡) {ℎ
2

[𝑒
1

𝐴
𝑇

𝑐
]𝑀[𝑒

1
𝐴
𝑇

𝑐
]

𝑇

− [𝑒
5

𝑒
1
− 𝑒
2
]𝑀[𝑒

5
𝑒
1
− 𝑒
2
]

𝑇

+ [𝑒
4

𝑒
2
− 𝑒
3
]𝑀[𝑒

4
𝑒
2
− 𝑒
3
]

𝑇

+2 [𝑒
5

𝑒
1
− 𝑒
2
]𝑁[𝑒
4

𝑒
2
− 𝑒
3
]

𝑇

} 𝜒 (𝑡) ,

(13)

where [
𝑀 𝑁

∗ 𝑀
] ≥ 0.

To the time derivative of 𝑉
5
(𝑥
𝑡
), on the first step, the

following transformation is used:

𝑉̇
5
(𝑥
𝑡
) = ℎ
2

𝑥̇
𝑇

(𝑡) 𝑈𝑥̇ (𝑡)

− 2∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑥̇
𝑇

(𝑠) 𝑈𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜃

= ℎ
2

𝜒
𝑇

(𝑡) 𝐴
𝑇

𝑐
𝑈𝐴
𝑐
𝜒 (𝑡)

− 2∫

𝑡

𝑡−ℎ(𝑡)

(𝑠 − 𝑡 + ℎ) 𝑥̇
𝑇

(𝑠) 𝑈𝑥̇ (𝑠) 𝑑𝑠

− 2∫

𝑡−ℎ(𝑡)

𝑡−ℎ

(𝑠 − 𝑡 + ℎ) 𝑥̇
𝑇

(𝑠) 𝑈𝑥̇ (𝑠) 𝑑𝑠,

(14)

and then, in order to reduce the conservatism of the main
result, the appropriatematrices𝐹

1
, 𝐹
2
∈ R𝑛×5𝑛 are introduced

to establish the relations between different vectors of 𝜒(𝑡), so
the last two terms in (14) can be estimated as

− 2∫

𝑡

𝑡−ℎ(𝑡)

(𝑠 − 𝑡 + ℎ) 𝑥̇
𝑇

(𝑠) 𝑈𝑥̇ (𝑠) 𝑑𝑠

≤ −2∫

𝑡

𝑡−ℎ(𝑡)

(𝑠 − 𝑡 + ℎ (𝑡)) 𝑥̇
𝑇

(𝑠) 𝑈𝑥̇ (𝑠) 𝑑𝑠

≤ 2∫

𝑡

𝑡−ℎ(𝑡)

(𝑠 − 𝑡 + ℎ (𝑡)) 𝜒
𝑇

(𝑡) 𝐹
𝑇

1
𝑈
−1

𝐹
1
𝜒 (𝑡)

+ 4𝜒
𝑇

(𝑡) 𝐹
𝑇

1
∫

𝑡

𝑡−ℎ(𝑡)

(𝑠 − 𝑡 + ℎ (𝑡)) 𝑥̇ (𝑠) 𝑑𝑠

= ℎ
2

(𝑡) 𝜒
𝑇

(𝑡) 𝐹
𝑇

1
𝑈
−1

𝐹
1
𝜒 (𝑡)

+ 4𝜒
𝑇

(𝑡) 𝐹
𝑇

1
[ℎ (𝑡) 𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠]

= ℎ
2

(𝑡) 𝜒
𝑇

(𝑡) 𝐹
𝑇

1
𝑈
−1

𝐹
1
𝜒 (𝑡)

+ 4𝜒
𝑇

(𝑡) 𝐹
𝑇

1
[ℎ (𝑡) 𝑒

1
− 𝑒
5
]
𝑇

𝜒 (𝑡) ,
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− 2∫

𝑡−ℎ(𝑡)

𝑡−ℎ

(𝑠 − 𝑡 + ℎ) 𝑥̇
𝑇

(𝑠) 𝑈𝑥̇ (𝑠) 𝑑𝑠

≤ 2∫

𝑡−ℎ(𝑡)

𝑡−ℎ

(𝑠 − 𝑡 + ℎ) 𝜒
𝑇

(𝑡) 𝐹
𝑇

2
𝑈
−1

𝐹
2
𝜒 (𝑡)

+ 4𝜒
𝑇

(𝑡) 𝐹
𝑇

2
∫

𝑡−ℎ(𝑡)

𝑡−ℎ

(𝑠 − 𝑡 + ℎ) 𝑥̇ (𝑠) 𝑑𝑠

= (ℎ − ℎ (𝑡))
2

𝜒
𝑇

(𝑡) 𝐹
𝑇

2
𝑈
−1

𝐹
2
𝜒 (𝑡)

+ 4𝜒
𝑇

(𝑡) 𝐹
𝑇

2
[ (ℎ − ℎ (𝑡)) 𝑥 (𝑡 − ℎ (𝑡))

−∫

𝑡−ℎ(𝑡)

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

= (ℎ − ℎ (𝑡))
2

𝜒
𝑇

(𝑡) 𝐹
𝑇

2
𝑈
−1

𝐹
2
𝜒 (𝑡)

+ 4𝜒
𝑇

(𝑡) 𝐹
𝑇

2
[(ℎ − ℎ (𝑡)) 𝑒

2
− 𝑒
4
]
𝑇

.

(15)

Therefore, combining (11)–(15), we can obtain

𝑉̇ (𝑥
𝑡
) ≤ 𝜒
𝑇

(𝑡) [Ξ
0
+ ℎ (𝑡) Ξ

1
+ Ξ
2
] 𝜒 (𝑡) , (16)

where

Ξ
0
= 𝑒
1
𝑃𝐴
𝑐
+ 𝐴
𝑇

𝑐
𝑃𝑒
𝑇

1
+ [𝑒
1

𝑒
1
] 𝑅[𝑒
1

𝑒
1
]

𝑇

− [𝑒
1

𝑒
3
] 𝑅[𝑒
1

𝑒
3
]

𝑇

+ [𝑒
1

𝑒
1
] 𝑄[𝑒
1

𝑒
1
]

𝑇

− (1 − 𝑑) [𝑒
1

𝑒
2
] 𝑄[𝑒
1

𝑒
2
]

𝑇

+ [𝐴
𝑇

𝑐
𝑒
0
] 𝑅[ℎ𝑒

1
𝑒
4
+ 𝑒
5
]

𝑇

+ [ℎ𝑒
1

𝑒
4
+ 𝑒
5
] 𝑅[𝐴

𝑇

𝑐
𝑒
0
]

𝑇

+ [𝐴
𝑇

𝑐
𝑒
0
]𝑄[𝑒
0

𝑒
5
]

𝑇

+ [𝑒
0

𝑒
5
] 𝑄[𝐴

𝑇

𝑐
𝑒
0
]

𝑇

+ ℎ
2

[𝑒
1

𝐴
𝑇

𝑐
]𝑀[𝑒

1
𝐴
𝑇

𝑐
]

𝑇

− [𝑒
5

𝑒
1
− 𝑒
2
]𝑀[𝑒

5
𝑒
1
− 𝑒
2
]

𝑇

+ [𝑒
4

𝑒
2
− 𝑒
3
]𝑀[𝑒

4
𝑒
2
− 𝑒
3
]

𝑇

+ [𝑒
5

𝑒
1
− 𝑒
2
]𝑁[𝑒
4

𝑒
2
− 𝑒
3
]

𝑇

+ [𝑒
4

𝑒
2
− 𝑒
3
]𝑁[𝑒
5

𝑒
1
− 𝑒
2
]

𝑇

+ ℎ
2

𝐴
𝑇

𝑐
𝑈𝐴
𝑐
− 4𝐹
𝑇

1
𝑒
𝑇

5
+ 4𝐹
𝑇

2
(ℎ𝑒
2
− 𝑒
4
)
𝑇

,

Ξ
1
= [𝐴
𝑇

𝑐
𝑒
0
]𝑄[𝑒
1

𝑒
0
]

𝑇

+ [𝑒
1

𝑒
0
] 𝑄[𝐴

𝑇

𝑐
𝑒
0
]

𝑇

+ 4𝐹
𝑇

1
𝑒
𝑇

1
− 4𝐹
𝑇

2
𝑒
𝑇

2
,

Ξ
2
= ℎ
2

(𝑡) 𝐹
𝑇

1
𝑈
−1

𝐹
1
+ (ℎ − ℎ (𝑡))

2

𝐹
𝑇

2
𝑈
−1

𝐹
2
.

(17)

It can be found that the function 𝑉̇(𝑥
𝑡
) = 𝜒

𝑇

(𝑡)[Ξ
0
+

ℎ(𝑡)Ξ
1
+ Ξ
2
]𝜒(𝑡) is a quadratic function on the scalar ℎ(𝑡)

and the coefficient of second order is 𝜒
𝑇

(𝑡)[𝐹
𝑇

1
𝑈
−1

𝐹
1

+

𝐹
𝑇

2
𝑈
−1

𝐹
2
]𝜒(𝑡) ≥ 0 since 𝑈 > 0, which means the 𝑉̇(𝑥

𝑡
)

is a convex quadratic function for ℎ(𝑡). Therefore, apply
Lemma 2, if the following holds:

[Ξ
0
+ ℎ (𝑡) Ξ

1
+ Ξ
2
]
ℎ(𝑡)=0

< 0,

[Ξ
0
+ ℎ (𝑡) Ξ

1
+ Ξ
2
]
ℎ(𝑡)=ℎ

< 0;

(18)

then we have

Ξ
0
+ ℎ (𝑡) Ξ

1
+ Ξ
2
< 0 ∀ℎ (𝑡) ∈ [0, ℎ] , (19)

which implies 𝑉̇(𝑥
𝑡
) < 0, which means that system (1) is

asymptotically stable. So, we give the main theorem of this
paper as follows.

Theorem 3. Given scalars 0 < ℎ and 𝜇 ≥ 0, system (1) with
a time-varying delay satisfying (2) and (3) is asymptotically
stable, if there exist 𝑛 × 𝑛 matrices 𝑃 > 0, 𝑈 > 0; 2𝑛 × 2𝑛

matrices 𝑄 > 0, 𝑅 > 0, 𝑀 > 0; 2𝑛 × 2𝑛matrix𝑁; and 𝑛 × 5𝑛

matrices 𝐹
1
, 𝐹
2
such that the following LMIs hold:

[

𝑀 𝑁

∗ 𝑀
] ≥ 0,

[
Ξ
0

ℎ𝐹
𝑇

2

∗ −𝑈

] < 0,

[
Ξ
0
+ ℎΞ
1

ℎ𝐹
𝑇

1

∗ −𝑈

] < 0.

(20)

Remark 4. In (14), the term −2 ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑥̇
𝑇

(𝑠)𝑈𝑥̇(𝑠)𝑑𝑠 𝑑𝜃 also
can be estimated by Jesen inequality as

− 2∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑥̇
𝑇

(𝑠) 𝑈𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜃

≤ −

4

ℎ
2
[ℎ𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠]

𝑇

× 𝑈[ℎ𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠] ,

(21)

but in this case, only relations between vectors 𝑥(𝑡),
∫

𝑡−ℎ(𝑡)

𝑡−ℎ

𝑥(𝑠)𝑑𝑠, ∫

𝑡

𝑡−ℎ(𝑡)

𝑥(𝑠)𝑑𝑠 were established; the correspond-
ing result would be conservative.Therefore, we converted the
term to a quadratic term multiplied by a scalar function and
used free matrices 𝐹

1
, 𝐹
2
to establish the relations between

𝑥(𝑡), 𝑥(𝑡 − ℎ(𝑡)), 𝑥(𝑡 − ℎ), ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

𝑥(𝑠)𝑑𝑠, and ∫

𝑡

𝑡−ℎ(𝑡)

𝑥(𝑠)𝑑𝑠,
which reduced the conservatism of the stability result.

Remark 5. In this paper, it can be seen that LKFs in [5, 11,
13, 16] are just reduced forms of LKF (7), so Theorem 3 is
less conservative than those stability conditions. Moreover,
the reciprocally convex approach and the LKF transformation
in (14) are used to estimate the derivative of the LKF in this
paper. Those are the main reasons why Theorem 3 is less
conservative and has less decision variables.
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Table 1: Admissible upper bound ℎ for various 𝜇 in Example 7.

𝜇 0.0 0.05 0.1 0.5 3.0
Wu et al. [7] 4.47 3.98 3.60 2.00 —
He et al. [11] 4.47 3.98 3.60 2.04 —
Park and Ko [15] 4.47 4.01 3.66 2.33 1.86
Qian et al. [2] 4.60 4.12 3.70 2.33 1.86
Park et al. [16] 4.66 4.17 3.76 2.12 —
Kim [18] 4.97 4.35 3.86 2.33 1.86
Theorem 3 4.91 4.30 3.82 2.33 1.86

When the information of the time derivative of delay is
unknown, just let 𝑄 = 0 in LKF (7); we can get the following
result fromTheorem 3.

Corollary 6. Given a scalar 0 < ℎ, if there exist 𝑛× 𝑛matrices
𝑃 > 0, 𝑈 > 0; 2𝑛 × 2𝑛 matrices 𝑅 > 0, 𝑀 > 0; 2𝑛 × 2𝑛

matrix𝑁; and 𝑛×5𝑛matrices 𝐹
1
, 𝐹
2
such that LMIs (20)with

𝑄 = 0 are feasible, then system (1) with a time-varying delay
satisfying (2) is asymptotically stable.

4. Numerical Examples

In this section, the effectiveness of the obtained results in this
paper is shown by two well-known numerical examples.

Example 7. Consider the linear system (1) with

𝐴 = [

−2 0

0 −0.9
] , 𝐴

1
= [

−1 0

−1 −1
] . (22)

The purpose of this example is to compare the admissible
upper bounds ℎ which guarantee the asymptotic stability of
the above system by different methods. Using the method in
[12], when 𝑑 = 0.5, 𝑑 = 0.9, and 𝑑 > 1, the upper bounds
for the time delay are ℎ = 2.08, ℎ = 1.66, and ℎ = 1.66; ours
are ℎ = 2.33, ℎ = 1.87, and ℎ = 1.86. Table 1 also lists the
comparison of our results with some recent ones in [2, 7, 11,
15, 16, 18]. From Table 1, it can be seen that our results are less
conservative.

Moreover, the maximum upper bounds ℎ obtained by
Theorem 3 are almost equal to those in [18], but the number
of variables is 49𝑛

2

+ 5𝑛 in [18], and ours is just 21𝑛
2

+ 4𝑛.
That is, the variables in [18] are around 2.2 times more than
those in Theorem 3. Therefore, from both mathematical and
practical points of view, our condition is more desirable than
that in [18] even for some cases when the two methods give
almost the same upper bound on the delay.

Example 8. Consider the linear system (1) with

𝐴 = [

0 1

−1 −1
] , 𝐴

1
= [

0 0

0 −1
] . (23)

This example is used inmany recent papers, such as [7, 15,
18]. For various 𝜇, the maximum upper bounds on delay ℎ by
different methods are listed in Table 2. It can be seen that the
result obtained in this paper is less conservative.

Table 2: Admissible upper bound ℎ for various 𝜇 in Example 8.

𝜇 0.0 0.05 0.1 0.5 3.0
Wu et al. [7] 1.82 1.76 1.71 1.38 —
Park and Ko [15] 1.99 1.81 1.75 1.61 1.60
Kim [18] 2.52 2.17 2.02 1.62 1.60
Theorem 3 2.52 2.16 2.02 1.61 1.60

5. Conclusions

In this paper, the stability of time-varying delay systems has
been discussed. Through constructing a novel LKF which
contains multi-integral terms and using some new analy-
sis methods, some delay-dependent stability criteria were
derived. Compared with some previous stability conditions,
the obtainedmain results in this paper have less conservatism
and less decision variables. In the end, numerical examples
were given to show the superiority of the obtained criteria and
their improvements over the existing results.
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