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This paper deals with a robust𝐻
∞
deconvolution filtering problem for discrete-time nonlinear stochastic systems with randomly

occurring sensor delays. The delayed measurements are assumed to occur in a random way characterized by a random variable
sequence following the Bernoulli distribution with time-varying probability. The purpose is to design an𝐻

∞
deconvolution filter

such that, for all the admissible randomly occurring sensor delays, nonlinear disturbances, and external noises, the input signal
distorted by the transmission channel could be recovered to a specified extent. By utilizing the constructed Lyapunov functional
relying on the time-varying probability parameters, the desired sufficient criteria are derived.The proposed𝐻

∞
deconvolution filter

parameters include not only the fixed gains obtained by solving a convex optimization problem but also the onlinemeasurable time-
varying probability. When the time-varying sensor delays occur randomly with a time-varying probability sequence, the proposed
gain-scheduled filtering algorithm is very effective. The obtained design algorithm is finally verified in the light of simulation
examples.

1. Introduction

Filtering technology is extensively used in many domains,
and an important task of filtering is to effectively restore the
original signal by removing the distortion from the received
signal. The deconvolution method is very useful in filtering
field and has been made use of by some kinds of filters,
such as self-tuning deconvolution filter and Wiener inverse
filter. However, the design process of the deconvolution
filter is always difficult because the delivery channels are
frequently corrupted by some disturbances, such as nonlinear
disturbances, external noises, and sensor delays. Therefore
it is very interesting and important to solve the problem
encountered in the design procedure of deconvolution filters.
In the past decades, considerable attention has been paid to
the analysis anddesign ofmany kinds of deconvolution filters,

and some results have been published. For more details, we
refer the readers to [1–3] and the references therein.

As is well known, in some practical fields, such as engi-
neering, biological, medical, and economic systems, and
health community, the sensor data is occasionally delayed
before they arrive at their respective destinations [4–6]. The
occurrence of sensor delay may mainly be caused by the
limitations, such as the limited bandwidth of the communica-
tion channel, intermittent sensor failure in the measurement,
random network congestion, and accidental loss of some
collected data in a very noisy environment [6–9]. However,
the majority of deconvolution filtering algorithms are based
on the measurement outputs without delays. In such case,
the traditional filter may fail to work. Hence, in the past
decades the filtering problem for the systems with sensor
delays has been attracting considerable research interests; see,
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for example, [5, 7, 10–12]. Owing to the uncertainty that is
widespread in the field of practical engineering, stochastic
model has gained more and more attention in many fields,
such as physics, economic systems, geomorphology, and gene
regulatory networks, and a large number of literatures have
been published; see, for example, [4, 13–18].

It should be pointed out that, so far, the Bernoulli
distribution has been employed to model some randomly
occurring phenomena, such as randomly occurring miss-
ing measurements [10] and randomly occurring saturation
[7]. This model with time-invariant probability has become
an effective model of sensor delays. Nevertheless, in the
engineering environment, such as industrial automation,
unmanned vehicles, real-time distributed decision-making
and multiplexed data communication networks [5], and an
asynchronous time-division-multiplexed network [6], the
sensor delays often occur in a random way and satisfy a
time-varying probability distribution. At the same time, the
classical filters with fixed gains cannot adapt to the actual
cases. Therefore, there is an urgent need to develop new
filtering approaches for the systems with randomly occurring
sensor delays (ROSDs), and some efforts have been made in
this regard so far; see, for example, [6, 7]. And yet, up to
now, to the best of authors’ knowledge, the gain-scheduled
𝐻
∞

deconvolution filtering is still open for discrete-time
stochastic systems with randomly occurring sensor delays.
It is, therefore, in this paper, we aim to develop an effective
gain-scheduled deconvolution filtering algorithm for the
discrete-time stochastic systems with ROSDs, which is of
both theoretical importance and practical significance.

The main contribution of this paper is mainly triplex:
(1) for the randomly occurring sensor delay which is one
kind of the information incomplete, we exploit a stochastic
variable sequence satisfying time-varying Bernoulli distri-
butions to represent the situation of the delayed measure-
ment; (2) a time-varying Lyapunov functional dependent
on the distribution probability has been developed and
applied to improve the performance of the 𝐻

∞
decon-

volution filters; (3) a new filtering problem with a gain-
scheduling approach is addressed for a class of discrete-time
nonlinear stochastic systemswith randomly occurring sensor
delays. It is worth mentioning that, since the considered
system involves the probabilistic sensor delays, the sector-
like bounded nonlinearity, and the multiplicative noises, it
is comprehensive and reasonable. Thanks to the proposed
time-varying 𝐻

∞
deconvolution filter which is designed

by employing the gain-scheduling technique, the proposed
filtering algorithm can exactly estimate the original input. On
account of this merit, the proposed design scheme is more
effective and practical.

The rest of this paper is organized as follows. In Section 2,
we construct a gain-scheduled deconvolution filter for a class
of discrete-time stochastic systems with randomly occurring
sensor delays, in which the desired filter gains contain two
parts, the fixed gain and time-varying onewhich is dependent
upon the time-varying probability. In Section 3, a sufficient
condition is derived to guarantee the exponential stability
of the augmented system, and the proposed filter is given.
By means of constructing Lyapunov functional, we make an
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Figure 1: The deconvolution filtering system.

assay of the stability for the augmented systems.With the help
of the proposed probability-dependent Lyapunov functional,
we derived simultaneously another condition indicating the
robust ability of the deconvolution filter. A mathematical
technique is used to transform the infinite number of inequal-
ities into a finite form. The filter gains are derived from
a gain-scheduling approach by resorting to solve a convex
optimization problem. In Section 4, an numerical example is
presented to demonstrate the reasonable structure and high
reliability of the proposed filter. The last section, Section 5,
sums up all the arguments in this paper.

Notation. In this paper, R𝑛, R𝑛×𝑚, and I+ denote, respec-
tively, the 𝑛-dimensional Euclidean space and the set of all
𝑛 × 𝑚 real matrices, the set of all positive integers. | ⋅ |
refers to the Euclidean norm in R𝑛. 𝐼 denotes the identity
matrix of compatible dimension. The notation 𝑋 ≥ 𝑌 (resp.,
𝑋 > 𝑌), where 𝑋 and 𝑌 are symmetric matrices, means
that 𝑋 − 𝑌 is positive semidefinite (resp., positive definite).
For a matrix 𝑀, 𝑀𝑇 and 𝑀−1 represent its transpose and
inverse, respectively. The shorthand diag{𝑀

1
, 𝑀
2
, . . . ,𝑀

𝑛
}

denotes a block diagonal matrix with diagonal blocks being
the matrices𝑀

1
, 𝑀
2
, . . . ,𝑀

𝑛
. In symmetric block matrices,

the symbol ∗ is used as an ellipsis for terms induced by
symmetry. Matrices, if they are not explicitly stated, are
assumed to have compatible dimensions.

2. Problem Formulation

In this paper, the considered stochastic deconvolution filter-
ing system structure is shown in Figure 1. In the system, the
input signal 𝑢(𝑡) is transmitted through the channel Σ

𝑐
:

(Σ
𝑐
) : 𝑥
𝑐
(𝑘 + 1) = 𝐴

𝑐
𝑥
𝑐
(𝑘)

+ 𝐵
𝑐
𝑢 (𝑘) + 𝑁

𝑐
𝑓 (𝑧 (𝑘))

+ 𝑀
𝑐
𝑥
𝑐
(𝑘) 𝜔 (𝑘) ,

(1)

𝑦 (𝑘) = 𝐶
𝑐
𝑥
𝑐
(𝑘) , 𝑥

𝑐
(0) = 𝑥

0
, (2)

where 𝑥
𝑐
(𝑘) ∈ R𝑛 is the state, 𝑢(𝑘) ∈ 𝐿

2
[0,∞) is the

exogenous input signal,𝑦(𝑘) is the actual output, and 𝑥
0
is the

initial state. 𝜔(𝑘) is a one-dimensional Gaussian white noise
sequence satisfying E{𝜔(𝑘)} = 0 and E{𝜔2(𝑘)} = 𝜎

2, and
𝑧(𝑘) = 𝑍𝑥

𝑐
(𝑘). For the convenience, 𝑢(𝑘), 𝑦(𝑘), and 𝜔(𝑘) are

all assumed as scalars. 𝐴
𝑐
, 𝐵
𝑐
, 𝐶
𝑐
,𝑀
𝑐
,𝑁
𝑐
, and 𝑍 are constant

matrices with appropriate dimensions.
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Remark 1. The deconvolution filtering problem involves the
estimation of the signal inputted to a communication channel
where the output measurements are disturbed by the channel
noise.The channel can be represented by a dynamical system,
such as ship roll stabilization systems. In the ideal condition,
the input signal would be sent perfectly through the transmis-
sion channel without any external influences; however, in the
real-world case, from the point of engineering application,
most of the communication channels are of limited capacity
and suffered from some uncertainties in transmission process
such as large environmental noise, channel congestion, and
intermittent changes of the signal intensity, and therefore,
a few issues have inevitably emerged, for example, channel-
induced time delay, the nonlinearity disturbances, channel
fading, and so on. In order to describe the channel model
∑
𝑐
closer in nature, nonlinearity disturbances and stochastic

noises are both taken into consideration in the channelmodel
(1) in this paper.

The vector-valued nonlinear disturbance 𝑓(⋅) satisfies the
following sector-bounded condition with 𝑓(0) = 0:

[𝑓(𝑧 (𝑘)) − 𝐹
1
𝑧 (𝑘)]
𝑇

[𝑓(𝑧 (𝑘)) − 𝐹
2
𝑧(𝑘)] ≤ 0, (3)

where 𝐹
1
and 𝐹

2
are constant real matrices of appropriate

dimensions and 𝐹 = 𝐹
2
− 𝐹
1
is a symmetric positive definite

matrix. It is customary that such nonlinear function 𝑓(⋅)
is called to belong to the sector [𝐹

1
𝐹
2
]. In this case, the

nonlinear function 𝑓(𝑧(𝑘)) can be decomposed into a linear
part and a nonlinear part as

𝑓 (𝑧 (𝑘)) = 𝐹
1
𝑧 (𝑘) + 𝑓

𝑠
(𝑧 (𝑘)) , (4)

and it is easy to follow from (3) that

𝑓
𝑇

𝑠
(𝑧 (𝑘)) (𝑓

𝑠
(𝑧 (𝑘)) − 𝐹𝑧 (𝑘)) ≤ 0. (5)

The measurement outputs
←󳨀󳨀󳨀
𝑦(𝑘) with sensor delays are

described by

←󳨀󳨀󳨀
𝑦(𝑘) = (1 − 𝜛 (𝑘))𝑦 (𝑘) + 𝜛 (𝑘) 𝑦 (𝑘 − 𝑑) , (6)

where 𝑑 ∈ I+ is the sensor delay and 𝜛(𝑘) ∈ R is a random
white sequence characterizing the probabilistic sensor delays
and obeys the following Bernoulli distribution with time-
varying probability:

Prob {𝜛 (𝑘) = 1} = E {𝜛 (𝑘)} = 𝑝 (𝑘) ,

Prob {𝜛 (𝑘) = 0}

= 1 − E {𝜛 (𝑘)} = 1 − 𝑝 (𝑘) ,

(7)

where 𝑝(𝑘) is a time-varying positive scalar sequence that
belongs to [𝑝

1
𝑝
2
] ⊆ [0 1] with the constants 𝑝

1
and 𝑝

2

being the lower and upper bounds of 𝑝(𝑘).

Remark 2. The sensor delays may randomly occur due to
some environment reasons, and a Bernoulli distribution
model has been introduced in [6, 7] to describe such

random phenomenon. However, the Bernoulli distributions
in this literature are assumed to be time invariant, which is
apparently conservative to deal with the time-varying cases
of randomly occurred sensor delays for time-varying systems.
In this paper, we will utilize a stochastic variable sequence in
(7) satisfying time-varying Bernoulli distributions to express
the randomly intermittent phenomenon of the discussed
sensor delays.

In order to recover the source signal 𝑢(𝑘), the following
deconvolution filter structure is considered in this paper:

Σ
𝑓
: 𝑥
𝑓
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑓
(𝑘) + 𝐵

𝑓

←󳨀󳨀󳨀
𝑦 (𝑘), (8)

𝑢̂ (𝑘) = 𝐶
𝑓
𝑥
𝑓
(𝑘) + 𝐷

𝑓

←󳨀󳨀󳨀
𝑦(𝑘), (9)

where 𝑥
𝑓
(𝑘) ∈ R𝑛 is the filter state and the matrices 𝐴

𝑓
, 𝐵
𝑓
,

𝐶
𝑓
, and 𝐷

𝑓
are filter parameters to be determined and have

the following forms:

𝐴
𝑓
= 𝐴
𝑓0
+ 𝑝 (𝑘)𝐴

𝑓𝑝
, 𝐵

𝑓
= 𝐵
𝑓0
+ 𝑝 (𝑘) 𝐵

𝑓𝑝
,

𝐶
𝑓
= 𝐶
𝑓0
+ 𝑝 (𝑘) 𝐶

𝑓𝑝
, 𝐷

𝑓
= 𝐷
𝑓0
+ 𝑝 (𝑘)𝐷

𝑓𝑝
,

(10)

where 𝐴
𝑓0
, 𝐴
𝑓𝑝
, 𝐵
𝑓0
, 𝐵
𝑓𝑝
, 𝐶
𝑓0
, 𝐶
𝑓𝑝
, 𝐷
𝑓0
, and 𝐷

𝑓𝑝
are

the constant filter gains to be designed and 𝑝(𝑘) is the
time-varying probability that can be estimated/measured via
statistical tests in real time.

Remark 3. Deconvolution filter is a restoration algorithm to
remove awavelet by utilizing a reverse process of convolution.
Comparing with conventional filters, it not only can estimate
a signal embedded in noise but also can remove the effect
of any distortion in the channel systems. Furthermore, it
can deal with unknown boundary problem and spatially
varying blurs. It is worth mentioning that, different from
many conventional deconvolution filters with only constant
parameters, the proposed filter gains in (10) include two kinds
of filter gains: the fixed parameters 𝐴

𝑓0
, 𝐴
𝑓𝑝
, 𝐵
𝑓0
, 𝐵
𝑓𝑝
, 𝐶
𝑓0
,

𝐶
𝑓𝑝
, 𝐷
𝑓0
, and 𝐷

𝑓𝑝
and the time-varying parameter 𝑝(𝑘).

The designed filter can be scheduled with the time-varying
probability, which is able to adapt to changing circumstances
naturally. It can be divided into the following several steps.
Firstly, compute the constant gains 𝐴

𝑓0
, 𝐴
𝑓𝑝
, 𝐵
𝑓0
, 𝐵
𝑓𝑝
, 𝐶
𝑓0
,

𝐶
𝑓𝑝
, 𝐷
𝑓0
, and 𝐷

𝑓𝑝
in terms of the main results that will

be developed in this paper. Secondly, estimate/measure the
time-varying probability 𝑝(𝑘) by statistical tests in real time.
Lastly, the filter gains can be derived from (10). Obviously,
the gain-scheduled filter is reasonable and the conservatism
of which can be reduced since more information about
the sensor delay phenomenon is utilized. Note that gain-
scheduled technique filtering and control problems have
become a hot topic and have been intensively researched in
the past decades; see, for example, [19–23].
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By setting 𝜉(𝑘) = [𝑥𝑇
𝑐
(𝑘) 𝑥

𝑇

𝑓
(𝑘)]
𝑇 and the signal error as

𝑒(𝑘) = 𝑢(𝑘) − 𝑢̂(𝑘), the dynamics of the filtering process can
be derived from (1)–(6) and (8)-(9) as follows:

𝜉 (𝑘 + 1) = 𝐴 (𝑝 (𝑘)) 𝜉 (𝑘)

+ 𝐷 (𝑝 (𝑘)) 𝜉 (𝑘 − 𝑑) + 𝐵𝑢 (𝑘)

+ 𝑁𝑓 (𝑧 (𝑘)) + 𝑀𝐽𝜉 (𝑘) 𝜔 (𝑘)

+ (𝑝 (𝑘) − 𝜛 (𝑘))𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘)

+ (𝜛 (𝑘) − 𝑝 (𝑘))𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘 − 𝑑) ,

(11)

𝑒 (𝑘) = − [𝐸
𝑐𝑑𝑓
(𝑝 (𝑘))+(𝑝 (𝑘)−𝜛 (𝑘)) 𝐸

𝑑𝑓
(𝑝 (𝑘))] 𝜉 (𝑘)

− [𝑝 (𝑘) 𝐸
𝑑𝑓
(𝑝 (𝑘)) + (𝜛 (𝑘) − 𝑝 (𝑘)) 𝐸

𝑑𝑓
(𝑝 (𝑘))]

× 𝜉 (𝑘 − 𝑑) + 𝑢 (𝑘) ,

(12)

where

𝐴 (𝑝 (𝑘)) = [
𝐴
𝑐

0

(1 − 𝑝 (𝑘)) 𝐵
𝑓
𝐶
𝑐
𝐴
𝑓

] ,

𝐵 = [
𝐵
𝑐

0
] , 𝑀 = [

𝑀
𝑐

0
] ,

𝐷 (𝑝 (𝑘)) = [
0 0

𝑝 (𝑘) 𝐵
𝑓
𝐶
𝑐
0
] ,

𝐾 (𝑝 (𝑘)) = [
0

𝐵
𝑓
𝐶
𝑐

] , 𝑁 = [
𝑁
𝑐

0
] ,

𝐸
𝑐𝑑𝑓
(𝑝 (𝑘)) = [(1 − 𝑝 (𝑘))𝐷

𝑓
𝐶
𝑐
𝐶
𝑓
] ,

𝐸
𝑑𝑓
(𝑝 (𝑘)) = [𝐷𝑓𝐶𝑐 0] , 𝐽 = [𝐼 0] .

(13)

Definition 4. The augmented filtering system (11) is said to be
exponentially mean-square stable if, with 𝑢(𝑘) ≡ 0, there exist
constant 𝛼 > 0 and 𝜏 ∈ (0, 1) such that

E {
󵄩󵄩󵄩󵄩𝜉(𝑘)

󵄩󵄩󵄩󵄩

2

} ≤ 𝛼𝜏
𝑘 sup
−𝑑≤𝑖≤0

E {
󵄩󵄩󵄩󵄩𝜉 (𝑖)

󵄩󵄩󵄩󵄩

2

} , 𝑘 ∈ I
+

. (14)

Definition 5. Given a scalar 𝛾 > 0, the dynamics of the
augmented systems (11)-(12) are said to be stochastically
stable with disturbance attenuation level 𝛾 if it is exponen-
tially mean-square stable, and under zero initial condition,
‖𝑒(𝑘)‖E𝑙2

< 𝛾‖𝑢(𝑘)‖
𝑙2
holds for all nonzero 𝑢(𝑘) ∈ 𝑙

2
[0,∞),

where

‖𝑒(𝑘)‖E𝑙2
:= (E{

∞

∑

𝑘=1

|𝑒 (𝑘)|
2

})

1/2

. (15)

This paper aims to design a 𝐻
∞

deconvolution filter to
recover a input signal 𝑢(𝑘) transmitted through a noised
channel (1)-(2) such that the closed-loop systems (11)-(12) are
stochastically stable with disturbance attenuation level 𝛾.

3. Main Results

In the proof procedure of theorems presented in this paper,
we will use the following lemma.

Lemma 6 ((Schur complement), see [24]). Given constant
matrices Σ

1
, Σ
2
, and Σ

3
where Σ

1
= Σ
𝑇

1
and 0 < Σ

2
= Σ
𝑇

2
,

then Σ
1
− Σ
𝑇

3
Σ
−1

2
Σ
3
≥ 0 if and only if

[

[

Σ
1
Σ
𝑇

3

Σ
3
Σ
2

]

]

≥ 0 or [

[

Σ
2
Σ
3

Σ
𝑇

3
Σ
1

]

]

≥ 0. (16)

In the following theorem, a sufficient condition is derived
for the augmented filtering dynamics (11)-(12) with 𝑢(𝑘) ≡
0 to ensure the exponential mean-square stability of the
considered dynamics.

Theorem 7. Consider the augmented filtering system (11) with
𝑢(𝑘) ≡ 0. If there exist positive-definite matrix 𝑄

𝑑
> 0,

𝑄(𝑝(𝑘)) > 0, and matrix 𝑆 such that the following matrix
inequalities

[
[
[
[
[
[
[

[

𝑄
𝑑
− 𝑄 (𝑝 (𝑘)) ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝑑

∗ ∗ ∗ ∗

𝐹𝑍𝐽 0 −2𝐼 ∗ ∗ ∗

𝜎
2

𝑆
𝑇

𝑀𝐽 0 0 −𝜎
2

Γ̃ (𝑘) ∗ ∗

𝜃 (𝑘) 𝑆
𝑇

𝐾(𝑝 (𝑘)) 𝐽 −𝜃 (𝑘) 𝑆
𝑇

𝐾(𝑝 (𝑘)) 𝐽 0 0 −𝜃 (𝑘) Γ̃ (𝑘) ∗

𝑆
𝑇

(𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽) 𝑆

𝑇

𝐷(𝑝 (𝑘)) 𝑆
𝑇

𝑁 0 0 −Γ̃ (𝑘)

]
]
]
]
]
]
]

]

< 0 (17)

hold, where
Γ̃ (𝑘) = −𝑄 (𝑝 (𝑘 + 1)) + 𝑆 + 𝑆

𝑇

,

𝜃 (𝑘) = 𝑝 (𝑘) (1 − 𝑝 (𝑘)) ,

(18)

then the augmented dynamics (11) is exponentially stable in
mean square sense.

Proof. Now, we will show the exponential mean-square sta-
bility of the augmented system (11). To this end, define the
Lyapunov functional as

𝑉 (𝑘) := 𝜉
𝑇

(𝑘) 𝑄 (𝑝 (𝑘)) 𝜉 (𝑘) +

𝑘−1

∑

𝑠=𝑘−𝑑

𝜉
𝑇

(𝑠) 𝑄
𝑑
𝜉 (𝑠) , (19)
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where 𝑄(𝑝(𝑘)) is a time-varying positive definite matrix
sequence dependent on the time-varying probability 𝑝(𝑘):

E {Δ𝑉 (𝑘)}

= E {𝜉
𝑇

(𝑘 + 1)𝑄 (𝑝 (𝑘 + 1))

× 𝜉 (𝑘 + 1) − 𝜉
𝑇

(𝑘) 𝑄 (𝑝 (𝑘)) 𝜉 (𝑘)

+ 𝜉
𝑇

(𝑘) 𝑄
𝑑
𝜉 (𝑘) − 𝜉

𝑇

(𝑘 − 𝑑)

×𝑄
𝑑
𝜉 (𝑘 − 𝑑)} .

(20)

Noting that E{𝜛(𝑘)−𝑝(𝑘)} = 0, E{(𝜛(𝑘)−𝑝(𝑘))2} = 𝑝(𝑘)(1−
𝑝(𝑘)), E{𝜔(𝑘)} = 0, and E{𝜔2(𝑘)} = 𝜎2, it can be obtained
from (11) that

E {Δ𝑉 (𝑘)}

= E {[𝐴 (𝑝 (𝑘)) 𝜉 (𝑘) + 𝐷 (𝑝 (𝑘))

× 𝜉 (𝑘 − 𝑑) + 𝐵𝑢 (𝑘)

+𝑁𝑓 (𝑧 (𝑘))]
𝑇

𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) 𝜉 (𝑘) + 𝐷 (𝑝 (𝑘))

× 𝜉 (𝑘 − 𝑑) + 𝐵𝑢 (𝑘)

+𝑁𝑓 (𝑧 (𝑘))] + 𝜎
2

𝜉
𝑇

(𝑘) 𝐽
𝑇

𝑀
𝑇

× 𝑄 (𝑝 (𝑘 + 1))𝑀𝐽𝜉 (𝑘)

+ 𝑝 (𝑘) (1 − 𝑝 (𝑘))

× [𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘)

−𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘 − 𝑑)]
𝑇

× 𝑄 (𝑝 (𝑘 + 1))

× [𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘)

−𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘 − 𝑑)]

− 𝜉
𝑇

(𝑘) [𝑄 (𝑝 (𝑘)) − 𝑄
𝑑
]

×𝜉 (𝑘) − 𝜉
𝑇

(𝑘 − 𝑑)𝑄
𝑑
𝜉 (𝑘 − 𝑑)} .

(21)

Besides that, by the condition of (4) and (5), (21) can be
rewritten as follows:

E {Δ𝑉 (𝑘)}

≤ E {[(𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽) 𝜉 (𝑘)

+ 𝐷 (𝑝 (𝑘)) 𝜉 (𝑘 − 𝑑) + 𝐵𝑢 (𝑘)

+𝑁𝑓
𝑠
(𝑧 (𝑘))]

𝑇

𝑄 (𝑝 (𝑘 + 1))

× [(𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽) 𝜉 (𝑘)

+ 𝐷 (𝑝 (𝑘)) 𝜉 (𝑘 − 𝑑)

+𝐵𝑢 (𝑘) + 𝑁𝑓
𝑠
(𝑧 (𝑘))]

+ 𝑝 (𝑘) (1 − 𝑝 (𝑘))

× [𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘)

−𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘 − 𝑑)]
𝑇

× 𝑄 (𝑝 (𝑘 + 1))

× [𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘)

−𝐾 (𝑝 (𝑘)) 𝐽𝜉 (𝑘 − 𝑑)]

− 𝜉
𝑇

(𝑘) [𝑄 (𝑝 (𝑘)) − 𝑄
𝑑
] 𝜉 (𝑘)

− 𝜉
𝑇

(𝑘 − 𝑑)𝑄
𝑑
𝜉 (𝑘 − 𝑑)

+ 𝜎
2

𝜉
𝑇

(𝑘) 𝐽
𝑇

𝑀
𝑇

× 𝑄 (𝑝 (𝑘 + 1))𝑀𝐽𝜉 (𝑘)

−2𝑓
𝑇

𝑠
(𝑧 (𝑘)) (𝑓

𝑠
(𝑧 (𝑘)) − 𝐹𝑍𝐽𝜉 (𝑘))} .

(22)

From the previous analysis and 𝑢(𝑘) ≡ 0, it follows that

E {Δ𝑉 (𝑘)} ≤ E {𝜉
𝑇

(𝑘)Π𝜉 (𝑘)} , (23)

where 𝜉(𝑘) = [𝜉𝑇(𝑘) 𝜉𝑇(𝑘 − 𝑑) 𝑓𝑇
𝑠
(𝑧(𝑘))]

𝑇 and

Π = [

[

Π
1
∗ ∗

Π
2
Π
3
∗

Π
4
Π
5
Π
6

]

]

, (24)

with

Π
1
= [𝐴 (𝑝 (𝑘)) + 𝑁𝐹

1
𝑍𝐽]
𝑇

× 𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽]

+ 𝜎
2

𝐽
𝑇

𝑀
𝑇

𝑄 (𝑝 (𝑘 + 1))𝑀𝐽

+ 𝑝 (𝑘) (1 − 𝑝 (𝑘)) 𝐽
𝑇

𝐾
𝑇

× (𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))𝐾 (𝑝 (𝑘)) 𝐽

− (𝑄 (𝑝 (𝑘)) − 𝑄
𝑑
) ,
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Π
2
= 𝐷
𝑇

(𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽]

− 𝑝 (𝑘) (1 − 𝑝 (𝑘)) 𝐽
𝑇

𝐾
𝑇

× (𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))𝐾 (𝑝 (𝑘)) 𝐽,

Π
3
= 𝐷
𝑇

(𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))

× 𝐷 (𝑝 (𝑘)) + 𝑝 (𝑘) (1 − 𝑝 (𝑘))

× 𝐽
𝑇

𝐾
𝑇

(𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))

× 𝐾 (𝑝 (𝑘)) 𝐽 − 𝑄
𝑑
,

Π
4
= 𝑁
𝑇

𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽] + 𝐹𝑍𝐽,

Π
5
= 𝑁
𝑇

𝑄 (𝑝 (𝑘 + 1))𝐷 (𝑝 (𝑘)) ,

Π
6
= 𝑁
𝑇

𝑄 (𝑝 (𝑘 + 1))𝑁 − 2𝐼.

(25)

In the following, we will show thatΠ < 0 from (17). From
the relationship −𝑄(𝑝(𝑘 + 1)) + 𝑆 + 𝑆𝑇 > 0 in (17), we can see
that 𝑆 is nonsingular. Performing congruence transformation
diag{𝐼, 𝐼, 𝐼, 𝜎−2𝑆−1, 𝜃−1(𝑘)𝑆−1, 𝑆−1} to (17), we have

[
[
[
[
[
[
[

[

𝑄
𝑑
− 𝑄 (𝑝 (𝑘)) ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝑑

∗ ∗ ∗ ∗

𝐹𝑍𝐽 0 −2𝐼 ∗ ∗ ∗

𝑀𝐽 0 0 −𝜎
−2

Γ (𝑘) ∗ ∗

𝐾 (𝑝 (𝑘)) 𝐽 −𝐾 (𝑝 (𝑘)) 𝐽 0 0 −𝜃
−1

(𝑘) Γ (𝑘) ∗

𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽 𝐷 (𝑝 (𝑘)) 𝑁 0 0 −Γ (𝑘)

]
]
]
]
]
]
]

]

< 0, (26)

where, Γ(𝑘) = −𝑆−𝑇𝑄(𝑝(𝑘 + 1))𝑆−1 + 𝑆−1 + 𝑆−𝑇.
Since 𝑄−1(𝑝(𝑘 + 1)) is positive definite, we have

𝑄
−1

(𝑝 (𝑘 + 1)) + 𝑆
−𝑇

𝑄 (𝑝 (𝑘 + 1)) 𝑆
−1

− 𝑆
−1

− 𝑆
−𝑇

= [𝑆
−𝑇

− 𝑄
−1

(𝑝 (𝑘 + 1))]

× 𝑄 (𝑝 (𝑘 + 1)) 𝑆
−1

− [𝑆
−𝑇

− 𝑄
−1

(𝑝 (𝑘 + 1))]

= [𝑆
−1

− 𝑄
−1

(𝑝 (𝑘 + 1))]
𝑇

× 𝑄 (𝑝 (𝑘 + 1))

× [𝑆
−1

− 𝑄
−1

(𝑝 (𝑘 + 1))] ≥ 0,

(27)

therefore −𝑄−1(𝑝(𝑘 + 1)) ≤ 𝑆−𝑇𝑄(𝑝(𝑘 + 1))𝑆−1 − 𝑆−1 − 𝑆−𝑇.
Then, it follows from inequality (27) that

[
[
[
[
[
[
[

[

𝑄
𝑑
− 𝑄 (𝑝 (𝑘)) ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝑑

∗ ∗ ∗ ∗

𝐹𝑍𝐽 0 −2𝐼 ∗ ∗ ∗

𝑀𝐽 0 0 −𝜎
−2

Γ (𝑘) ∗ ∗

𝐾 (𝑝 (𝑘)) 𝐽 −𝐾 (𝑝 (𝑘)) 𝐽 0 0 −𝜃
−1

(𝑘) Γ (𝑘) ∗

𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽 𝐷 (𝑝 (𝑘)) 𝑁 0 0 −Γ (𝑘)

]
]
]
]
]
]
]

]

< 0, (28)

with Γ(𝑘) = 𝑄−1(𝑝(𝑘+1)). By Schur complement (Lemma 6),
we can see that Π < 0. Subsequently, we have

E {Δ𝑉 (𝑘)} < 𝜆min (Π)E
󵄨󵄨󵄨󵄨󵄨
𝜉 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

, (29)

where 𝜆min(Π) is the minimum eigenvalue of Π. Finally, we
can confirm that the augmented system (11) is exponentially
stable in mean square sense and the proof of this theorem is
thus complete.

In Theorem 7, the sufficient condition ensuring the
exponential stability of augmented filtering dynamics
(11) has been obtained. Now, we will consider the 𝐻

∞

performance for this dynamics under the zero initial
condition.

Theorem 8. If there exist positive-definite matrix 𝑄
𝑑
> 0,

𝑄(𝑝(𝑘)) > 0, and matrix 𝑆 such that the following matrix
inequalities hold:
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[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
𝑑
− 𝑄 (𝑝 (𝑘)) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 −𝑄
𝑑

∗ ∗ ∗ ∗ ∗ ∗ ∗

𝐹𝑍𝐽 0 −2𝐼 ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 −𝛾
2

∗ ∗ ∗ ∗ ∗

𝜎
2

𝑆
𝑇

𝑀𝐽 0 0 0 −𝜎
2

Γ̃ (𝑘) ∗ ∗ ∗ ∗

𝜃 (𝑘)Φ
1

−𝜃 (𝑘)Φ
1

0 0 0 −𝜃 (𝑘) Γ̃ (𝑘) ∗ ∗ ∗

Φ
2

𝑆
𝑇

𝐷(𝑝 (𝑘)) 𝑆
𝑇

𝑁 𝑆
𝑇

𝐵 0 0 −Γ̃ (𝑘) ∗ ∗

−𝐸
𝑐𝑑𝑓
(𝑝 (𝑘)) −𝑝 (𝑘) 𝐸

𝑑𝑓
(𝑝 (𝑘)) 0 1 0 0 0 −𝐼 ∗

−𝜃 (𝑘) 𝐸
𝑑𝑓
(𝑝 (𝑘)) 𝜃 (𝑘) 𝐸

𝑑𝑓
(𝑝 (𝑘)) 0 0 0 0 0 0 −𝜃 (𝑘)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (30)

where 𝜃(𝑘) has been defined in (18) and

Γ̃ (𝑘) = −𝑄 (𝑝 (𝑘 + 1)) + 𝑆 + 𝑆
𝑇

,

Φ
1
= 𝑆
𝑇

𝐾(𝑝 (𝑘)) 𝐽,

Φ
2
= 𝑆
𝑇

(𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽)

(31)

the dynamics of the augmented systems (11)-(12) are stochasti-
cally stable with disturbance attenuation level 𝛾 under the zero
initial condition.

Proof. In order to investigate the 𝐻
∞

performance of the
augmented systems (11)-(12), construct a functional as

𝑉 (𝑘) := 𝜉
𝑇

(𝑘) 𝑄 (𝑝 (𝑘)) 𝜉 (𝑘) +

𝑘−1

∑

𝑠=𝑘−𝑑

𝜉
𝑇

(𝑠) 𝑄
𝑑
𝜉 (𝑠) . (32)

Under the zero initial condition and (22), we have

𝐽 (𝑁) = E{
𝑁

∑

𝑘=0

[𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘)]}

≤ E{
𝑁

∑

𝑘=0

[𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑢
𝑇

(𝑘) 𝑢 (𝑘) + Δ𝑉
𝑘
]}

≤ E{
𝑁

∑

𝑘=0

𝜉
𝑇

(𝑘)Π𝜉 (𝑘)} ,

(33)

where 𝜉(𝑘) = [𝜉𝑇(𝑘) 𝜉𝑇(𝑘 − 𝑑) 𝑓𝑇
𝑠
(𝑧(𝑘)) 𝑢

𝑇

(𝑘)]
𝑇 and

Π =

[
[
[

[

Π
1
∗ ∗ ∗

Π
2
Π
3
∗ ∗

Π
4
Π
5
Π
6
∗

Π
7
Π
8
Π
9
Π
10

]
]
]

]

, (34)

with

Π
1
= [𝐴 (𝑝 (𝑘)) + 𝑁𝐹

1
𝑍𝐽]
𝑇

× 𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽]

+ 𝜎
2

𝐽
𝑇

𝑀
𝑇

𝑄 (𝑝 (𝑘 + 1))𝑀𝐽

+ 𝑝 (𝑘)(1 − 𝑝 (𝑘)) 𝐽
𝑇

𝐾
𝑇

× (𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))

× 𝐾 (𝑝 (𝑘)) 𝐽 − (𝑄 (𝑝 (𝑘)) − 𝑄
𝑑
)

+ 𝐸
𝑇

𝑐𝑑𝑓
(𝑝 (𝑘)) 𝐸

𝑐𝑑𝑓
(𝑝 (𝑘))

+ 𝑝 (𝑘) (1 − 𝑝 (𝑘)) 𝐸
𝑇

𝑑𝑓

× (𝑝 (𝑘)) 𝐸
𝑑𝑓
(𝑝 (𝑘)) ,

Π
2
= 𝐷(𝑝 (𝑘))

𝑇

× 𝑄 (𝑝 (𝑘 + 1)) [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽]

− 𝑝 (𝑘) (1 − 𝑝 (𝑘)) 𝐽
𝑇

𝐾
𝑇

× (𝑝 (𝑘))𝑄 (𝑝 (𝑘 + 1))

× 𝐾 (𝑝 (𝑘)) 𝐽 + 𝑝 (𝑘) 𝐸
𝑇

𝑑𝑓

× (𝑝 (𝑘)) 𝐸
𝑐𝑑𝑓
(𝑝 (𝑘))

− 𝑝 (𝑘) (1 − 𝑝 (𝑘)) 𝐸
𝑇

𝑑𝑓

× (𝑝 (𝑘)) 𝐸
𝑑𝑓
(𝑝 (𝑘)) ,

Π
3
= 𝐷(𝑝 (𝑘))

𝑇

𝑄 (𝑝 (𝑘 + 1))

× 𝐷 (𝑝 (𝑘)) + 𝑝 (𝑘) (1 − 𝑝 (𝑘))

× [𝐾 (𝑝 (𝑘)) 𝐽]
𝑇

𝑄 (𝑝 (𝑘 + 1))

× 𝐾 (𝑝 (𝑘)) 𝐽 − 𝑄
𝑑

+ [𝑝 (𝑘) 𝐸
𝑑𝑓
(𝑝 (𝑘))]

𝑇
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× 𝑝 (𝑘) 𝐸
𝑑𝑓
(𝑝 (𝑘)) + 𝑝 (𝑘)

× (1 − 𝑝 (𝑘)) 𝐸
𝑇

𝑑𝑓
(𝑝 (𝑘)) 𝐸

𝑑𝑓
(𝑝 (𝑘)) ,

Π
4
= 𝑁
𝑇

𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽] + 𝐹𝑍𝐽,

Π
5
= 𝑁
𝑇

𝑄 (𝑝 (𝑘 + 1))𝐷 (𝑝 (𝑘)) ,

Π
6
= 𝑁
𝑇

𝑄 (𝑝 (𝑘 + 1))𝑁 − 2𝐼,

Π
7
= 𝐵
𝑇

𝑄 (𝑝 (𝑘 + 1))

× [𝐴 (𝑝 (𝑘)) + 𝑁𝐹
1
𝑍𝐽] − 𝐸

𝑇

𝑐𝑑𝑓
(𝑝 (𝑘)) ,

Π
8
= 𝐵
𝑇

𝑄 (𝑝 (𝑘 + 1))𝐷 (𝑝 (𝑘)) − 𝑝 (𝑘) 𝐸
𝑇

𝑑𝑓
(𝑝 (𝑘)) ,

Π
9
= 𝐵
𝑇

𝑄 (𝑝 (𝑘 + 1))𝑁,

Π
10
= 𝐵
𝑇

𝑄 (𝑝 (𝑘 + 1)) 𝐵 + 1 − 𝛾
2

.

(35)
By introducing a new slack matrix 𝑆, some mathematical
techniques, and the similar proof line to the proof of

Theorem 7, we can see that Π < 0. Subsequently, letting
𝑁 → ∞, we have

‖𝑒(𝑘)‖E𝑙2
< 𝛾‖𝑢(𝑘)‖

𝑙2
. (36)

From Definition 5 and the previous analysis we will safely
come to the conclusion that the augmented systems (11)-(12)
are stochastically stable with disturbance attenuation level 𝛾
under the zero initial condition.

Remark 9. For the sake of the desired stability of the
augmented systems (11), we propose a Lyapunov functional
including the time-varying probability parameters, which
reduces the conservatism of the sufficient condition inTheo-
rems 7 and 8. At the same time, in the sufficient condition,
we introduce a slack variable 𝑆 to decouple the Lyapunov
matrices and the filter parameters, which all contain the time-
varying probability parameters. Such a technique can bypass
the difficulty encountered in the filter design. In the following
theorem, the filter design problem is dealt with.

Theorem 10. Consider the augmented systems (11)-(12).
Assume that there exist positive-definite matrix sequences
Q(𝑝(𝑘)) > 0, Q

𝑑
> 0 matrix sequences A

𝑓
, B
𝑓
, C
𝑓
, and

𝐷
𝑓
, nonsingular matrices 𝑆

11
, 𝑅
2
, and matrix 𝑅

1
such that the

following parameter-dependent LMIs hold:

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Q
𝑑
− Q (𝑝 (𝑘)) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 −Q
𝑑

∗ ∗ ∗ ∗ ∗ ∗ ∗

𝐹𝑍𝐽 0 −2𝐼 ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 −𝛾
2

∗ ∗ ∗ ∗ ∗

Ψ
1

0 0 0 −𝜎
−2

Ψ
6
(𝑘) ∗ ∗ ∗ ∗

𝜃 (𝑘)Ψ
2
(𝑘) −𝜃 (𝑘)Ψ

2
(𝑘) 0 0 0 −𝜃 (𝑘)Ψ

6
(𝑘) ∗ ∗ ∗

Ψ
3
(𝑘) 𝑝 (𝑘)Ψ

2
(𝑘) Ψ

4
Ψ
5

0 0 −Ψ
6
(𝑘) ∗ ∗

−Ψ
7
(𝑘) −𝑝 (𝑘)Ψ

8
(𝑘) 0 1 0 0 0 −𝐼 ∗

−𝜃 (𝑘)Ψ
8
(𝑘) 𝜃 (𝑘)Ψ

8
(𝑘) 0 0 0 0 0 0 −𝜃 (𝑘)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (37)

where

Ψ
1
= [

[

𝑆
𝑇

11
𝑀
𝑐
0

𝑅
𝑇

1
𝑀
𝑐
0

]

]

, Ψ
2
(𝑘) = [

[

B
𝑓
𝐶
𝑐
0

B
𝑓
𝐶
𝑐
0
]

]

,

Ψ
4
= [

[

𝑆
𝑇

11
𝑁
𝑐

𝑅
𝑇

1
𝑁
𝑐

]

]

, Ψ
5
= [

[

𝑆
𝑇

11
𝐵
𝑐

𝑅
𝑇

1
𝐵
𝑐

]

]

,

Ψ
3
(𝑘) = [

[

𝑆
𝑇

11
𝐴
𝑐
+ (1 − 𝑝 (𝑘))B

𝑓
𝐶
𝑐
+ 𝑆
𝑇

11
𝑁
𝑐
𝐹
1
𝑍 A
𝑓

𝑅
𝑇

1
𝐴
𝑐
+ (1 − 𝑝 (𝑘))B

𝑓
𝐶
𝑐
+ 𝑅
𝑇

1
𝑁
𝑐
𝐹
1
𝑍 A
𝑓

]

]

,

Ψ
8
(𝑘) = [𝐷𝑓𝐶𝑐 0] ,

Ψ
6
(𝑘) = −Q (𝑝 (𝑘 + 1)) + [

[

𝑆
11
+ 𝑆
𝑇

11
𝑅
1
+ 𝑅
𝑇

2

𝑅
2
+ 𝑅
𝑇

1
𝑅
2
+ 𝑅
𝑇

2

]

]

,

Ψ
7
(𝑘) = [(1 − 𝑝 (𝑘))𝐷

𝑓
𝐶
𝑐
C
𝑓
] .

(38)

In this case, there exist nonsingular matrices 𝑆
21

and 𝑆
22

such
that 𝑅

2
= 𝑆
𝑇

21
𝑆
−𝑇

22
𝑆
21
, and then the constant gains of the desired

filter can be obtained as follows:

𝐴
𝑓
= 𝑆
−𝑇

21
A
𝑓
𝑆
−1

21
𝑆
22
, 𝐵

𝑓
= 𝑆
−𝑇

21
B
𝑓
,

𝐶
𝑓
= C
𝑓
𝑆
−1

21
𝑆
22
.

(39)

Then, there exists a desired gain-scheduled filter in the form of
(8)-(9) such that the dynamics of the augmented systems (11)-
(12) are stochastically stable with disturbance attenuation level
𝛾 under the zero initial condition.

Proof. Let nonsingular matrix variable 𝑆 in (30) be parti-
tioned as 𝑆 = [𝑆

𝑖𝑗
]
2×2

, where 𝑆
11
, 𝑆
21
, and 𝑆

22
are nonsingular

matrices. Introduce matrices
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T = [
𝐼 0

0 𝑆
−1

22
𝑆
21

] , Q (𝑝 (𝑘)) = T
𝑇

𝑄 (𝑝 (𝑘))T,

Q
𝑑
= T
𝑇

𝑄
𝑑
T,

𝑅
1
= 𝑆
12
𝑆
−1

22
𝑆
21
, 𝑅

2
= 𝑆
𝑇

21
𝑆
−𝑇

22
𝑆
21
.

(40)

By performing congruence transformation diag{T−1,T−1, 𝐼,
1,T−1,T−1, T−1, 1, 1} to (37), we can see that (37) is
equivalent to (30). It can now be concluded fromTheorem 8
that (11) and (12) are stochastically stable with disturbance
attenuation level 𝛾 under the zero initial condition.

Because of the time-varying parameter 𝑝(𝑘), the number
of LMIs in Theorem 10 is infinite, and all these LMIs bring
enormous difficulties to solve. In the next work, we will focus
on the challenge and present an effectivemethod to overcome
this difficulty.

Theorem 11. Consider the augmented systems (11)-(12).
Assume that there exist positive positive-definite matricesQ

𝑑
>

0, Q
0
> 0, and Q

𝑝
> 0, nonsingular matrices 𝑆

11
and 𝑅

2
, and

matrices 𝑅
1
, A
𝑓0
, A
𝑓𝑝
, B
𝑓0
, B
𝑓𝑝
, C
𝑓0
, C
𝑓𝑝
, 𝐷
𝑓0
, and 𝐷

𝑓𝑝
,

such that the following LMIs hold:

Ω
𝑖𝑗𝑟𝑙

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Q
𝑑
− Q𝑙 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 −Q
𝑑

∗ ∗ ∗ ∗ ∗ ∗ ∗

𝐹𝑍𝐽 0 −2𝐼 ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 −𝛾
2

∗ ∗ ∗ ∗ ∗

Ψ
1

0 0 0 −𝛿
2

Ψ
𝑙

6
∗ ∗ ∗ ∗

Ψ
𝑖𝑗𝑟

2
−Ψ
𝑖𝑗𝑟

2
0 0 0 −𝜃

𝑖𝑗

Ψ
𝑙

6
∗ ∗ ∗

Ψ
𝑗𝑟

3
Ψ
𝑖𝑟

2
Ψ
4
Ψ
5

0 0 −Ψ
𝑙

6
∗ ∗

−Ψ
𝑗𝑟

7
−𝑝
𝑖
Ψ
𝑟

8
0 1 0 0 0 −1 ∗

−𝜃
𝑖𝑗

Ψ
𝑟

8
𝜃
𝑖𝑗

Ψ
𝑟

8
0 0 0 0 0 0 −𝜃

𝑖𝑗

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (41)

for 𝑖, 𝑗, 𝑟, 𝑙 = 1, 2,

Ψ
𝑗𝑟

3
= [
𝑆
𝑇

11
𝐴
𝑐
+ (1 − 𝑝

𝑗
)B𝑟
𝑓
𝐶
𝑐
+ 𝑆
𝑇

11
𝑁
𝑐
𝐹
1
𝑍 A𝑟
𝑓

𝑅
𝑇

1
𝐴
𝑐
+ (1 − 𝑝

𝑗
)B𝑟
𝑓
𝐶
𝑐
+ 𝑅
𝑇

1
𝑁
𝑐
𝐹
1
𝑍 A𝑟
𝑓

] ,

Ψ
𝑖𝑟

2
= 𝑝
𝑖
[
B𝑟
𝑓
𝐶
𝑐
0

B𝑟
𝑓
𝐶
𝑐
0
] ,

Ψ
𝑙

6
= − (Q

0
+ 𝑝
𝑙
Q
𝑝
) + [

[

𝑆
11
+ 𝑆
𝑇

11
𝑅
1
+ 𝑅
𝑇

2

𝑅
2
+ 𝑅
𝑇

1
𝑅
2
+ 𝑅
𝑇

2

]

]

,

Ψ
𝑖𝑗𝑟

2
= 𝑝
𝑖
(1 − 𝑝

𝑗
) [

B𝑟
𝑓
𝐶
𝑐
0

B𝑟
𝑓
𝐶
𝑐
0
] ,

Ψ
𝑗𝑟

7
= [(1 − 𝑝

𝑗
)𝐷
𝑟

𝑓
𝐶
𝑐
C𝑟
𝑓
] , A

𝑟

𝑓
= A
𝑓0
+ 𝑝
𝑟
A
𝑓𝑝
,

B
𝑟

𝑓
= B
𝑓0
+ 𝑝
𝑟
B
𝑓𝑝
, C

𝑟

𝑓
= C
𝑓0
+ 𝑝
𝑟
C
𝑓𝑝
,

Q
𝑙

= Q
0
+ 𝑝
𝑙
Q
𝑝
, 𝜃

𝑖𝑗

= 𝑝
𝑖
(1 − 𝑝

𝑗
) ,

Ψ
𝑟

8
= [𝐷
𝑟

𝑓
𝐶
𝑐
0] ,

(42)

and Ψ
1
, Ψ
4
, and Ψ

5
have been defined in (38).

In this case, there exist nonsingular matrices 𝑆
21

and 𝑆
22

such that 𝑅
2
= 𝑆
𝑇

21
𝑆
−𝑇

22
𝑆
21
, and then the constant gains of the

desired filter can be obtained as follows:

𝐴
𝑓0
= 𝑆
−𝑇

21
A
𝑓0
𝑆
−1

21
𝑆
22
, 𝐴

𝑓𝑝
= 𝑆
−𝑇

21
A
𝑓𝑝
𝑆
−1

21
𝑆
22
,

𝐵
𝑓0
= 𝑆
−𝑇

21
B
𝑓0
, 𝐵

𝑓𝑝
= 𝑆
−𝑇

21
B
𝑓𝑝
,

𝐶
𝑓0
= C
𝑓0
𝑆
−1

21
𝑆
22
, 𝐶

𝑓𝑝
= C
𝑓𝑝
𝑆
−1

21
𝑆
22
.

(43)

Then, a gain-scheduled filter can be obtained in the form of
(8)-(9) such that the dynamics of the augmented systems (11)-
(12) are stochastically stable with disturbance attenuation level
𝛾 under the zero initial condition.

Proof. Firstly, choose the probability-dependent Lyapunov
matrices as

Q (𝑝 (𝑘)) = Q
0
+ 𝑝 (𝑘)Q

𝑝
, (44)

where Q
0
> 0 and Q

𝑝
> 0. Setting

𝜆
1
(𝑘) =

𝑝
2
− 𝑝 (𝑘)

𝑝
2
− 𝑝
1

, 𝜆
2
(𝑘) =

𝑝 (𝑘) − 𝑝
1

𝑝
2
− 𝑝
1

, (45)

we have
𝜆
1
(𝑘) + 𝜆

2
(𝑘) = 1, 𝜆

𝑖
(𝑘) ≥ 0 (𝑖 = 1, 2) ,

𝑝 (𝑘) = 𝜆
1
(𝑘) 𝑝
1
+ 𝜆
2
(𝑘) 𝑝
2
.

(46)

Similarly, letting

𝜇
1
(𝑘) =

𝑝
2
− 𝑝 (𝑘 + 1)

𝑝
2
− 𝑝
1

, 𝜇
2
(𝑘) =

𝑝 (𝑘 + 1) − 𝑝
1

𝑝
2
− 𝑝
1

, (47)

we have
𝜇
1
(𝑘) + 𝜇

2
(𝑘) = 1, 𝜇

𝑙
(𝑘) ≥ 0 (𝑙 = 1, 2) ,

𝑝 (𝑘 + 1) = 𝜇
1
(𝑘) 𝑝
1
+ 𝜇
2
(𝑘) 𝑝
2
.

(48)
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From the previous transformations, it can be easily
derived that

Q (𝑝 (𝑘)) =
2

∑

𝑙=1

𝜆
𝑙
(𝑘)Q
𝑙

, Q (𝑝 (𝑘 + 1)) =
2

∑

𝑙=1

𝜇
𝑙
(𝑘)Q
𝑙

,

A
𝑓
=

2

∑

𝑟=1

𝜆
𝑟
(𝑘)A
𝑟

𝑓
, B

𝑓
=

2

∑

𝑟=1

𝜆
𝑟
(𝑘)B
𝑟

𝑓
,

C
𝑓
=

2

∑

𝑟=1

𝜆
𝑟
(𝑘)C
𝑟

𝑓
, 𝐷

𝑓
=

2

∑

𝑟=1

𝜆
𝑟
(𝑘)𝐷
𝑟

𝑓
.

(49)

And it follows from (41) that
2

∑

𝑖,𝑗,𝑟,𝑙=1

𝜆
𝑖
(𝑘) 𝜆
𝑗
(𝑘) 𝜆
𝑟
(𝑘) 𝜇
𝑙
(𝑘)Ω
𝑖𝑗𝑟𝑙

< 0. (50)

Also, it follows from (46) and (48)–(50) that (37) holds, and
the proof is now complete.

Remark 12. In Theorem 11, we convert infinite LMIs to finite
ones by turning the time-varying parameter 𝑝(𝑘) into the
polytopic form. By such a transformation, the constant gains
of the desired gain-scheduled filter can be easily derived in
terms of the available LMI toolbox by using the computa-
tionally appealing gain-scheduled deconvolution filter design
algorithm listed as follows.

Algorithm 13. The gain-scheduled filter design algorithm.

Step 1.Given the initial values for the positive integer𝑁
𝑞
, the

initial state 𝜌, the constants 𝑝
1
and 𝑝

2
, and the matrices 𝐴

𝑐
,

𝐵
𝑐
, 𝐶
𝑐
, 𝑀
𝑐
, 𝑁
𝑐
, 𝐹
1
, 𝐹
2
, and 𝑍 select appropriate initial state

estimate 𝜌
𝑓
, and set 𝑘 = 0.

Step 2. Solve the LMI in (41) to obtain the positive-definite
matrices Q

0
, Q
𝑝
, and Q

𝑑
, matrices A

𝑓0
, A
𝑓𝑝
, B
𝑓0
, B
𝑓𝑝
,

C
𝑓0
, C
𝑓𝑝
, 𝑅
1
, 𝑅
2
, and 𝑆

11
. Choose appropriate nonsingular

matrices 𝑆
21
to derive 𝐴

𝑓0
, 𝐴
𝑓𝑝
, 𝐵
𝑓0
, 𝐵
𝑓𝑝
, 𝐶
𝑓0
, and 𝐶

𝑓𝑝
.

Step 3. Based on the measured time-varying parameter 𝑝(𝑘),
derive the filter gains 𝐴

𝑓
, 𝐵
𝑓
, 𝐶
𝑓
, and 𝐷

𝑓
by (10), the state

𝑥
𝑓
(𝑘 + 1) by (9), and the estimation of 𝑢(𝑘). Then, set

𝑘 = 𝑘 + 1.

Step 4. If 𝑘 < 𝑁, then go to Step 3; otherwise go to Step 5.

Step 5. Stop.

Remark 14. In Algorithm 13, detailed steps have been given
for the gain-scheduled deconvolution filter design problem
according to Theorem 11. By employing this algorithm along
with the LMI toolbox, the time-varying filter gains can be
easily derived from the measured/estimated time-varying
missing probability 𝑝(𝑘) in real time.

4. An Illustrative Example

In this section, an example is given to design the deconvo-
lution filters for stochastic systems with randomly occurring
sensor delays.

The system parameters are given as follows:

𝐴
𝑐
= [
0.601 −0.065

0 0.420
] , 𝑀

𝑐
= [
0.013 0

0 0.024
] ,

𝑁
𝑐
= [
0.014 0

0 0.062
] , 𝑍 = [

0.291 0

0 0.599
] ,

𝐹
1
= [
0.159 0

0 0.311
] , 𝐹

2
= [
0.409 0

0 1.501
] ,

𝐶
𝑐
= [0.22 0.075] , 𝐵

𝑐
= [
0.109

0.081
] ,

𝑝
1
= 0.23, 𝑝

2
= 0.45, 𝜎 = 1.

(51)

The measurable time-varying probability sequence is
assumed as 0.23𝑒0.0168𝑘. Then, the constant filter parameters
𝐴
𝑓0
, 𝐴
𝑓𝑝
, 𝐵
𝑓0
, 𝐵
𝑓𝑝
, 𝐶
𝑓0
, 𝐶
𝑓𝑝
, 𝐷
𝑓0
, and 𝐷

𝑓𝑝
can be obtained

as follows:

𝐴
𝑓0
= [

0.3998 0.2138

−0.1733 −0.0501
] , 𝐵

𝑓0
= [
−0.0521

0.0364
] ,

𝐶
𝑓0
= [−0.0266 −0.0249] , 𝐷

𝑓0
= 16,

𝐴
𝑓𝑝
= [
−0.0109 −0.0072

−0.0246 −0.0160
] , 𝐵

𝑓𝑝
= [
−0.0230

0.0020
] ,

𝐶
𝑓𝑝
= [−0.0794 −0.0520] , 𝐷

𝑓𝑝
= 17.

(52)

Figure 2 includes the response curves of input signal
𝑢(𝑘) and the simulation results of estimation 𝑢̂(𝑘). Figure 3
gives the time-varying missing probability 𝑝(𝑘), and the
corresponding filter parameters are given in Table 1. The
simulation results have illustrated the rationality and effec-
tiveness of the previous theoretical analysis.

5. Conclusions

This paper has dealt with the deconvolution filtering problem
for a class of discrete-time stochastic systems with ran-
domly occurring sensor delays, nonlinear disturbances, and
external stochastic noises. We assume the sensor delays to
be randomly occurring, and the occurring way is modeled
by a stochastic variable sequence satisfying time-varying
Bernoulli distributions. A sufficient condition has been
derived to guarantee the stability of the considered stochastic
systems by constructing probability-dependent Lyapunov
functional and employing convex optimization method.
Through some mathematical transformation, we convert the
matrix inequalities into solvable form, and then a finite set
of inequalities for designing the desired filter are obtained.
The proposed gain-scheduled filters include both constant
parameters and time-varying gains which can be updated
online according to the measurable missing probabilities in
real time. The desired filters can be obtained by solving a set
of LMIs relying on the time-varying feature of sensor delays.
By using the obtained filter, we can accurately estimate the
input signal distorted by the noisy transmission channel and
the delayed sensor outputs. A simulation example is exploited
to illustrate the effectiveness of the proposed design scheme.
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Table 1: The time-varying filter parameters.

𝑘 𝑝(𝑘) 𝐴
𝑓

𝐵
𝑓

𝐶
𝑓

𝐷
𝑓

1 0.2339 [
0.3972 0.2121

−0.1790 −0.0539
] [

−0.0574

0.0369
] [−0.0452 −0.0370] 19.9762

2 0.2379 [
0.3972 0.2121

−0.1791 −0.0539
] [

−0.0575

0.0369
] [−0.0455 −0.0373] 20.0436

3 0.2419 [
0.3971 0.2121

−0.1792 −0.0540
] [

−0.0576

0.0369
] [−0.0458 −0.0375] 20.1121

4 0.2460 [
0.3971 0.2120

−0.1793 −0.0541
] [

−0.0577

0.0369
] [−0.0461 −0.0377] 20.1818

...
...

...
...

...
...

0 5 10 15 20 25 30 35 40
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0
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1

1.5

2
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The estimation of signal u(k)
The trajectory of signal u(k)

Figure 2: The input signal 𝑢(𝑘) and estimation 𝑢̂(𝑘).
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Figure 3: The time-varying probability 𝑝(𝑘).
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