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This paper investigates the sampled-data stabilization problem of spacecraft relative positional holding with improved Lyapunov
function approach. The classical Clohessy-Wiltshire equation is adopted to describe the relative dynamic model. The relative
position holding problem is converted into an output tracking control problem using sampling signals. A time-dependent
discontinuous Lyapunov functionals approach is developed, which will lead to essentially less conservative results for the stability
analysis and controller design of the corresponding closed-loop system. Sufficient conditions for the exponential stability analysis
and the existence of the proposed controller are provided, respectively. Finally, a simulation result is established to illustrate the
effectiveness of the proposed control scheme.

1. Introduction

In the research area of advanced astronautic missions, space-
craft autonomous rendezvous and docking has been one of
themost significant problems over the past few decades. Gen-
erally speaking, before completing the final docking action
between the chaser spacecraft and the target spacecraft, the
chaser spacecraft is forbidden to maintain at a fixed relative
position around the target and prepares to implement the
final docking action and/or other special missions [1–3].
This procedure is the so-called “relative position holding.” In
recent years, a few results have been developed in the existing
literatures to investigate the problems of autonomous relative
motion for multiple spacecrafts [4, 5]. Among these existing
approaches, one of the most popular mathematical tool is
the so-called Clohessy-Wiltshire (C-W) equation.Thismodel
is introduced by Clohessy and Wiltshire in 1960 [6] and
has been broadly applied to address the problem of relative
motion between two neighboring spacecrafts [7, 8].

On the other hand, in modern industrial process, one or
more computers are always employed as digital controllers
to control continuous-time plant [9–12]. Under this set-
ting, digital computers are required to sample and quantize

a continuous-time analog signal to evaluate a discrete-time
sampled-data signal [13–15], based on which a discrete-
time control input signal is designed [16–19]. This discrete-
time signal is further converted into a continuous-time
signal based on a zero-order hold equipment in the actua-
tor side [20–24]. Subsequently, the corresponding sampled-
data systems contain both continuous-time and discrete-
time signals in the continuous-time domain [25–28]. Due
to its significance, over the past decade the problems of
stabilization and filtering of sampled-data systems have been
investigated extensively; see for instance, [29, 30] and the
reference therein.

It is worth pointing out that there exist three main
methodologies for the stabilization and filtering problems of
sampled-data systems [31, 32], which are lifting technique
method, impulsive model method, and input delay method,
respectively. Among these existing approaches, input delay
approach is the latest established approach, wherein the
sampled-data system ismodeled as a continuous-time system
with time-varying delay existing in the control input. A great
number of results based on this approach have been proposed
in the existing literatures [33, 34]. Among these existing
results, the time-independent Lyapunov function approach
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presented by Fridman et al. [34] has been proved to be
effective to deal with the input delay. Based on the time-
independent Lyapunov approach, an improved Lyapunov
approach, namely, time-dependent Lyapunov approach has
been also developed by Fridman [33] and Naghshtabrizi
et al. [35]. Compared with the time-independent Lyapunov
approach, the structure characteristic of the time-dependent
Lyapunov approach can guarantee that its value does not
increase in each sampling time despite the jumping behavior
of the sampled signals and thus can reduce the design conser-
vativeness.Thismethod is later extended to deal with filtering
problem of Itô stochastic systems with signal sampling and
quantization [36].

It should be pointed out that, in practical sampled-data
systems of spacecraft rendezvous, there also exists jumping
behavior of the sampled signal at each sampling time instant,
and the values of the sampled signal increase abruptly at
these time instants. Therefore, it is desirable to reduce the
conservativeness of the controller design of sampled-data
spacecraft rendezvous systems by developing new control
schemes. Motivated by the aforementioned time-dependent
Lyapunov approach, in this paper, we consider the sampled-
data control problem for relative position holding of space-
craft rendezvous. In this study, signal sampling, control input
limitation, and 𝐻

∞
performance are considered together in

a unified framework. The discontinuous Lyapunov functions
approach is adopted for the controller design; also we intro-
duce free-weight matrices in the Lyapunov functions, and it
will be shown that the obtained results are less conservative
then those in the existing work.

The remainder of this paper is organized as follows. In
Section 2, the problem of sampled-data control of relative
position holding of spacecraft rendezvous is formulated. In
Section 3, the sufficient condition for the exponential stability
of the sampled-data closed-loop system is provided, based
on which the sufficient for the existence of the sampled-data
controller is given. Finally, a numerical example is presented
in Section 4 to demonstrate the feasibility of the proposed
method.

2. Problem Formulation

In the orbital coordinate frame of chaser and target space-
crafts, it is well defined that the origin attaches to the mass
center of the target spacecraft, 𝑥-axis is along the vector from
the Earth center to the origin, 𝑦-axis is along the target orbit
circumference, 𝑧-axis completes the right-handed frame, 𝑟

1

denotes the radius of the target circular orbit, 𝜇 denotes the
gravitational parameter of the earth, 𝑤 denotes the angle
velocity of the target, and 𝑤 = (𝜇/𝑟3

1
)
1/2.

Based on theNewtonmotion theory, the relative dynamic
model of chaser and target spacecrafts can be modeled by the
following C-W equations:

𝑥̈
𝑐
(𝑡) = 2𝑤 ̇𝑦

𝑐
(𝑡) + 𝑤

2

(𝑟
1
+ 𝑥
𝑐
(𝑡))

−
𝜇 (𝑟
1
+ 𝑥
𝑐
(𝑡))

[(𝑟
1
+ 𝑥
𝑐
(𝑡))
2

+ 𝑦2
𝑐
(𝑡) + 𝑧

2

𝑐
(𝑡)]
3/2

+ 𝑎
𝑥
,

̈𝑦
𝑐
(𝑡) = −2𝑤𝑥̇

𝑐
(𝑡) + 𝑤

2

𝑦
𝑐
(𝑡)

−
𝜇𝑦
𝑐
(𝑡)

[(𝑟
1
+ 𝑥
𝑐
(𝑡))
2

+ 𝑦2
𝑐
(𝑡) + 𝑧

2

𝑐
(𝑡)]
3/2

+ 𝑎
𝑦
,

𝑧̈
𝑐
(𝑡) = −

𝜇𝑦
𝑐
(𝑡)

[(𝑟
1
+ 𝑥
𝑐
(𝑡))
2

+ 𝑦2
𝑐
(𝑡) + 𝑧

2

𝑐
(𝑡)]
3/2

+ 𝑎
𝑧
,

(1)

where 𝑥
𝑐
(𝑡), 𝑦

𝑐
(𝑡), and 𝑧

𝑐
(𝑡) are the components of the

relative position in corresponding axes and 𝑎
𝑖
(𝑖 = 𝑥, 𝑦, 𝑧)

is the 𝑖th component of the control input vector. By the
taylor expansion and linearization approach, the linearized
equation around the null solution for (1) can be given by

𝑥̈
𝑐
(𝑡) − 2𝑤 ̇𝑦

𝑐
(𝑡) − 3𝑤

2

𝑥
𝑐
(𝑡) =

1

𝑚
(𝑇
𝑥
+ 𝑑
𝑥
) ,

̈𝑦
𝑐
(𝑡) + 2𝑤𝑥̇

𝑐
(𝑡) =

1

𝑚
(𝑇
𝑦
+ 𝑑
𝑦
) ,

𝑧̈
𝑐
(𝑡) + 𝑤

2

𝑧
𝑐
(𝑡) =

1

𝑚
(𝑇
𝑧
+ 𝑑
𝑧
) .

(2)

In system (2), 𝑚 is the mass of the chaser, 𝑇
𝑖
(𝑖 = 𝑥, 𝑦, 𝑧)

is the relative motion dynamic, and 𝑑
𝑖
, 𝑖 = 𝑥, 𝑦, 𝑧 is the

𝑖th component of the external disturbances. We define the
following vector and matrices:

𝑥 (𝑡) =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥
𝑐
(𝑡)

𝑦
𝑐
(𝑡)
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(𝑡)
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]
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]
]
]
]
]
]
]
]
]
]
]

]

, 𝑢 (𝑡) =

[
[
[

[

𝑇
𝑥
(𝑡)

𝑇
𝑦
(𝑡)

𝑇
𝑧
(𝑡)

]
]
]

]

,

𝑑 (𝑡) =

[
[
[

[

𝑑
𝑥
(𝑡)

𝑑
𝑦
(𝑡)

𝑑
𝑧
(𝑡)

]
]
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]

, 𝑦 (𝑡) =

[
[
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𝑥
𝑐
(𝑡)

𝑦
𝑐
(𝑡)

𝑧
𝑐
(𝑡)

]
]
]

]

,

(3)

𝐴 =

[
[
[
[
[
[
[

[

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3𝑤
2

0 0 0 2𝑤 0

0 0 0 −2𝑤 0 0

0 0 −𝑤
2

0 0 0

]
]
]
]
]
]
]

]

,
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𝐵 =
1

𝑚

[
[
[
[
[
[
[

[

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

]
]
]
]
]
]
]

]

.

(4)

Then the C-W equation (2) can be described equivalently as
follows:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐵𝑑 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) .

(5)

As a result, the specific relative motion of the chaser and
target can be realized via designing effective control strategy
𝑢(𝑡) for system (5).

In this paper, we consider the case that the signals are
sampled before transmitted to the controller side. DefineT ≜

{𝑡
1
, 𝑡
2
, 𝑡
3
, . . .} as a strictly increasing sequence of sampling

times in (𝑡
0
,∞) for initial time 𝑡

0
= 0. Suppose that

the sampling internals between any two sequent sampling
instants are bounded by

𝑡
𝑘+1

− 𝑡
𝑘
≤ ℎ, 𝑘 = 1, 2, . . . , (6)

where ℎ > 0 is a known constant. Then, the control vector is
assumed to be of the following form at the sampling instant
𝑡
𝑘
with zero-order hold (ZOH):

𝑢 (𝑡) = 𝐾𝑥 (𝑡
𝑘
) . (7)

During the orbital transfer process, the thrust constraint can
be described as

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 ⩽ 𝑢𝑖,max (𝑖 = 𝑥, 𝑦, 𝑧) , (8)

where 𝑢
𝑖
(𝑡
𝑘
) is the control input thrust along the 𝑖th axis at the

sampling instant 𝑘 and 𝑢
𝑖,max is the maximum allowed thrust

along the 𝑖th axis.
On the other hand, the desired holding position can be

treated as a reference output 𝑦
𝑟
of (5). Therefore, our object

is thus to propose a sampled-data control strategy (7), such
that the closed-loop system for plant (5) is exponentially
stable and the output 𝑦(𝑡) tracks the reference signal 𝑦

𝑟

without steady-state error. Subsequently, the problem of
relative control holding is converted into an output tracking
control problem. To achieve

lim
𝑡→+∞

𝑦 (𝑡) = 𝑦
𝑟
, (9)

we define the output error

𝑒 (𝑡) = ∫

𝑡

0

𝑦
𝑒
(𝑡) 𝑑𝑡. (10)

Also, we define the following augmented system

̇𝜉 (𝑡) = 𝐴𝜉 (𝑡) + 𝐵𝑢 (𝑡
𝑘
) + 𝐵
1
𝑑 (𝑡) (11)

with

𝜉 (𝑡) = [
𝑥 (𝑡)

𝑒 (𝑡)
] , 𝑑 (𝑡) = [

𝑑 (𝑡)

𝑦
𝑟

] ,

𝐴 = [
𝐴 0
6×3

𝐶 0
3×3

] , 𝐵 = [
𝐵

0
3×3

] ,

𝐵
1
= [

𝐵 0
6×3

0
3×3

−𝐼
3×3

] ,

𝐶
1
= [𝐶 0

3×3
] , 𝐶

2
= [0
3×6

𝐼
3×3
] .

(12)

The control scheme for augmented system (11) is thus de-
signed as

𝑢 (𝑡
𝑘
) = 𝐾𝜉 (𝑡

𝑘
) = [𝐾 𝐾

𝑒
] [

𝑥 (𝑡
𝑘
)

𝑒 (𝑡
𝑘
)
] , (13)

where𝐾 is defined as in (2) and𝐾
𝑒
∈ R𝑚×𝑛 is to be designed.

Substituting (13) into (11) yields the following augmented
closed-loop system:

̇𝜉 (𝑡) = 𝐴𝜉 (𝑡) + 𝐵𝐾𝜉 (𝑡
𝑘
) + 𝐵
1
𝑑 (𝑡) ,

𝑦 (𝑡) = 𝐶
1
𝜉 (𝑡) ,

𝑧 (𝑡) = 𝐶
2
𝜉 (𝑡) .

(14)

If system (14) is exponentially stable, then it implies that the
relative position error integral action 𝑒(𝑡) → 0 and further
implies that lim

𝑡→∞
= 𝑦
𝑟
.

In the following discussion, we adopt the delay-input
approach to deal with the sampled-data control problem. By
defining

𝜏 (𝑡) = 𝑡
𝑘+1

− 𝑡
𝑘
, (15)

the sampling intervals can be written as

𝑡
𝑘
= 𝑡 − (𝑡

𝑘+1
− 𝑡
𝑘
) = 𝑡 − 𝜏 (𝑡) . (16)

Therefore, the sampled augmented state can be written as

𝜉 (𝑡
𝑘
) = 𝜉 (𝑡 − 𝜏 (𝑡)) , (17)

and the control input vector can be transformed into

𝑢 (𝑡
𝑘
) = 𝐾𝜉 (𝑡

𝑘
) = 𝐾𝜉 (𝑡 − 𝜏 (𝑡)) . (18)

Hence, the augmented closed-loop system (14) can be written
by

̇𝜉 (𝑡) = 𝐴𝜉 (𝑡) + 𝐵𝐾𝜉 (𝑡 − 𝜏 (𝑡)) + 𝐵
1
𝑑 (𝑡) ,

𝑦 (𝑡) = 𝐶
1
𝜉 (𝑡) ,

𝑧 (𝑡) = 𝐶
2
𝜉 (𝑡) .

(19)

Now, the aim of this paper can be formulated as follows.

Problem 1. Design a sampled-data control law 𝑢(𝑡
𝑘
), such that

the following conditions are met.
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(1) The closed-loop system (19) is exponentially stable
with a given decay rate 𝛼 > 0. In other words, the
chaser holds at a relative position.

(2) The control input satisfies the given upper bound (8).

(3) For closed-loop system (19), the following𝐻
∞
perfor-

mance index is achieved:

𝑒
𝑧
(𝑡) = ‖𝑧 (𝑡)‖

2
− 𝛾
󵄩󵄩󵄩󵄩󵄩
𝑑 (𝑡)

󵄩󵄩󵄩󵄩󵄩2
⩽ 0. (20)

3. Main Results

In this section, we will first perform the stability analysis and
control scheme design for system (19) with 𝑑(𝑡) = 0.Then, we
will consider the internal stability of (19) with the prescribed
𝐻
∞

performance index (20).

3.1. Stabilization Analysis

Theorem 2. Consider the closed-loop system (19) with 𝑑(𝑡) =
0, given a decay rate 𝛼 > 0, if there exist positive definite
matrices 𝑃

1
, 𝑃
2
, and 𝑃

3
∈ R9×9, and matrices 𝑇

1
, 𝑇
2
, 𝑆
1
, 𝑆
2
,

and 𝑆
3
∈ R9×9, such that the following conditions hold:

Φ = [

[

Φ
11
Φ
12
Φ
13

⋆ Φ
22
Φ
23

⋆ ⋆ Φ
33

]

]

< 0,

Φ̂ =

[
[
[

[

Φ̂
11
Φ̂
12
Φ̂
13
Φ̂
14

⋆ Φ̂
22
Φ̂
23

0

⋆ ⋆ Φ̂
33
Φ̂
34

⋆ ⋆ ⋆ Φ̂
44

]
]
]

]

< 0,

(21)

𝜌𝐾
𝑇

𝑅
𝑇

𝑖
𝑅
𝑖
𝐾 − 𝑢

2

𝑖,max𝑃1 < 0, (22)

where 𝜌 is defined as in (47) and

Φ
11
= 2𝛼𝑃

1
− 𝑃
3
+ 2𝛼ℎ𝑃

3
− 𝑇
𝑇

1
𝐴 − 𝐴

𝑇

𝑇
1
− 𝑆
1
− 𝑆
𝑇

1
,

Φ
12
= 𝑃
1
+ 𝑇
𝑇

1
− ℎ𝑃
3
,

Φ
13
= 𝑃
3
− 2𝛼ℎ𝑃

3
− 𝑇
𝑇

1
𝐵𝐾 + 𝑆

𝑇

1
,

Φ
22
= ℎ𝑃
2
+ 𝑇
2
+ 𝑇
𝑇

2
,

Φ
23
= −ℎ𝑃

3
− 𝑇
𝑇

2
𝐵𝐾 + 𝑆

2
+ 𝑆
𝑇

2
,

Φ
33
= −𝑃
3
+ 2𝛼ℎ𝑃

3
+ 𝑆
3
+ 𝑆
𝑇

3
,

Φ̂
11
= 2𝛼𝑃

1
− 𝑃
3
− 𝑇
𝑇

1
𝐴 − 𝐴

𝑇

𝑇
1
− 𝑆
1
− 𝑆
𝑇

1
,

Φ̂
12
= 𝑃
1
+ 𝑇
𝑇

1
,

Φ̂
13
= 𝑃
3
− 𝑇
𝑇

1
𝐵𝐾 + 𝑆

𝑇

1
,

Φ̂
14
= ℎ𝑆
𝑇

1
,

Φ̂
22
= 𝑇
𝑇

2
+ 𝑇
𝑇

2
,

Φ̂
23
= −𝑇
𝑇

2
𝐵𝐾 + 𝑆

2
+ 𝑆
𝑇

2
,

Φ̂
33
= −𝑃
3
+ 𝑆
3
+ 𝑆
𝑇

3
,

Φ̂
34
= ℎ𝑆
𝑇

3
,

Φ̂
44
= −ℎ𝑒

−2𝛼ℎ

𝑃
2
.

(23)

Then system (19) with 𝑑(𝑡) = 0 is exponentially stable with the
decay rate 𝛼 > 0.

Proof. For system (19), consider the following Lyapunov
functional

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (24)

where

𝑉
1
(𝑡) = 𝜉

𝑇

(𝑡) 𝑃
1
𝜉 (𝑡) ,

𝑉
2
(𝑡) = (ℎ − 𝜏 (𝑡)) ∫

𝑡

𝑡𝑘

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) 𝑒
−2𝛼(𝑡−𝑠)

𝑑𝑠,

𝑉
3
(𝑡) = (ℎ − 𝜏 (𝑡)) (𝜉(𝑡

𝑘
) − 𝜉 (𝑡))

𝑇

𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡)) .

(25)

In function (3), 𝑃
𝑖
> 0 (𝑖 = 1, 2, 3) are Lyapunov matrices to

be designed, and 𝛼 > 0 is the decay rate as previously defined.
It can be calculated that

𝑉̇
1
(𝑡) + 2𝛼𝑉

1
(𝑡) = 2 ̇𝜉

𝑇

(𝑡) 𝑃
1
𝜉 (𝑡) + 2𝛼𝜉

𝑇

(𝑡) 𝑃
1
𝜉 (𝑡) ,

𝑉̇
2
(𝑡) = −𝑒

−2𝛼𝑡

∫

𝑡

𝑡𝑘

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) 𝑒
2𝛼𝑠

𝑑𝑠

+ (ℎ − 𝜏 (𝑡)) 𝑒
−2𝛼𝑡

(−2𝛼)

× ∫

𝑡

𝑡𝑘

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) 𝑒
2𝛼𝑠

𝑑𝑠

= (ℎ − 𝜏 (𝑡)) 𝑒
−2𝛼𝑡

× ( ̇𝜉
𝑇

(𝑡) 𝑃
2

̇𝜉 (𝑡) 𝑒
2𝛼𝑡

− ̇𝜉
𝑇

(𝑡
𝑘
) 𝑃
2

̇𝜉 (𝑡
𝑘
) 𝑒
2𝛼𝑡𝑘)

(26)

Notice that ̇𝜉
𝑇

(𝑡
𝑘
)𝑃
2

̇𝜉(𝑡
𝑘
)𝑒
2𝛼𝑡𝑘 = 0; thus,

𝑉̇
2
(𝑡) = −𝑒

−2𝛼𝑡

∫

𝑡

𝑡𝑘

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) 𝑒
2𝛼𝑠

𝑑𝑠

− 2𝛼 (ℎ − 𝜏 (𝑡)) 𝑒
−2𝛼𝑡

∫

𝑡

𝑡𝑘

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) 𝑒
2𝛼𝑠

𝑑𝑠

+ (ℎ − 𝜏 (𝑡)) ̇𝜉
𝑇

(𝑡) 𝑃
2

̇𝜉 (𝑡) .

(27)
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Therefore, it is derived that

𝑉̇
2
(𝑡) + 2𝛼𝑉

2
(𝑡) = −𝑒

−2𝛼𝑡

∫

𝑡

𝑡𝑘

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) 𝑒
2𝛼𝑠

𝑑𝑠

− 2𝛼 (ℎ − 𝜏 (𝑡)) 𝑒
−2𝛼𝑡

× ∫

𝑡

𝑡𝑘

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) 𝑒
2𝛼𝑠

𝑑𝑠

+ (ℎ − 𝜏 (𝑡)) ̇𝜉
𝑇

(𝑡) 𝑃
2

̇𝜉 (𝑡)

+ 2𝛼 (ℎ − 𝜏 (𝑡)) 𝑒
−2𝛼𝑡

× ∫

𝑡

𝑡𝑘

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) 𝑒
2𝛼𝑠

𝑑𝑠

= −𝑒
−2𝛼𝑡

∫

𝑡

𝑡𝑘

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) 𝑒
2𝛼𝑠

𝑑𝑠

+ (ℎ − 𝜏 (𝑡)) ̇𝜉
𝑇

(𝑡) 𝑃
2

̇𝜉 (𝑡) .

(28)

Furthermore, for 𝑉
3
(𝑡) it is calculated directly that

𝑉̇
3
(𝑡) = −(𝜉(𝑡

𝑘
) − 𝜉 (𝑡))

𝑇

𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

− (ℎ − 𝜏 (𝑡)) ̇𝜉
𝑇

(𝑡) 𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

− (ℎ − 𝜏 (𝑡)) (𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

𝑇

𝑃
3

̇𝜉 (𝑡) ,

𝑉̇
3
(𝑡) + 2𝛼𝑉

3
(𝑡) = −(𝜉 (𝑡

𝑘
) − 𝜉 (𝑡))

𝑇

× 𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

− (ℎ − 𝜏 (𝑡)) ̇𝜉
𝑇

(𝑡)

× 𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

− (ℎ − 𝜏 (𝑡))

× (𝜉(𝑡
𝑘
) − 𝜉 (𝑡))

𝑇

𝑃
3

̇𝜉 (𝑡)

+ 2𝛼 (ℎ − 𝜏 (𝑡)) (𝜉(𝑡
𝑘
) − 𝜉(𝑡))

𝑇

× 𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡)) .

(29)

As a result, we have

𝑉̇ (𝑡) + 2𝛼𝑉 (𝑡) = 𝑉̇
1
(𝑡) + 2𝛼𝑉

1
(𝑡)

+ 𝑉̇
2
(𝑡) + 2𝛼𝑉

2
(𝑡)

+ 𝑉̇
3
(𝑡) + 2𝛼𝑉

3
(𝑡)

⩽ 2 ̇𝜉
𝑇

(𝑡) 𝑃
1
𝜉 (𝑡) + 2𝛼𝜉

𝑇

(𝑡) 𝑃
1
𝜉 (𝑡)

− 𝑒
−2𝛼𝑡

∫

𝑡

𝑡𝑘

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) 𝑒
2𝛼𝑠

𝑑𝑠

+ (ℎ − 𝜏 (𝑡)) ̇𝜉
𝑇

(𝑡) 𝑃
2

̇𝜉 (𝑡)

− (𝜉(𝑡
𝑘
) − 𝜉 (𝑡))

𝑇

× 𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

− (ℎ − 𝜏 (𝑡)) ̇𝜉
𝑇

(𝑡)

× 𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

− (ℎ − 𝜏 (𝑡)) (𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

𝑇

× 𝑃
3

̇𝜉 (𝑡) + 2𝛼 (ℎ − 𝜏 (𝑡))

× (𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

𝑇

𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡)) .

(30)

We define the following variable

𝜙
𝜉
(𝑡) =

1

𝜏 (𝑡)
∫

𝑡

𝑡𝑘

̇𝜉 (𝑠) 𝑑𝑠, (31)

and it is derived that

𝑒
−2𝛼𝑡

∫

𝑡

𝑡𝑘

𝑒
2𝛼𝑠 ̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) 𝑑𝑠

⩾ 𝑒
−2𝛼𝑡

𝑒
2𝛼𝑡𝑘 ∫

𝑡

𝑡𝑘

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠)

= 𝑒
−2𝛼(𝑡−𝑡𝑘) ∫

𝑡

𝑡𝑘

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠)

= 𝑒
−2𝛼𝜏(𝑡)

∫

𝑡

𝑡−𝜏(𝑡)

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) .

(32)

By Jensen’s inequality, it is also shown that

∫

𝑡

𝑡−𝜏(𝑡)

̇𝜉
𝑇

(𝑠) 𝑃
2

̇𝜉 (𝑠) 𝑑𝑠

⩽
1

𝜏 (𝑡)
∫

𝑡

𝑡−𝜏(𝑡)

̇𝜉
𝑇

(𝑠) 𝑑𝑠

× 𝑃
2
∫

𝑡

𝑡−𝜏(𝑡)

̇𝜉 (𝑠) 𝑑𝑠

= 𝜏 (𝑡) (
1

𝜏 (𝑡)
∫

𝑡

𝑡−𝜏(𝑡)

̇𝜉
𝑇

(𝑠) 𝑑𝑠)

× 𝑃
2
(

1

𝜏 (𝑡)
∫

𝑡

𝑡−𝜏(𝑡)

̇𝜉 (𝑠) 𝑑𝑠)

= 𝜏 (𝑡) 𝜙
𝑇

𝜉
(𝑡) 𝑃
2
𝜙
𝜉
(𝑡) .

(33)

In particular, for 𝜏(𝑡) = 0, it can be verified that the following
holds:

1

𝜏 (𝑡)
∫

𝑡

𝑡−𝜏(𝑡)

̇𝜉 (𝑠) 𝑑𝑠|
𝜏(𝑡)=0

= lim
𝜏(𝑡)→0

1

𝜏 (𝑡)
∫

𝑡

𝑡−𝜏(𝑡)

̇𝜉 (𝑠) 𝑑𝑠 = ̇𝜉 (𝑡) .

(34)
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Therefore, it is shown from (30) that

𝑉̇ (𝑡) + 2𝛼𝑉 (𝑡) ⩽ 2 ̇𝜉
𝑇

(𝑡) 𝑃
1
𝜉 (𝑡)

+ 2𝛼𝜉
𝑇

(𝑡) 𝑃
1
𝜉 (𝑡)

− 𝑒
−2𝛼𝜏(𝑡)

𝜏 (𝑡) 𝜙
𝑇

𝜉
(𝑡) 𝑃
2
𝜙
𝜉
(𝑡)

+ (ℎ − 𝜏 (𝑡)) ̇𝜉
𝑇

(𝑡) 𝑃
2

̇𝜉 (𝑡)

− (𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

𝑇

𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

− (ℎ − 𝜏 (𝑡)) ̇𝜉
𝑇

(𝑡) 𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

− (ℎ − 𝜏 (𝑡)) (𝜉(𝑡
𝑘
) − 𝜉 (𝑡))

𝑇

𝑃
3

̇𝜉 (𝑡)

+ 2𝛼 (ℎ − 𝜏 (𝑡)) (𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

𝑇

× 𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡)) .

(35)

We now insert free-weighting matrices by introducing the
following zero terms:

2 [𝜉
𝑇

(𝑡) 𝑇
𝑇

1
+ ̇𝜉
𝑇

(𝑡) 𝑇
𝑇

2
]

× [ ̇𝜉
𝑇

(𝑡) − 𝐴𝜉 (𝑡) − 𝐵𝐾𝜉 (𝑡
𝑘
)] = 0,

(36)

2 [𝜉
𝑇

(𝑡) 𝑆
𝑇

1
+ ̇𝜉
𝑇

(𝑡) 𝑆
𝑇

2
+ 𝜉
𝑇

(𝑡
𝑘
) 𝑆
𝑇

3
]

× [−𝜉 (𝑡) + 𝜉 (𝑡
𝑘
) + 𝜏 (𝑡) 𝜙

𝜉
(𝑡)] = 0,

(37)

where the free-weighting matrices 𝑇
1
, 𝑇
2
, 𝑆
1
, 𝑆
2
, and 𝑆

3
are to

be designed. Then we have

𝑉̇ (𝑡) + 2𝛼𝑉 (𝑡)

⩽ 2 ̇𝜉
𝑇

(𝑡) 𝑃
1
𝜉 (𝑡) + 2𝛼𝜉

𝑇

(𝑡) 𝑃
1
𝜉 (𝑡)

− 𝑒
−2𝛼𝜏(𝑡)

𝜏 (𝑡) 𝜙
𝑇

𝜉
(𝑡) 𝑃
2
𝜙
𝜉
(𝑡)

+ (ℎ − 𝜏 (𝑡)) ̇𝜉
𝑇

(𝑡) 𝑃
2

̇𝜉 (𝑡)

− (𝜉(𝑡
𝑘
) − 𝜉 (𝑡))

𝑇

𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

− (ℎ − 𝜏 (𝑡)) ̇𝜉
𝑇

(𝑡) 𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

− (ℎ − 𝜏 (𝑡)) (𝜉(𝑡
𝑘
) − 𝜉 (𝑡))

𝑇

𝑃
3

̇𝜉 (𝑡)

+ 2𝛼 (ℎ − 𝜏 (𝑡)) (𝜉(𝑡
𝑘
) − 𝜉(𝑡))

𝑇

× 𝑃
3
(𝜉 (𝑡
𝑘
) − 𝜉 (𝑡))

+ 2 [𝜉
𝑇

(𝑡) 𝑇
𝑇

1
+ ̇𝜉
𝑇

(𝑡) 𝑇
𝑇

2
]

× [ ̇𝜉
𝑇

(𝑡) − 𝐴𝜉 (𝑡) − 𝐵𝐾𝜉 (𝑡
𝑘
)]

× 2 [𝜉
𝑇

(𝑡) 𝑆
𝑇

1
+ ̇𝜉
𝑇

(𝑡) 𝑆
𝑇

2
+ 𝜉
𝑇

(𝑡
𝑘
) 𝑆
𝑇

3
]

× [−𝜉 (𝑡) + 𝜉 (𝑡
𝑘
) + 𝜏 (𝑡) 𝜙

𝜉
(𝑡)] .

(38)

Defining the following new augmented variables

𝜉 (𝑡) = [𝜉
𝑇

(𝑡) ̇𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡
𝑘
) 𝜙
𝑇

(𝑡)]
𝑇

,

𝜉 (𝑡) = [𝜉
𝑇

(𝑡) ̇𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡
𝑘
)]
𝑇

,

(39)

it is calculated that

𝑉̇ (𝑡) + 2𝛼𝑉 (𝑡) ⩽ 𝜉
𝑇

(𝑡) Π (𝑡) 𝜉 (𝑡) (40)

with

Π (𝑡) =

[
[
[

[

Π
11
(𝑡) Π

12
(𝑡) Π

13
(𝑡) Π

14
(𝑡)

⋆ Π
22
(𝑡) Π

23
(𝑡) 0

⋆ ⋆ Π
33
(𝑡) Π

34
(𝑡)

⋆ ⋆ ⋆ Π
44
(𝑡)

]
]
]

]

,

Π
11
(𝑡) = 2𝛼𝑃

1
− 𝑃
3
+ 2𝛼 (ℎ − 𝜏 (𝑡)) 𝑃

3

− 𝑇
𝑇

1
𝐴 − 𝐴

𝑇

𝑇
1
− 𝑆
1
− 𝑆
𝑇

1
,

Π
12
(𝑡) = 𝑃

1
+ 𝑇
𝑇

1
− (ℎ − 𝜏 (𝑡)) 𝑃

3
,

Π
13
(𝑡) = 𝑃

3
− 2𝛼 (ℎ − 𝜏 (𝑡)) 𝑃

3
− 𝑇
𝑇

1
𝐵𝐾 + 𝑆

𝑇

1
,

Π
14
(𝑡) = 𝜏 (𝑡) 𝑆

𝑇

1
,

Π
22
(𝑡) = (ℎ − 𝜏 (𝑡)) 𝑃

2
+ 𝑇
2
+ 𝑇
𝑇

2
,

Π
23
(𝑡) = − (ℎ − 𝜏 (𝑡)) 𝑃

3
− 𝑇
𝑇

2
𝐵𝐾 + 𝑆

2
+ 𝑆
𝑇

2
,

Π
33
(𝑡) = −𝑃

3
+ 2𝛼 (ℎ − 𝜏 (𝑡)) 𝑃

3
+ 𝑆
3
+ 𝑆
𝑇

3
,

Π
34
(𝑡) = 𝜏 (𝑡) 𝑆

𝑇

3
,

Π
44
(𝑡) = −𝑒

−2𝛼𝜏(𝑡)

𝜏 (𝑡) 𝑃
2
.

(41)

We now consider the matrices Φ and Φ̂ defined in (21). In
fact, it can be verified thatΦ is obtained fromΠ(𝑡)|

𝜏(𝑡)=0
with

deleting the last row and last column, and Φ̂ = Π(𝑡)|
𝜏(𝑡)=ℎ

.
Similar to the proof of Theorem 1 of [37], it can be proved
that the system (19) with 𝑑(𝑡) = 0 is exponentially stable.

Next, we deal with the input constraint along each axis.
We define

𝑅
𝑥
= [

[

1

0

0

]

]

[1 0 0] = [

[

1 0 0

0 0 0

0 0 0

]

]

,

𝑅
𝑦
= [

[

0

1

0

]

]

[0 1 0] = [

[

0 0 0

0 1 0

0 0 0

]

]

,

𝑅
𝑧
= [

[

0

0

1

]

]

[0 0 1] = [

[

0 0 0

0 0 0

0 0 1

]

]

.

(42)

Then, the thrust along each axis can be described as
󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡𝑘)

󵄨󵄨󵄨󵄨 =
󵄩󵄩󵄩󵄩𝑅𝑖𝑢 (𝑡𝑘)

󵄩󵄩󵄩󵄩 ⩽ 𝑢𝑖,max, 𝑖 = 𝑥, 𝑦, 𝑧. (43)
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Therefore, the thrust constraint (8) can be rewritten as
󵄩󵄩󵄩󵄩𝑅𝑖𝑢 (𝑡𝑘)

󵄩󵄩󵄩󵄩 ⩽ 𝑢𝑖,max, 𝑖 = 𝑥, 𝑦, 𝑧, (44)

which is equivalent to

(𝑅
𝑖
𝑢 (𝑡
𝑘
))
𝑇

𝑅
𝑖
𝑢 (𝑡
𝑘
) ⩽ 𝑢
2

𝑖,max. (45)

Furthermore, formula (45) is equal to

𝜉
𝑇

(𝑡
𝑘
)𝐾𝑅
𝑇

𝑖
𝑅
𝑖
𝐾𝜉 (𝑡
𝑘
) ⩽ 𝑢
2

𝑖,max. (46)

Based on the previous analysis, it is known that 𝑉̇(𝑡) < 0 is
guaranteed if the matrix conditions (21) hold. Subsequently,
𝑉(𝑡) < 𝑉(0) holds for any 𝑡 > 0. It is therefore reasonable to
assume that there exists a scalar 𝜌 > 0 such that

𝑉 (0) ⩽ 𝜌. (47)

Notice that 𝑉(𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) ≤ 𝑉(0) ⩽ 𝜌, and

𝑉
2
(𝑡) ≥ 0, 𝑉

3
(𝑡) ≥ 0. Therefore, it is true that

𝑉 (𝑡) ≤ 𝑉
1
(𝑡) < 𝑉 (0) ⩽ 𝜌, (48)

which implies that

𝑉
1
(𝑡) < 𝜌. (49)

Therefore, 𝜉𝑇(𝑡)𝑃
1
𝜉(𝑡) < 𝜌 holds for any 𝑡 > 0. In particular,

let 𝑡 = 𝑡
𝑘
; we have

𝜉
𝑇

(𝑡
𝑘
) 𝑃
1
𝜉 (𝑡
𝑘
) < 𝜌. (50)

Then, (46) can be guaranteed if (22) holds.We prove this fact.
In fact, if (22) holds, we have

𝜉
𝑇

(𝑡
𝑘
) 𝜌𝐾
𝑇

𝑅
𝑇

𝑖
𝑅
𝑖
𝐾𝜉 (𝑡
𝑘
) < 𝜉
𝑇

(𝑡
𝑘
) 𝑢
2

𝑖,max𝑃1𝜉 (𝑡𝑘) . (51)

By (51), we have

𝜉
𝑇

(𝑡
𝑘
) 𝜌𝐾
𝑇

𝑅
𝑇

𝑖
𝑅
𝑖
𝐾𝜉 (𝑡
𝑘
)

< 𝜉
𝑇

(𝑡
𝑘
) 𝑢
2

𝑖,max𝑃1𝜉 (𝑡𝑘) < 𝑢
2

𝑖,max𝜌,

(52)

which implies that

𝜉
𝑇

(𝑡
𝑘
)𝐾
𝑇

𝑅
𝑇

𝑖
𝑅
𝑖
𝐾𝜉 (𝑡
𝑘
) < 𝑢
2

𝑖,max. (53)

As a result, the thrust limitation (8) can be guaranteed by (22).
This completes the proof.

3.2. Disturbance Attenuation. In this subsection, we will
investigate analysis of the internal stability and 𝐻

∞
perfor-

mance index for the system (19). Defining a new augmented
vector 𝜓(𝑡) ≜ [𝜉

𝑇

(𝑡)𝑑
𝑇

(𝑡)]
𝑇, we reconsider the system (19)

with 𝑑(𝑡) ̸= 0. We introduce the performance index

𝐽 (𝑡) = ∫

𝑡

0

[𝑧
𝑇

(𝑠) 𝑧 (𝑠) − 𝛾𝑑
𝑇

(𝑠) 𝑑 (𝑠)] 𝑑𝑠, (54)

Then, (20) can be guaranteed by 𝐽(𝑡) < 0.
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Figure 1: Trajectories of 𝑥(𝑡).

Theorem 3. Consider the closed-loop system (19), given a
performance index parameter 𝛾 > 0, let the decay rate 𝛼 = 0, if
there exist positive definite matrices 𝑃

1
, 𝑃
2
, and 𝑃

3
∈ R9×9, and

matrices 𝑇
1
, 𝑇
2
, 𝑆
1
, 𝑆
2
, and 𝑆

3
∈ R9×9, such that the matrix

conditions (21), (22) and the following matrices conditions
hold:

[
Φ|
𝛼=0

Γ
1

⋆ diag {−𝛾2, −𝐼
9
}
] < 0,

[
Φ̂|
𝛼=0

Γ
2

⋆ diag {−𝛾2, −𝐼
9
}
] < 0,

(55)

Γ
1
=

[
[
[
[
[

[

−𝑇
𝑇

1
𝐵
𝑇

1
𝐶
𝑇

2

−𝑇
𝑇

2
𝐵
𝑇

1
0

0 0

]
]
]
]
]

]

,

Γ
2
=

[
[
[
[
[
[
[

[

−𝑇
𝑇

1
𝐵
𝑇

1
𝐶
𝑇

2

−𝑇
𝑇

2
𝐵
𝑇

1
0

0 0

0 0

]
]
]
]
]
]
]

]

.

(56)

Then the system (19) is internally stable, and the 𝐻
∞

perfor-
mance index (20) is achieved.

Proof. It is well known that 𝑉̇(𝑡) < 0 implies that
lim
𝑡→∞

𝑉(𝑡) = 0. We consider a new defined function

𝑉
𝐽
(𝑡) = 𝑉̇ (𝑡) + 𝑧

𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝑑
𝑇

(𝑡) 𝑑 (𝑡) . (57)

If 𝑉
𝐽
(𝑡) < 0, it is shown that

𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝑑
𝑇

(𝑡) 𝑑 (𝑡) < −𝑉̇ (𝑡) , (58)
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Figure 2: Trajectories of 𝑢(𝑡).
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Figure 3: Lyapunov function 𝑉(𝑡).

and it further implies that 𝐽(∞) = ∫
∞

0

(𝑧
𝑇

(𝑠)𝑧(𝑠) − 𝛾
2

𝑑
𝑇

(𝑠)𝑑(𝑠))𝑑𝑠 < − ∫
∞

0

𝑉̇(𝑠)𝑑𝑠 = 𝑉(∞) − 𝑉(0) = −𝑉(0) < 0.
Thatmeans, in the case𝛼 = 0, if 𝑉̇(𝑡) < 0 and𝑉

𝐽
(𝑡) < 0hold, it

can be guaranteed that the system (19) is internally stable and
the𝐻
∞
performance index (20) can be achieved successfully.

Notice that (57) can be rewritten as

𝑉̇ (𝑡) + 𝜉
𝑇

(𝑡) 𝐶
𝑇

2
𝐶
2
𝜉 (𝑡) − 𝛾

2

𝑑
𝑇

(𝑡) 𝑑 (𝑡) < 0. (59)
Recall the zero terms (37) and notice that the term (37) with
𝑑(𝑡) ̸= 0 becomes

2 [𝜉
𝑇

(𝑡) 𝑇
𝑇

1
+ ̇𝜉
𝑇

(𝑡) 𝑇
𝑇

2
]

× [ ̇𝜉
𝑇

(𝑡) − 𝐴𝜉 (𝑡) − 𝐵𝐾𝜉 (𝑡
𝑘
) − 𝐵
1
𝑑 (𝑡)] = 0,

2 [𝜉
𝑇

(𝑡) 𝑆
𝑇

1
+ ̇𝜉
𝑇

(𝑡) 𝑆
𝑇

2
+ 𝜉
𝑇

(𝑡
𝑘
) 𝑆
𝑇

3
]

× [−𝜉 (𝑡) + 𝜉 (𝑡
𝑘
) + 𝜏 (𝑡) 𝜙

𝜉
(𝑡)] = 0.

(60)

By similar derivation of Theorem 2, it can be proved that
system (19) is internally stable if the conditions (55) hold. On
the other hand, it has been proved inTheorem 2 that 𝑉̇(𝑡) < 0
is guaranteed by (21)-(22). This completes the proof.

4. Simulation

In this section, simulation results will be shown to illustrate
the usefulness and advantage of the proposed sampled-data
control approach. We consider the numerical example in [3]:
suppose that themass of the chaser is 200 kg, that is, 𝑚 = 200,
and the target is moving along a geosynchronous orbit with
radius 𝑟 = 42241 km with an orbital period of 24 h.The angle
velocity 𝑤 = 1.117 × 10.3 rad/s. The maximum thrust along
each axis is 1000N. The disturbance vector is described as
𝑑(𝑡) = [2 sin(2𝑡) 2 sin(2𝑡) 2 sin(2𝑡)]𝑇. The upper bound
of the sampling period is given as ℎ = 0.5, and the decay
rate is selected as 𝛼 = 0.02. The disturbance attenuation level
is given as 𝛾 = 0.4. In the coordinate based on the target
frame, assume that the initial state is [10, −20, 10, 0, 0, 0], and
the desired holding position is (0, −1, 0). Design the state
feedback gain 𝐾 as

𝐾 = [

[

−34.3807 0.1490 0 −97.3889 0.0051 0 −8.7062 0.0254 0

−0.1490 −34.3801 0 −0.0051 −97.3880 0 −0.0254 −8.7062 0

0 0 −57.8745 0 0 −110.0009 0 0 −16.5843

]

]

(61)

such that (𝐴 + 𝐵𝐾) is Hurwitz. Suppose that 𝑡
1
= 0, which

means that the first sampling time instant is the initial time.
The designed parameter 𝜌 is chosen as 𝜌 = 950. Solving
the conditions (21)-(22) and (55), it is found that there exists
feasible solution. Then, it can be derived that 𝑉(0) = 𝑉

1
(0) =

𝑥(0)
𝑇

𝑃
1
𝑥(0) = 835.9423. It is obvious the condition (47)

holds, which means that our obtained solution is correct and
feasible.

The simulation results are provided in Figures 1–3, which
show the effectiveness of the proposed methods. The tra-
jectories of state variable 𝑥(𝑡) with 𝑑(𝑡) = 0 are shown in
Figure 1; the trajectories of sampled-data control input 𝑢(𝑡)
with 𝑑(𝑡) = 0 are shown in Figure 2; the trajectories of
Lyapunov functions 𝑉(𝑡) with 𝑑(𝑡) = 0 are shown in
Figure 3. It can be seen that the obtained performance is
desirable.
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5. Conclusion

In this paper, we have addressed the problem of sampled-
data stabilization for spacecraft rendezvous with a time-
dependent Lyapunov approach. A discontinuous Lyapunov
functional has been constructed, the value of which does not
increase in each sampling time instant. The sufficient condi-
tions for the stability analysis and controller design are estab-
lished in terms of matrix inequality technique. Future work
will be focused onmore complicated case; that is, the effects of
network-induced phenomenon such as communication delay
and packet losses are taken into account simultaneously.
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