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Abstract This paper deals with the modeling and
analysis of narrowband mobile-to-mobile (M2M) fad-
ing channels for amplify-and-forward relay links under
line-of-sight (LOS) conditions. It is assumed that a
LOS component exists in the direct link between the
source mobile station (SMS) and the destination mobile
station (DMS), as well as in the links via the mobile
relay (MR). The proposed channel model is referred
to as the multiple-LOS second-order scattering (MLSS)
channel model. The MLSS channel model is derived
from a second-order scattering process, where the re-
ceived signal is modeled in the complex baseband as
the sum of a single and a double scattered component.
Analytical expressions are derived for the mean value,
variance, probability density function (PDF), cumu-
lative distribution function (CDF), level-crossing rate
(LCR), and average duration of fades (ADF) of the
received envelope of MLSS channels. The PDF of the
channel phase is also investigated. It is observed that
the LOS components and the relay gain have a sig-
nificant influence on the statistics of MLSS channels. It
is also shown that MLSS channels include various other
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channel models as special cases, e.g., double Rayleigh
channels, double Rice channels, single-LOS double-
scattering (SLDS) channels, non-line-of-sight (NLOS)
second-order scattering (NLSS) channels, and single-
LOS second-order scattering (SLSS) channels. The
correctness of all analytical results is confirmed by sim-
ulations using a high performance channel simulator.
Our novel MLSS channel model is of significant impor-
tance for the system level performance evaluation of
M2M communication systems in different M2M propa-
gation scenarios. Furthermore, our studies pertaining
to the fading behavior of MLSS channels are useful for
the design and development of relay-based cooperative
wireless networks.
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1 Introduction

Among several upcoming new wireless technologies,
M2M communication [1] in cooperative networks has
gained considerable attention in recent years. The
driving force behind merging M2M communication into
cooperative networks is its promise to provide a better
link quality (higher diversity gain), an improved net-
work range, and an overall increase in the system ca-
pacity. M2M cooperative wireless networks exploit the
fact that single-antenna mobile stations cooperate with
each other to share their antennas in order to form a
virtual multiple-input multiple-output (MIMO) system
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in a multi-user scenario [2]. Thus, in such networks,
cooperative diversity [3–6] is achieved by relaying the
signal transmitted from a mobile station to the final
destination using other mobile stations in the network.
However, to cope with the problems faced within the
development of such systems, a solid knowledge of the
underlying multipath fading channel characteristics is
essential.

M2M fading channels in cooperative networks can
be modeled as a sum of multiplicative fading channels.
This sum of multiplicative fading channels is also called
the multiple scattering radio propagation channel [7].
In a multiple scattering radio propagation environ-
ment, the received signal is composed of single, double,
and in general multiple scattered components [7]. The
multiple scattering concept provides a starting point for
modeling the signal envelope fluctuations of various
types of M2M channels, so that their statistical proper-
ties are in good agreement with measurement data [7–
9]. In terms of statistics, M2M fading channels for relay-
based cooperative networks are usually characterized
by the mean, variance, and probability density function
(PDF) of the envelope and phase of the received signal.
Unfortunately, the envelope and phase distributions do
not provide any information pertaining to the rate of
fading of the channel. However, a detailed knowledge
of the fading behavior of M2M fading channels is in-
dispensable to the development, performance analysis,
and test of cooperative wireless networks. The LCR
of the envelope of fading channels is an important
statistical quantity, revealing information about how
fast the received signal changes with time. It is basically
a measure to describe the average number of times the
signal envelope crosses a certain threshold level from
up to down (or from down to up) per second. An-
other important statistical quantity is the ADF, which
is defined as the expected value of the time intervals
over which the fading signal envelope remains below a
certain threshold level.

Studies pertaining to the statistical properties of
M2M fading channels under NLOS propagation con-
ditions in non-cooperative single-input single-output
(SISO) systems can be found in [1, 10]. Real-world
measurement data for narrowband M2M fading chan-
nels are studied in [11]. Analysis of correlation prop-
erties in the form of autocorrelation functions (ACFs)
and cross-correlation functions (CCFs) for M2M fad-
ing channels in non-cooperative MIMO systems are
available in [12, 13]. A variety of M2M propagation
scenarios in relay-based cooperative networks however
exists. Several models have therefore been proposed so
far to characterize the fading statistics of M2M fading
channels in such networks. Under NLOS propagation

conditions, the M2M amplify-and-forward relay fading
channel can be modeled as a double Rayleigh process
[8, 9, 14]. Experimental measurements of outdoor-to-
indoor M2M fading channels analyzed in [9] provide
us with a solid ground to believe that double Rayleigh
processes are well suited to model such channels. A
detailed analysis on the statistics of double Rayleigh
channels is presented in [14]. The authors of [15] have
addressed the impact of double Rayleigh fading on the
systems performance. Furthermore, motivated by the
studies of double Rayleigh fading channels for keyhole
channels [16], the so-called double Nakagami-m and
cascaded Weibull fading channels have been proposed
in [17] and [18], respectively. From the physical point
of view it is reasonable to extend the double Rayleigh
channel model to the double Rice channel model for
M2M amplify-and-forward relay fading channels under
LOS propagations conditions [19]. The double Rice
channels come into play when LOS components exist
in the transmission links from the SMS to the DMS
via the relay. A thorough study pertaining to the dy-
namic behavior of double Rice channels is presented
in [19]. In amplify-and-forward relay systems, profiting
from cooperative diversity schemes requires a further
extension of the double Rayleigh channel model by
adding a direct link from the SMS to the DMS. The
resulting channel, obtained by combining the SMS-
MR-DMS link and the SMS-DMS link is named as the
NLSS channel model. The signal received after travers-
ing through NLSS channels is composed of a sum of
a single and a double scattered component [20, 21].
Studies conducted for NLSS channels provide us with a
thorough analysis of the PDF and CDF of NLSS chan-
nels. However, there is a lack of information regarding
the LCR and ADF of NLSS channels in the literature.
The extension of NLSS fading channel models, when
a significant LOS component is present between the
direct SMS-DMS link, results in SLSS channels [20, 21].
SLSS channels have only been partially analyzed so far
just as NLSS channels. A detailed analysis of the sta-
tistical properties of a physically non-realistic channel
called the SLDS channel is presented in [22]. SLDS
channel models can not be justified physically, since
the scattered component of the direct SMS-DMS link
is ignored while modeling the M2M fading channels.

In this paper, we propose a novel channel model re-
ferred to as the MLSS fading channel for amplify-and-
forward relay channels under LOS conditions [23]. This
model is specifically developed for such relay-based
cooperative networks where time-division multiple-
access (TDMA) based amplify-and-forward relay pro-
tocols [24–26] are employed. Furthermore, MLSS
fading channels belong to the class of second-order
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scattering channels, where the received signal is mod-
eled in the complex baseband as a sum of the single and
the double scattered component. We have assumed that
a LOS component is present in the direct link between
the SMS and the DMS (i.e., the SMS-DMS link) as
well as in the two links via the MR (i.e., the SMS-
MR link and the MR-DMS link). For this new class
of MLSS channels, we derive analytical expressions for
the mean value, variance, PDF, CDF, LCR, and ADF
of the received envelope as well as for the PDF of the
channel phase assuming isotropic scattering conditions.
We also show that the derived analytical expressions for
MLSS processes include the corresponding expressions
for double Rayleigh, double Rice, SLDS, NLSS, and
SLSS processes as special cases. The correctness of all
analytical results is confirmed by simulations using a
high-performance channel simulator. Notice that prob-
lems pertaining to the protocol level and system level
implementation of amplify-and-forward relay networks
are out of scope of the current paper. However, the
analytical results presented in this article are important
for the development and performance evaluation of
relay-based cooperative networks in different M2M
propagation environments under LOS and NLOS
conditions.

The rest of the paper is structured as follows: In
Section 2, the reference model for amplify-and-forward
MLSS fading channels is developed. Section 3 deals
with the analysis of the statistical properties of MLSS
fading processes. Special cases of MLSS fading chan-
nels are discussed in detail in Section 4. Section 5
confirms the validity of the analytical expressions pre-
sented in Section 3 by simulations. Finally, concluding
remarks are given in Section 6.

2 The MLSS fading channel

Taking into consideration the limitations on the phys-
ical implementation of the mobile stations, i.e., the
SMS, the mobile relay, and the DMS in an amplify-and-
forward relay communication system, the mentioned
mobile stations mostly operate in half-duplex. This
means that the mobile stations cannot transmit and
receive a signal in the same frequency band at the same
time. Here, it is assumed that the SMS continuously
communicates with the DMS, i.e., the signal transmit-
ted by the SMS in each time slot is received by the
DMS. The MR, however, receives a signal from the
SMS in the first time slot and re-transmits it to the DMS
in the second time slot [24–26]. The considered commu-
nication scenario determined by an SMS, a DMS, and
an MR is shown in Fig. 1.

Fig. 1 The propagation scenario describing MLSS fading
channels

In general, under NLOS conditions, the complex
time-varying channel gain of the multiple scattering
radio propagation channel proposed in [7] can be
written as

χ (t) = α1μ
(1) (t) + α2μ

(2) (t) μ(3) (t)

+ α3μ
(4) (t) μ(5) (t) μ(6) (t) + · · · (1)

where μ(i) (t) (i = 1, 2, 3, . . .) is a zero-mean complex
Gaussian process that represents the scattered compo-
nent of the ith link and αi (i = 1, 2, 3, . . .) is a real-
valued constant that determines the contribution of the
ith scattered component. In (1), the Gaussian processes
μ(i) (t) are mutually independent. However, when the
fading channel is modeled by taking into account only
the first two terms of (1), the resulting channel is re-
ferred to as the NLSS channel [20, 21]. Here, we are
presenting an extension of the NLSS channel to the
MLSS channel by incorporating a LOS component in
all transmission links.

Starting from (1), ignoring μ(i) (t) ∀ i ≥ 4, and replac-
ing μ(i) (t) by μ(i)

ρ (t) for i = 1, 2, 3, results in

χρ (t) = μ(1)
ρ (t) + AMR μ(2)

ρ (t) μ(3)
ρ (t) (2)

where α1 = 1 and α2 = AMR. The signal model in (2)
represents well the considered propagation scenario,
where the direct transmission link from the SMS to the
DMS and the link via the MR coexist every second time
slot.
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In (2), the quantity AMR is called the relay gain,
which is a real constant quantity. In (2), μ(1)

ρ (t), μ(2)
ρ (t),

and μ(3)
ρ (t) are statistically independent non-zero-

mean complex Gaussian processes, which model the
subchannels in the SMS-DMS, SMS-MR, and MR-
DMS links, respectively (see Fig. 1). Each complex
Gaussian process μ(i)

ρ (t) = μ(i)
ρ1

(t) + jμ(i)
ρ2

(t) represents
the sum of a scattered component μ(i) (t) and a LOS
component m(i) (t), i.e., μ(i)

ρ (t) = μ(i) (t) + m(i) (t).

The scattered component μ(i) (t) = μ
(i)
1 (t) + jμ(i)

2 (t)
is modeled by a zero-mean complex Gaussian
process with variance 2σ 2

i . Furthermore, the power
spectral density (PSD) Sμ(i)μ(i) ( f ) can be proved to be
symmetrical for isotropic scattering conditions [27].
The LOS component m(i) (t) = ρie j(2π fρi t+θρi) assumes a
fixed amplitude ρi, a constant Doppler frequency fρi ,
and a constant phase θρi for i = 1, 2, 3. Let us denote
the second term in (2), which is a weighted non-zero-
mean complex double Gaussian process, as ςρ (t) =
ςρ1 (t) + jςρ2 (t) = AMR μ(2)

ρ (t) μ(3)
ρ (t). From Fig. 1, we

can realize that ςρ (t) models the overall fading in
the SMS-MR-DMS link. It is worth mentioning here
that the relay gain AMR is just a scaling factor for
the mean and variance of the complex Gaussian
process μ(3)

ρ (t), i.e., m(3) (t) = E{AMR μ(3)
ρ (t)} =

ρAMR e j(2π fρ3 t+θρ3), where ρAMR = AMR ρ3 and 2σ 2
AMR

=
Var{AMR μ(3)

ρ (t)} = 2 (AMR σ3)
2. Finally, the overall

fading process that takes into account the direct
SMS-DMS link and the SMS-DMS link via the MR
results in the complex process χρ (t) = χρ1 (t) + jχρ2 (t)
introduced in (2). The absolute value of χρ (t) defines
the MLSS process

	 (t) = |χρ (t) | = |μ(1)
ρ (t) + ςρ (t) |. (3)

Furthermore, the argument of χρ (t) introduces the
phase process 
(t)


 (t) = arg{χρ (t)}. (4)

It is important to point out here that the signal reaching
the DMS via the mobile relay is delayed by one time
slot. However, we have not introduced this time delay
in (2). One of the reasons behind this is that the time
delay is meaningless in channel modeling and system
performance analysis. Notice, a time delay only intro-
duces a phase shift in the signal. Thus, this delay does
not affect the envelope related statistical properties of
the channel, like for example, PDF, LCR, and ADF.
Besides, it is assumed that the subchannels in the SMS-
DMS, SMS-MR, and MR-DMS links are uncorrelated
(see Section 3). It can be shown that the correlation
properties of a channel, such as the cross-correlation
function (CCF), are independent of the time delay.

Meaning thereby, the observed delay here would not
influence the correlation properties of the overall
channel.

If there is no delay, then the received signal is
like a superposition of different multipath components.
These multipath components can be single-, double-,
triple-scattered components as shown in [7]. In our
system, the transmitted signal arrives at the DMS after
crossing two links. One of the links can be modeled
as a single scattered component and the other link
corresponds to a double scattered component. The su-
perposition of the multipath components is given in (2).

3 Analysis of MLSS fading channels

In this section, we analyze the statistical properties of
MLSS fading channels introduced in Section 2. The
starting point for the derivation of the analytical expres-
sions of the most important statistical quantities like the
mean value, variance, PDF, LCR, and ADF of MLSS
fading channels, as well as the PDF of the correspond-
ing phase process is the computation of the joint PDF
pχρ1 χρ2 χ̇ρ1 χ̇ρ2

(u1, u2, u̇1, u̇2; t) of the stochastic processes
χρ1 (t), χρ2 (t), χ̇ρ1 (t), and χ̇ρ2 (t) at the same time t.
Throughout this paper, the overdot indicates the time
derivative. The joint PDF pχρ1 χρ2 χ̇ρ1 χ̇ρ2

(u1, u2, u̇1, u̇2; t)
can be expressed in terms of a 4-dimensional (4D)
convolution integral as

pχρ1 χρ2 χ̇ρ1 χ̇ρ2
(u1, u2, u̇1, u̇2; t)

=
∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞
dẏ2 dẏ1 dy2 dy1 p

ςρ1 ςρ2 ς̇ρ1 ς̇ρ2 μ
(1)
ρ1 μ

(1)
ρ2 μ̇

(1)
ρ1 μ̇

(1)
ρ2

× (y1, y2, ẏ1, ẏ2, u1 − y1, u2 − y2,

u̇1 − ẏ1, u̇2 − ẏ2; t) (5)

where p
ςρ1 ςρ2 ς̇ρ1 ς̇ρ2 μ

(1)
ρ1 μ

(1)
ρ2 μ̇

(1)
ρ1 μ̇

(1)
ρ2
(y1,y2, ẏ1, ẏ2,u1, u2,u̇1,u̇2;t)

is the joint PDF of the processes μ(1)
ρ1

(t), μ(1)
ρ2

(t),
μ̇(1)

ρ1
(t), μ̇(1)

ρ2
(t), ςρ1 (t), ςρ2 (t), ς̇ρ1 (t), and ς̇ρ2 (t)

at the same time t. It is important to note that
the processes μ(1)

ρi
(t), μ̇(1)

ρi
(t), ςρi (t), and ς̇ρi (t)

(i = 1, 2) are mutually uncorrelated.1 Further-
more, the statistically independent nature of the
process pairs {μ(1)

ρi
(t) , μ̇(1)

ρi
(t)} and {ςρi (t) , ς̇ρi (t)}

1The PSD Sμ(i)μ(i) ( f ) is an even function. Then, μ(i) (t) and μ̇(i) (t)
are uncorrelated at the same point in time, because rμ(i)μ̇(i) (0) =
− d

dτ
rμ(i)μ(i) (τ ) |0 = − j2π

∞∫
−∞

f Sμ(i)μ(i) ( f ) dτ = 0. Since, μ(i) (t)

and μ̇(i) (t) are uncorrelated Gaussian processes, it follows that
μ(i) (t) and μ̇(i) (t) are also independent [28].



Ann. Telecommun. (2010) 65:391–410 395

(i=1, 2) allows us to write p
ςρ1 ςρ2 ς̇ρ1 ς̇ρ2 μ

(1)
ρ1 μ

(1)
ρ2 μ̇

(1)
ρ1 μ̇

(1)
ρ2

(
y1, y2,

ẏ1, ẏ2, u1, u2, u̇1, u̇2; t
)

as a product of the joint PDFs
p

μ
(1)
ρ1 μ

(1)
ρ2 μ̇

(1)
ρ1 μ̇

(1)
ρ2

(u1,u2, u̇1, u̇2; t) and pςρ1 ςρ2 ς̇ρ1 ς̇ρ2

(
y1, y2, ẏ1,

ẏ2; t
)
. Hence, (5) becomes

pχρ1 χρ2 χ̇ρ1 χ̇ρ2
(u1, u2, u̇1, u̇2; t)

=
∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞
dẏ2 dẏ1 dy2 dy1 pςρ1 ςρ2 ς̇ρ1 ς̇ρ2

× (y1, y2, ẏ1, ẏ2; t) p
μ

(1)
ρ1 μ

(1)
ρ2 μ̇

(1)
ρ1 μ̇

(1)
ρ2

× (u1 − y1, u2 − y2, u̇1 − ẏ1, u̇2 − ẏ2; t) (6)

where p
μ

(1)
ρ1 μ

(1)
ρ2 μ̇

(1)
ρ1 μ̇

(1)
ρ2

(u1, u2, u̇1, u̇2; t) is the joint PDF

of the processes μ(1)
ρi

(t) and μ̇(1)
ρi

(t) (i = 1, 2) at the
same time t. Using the multivariate Gaussian distrib-
ution (see, e.g., [29, Eq. (3.2)]), this joint PDF can be
written as in (8). Similarly, pςρ1 ςρ2 ς̇ρ1 ς̇ρ2

(y1, y2, ẏ1, ẏ2; t)
in (6), represents the joint PDF of the processes
ςρi (t) and ς̇ρi (t) (i = 1, 2) at the same time t. Recall
that the stochastic process ςρ (t) is a product process,
i.e., ςρ (t) = AMR μ(2)

ρ (t) μ(3)
ρ (t). Thus, exploiting the

statistical independent nature of the underlying com-
plex Gaussian processes, i.e., μ(2)

ρ (t) and μ(3)
ρ (t), we

can write the joint PDF pςρ1 ςρ2 ς̇ρ1 ς̇ρ2
(y1, y2, ẏ1, ẏ2; t) as

follows

pςρ1 ςρ2 ς̇ρ1 ς̇ρ2
(y1, y2, ẏ1, ẏ2; t)

=
∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞
dż2 dż1 dz2 dz1 |J|−1 p

μ
(2)
ρ1 μ

(2)
ρ2 μ̇

(2)
ρ1 μ̇

(2)
ρ2

×(z1, z2, ż1, ż2; t) p
μ

(3)
ρ1 μ

(3)
ρ2 μ̇

(3)
ρ1 μ̇

(3)
ρ2

(
y1

z1
,

y2

z2
,

ẏ1

ż1
,

ẏ2

ż2
; t
)

(7)

where |J| = (z2
1 + z2

2)
2 denotes the Jacobian determi-

nant and p
μ

(i)
ρ1 μ

(i)
ρ2 μ̇

(i)
ρ1 μ̇

(i)
ρ2

(z1, z2, ż1, ż2; t) (i = 2, 3) is the
multivariate Gaussian distribution [29, Eq. (3.2)]. The
solution of (7) is presented in (9).

p
μ

(1)
ρ1 μ

(1)
ρ2 μ̇

(1)
ρ1 μ̇

(1)
ρ2

(u1, u2, u̇1, u̇2; t)

= 1

(2π)2 σ 2
1 β1

e
−

(
u1−m(1)

1 (t)
)2+

(
u2−m(1)

2 (t)
)2

2σ2
1 e−

(
u̇1−ṁ(1)

1 (t)
)2+

(
u̇2−ṁ(1)

2 (t)
)2

2β1 .

(8)

pςρ1 ςρ2 ς̇ρ1 ς̇ρ2
(y1, y2, ẏ1, ẏ2; t)

=
∞∫

−∞

∞∫

−∞
dz2 dz1

e
−

(
z1−m(3)

1 (t)
)2+

(
z2−m(3)

2 (t)
)2

2σ2
AMR e−

(
ṁ(3)

1 (t)
)2+

(
ṁ(3)

2 (t)
)2

2β3

(2π)3 σ 2
2 σ 2

AMR

[
β3

(
y2

1 + y2
2

) + β2
(
z2

1 + z2
2

)2
]e

β2(z2
1+z2

2)
2
{(

ṁ(3)
1 (t)

)2+
(

ṁ(3)
2 (t)

)2
}
+β3(y2

1+y2
2)

(
ṁ(2)

1 (t)+ṁ(2)
2 (t)

)

2β2

{
β3(y2

1+y2
2)+β2(z2

1+z2
2)

2
}

× e
−

y2
1+y2

2−2
(

y2m(2)
2 (t)+y1m(2)

1 (t)
)

z1−2
(

y2m(2)
1 (t)−y1m(2)

2 (t)
)

z2+
{(

m(2)
1 (t)

)2+
(

m(2)
2 (t)

)2
}
(z2

1+z2
2)

2σ2
2 (z2

1+z2
2) e

z1ṁ(3)
2 (t)

(
−y2 ẏ1+y1 ẏ2−ṁ(2)

2 (t)y1z1+ṁ(2)
1 (t)y2z1

)

β3(y2
1+y2

2)+β2(z2
1+z2

2)
2

× e
−

ẏ2
1+ẏ2

2−2
(

ẏ2ṁ(2)
2 (t)+ẏ1ṁ(2)

1 (t)
)

z1−2
(

ẏ2ṁ(2)
1 (t)−ẏ1ṁ(2)

2 (t)
)

z2+
{(

ṁ(2)
1 (t)

)2+
(

ṁ(2)
2 (t)

)2
}
(z2

1+z2
2)

2β2(z2
1+z2

2) e

z1ṁ(3)
1 (t)

(
y1 ẏ1+y2 ẏ2−ṁ(2)

1 (t)y1z1+ṁ(2)
2 (t)y2z1

)

β3(y2
1+y2

2)+β2(z2
1+z2

2)
2

× e

2β2z2(z2
1+z2

2)
{

ṁ(3)
1 (t)

(
y2 ẏ1−y1 ẏ2+2ṁ(2)

2 (t)y1z1−2ṁ(2)
1 (t)y2z1

)
+ṁ(3)

2 (t)
(

y1 ẏ1+y2 ẏ2−2ṁ(2)
1 (t)y1z1−2ṁ(2)

2 (t)y2z1

)}
+β3(y2

1+y2
2)(ẏ2

1+ẏ2
2)

2β2(z2
1+z2

2)
{
β3(y2

1+y2
2)+β2(z2

1+z2
2)

2
}

× e

z2
2

{
ṁ(2)

1 (t)ṁ(3)
1 (t)y1+ṁ(2)

2 (t)ṁ(3)
2 (t)y1+ṁ(2)

2 (t)ṁ(3)
1 (t)y2−ṁ(2)

1 (t)ṁ(3)
2 (t)y2

}

β3(y2
1+y2

2)+β2(z2
1+z2

2)
2

e

β3(y2
1+y2

2)
[
−2ẏ2

(
ṁ(2)

2 (t)z1+ṁ(2)
1 (t)z2

)
+2ẏ1

(
−ṁ(2)

1 (t)z1+ṁ(2)
2 (t)z2

)]

2β2(z2
1+z2

2)
{
β3(y2

1+y2
2)+β2(z2

1+z2
2)

2
}

. (9)

It should be pointed out here that the joint densi-
ties p

μ
(1)
ρ1 μ

(1)
ρ2 μ̇

(1)
ρ1 μ̇

(1)
ρ2

(u1, u2, u̇1, u̇2; t) and pςρ1 ςρ2 ς̇ρ1 ς̇ρ2

(
y1, y2,

ẏ1, ẏ2; t
)

are functions of time t because of the
Doppler frequency fρi of the LOS component m(i)(t)
(i = 1, 2, 3). Only for the special case when fρi = 0 ∀ i =
1, 2, 3, the joint densities p

μ
(1)
ρ1 μ

(1)
ρ2 μ̇

(1)
ρ1 μ̇

(1)
ρ2

(u1, u2, u̇1, u̇2)

and pςρ1 ςρ2 ς̇ρ1 ς̇ρ2
(y1, y2, ẏ1, ẏ2) become independent of

time t. Furthermore, in (8) and (9), the quantity
βi (i = 1, 2, 3) is the negative curvature of the au-
tocorrelation function of the inphase and quadrature
components of μ(i) (t) (i = 1, 2, 3). Under isotropic

scattering conditions, the quantities βi (i = 1, 2, 3) can
be expressed for M2M fading channels as [10, 30]

β1 = 2 (σ1π)2
(

f 2
SMSmax

+ f 2
DMSmax

)
(10a)

β2 = 2 (σ2π)2
(

f 2
SMSmax

+ f 2
MRmax

)
(10b)

β3 = 2
(
σAMRπ

)2 (
f 2

MRmax
+ f 2

DMSmax

)
(10c)

where the symbols fSMSmax , fMRmax , and fDMSmax denote
the maximum Doppler frequency caused by the motion
of the SMS, the MR, and the DMS, respectively. Note
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that the maximum Doppler frequencies associated with
the individual M2M subchannels in the SMS-DMS,
SMS-MR, and MR-DMS links, i.e., fSMS-DMSmax , fSMS-MRmax ,
and fMR-DMSmax are greater than maximum Doppler fre-
quencies fSMSmax , fMRmax , and fDMSmax . Substituting (8)
and (9) in (6), applying the concept of transform-
ation of random variables [28], and doing tedious alge-
braic manipulations, allow us to express the joint PDF
p		̇

̇

(
x, ẋ, θ, θ̇; t

)
of the MLSS process 	 (t), and the

phase process 
(t) as well as their respective time
derivatives 	̇ (t) and 
̇ (t) as shown in (11). The re-
sulting joint PDF p		̇

̇

(
x, ẋ, θ, θ̇; t

)
is of fundamen-

tal importance, because it provides the basis for the
computation of the PDF, LCR, and ADF of MLSS
processes 	 (t) as well as the PDF of the corresponding
phase processes 
(t).

3.1 PDF of MLSS processes

The joint PDF p	
 (x, θ; t) of the MLSS process 	 (t)
and the corresponding phase process 
 (t) can be ob-
tained by solving the integrals over the joint PDF
p		̇

̇

(
x, ẋ, θ, θ̇; t

)
according to (12), i.e.,

p		̇

̇

(
x, ẋ, θ, θ̇; t

) = x2 e
− x2

2σ2
1 e−

(
ṁ(2)

1 (t)
)2+

(
ṁ(2)

2 (t)
)2

2β2 e−
(

ṁ(3)
1 (t)

)2+
(

ṁ(3)
2 (t)

)2

2β3 e−
(

ṁ(1)
1 (t)

)2+
(

ṁ(1)
2 (t)

)2

2β1

(2π)4 σ 2
1 σ 2

2 σ 2
AMR

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞
dz2 dz1 dy2 dy1

× e
−

(
z1−m(3)

1 (t)
)2+

(
z2−m(3)

2 (t)
)2

2σ2
AMR e

−
(

y1+m(1)
1 (t)

)2+
(

y2+m(1)
2 (t)

)2

2σ2
1

β1
(
z2

1 + z2
2

) + β3
(
y2

1 + y2
2

) + β2
(
z2

1 + z2
2

)2 e
r
(

y1+m(1)
1 (t)

)
cos θ+r

(
y2+m(1)

2 (t)
)

sin θ

σ2
1 e

− (z2
1+z2

2){ẋ2+(xθ̇)2}
2

{
β1(z2

1+z2
2)+β3(y2

1+y2
2)+β2(z2

1+z2
2)

2
}

× e
−

y2
1+y2

2−2
(

y2m(2)
2 (t)+y1m(2)

1 (t)
)

z1−2
(

y2m(2)
1 (t)−y1m(2)

2 (t)
)

z2+
{(

m(2)
1 (t)

)2+
(

m(2)
2 (t)

)2
}
(z2

1+z2
2)

2σ2
2 (z2

1+z2
2) e

β3(y2
1+y2

2)
{(

ṁ(1)
1 (t)

)2+
(

ṁ(1)
2 (t)

)2
}

2β1

{
β1(z2

1+z2
2)+β3(y2

1+y2
2)+β2(z2

1+z2
2)

2
}

× e

β2
2(z2

1+z2
2)

2
[
β3

{(
ṁ(1)

1 (t)
)2+

(
ṁ(1)

2 (t)
)2

}
+β1

{(
ṁ(3)

1 (t)
)2+

(
ṁ(3)

2 (t)
)2

}]
+β3β1

{(
ṁ(2)

1 (t)
)2+

(
ṁ(2)

2 (t)
)2

}
[β3(y2

1+y2
2)+β1(z2

1+z2
2)]

2β3β2β1

{
β1(z2

1+z2
2)+β3(y2

1+y2
2)+β2(z2

1+z2
2)

2
}

× e

z2
2

{
ṁ(2)

1 (t)ṁ(3)
1 (t)y1+ṁ(2)

2 (t)ṁ(3)
2 (t)y1+ṁ(2)

2 (t)ṁ(3)
1 (t)y2−ṁ(2)

1 (t)ṁ(3)
2 (t)y2−z1

(
ṁ(1)

1 (t)ṁ(2)
1 (t)+ṁ(1)

2 (t)ṁ(2)
2 (t)

)
−z2

(
ṁ(1)

2 (t)ṁ(2)
1 (t)−ṁ(1)

1 (t)ṁ(2)
2 (t)

)}

β1(z2
1+z2

2)+β3(y2
1+y2

2)+β2(z2
1+z2

2)
2

× e

z2

{
2z1

(
ṁ(2)

2 (t)ṁ(3)
1 (t)y1−ṁ(2)

1 (t)ṁ(3)
2 (t)y1−ṁ(2)

1 (t)ṁ(3)
1 (t)y2−ṁ(2)

2 (t)ṁ(3)
2 (t)y2

)
−z2

1

(
ṁ(1)

2 (t)ṁ(2)
1 (t)−ṁ(1)

1 (t)ṁ(2)
2 (t)

)
+
(

ṁ(1)
2 (t)ṁ(3)

1 (t)−ṁ(1)
1 (t)ṁ(3)

2 (t)
)

y1

}

β1(z2
1+z2

2)+β3(y2
1+y2

2)+β2(z2
1+z2

2)
2

× e

z2
1

(
ṁ(2)

1 (t)ṁ(3)
2 (t)y2−ṁ(2)

1 (t)ṁ(3)
1 (t)y1−ṁ(2)

2 (t)ṁ(3)
2 (t)y1−ṁ(2)

2 (t)ṁ(3)
1 (t)y2

)
−z1

(
ṁ(1)

1 (t)ṁ(3)
1 (t)y1+ṁ(1)

2 (t)ṁ(3)
2 (t)y1+ṁ(1)

2 (t)ṁ(3)
1 (t)y2−ṁ(1)

1 (t)ṁ(3)
2 (t)y2

)

β1(z2
1+z2

2)+β3(y2
1+y2

2)+β2(z2
1+z2

2)
2

× e
− z3

1

(
ṁ(1)

1 (t)ṁ(2)
1 (t)+ṁ(1)

2 (t)ṁ(2)
2 (t)

)
+
{

ṁ(3)
1 (t)(y2z1−y1z2)+ṁ(3)

2 (t)(y1z1+y2z2)+
(

ṁ(1)
2 (t)+ṁ(2)

2 (t)z1+ṁ(2)
1 (t)z2

)
(z2

1+z2
2)

}
(xθ̇ cos θ+ẋ sin θ)

β1(z2
1+z2

2)+β3(y2
1+y2

2)+β2(z2
1+z2

2)
2

× e

{
ṁ(3)

2 (t)(y1z2−y2z1)+ṁ(3)
1 (t)(y1z1+y2z2)+

(
ṁ(1)

1 (t)+ṁ(2)
1 (t)z1−ṁ(2)

2 (t)z2

)
(z2

1+z2
2)

}
(ẋ cos θ−xθ̇ sin θ)−

{
ṁ(1)

2 (t)ṁ(3)
2 (t)+ṁ(1)

1 (t)ṁ(3)
1 (t)

}
y2z2

β1(z2
1+z2

2)+β3(y2
1+y2

2)+β2(z2
1+z2

2)
2

× e

β1(z2
1+z2

2)
{(

ṁ(3)
1 (t)

)2+
(

ṁ(3)
2 (t)

)2}

2β3

{
β1(z2

1+z2
2)+β3(y2

1+y2
2)+β2(z2

1+z2
2)

2
}
, x ≥ 0, |ẋ| < ∞, |θ | ≤ π, |θ̇ | < ∞ . (11)

p	
 (x, θ; t) =
∞∫

−∞

∞∫

−∞
p		̇

̇

(
x, ẋ, θ, θ̇; t

)
dθ̇ dẋ (12)

for x ≥ 0 and |θ | ≤ π . Substituting (11) in (12) results in
the following expression

p	
 (x, θ; t) = x e
x2

2σ2
1

(2π)2 σ 2
1 σ 2

2 σ 2
AMR

∞∫

0

∞∫

0

π∫

−π

ω

ν
e
− (ω/ν)2+ρ2

2
2σ2

2 e
−

ν2+ρ2
AMR

2σ2
AMR e

− g1(ω,ψ;t)
2σ2

1 e− xg3(ω,θ,ψ;t)
σ1 I0

(√
g2 (ω, ν, ψ; t)

)

dψ dω dν, x ≥ 0, |θ | ≤ π (13)
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where

g1(ω, ψ; t) = ω2 + ρ2
1 + 2ρ1ω cos

(
ψ − 2π fρ1 t − θρ1

)
(14a)

g2 (ω, ν, ψ; t) =
(

ρ2ω

σ 2
2 ν

)2

+
(

ρAMRν

σ 2
AMR

)2

+2ρ2ρAMRω

σ 2
2 σ 2

AMR

cos
[
ψ − 2π

(
fρ2 fρ3

)
t

− (
θρ2 + θρ3

)]
(14b)

g3(ω, θ, ψ; t) = ρ1 cos
(
θ−2π fρ1 t−θρ1

)+ω cos (θ−ψ)

σ1
.

(14c)

In (13), I0 (·) is the zeroth-order modified Bessel func-
tion of the first kind [31].

The PDF p	 (x) of MLSS processes 	 (t) can be ob-
tained by integrating (13) over θ in the interval [−π, π ].
Hence,

p	(x) = x e
− x2

2σ2
1

2π σ 2
1 σ 2

2 σ 2
AMR

∞∫

0

∞∫

0

dν dω
ω

ν
e
− (ω/ν)2+ρ2

2
2σ2

2 e
−

ν2+ρ2
AMR

2σ2
AMR

×
π∫

−π

dψ e
− g4(ω,ψ)

2σ2
1 I0

(
x

σ 2
1

√
g4(ω, ψ)

)
I0

(√
g5(ω, ν, ψ)

)

(15)

for x ≥ 0, where

g4 (ω, ψ)=ω2 + ρ2
1 + 2ρ1ω cos (ψ) and

g5 (ω, ν, ψ)=
(

ρ2ω

σ 2
2 ν

)2

+
(
ρAMRν

σ 2
AMR

)2

+ 2ρ2ρAMRω

σ 2
2 σ 2

AMR

cos (ψ).

(16a,b)

It is worth mentioning that the joint PDF p	
 (x, θ; t)
in (13) is dependent on time t. Nevertheless, the PDF
p	 (x) in (15) is independent of time t showing that
MLSS processes 	 (t) are first order stationary.

The significance of the PDF p	 (x) lies in the fact
that it can easily be utilized in the link level perfor-
mance analysis of relay-based M2M communication
systems. The bit error probability (BEP) or the symbol
error probability (SEP) and the channel capacity are
a few measures to evaluate the performance of com-
munication systems at the link level. The evaluation of
the BEP, the SEP, and the channel capacity usually
requires the knowledge of the PDF of the signal-to-
noise ratio (SNR). Thus, given the PDF p	 (x) of 	 (t),

the computation of the PDF of the SNR is nothing but
transformation of random variables.

Integrating (13) over x in the interval [ 0, ∞ ) results
in the following expression for the PDF p
 (θ; t) of the
phase process 
(t)

p
 (θ; t)

=
∞∫

0

∞∫

0

π∫

−π

dψ dω dν
ω

ν

e
− (ω/ν)2+ρ2

2
2σ2

2 e
−

ν2+ρ2
AMR

2σ2
AMR

(2π)2 σ 2
2 σ 2

AMR

e
− g1(ω,ψ;t)

2σ2
1

× I0

(√
g2 (ω, ν, ψ; t)

)

×
[

1 +
√

π

2
g3 (ω, θ, ψ; t) e

1
2 g2

3(ω,θ,ψ;t)

×
{

1 + �

(
g3 (ω, θ, ψ; t)√

2

)}]
, |θ | ≤ π (17)

where g1 (·, ·; t), g2 (·, ·, ·; t), and g3 (·, ·, ·; t) are defined
in (14a), (14b), and (14c), respectively. In (17), �(·)
represents the error function [31, Eq. (8.250.1)]. From
(17), it is obvious that the phase process 
 (t) is not
strict sense stationary, because the density p
 (θ; t)
is a function of time t. This time dependency of the
PDF p
 (θ; t) is due to the Doppler frequency fρi of
the LOS component m(i)(t) (i = 1, 2, 3). However, for
the special case when fρi = 0, ρi �= 0 (i = 1, 2, 3), the
phase process 
(t) becomes a first order stationary
process.

3.2 CDF of MLSS processes

The CDF F	− (r) of MLSS processes 	 (t) can be
obtained by using [28, Eqs. (4.1), (4.6), (4.16)]

F	− (r) =
r∫

−∞
p	 (x) dx = 1 −

∞∫

r

p	 (x) dx, r ≥ 0 (18)

where p	 (x) is the PDF as given by (15). Substituting
(15) in (18), allows us to write the final expression of
the CDF F	− (r) of MLSS processes 	 (t) as

F	−(r) = 1 − 1

(2π)2 σ 2
2 σ 2

AMR

∞∫

0

∞∫

0

π∫

−π

dψ dω dν

×ω

ν
e
− (ω/ν)2+ρ2

2
2σ2

2 e
−

ν2+ρ2
AMR

2σ2
AMR

×Q1

(√
g4 (ω, ψ)

σ1
,

r
σ1

)
I0

(√
g5 (ω, ν, ψ)

)

(19)
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for r ≥ 0. In (19), g4 (·, ·) and g5 (·, ·, ·) are the functions
defined in (16a,b), respectively, whereas Qm (a, b) is
the generalized Marcum Q-function [30].

3.3 Mean value and variance of MLSS processes

The PDF of a stochastic process plays a vital role in
characterizing the process. However, the information
provided by the PDF can also be summarized with
the help of the expected value (mean value) and the
variance of the stochastic process. The expected value
m	 of MLSS processes 	 (t) can be obtained by sub-
stituting (15) in [28, Eq. (5.44)] and performing some
mathematical manipulations, i.e.,

m	 =
√

π

2

σ1

(2π)2 σ 2
2 σ 2

AMR

×
∞∫

0

∞∫

0

π∫

−π

dψ dω dν
ω

ν
e
− (ω/ν)2+ρ2

2
2σ2

2 e
−

ω2+ρ2
AMR

2σ2
AMR e

− 1
2

(
g4(ω,ψ)

2σ2
1

)

×
{(

1 + g4 (ω, ψ)

2σ 2
1

)
I0

(
g4 (ω, ψ)

4σ 2
1

)

+
(

g4 (ω, ψ)

2σ 2
1

)
I1

(
g4 (ω, ψ)

4σ 2
1

)}
I0

(√
g5 (ω, ν, ψ)

)

(20)

where g4 (·, ·) and g5 (·, ·, ·) are defined in (16a,b),
respectively.

The difference of the mean power E{	2 (t)} and
the squared mean value m2

	 of MLSS processes 	 (t)
defines its variance σ 2

	 [28, Eq. (5.61)], i.e.,σ 2
	 =

E{	2(t)} − m2
	. Note that E{·} is the expected value op-

erator. Using (15) and [28, Eq. (5.67)], the mean power
E{	2 (t)} of MLSS processes 	 (t) can be expressed as

E{	2 (t)} =
∞∫

0

x2 p	 (x) dx

= 1

(2π) σ 2
2 σ 2

AMR

∞∫

0

∞∫

0

ω

ν
e
− (ω/ν)2+ρ2

2
2σ2

2 e
−

ν2+ρ2
AMR

2σ2
AMR

×
π∫

−π

{
2σ 2

1 + g4 (ω, ψ)
}

×I0

(√
g5 (ω, ν, ψ)

)
dψ dω dν. (21)

Thus, the variance σ 2
	 of MLSS processes 	 (t) can be

computed by using (21) and (20).

3.4 LCR of MLSS processes

The LCR of the received envelope of mobile fading
channels is a measure to describe the average number
of times the envelope crosses a certain threshold level r
from up to down (or vice versa) per second. The LCR
N	 (r) of MLSS processes 	 (t) can be obtained using
[32]

N	(r) =
∞∫

0

ẋp		̇(r, ẋ) dẋ (22)

where p		̇(x, ẋ) is the joint PDF of the MLSS process
	(t) and its corresponding time derivative 	̇(t) at the
same time t. From (11), the joint PDF p		̇ (x, ẋ) can be
obtained by integrating over the undesirable variables
θ and θ̇ , i.e.,

p		̇(x, ẋ)=
π∫

−π

∞∫

−∞
p		̇

̇

(
x, ẋ, θ, θ̇; t

)
dθ̇ dθ,

x ≥ 0, |ẋ| < ∞. (23)

In (11), after performing the transformation of ran-
dom variables from rectangular to polar coordinates,
substituting the values of m(i)

k (t) as well as ṁ(i)
k (t)

(i = 1, 2, 3 and k = 1, 2), and doing some lengthy com-
putations, the joint PDF p		̇ (x, ẋ) results in the follow-
ing expression

p		̇(x, ẋ) = x e
− x2

2σ2
1√

2π (2π)3 σ 2
1 σ 2

2 σ 2
AMR

×
∞∫

0

∞∫

0

π∫

−π

π∫

−π

π∫

−π

dθ dψ dφ dω dν
ωe

− g4(ω,ψ)

2σ2
1√

β (ω, ν)
e

xg6(ω,θ,ψ)

σ2
1 e

− g7(ω,ν,ψ,φ)

2σ2
2

× e
− g8(ν,φ)

2σ2
AMR e− 1

2 g9(ω,ν,θ,ψ,φ)e− ẋ2ν2

2β(ω,ν) e− ẋν√
β(ω,ν)

g9(ω,ν,θ,ψ,φ)
,

x ≥ 0, |ẋ| < ∞ (24)

where

β (ω, ν) = β1ν
2 + β3ω

2 + β2ν
4 (25a)

g6 (ω, θ, ψ) = ρ1 cos (θ) + ω cos (θ − ψ) (25b)

g7 (ω, ν, ψ, φ) = (ω/ν)2 − 2 (ω/ν) ρ2 cos (ψ − φ) + ρ2
2

(25c)

g8 (ν, φ) = ν2 − 2νρAMR cos (φ) + ρ2
AMR

(25d)

g9(ω, ν, θ, ψ,φ)= 2π fρ2ρ2ν
2 sin(θ−φ)+2π fρ1ρ1ν sin (θ)√

β (w, ν)

+2π fρ3ρAMRω sin (θ − ψ + φ)√
β (ω, ν)

· (25e)
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Substituting (24) in (22) and further doing some tedious
mathematical manipulations, the LCR N	 (r) of MLSS
processes 	 (t) can be expressed as

N	 (r) =
√

2π r e
− r2

2σ2
1

(2π)4 σ 2
1 σ 2

2 σ 2
AMR

∞∫

0

∞∫

0

π∫

−π

π∫

−π

π∫

−π

dθ dψ dφ

×√
β (ω, ν)

ω

ν2
e

rg6(ω,θ,ψ)

σ2
1 e

− g4(ω,ψ)

2σ2
1 e

− g7(ω,ν,ψ,φ)

2σ2
2 e

− g8(ν,φ)

2σ2
AMR

×
[

e− 1
2 g2

9(ω,ν,θ,ψ,φ) +
√

π

2
g9(ω, ν, θ, ψ, φ)

×
{

1+�

(
g9(ω, ν, θ, ψ, φ)√

2

)}]
dω dν (26)

where g4 (·, ·), β (·, ·), g6 (·, ·, ·), g7 (·, ·, ·, ·), g8 (·, ·), and
g9 (·, ·, ·, ·, ·) are defined in (16a,b) and (25a)–(25e),
respectively.

3.5 ADF of MLSS processes

The ADF of mobile fading channels is a measure to
quantify how long the received envelope remains in
average below a certain threshold level r. The ADF
T	− (r) of MLSS processes 	 (t) can be obtained from
the ratio of the CDF F	− (r) and the LCR N	 (r) [32],
i.e.,

T	− (r) = F	− (r)
N	 (r)

. (27)

The ADF T	− (r) of MLSS processes 	 (t) can easily be
computed by substituting (19) and (26) in (27).

Note that MLSS fading channels belong to the class
of time-variant multipath propagation and fading chan-
nels. Such channels exhibit bursty error characteristics
[33]. The fading channel often causes the signal to fall
below a certain threshold noise level, which in turn
results in error bursts. The error bursts produced as
a consequence of fading can be combated by using
interleaving techniques [33, 34] and coding techniques
[35, 36]. The PDF p	 (x) of 	 (t) is insufficient to be
utilized in developing robust interleaving and coding
schemes, as it does not give any insight into the rate of
fading. The statistical quantities such as the LCR N	 (r)
and the ADF T	− (r) describe the fading behavior of
MLSS processes 	 (t). Studies pertaining to the LCR
N	 (r) and the ADF T	− (r) of 	 (t) are thus quite
useful in the design as well as optimization of coding
and interleaving schemes for M2M fading channels in
the relay links in cooperative networks.

4 Special cases of MLSS channels

The MLSS fading channel model developed in Sec-
tion 2 incorporates at least five other fading processes
as special cases. These special cases include double Rice
[19], double Rayleigh [9, 14], SLDS [22], SLSS [20, 21],
and NLSS [20, 21] fading channels. In this section, we
will discuss the conditions under which MLSS fading
processes reduce to any of the embedded processes.
Furthermore, in order to demonstrate the flexibility
of the analytical expression presented in Section 3,
the expressions for the PDF, CDF, and LCR of all
the above mentioned processes are also presented in
this section. The proofs for the reduction of the PDF
of MLSS processes to that of the stochastic processes
mentioned above are included in Appendices A–E.

4.1 The double Rice process

The double Rice process is obtained by removing
the direct SMS-DMS transmission link and consider-
ing LOS propagation conditions in the SMS-MR-DMS
transmission link [19]. Thus, under the consideration
when μ(1)

ρ1
(t) → 0, i.e., ρ1 = 0 and σ 2

1 → 0, and choosing
without loss of generality AMR = 1, the MLSS process in
(2) reduces to

χρ (t)

∣∣∣∣∣∣∣
ρ1=0
AMR=1
σ 2

1 →0

= μ(2)
ρ (t) μ(3)

ρ (t) . (28)

Note that even though the direct SMS-DMS transmis-
sion link is not present, still the transmitted signal is
available at the DMS every second time slot according
to the amplify-and-forward relay protocol considered.
The absolute value of the stochastic process in (28)
defines the double Rice process, i.e.,

	 (t)

∣∣∣∣∣∣∣
ρ1=0
AMR=1
σ 2

1 →0

=

∣∣∣∣∣∣∣
χρ (t)

∣∣∣∣∣∣∣
ρ1=0
AMR=1
σ 2

1 →0

∣∣∣∣∣∣∣
= ∣∣μ(2)

ρ (t) μ(3)
ρ (t)

∣∣ . (29)

Substituting ρ1 = 0 and AMR = 1 in (15), (19), and (26)
and taking the limit σ 2

1 → 0, reduce the PDF, LCR, and
ADF of the MLSS processes to the following corre-
sponding expressions for double Rice processes:

p	(x)

∣∣∣∣∣∣∣
ρ1=0
AMR=1
σ 2

1 →0

= x

σ 2
2 σ 2

AMR

∞∫

0

1

ν
e
− (x/ν)2+ρ2

2
2σ2

2 e
−

ν2+ρ2
AMR

2σ2
AMR

×I0

(
xρ2

νσ 2
2

)
I0

(
νρAMR

σ 2
AMR

)
dν, x ≥ 0 (30)
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F	− (r)

∣∣∣∣∣∣∣
ρ1=0
AMR=1
σ 2

1 →0

= 1 −
∞∫

0

ν

σ 2
AMR

e
−

ν2+ρ2
AMR

2σ2
AMR I0

(
νρAMR

σ 2
AMR

)

×Q1

(
ρ2

σ2
,

r
νσ2

)
dν r ≥ 0 (31)

N	(r)

∣∣∣∣∣∣∣
ρ1=0
AMR=1
σ 2

1 →0

= r

(2π)2
√

2πσ 2
2 σ 2

AMR

×
∞∫

0

1

ν2

√
β2ν4 + β3r2e

− (r/ν)2+ρ2
2

2σ2
2 e

−
ν2+ρ2

AMR
2σ2

AMR

×
π∫

−π

e
(r/ν)ρ2 cos(φ−ψ)

σ2
2

π∫

−π

e

νρAMR
cos φ

σ2
AMR e− 1

2 g2
10(r,ν,φ,ψ)

×
(

1 +
√

π

2
g10 (r, ν, φ, ψ) e

1
2 g2

10(r,ν,φ,ψ)

×
{

1 + �

(
g10 (r, ν, φ, ψ)

2

)})
dφ dψ dν

(32)

where

g10 (r, ν, φ, ψ) = 2π fρ3rρ3 sin (φ − ψ) − 2π fρ2ν
2ρ2 sin φ√

β2ν4 + β3r2
.

(33)

The proof of (30) can be found in Appendix A, whereas
the proofs of (31) and (32) have been omitted for
reasons of brevity. We notice that the results in (30)–
(33) have first been presented in the study conducted
for double Rice processes in [19].

4.2 The double Rayleigh process

Considering NLOS propagation conditions in the SMS-
MR-DMS link, when there is no direct transmission
link between the SMS and the DMS, a double Rayleigh
process comes into play. Thus, substituting ρ2 = ρ3 = 0
in (29), results in the double Rayleigh process

	 (t)

∣∣∣∣∣∣∣
ρ1,ρ2,ρ3=0
AMR=1
σ 2

1 →0

=

∣∣∣∣∣∣∣
χρ (t)

∣∣∣∣∣∣∣
ρ1,ρ2,ρ3=0
AMR=1
σ 2

1 →0

∣∣∣∣∣∣∣
= |μ(2) (t) μ(3) (t) |.

(34)

Applying the same conditions mentioned above on
(15), (19), and (26) allows us to obtain the PDF, CDF,
and LCR of double Rayleigh processes as follows:

p	(x)

∣∣∣∣∣∣∣
ρ1,ρ2,ρ3=0
AMR=1
σ 2

1 →0

= x

σ 2
2 σ 2

AMR

K0

(
x

σ2σAMR

)
, x ≥ 0 (35)

F	− (r)

∣∣∣∣∣∣∣
ρ1,ρ2,ρ3=0
AMR=1
σ 2

1 →0

= 1 − r
σ2σ3

K1

(
r

σ2σ3

)
r ≥ 0 (36)

N	(r)

∣∣∣∣∣∣∣
ρ1,ρ2,ρ3=0
AMR=1
σ 2

1 →0

= r√
2πσ 2

2 σ 2
AMR

×
∞∫

0

√
β3 r2 + β2 v4

v2
e
− (r/v)2

2σ2
2 e

− v2

2σ2
AMR dv .

(37)

The proof of (35) can be found in Appendix B. The
expressions presented in (35)–(37) can be found in the
literature (see, e.g., [9, 14]).

4.3 The SLDS process

The MLSS fading process tends to the SLDS fading
process if a LOS component is considered only in the
direct transmission link from the SMS to the DMS,
ignoring the scattered component of the link [22]. The
stochastic process associated with SLDS processes can
be expressed by substituting ρ2 = ρ3 = 0, AMR = 1, and
taking the limit σ 2

1 → 0 in (2) as follows

χρ (t)

∣∣∣∣∣∣∣
ρ2,ρ3=0
AMR=1
σ 2

1 →0

= m(1) (t) + μ(2) (t) μ(3) (t) . (38)

The absolute value of the stochastic process in (38)
defines the SLDS process, i.e.,

	 (t)

∣∣∣∣∣∣∣
ρ2,ρ3=0
AMR=1
σ 2

1 →0

=

∣∣∣∣∣∣∣
χρ (t)

∣∣∣∣∣∣∣
ρ2,ρ3=0
AMR=1
σ 2

1 →0

∣∣∣∣∣∣∣
= ∣∣m(1) (t) + μ(2) (t) μ(3) (t)

∣∣ . (39)

Substituting ρ2 = ρ3 = 0, AMR = 1, and taking the limit
σ 2

1 → 0 in (15), (19), and (26), allows us to obtain the
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PDF, CDF, and LCR of SLDS processes in the form
[22]

p	(x)

∣∣∣∣∣∣∣
ρ2,ρ3=0
AMR=1
σ 2

1 →0

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x

σ 2
2 σ 2

AMR

I0

(
x

σ2σAMR

)
K0

(
ρ1

σ2σAMR

)
, x < ρ1

x

σ 2
2 σ 2

AMR

K0

(
x

σ2σAMR

)
I0

(
ρ1

σ2σAMR

)
, x ≥ ρ1

(40)

F	− (r)

∣∣∣∣∣∣∣
ρ2,ρ3=0
AMR=1
σ 2

1 →0

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r
σ2σ3

K0

(
ρ1

σ2σ3

)
I1

(
r

σ2σ3

)
, r < ρ1

1 − r
σ1σ2

I0

(
ρ1

σ2σ3

)
K1

(
r

σ2σ3

)
, r ≥ ρ1

(41)

N	 (r)

∣∣∣∣∣∣∣
ρ2,ρ3=0
AMR=1
σ 2

1 →0

=
√

2π r

(2π)2 σ 2
2 σ 2

AMR

∞∫

0

π∫

−π

dθ dv

×
√

β3 g11 (r, θ) + β2ν4

ν2
e
− ν2

2σ2
AMR e

− g11(r,θ)

2ν2σ2
2

×
(
e− 1

2 g2
12(ν,θ)+

√
π

2
g12 (ν, θ)

×
{
1+�

(
g12 (ν, θ)√

2

)})
(42)

respectively, where

g11 (r, θ) = r2 + ρ2
1 − 2rρ1 cos θ and

g12 (ν, θ) = 2π fρ1 ρ1 ν sin θ√
β3 g11 (r, θ) + β2ν4

. (43a,b)

The proof of (40) is given in Appendix C.

4.4 The SLSS process

The MLSS process tends to the SLSS process if NLOS
propagation conditions are assumed in the transmission
link between the SMS and the DMS via the MR. Thus,
for ρ2 = ρ3 = 0 and AMR = 1, (2) reduces to the stochas-
tic process given by

χρ (t)

∣∣∣∣ρ2,ρ3=0
AMR=1

= μ(1)
ρ (t) + μ(2) (t) μ(3) (t) . (44)

Taking the absolute value of the stochastic process in
(44) is referred to as the SLSS process, i.e.,

	 (t)

∣∣∣∣ρ2,ρ3=0
AMR=1

=
∣∣∣∣χρ (t)

∣∣∣∣ρ2,ρ3=0
AMR=1

∣∣∣∣
= ∣∣μ(1)

ρ (t) + μ(2) (t) μ(3) (t)
∣∣ . (45)

The PDF, CDF, and LCR of SLSS processes can be
obtained by substituting ρ2, ρ3 = 0 and AMR = 1 in (15),
(19), and (26), respectively, i.e.,

p	(x)

∣∣∣∣ρ2,ρ3=0
AMR=1

= x

2π σ 2
1 σ 2

2 σ 2
AMR

∞∫

0

π∫

−π

dθ dω ω e
− ω2

2σ2
1 e

− g11(x,θ)

2σ2
1

×K0

(
ω

σ2σAMR

)
I0

(
ω

σ 2
1

√
g11(x, θ)

)
, x ≥ 0

(46)

F	− (r)

∣∣∣∣ρ2,ρ3=0
AMR=1

= 1 − 1

(2π) σ 2
2 σ 2

3 σ 2
1

∞∫

0

dω ω e
− ω2

2σ2
1

× K0

(
ω

σ2σ3

) π∫

−π

∞∫

r

dθ dx x e
− g11(x,θ)

2σ2
1

×I0

(
ω

σ 2
1

√
g11(x, θ)

)
, r ≥ 0 (47)

N	 (r)

∣∣∣∣ρ2,ρ3=0
AMR=1

=
√

2πr

(2π)2 σ 2
1 σ 2

2 σ 2
AMR

∞∫

0

∞∫

0

π∫

−π

dθ dω dν

× ω

ν2

√
β (ω, ν)e

− ν2

2σ2
AMR e

− ω2

2σ2
1 e

− (ω/ν)2

2σ2
2 e

− g11(r,θ)

2σ2
1

× I0

(
ω

σ 2
1

√
g11(r, θ)

)[
e− 1

2 g2
13(ω,ν,θ) +

√
π

2
g13 (ω, ν, θ)

×
{

1 + �

(
g13 (ω, ν, θ)√

2

)}]
(48)

where

g13 (ω, ν, θ) = 2π fρ1 ρ1 ν sin θ√
β (ω, ν)

. (49)

The proof of (46) is given in Appendix D. The ex-
pressions for the PDF and CDF of the SLSS process
presented in (46) and (47), respectively, can be found
in the literature [20, 21]. However, the expression for
the LCR of the SLSS process given in (48) is one of our
side results.
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4.5 The NLSS process

The NLSS process assumes NLOS propagation condi-
tions in both the transmission links, i.e., the direct SMS-
DMS link and the SMS-MR-DMS link. This implies
that ρ1 = ρ2 = ρ3 = 0 and AMR = 1. Substituting ρ1 = 0
in (45) gives the NLSS process, i.e.,

	 (t)

∣∣∣∣ρ1,ρ2,ρ3=0
AMR=1

=
∣∣∣∣χρ (t)

∣∣∣∣ρ1,ρ2,ρ3=0
AMR=1

∣∣∣∣
= ∣∣μ(1) (t) + μ(2) (t) μ(3) (t)

∣∣ . (50)

The PDF, CDF, and LCR of NLSS processes can be de-
rived from the PDF, CDF, and LCR of MLSS processes
by solving (15), (19), and (26), respectively, for ρ1 =
ρ2 = ρ3 = 0 and AMR = 1, i.e.,

p	(x)

∣∣∣∣ρ1,ρ2,ρ3=0
AMR=1

= x e
− x2

2σ2
1

σ 2
1 σ 2

2 σ 2
AMR

∞∫

0

ω e
− ω2

2σ2
1 K0

(
ω

σ2σAMR

)

×I0

(
ω

σ 2
1

x
)

dω, x ≥ 0 (51)

F	− (r)

∣∣∣∣ρ1,ρ2,ρ3=0
AMR=1

= 1 − 1

σ 2
2 σ 2

3

∞∫

0

ω K0

(
ω

σ2σ3

)

×Q1

(
ω

σ1
,

r
σ1

)
dω, r ≥ 0 (52)

N	 (r)

∣∣∣∣ρ1,ρ2,ρ3=0
AMR=1

=
√

2πr e
−r2

2σ2
1

(2π)2 σ 2
1 σ 2

2 σ 2
AMR

∞∫

0

∞∫

0

π∫

−π

dθ
ω

ν2

×√
β (ω, ν)e

− v2

2σ2
AMR e

− ω2

2σ2
1 e

− (ω/ν)2

2σ2
2

×I0

(
rω

σ 2
1

)
dω dν . (53)

The proof of (51) is given in Appendix E. To the best
of our knowledge, analytical expressions for the LCR of
NLSS processes have not yet been published. However,
the PDF and CDF of NLSS processes are well-studied
functions (see, e.g., [20, 21]).

5 Numerical results

The purpose of this section is twofold. Firstly, to il-
lustrate the important theoretical results by evaluating
the expressions in (15), (17), (19), (26), and (27). Sec-

ondly, we will confirm the correctness of the theoret-
ical results with the help of simulations. The concept
of sum-of-sinusoids (SOS) [32, 37] was exploited to
simulate the underlying uncorrelated Gaussian noise
processes of the overall MLSS process. The motiva-
tion to select an SOS-based channel simulator is that
such simulators are widely acknowledged to be simple
but efficient to model mobile radio fading channels
under isotropic scattering conditions [30]. In addition,
the concept of SOS has found its application in the
design of channel simulators for temporally correlated
frequency-nonselective channels [30, 38], frequency-
selective channels [39, 40], and space-selective channels
[12, 41–43]. However, in order to reproduce the desired
channel characteristics in simulations, a careful selec-
tion of the simulator parameters is essential. For this
reason, several methods for an accurate computation
of the model parameters of SOS simulators have been
developed [39, 40, 44–47]. One such method for the
parameter computation, which is referred to as the gen-
eralized method of exact Doppler spread (GMEDS1)
[48], has been employed in this work. Using the
GMEDS1, it is possible to generate any number of
uncorrelated Gaussian waveforms without increasing
the complexity of the channel simulator. Each Gaussian
process μ(i) (t) was simulated using N(i)

1 = 20 and N(i)
2 =

21, where N(i)
1 and N(i)

2 are the number of sinusoids re-
quired to simulate the inphase and quadrature compo-
nents of μ(i) (t), respectively. It has been shown in [30]
that with N(i)

l ≥ 7 where l = 1, 2, the simulated distrib-
ution of

∣∣μ(i) (t)
∣∣ closely approximates the Rayleigh dis-

tribution. The variance of the inphase and quadrature
components of μ(i) (t) is equal to σ 2

i = 1 for i = 1, 2, 3,
unless stated otherwise. The Doppler frequencies, i.e.,
fSMSmax , fMRmax , and fDMSmax , were set to 91 Hz, 75 Hz, and
110 Hz, respectively. Whereas, the Doppler frequencies
of the three LOS components, i.e., fρ1 , fρ2 , and fρ3 ,
were set to 166 Hz, 185 Hz, and 201 Hz, respectively.
For simplicity, the amplitudes of the three LOS com-
ponents ρ1, ρ2, and ρ3 are assumed to be equal, i.e.,
ρ1 = ρ2 = ρ3 = ρ and the relay gain AMR = 1, unless
stated otherwise.

In the following, the theory is verified for many
different propagation scenarios and the results pre-
sented in Figs. 2–6 show a good fit between the analyti-
cal and simulation results. These results illustrate that
the statistics of MLSS fading channels corresponding
to various propagation scenarios vary in a wide range.
This in turn leads to the fact that the proposed model is
highly flexible, since we expect that its statistics can be
fitted to measurement data.
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Fig. 2 A comparison of the
PDF p	(x) of the MLSS
process 	(t) with that of
various other stochastic
processes

The PDF p	(x) of MLSS processes 	(t) described
by (15) is presented in Fig. 2 as well as the simu-
lation results obtained by evaluating the statistics of
the waveforms generated by using the SOS-based
channel simulator. Figure 2 also shows several spe-
cial cases of the PDF p	 (x) of MLSS processes 	 (t)
that can be obtained by selecting appropriate values
of ρ1, ρ2, ρ3, and σ 2

1 in (15). The presented results
show an excellent fitting between the analytical and
simulation results. Studying the PDF p	(x) of MLSS

processes 	(t) shows that the mean value m	 and the
variance σ 2

	 of 	(t) are greater than the mean values
and the variances of the above mentioned processes for
the same value of ρ. The same trend can be seen when
different values of ρi (i = 1, 2, 3) are selected. Further-
more, increasing the value of the relay gain AMR causes
an increase in the spread of the PDF p	(x) of MLSS
processes 	(t). Similarly, Fig. 3 illustrates the theoreti-
cal results of the CDF F	− (r) of MLSS processes 	 (t)
described by (19) along with the simulation results.

Fig. 3 A comparison of the
CDF p	(r) of the MLSS
process 	(t) with that of
various other stochastic
processes
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Fig. 4 A comparison of the
PDF pϑ (θ) of the phase of
the MLSS process 
(t) with
that of various other
stochastic processes

Figure 4 presents a comparison of the PDF p
(θ) of
the phase process 
(t) with that of the phase processes
corresponding to classical Rayleigh, classical Rice, dou-
ble Rayleigh, double Rice, SLDS, NLSS, and SLSS
processes for ρ = 1. It should be noted that the results
presented in Fig. 4 are valid for the case when fρi

(i = 1, 2, 3) is set to zero. It can be observed that the
PDF of the phase process corresponding to the SLDS
process has the smallest variance. The PDF p
(θ) fol-

lows the same trend in terms of the maximum value
and the spread as that of the classical Rice process for
the same value of ρ. Furthermore, it is interesting to
note that for the phase process 
(t) with ρi (i = 1, 2, 3)

being selected as ρ1 = ρ3 = 0.5 and ρ2 = 1, the PDF
p
(θ) is almost the same as that of the double Rice
process for ρ = 1. In addition, conclusions can be drawn
about the influence of the relay gain AMR on the PDF
p
(θ) of the phase process 
(t) from Fig. 4 like, e.g.,

Fig. 5 A comparison of the
LCR N	(r) of the MLSS
process 	(t) with that of
various other stochastic
processes
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Fig. 6 A comparison of the
ADF T	(r) of the MLSS
process 	(t) with that of
various other stochastic
processes

as AMR increases, the variance of the phase process 
(t)
increases.

The LCR N	(r) of MLSS processes 	(t) described
by (26) is shown in Fig. 5. Like Figs. 2–4, Fig. 5 also
presents a comparison of the LCR N	(r) of MLSS
processes 	(t) with that of the LCR of several special
cases, e.g., double Rayleigh, double Rice, SLDS, NLSS,
and SLSS processes for some values of ρ. Studying the
results presented in Fig. 5 shows that at low signal levels
r, the LCR N	(r) of MLSS processes 	(t) is lower as
compared to that of the special cases. This is in contrast
to the behavior at medium and high levels, where the
LCR N	(r) of 	(t) is higher than that of the LCR of
the special cases. Furthermore, increasing the value of
AMR results in a decrease in the LCR N	(r) at low signal
levels r and in an increase in the LCR N	(r) at medium
and high signal levels.

The ADF T	− (r) of MLSS processes 	 (t) described
by (27) is evaluated along with the simulation results
in Fig. 6. For comparative purposes, the ADF of dou-
ble Rayleigh, double Rice, SLDS, NLSS, and SLSS
processes for some values of ρ is also presented in
Fig. 6 along with the ADF T	− (r) of MLSS processes
	 (t). It can be observed that the ADF T	− (r) of MLSS
processes 	 (t) is lower than the ADF of the mentioned
stochastic processes. Furthermore, the decrease in the
ADF T	− (r) as a consequence of an increase in the
value of the relay gain AMR is also visible in Fig. 6.

The qualitative description of the figures presented
above is to put emphasis on the correctness of the de-

rived analytical expressions. The quantitative analysis
however is imperative to show how the channel and
system parameters such as AMR, ρ, fρ , etc. effect the
statistics of the channel and to what extent. Thus, classi-
fying the studied fading channels as NLOS M2M chan-
nels (i.e., double Rayleigh and NLSS channels) and
LOS M2M channels (i.e., double Rice, SLDS, SLSS,
and MLSS channels), we can conclude that LOS M2M
channels have higher mean values and variances com-
pared to NLOS M2M channels. Furthermore, the fad-
ing behavior of LOS M2M channels can be described
by a higher LCR at higher signal levels (a lower LCR
at lower signal levels) but a lower ADF when compared
to that of NLOS M2M channels. The relay gain AMR

influences the statistics of both NLOS and LOS M2M
fading channels in the same way, i.e., increasing AMR

increases the mean value, the variance, and the LCR
of M2M fading channels. An increase in AMR on the
other hand decreases the ADF of the channels under
discussion.

6 Conclusions

In this paper, we have proposed a new flexible M2M
amplify-and-forward relay fading channel model under
LOS conditions. The novelty in the model is that we
are considering the LOS components in all transmission
links, i.e., the direct link between the SMS and the DSM
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as well as the two links via the MR. Thus, by analogy
to multiple scattering radio propagation channels, we
have introduced a new narrowband M2M channel re-
ferred to as the MLSS channel. The flexibility of the
MLSS fading channel model comes from the fact that it
includes several other channel models as special cases,
e.g., double Rayleigh, double Rice, SLDS, NLSS, and
SLSS channel models.

This paper presents a deep analysis pertaining to
the statistical behavior of MLSS channels. Analytical
expressions for the most important statistical proper-
ties like the mean, variance, PDF, CDF, LCR, and
ADF of MLSS fading channels along with the PDF
of the corresponding phase process are derived. The
obtained theoretical results have complicated integral
forms, which is inherent in the nature of the problem.
However, that is not a serious drawback, since nowa-
days there are several efficient ways to solve multi-
fold integrals numerically. Modern day computers and
computer programs such as Matlab can give very accu-
rate numerical results of integrals. Furthermore, using
functions available in Matlab for numerical integration
such as trapz, we managed to evaluate the derived
analytical expressions with high accuracy and precision.
An excellent fitting between the theoretical and simu-
lation results confirms the correctness of the derived
analytical expressions. It has been shown that under
certain assumptions, the derived analytical expressions
for the PDF, CDF, and LCR of MLSS processes reduce
to the corresponding expressions of double Rayleigh,
double Rice, SLDS, NLSS, and SLSS processes. The
same is true for the ADF of MLSS processes as well
as for the PDF of the corresponding phase processes.
The presented results show that the PDF of MLSS
processes has lower maximum value and higher spread
in comparison to various special cases. Furthermore,
at low signal levels, the LCR of MLSS processes is
lower compared to that of several special cases. While,
at medium and high signal levels, the LCR of MLSS
processes is higher than that of the included special
cases. A significant impact of the relay gain on different
statistical properties of MLSS processes has also been
observed. An increase in the relay gain decreases the
maximum value of the PDF of MLSS processes and
increases its spread. Similarly, an increase in the relay
gain decreases the LCR of MLSS processes at low
signal levels, whereas the LCR at medium and high
signal levels increases. The opposite is true for the ADF
of MLSS processes.

Our novel M2M channel model is useful for the
system level performance evaluation of M2M commu-

nication systems in different M2M propagation scenar-
ios. Furthermore, the theoretical results presented in
this paper are beneficial for designers of the physical
layer of M2M cooperative wireless networks. Based
on our studies about the dynamics of MLSS fading
channels, robust modulation, coding, and interleaving
schemes can be developed and analyzed for M2M com-
munication systems under LOS and NLOS propagation
conditions.

Appendix A: Proof of (30)

For ρ1 = 0, AMR = 1, and σ 2
1 → 0, (15) reduces to

p	(x)

∣∣∣∣∣∣∣
ρ1=0
AMR=1
σ 2

1 →0

= x

2πσ 2
2 σ 2

AMR

∞∫

0
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0

π∫

−π

dψdνdω

×ω

ν
e
− (ω/ν)2+ρ2

2
2σ2

2 e
−

ν2+ρ2
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2σ2
AMR I0

(√
g5(ω, ν, ψ)

)

× lim
σ 2

1 →0

e
− x2+ω2

2σ2
1

σ 2
1

I0

(
xω

σ 2
1

)

︸ ︷︷ ︸
X1

(54)

for x ≥ 0. Furthermore, using the asymptotic expan-
sions of the zeroth-order modified Bessel function of
the first kind I0 (·) [49, Sec. (7.23), Eq. (2)], allows us to
write X1 as

X1 = lim
σ 2

1 →0

e
− x2+ω2

2σ2
1

σ 2
1

e
xω

σ2
1 σ1√

2πxω
= 1√

xω
lim

σ 2
1 →0

e
− x2+ω2−2xω

2σ2
1√

2πσ1

= 1√
xω

δ (ω − x) . (55)

Substituting (55) in (54) gives

p	(x)

∣∣∣∣∣∣∣
ρ1=0
AMR=1
σ 2

1 →0

= x

2πσ 2
2 σ 2
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ν
e
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π∫

−π
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0
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×
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e
− (ω/ν)2+ρ2

2
2σ2

2 I0

(√
g5(ω, ν, ψ)

)
δ (ω − x)

(56)
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for x ≥ 0. Applying the sifting property of the delta
function [50] on (56) gives

p	(x)

∣∣∣∣∣∣∣
ρ1=0
AMR=1
σ 2

1 →0

= x

2πσ 2
2 σ 2

AMR
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dν
1
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e
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2
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2 e
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2σ2
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×
π∫

−π

I0

(√
g5(x, ν, ψ)

)
dψ
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X2

, x ≥ 0. (57)

Numerical investigations show that it is possible to
approximate X2 in (57) as

X2 = (2π) I0

(
xρ2

νσ 2
2

)
I0

(
νρAMR

σ 2
AMR

)
. (58)

Thus, replacing (58) in (57) gives (30).

Appendix B: Proof of (35)

Substituting ρ1 = ρ2 = ρ3 = 0 and AMR = 1 in (15), we

can express p	(x)

∣∣∣∣ρ1,ρ2,ρ3=0
AMR=1

as follows
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X4=2π
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(59)

where X3 is obtained by using [31, Eq. (3.478.4)]. Tak-
ing the limit σ 2

1 → 0, (59) can be written as
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, x ≥ 0 . (60)

Using the asymptotic expansions of the zeroth-order
modified Bessel function of the first kind I0 (·) [49,
Sec. (7.23), Eq. (2)], (60) can be expressed as
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where X5 = δ (ω − x) by definition of the delta function
[51]. Thus, (61) can be written as

p	(x)
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×δ(ω − x) , x ≥ 0 . (62)

Applying the sifting property of the delta function [50]
on (62), results in (35).

Appendix C: Proof of (40)

Substituting ρ2 = ρ3 = 0 as well as AMR = 1 and inte-
grating (12) over θ from −π to π allows us to write
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as
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(63)
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for x ≥ 0. In (63), X6 is evaluated using [31,
Eq. (3.478.4)], whereas X7 with the help of [31,
Eq. (3.338.4)]. Taking the limit σ 2

1 → 0 in (63), allows
us to write
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for x ≥ 0. Using the asymptotic expansions of the
zeroth-order modified Bessel function of the first kind
I0 (·) [49, Sec. (7.23), Eq. (2)], (64) can be expressed as
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for x ≥ 0. In (65), X8 = δ (ω − g11 (x, θ)) by definition
of the delta function [51]. Thus, (65) can be written as
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for x ≥ 0. Applying the sifting property of the delta
function [50] on (67) results in
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where X9 is evaluated using [31, Eq. (3.478.4)]. Thus,
integrating (67) over θ from −π to π results in the final
expression given in (40).

Appendix D: Proof of (46)

Substituting ρ2 = ρ3 = 0 as well as AMR = 1 and inte-
grating (12) over θ from −π to π allows us to write
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for x ≥ 0. In (68), X10 and X11 are evaluated using
[31, Eq. (3.478.4)] and [31, Eq. (3.338.4)], respectively.
Thus, replacing X10 and X11 in (68) results in (46).
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Appendix E: Proof of (51)

Substituting ρ1 = ρ2 = ρ3 = 0 and AMR = 1 in (15), we

can express p	(x)
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as follows
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where X12 is evaluated using [31, Eq. (3.478.4)]. Thus,
replacing X12 and X13 in (69) gives (51).
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13. Zajić AG, Stüber GL (2008) Space-time correlated mobile-
to-mobile channels: modelling and simulation. IEEE Trans
Veh Technol 57(2), 715–726

14. Patel CS, Stüber GL, Pratt TG (2006) Statistical properties of
amplify and forward relay fading channels. IEEE Trans Veh
Technol 55(1):1–9

15. Salo J, El-Sallabi HM, Vainikainen P (2006) Impact of
double-Rayleigh fading on system performance. In: Proc.
1st IEEE int. symp. on wireless pervasive computing,
ISWPC 2006. Phuket, Thailand. doi:0-7803-9410-0/10.1109/
ISWPC.2006.1613574

16. Almers P, Tufvesson F, Molisch AF (2006) Keyhole effect in
MIMO wireless channels: measurements and theory. IEEE
Trans Wirel Commun 5(12):3596–3604

17. Shin H, Lee JH (2004) Performance analysis of space-
time block codes over keyhole Nakagami-m fading channels.
IEEE Trans Veh Technol 53(2):351–362

18. Sagias NC, Tombras GS (2007) On the cascaded Weibull
fading channel model. J Franklin Inst 344:1–11 (Elsevier Ltd)

19. Talha B, Pätzold M (2007) On the statistical properties of
double Rice channels. In: Proc. 10th international symposium
on wireless personal multimedia communications, WPMC
2007. Jaipur, India, pp 517–522

20. Salo J, Salmi J, Vainikainen P (2005) Distribution of the
amplitude of a sum of singly and doubly scattered fading
radio signal. In: Proc. IEEE 61st semiannual veh. tech. conf.,
VTC’05-Spring, vol 1. Stockholm, Sweden, pp 87–91

21. Salo J, El-Sallabi HM, Vainikainen P (2006) Statistical analy-
sis of the multiple scattering radio channel. IEEE Trans
Antennas Propag 54(11):3114–3124

22. Talha B, Pätzold M (2007) On the statistical properties of
mobile-to-mobile fading channels in cooperative networks
under line-of-sight conditions. In: Proc. 10th international
symposium on wireless personal multimedia communica-
tions, WPMC 2007. Jaipur, India, pp 388–393

23. Talha B, Pätzold M (2008) A novel amplify-and-
forward relay channel model for mobile-to-mobile fading
channels under line-of-sight conditions. In: Proc. 19th
IEEE int. symp. on personal, indoor and mobile radio
communications, PIMRC 2008. Cannes, France, pp 1–6.
doi:10.1109/PIMRC.2008.4699733

24. Nabar RU, Bölcskei H, Kneubühler FW (2004) Fading relay
channels: performance limits and space-time signal design.
IEEE J Sel Areas Commun 22(6):1099–1109

25. Azarian K, Gamal HE, Schniter P (2005) On the achiev-
able diversity-multiplexing tradeoff in half-duplex coopera-
tive channels. IEEE Trans Inf Theory 51(12):4152–4172

26. Nabar RU, Bölcskei H (2003) Space-time signal design
for fading relay channels In: Proc. IEEE globecom, vol 4.
San Francisco, pp 1952–1956

27. Jakes WC (ed) (1994) Microwave mobile communications.
IEEE, Piscataway

28. Papoulis A, Pillai SU (2002) Probability, random variables
and stochastic processes, 4th edn. McGraw-Hill, New York

29. Simon MK (2002) Probability distributions involving
gaussian random variables: a handbook for engineers and
scientists. Kluwer Academic, Dordrecht

30. Pätzold M (2002) Mobile fading channels. Wiley, Chichester

http://dx.doi.org/0-7803-9410-0/10.1109/ISWPC.2006.1613574
http://dx.doi.org/0-7803-9410-0/10.1109/ISWPC.2006.1613574
http://dx.doi.org/10.1109/PIMRC.2008.4699733


410 Ann. Telecommun. (2010) 65:391–410

31. Gradshteyn IS, Ryzhik IM (2000) Table of integrals, series,
and products, 6th edn. Academic, New York

32. Rice SO (1945) Mathematical analysis of random noise. Bell
Syst Tech J 24:46–156

33. Proakis J, Salehi M (2008) Digital communications, 5th edn.
McGraw-Hill, New York

34. Tsie KY, Fines P, Aghvami AH (1992) Concatenated code
and interleaver design for data transmission over fading chan-
nels. In: Proc. 9th international conference on digital satellite
communications, ICDSC-9. Copenhagen, Denmark, pp 253–
259

35. Biglieri E, Divsalar D, McLane PJ, Simon MK (1991) In-
troduction to trellis-coded modulation with applications.
Macmillan, New York

36. Morris JM (1992) Burst error statistics of simulated Viterbi
decoded BPSK on fading and scintillating channels. IEEE
Trans Commun 40(1):34–41

37. Rice SO (1944) Mathematical analysis of random noise. Bell
Syst Tech J 23:282–332

38. Patel CS, Stüber GL, Pratt TG (2005) Comparative analy-
sis of statistical models for the simulation of Rayleigh
faded cellular channels. IEEE Trans Commun 53(6):1017–
1026

39. Höher P (1992) A statistical discrete-time model for the WS-
SUS multipath channel. IEEE Trans Veh Technol 41(4):461–
468

40. Yip K-W, Ng T-S (1995) Efficient simulation of digital
transmission over WSSUS channels. IEEE Trans Commun
43(12):2907–2913

41. Han J-K, Yook J-G, Park H-K (2002) A deterministic chan-
nel simulation model for spatially correlated Rayleigh fading.
IEEE Commun Lett 6(2):58–60

42. Pätzold M, Youssef N (2001) Modelling and simulation
of direction-selective and frequency-selective mobile radio
channels. Int J Electron Commun AEÜ-55(6):433–442

43. Pätzold M, Hogstad BO (2004) A space-time channel simu-
lator for MIMO channels based on the geometrical one-ring
scattering model. Wirel Commun Mob Comput 4(7):727–737
(Special Issue on Multiple-Input Multiple-Output (MIMO)
Communications)

44. Pätzold M, Killat U, Laue F (1996) A deterministic digital
simulation model for Suzuki processes with application to a
shadowed Rayleigh land mobile radio channel. IEEE Trans
Veh Technol 45(2):318–331

45. Pätzold M, Killat U, Laue F, Li Y (1998) On the statistical
properties of deterministic simulation models for mobile fad-
ing channels. IEEE Trans Veh Technol 47(1):254–269

46. Zheng YR, Xiao C (2002) Improved models for the gener-
ation of multiple uncorrelated Rayleigh fading waveforms
IEEE Commun Lett 6(6):256–258

47. Pätzold M, Hogstad BO, Kim D (2007) A new design concept
for high-performance fading channel simulators using set par-
titioning. Wirel Pers Commun 40(2):267–279

48. Pätzold M, Hogstad BO (2006) Two new methods for the
generation of multiple uncorrelated Rayleigh fading wave-
forms. In: Proc. IEEE 63rd semiannual veh. tech. conf.,
VTC’06-Spring, vol 6. Melbourne, Australia, pp 2782–2786

49. Watson GN (1995) A treatise on the theory of Bessel func-
tions, 2nd edn. Cambridge University Press, Bentley House,
London

50. Oppenheim AV, Willsky AS, Hamid S (1996) Signals & sys-
tems, 2nd edn. Prentice-Hall, Inc., New Jersey

51. Papoulis A (1977) Signal analysis, 3rd edn. McGraw-Hill,
Auckland


	Mobile-to-mobile fading channels in amplify-and-forward relay systems under line-of-sight conditions: statistical modeling and analysis
	Abstract
	Introduction
	The MLSS fading channel
	Analysis of MLSS fading channels
	PDF of MLSS processes
	CDF of MLSS processes
	Mean value and variance of MLSS processes
	LCR of MLSS processes
	ADF of MLSS processes

	Special cases of MLSS channels
	The double Rice process
	The double Rayleigh process
	The SLDS process
	The SLSS process
	The NLSS process

	Numerical results
	Conclusions
	Proof of (30)
	Proof of (35)
	Proof of (40)
	Proof of (46)
	Proof of (51)
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


