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Ambientale (DIENCA), Università di Bologna, Via dei Colli 16, I–40136 Bologna, Italy

bDepartment of Mathematics, University of Agder, Serviceboks 422,

4604 Kristiansand, Norway

antonio.barletta@unibo.it

leiv.storesletten@uia.no

Abstract

A linear stability analysis of the basic uniform flow in a horizontal porous channel with

a rectangular cross section is carried out. The thermal boundary conditions at the im-

permeable channel walls are: uniform incoming heat flux at the bottom wall, uniform

temperature at the top wall, adiabatic lateral walls. Thermoconvective instabilities are

caused by the incoming heat flux at the bottom wall and by the internal viscous heating.

Linear stability against transverse or longitudinal roll disturbances is investigated either

analytically by a power series formulation and numerically by a fourth order Runge-Kutta

method. The special cases of a negligible effect of viscous dissipation and of a vanishing

incoming heat flux at the bottom wall are discussed. The analysis of these special cases

reveals that each possible cause of the convective rolls, bottom heating and viscous heat-

ing, can be the unique cause of the instability under appropriate conditions. In all the

cases examined, transverse rolls form the preferred mode of instability.

Keywords — Porous medium; Darcy’s law; Viscous dissipation; Linear stability;

Convective rolls; Series solution

15:01 CET Friday 2nd October, 2009 page 1 of 35

*Manuscript
Click here to view linked References

http://ees.elsevier.com/thesci/viewRCResults.aspx?pdf=1&docID=2886&rev=1&fileID=71499&msid={36C29CC5-1BE7-4F62-9EE8-64538C8AB48A}


A. Barletta & L. Storesletten Viscous dissipation and thermoconvective instabilities

Nomenclature

a wave number, Eq. (32)

An, Bn dimensionless coefficients, Eq. (37)

c average heat capacity per unit mass

Cm,n, Dm,n dimensionless coefficients, Eq. (50)

Ec Eckert number, Eq. (9)

g gravitational acceleration

g modulus of the gravitational acceleration

Ge Gebhart number, Eq. (9)

H channel height

k average thermal conductivity

K permeability

L channel half-width

m,n integers

Pe Péclet number, Eq. (19)

q̄0 bottom wall heat flux

Ra Rayleigh number, Eq. (9)

�{},�{} real part, imaginary part

s L/H, aspect ratio

t dimensionless time, Eq. (9)

T dimensionless temperature, Eq. (9)

T̄0 top wall temperature

u, v, w dimensionless velocity components, Eq. (9)

U, V,W dimensionless velocity disturbances, Eq. (20)

x, y, z dimensionless Cartesian coordinates, Eq. (9)

Greek symbols

α average thermal diffusivity

β volumetric coefficient of thermal expansion

γ dimensionless coefficient, Eq. (33)
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ε perturbation parameter, Eq. (20)

η, ηm value of B0, Dm,0

θ dimensionless temperature disturbance, Eq. (20)

Θ(y),Θm(y) dimensionless functions, Eqs. (32) and (46)

λ λ1 + i λ2, complex exponential growth rate

ν kinematic viscosity

σ ratio between the volumetric heat capacities of the fluid saturated porous

medium and of the fluid

ψ dimensionless streamfunction, Eqs. (28) and (42)

Ψ(y),Ψm(y) dimensionless functions, Eqs. (32) and (46)

Ω dimensionless parameter, Eq. (54)

Superscript, subscripts

¯ dimensional quantity

B basic flow

cr critical value

L longitudinal rolls

1 Introduction

The analysis of the Darcy-Bénard problem in a horizontal fluid saturated porous layer is

a classical issue of the studies of stability against thermally-induced convection cells. The

importance of the Darcy-Bénard problem and of its several variants stems from the link to

the conceptually similar Rayleigh-Bénard problem for a clear fluid. In practice, the interest

in the investigation of convective instabilities in a fluid saturated porous material heated

from below arises from the several applications either with respect to geophysics, to the

hydrology of groundwater, and to the diffusion of chemical contaminants in the soil. A wide

literature exists on this subject originated from the pioneering papers by Horton, Rogers

[1] and Lapwood [2]. A subsequent extension of this study is Prats problem [3], where a

basic horizontal throughflow in the porous layer is assumed, instead of the basic rest state
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considered in the papers by Horton, Rogers [1] and Lapwood [2]. Comprehensive reviews of

this subject, accounting for the wide literature available to date, can be found in Nield and

Bejan [4], Rees [5] and Tyvand [6].

Interesting studies about the effect of viscous dissipation on heat transfer and fluid flow

in saturated porous media have been published [7–13]. Some of these investigations are

devoted to the modelling of the viscous dissipation contribution in the local energy balance

[9, 12, 13]. In particular, Nield [9] discusses the resolution of a paradox arising when both

viscous dissipation and inertial effects occur. Breugem and Rees [12] carry out a rigorous

volume-averaging procedure for the local balance equations under the assumption of a non

negligible viscous dissipation. Several studies have been carried out on the effects of the

viscous heating in buoyant flows [7, 8, 10, 11]. For a detailed survey of the wide literature

on viscous dissipation in porous media we refer the reader to the book by Nield and Bejan

[4], as well as to the recent paper by Nield [13].

Quite recently, the effects of viscous dissipation have been investigated as the possible

cause of convective instabilities in porous media [14–19]. In these papers, a fluid saturated

porous layer with an infinite horizontal width and a finite thickness is considered. Different

flow models and thermal boundary conditions are investigated. Among the cases examined

we cite, horizontal basic flow with a bottom adiabatic boundary and a top boundary subject

to a third kind condition [14] or with bottom and top adiabatic boundaries [15]. The linear

instabilities of the basic horizontal flow of water next to the density maximum state have

been studied [16] and the form-drag effects have been included [17]. The Prats problem

has been revisited by including both the contributions of viscous dissipation and pressure

work in the local energy balance [18]. The case of a basic vertical throughflow with viscous

dissipation has been considered [19], thus extending the analysis carried out by Homsy and

Sherwood [20]. All these investigations confirmed that the effect of viscous dissipation may

be the sole cause of the convective instabilities. In other words, linear instabilities induced

by the effect of viscous dissipation term may arise even in the absence of a heat input across

the bottom boundary. These instabilities are in fact thermoconvective instabilities, although

generated internally by the viscous heating and not by an externally impressed temperature

gradient.
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The aim of the present paper is to develop the above described investigation of the role

played by the effect of viscous dissipation on the thermoconvective instabilities in porous

media. In the present study, the effect of a lateral confinement due to adiabatic vertical

boundaries is considered. Reference is made to a porous channel with an isoflux bottom

boundary and an isothermal top boundary. The critical conditions for the onset of either

transverse or longitudinal rolls are determined both analytically by a power series method

and numerically by a fourth order Runge-Kutta method.

2 Governing equations

We consider the stability of parallel Darcy flow in a rectangular horizontal channel filled

with a fluid saturated porous medium. The channel is bounded above and below by two

horizontal walls, separated by a distance H, and laterally by two vertical walls separated by

a distance 2L; all walls are impermeable (see Fig. 1). The components of seepage velocity

along the x̄–, ȳ–, and z̄–directions are denoted by ū, v̄, and w̄ respectively, where the ȳ–axis

is vertical and the z̄–axis is directed along the channel. The lower boundary wall ȳ = 0 is

subject to a positive uniform heat flux q̄0, while the upper boundary wall ȳ = H is supposed

to be isothermal with temperature T̄0. Furthermore, the lateral walls x̄ = ± L are assumed

to be adiabatic. Both the Darcy model and the Boussinesq approximation are invoked.

The governing mass, momentum and energy equations can be expressed as

∂ū

∂x̄
+
∂v̄

∂ȳ
+
∂w̄

∂z̄
= 0, (1)

∂w̄

∂ȳ
− ∂v̄

∂z̄
= −g β K

ν

∂T̄

∂z̄
, (2)

∂ū

∂z̄
− ∂w̄

∂x̄
= 0, (3)

∂v̄

∂x̄
− ∂ū

∂ȳ
=
g β K

ν

∂T̄

∂x̄
, (4)

σ
∂T̄

∂t̄
+ ū

∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
+ w̄

∂T̄

∂z̄
= α

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2
+
∂2T̄

∂z̄2

)
+

ν

K c

(
ū2 + v̄2 + w̄2

)
. (5)

Eqs. (2)-(4) have been obtained by applying the curl operator to both sides of Darcy’s law

in order to remove the explicit dependence on the pressure field. In Eq. (5), the dissipation

function is proportional to the square modulus of the seepage velocity [13].
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The velocity and temperature conditions at the boundaries are

v̄ = 0, − k
∂T̄

∂ȳ
= q̄0 on ȳ = 0, −L < x̄ < L, (6)

v̄ = 0, T̄ = T̄0 on ȳ = H, −L < x̄ < L, (7)

ū = 0,
∂T̄

∂x̄
= 0 on x̄ = ± L, 0 < ȳ < H. (8)

As described in the following sections, a forced basic flow caused by a horizontal pressure

gradient is prescribed within the porous channel. This flow results in a uniform basic velocity

profile, with a seepage velocity of magnitude w̄B in the z–direction, and a purely vertical

heat flux.

2.1 Dimensionless formulation

We introduce the following dimensionless quantities:

(x̄, ȳ, z̄) = (x, y, z)H, t̄ = t
σ H2

α
, (ū, v̄, w̄) = (u, v, w)

α

H
, T̄ = T̄0 +

q̄0H

k
T

Ra =
g β K q̄0H

2

k α ν
, Ge =

g β H

c
, Ec =

Ge

Ra
=

k α ν

K c q̄0H
,

(9)

where Ra, Ge and Ec are the Darcy-Rayleigh number, Gebhart number and Darcy-Eckert

number, respectively.

By employing the dimensionless quantities, Eqs.(1)-(8) can be written as follows:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (10)

∂w

∂y
− ∂v

∂z
= − Ra

∂T

∂z
, (11)

∂u

∂z
− ∂w

∂x
= 0, (12)

∂v

∂x
− ∂u

∂y
= Ra

∂T

∂x
, (13)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
+ Ec

(
u2 + v2 + w2

)
, (14)

v = 0,
∂T

∂y
= − 1 on y = 0, −s < x < s, (15)

v = 0, T = 0 on y = 1, −s < x < s, (16)

u = 0,
∂T

∂x
= 0 on x = ±s, 0 < y < 1, (17)

where s = L/H.
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2.2 Basic solution

Under the above described conditions there exists a stationary flow with uniform horizontal

seepage velocity uB = (uB, vB, wB), and a purely vertical heat flux. The basic state, which

we shall analyse for stability, is given by

uB = 0, vB = 0, wB = Pe, TB = 1 − y +
1
2
EcPe2

(
1 − y2

)
, (18)

where Pe is the Péclet number defined by

Pe =
w̄B H

α
, (19)

and w̄B is the dimensional basic seepage velocity component in the z–direction. Obviously,

it is not restrictive to assume that w̄B > 0, i.e. Pe > 0.

2.3 Linearisation

Perturbations of the basic state given by Eq. (18) are given as

u = uB + εU, v = vB + ε V, w = wB + εW, T = TB + ε θ, (20)

where ε is a very small perturbation parameter. On substituting Eq. (20) in Eqs. (10)-(17)

and neglecting nonlinear terms of order ε2, we obtain the linearised stability equations,

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0, (21)

∂W

∂y
− ∂V

∂z
= −Ra ∂θ

∂z
, (22)

∂U

∂z
− ∂W

∂x
= 0, (23)

∂V

∂x
− ∂U

∂y
= Ra

∂θ

∂x
, (24)

∂θ

∂t
+ Pe

∂θ

∂z
− (

EcPe2 y + 1
)
V =

∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2
+ 2EcPe W, (25)

V = 0,
∂θ

∂y
= 0 on y = 0, −s < x < s,

V = 0, θ = 0 on y = 1, −s < x < s,

U = 0,
∂θ

∂x
= 0 on x = ± s, 0 < y < 1,

(26)

where Eq. (18) is employed. The linearity of Eqs. (21)-(26) implies that, due to the super-

position property, one may treat rolls of different orientations separately with regard to

instability. An advantage is that each of these cases can be dealt with by using a purely 2D

treatment.
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3 Instability with respect to rolls

Solutions of the disturbance equations (21)-(26) are sought in the form of periodic rolls. Due

to the lateral boundaries, only two kinds of convection rolls can exist: rolls parallel to the

z–axis, hereafter referred to as longitudinal rolls, and rolls orthogonal to the z–axis, hereafter

referred to as transverse rolls.

3.1 Transverse rolls

Let us first examine transverse rolls, i.e. horizontal rolls with axes along the x–direction.

Then, the analysis of the linear disturbances become two-dimensional with

U = 0, V = V (y, z, t), W = W (y, z, t), θ = θ(y, z, t). (27)

On introducing a streamfunction, ψ, such that

W =
∂ψ

∂y
, V = −∂ψ

∂z
, (28)

then Eqs. (21), (23), and (24) are satisfied identically, while Eqs. (22) and (25) can be

rewritten in the form

∂2ψ

∂y2
+
∂2ψ

∂z2
+Ra

∂θ

∂z
= 0, (29)

∂θ

∂t
+ Pe

∂θ

∂z
+

(
EcPe2 y + 1

) ∂ψ
∂z

=
∂2θ

∂y2
+
∂2θ

∂z2
+ 2EcPe

∂ψ

∂y
. (30)

The corresponding boundary conditions are deduced from Eq. (26), namely

∂ψ

∂z
= 0,

∂θ

∂y
= 0 on y = 0, −s < x < s,

∂ψ

∂z
= 0, θ = 0 on y = 1, −s < x < s.

(31)

Solutions of Eqs. (29)-(31) are sought in the form of plane waves,

ψ(y, z, t) = �
{
iΨ(y) eλteiaz

}
, θ(y, z, t) = �

{
Θ(y) eλteiaz

}
, (32)

where the positive real constant a is the wave number, while λ = λ1 + i λ2 is a complex

exponential growth rate to be determined. We set λ1 = 0 in order to investigate neutral

stability. Moreover, for numerical convenience we shall also set,

γ = λ2 + aPe. (33)
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By substituting Eq. (32) in Eqs. (29) and (30), we obtain

Ψ′′ − a2 Ψ + aRaΘ = 0, (34)

Θ′′ − (
i γ + a2

)
Θ + 2 i EcPe Ψ′ + a

(
EcPe2 y + 1

)
Ψ = 0, (35)

where the primes denote differentiation with respect to y.

The boundary conditions for Ψ and Θ are easily deduced from Eqs. (31) and (32), namely

Ψ = 0, Θ′ = 0 on y = 0,

Ψ = 0, Θ = 0 on y = 1.
(36)

The present stability analysis is based on the ordinary differential equations (34) and (35),

subject to the boundary conditions (36).

3.1.1 Series solution

Eqs. (34)-(36) can be solved through a power series method by expressing

Ψ(y) =
∞∑

n=0

An

n!
yn, Θ(y) =

∞∑
n=0

Bn

n!
yn. (37)

The homogeneity of Eqs. (34)-(36) implies that Ψ(y) is defined only up to an arbitrary overall

scale factor, which means that we may set Ψ′(0) = 1 as a normalization condition. The three

known (complex) initial conditions are then

A0 = Ψ(0) = 0, A1 = Ψ′(0) = 1, B1 = Θ′(0) = 0, (38)

while B0 = Θ(0) = η will need to be obtained by using the boundary conditions at y = 1,

Eq. (36). Higher order coefficients An and Bn may be determined by substituting Eq. (37)

into Eqs. (34) and (35) and collecting like powers of y. We thus obtain

A2 = − aRa η, B2 =
(
i γ + a2

)
η − 2 i EcPe, (39)

and the recurrence relations

An+2 = a2An − aRaBn,

Bn+2 =
(
i γ + a2

)
Bn − 2 i EcPeAn+1 − aAn − aEcPe2 nAn−1, n = 1, 2, 3, . . .

(40)
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3.2 Longitudinal rolls

Longitudinal rolls, with axes parallel to the z-direction, are directed along the rectangular

channel. The linear disturbances become two-dimensional in this case as well, with

U = U(x, y, t), V = V (x, y, t), W = 0, θ = θ(x, y, t). (41)

On introducing a streamfunction, ψ, such that

U =
∂ψ

∂y
, V = −∂ψ

∂x
, (42)

then Eqs. (21)-(23) are satisfied identically, while Eqs. (24) and (25) can be written in the

form

∂2ψ

∂x2
+
∂2ψ

∂y2
+Ra

∂θ

∂x
= 0, (43)

∂θ

∂t
+

(
EcPe2 y + 1

) ∂ψ
∂x

=
∂2θ

∂x2
+
∂2θ

∂y2
. (44)

The corresponding boundary conditions deduced from Eq. (26) are

ψ = 0,
∂θ

∂y
= 0 on y = 0, −s < x < s,

ψ = 0, θ = 0 on y = 1, −s < x < s,

ψ = 0,
∂θ

∂x
= 0 on x = ± s, 0 < y < 1.

(45)

Steady solutions of Eqs. (43)-(45), corresponding to neutral stability, have the following form:

ψ(x, y) = Ψm(y) sin
[mπ

2

(x
s

+ 1
)]
,

θ(x, y) = −Θm(y) cos
[mπ

2

(x
s

+ 1
)]
, m = 1, 2, 3, . . . .

(46)

Eq. (46) substituted into Eqs. (43)-(45) yields the ordinary differential equations

Ψ′′
m −

(mπ

2 s

)2
Ψm +

mπ

2 s
RaΘm = 0, (47)

Θ′′
m −

(mπ

2 s

)2
Θm +

mπ

2 s
(
EcPe2 y + 1

)
Ψm = 0, m = 1, 2, 3, . . . , (48)

subject to the boundary conditions

Ψm(0) = Ψm(1) = 0, Θ′
m(0) = Θm(1) = 0. (49)
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3.2.1 Series solutions

Eqs. (47) and (48) subject to the boundary conditions (49) can be solved by a power series

method expressing

Ψm(y) =
∞∑

n=0

Cm,n

n!
yn, Θm(y) =

∞∑
n=0

Dm,n

n!
yn. (50)

The homogeneity of Eqs. (47)-(49) implies that Ψm and Θm are defined only up to an

arbitrary overall scale factor, which means that we may set Ψ′
m(0) = 1. The three known

initial conditions are then

Cm,0 = Ψm(0) = 0, Cm,1 = Ψ′
m(0) = 1, Dm,1 = Θ′

m(0) = 0, (51)

while Dm,0 = Θm(0) = ηm will need to be obtained by using the boundary conditions at

y = 1, Eq. (49). Higher order coefficients Cm,n and Dm,n may be determined by substituting

Eq. (50) into Eqs. (47) and (48) and collecting like powers of y. We thus obtain

Cm,2 = − mπ

2 s
Ra ηm, Dm,2 =

(mπ

2 s

)2
ηm, (52)

and the recurrence relations

Cm,n+2 =
(mπ

2 s

)2
Cm,n − mπ

2 s
RaDm,n,

Dm,n+2 =
(mπ

2 s

)2
Dm,n − mπ

2 s
(
Cm,n + EcPe2 nCm,n−1

)
, n = 1, 2, 3, . . .

(53)

4 Discussion of the results

4.1 Transverse rolls

In addition to the series solution discussed in Section 3.1.1, Eqs. (34)-(36) can be solved

numerically by adopting an explicit Runge-Kutta method. The numerical procedure can

be easily set up by using the software package Mathematica 7.0 (© Wolfram, Inc.). The

explicit Runge-Kutta method is available through the built-in function NDSolve setting the

Method option to ExplicitRungeKutta. Eqs. (34)-(36) are solved as an eigenvalue problem

for assigned values of a, Pe and of the parameter

Ω = GePe2. (54)

The reason for using Ω instead of Ge as an input parameter is the existence of a special

regime where Ω ∼ O(1) and Pe → ∞. This regime is such that the eigenvalue problem for
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transverse rolls can be made self-adjoint. A detailed analysis of this case can be found in the

following Section 4.1.1. We note that the parameter Ω is used as the governing parameter

for the study of linear stability in Barletta et al. [14].

For convenience, Eqs. (34) and (35) are rewritten as

Ψ′′ − a2 Ψ + aRaΘ = 0, (55)

Θ′′ − (
i γ + a2

)
Θ +

2 iΩ
PeRa

Ψ′ + a

(
Ω
Ra

y + 1
)

Ψ = 0, (56)

where the relationship Ec = Ge/Ra, Eq. (9), has been used. These equations are solved with

the initial conditions

Ψ(0) = 0, Ψ′(0) = 1, Θ(0) = η1 + i η2, Θ′(0) = 0, (57)

discussed in in Section 3.1.1. Here, η1 and η2 are the real part and the imaginary part of

η. The real eigenvalues Ra, γ, η1 and η2 are determined by solving numerically the complex

constraint equations

Ψ(1) = 0, Θ(1) = 0. (58)

This is achieved in Mathematica 7.0 by means of the built-in function FindRoot. As a is

prescribed, the eigenvalue Ra is a function of a, Ra(a). On minimizing this function, one

determines the critical values acr, Racr and γcr for any assigned pair (Ω, Pe).

We point out that the four real unknowns η1, η2, Ra and γ are not uniquely determined

by solving the four real algebraic equations �{Ψ(1)} = 0, �{Ψ(1)} = 0, �{Θ(1)} = 0 and

�{Θ(1)} = 0 for assigned a, Ω, Pe. In fact, there are infinite neutral stability curves that

may exist in the parametric space (a,Ra) for a given pair (Ω, Pe), corresponding either to

the lowest mode of instability or to the higher modes. This is a well known feature of the

linear analyses of thermoconvective instability examined in several surveys on this subject

(see for instance Nield and Bejan [4], Chapter 6). In the present discussion, the higher modes

of instability are not studied as our aim is determining the critical conditions for the onset

of convective rolls. This objective is achieved just by considering the lowest neutral stability

mode.

A comparison between the series solution discussed in Section 3.1.1, truncated to the first

N terms, and the explicit Runge-Kutta solution is displayed in Table 1. These data refer to
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the neutral stability functions Ra(a) and γ(a) for Ω = 40 and Pe = 10. Three sample wave

numbers a = 1, a = 2 and a = 3 are considered. Table 1 shows that, with increasing N , the

series solution results rapidly converge to the Runge-Kutta method results. The agreement

is perfect even with N = 25.

We mention that special limiting cases of Eqs. (55) and (56) can be defined.

4.1.1 Limit Pe→ ∞

By assuming Ω ∼ O(1) and Ra ∼ O(1), Eqs. (55) and (56) can be easily simplified in the

limit Pe → ∞. Since Ω is kept finite, this limit is in fact a double limit: Pe → ∞ and

Ge → 0. The only explicitly imaginary contribution is the i γ term in Eq. (56), so that one

can solve the eigenvalue problem by setting γ = 0 and η2 = 0. Then, the eigenvalue problem

becomes self-sdjoint and Eqs. (55)-(57) can be expressed as

Ψ′′ − a2 Ψ + aRaΘ = 0, (59)

Θ′′ − a2 Θ + a

(
Ω
Ra

y + 1
)

Ψ = 0, (60)

Ψ(0) = 0, Ψ′(0) = 1, Θ(0) = η1, Θ′(0) = 0, (61)

where, since the problem is self-adjoint, the eigenfunctions Ψ and Θ are now real-valued.

4.1.2 Limit Ω → 0

Another limiting case is obtained by assuming Pe ∼ O(1), Ra ∼ O(1) and letting Ω → 0.

This limit has a direct physical significance as it corresponds to Ge→ 0, i.e. to a negligible

effect of viscous dissipation. In this limit, Eqs. (55)-(57) yield

Ψ′′ − a2 Ψ + aRaΘ = 0, (62)

Θ′′ − a2 Θ + aΨ = 0, (63)

Ψ(0) = 0, Ψ′(0) = 1, Θ(0) = η1, Θ′(0) = 0. (64)

Again the problem is made self-adjoint by setting γ = 0 and η2 = 0. The critical values acr,

Racr are independent of any other parameter and are given by

acr = 2.326215, Racr = 27.097628. (65)
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These are the critical values obtained for the Darcy-Bénard problem without viscous dissipa-

tion, for bottom impermeable isoflux boundary and top impermeable isothermal boundary,

discussed in Rees [5].

4.1.3 Limit Ra→ 0

By taking Ra → 0 with Ω ∼ O(1) and Pe ∼ O(1), one considers the very special case of an

adiabatic bottom boundary (q̄0 → 0). This case has been diffusely studied in Barletta et al.

[14]. The limit Ra→ 0 can be taken in Eqs. (55) and (57) after the rescaling:

RaΘ → Θ, Ra η → η. (66)

Then, one obtains

Ψ′′ − a2 Ψ + aΘ = 0, (67)

Θ′′ − (
i γ + a2

)
Θ +

2 iΩ
Pe

Ψ′ + aΩ yΨ = 0, (68)

Ψ(0) = 0, Ψ′(0) = 1, Θ(0) = η1 + i η2, Θ′(0) = 0. (69)

In this case, the problem is not self-adjoint. Moreover, it must be formulated in a special

way as the eigenvalue Ra has disappeared. In fact, one prescribes a and Pe and determines

the eigenvalues Ω, γ, η1 and η2 by solving the constraint conditions Eq. (58). One may note

that Eqs. (67)-(69) yield a self-adjoint problem when Pe → ∞. Then, in this limit, one has

γ = 0, η2 = 0 and the critical values of a and Ω are given by

acr = 2.44827, Ωcr = 61.8666. (70)

These results are in perfect agreement with those reported in Barletta et al. [14].

4.1.4 Critical values

Tables 2 and 3 include the critical values of a, Ra and γ obtained for different pairs (Ω, Pe).

The values in the column Pe → ∞ in Table 2 are obtained by solving the self-adjoint

eigenvalue problem Eqs. (59)-(61). The values in the line Ω → 0 in Tables 2 and 3 are

obtained by solving the self-adjoint eigenvalue problem Eqs. (62)-(64). These results are

independent of Pe as we have pointed out in Section 4.1.2. The data reported in Tables 2

and 3 justify the assumption γ = 0 introduced in Section 4.1.1 for the limiting case Pe→ ∞.

15:01 CET Friday 2nd October, 2009 page 14 of 35



A. Barletta & L. Storesletten Viscous dissipation and thermoconvective instabilities

In fact, for a fixed value of Ω, one may see from these tables that γ approaches continuously 0

when Pe increases and tends to infinity. A similar reasoning holds for the assumption γ = 0

introduced in Section 4.1.2 for the limiting case Ω → 0.

Tables 2 and 3 show that Racr is a decreasing function of Ω for a fixed Pe and an in-

creasing function of Pe for a fixed Ω. The former feature can be interpreted physically as

the destabilizing effect of the viscous dissipation. This destabilizing effect can be so intense

that Racr may drop to zero for a sufficiently high value of Ω. Tables 2 and 3 suggest that

the critical value of Ω leading to Racr = 0 is greater than 55 for Pe = 5, 10, 100, and ∞, is

greater than 40 for Pe = 2 and is greater than 25 for Pe = 1. For the case Ra = 0, precise

values of Ωcr, as well as of the corresponding values of acr and γcr, are given in Table 4 for

different Péclet numbers. Both acr and Ωcr are increasing functions of Pe, that attain the

asymptotic values given by Eq. (70) when Pe → ∞. Tables 2 and 3 also reveal that the

critical wave number, acr, is a monotonic function of Ω for a fixed Pe = 10, 100,∞, but not

for Pe = 1, 2, 5. More precisely, in the latter case, acr initially increases with Ω, reaches a

maximum and then decreases.

The neutral stability curves for the case Ω = 20 are displayed in Fig. 2 for five different

values of Pe. Furthermore, the effect of increasing values of Ω for Pe = 2 is illustrated in Fig.

3. Increasing values of Ω for a fixed Péclet number correspond to an increasing contribution

of the frictional heating. Then, Fig. 3 confirms the destabilizing role played by the viscous

dissipation.

4.2 Longitudinal rolls

The analysis of stability against longitudinal rolls differs from that against transverse rolls

for the discrete spectrum of wave numbers,

a =
mπ

2 s
, m = 1, 2, 3, . . . (71)

This is a consequence of the lateral confinement. However, if we span all the possible aspect

ratios s, then the wave number a can assume any positive real value. Then, by introducing

the dimensionless parameter Ω defined by Eq. (54) in Eqs. (47)-(49), these equations and the

initial conditions discussed in Section 3.2.1 form the initial value problem

Ψ′′
m − a2 Ψm + aRaΘm = 0, (72)
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Θ′′
m − a2 Θm + a

(
Ω
Ra

y + 1
)

Ψm = 0, (73)

Ψm(0) = 0, Ψ′
m(0) = 1, Θm(0) = ηm, Θ′

m(0) = 0, (74)

subject to the constraint equations

Ψm(1) = 0, Θm(1) = 0. (75)

We note that a comparison between Eqs. (59)-(61) and Eqs. (72)-(74) reveals that the two

initial value problems are formally coincident. Then, we can infer that, for every assigned Ω,

the critical values acr(Ω) and Racr(Ω) are those obtained for transverse rolls in the limiting

case Pe→ ∞ and reported in the first column of Table 2. As a consequence of Eq. (71), for

every prescribed value of Ω, there exists a discrete sequence of corresponding critical values

of s, defined by all the integer multiples of

scr(Ω) =
π

2 acr(Ω)
. (76)

The value of scr is a function of Ω, as acr(Ω) is the critical wave number obtained for the

assigned value of Ω. For a given pair (s,Ω), the minimum Rayleigh number for neutral

stability against longitudinal rolls represents the critical Rayleigh number, Racr,L(s,Ω). We

can determine Racr,L(s,Ω) by seeking the minimum over the different integers m of the

eigenvalue Ra for the problem Eqs. (72)-(75) with a expressed by Eq. (71). If, for a given

Ω, the aspect ratio s is not an integer multiple of scr(Ω), then the value of Racr,L(s,Ω) for

neutral stability against longitudinal rolls is greater than Racr(Ω). In other words,

Racr,L(s,Ω) ≥ Racr(Ω), (77)

where the equality holds if and only if s is an integer multiple of scr(Ω).

As it has been pointed out in Section 4.1.4, for transverse rolls, the critical Rayleigh

number is an increasing function of Pe for a fixed Ω. This means that, for a fixed Ω, the

highest critical Rayleigh number is obtained in the limit Pe→ ∞, i.e. the quantity Racr(Ω).

From this reasoning and from Eq. (77), one can infer that the preferred mode of instability

is transverse rolls. Instability to transverse rolls and instability to longitudinal rolls may

become equivalent in the limit Pe → ∞, whenever s coincides with integer multiples of the

special critical values defined by Eq. (76). Tables 2 and 3 reveal that instabilities may lead
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equivalently to the onset of transverse or longitudinal rolls also in the limiting case Ω → 0

as in this case we loose the dependence on Pe. The equivalence between the transverse and

the longitudinal rolls is ensured in this limit only if

s = m scr(0) =
mπ

2 acr(0)
= 0.675259 m, m = 1, 2, 3, . . . . (78)

Fig. 4 displays the plot of scr(Ω). We mention that this function is defined, on account of

Eq. (70), in the interval 0 < Ω ≤ Ωcr. In fact, outside this interval, the flow system becomes

unstable even with a vanishing heat flux at the bottom boundary. Fig. 4 shows that scr(Ω)

is a monotonic weakly-decreasing function of Ω.

Figs. 5-7 illustrate the behaviour of Racr,L(s,Ω) versus s for three different values of

Ω: 10−6, 30 and 50. There is a common qualitative feature of these three figures. The

plots display a sequence of local minima where s is an integer multiple of scr(Ω) and, as a

consequence of Eq. (77), Racr,L(s,Ω) = Racr(Ω). As s increases, different m-modes yield the

lowest critical Rayleigh number. A transition from each m-mode to the (m+1)-mode occurs

in Figs. 5-7 at the cusp points.

The critical values of the Rayleigh number for the onset of longitudinal rolls define the

function Racr,L(s,Ω). For a given s, Racr,L(s,Ω) is a monotonic decreasing function of Ω such

that, for a certain threshold value Ω = Ωcr,L(s), the critical Rayleigh number becomes zero.

A similar feature has been described for transverse rolls in Section 4.1.3. Then, Ω = Ωcr,L(s)

is the root of the algebraic equation

Racr,L(s,Ω) = 0. (79)

As a consequence of Eqs. (70) and (76), Ωcr,L(s) ≥ 61.8666, where the equality holds only

if s is an integer multiple of scr = 0.641595. Fig. 8 illustrates the behaviour of function

Ωcr,L(s). One can easily conclude that the qualitative form of the plot is rather similar to

Figs. 5-7, with the same interpretation of the cusp points. Fig. 8 provides a description of

the critical conditions for the onset of longitudinal rolls when the heat flux at the bottom

boundary becomes zero, namely when Ra→ 0.

Fig. 9 displays the streamlines ψ = constant and the isotherms θ = constant at the onset

of either transverse roll or longitudinal roll instability, for the sample case Ra = 0, Pe = 10

and s = 1/2. This sample case is one where the convective instability is activated only
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by the action of the viscous dissipation effect, since no heat flux is supplied at the bottom

boundary (Ra = 0). For this case, instability to transverse rolls occurs when a = 2.40443 and

Ω = 60.2103. Transverse rolls travel in the z-direction (λ2 	= 0), so that the left frame of Fig.

9 is referred to t = 0. On the other hand, longitudinal rolls at neutral stability conditions,

a = π and Ω = 64.8682, are time-independent. Fig. 9 illustrates the qualitative features of

the convection cells for transverse and longitudinal rolls. The main difference between the

two cells is the evident bending of the transverse roll in the streamwise direction.

5 Conclusions

The onset of convective roll instabilities has been investigated for a horizontal porous channel

bounded by an isoflux bottom wall, a top isothermal wall and two vertical adiabatic bound-

aries. A basic horizontal flow has been assumed and the effect of viscous dissipation has been

taken into account. The most significant results obtained are resumed below.

1. The governing parameters are the Gebhart number, the Péclet number and the Rayleigh

number, as well as the aspect ratio of the rectangular cross-section. A vanishingly small

Gebhart number yields the limiting case of no viscous dissipation, while a vanishingly

small Rayleigh number corresponds to an adiabatic bottom boundary.

2. If, for a given Péclet number, the Gebhart number increases, then the critical Rayleigh

number for the onset of transverse rolls decreases and eventually becomes zero, for a

sufficiently high Gebhart number. In this regime, the thermoconvective instabilities

are purely induced by the contribution of the internal viscous heating.

3. The preferred mode of instability is transverse rolls. The critical Rayleigh number for

the onset of longitudinal rolls is generally higher than that for transverse rolls and

depends on the aspect ratio of the rectangular cross-section. In the limiting case of

a very large Péclet number and for special values of the channel aspect ratio, the

critical values of the Rayleigh number against transverse and longitudinal rolls may be

coincident.

This special flow problem is one of the many that may be of interest either for engineering

or for geophysics and astrophysics. In fact, the basic feature of the heating from below and
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the concurrent effect of the frictional heating associated with the basic flow characterise this

problem as an instance of a wide class of similar problems. We mention that other possible

assignments of the thermal boundary conditions may be considered leading to a heating from

below. One can assume an isothermal bottom boundary with a temperature higher than the

top boundary, or one can assume a convective heating of the bottom surface through a

boundary condition of the third kind. Thus, the subject of thermoconvective instabilities

with viscous dissipation in fluid saturated porous media offers interesting opportunities for

future research.
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Table 1: Transverse rolls: neutral stability values of Ra and γ with Ω = 40 and Pe = 10.

Comparison between the series solution and the Runge-Kutta solution

a = 1 a = 2 a = 3

Method Ra γ Ra γ Ra γ

Series, N = 10 30.634985 0.703004 10.497103 0.804620 11.383059 – 0.754542

Series, N = 15 30.550923 0.711722 10.071665 0.981118 10.635659 0.861900

Series, N = 20 30.550835 0.711732 10.070433 0.982201 10.655979 0.878759

Series, N = 25 30.550835 0.711732 10.070433 0.982203 10.656137 0.878788

Series, N = 30 30.550835 0.711732 10.070433 0.982203 10.656137 0.878788

Runge-Kutta 30.550835 0.711732 10.070433 0.982203 10.656137 0.878788
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Table 2: Transverse rolls: critical values of a, Ra and γ

Pe→ ∞ Pe = 100 Pe = 10

Ω acr Racr γcr acr Racr γcr acr Racr γcr

0 2.3262 27.098 0 2.3262 27.098 0 2.3262 27.098 0

10−8 2.3262 27.098 0 2.3262 27.098 0.0000 2.3262 27.098 0.0000

10−4 2.3262 27.098 0 2.3262 27.098 0.0000 2.3262 27.098 0.0000

0.001 2.3262 27.097 0 2.3262 27.097 0.0000 2.3262 27.097 0.0000

0.01 2.3262 27.093 0 2.3262 27.093 0.0000 2.3262 27.093 0.0003

0.1 2.3263 27.055 0 2.3263 27.055 0.0003 2.3263 27.055 0.0026

1 2.3272 26.671 0 2.3272 26.671 0.0025 2.3272 26.671 0.0255

2 2.3282 26.245 0 2.3282 26.245 0.0051 2.3282 26.244 0.0509

5 2.3315 24.963 0 2.3315 24.963 0.0127 2.3312 24.957 0.1269

10 2.3375 22.819 0 2.3375 22.819 0.0253 2.3365 22.797 0.2525

15 2.3442 20.666 0 2.3442 20.665 0.0377 2.3420 20.617 0.3767

20 2.3517 18.503 0 2.3517 18.503 0.0500 2.3477 18.416 0.4994

25 2.3600 16.331 0 2.3599 16.330 0.0621 2.3537 16.196 0.6204

30 2.3691 14.149 0 2.3690 14.147 0.0740 2.3599 13.955 0.7396

35 2.3790 11.957 0 2.3789 11.955 0.0858 2.3665 11.695 0.8570

40 2.3899 9.7554 0 2.3897 9.7520 0.0973 2.3733 9.4149 0.9724

45 2.4016 7.5430 0 2.4014 7.5387 0.1087 2.3805 7.1153 1.0856

50 2.4143 5.3199 0 2.4140 5.3147 0.1198 2.3880 4.7962 1.1966

55 2.4279 3.0860 0 2.4276 3.0798 0.1306 2.3958 2.4576 1.3051
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Table 3: Transverse rolls: critical values of a, Ra and γ

Pe = 5 Pe = 2 Pe = 1

Ω acr Racr γcr acr Racr γcr acr Racr γcr

0 2.3262 27.098 0 2.3262 27.098 0 2.3262 27.098 0

10−8 2.3262 27.098 0.0000 2.3262 27.098 0.0000 2.3262 27.098 0.0000

10−4 2.3262 27.098 0.0000 2.3262 27.098 0.0000 2.3262 27.098 0.0000

0.001 2.3262 27.097 0.0001 2.3262 27.097 0.0001 2.3262 27.097 0.0003

0.01 2.3262 27.093 0.0005 2.3262 27.093 0.0013 2.3262 27.093 0.0026

0.1 2.3263 27.055 0.0051 2.3263 27.055 0.0128 2.3263 27.055 0.0255

1 2.3272 26.671 0.0510 2.3270 26.666 0.1274 2.3262 26.649 0.2548

2 2.3281 26.241 0.1018 2.3273 26.223 0.2546 2.3243 26.156 0.5089

5 2.3305 24.941 0.2538 2.3254 24.824 0.6341 2.3073 24.407 1.2648

10 2.3335 22.731 0.5049 2.3131 22.266 1.2586 2.2435 20.598 2.4903

15 2.3353 20.468 0.7528 2.2898 19.426 1.8705 2.1436 15.663 3.6486

20 2.3358 18.153 0.9974 2.2560 16.305 2.4670 2.0203 9.5893 4.7112

25 2.3350 15.788 1.2383 2.2130 12.906 3.0455 1.8870 2.3618 5.6553

30 2.3329 13.371 1.4753 2.1620 9.2267 3.6033 — — —

35 2.3296 10.904 1.7083 2.1045 5.2679 4.1377 — — —

40 2.3250 8.3883 1.9372 2.0422 1.0283 4.6462 — — —

45 2.3192 5.8237 2.1617 — — — — — —

50 2.3122 3.2112 2.3819 — — — — — —

55 2.3040 0.55132 2.5977 — — — — — —
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Table 4: Transverse rolls with Ra = 0: critical values of a, Ω and γ

Pe acr Ωcr γcr

0.5 1.7437 15.085 6.5362

0.75 1.7962 21.195 6.2212

1 1.8472 26.480 5.9102

1.5 1.9427 34.943 5.3118

2 2.0271 41.165 4.7607

3 2.1584 49.088 3.8384

4 2.2456 53.470 3.1490

5 2.3022 56.026 2.6415

6 2.3394 57.606 2.2624

7 2.3646 58.638 1.9727

8 2.3822 59.343 1.7457

9 2.3950 59.843 1.5640

10 2.4044 60.210 1.4156

20 2.4367 61.438 0.7209

50 2.4464 61.797 0.2899

100 2.4478 61.849 0.1450

1000 2.4483 61.866 0.0145

104 2.4483 61.867 0.0015

∞ 2.4483 61.867 0
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Figure captions

Fig. 1 — Drawing of the porous channel.

Fig. 2 — Transverse rolls; neutral stability curves for Ω = 20.

Fig. 3 — Transverse rolls; neutral stability curves for Pe = 2.

Fig. 4 — Longitudinal rolls; plot of scr versus Ω.

Fig. 5 — Longitudinal rolls; plot of Racr,L(s,Ω) versus s for Ω = 10−6, where scr(Ω) =

0.675259; the dashed line corresponds to Racr(Ω) = 27.0976.

Fig. 6 — Longitudinal rolls; plot of Racr,L(s,Ω) versus s for Ω = 30, where scr(Ω) =

0.663036; the dashed line corresponds to Racr(Ω) = 14.1493.

Fig. 7 — Longitudinal rolls; plot of Racr,L(s,Ω) versus s for Ω = 50, where scr(Ω) =

0.650634; the dashed line corresponds to Racr(Ω) = 5.31993.

Fig. 8 — Longitudinal rolls with Ra = 0; plot of Ωcr,L(s) versus s; the dashed line corre-

sponds to Ωcr = 61.8666.

Fig. 9 — Onset of convection for the case Ra = 0 with Pe = 10 and s = 1/2: streamlines

ψ = constant (solid lines) and isotherms θ = constant (dashed lines) with transverse

rolls (a = 2.40443,Ω = 60.2103, t = 0) and with longitudinal rolls (a = π,Ω = 64.8682).
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Figure 1: Drawing of the porous channel.
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Figure 2: Transverse rolls; neutral stability curves for Ω = 20.
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Figure 3: Transverse rolls; neutral stability curves for Pe = 2.
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Figure 4: Longitudinal rolls; plot of scr versus Ω.
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Figure 5: Longitudinal rolls; plot of Racr,L(s,Ω) versus s for Ω = 10−6, where scr(Ω) =

0.675259; the dashed line corresponds to Racr(Ω) = 27.0976.
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Figure 6: Longitudinal rolls; plot of Racr,L(s,Ω) versus s for Ω = 30, where scr(Ω) =

0.663036; the dashed line corresponds to Racr(Ω) = 14.1493.
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Figure 7: Longitudinal rolls; plot of Racr,L(s,Ω) versus s for Ω = 50, where scr(Ω) =

0.650634; the dashed line corresponds to Racr(Ω) = 5.31993.
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Figure 8: Longitudinal rolls with Ra = 0; plot of Ωcr,L(s) versus s; the dashed line corre-

sponds to Ωcr = 61.8666.
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Figure 9: Onset of convection for the case Ra = 0 with Pe = 10 and s = 1/2: streamlines

ψ = constant (solid lines) and isotherms θ = constant (dashed lines) with transverse rolls

(a = 2.40443,Ω = 60.2103, t = 0) and with longitudinal rolls (a = π,Ω = 64.8682).
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